Pacific Journal of Mathematics

SOME REMARKS ON FITTING'S INVARIANTS

KENNETH ROY MOUNT

Vol. 13, No. 4 June 1963

SOME REMARKS ON FITTING'S INVARIANTS

K. R. Mount

In the paper [2] Fitting introduced a sequence of ideals associated with a finitely generated module M over a commutative ring as follows: if $(E) \ 0 \to K \to F \to M \to 0$ is an exact sequence with F a free module on a basis $e(1), \cdots, e(n)$ and if $k(i) = \Sigma x(ij)e(j)$, i in some index set, generates K then the jth ideal f(j; M) is generated by the (n-j)x(n-j) determinants of the form (x(uv)). These ideals are independent of the sequence (E) and have the following properties:

- (i) if h is a homomorphism from a ring R to a ring S and if M is a finitely generated R module then $S \cdot h(f(j:M))) = f(j; S \bigotimes_R M)$,
- (ii) denoting by ann(M) the annihilator of M we have $f(0:M) \le ann(M)$ and for sufficiently large m, $[ann(M)]^m \le f(0:M)$. Note also that $f(j;M) \le f(j+1;M)$ and that for j sufficiently large the ideals are all (1). In this paper we wish to make some remarks on the relation between these ideals and the concepts of flat and projective modules.

In the following we shall denote by F(j; M) the R module R/f(j; M) and by F(M) the direct sum of the F(j; M). We remark that the module F(M) is finitely generated and it is free if and only if F(j; M) is free (or zero) for each j. First note that for a free module N we have F(s; N) is free for each s and that for any module (finitely generated) we may write $F(M) = R/f(0; M) \oplus \cdots \oplus R/f(s; M) \oplus \cdots$ where we suppose $f(r; M) \neq (1)$. If F(j; M) is not free for some j < r then $f(r; M) \neq (0)$ and hence f(r-1; F(M)) = f(r; M) is neither (0) nor R.

THEOREM 1. If M is a finitely generated module over a local ring R (not necessarily noetherian) then M is free if and only if F(M) if free. If M is free and if I is the maximal ideal of R then

$$\dim_{R/I}(R/I \bigotimes_R M) = \operatorname{rank}(F(M)) = \operatorname{rank}(M)$$
.

Proof. If M is free then $F(M) = \Sigma_x F(x; M) = \Sigma_{x < n} R$ if M has rank n. Assume F(M) is free and that $0 \to K \to F \to M \to 0$ is exact with F free over R. We may suppose that rank $(F) = \dim_{R/I}(R/I \bigotimes_R M)$ by the Nakayama lemma. Suppose, therefore, that $K \neq (0)$. Then F(r-1; M), if the rank of F is r, has the form $\Lambda^r F/i(K) \wedge \Lambda^{r-1} F$ where i is the inclusion map of K into F and $\Lambda^r F$ denotes the homogeneous component of degree r in the Grassmann algebra of F.

Received December 6, 1961, and in revised form December 6, 1962. This work was supported in part by NSF Grant G-9508.

We have that if F(r-1; M) is not zero then it is not free. If F(r-1; M) = (0) then $0 = R/I \bigotimes_R F(r-1; M) = F(r-1; R/I \bigotimes_R M)$ thus $F(r-1; R/I \bigotimes_R M) = (0)$ and therefore the dimension of $R/I \bigotimes_R M$ is less that or equal to r-1 which contradicts the choice of F.

REMARK. Villameyor has proved that a finitely generated R module M is flat if and only if M is locally free, i.e. if and only if for each prime I the module $R_I \otimes M$ is free, the tensor product taken over the homomorphism of R into R_I . This result is unpublished. By [1] it suffices to show that a finitely generated flat module over a local ring is free. One checks easily that a cyclic module is flat if and only if for a generator m (fixed) and for a collection a_i , so that $a_i m = 0$ and which span the relations of M, that for each i there are elements $b_i(i)$ of M with $\Sigma_i y_i(i)b(i)$ and $a_i b_j(i) = 0$ for each j. If M is flat then by the Nakayama lemma there is an exact sequence $0 \to K \to F \to M \to 0$ with F free, IK = K, I the maximal ideal of R. If F is free on r elements $f(1), \dots, f(r)$ with images m(i) in M we need only show that the module $0 \neq \Lambda^r M = \Lambda^r F/i(K) \wedge \Lambda^{r-1}F$ is free. Applying the criterion of [1] to a cyclic module it follows that a flat cyclic module is free thus we need only show that $A^{r}M$ is flat. A basis for the relations of A^rM is given by the elements $x(i)f(1) \wedge \cdots \wedge f(r)$ where $\Sigma_i(i)f(i)$ runs over all the relations of M, i.e. over the image of K in F. If M is flat then given a relation $\Sigma x(i) f(i)$ it follows easily from the criterion of flatness in [1] and an easy computation that there are elements y(ij) in R such that $m(i) = \Sigma y(ij) m(j)$ and $\Sigma_i x(i) y(ij) = 0$. In A^rM set $b^* = m(1) \wedge \cdots \wedge m(r)$ and set $y^* = \det(y(ij))$. $y^*b^* = b^*$ and $\Sigma x(i) y(ij) = 0$ implies $x(i)b^* = 0$.

THEOREM 2. If M is finitely generated then M is flat if and only if F(M) is flat if and only if F(j; M) is flat for each j.

Proof. If F(M) is flat the module $F(R_I \otimes M)$ is free for each prime I of R and $R_I \otimes M$ is free by the previous theorem which implies that M is flat. Conversely, if M is flat then $R_I \otimes F(M) = F(R_I \otimes M)$ is free which implies F(M) is flat. By the remarks preceding the first theorem F(M) is free if and only if F(j; M) is free for each j which proves the last assertion.

LEMMA 1. If M is a finitely generated R module then M is projective if and only if it is the covariant extension of a projective module over a noetherian ring.

Proof. Suppose $0 \to K \to F \to M \to 0$ is exact with F free on a basis f(k), $1 \le k \le n$ and assume that M is projective. Since K is a

direct summand of F it is generated by finitely many elements $k(1), \dots, k(n)$. Let b denote a homomorphism from M to F such that ab = Identity and set $k(i) = \sum x(ij) f(j)$. Set $b(a(f(i))) = \sum_i y(ij) f(j)$ and denote by R^* the subring of R generated by 1 and the elements x(ij) and y(uv). Denote by M^* the module $a(R^*f(1) + \dots + R^*f(n))$. If we set $F^* = R^*f(1) + \dots + R^*f(n)$ we have an exact sequence $0 \to K \cap F^* \to F^* \to M^* \to 0$. Since the y(ij) are in R^* the restriction of b to M^* splits this sequence which implies that M^* is projective. If we denote by c the inclusion map of R^* into R we have an exact sequence $0 \to R \bigotimes_c (K \cap F^*) \to R \bigotimes_c F^* \to R \bigotimes_c M^* \to 0$. We may identify $R \bigotimes_c F^*$ with F by the obvious isomorphism and under this map $R \bigotimes_c (K \cap F^*)$ maps onto K since k(i) is in $K \cap F^*$ for each i. Therefore, $R \bigotimes_c M^* = M$.

LEMMA 2. If $0 \to M' \to M \to M'' \to 0$ is exact with M, M'' finitely generated and M'' flat then F(M) = F(M'') implies M' = 0.

Proof. Suppose I is a maximal prime of R and set $I^* = R_I I$, $k = R_I/I^*$. The sequence $0 \to R_I \otimes M' \to R_I \otimes M \to R_I \otimes M'' \to 0$ is exact. For N = M', M, M'' set $R_I \otimes N = N_I$ and note that $F(M_I) = F(M_I')$. Further M_I' is free and hence $M_I = M_I'' + M_I'$. We have that $k \otimes M_I$ is a direct sum of M_I''/I^*M_I' and M_I'/I^*M_I' and $k \otimes F(M_I) = k \otimes F(M_I')$ implies that $\dim_k k \otimes M_I' = \dim_k (M_I'/I^*M_I')$ thus $M_I'/I^*M_I' = 0$. Since M_I' is a direct summand of a finitely generated module it is finitely generated and thus $M_I' = 0$ whence M' = 0.

THEOREM 3. If M is a finitely generated module then M is projective if and only if F(M) is projective.

Proof. Suppose F(M) is projective with $0 \to K \to F \to M \to 0$ exact and F free on $f(1), \dots, f(m)$. Since F(M) is projective so is each F(j;M) and thus we have R = f(j;M) + A(j) as an R module, hence 1 = r(j)b(j) + s(j)a(j) where Rb(j) = f(j;M) and A(j) = Ra(j) = F(j;M). We have there are elements k(j,w;v) in the image of K with v an integer and w a sequence of length j so that if f(w) denotes the multivector $f(w(1)) \land \dots \land f(w(j))$, $(B) \Sigma_w k(j,w;1) \land \dots \land k(j,w;n-j) \land f(w) = b(j) f(1) \land \dots \land f(n)$. Set k(j,w;v) = 0 if b(j) is zero, and denote by K^* the collection of all such k chosen for $0 \le j \le n$. If $k(1), \dots, k(n-t)$ are in K^* and if v is a sequence of length t define c(k(u);v) by $k(u) \land f(v) = c(k(u);v)b(t)f(1) \land \dots \land f(n)$, $u = (1, \dots, n-t)$ and set $k(j,w;v) = \Sigma_r x(j,w;vr) f(r)$. Denote by R^* the subring of R generated by 1, c(k(u),v), x(j,w;vr), b(j), r(i), s(i) and a(i) and set $F^* = R^*f(1) + \dots + R^*f(n), K^* = (K^*)$ and define M^* by the exact sequence $(S) 0 \to K^* \to F^* \to M^* \to 0$. We have $f(j;M^*) \le R^*b(j)$ by

the definition of K^* and $f(j; M^*) \ge R^* b(j)$ by (B). Since 1 = r(j) b(j) + s(j) a(j) and $f(j; M) \cap A(j) = (0)$ we have $f(j; M^*)$ is R^* projective and thus M^* is projective as a flat module over a noetherian ring. The sequence (S) tensored with R considered as an R^* module is exact and identifying $R \otimes F^*$ with F under the map $h(\Sigma r(i) \otimes f(i)) = \Sigma r(i) f(i)$ we have that $h(R \otimes i^*(K^*)) \le i(K)$, where i and i^* are the inclusion maps of K and K^* into F and F^* respectively. Therefore, there is an exact sequence $0 \to M'' \to R \otimes M^* \to M \to 0$ with $f(r; R \otimes M^*) = Rf(j; M^*) = f(j; M)$ thus M'' = (0) since M is flat (F(M) is flat) hence M is projective. Conversely, if M is projective it is the covariant extension of a projective module over a noetherian ring, thus so also is F(M) hence F(M) is projective.

COROLLARY 3.1. Every finitely generated flat module over a ring R is projective if and only if every flat cyclic module is projective.

LEMMA 3. For I a prime in a ring R denote by n(I) the collection of all x in R so that yx = 0 for some y not in I. If

$$(0) = Q(1) \cap \cdots Q(t) \cap \cdots \cap Q(s)$$

where Q(i) is primary with radical p(i) and $Q(i) \leq I$ if and only if $i \leq t$ then $n(I) = Q(1) \cap \cdots \cap Q(t)$.

LEMMA 4. If R/a is a flat R module with a an ideal in R then

- (i) a=R if a contains an element which is not a zero divisor
- (ii) for any prime I < R if $I \neq R$ and $I \ge a$ then $n(I) \ge a$.
- (iii) if b is an ideal in R and $\theta: R \to R/b = R^*$, θ the natural map then the module R^*/a^* is R^* flat with $a^* = \theta(a)$.
 - (iv) for any prime $I \geqslant a$, 1 = e + n where e is in a and n is in n(I)

Proof. We have that $R_I a = (0)$ or (1) for each prime of R. If a contains an x which is not a zero divisor then $R_I a = (1)$ for each I, thus a = (1). For (ii) note that if $I \ge a$ then $R_I a \ne (1)$ and thus $R_I a = (0)$ or $a \le n(I)$. To prove (iii) we need only show that for any maximal ideal $J^* < R^*$ either $R_J^* a^* = (0)$ or $R_J^* a^* = (1)$. If $J^* \not > a^*$ then there is an x in a^* with x not in J^* . Thus x is not in $n(J^*)$ hence $R_J^* a^* = (1)$. If $J^* \ge a^*$ then $M = \theta^{-1}(J^*)$ is maximal and contains a, thus $n(M) \ge a$ and hence $n(J^*) \ge \theta(n(M)) \ge a^*$, therefore $R_J^* a^* = (0)$. Turning to (iv) assume $I \not < a$ with I a prime. Set $R^* = R/n(I)$, $a^* = \theta(a)$ with θ the natural map from R to R^* and assume $a^* \ne (1)$. Note that $a^* \ne (0)$ since $I \ge n(I)$. One checks easily that $n(I^*) = (0)$ where $I^* = \theta(I)$. We have, therefore, that $R_I^* a^* = (1)$ and thus there is an x^* in a^* and a y^* not in I^* with $x^*/y^* = (1)$. Since

 $a^* \neq (1)$ we have by (i) that there is an element z^* in R^* such that $0 = z^*x^*, z^* \neq 0$. Since $n(I^*) = (0)$ we have that $z^* = z^*x^*/y^* = 0$ which is a contradiction, thus $a^* = (1)$.

COROLLARY 3.2. If $(0) = Q(1) \cap \cdots \cap Q(s)$ where Q(i) is primary with radical p(i) then every finitely generated flat module is projective.

Proof. Since it suffices to prove the assertion for cyclic modules suppose R/a is flat with $p(i) \ge a$ for $0 \le i \le t$ (0 if no p(i) contains a). Clearly $n(p(i)) \le Q(i)$ and since $n(p(i)) \ge a$ if $p(i) \ge a$ it follows that $a \le Q(1) \cap \cdots \cap Q(t)$ (if t = 0 this intersection is defined to be R). If p(j) > a then by the previous Lemma 1 = e(j) + n(j) where e(j) is in a and n(j) is in n(p(j)). We may set 1 = e + n with e in a and n in $Q(t+1) \cap \cdots \cap Q(s)$ by taking the product of the elements (e(j) + n(j)) from t + 1 to s, thus R/a is a direct summand.

BIBLIOGRAPHY

- H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, 1956.
 H. Fitting, Die Determinantenideale eines Moduls, Jahresbericht d. Deutschen Mathem.
- Vereinigung XLVI (1936), 195-228

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. Arsove University of Washington Seattle 5, Washington J. Dugundji

University of Southern California Los Angeles 7, California

Lowell J. Paige University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH

D. DERRY

H. L. ROYDEN

E. G. STRAUS

T. M. CHERRY

M. OHTSUKA

E. SPANIER

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 13, No. 4

June, 1963

Dallas O. Banks, Bounds for eigenvalues and generalized convexity	1031			
Jerrold William Bebernes, A subfunction approach to a boundary value problem for				
ordinary differential equations	1053			
Woodrow Wilson Bledsoe and A. P. Morse, A topological measure construction				
George Clements, Entropies of several sets of real valued functions				
Sandra Barkdull Cleveland, <i>Homomorphisms of non-commutative</i> *-algebras				
William John Andrew Culmer and William Ashton Harris, Convergent solutions of				
	1111			
Ralph DeMarr, Common fixed points for commuting contraction mappings				
James Robert Dorroh, Integral equations in normed abelian groups				
	1159			
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., Convergence of				
extended Bernstein polynomials in the complex plane				
Irving Leonard Glicksberg, A remark on analyticity of function algebras	1181			
Charles John August Halberg, Jr., Semigroups of matrices defining linked operators				
with different spectra	1187			
Philip Hartman and Nelson Onuchic, On the asymptotic integration of ordinary				
differential equations				
Isidore Heller, On a class of equivalent systems of linear inequalities	1209			
Joseph Hersch, The method of interior parallels applied to polygonal or multiply	1000			
connected membranes				
Hans F. Weinberger, An effectless cutting of a vibrating membrane				
, ~ 3	1241			
, and a second s	1251			
Tilla Weinstein, Another conformal structure on immersed surfaces of negative curvature	1281			
Gregers Louis Krabbe, Spectral permanence of scalar operators	1289			
Shige Toshi Kuroda, Finite-dimensional perturbation and a representation of				
scattering operator	1305			
Marvin David Marcus and Afton Herbert Cayford, Equality in certain inequalities	1319			
	1331			
	1335			
· ·	1343			
	1347			
	1353			
Robert Dean Ryan, Conjugate functions in Orlicz spaces				
John Vincent Ryff, On the representation of doubly stochastic operators				
Donald Ray Sherbert, Banach algebras of Lipschitz functions	1367			
James McLean Sloss, Reflection of biharmonic functions across analytic boundary conditions with examples				
L. Bruce Treybig, Concerning homogeneity in totally ordered, connected topological				
space	1417			
John Wermer, The space of real parts of a function algebra	1423			
James Juei-Chin Yeh, Orthogonal developments of functionals and related theorems				
in the Wiener space of functions of two variables	1427			
William P. Ziemer, On the compactness of integral classes	1437			