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1. Lip (X, d) will denote the collection of all bounded complex-
valued functions defined on the metric space (X, d) that satisfy a
Lipschitz condition with respect to the metric d. That is, Lip (X, d)
consists of all f defined on X such that both

| flle = sup {f(@)|: @€ X}

and

| flla = sup {|f(2) — f(y) |/d(x, y): %, ye X, x + y}

are finite. With the norm || - || defined by || £ || = || f || + || f la, Lip (X, d)
is a Banach algebra. We shall sometimes refer to such an algebra
as a Lipschitz algebra. In this paper we investigate some of the
basic properties of these Banach algebras.

It will be assumed throughout the paper that (X, d) is a complete
metric space. There is no loss of generality in doing so: for suppose
(X,d) were not complete and let (X’,d’) denote its completion.
Since each element of Lip (X, d) is uniformly continuous on (X, d),
it extends uniquely and in a norm preserving way to an element of
Lip (X', d’). Thus as Banach algebras, Lip(X,d) and Lip(X’, d’)
are isometrically isomorphiec.

In §2 we sketch briefly the main points of the Gelfand theory
and observe that every commutative semi-simple Banach algebra A is
isomorphic to a subalgebra of the Lipschitz algebra Lip (X, ), where
2 is the carrier space of A and ¢ is the metric 2 inherits from
being a subset of the dual space A* of A. This representation is
obtained from the Gelfand representation; instead of using the
usual Gelfand (relative weak*) topology of 2, the metric topology is
used. Later, in § 4, we show that this isomorphism is onto if and
only if A = Lip (X, d) for a compact (X, d).

In § 8 we study the carrier space ¥ of Lip (X, d). The fact that
Lip (X, d) is a point separating algebra of functions on X allows us
to identify X as a subset of Y. The topologies X inherits from 2
are compared to the original d-topology; they are shown to be
equivalent and in the case of the two metric topologies we show them
to be equivalent in a strong sense. In Theorem 3.9 we show that
the important case of ¥ = X is equivalent to (X, d) being compact,
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and also equivalent to (2, g) being compact.

The Gelfand representation for Lip (X, d) is considered in § 4.
The image of Lip (X, d) under the Gelfand mapping turns out to be
precisely those functions in Lip (2, o) that are continuous on XY in
the Gelfand topology.

In §5 we identify the homomorphisms from Lip (X, d,) into.
Lip (X,, d,) where the (X, d;) are compact. As a corollary the.
automorphisms of Lip (X, d) for compact (X, d) are obtained.

2. Let A be a semi-simple commutative Benach algebra with
identity and with norm || ||,. The collection of nonzero multiplica-
tive linear functionals on A is called the carrier space of A4 and will
be denoted by 2. It is well known [1, p. 69] that these functionals.
are bounded so that 2 forms a subset of the dual space A* of A.
In fact, 2 lies on the wunit sphere of A*. As a subset of A* the
carrier space 2 inherits two important topologies : the relative weak*
topology, which we shall refer to as the Gelfand topology of X, and
the relative norm, or metric topology.

The Gelfand theory of commutative Banach algebras utilizes the.
former topology. When A has an identity, 2 with its Gelfand topology
is compact. For each fe A the function f is defined on X by A(p) =
@f, pe 3. Each f is continuous on ¥ in the Gelfand topology; indeed,
the Gelfand topology is precisely the weakest topology on X such.
that the family {f :fe A} is continuous. Let C(2) denote the space
of complex-valued functions on Y continuous in the Gelfand topology
supplied with sup norm || - |l.. Then the Gelfand mapping f— f is.
an isomorphism of A into C(X) and is norm decreasing. Details of
the Gelfand theory can be found in [1, 2].

Let us now consider the metric topology of X. The norm || - ||}
of the dual space A* is defined by

lelif=sup{lefl:fed|Iflla=1} peA”
The metric ¢ on ¥ induced by this norm is given by
o@,v) =l —|li P e,

In terms of the functions f, fe A, we may express the metric o by

2.1)  o(@, v) =sup{If(®) — )| fed Ifll. =1} o, pel.

The metric topology of Y is stronger than the Gelfand topology.
Therefore, since 3 1is closed in A* in the weak* topology, it is also
closed in the metric topology. Hence, (2, 0) is a complete metric
space. Also each f, fe A, is continuous on (2, o) since it is con-
tinuous on Y in the Gelfand topology. The metric ¢ is bounded
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because X lies on the unit sphere of A*.
With this metric space (¥, 0) we can form the Lipschitz algebra
Lip (2, 0) with norm || - || given by

lgll=1lgll- +1gll- geLip(Z,o0).

We now show that the Gelfand mapping takes A into this Lipschitz
algebra to yield what might be termed a “ Lipschitz representation”.

PROPOSITION 2.1. Let A be a semi-simple commutative Banach
algebra with tdentity. Then the Gelfand mapping is a continuous
isomorphism of A onto a subalgebra of Lip (2, o). Furthermore, for
each fe A,

1flle = 1 flla and || flle S |l

Proof. For ge A with ||g||, =<1 we have from (2.1) that

(2.2) lg(P) — 9g(¥) | = o(p,v) P, el
Then for any nonzero f€ A, the element W}Tf has norm 1, so that
4

from (2.2) we obtain

|f@) —F) | = | fllo@, ) @, el
Hence, ||f|, < [|flle for all feA. From the Gelfand theory we

have ||f]l. < |flls, all fe A, Thus, the mapping f—»f takes A
continuously into Lip (¥, 6). From the Gelfand theory we know that
the mapping is an isomorphism, hence the image of A is a subalgebra.
of Lip (%, o).

In § 4 we consider the Gelfand mapping for the case A = Lip (X, d).

3. The Banach algebra Lip(X,d) is an algebra of functions
defined on a set X. The function identically 1 is its identity and it
is evidently a self-adjoint (closed under complex conjugation) algebra.
We now observe that it separates the points of X.

For fixed se X define the function f on X by f(x) = d(x, s), xc X.
An application of the triangle inequality for d shows that ||f|; = 1.
However, if the metric is unbounded, then the function f so defined
is not an element of Lip (X, d). This is remedied by truncation.
The following lemma is easily verified.

LeEmMMA 3.1. For each se X, the function f, defined on X by
3.1) f(%) = min {d(z, s), 1} reX

belongs to Lip (X, d) and has norm ||f,|| < 2. The family of func-
tions {f,:se X} separates the points of X.
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Let Y denote the carrier space of Lip (X, d). Sinece Lip (X, d) is
a point separating algebra of functions on X each xe X can be
identified with the evaluation functional @, in 2 where @,(f) = f(x).
More precisely, since the algebra separates points the injection
mapping @ — @, is one-to-one from X to . Thus we may regard X
as a subset of .

An algebra of functions defined on a set X is called inverse-
closed if for every function f in the algebra satisfying | f(z)| = ¢ > 0,
all xe X, the inverse f' is also in the algebra. It is not difficult to
check that Lip (X, d) is an inverse-closed algebra.

The next lemma is a consequence of the general theory of
function algebras and holds for any algebra of functions on a set
that is self-adjoint, separates points and is inverse-closed. See [1,
p. 55].

LEMMA 3.2, Let X be the carrier space of Lip(X,d). Then X
4s dense in X in the Gelfand topology. If (X, d) is compact, then
X =2 and the Gelfand topology coincides with the d-topology of X.

As a subset of 2, X inherits two more topologies—the Gelfand
and the metric topologies of 2. The remainder of this section is
concerned with the comparison of these inherited topologies of X to
its original d-topology. We first look at the relative Gelfand topology
of X. A Dbasic neighborhood of 2,€ X in the relative Gelfand topology
is of the form

N(x()’fl: "'9fn’ 8)
={weX:|fix) — filz)| <e1=1,2,--+,m}

‘where the f; are elements of Lip (X, d) and ¢ is a positive number.

ProPoOSITION 3.3. The relative Gelfand topology of X and the
d-topology of X are equivalent.

Proof. It is clear from the definition of the Gelfand topology
that the relative Gelfand topology of X is weaker than the d-topology.
To show that every d-open set of X is also open in the relative
Gelfand topology, it suffices to show that given x,¢ X and ¢ > 0 the
sphere S(x,, ¢) = {xe X:d(x, ) < ¢} is open in the relative Gelfand
topology. Define the function f on X by (3.1) for s = ,.

Then f belongs to Lip (X, d) and the neighborhood of x, in the
relative Gelfand topology determined by f and ¢ is precisely (we
assume € < 1)

Ny, f, &) = {we X : | flz) — f@,) | < &} = S(@y, €).
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Hence, the spheres S(x,, €) are open in the relative Gelfand topology
and the proof is finished.

We now turn to the comparison of the two metric topologies on
X. The metric ¢ on % is defined by (2.1). When restricted to the
subset X of Y, the metric ¢ can be expressed by

(8.2) o(w,y) =sup{[flx) —f(W)|:felip(X,d), IfIl=1} w=yeX.

The next few propositions are concerned with the relation between
d and 0 on X. We first define the notions of equivalence of metrics
which will be the pertinent ones in this discussion.

DEFINITION. Two metrics d, and d, on a space X are called
boundedly equivalent if and only if there exist positive numbers K,
and K, such that

Kd(z, y) < dyz, v) = Kd\(x, y) z, y e X.

They are called uniformly equivalent if and only if the identity
mapping from (X, d,) to (X, d,) is a uniform homeomorphism.

Bounded equivalence implies uniform equivalence, but not con-
versely. For example, the metrics dyz,y) = |z —y| and dy(x,y) =
lz —y | on [0,1] are uniformly but not boundedly equivalent. An
unbounded metric can never be boundedly equivalent to a bounded
metric. Therefore if d is an unbounded metric it can not be
boundedly equivalent to the metric d/(1 + d) although it is well know
that these two metries are uniformly equivalent.

Since X lies on the wunit sphere of the dual space of Lip (X, d),
the diameter of (2, o) is at most two. Thus ¢ is always a bounded
metric. If the original metric d on X is boundedly equivalent to
the inherited metric o, then d must also be a bounded metric. It
turns out that the converse is also true.

ProprosITION 3.4. If the diameter of (X, d) is finite, then the
metric 0 on X defined by (3.2) is boundedly equivalent to d.

Proof. 1If feLip (X, d) satisfies || f|| <1, then | f(z)—f(y) |=d(z, v),
all z,y in X. Hence, forming the supremum over all f with || f|| = 1,
we obtain o(x, ¥) < d(z, ¥), all z,y in X.

Let D denote the diameter of (X,d). Let # and ¥ in X be
given. Define f by f(u) =d(u,x), weX. Then feLip(X,d) and
Nfl=1+ D, so that g = Kf where K =1/(1 + D) has norm at
most 1. Hence

o(@, y) = [9(x) — 9(y) | = Kd(z, y).
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Thus for all z, ¥ in X we have
Kd(z, y) = 0(z, y) < d(z, ¥)

and the proposition is proved.

In particular, if (X, d) is compact, then the diameter is finite
and o and d are boundedly equivalent.

We show next as a corollary that bounded equivalence of metrics
on a space X is the appropriate notion when dealing with Lipschitz
functions in the sense that two metrics on X yield the same class of
Lipschitz functions if and only if the metrics are boundedly equi-
valent.

COROLLARY 3.5. Let d, and d, be bounded wmetrics on X. Then
A, = Lip (X, d,) and A, = Lip(X, d,) have the same elements if and
only if d, and d, are boundedly equivalent.

Proof. It is clear that bounded equivalence of metrics preserves
Lipschitz functions. For the converse, suppose A, = A,. By the
uniqueness of norm theorem for semisimple commutative Banach
algebras [2, p. 75], the norms on A, = A, determined by d, and d,
are equivalent. Therefore the norms on the dual space A} = A} are
equivalent. Then the metrics o, on X(4,;), 1 =1,2, are boundedly
equivalent. Since the d; are bounded metrics it follows from Pro-
position 8.4 that d; is boundedly equivalent to o; on X, 1 =1,2.
The relation of bounded equivalence is evidently transitive. Hence
d, is boundedly equivalent to d,.

As remarked previously Proposition 3.4 is false for spaces (X, d)
of inifinite diameter. But the next proposition shows that from the
viewpoint of Banach space theory there is no loss in generality in
assuming that d is always a bounded metric. We use the fact that
for a given metric d on X, d/(1 + d) is also a metric on X and is
uniformly equivalent to d.

ProOPOSITION 8.6. Given the metric space (X, d), the Banach
algebras Lip (X, d) and Lip (X, d') where d' = d[(1 + d) have the same
elements and their norms are equivalent.

Proof. Let ||| denote the norm on Lip(X,d’). Since
d'(z, y) < d(x,y) for all z,y in X we have |||, =< || - |ls~ Sup norms
are unaffected by a change of metrics, so we have ||- || =] -]/. On

the other hand,
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| flla = sup {Il%;i)y)—'(l + d(z, ¥)) : x, yeX}

_ sup (L@ = 1) )l
= sup (LB =S | ) — )|+ 7,y e X |

< sup (WO LWL | 70)| + 1w 0, y e X
= 111l + 2117 o

Thus || - |/’ = 8]||-|l. Hence Lipschitz functions are preserved so that.
Lip (X, d) = Lip (X, d’), the norms are equivalent, and the proof is
complete.

COROLLARY 8.7. The metrics d and ¢ on X are always uni-
formly equivalent.

Proof. That the metrics d and d' =d/(1 + d) are uniformly
equivalent is well known. We have shown in Proposition 3.6 that
the norms ||-|| and || -|’ determined by d and d’ respectively are
equivalent. Therefore, the corresponding norms on the dual space.
are equivalent. Thus the metrics ¢ and ¢’ on X corresponding to d-
and d’ respectively are boundedly equivalent. Since d’ is bounded by
1, the metrics d’ and ¢’ on X are boundedly equivalent by Proposi-
tion 8.4. Hence, d is uniformly equivalent to d’, which is boundedly
equivalent to ¢’, which in turn is boundedly equivalent to . It
follows that d and ¢ are uniformly equivalent.

We have seen that when X has its Gelfand topology, X appears.
as a dense subset. In contrast to this, the following lemma shows.
that when 3 has its metric topology X is a closed subset of 2. Note
that the standing hypothesis that (X, d) be complete is used ex-
plicitly for the first time.

LEMMA 3.8. The subset X of X is closed in the metric topology
of 2.

Proof. Let {x,} be a sequence X such that o(x,, &) — 0 where.
¢eX, We must show that £e X. The sequence {x,} is c-Cauchy
since it converges in (2, 6). Uniform equivalence of metrics preserves.
Cauchy sequences. Therefore, since d and ¢ are uniformly equivalent.
on X by Corollary 3.7 and since {x,} =X, the sequence {z,} is.
d-Cauchy. The completeness of (X, d) then implies that limzx, = &
belongs to X. Hence, X is closed in (&, o).

Although certain of the implications in the next theorem have
been established, we state them here for the sake of unity. The
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point of interest here is that the set equality X = % alone is enough
to imply compactness of the spaces under consideration. For an
arbitrary Banach algebra of functions defined on a space X, the fact
that the carrier space is just X does not in general have topological
ramifications. In the case of Lip (X, d), however, we have the
following.

THEOREM 3.9. The following statements are equivalent:
i X=2

(ii) The Gelfand and metric topologies on 3 coincide.

(iii)) (2, o) 1s compact.

(iv) (X, d) is compact.

Proof. (i) — (ii) follows from Proposition 3.3. (ii)— (iii) is a
triviality. To see (iii) — (iv), note that if (¥, o) is compact, then by
Lemma 8.8, X is a closed, hence compact subset of (¥, o). Since
o and d are equivalent on X, we have that (X, d) is compact.
Finally, (iv) — (i) follows from Lemma 3.2.

4. We now turn to the Gelfand representation of Lip (X, d)
The general Gelfand theory was mentioned in § 2. So that no con-
fusion of norms will arise here let the norm in Lip (X, ) be denoted
by ||| - |ll; then

llglll=1llglll + lllglll-  geLip(Z, o)

where |||g]ll. and |||¢]|ll denote the sup norm and Lipschitz norm
respectively of g on (X, ). Proposition 2.1 tells us that the Gelfand
mapping f — F takes Lip (X, OE) isomorphically into Lip (2, o) and
satisfies ||[fll. = ||f!l and [[|[flll- = [|f]l, all feLip(X,d). These
statements followed from general considerations. But in the parti-
cular case of Lip (X, d) this can be strengthened.

THEOREM 4.1. The Gelfand mapping f— 7 is an isomorphism
of Lip (X, d) onto the closed subalgebra of Lip (2, g) consisting of
those functions in Lip (2, o) that are continuous in the Gelfand
topology of 2.

Proof. If feLip(X,d) and ||f|| =1, then ||{f]l; =1 so that

1f(@) — f(y)]| = d(x,y), all 2,yeX. Thus we have (%, y) = d(, )
for all #,y in X. Hence for any fe Lip (X, d)
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I fila = SUD{M L, yeX}

d(z, y)
2 sup (O =10,y x)
|f@) — F)] .
= SUD{WJAWGE}

= L7 lle-

Since each 7, feLip (X, d), is continuous on X in the Gelfand topology
and since X is dense in Y iAn the Gelfand topology, we have the sup:
norm preserved: || f . = |||f|ll.. Thus for all fe Lip (X, d),

LA = 1N+ 1Al = WA+ WP e = AL

This together with the inequality from Proposition 2.1 yields.
A< 171l < 211F]l. Hence the mapping f— f is a bicontinuous.
isomorphism, and the image of Lip (X, d) is therefore a closed sub--
algebra of Lip (2, o).

Let gelLip (X, o) be continuous on 2 in the Gelfand topology ;.
let f = ¢g|X denote the restriction of ¢ to X. Then feLip (X, d),
since o(x, y) < d(z,y) for all z,y in X; and f: g, since both are.
continuous on X in the Gelfand topology and agree on the dense
subset X. Thus those geLip(2, o) which are continuous in the.
Gelfand topology lie in the range of the mapping f— f from Lip (X, d)..
Since every f is continuous on X in the Gelfand topology, we see.
that the image of Lip (X, d) under the mapping f— f is exactly the
set of functions in Lip (2, ) which are continuous on Y in the
Gelfand topology. This completes the proof.

We remark that if (X, d) is not compact, then there do exist.
functions in Lip (2, 0) which are not continuous in the Gelfand
topology. One such function g on X is

9(®) = o(p, X) = inf {o(p, x) : x ¢ X} pel.

It is readily checked that ¢ is a bounded Lipschitz function on
(2, 0). Since X is a proper closed subset of (2, o) by Theorem 3.9
and Lemma 3.8, ¢ is not identically zero. But since X is dense in
2 in the Gelfand topology and g =0 on X, we see that g cannot
be continuous on Y in the Gelfand topology. Hence there can be no.
feLip(X,d) such that g = f Thus for non-compact (X, d) the
Gelfand mapping does not take Lip (X, d) onto Lip (2, o).

The Banach algebra A is called regular if for each proper subset .
K of 2 closed in the Gelfand topology and each point pel — K, _
there exists an fe A such that f(®) = 1 and AK) = 0.
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That Lip (X, d) is regular follows from the fact that a Lipschitz
condition is preserved under truncation. The following proposition,
due to J. Lindberg, shows that such algebras are regular in general.
‘Call an algebra of functions A on a space X closed under truncation
if the function min (f, 1) belongs to A for all real-valued fe A.

PRrROPOSITION 4.2. Let X be a compact Hausdorff space and A be
a self-adjoint subalgebra of C(X) which separates the points of X
and contains the constant functions. If A is closed under truncation,
then A is regular.

Proof. Let e X and let V be a neighborhood of z. Choose
feC(X) such that f(x) =0, f(X— V)=238/2and 0 < f =< 3/2. Since
A is dense in C(X), there exists ge A with ||f — ¢gll. < 1/2; we may
take ¢ to be real-valued. Theng=1on X — V. Let A = min(g, 1),
so that =1 on X — V. Also, |h(x)] < 1/2. Set

f= (- 1/(h(z) — 1).
‘Then fe A and f(x) =1 while f(X — V) =0. Thus A is regular.

CoROLLARY 4.3. Lip (X, d) ts regular.

Proof. Let feLip (X, d) be real and set 7f = min (f,1). Then
[(TH@) — (T | = |flx) — fly)] =,yeX

‘which may be seen by comparing the graphs of f and Tf, or by
checking each of the possible cases for a given « and y. It is
immediate from this that Lip (X, d) is closed under truncation.

Also Lip (X, d) is self-adjoint, point-separating and contains the
-constants. Since X is dense in ¥ in the Gelfand topology, it follows
that Lip (X, d) is closed under truncation if and only if {f: f e Lip (X, d)}
is closed under truncation. Hence, Lip (X, d) is regular.

5. We now consider the problem of describing the homomorphisms
from one Lipschitz algebra into another. For Lipschitz algebras on
-compact metric spaces we are able to identify the homomorphisms and
the description is given in the proposition below. We first make a
few general comments on homomorphisms of Banach algebras. To
.avoid technical trivialities we shall always assume that homomorphisms
-carry the identity of one algebra into the identity of the other.

It is well known [2] that if T is a homomorphism of a semi-
simple commutative Banach algebra A, into another A, then T is
automatically continuous and induces a dual mapping 7:3,— 2, of
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the carrier spaces. This dual mapping 7 is defined as follows: given
@ e ¥, define the multiplicative linear functional z¥¢ 2, by

(6.1) o) f) = P(If)  feA.

The homomorphism 7T is in turn induced by the mapping = by means
of (5.1). The dual mapping 7 is always continuous. If 7 maps A,
onto 4,, then 7 is one-to-one; if ¢ is onto, then 7 is one-to-one. If
T is an isomorphism of A, onto A, then the dual mapping is a
homeomorphism of X, onto X,. For a detailed discussion see [2, p. 75,
p. 116].

Now let (X, d)) and (X,, d;,) be compact metric spaces and let
A, = Lip(X,,d,) and A4, = Lip (X,, d,). By Theorem 3.9 the carrier
spaces of A, and A4, are X, and X, respectively. Let 7 be a
homomorphism of A, into A,. Then the dual mapping = takes X,
into X; and equation (5.1) can be written

(5.2) fzx) = (Tf )(x) feA,xeX,.

The converse situation does not hold in general. That is, given a
continuous mapping 7: X,— X;, the mapping T defined on A, by
(5.2) will not in general take A, into 4,. The following proposition
identifies those mappings 7: X, — X, which are dual to homomorphisms
of the Lipschitz algebras.

THEOREM 5.1. Let A, = Lip(X,, d;) where (X,, d,) is compact,
1 =1,2. Then every homomorphism T:A, — A, ts of the form
(5.3) (Tf)x) = f(ze)  feA,zc X,
where 7: X, — X, satisfies
(5.4) di(tz, ty) = Kd,(x, y) x,ye X,

Jor some positive constant K. Conversely, if T is defined on A, by
(5.3) where t: X,— X, satisfies (5.4), then T is a homomorphism
of A, into A,. T is ome-to-ome if and only if ©(X,) = X,. T takes
A, onto A, if and only if T satisfies the additional condition

(5.5) K'd(x,y) < d(rx, ty) @, yeX,.

Jor some positive constant K'.

Proof. Suppose T: A, — A, is a homomorphism with dual mapping
7:X,— X,. For each sc X, define the function f, on X, by f,(t) =
d,(t,s), teX,. Then f,c A, and

[ folle + 1 fells, = diameter (X, d)) + 1
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for all se X,. Thus the set {f,:se X;} is bounded in A,. Since T
is continuous, the set {7f,:se X,} is bounded in A,. Then there
exists a positive constant K such that || Tf, ||, < K, all s€ X,. Thus
for all points «, y € X, and se¢ X, we have

[(Tf)@) — (TF)W) | _ |di(s, 7o) — du(s,79) | -
d.(x, y) dy(z, ¥) o

Taking s = ry in this inequality, we obtain
dl(Twy TY) = Kdz(ﬂ?, Y)

for all #, yc X,. Hence, the mapping = satisfies (5.4).
Conversely, if T is defined by (5.3) in terms of a r satisfying
(5.4), then

|| Tf]la, = sup {i (IF) @) = (THW] ., yeX2}

dy(x, ¥)
_ |fzz) — fzy) |.
= sup{———W .x,yeXz}
|f(zz) — fep) i .
< Ksup{ (75, 1) tx, Y€ Xg}
= K| fllae

Also,

Il Tf |l. = sup {|f(z2) | : 2 € X)}
< sup{lf@|:ye X} =I[flle

Hence T carries A, into A, and it is easily seen to be a homomorphism.

We know in general that if 7 is onto, then T is one-to-one.
Suppose T is one-to-one. If = is not onto, then there exists se X,
with s¢ 7(X,). The continuity of 7 implies that 7(X,) is compact since
(X,, d,) is compact. But then by the regularity of 4, we can choose
feA, with f(s)=1 and f =0 on 7(X,;). Then (Tf)x) = f(zx) = 0,
all x e X,. This contradicts the fact that T is one-to-one. Hence, =
is onto.

Suppose now that 7 is onto. Then 7 is one-to-one and we can
define a new metric d’ on X, by

(5'6) dl(x: y) = dl(rwy Ty) x’ y € Xz-

Let A’ = Lip (X,,d’). Let fe A, and choose g € A4, such that Tg = f.
Then since

|f(@) —f@)| _ |9(z2) — 9(zy) |
d'(z, y) di(z, TY)
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for all x,ye X,, we see that [[f|ls =<//gll,,, Hence A,CA4A’. In
particular, the function f defined by f(x) = dy(x, u), ®< X,, belongs
to A’ for each ue X,. It follows that

dyz, y) = K'd'(z, y) z,ye X,

for some constant K”. This yields (5.5) with K’ = 1/K".

Finally suppose that 7 satisfies (5.5) in addition to (5.4). Then
7 is one-to-one and the metric d’ on X, defined by (5. 6) is boundedly
equivalent to the metric d,. By Corollary 3.5, 4, and A’ must
have the same elements. But if fe A’, then the function g defined
on X, by ¢(s) = f(r™'s), se X,, belongs to A, and Tg =f. Thus T
maps A, onto A’, and hence onto 4,. This completes the proof.

COROLLARY 5.2. Ewery automorphism T of Lip(X,d) where
(X, d) is compact is of the form
(Tf)=) = f(za)  felip(X,d),ze X
where 7: X — X is a homeomorphism satisfying

Kd(z,y) = d(tw, ty) < Kd(z,y) @,y X

Jor some positive constants K, and K,.
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