CONJUGATE FUNCTIONS IN ORLICZ SPACES

ROBERT DEAN RYAN
1. The purpose of this paper is to prove the following results:

Theorem 1. Let

\[\tilde{f}(x) = -\frac{1}{\pi} \int_0^\pi \frac{f(x + t) - f(x - t)}{2 \tan (1/2)t} \, dt = \lim_{\varepsilon \to 0} \left\{ -\frac{1}{\pi} \int_0^\varepsilon \right\} . \]

The mapping \(f \to \tilde{f} \) is a bounded mapping of an Orlicz space into itself if and only if the space is reflexive.

Beginning with the classical result by M. Riesz for the \(L_p \) spaces [6; vol. I, p. 253] several authors have proved this theorem in one direction or the other for various special classes of Orlicz spaces. We mention in particular the papers by J. Lamperti [2] and S. Lozinski [4] and the results given in A. Zygmund’s book [6; vol. II, pp. 116-118]. In our proof we use inequalities and techniques due to S. Lozinski [3, 4] to show that boundedness of the mapping implies that the space is reflexive. We use the theorem of Marcinkiewicz on the interpolation of operations [6; vol. II, p. 116] to prove that reflexivity implies the boundedness of \(f \to \tilde{f} \). Our results are more general than Lozinski’s results since we use the definition of an Orlicz space given by A. C. Zaanen [5] which includes, for example, the space \(L_1 \).

Section 2 contains preliminary material about Orlicz spaces. In § 3 we prove that boundedness implies reflexivity and in § 4 we prove the converse.

2. Let \(v = \varphi(u) \) be a nondecreasing real valued function defined for \(u \geq 0 \). Assume that \(\varphi(0) = 0 \), that \(\varphi \) is left continuous and that \(\varphi \) does not vanish identically. Let \(u = \psi(v) \) be the left continuous inverse of \(\varphi \). If \(\lim_{u \to \infty} \varphi(u) = l \) is finite then \(\psi(v) = \infty \) for \(v > l \); otherwise \(\psi(v) \) is finite for all \(v \geq 0 \). The complementary Young’s functions \(\Phi \) and \(\Psi \) are defined by

\[\Phi(u) = \int_0^u \varphi(t) \, dt \quad \text{and} \quad \Psi(v) = \int_0^v \psi(s) \, ds . \]

\(\Phi \) is an absolutely continuous convex function for \(0 \leq u < \infty \) and \(\Psi \) is absolutely continuous and convex in the internal where it is finite.

If \(\lim_{u \to \infty} \mathcal{P}(u) = \infty \) this internal is \(0 \leq v < \infty \). If \(\lim_{u \to \infty} \mathcal{P}(u) = l \) is finite we say that \(\Psi \) jumps to infinity at \(v = l \).

\(\Phi \) is said to satisfy the \(J_2 \)-condition if there is a constant \(k > 0 \) and a \(u_0 \geq 0 \) such that \(\Phi(2u) \leq k\Phi(u) \) for \(u \geq u_0 \). This is equivalent to satisfying the inequality \(\Phi(lu) \leq kl\Phi(u) \) for all sufficiently large \(u \), where \(l \) is any number greater than one (for a proof and further details see [1; p. 23]).

The Orlicz space \(L_\phi = L_\phi(0, 2\pi) \) consists, by definition, of all measurable complex functions \(\varphi \) defined on the unit circle for which \(\sup_{t} \int_{0}^{2\pi} |f(t)g(t)| dt < \infty \), where the supremum is taken over all functions \(g \) with \(\int_{0}^{2\pi} \Phi |g(t)| dt \leq 1 \). The space \(L_\varphi \) is defined by interchanging \(\Phi \) and \(\Psi \). The Orlicz space \(L_{M_\phi} \) is defined to be the set of all measurable complex functions \(f \) for which

\[
\|f\|_{M_\phi} = \sup_{t} \int_{0}^{2\pi} |f(t)g(t)| dt < \infty ,
\]

where the supremum is taken over all \(g \) with \(\|g\|_{\varphi} \leq 1 \). \(L_{M_\varphi} \) is similarly defined. The spaces \(L_\phi, L_\varphi, L_{M_\phi} \) and \(L_{M_\varphi} \) are all Banach spaces with their respective norms when functions equal almost everywhere are identified. The spaces \(L_\phi \) and \(L_{M_\phi} \) consist of the same functions and \(\|f\|_{M_\phi} \leq \|f\|_{\phi} \leq 2\|f\|_{M_\phi} \). The same is true replacing \(\Phi \) by \(\Psi \). The space \(L_\phi \) is reflexive with dual space \(L_{M_\varphi} \) if and only if both \(\Phi \) and \(\Psi \) satisfy the \(J_2 \)-condition.

Two Young's functions \(\Phi_1 \) and \(\Phi_2 \) are said to be equivalent \((\Phi_1 \sim \Phi_2)\) if and only if there exist positive constants \(k_1, k_2, \) and \(u_0 \) such that \(\Phi_1(k_1u) \leq \Phi_2(u) \leq \Phi_1(k_2u) \) for \(u \geq u_0 \). It is clear that \(\sim \) is an equivalence relation and that the \(J_2 \)-condition is an equivalence class property. If \(\Phi_1 \sim \Phi_2 \) then \(L_{\phi_1} \) and \(L_{\phi_2} \) consist of the same functions and the norm \(\| \|_{\phi_1} \) and \(\| \|_{\phi_2} \) are equivalent. Conversely, if \(L_{\phi_1} \) and \(L_{\phi_2} \) have the same elements then \(\Phi_1 \sim \Phi_2 \) [1; p. 112].

3. In this section we will show that if \(f \to \tilde{f} \) is bounded then \(L_\phi \) is reflexive. Let \(S_n(f) \) denote the \(n \)th partial sum of the Fourier series of \(f \) and write \(D_n(t) = \sin [n + (1/2)]t/2 \sin (1/2)t \). If \(\|\tilde{f}\|_{\phi} \leq C \|f\|_{\phi} \) for all \(f \in L_\phi \) then it follows [6; vol. I, p. 266] that \(\|S_n(f)\|_{\phi} \leq A \|f\|_{\phi} \) for all \(f \in L_\phi \) and all \(n \), where \(A \) is a positive constant independent of \(n \) and \(f \). Thus, the following result is ostensibly more general than the corresponding part of Theorem 1.

Theorem 2. If \(\|S_n(f)\|_{\phi} \leq A \|f\|_{\phi} \) for all \(f \in L_\phi \) and all \(n \) then \(L_\phi \) is reflexive.

The proof of Theorem 2 uses the following two lemmas given by
S. Lozinski in [3]. Lozinski proved these lemmas under more restrictive conditions on \(\phi \) than we have assumed. Nevertheless, Lozinski's proofs remain valid for the functions as we have defined them.

Lemma 1.
\[
(\phi(u)/250) \log (n/u\phi(u)) \leq \| D_n \|_\phi \text{ for } u\phi(u) \geq 1.
\]

Lemma 2.
If \(\| S_n(f) \|_\phi \leq A\| f \|_\phi \) for all \(f \in L_\phi \) and all \(n \) then \(\| D_n \|_\phi \leq 2\pi A(n + \phi(u))/u \) for \(0 < u < \infty \).

Proof of Theorem 2. Our proof is a variation of the one given by Lozinski in [4]. From Lemmas 1 and 2 we have

\[
\phi(v) \log \frac{n}{v\phi(v)} \leq k \frac{n + \phi(u)}{u}
\]

for \(v\phi(v) \geq 1 \) and \(0 < u < \infty \). \(k = 2\pi A/250 \). Our immediate aim is to show that for all sufficiently large \(\lambda > 1 \)

\[
\log \left(\frac{\lambda}{2} \right) \leq 2k \frac{\phi(v)}{\phi\left(\frac{v}{\lambda} \right)}
\]

for \(v \geq v_0 \), where \(v_0 \) depends upon \(\lambda \).

For any \(\lambda > 1 \),

\[
\phi(u) = \int_0^u \phi(t)dt > \int_{u/\lambda}^u \phi(t)dt
\]

and hence

\[
\phi(u) > \left(u - \frac{u}{\lambda} \right) \phi\left(\frac{u}{\lambda} \right) = (\lambda - 1) \frac{u}{\lambda} \phi\left(\frac{u}{\lambda} \right).
\]

Thus

\[
\log \left(\frac{\lambda - 1}{\lambda} \right) \frac{n}{\phi(v)} < \log \frac{n}{v} \phi\left(\frac{v}{\lambda} \right).
\]

By combining (3) and (1) we see that

\[
\phi\left(\frac{v}{\lambda} \right) \log \left(\frac{\lambda - 1}{\phi(v)} \right) \frac{n}{\phi(v)} \leq k \frac{n + \phi(v)}{v}
\]

whenever \((v/\lambda) \phi(v/\lambda) \geq 1 \). Let \(n = \lfloor \phi(v) \rfloor = \text{greatest integer in } \phi(v) \).

Then (4) becomes

\[
\phi\left(\frac{v}{\lambda} \right) \log \left(\lambda - 1 \right) \frac{\lfloor \phi(v) \rfloor}{\phi(v)} \leq k \frac{\lfloor \phi(v) \rfloor + \phi(v)}{v} \leq 2k \frac{\phi(v)}{v}.
\]
For every sufficiently large λ there exist a $v_0 \geq 0$ such that for $v \geq v_0$

$$1 < \frac{\lambda}{2} \leq (\lambda - 1) \frac{[\Phi(v)]}{\Phi(v)}$$

and

$$\frac{v}{\lambda} \varphi \left(\frac{v}{\lambda} \right) \geq 1.$$

Using (5), (6) and the fact that $\Phi(v) \leq v \varphi(v)$ we get inequality (2) for $v \geq v_0$. Since λ can be arbitrarily large (2) implies that $\lim_{u \to \infty} \varphi(u) = \infty$ and hence that Ψ does not jump to infinity. We next show that Ψ satisfies the Δ_2-condition.

Let λ be large but fixed and write $l = (1/2k) \log (\lambda/2)$. Then (2) states that

$$l \varphi \left(\frac{t}{\lambda} \right) \leq \varphi(t)$$

for $t \geq v_0$. This implies, on taking inverses, that there is a number s_0 such that for $s \geq s_0$

$$\psi(s) \leq \lambda \psi \left(\frac{s}{l} \right).$$

Thus

$$\int_{s_0}^{v} \psi(s) \, ds \leq \lambda \int_{s_0}^{v} \psi \left(\frac{s}{l} \right) \, ds = \lambda l \int_{s_0/\lambda}^{\psi^{-1}(s)} \psi(s) \, ds$$

or

$$\Psi(v) - \Psi(s_0) \leq \lambda l \left[\Psi \left(\frac{v}{l} \right) - \Psi \left(\frac{s_0}{l} \right) \right].$$

This shows that for sufficiently large v

$$\Psi(lv) \leq 2\lambda l \Psi(v)$$

and hence proves that Ψ satisfies the Δ_2-condition.

If $\| S_n(f) \|_\phi \leq A \| f \|_\phi$ for all $f \in L_\phi$ then it follows that $\| S_n(g) \|_{\mathcal{M}_\Psi} \leq A \| g \|_{\mathcal{M}_\Psi}$ for all $g \in L_{\mathcal{M}_\Psi}$ or, equivalently, that $\| S_n(g) \|_\Psi \leq 2A \| g \|_\Psi$ for all $g \in L_\Psi$. Since we have shown that Ψ does not jump to ∞ we can interchange the rôle of Φ and Ψ in the above argument to show that Φ satisfies the Δ_2-condition. This proves that L_ϕ is reflexive and completes the proof of Theorem 2.

4. In this section we prove a general result about reflexive Orlicz
spaces which combined with the classical results of M. Riesz [6; vol. I, p. 253 and p. 266] yields the unproved half of Theorem 1 as well as the converse of Theorem 2.

Theorem 3. Suppose that T is a bounded linear operator on L_p into L_p for $1 < p < \infty$. Then if L_ϕ is reflexive T is defined and bounded on L_ϕ into L_ϕ.

Proof. The proof consists of showing that Φ can be replaced by an equivalent function $\Phi_1(\Phi \sim \Phi_1)$ such that Φ_1 satisfies the conditions of the Marcinkiewicz theorem on the interpolation of operations i.e. such that

$$(12) \quad \int_{u_0}^\infty \frac{\Phi(t)}{t^{\beta+1}} \, dt = O\left\{ \frac{\Phi(u)}{u^\beta} \right\}$$

and

$$(13) \quad \int_1^u \frac{\Phi_1(t)}{t^{\alpha+1}} \, dt = O\left\{ \frac{\Phi_1(u)}{u^\alpha} \right\}$$

for $u \to \infty$, where $1 < \alpha < \beta < \infty$.

The assumption that L_ϕ is reflexive implies that $\lim_{u \to \infty} p(u) = \infty$ and hence that $\lim_{u \to \infty} \Phi(u)/u = \infty$. By [1; p. 16] Φ is equal for sufficiently large values of u to a function M of the form $M(u) = \int_0^u p(t) \, dt$ where p is a nondecreasing right continuous function with $\lim_{u \to 0} p(u) = 0$ and $\lim_{u \to \infty} p(u) = \infty$. Clearly $\Phi \sim M$.

By [1; p. 46] the function M_1 defined by $M_1(u) = \int_0^u (M(t)/t) \, dt$ is equivalent to M and hence to Φ. The derivative of M_1 is continuous and strictly increasing.

Since L_ϕ is reflexive both Φ and Ψ satisfy the Δ_2-condition. Thus both M_1 and its conjugate Young’s function N satisfy the Δ_2-condition [1; p. 23]. According to [1; pp. 26-27] this implies the existence of numbers a, b, and $u_0 \geq 0$ with $1 < a < b < \infty$ such that

$$1 < a < \frac{uM_1'(u)}{M_1(u)} < b$$

for all $u \geq u_0$. If we define Φ_1 by

$$\Phi_1(u) = \begin{cases} \frac{M_1(u_0)}{u_0^a} & \text{for } u \leq u_0 \\ \frac{M_1(u)}{u} & \text{for } u \geq u_0 \end{cases}$$

we obtain a function $\Phi_1 \sim \Phi$ such that
for all $u \geq 0$.

We next show that Φ_x satisfies (12) and (13) for suitably chosen α and β. In particular choose α and β such that $1 < \alpha < a < b < \beta < \infty$. This is clearly possible. In what follows all of the integrals will exist as finite numbers because of (14).

Integration by parts shows that

\begin{equation}
\int_{u}^{\infty} \frac{\Phi_x(t)}{t^\beta} \, dt = \beta \int_{u}^{\infty} \frac{\Phi_x(t)}{t^{\beta+1}} \, dt - \frac{\Phi_x(u)}{u^\beta}
\end{equation}

and

\begin{equation}
\int_{0}^{u} \frac{\Phi_x(t)}{t^\alpha} \, dt = \alpha \int_{0}^{u} \frac{\Phi_x(t)}{t^{\alpha+1}} \, dt + \frac{\Phi_x(u)}{u^\alpha}.
\end{equation}

From (14) we obtain

\begin{equation}
\int_{u}^{\infty} \frac{\Phi_x(t)}{t^\beta} \, dt \leq b \int_{u}^{\infty} \frac{\Phi_x(t)}{t^{\beta+1}} \, dt
\end{equation}

and

\begin{equation}
\int_{0}^{u} \frac{\Phi_x(t)}{t^\alpha} \, dt \geq a \int_{0}^{u} \frac{\Phi_x(t)}{t^{\alpha+1}} \, dt.
\end{equation}

Combining (15) with (17) and (16) with (18) shows that

\begin{equation}
\int_{u}^{\infty} \frac{\Phi_x(t)}{t^{\beta+1}} \, dt \leq \frac{1}{\beta - b} \left\{ \frac{\Phi_x(u)}{u^\beta} \right\}
\end{equation}

and

\begin{equation}
\int_{0}^{u} \frac{\Phi_x(t)}{t^{\alpha+1}} \, dt \leq \frac{1}{a - \alpha} \left\{ \frac{\Phi_x(u)}{u^\alpha} \right\}.
\end{equation}

This shows that Φ_x satisfies (12) and (13). Thus by the Marcinkiewicz theorem and Theorem 10.14 of [6; vol I, p. 174] there exists a constant K_x such that $\| T f \|_{\Phi_x} \leq K_x \| f \|_{\Phi_x}$ for all $f \in L_{\Phi_x}$. Since $\Phi \sim \Phi_x$ there is a constant K such that $\| T f \|_{\Phi} \leq K \| f \|_{\Phi}$ for all $f \in L_{\Phi}$. This completes the proof of Theorem 3.

Statements of the standard corollaries of Theorem 1 can be found in [2].

REFERENCES

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Dallas O. Banks, *Bounds for eigenvalues and generalized convexity* 1031
Woodrow Wilson Bledsoe and A. P. Morse, *A topological measure construction* 1067
George Clements, *Entropies of several sets of real valued functions* 1085
Sandra Barkdull Cleveland, *Homomorphisms of non-commutative *-algebras* 1097
William John Andrew Culmer and William Ashton Harris, *Convergent solutions of ordinary linear homogeneous difference equations* 1111
Ralph DeMarr, *Common fixed points for commuting contraction mappings* 1139
James Robert Dorroh, *Integral equations in normed abelian groups* 1143
Adriano Mario Garsia, *Entropy and singularity of infinite convolutions* 1159
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., *Convergence of extended Bernstein polynomials in the complex plane* 1171
Irving Leonard Glicksberg, *A remark on analyticity of function algebras* 1181
Charles John August Halberg, Jr., *Semigroups of matrices defining linked operators with different spectra* ... 1187
Isidore Heller, *On a class of equivalent systems of linear inequalities* 1209
Joseph Hersch, *The method of interior parallels applied to polygonal or multiply connected membranes* .. 1229
Hans F. Weinberger, *An effectless cutting of a vibrating membrane* 1239
Melvin F. Janowitz, *Quantifiers and orthomodular lattices* 1241
Samuel Karlin and Albert Boris J. Novikoff, *Generalized convex inequalities* 1251
Tilla Weinstein, *Another conformal structure on immersed surfaces of negative curvature* .. 1281
Gregers Louis Krabbe, *Spectral permanence of scalar operators* 1289
Shige Toshi Kuroda, *Finite-dimensional perturbation and a representation of scattering operator* ... 1305
Marvin David Marcus and Afton Herbert Cayford, *Equality in certain inequalities* .. 1319
Joseph Martin, *A note on uncountably many disks* 1331
Eugene Kay McLachlan, *Extremal elements of the convex cone of semi-norms* 1335
John W. Moon, *An extension of Landau’s theorem on tournaments* 1343
Louis Joel Mordell, *On the integer solutions of \(y(y + 1) = x(x + 1)(x + 2) \) 1347
Kenneth Roy Mount, *Some remarks on Fitting’s invariants* 1353
Miroslav Novotný, *Über Abbildungen von Mengen* 1359
Robert Dean Ryan, *Conjugate functions in Orlicz spaces* 1371
John Vincent Ryff, *On the representation of doubly stochastic operators* 1379
Donald Ray Sherbert, *Banach algebras of Lipschitz functions* 1387
James McLean Sloss, *Reflection of biharmonic functions across analytic boundary conditions with examples* .. 1401
L. Bruce Treybig, *Concerning homogeneity in totally ordered, connected topological space* .. 1417
John Wermer, *The space of real parts of a function algebra* 1423
James Juei-Chin Yeh, *Orthogonal developments of functionals and related theorems in the Wiener space of functions of two variables* 1427
William P. Ziemer, *On the compactness of integral classes* 1437