ON THE COMPACTNESS OF INTEGRAL CLASSES

WILLIAM P. ZIEMER

1. Introduction. In a previous paper, [8], integral currents were used to develop a concept for non-oriented domains of integration in Euclidean n-space. This concept has been designed to be useful in the calculus of variations and this, therefore, demands that the domains of integration satisfy certain "smoothness" and "compactness" conditions. It was shown in [8] that these non-oriented domains, which are called integral classes, do possess the desired smoothness property and it was also shown that the integral classes possess the following compactness property: every N-bounded sequence of k-dimensional integral classes has a subsequence which converges to some flat class. In the case that $k = 0, 1, n - 1$, or n, it was shown that the limiting flat class is, in fact, a rectifiable class, and therefore, a desirable compactness property is obtained.

The main purpose of this paper is to extend this compactness property to integral classes of arbitrary dimension under the assumption that certain "irregular" sets have zero measure (3.1). This is accomplished with the help of a theorem concerned with the behavior of the density of a measure associated with a minimizing sequence (2.8), and by relying heavily on the tangential properties of rectifiable sets. In the case of the Plateau Problem, two theorems concerning densities are proved (2.3, 2.4) which are analogous to results obtained in [6] and [3; 9.13].

Most of this work depends upon the paper [8], and therefore, the terminology and notation of [8] is readopted here without change. It will be assumed throughout that $1 < k < n - 1$.

2. Densities. In this section, the Plateau Problem is formulated in terms of integral classes and two theorems are proved which are analogous to results obtained in [3; 9.13] and [6]. Theorem 2.8 asserts that a portion of the irregular set, A, which appears in (3) below, has zero measure. A similar result, which states that $D^*_k(\mu, R^n, x) < \infty \mu$-almost everywhere and therefore that $\mu(A) = 0$, is still lacking.

2.1. Definition. If μ is a measure over R^n, $A \subset R^n$, $\alpha(k)$ the volume of the unit k-ball, and $x \in R^n$, then

$$D_k(\mu, A, x) = \lim_{r \to 0} \alpha(k)^{-1} r^{-k} \mu(A \cap \{y: |y - x| < r\})$$

is the k-dimensional μ density of A at x; the upper and lower densities

Received February 14, 1963.
are defined as the corresponding lim sup and lim inf.

2.2. REMARK. Recall that if \(\{\tau_i\} \) is a sequence of integral classes with the property that \(\sup \{M(\tau_i); i = 1, 2, \ldots\} < \infty \), then the sequence of total variation measures, \(\{||\tau_i||\} \), possess a subsequence that converges weakly to some non-negative Radon measure \(\mu \), [8; (3.2), (3.3)], [2; Chapter III].

2.3. THEOREM. Suppose \(\sigma \in I_{k-1}(R^n, 2) \) is a cycle and let

\[
\Omega(\sigma) = \inf \{M(\tau); \tau \in I_k(R^n, 2), \partial \tau = \sigma \} .
\]

Let \(\{\tau_i\} \) be a sequence of integral classes such that

\[
\partial \tau_i = \sigma , \quad \lim_{i \to \infty} M(\tau_i) = \Omega(\sigma) ,
\]

and \(\{||\tau_i||\} \) converges weakly to a non-negative Radon measure \(\mu \). Then, for all \(x \in \text{spt} \sigma \),

\[
D_k^*(\mu, R^n, x) \leq \Omega(\sigma)(x(k)r_0^k)^{-1}
\]

where \(r_0 = \text{distance} (x, \text{spt} \sigma) \).

Proof. Let \(\varepsilon_i \) be a sequence of real numbers tending to zero where

\[
\Omega(\sigma) \leq M(\tau_i) < \Omega(\sigma) + \varepsilon_i .
\]

Let \(B_0 \) be the set of all \(0 < r < r_0 \) with the property

\[
||\tau_i||[S(x, r)] \to \mu[S(x, r)] ,
\]

\[
\text{spt} [\theta(\tau_i \cap S(x, r))] \subseteq \{y: \text{distance} (y, x) = r\} ,
\]

\(\tau_i \cap S(x, r) \) is integral for \(i = 1, 2, 3, \ldots \), and notice that \(L_i[(0, r_0) - B_0] = 0 \). For \(r \in B_0 \) and \(i = 1, 2, 3, \ldots \),

\[
\tau_i = \tau_i \cap S(x, r) + \tau_i \cap [R^n - S(x, r)] .
\]

Letting

\[
\zeta_i = x\theta[\tau_i \cap S(x, r)] + \tau_i \cap [R^n - S(x, r)] ,
\]

[8; 3.14] implies

\[
\partial \zeta_i = \partial \tau_i = \sigma ,
\]

\[
M[x\theta(\tau_i \cap S(x, r))] \leq r/kM[\theta(\tau_i \cap S(x, r))] .
\]

Therefore,

\[
M(\tau_i) < M(\zeta_i) + \varepsilon_i ,
\]
which implies

\[M[\tau_i \cap S(x, r)] \leq M[\theta(\tau_i \cap S(x, r))] + \varepsilon_i \]
\[\leq r/kM[\theta(\tau_i \cap S(x, r))] + \varepsilon_i, \]

for \(r \in B_b \) and \(i = 1, 2, 3, \ldots \). For \(0 < r < r_0 \) and \(i = 1, 2, 3, \ldots \) let

\[\varphi_i(r) = M[\tau_i \cap S(x, r)] = || \tau_i || [S(x, r)], \]
\[\psi_i(r) = M[\theta(\tau_i \cap S(x, r))], \]

and note that \(F_i(r) = \int_0^r \varphi_i(t)dt \leq \varphi_i(r) \), by [8; 4.1]. Again by [8; 4.1], \(F_i(r + h) - F_i(r) \leq \varphi_i(r + h) - \varphi_i(r) \) and therefore \(F'_i(r) \leq \varphi'_i(r) \) for \(L_1 \)-almost all \(0 < r < r_0 \). This implies

\[\psi_i(r) \leq \varphi'_i(r) \]

which, along with (1), implies

\[\varphi_i(r) \leq rk^{-1}\varphi'_i(r) + \varepsilon_i \]

for \(i = 1, 2, 3, \ldots \), and for \(r \in B_1 \subset B_b \) where \(L_i(B_0 - B_i) = 0 \).

After passing to a subsequence, we may assume by Helly’s theorem that \(\varphi(r) = \lim_{i \to \infty} \varphi_i(r) \) exists whenever \(0 < r < r_0 \), and therefore by [3; 9.7], we have

\[\liminf_{i \to \infty} \varphi'_i(r) \leq \varphi'(r) \]

for \(r \in B_3 \subset B_1 \) where \(L_i(B_1 - B_2) = 0 \). Since

\[\varphi_i(r) \leq rk^{-1}\varphi'_i(r) + \varepsilon_i \]

for \(r \in B_2 \), it follows that

\[\varphi(r) = \lim_{i \to \infty} \varphi_i(r) \leq \liminf_{i \to \infty} rk^{-1}\varphi'_i(r) \leq rk^{-1}\varphi'(r) \]

for \(r \in B_2 \). Therefore, for \(L_1 \)-almost all \(0 < r < r_0 \),

(2)

\[\varphi'(r)/\varphi(r) \geq k/r. \]

Letting \(\theta(r) = \mu[S(x, r)] \), we have that \(\theta(r) = \varphi(r) \) for \(L_1 \)-almost all \(0 < r < r_0 \) and thus, from (2), it follows that

\[\theta'(r)/\theta(r) \leq k/r \]

for \(L_1 \)-almost all \(0 < r < r_0 \). Since \(\log \circ \theta \) is non-decreasing, one finds by integrating this inequality that \(\theta(r)r^{-k} \) is non-decreasing on \(\{r: 0 < r < r_0\} \) and therefore, establishes the theorem.

2.4. THEOREM. With the same hypotheses and notations as in
2.3. For μ-almost $x \in \mathbb{R}^n - \text{spt } \sigma$,

$$D_{s_k}(\mu, \mathbb{R}^n, x) \geq (k \cdot \alpha(k)^{1/k} \cdot 2^{k-1} \cdot c_2)^{-k}$$

where c_2 is as in [8; 4.6] with k replaced by $k - 1$.

Proof. Choose $x \notin \text{spt } \sigma$ so that $\varphi(r) \neq 0$ provided $r \neq 0$. For each $r \in B_n$ and for $i = 1, 2, 3, \ldots$, from [8; 4.7] one obtains $\sigma_i \in I_k$ ($\{y$: distance $(x, y) \leq r\}$, 2) such that

$$\partial \sigma_i = \partial \left[\tau_i \cap S(x, r) \right],$$

(1) $$[M(\sigma_i)]^{1/k} \leq 2^{k-1}c_2 \psi_i(r).$$

Hence, $\varphi_i(r) < M(\sigma_i) + \varepsilon_i$ which implies

(2) $$[\varphi_i(r)]^{1/k} < [M(\sigma_i) + \varepsilon_i]^{1/k} < [M(\sigma_i)]^{1/k} + \varepsilon_i^*,$$

where $\varepsilon_i^* \to 0$ for appropriate subsequences. From the fact that $\psi_i(r) \leq \varphi_i(r)$ and from (1) and (2), we have

$$[\varphi_i(r)]^{k-1/k} < 2^{k-1}c_2 \varphi_i(r) + \varepsilon_i^*$$

and therefore, from [3; (9.7)]

$$[\varphi(r)]^{k-1/k} = \lim_{i \to \infty} [\varphi_i(r)]^{k-1/k} \leq 2^{k-1}c_2 \lim_{i \to \infty} \inf \varphi_i(r) \leq 2^{k-1}c_2 \varphi'(r).$$

That is, for L_1-almost all $0 < r < r_0$,

$$[\varphi(r)]^{k-1/k} \leq 2^{k-1}c_2 \varphi'(r),$$

$$[\varphi'(r)](r) \geq (k2^{k-1}c_2)^{-1}.$$

Now, integration of this inequality implies

$$\varphi(r)/r^k \geq (k2^{k-1}c_2)^{-k}$$

and therefore establishes the theorem since $\varphi(r) = \mu[S(x, r)] = \theta(r)$ for L_1-almost all $0 < r < r_0$, and since θ is left-continuous.

2.5. **Lemma.** If μ is a non-negative Radon measure over \mathbb{R}^n, then for μ-almost all $x \in \mathbb{R}^n$,

$$\limsup_{r \to 0} \frac{\mu[S(x, r/2)]}{\mu[S(x, r)]} > 0.$$

Proof. For μ-almost all $x \in \mathbb{R}^n$, we have

$$\lim_{r \to 0} \mu[S(x, r)] \cdot r^{-m} = \infty$$

where $m > n$. For all such x the lemma must hold for, if not, there
would exist an \(r_0 > 0 \) such that for \(r \leq r_0 \),
\[
\frac{\mu[S(x, r/2)]}{\mu[S(x, r)]} < 2^{-m}.
\]
This would imply
\[
\frac{\mu[S(x, r^{2^{-m}})]}{r^{2^{-m}}} = \frac{\mu[S(x, r^{2^{-m}})]}{r^{2^{-m}} \mu[S(x, r)]} \leq \frac{2^{-m} \mu[S(x, r)]}{2^{-m} r^m} \frac{\mu[S(x, r)]}{r^m};
\]
hence, it would follow that
\[
\liminf_{r \to 0} \mu[S(x, r)] \cdot r^{-m} < \infty,
\]
a contradiction.

2.6. A Covering Theorem. From [1] and [5], we have the following theorem:

If \(E \subset R^n \), \(F \) is a family of closed spherical balls in \(R^n \) such that each point of \(E \) is the center of arbitrarily small members of \(F \), and \(\mu \) is a non-negative Radon measure over \(R^n \), then \(F \) has a disjointed subfamily covering \(\mu \)-almost all of \(E \).

2.7. Definition. If \(\tau \in W_k(R^n, 2) \), then let
\[
L(\tau) = \inf \left\{ \liminf_{i \to \infty} M(\tau_i) : \tau_i \in I_k(R^n, 2), \partial \tau_i = 0, W(\tau_i - \tau) \to 0 \right\}.
\]

2.8. Theorem. Suppose \(\tau_i \in I_k(R^n, 2) \) are cycles for \(i = 1, 2, 3, \ldots \), \(\{||\tau_i||\} \) converges weakly to a non-negative Radon measure \(\mu \) over \(R^n \), \(\lim_{i \to \infty} W(\tau_i - \tau) = 0 \) and \(\lim_{i \to \infty} M(\tau_i) = L(\tau) \) where \(\tau \in W_k(R^n) \). Then, for \(\mu \)-almost all \(x \in R^n \),
\[
D^*_k(\mu, R^n, x) > 0.
\]

Proof. The proof is by contradiction: by 2.5 we may assume the existence of a set \(E \) and a real number \(a > 0 \) such that for \(x \in E \),
\[
\mu(E) > 0,
\]
\[
D^*_k(\mu, R^n, x) = 0,
\]
\[
\limsup_{r \to 0} \frac{\mu[S(x, r/2)]}{\mu[S(x, r)]} > a.
\]
Therefore, for a given \(\epsilon > 0 \) and for \(x \in E \), there exists a set \(B_\epsilon \subset (0, 1) \) such that \(B_\epsilon \) contains at least a denumerable number of elements and such that, if \(r \in B_\epsilon \),

\[\begin{align*}
\mu[S(x, r)] &< \varepsilon \alpha(k)r^k, \\
\mu[S(x, r/2)] &> a \mu[S(x, r)], \\
\mu[y: \text{distance } (x, y) = r] &= 0, \\
\mu[y: \text{distance } (x, y) = r/2] &= 0, \\
\tau_i \cap S(x, r) &\text{ is integral for } i = 1, 2, 3, \ldots, \\
\inf \{r: r \in B_i\} &= 0.
\end{align*}\]

Hence, by 2.6, there exist points \(x_1, x_2, \ldots, x_m\) and numbers \(r_1, r_2, \ldots, r_m\) such that \(S(x_i, r_i) \cap S(x_j, r_j) = 0\) for \(i \neq j, r_i \in B_{\#i}\) and

\[
\mu\left[E - \bigcup_{j=1}^m S(x_j, r_j) \right] < \varepsilon.
\]

From (1), we have the existence of an integer \(i_0 > 0\) such that for \(i > i_0\) and \(1 \leq j \leq m\),

\[
\begin{align*}
\|\tau_i\| & \geq |S(x_j, r_j/2)| - a \|\tau_i\| |S(x_j, r_j)|, \\
\|\tau_i\| & \geq \varepsilon \alpha(k)r_j^{1/k}.
\end{align*}
\]

For \(i \geq i_0\) and \(1 \leq j < m\), [8, 4.1] provides a ball \(S_{i,j} \subset S(x_j, r_j)\) with radius between \(r_j/2\) and \(r_j\) and center at \(x_j\) such that

\[
\tau_i \cap S_{i,j} \text{ is integral}, \\
M[\partial(\tau_i \cap S_{i,j})] \leq 2r_j^{-1}\|\tau_i\| |S(x_j, r_j)|.
\]

Now by use of [8; 4.6] one can find a constant \(c\) and integral classes \(\rho_{i,j}, \sigma_{i,j}\) such that,

\[
\begin{align*}
\tau_i \cap S_{i,j} - \rho_{i,j} &= \partial \sigma_{i,j}, \\
M(\rho_{i,j}) &\leq cM[\partial(\tau_i \cap S_{i,j})]^{1/k-1}, \\
M(\sigma_{i,j}) &\leq c[M(\tau_i \cap S_{i,j}) + M(\rho_{i,j})]^{k+1/k}.
\end{align*}
\]

For \(i \geq i_0\) and \(1 \leq j \leq m\), (2) and (3) imply

\[
M[\partial(\tau_i \cap S_{i,j})]^{1/k-1} \leq (2r_j^{-1})^{k/k-1}\|\tau_i\| |S(x_j, r_j)|^{1/k-1} \\
\leq (2r_j^{-1})^{k/k-1}\|\tau_i\| |S(x_j, r_j)| \cdot \|\tau_i\| |S(x_j, r_j)|^{1/k-1} \\
\leq \varepsilon^{1/k-1} \cdot 2^{k/k-1} \cdot \alpha(k)^{1/k-1} \cdot \|\tau_i\| |S(x_j, r_j)|;
\]

hence, from (4),

\[
M(\rho_{i,j}) \leq \varepsilon^{1/k-1} \cdot 2^{k/k-1} \cdot \alpha(k)^{1/k-1} \cdot \|\tau_i\| |S(x_j, r_j)|.
\]

Similarly,
(6) \(M(\sigma_i,j) \leq c[M(\tau_i \cap S_i,j) + M(\rho_i,j)]^{h+1/h} \)
\[\leq c[\|\tau_i\|[S(x_j, r_j)] + \varepsilon^{1/h-1} \cdot 2^{h/k-1} \cdot \alpha(k)^{1/k-1} \cdot c \cdot \|\tau_i\|[S(x_j, r_j)]]^{h+1/h} \]
\[\leq c[1 + \varepsilon^{1/h-1} \cdot 2^{h/k-1} \cdot \alpha(k)^{1/k-1} \cdot c]^{h+1/h} \cdot \|\tau_i\|[S(x_j, r_j)]^{1/k+1} \leq \varepsilon^{1/h} \cdot c[1 + \varepsilon^{1/h-1} \cdot 2^{h/k-1} \cdot \alpha(k)^{1/k-1} \cdot c]^{h+1/h} \cdot \alpha(k)^{1/k} \cdot \|\tau_i\|[S(x_j, r_j)]. \]

Let \(\alpha = 2^{h/k-1} \cdot \alpha(k)^{1/k-1} \cdot c, \beta(\varepsilon) = c(1 + \varepsilon^{1/h-1} \cdot 2^{h/k-1} \cdot \alpha(k)^{1/k-1} \cdot c)^{h+1/h} \cdot \alpha(k)^{1/k}. \)

Notice that \(\beta(\varepsilon) \to c^{h+1/k+1} \cdot \alpha(k)^{1/k} \) as \(\varepsilon \to 0. \) If we let
\[
\zeta_i = \tau_i + \sum_{j=1}^{m} (\rho_{i,j} - \tau_i \cap S_i,j),
\]
(4) and (6) imply that, for \(i \geq i_0, \)

(7) \(W(\zeta_i - \tau_i) \leq \varepsilon^{1/h} \beta(\varepsilon) M(\tau_i). \)

Since
\[
\zeta_i = \tau_i - \sum_{j=1}^{m} \tau_i \cap S_i,j + \sum_{j=1}^{m} \rho_{i,j},
\]
it follows from (5) that, for \(i \geq i_0, \)

(8) \(M(\zeta_i) \leq M\left(\tau_i - \sum_{j=1}^{m} \tau_i \cap S_i,j \right) + \varepsilon^{1/h-1} \alpha M(\tau_i). \)

Now, with \(U = \bigcup_{j=1}^{m} S(x_j, r_j), \) we have from (1)

(9) \(M\left(\tau_i - \sum_{j=1}^{m} \tau_i \cap S_i,j \right) = \|\tau_i\|\{(R^c) - \sum_{j=1}^{m} \|\tau_i\|[S_i,j] \)
\[\leq \|\tau_i\|\{(R^c) - \sum_{j=1}^{m} \|\tau_i\|[S(x_j, r_{f,j})] \]
\[\leq \|\tau_i\|\{(R^c) - a \sum_{j=1}^{m} \|\tau_i\|[S(x_j, r_j)] \]
\[\leq \|\tau_i\|\{(R^c) - a\|\tau_i\|\{(U) \text{ for } i \geq i_0. \}
\]

There exists an integer \(i_1 \geq i_0 \) such that for \(i \geq i_1, \)
\[
\|\tau_i\|\{(U) - \mu(U) \| < \varepsilon;
\]
therefore, from (8) and (9),
\[
M(\zeta_i) + a\|\tau_i\|\{(U) \leq M(\tau_i) + \varepsilon^{1/h-1} \cdot \alpha \cdot M(\tau_i),
\]
\[
M(\zeta_i) + a\mu(U) \leq M(\tau_i) + \varepsilon^{1/h-1} \cdot \alpha \cdot M(\tau_i) + a\varepsilon .
\]

But \(\mu(U) > \mu(E) - \varepsilon, \) and therefore we finally obtain, for \(i \geq i_1, \)
\[
M(\zeta_i) + a\mu(E) \leq M(\tau_i) + \varepsilon^{1/h-1} \cdot \alpha \cdot M(\tau_i) + 2a\varepsilon .
\]
Hence, from this inequality and (7), it is now clear that we can find a sequence of integral cycles ψ_i such that
\[
\lim_{i \to \infty} W(\psi_i - \tau) = 0,
\]
\[
\limsup_{i \to \infty} M(\psi_i) + a\mu(E) \leq \lim_{i \to \infty} M(\tau_i) = L(\tau),
\]
which is a contradiction since $\mu(E) > 0$ and $a > 0$.

3. The main theorem. In this section, the main theorem, which is concerned with the compactness of integral classes, is established. In the proof, an essential role is played by a decomposition theorem due to Federer [4], which will now be discussed.

Recall from [8; 5.13], that if A is a compact subset of \mathbb{R}^n, $\tau_i \in I_k(A, 2)$ for $i = 1, 2, \ldots$, and $\sup \{M(\tau_i) + M(\partial \tau_i); i = 1, 2, \ldots\} < \infty$, then there exists a subsequence, $\{\tau_{i_i}\}$, and a $\tau \in W_k(\mathbb{R}^n, 2)$ such that $W(\tau_{i_i} - \tau) \to 0$. Of course, it would be desirable to show that τ is, in fact, a rectifiable class. To this end, assume without loss of generality that $\partial \tau = 0$ and let $\{\tau_i\}$ be a sequence of integral cycles for which
\[
\lim_{i \to \infty} W(\tau_i - \tau) = 0 \quad \text{and} \quad \lim_{i \to \infty} M(\tau_i) = L(\tau).
\]
Hence, by passing to a suitable subsequence if necessary, we have the existence of a non-negative Radon measure μ such that $\{||\tau_i||\}$ converges weakly to μ. Then, from [4; § 9] we know that \mathbb{R}^n can be decomposed into four μ-measurable sets A_1, A_2, A_3, A_4 such that:

1. $\mathbb{R}^n = A_1 \cup A_2 \cup A_3 \cup A_4$,
2. $A_i \cap A_2 = A_1 \cap A_3 = A_3 \cap A_4 = 0$,
3. A_i is a countably k-rectifiable set and at each point $x \in A_i$, there exists a μ-approximate tangent k-plane to A_i at x; for this, (2.8) is needed,
4. Either $\mu(A_2) = 0$ or A_2 contains no k-rectifiable set B for which $\mu(B) > 0$,
5. $L_0[p(A_3)] = 0$ for almost all orthogonal projections of \mathbb{R}^n onto \mathbb{R}^k,
6. $A_3 = \{x: D_k(\mu, \mathbb{R}^n, x) = 0 \text{ or } D_\infty^k(\mu, \mathbb{R}^n, x) = \infty\}$. Observe that from 2.8, $\mu[\{x: D_k(\mu, \mathbb{R}^n, x) = 0]\} = 0$,
7. $\mu(A_4) = 0$.

Now let $A = A_1 \cap \{x: D_k(H^k, A_4, x) = 1\} \cap B$, where B is the set described in the proof of [8; 5.14]. We now are in a position to state the main theorem.

3.1. Theorem. Suppose that $H^k(A_1) < \infty$ and that $\mu(A_2) = \mu(A_4) = 0$. Then, there exists a μ-measurable set $E \subset \mathbb{R}^n$ such that $\mu(A - E) = 0$.
ON THE COMPACTNESS OF INTEGRAL CLASSES

\[0 \text{ and } K_m W(T_i - A \cap E) = 0.\]

Since \(A \cap E\) is a Hausdorff \(k\)-rectifiable set, by [8; § 3], we can identify \(A \cap E\) with a rectifiable class. Hence, the theorem asserts the existence of a rectifiable class to which \(\{r_i\}\) converges.

For the proof of the theorem, we will need the following lemma.

3.2. Lemma. Suppose that \(A\) is a countably \(k\)-rectifiable set with \(H^k(A) < \infty\). Then, for any real number \(0 < a < 1\), and for any real number \(b\) such that \(b > 1\) and \(b^k < a^{-1}\),

\[\lim_{r \to 0} \frac{H^k[S(x, r) \cap A]}{H^k[S(x, r) \cap A]} > a,

for \(H^k\) almost all \(x \in A\).

Proof. Since \(D_k(H^k, A, x) = 1\) for \(H^k\) almost all \(x \in A\), we have the following at all such \(x\):

\[\lim_{r \to 0} b^{-k} \frac{H^k[S(x, r/b) \cap A]}{(r/b)^k} = b^{-k} > a.

Proof of the theorem. It is sufficient to show that the conclusion holds for a subsequence of the given sequence. Passage to subsequences, which often occurs in what follows, will be indicated by words but not notationally. The proof will be divided into four main parts.

Choose \(0 < \delta < 1\) and let \(\gamma(B) = H^k(A \cap B)\) where \(B\) is any \(H^k\) measurable set. In view of the assumptions and with the aid of [4; (3.8)] we know that \(\mu\) is absolutely continuous with respect to \(\gamma\). Let \(P(x)\) be the \(\mu\) approximate tangent \(k\)-plane to \(A\) at \(x\) and let \(K(x, r)\) be the open \(n\)-cube with center at \(x\), side length \(2r\) and one of its \(k\)-faces parallel to \(P(x)\). In this proof, densities will be computed by using these cubes and 2.6 will be used with cubes instead of spheres; this does not change anything. Using the methods of [8; 5.14], for \(\varepsilon > 0\) we have the existence of a positive number \(r_1(x, \varepsilon)\) such that for \(r \leq r_1(x, \varepsilon)\),

\[W[P(x) \cap K(x, r)] - A \cap K(x, r)] < \varepsilon^2/8 \cdot \beta(k)r^k\]

where \(\beta(k)\) is volume of a \(k\)-cube with side length \(2\). Also, if \(D(x) = D_0^k(\mu, \mathbb{R}^n, x)\), then for each \(x \in A\) there exists a number \(r_0(x, \varepsilon) \leq r_1(x, \varepsilon)\) such that for \(r \leq r_0(x, \varepsilon)\),
\[\gamma[K(x, r)] \geq (1 - \varepsilon)\beta(k)r^k , \]
\[\mu[K(x, r)] < c(x)\beta(k)(r/b)^k , \]
\[\mu[K(x, r) - S(P(x), \varepsilon/2 \cdot r)] < \varepsilon^22^{-k}\beta(k)r^k , \]
\[\gamma[K(x, r/b)] > \alpha\gamma[K(x, r)] , \]

where \(c(x) = b^*D(x) \), \(a > 1 - \varepsilon \), and where \(b \) is the number provided by 3.2. We will consider only those \(r \) for which \(u[K^*(x, r)] = \mu[K^*(x, r/b)] = 0 \), where \(K^*(x, r) \) denotes the boundary of the cube. Since this omits at most a denumerable number of cubes, we have a Vitali covering of \(A \) and therefore, by 2.6, there exists a finite number of disjoint cubes \(K(x_i, r_i), K(x_n, r_n), \ldots, K(x_m, r_m) \) such that
\[
\gamma[A \setminus \bigcup_{i=1}^m K(x_i, r_i)] < \varepsilon \quad \text{and} \quad \mu[A \setminus \bigcup_{i=1}^m K(x_i, r_i)] < \varepsilon .
\]
Let \(c = \max \{c(x_0), \ldots, c(x_m)\} \), \(d = c/(b - 1) \), and assume \(\varepsilon \) to be chosen so as to satisfy the following inequalities, where \(c_1 \) and \(c_2 \) are the constants in [8; 4.6]:
\[
\varepsilon < [c, 2^{2-2k}\beta(k)]^{-1} , \quad [\varepsilon c^42^{-k-2}\beta(k)]^{k/2-1} + \varepsilon^2 < \delta/8 ,
\]
\[(3) \quad \varepsilon c + \varepsilon Ld + 3\varepsilon^2 < \delta/4 \]
where \(L \) is described below,
\[
\varepsilon < 1 - \delta/2 , \quad \varepsilon c/1 - \varepsilon < \delta , \quad \varepsilon\gamma(A) + \varepsilon - \varepsilon^2 < \delta .
\]

Part 1. Consider \(x_i \) and let \(x = x_i \), \(r = r_i \), and \(P = P(x_i) \). Since \(\mu[K^*(x, r)] = 0 \) and \(||\tau_i|| \to \mu \), there exists an integer \(i_0(r) \) such that for \(i \geq i_0(r) \),
\[
M[\tau_i \cap K(x, r)] < c_0\beta(k)(r/b)^k ,
\]
\[
M[\tau_i \cap (K(x, r) - S(P, \varepsilon/2 \cdot n))] < \varepsilon^22^{-k}\beta(k)r^k .
\]
For each \(i \geq i_0(r) \), [8; 4.1] implies that
\[
\int_{r/b}^{r} M[\partial(\tau_i \cap K(x, s))]ds < Lc\beta(k)(r/b)^k ,
\]
where \(L \) is the Lipschitz constant of the function that defines \(K(x, s) \). Therefore, by appealing to Fatou's lemma, there exists a number \(t \) between \(r/b \) and \(r \) and a subsequence \(\{\tau_{i_j}\} \) (which will still be denoted by \(\{\tau_i\} \)) such that
\[
\mu[K^*(x, t)] = 0
\]
and
\[
M[\partial(\tau_i \cap K(x, t))] \leq Lc\beta(k)t/b - 1(r/b)^{k-1} \leq Ld\beta(k)t^{k-1} , \text{ for all } i .
\]
Hence, letting \(\sigma_i = \tau_i \cap K(x, t) \) from (1) and (2), we have the following for all elements of a subsequence:
Let $U_s = \{x: \text{distance} (x, P) > s\}$. For each σ_i of the above subsequence, we have from [8; 4.1] that

$$
\int_{st/2}^{st} M[\partial(\sigma_i \cap U_s) - (\partial\sigma_i) \cap U_s]ds < \varepsilon 2^{-k}\beta(k) t^k,
$$

so that again by appealing to Fatou's lemma, there exists a number s_0 such that $st/2 < s_0 < st$ and a subsequence $\{\sigma_i\}$ such that for all members of this subsequence,

$$
M[\partial(\sigma_i \cap U_{s_0}) - (\partial\sigma_i) \cap U_{s_0}] \leq \varepsilon 2^{-k}\beta(k) t^{k-1}.
$$

Let $K = K(x, t)$, $U = U_{s_0}$, $N = \text{closure} [K \cap (R^* - U)]$ and note that

$$
spt p(\partial\sigma_i \cup N) \subset P \cap K^*.
$$

where $p: R^* \to P$ is the orthogonal projection. If we let

$$
\theta_i = \partial(\sigma_i \cap N) - (\partial\sigma_i) \cap N = \partial(\sigma_i \cap U) - (\partial\sigma_i) \cap U \text{ and } \chi_i = p(\sigma_i \cap N),
$$

then in the notation of [8; 4.6] with $A = \text{closure} (P \cap K)$ and $B = P \cap K^*$, we have from (3), (5), and (6),

$$
\begin{align*}
c_i M(\partial\chi_i \cap K) &= c_i M[p(\theta_i) \cap K] \leq c_i M[p(\theta_i)] \\
&\leq c_i 2^{1-k}\varepsilon \beta(k) t^{k-1} \leq (t/2)^{k-1}.
\end{align*}
$$

Hence, by [8; 4.6], there exists $\lambda_i \in I_\varepsilon(A, 2)$ such that

$$
spt (\partial\chi_i - \partial\lambda_i) \subset B,
$$

$$
M(\lambda_i)^{k-1/k} \leq c_i 2^{1-k}\beta(k) t^{k-1}.
$$

If we let $\psi_i = \chi_i - \lambda_i$, then we have

$$
spt \psi_i \subset \text{closure} P \cap K,
$$

$$
\begin{align*}
spt \partial\psi_i &\subset P \cap K^* \\
M(\psi_i - \chi_i) &\leq \varepsilon [c_i 2^{1-k}\beta(k)]^{1/k} t^k.
\end{align*}
$$

Hence, we will consider the two following possibilities: $\psi_i = 0$ for all but finitely many i or $\psi_i = P \cap K$ for all i of a subsequence.

Case 1. Suppose $\psi_i = P \cap K$ for some subsequence. Then from (4), (8), and (3),
\[M[P \cap K - p_4(\sigma_i)] \leq M[P \cap K - p_4(\sigma_i \cap N)] + M[p_4(\sigma_i \cap U)] \]
\[\leq M(\psi_i - \chi_i) + M[p_4(\sigma_i \cap U)] \]
\[\leq \varepsilon^{p/k-1}[c_44^{k-1}2^{-k}\beta(k)k^{p/k-1}t^k + \varepsilon^p2^k\cdot \beta(k)t^k] \]
\[\leq \delta^*|8\cdot \beta(k)t^k| \cdot \]

Therefore, (4) implies \(W[p_4(\sigma_i) - A \cap K] < \delta^*|4\cdot \beta(k)t^k| \).

Also from (4), (3)

\[W[p_4(\sigma_i) - \sigma_i] \leq W[p_4(\sigma_i \cap N) - \sigma_i \cap N] + W[p_4(\sigma_i \cap U) - \sigma_i \cap U] \]
\[\leq etN(\sigma_i \cap N) + 2M(\sigma_i \cap U) \]
\[\leq et[c_3\beta(k)t^k + Ld\beta(k)t^{k-1}] + \varepsilon^p2^k\beta(k)t^k \]
\[\leq \delta^*|4\cdot \beta(k)t^k| \cdot \]

Therefore, from (2), (3), and (4),

\[W[\tau_i \cap K - A \cap K] < \delta^*|2\cdot \beta(k)t^k| \leq \delta K(x, t) \]

for all members of a suitable subsequence. Now repeat the entire above procedure to the cube \(K(x_2, r_2) \), but using the subsequence that was finally obtained at the end of case 1.

Case 2. In the event that \(\psi_i = 0 \) for all but finitely many \(i \), repeat the entire above procedure to the cube \(K(x_2, r_2) \) but using the subsequence that corresponds to \(\psi_i = 0 \).

Part 2. By repeating the procedure in part 1 \(m \) times, we obtain cubes \(K(x_1, t_1), \ldots, K(x_j, t_j), K(x_{j+1}, t_{j+1}), \ldots, K(x_m, t_m) \) and a subsequence, \(\{\tau_i\} \) such that, for all members of this subsequence,

\[\sum_{i=1}^{i} W[\tau_i \cap K(x_i, t_i)] - A \cap K(x_i, t_i)] < \delta^*|2\cdot \beta(k)t^k\sum_{i=1}^{i} t_i^k \leq \delta \gamma(A) \cdot \]

and such that case 2 of step 1 applies to the cubes \(K(x_{j+1}, t_{j+1}), \ldots, K(x_m, t_m) \). Now, using the same notation as above except for the addition of superscripts to denote that cube which is under consideration, we have that \(\psi_i = 0 \) for all \(i \) and for \(q = j + 1, j + 2, \ldots, m \). This implies that \(M[p_q(\sigma_i \cap N^q)] < \delta^*|8\cdot \beta(k)t^q| \), where \(p_q : R^n \to P(x_q) \) is the orthogonal projection. Define \(A_q = \bigcup_{i=1}^{i} K(x_i, t_i) \) and \(B_q = \bigcap_{i=1}^{i} K(x_i, t_i) \) and let \(\omega_i = h_i[I \times \partial(\sigma_i \cap N^q)] \), \(\zeta_i = h_i[I \times (\sigma_i \cap N^q)] \) where \(h_i^q \) is the linear homotopy from the identity to the projection map \(p^q \). If we let

\[\tau_i = \sum_{q=j+1}^{m} \tau_i \cap [R^n - K(x_q, t_q)] + \sum_{q=j+1}^{m} [\omega_i + p_q(\sigma_i \cap N^q) + \sigma_i \cap U^q] \]

then \(\partial \tau^q = 0 \) and from (7), (5), (8), (4), (3), and (2),
ON THE COMPACTNESS OF INTEGRAL CLASSES 1449

\[M(\tau_i^j) \leq M(\tau_i) - M(\tau_i \cap B_\delta) + \varepsilon t \left[\sum_{q=J+1}^{m} 2\varepsilon \beta(k)t_q^{k+1} + Ld\beta(k)t_q^{k+1} \right] \\
+ \delta/4 \sum_{q=J+1}^{m} \beta(k)t_q + \varepsilon^2 \sum_{q=J+1}^{m} \beta(k)t_q^2 \\
\leq M(\tau_i) - M(\tau_i \cap B_\delta) + \delta^2/2 \sum_{q=J+1}^{m} \beta(k)t_q^k \\
\leq M(\tau_i) - M(\tau_i \cap B_\delta) + \delta^2/(1 - \varepsilon) \cdot \gamma(\beta_\delta) \\
\leq M(\tau_i) - M(\tau_i \cap B_\delta) + \delta \gamma(A) .

Since \(|\tau_i| \rightarrow \mu\), there exists a subsequence of the one above such that, for all members of this subsequence,

\[M(\tau_i^j) \leq M(\tau_i) - \mu(B_\delta) + 2\delta \gamma(A) .

Also,

\[\tau_i - \tau_i^j = \sum_{q=J+1}^{m} \theta \zeta_i^q \]

and therefore, from (3),

\[W(\tau_i - \tau_i^j) \leq \sum_{q=J+1}^{m} M(\zeta_i^q) \leq \varepsilon \sum_{q=J+1}^{m} c\beta(k)t_q^k \\
\leq \varepsilon c/1 - \varepsilon \cdot \gamma(B_\delta) < \delta \gamma(A) .

Observe, with the help of (4), that

\[\gamma(A_\delta \cup B_\delta) \geq a \gamma \left[\bigcup_{i=1}^{m} K(x_i, r_i) \right] \geq a[\gamma(A) - \varepsilon] \\
\geq (1 - \varepsilon)[\gamma(A) - \varepsilon] \geq \gamma(A) - \delta .

Thus, in summary of what has been done so far, we have, for every \(\delta > 0\), the existence of sets \(A_\delta\) and \(B_\delta\) which are the finite union of disjoint open cubes and the existence of a subsequence \(\{\tau_i\}\) and a sequence \(\{\tau_i^j\}\) such that

\[\gamma(A - (A_\delta \cup B_\delta)) < \delta, \]
\[W(\tau_i \cap A_\delta - A \cap A_\delta) < \delta \gamma(A), \]
\[W(\tau_i - \tau_i^j) < \delta \gamma(A), \]
\[M(\tau_i^j) \leq M(\tau_i) - \mu(B_\delta) + 2\delta \gamma(A) \quad \text{for all } i .

Now by letting \(\delta \rightarrow 0\) and by using Cantor's diagonal process, we can infer that \(\lim_{j \to \infty} \sup \mu(B_\delta) = 0\) since \(M(\tau_i) \rightarrow L(\tau)\). This implies, along with the fact that \(\mu\) is absolutely continuous with respect to \(\gamma\), that for every \(\delta > 0\), there exists a set \(A_{\delta}\), which is the union of a finite number of disjoint open cubes, and a subsequence \(\{\tau_i\}\) such that \(\mu(R^n - A_{\delta}) < \delta\) and \(W(\tau_i \cap A_{\delta} - A \cap A_{\delta}) < \delta\) for all \(i\).
Part 3. Choose $0 < \delta < 1$ and let $\{\delta_i\}$ be a sequence of real numbers tending to zero with $\sum_{i=1}^{\infty} \delta_i < \delta/3$. Part 2 supplies a set A_{δ_1}. Now repeat the procedures in parts 1 and 2 to the set $A - A_{\delta_1}$ with the restriction that only those cubes that do not intersect the closure of A_{δ_1} should be considered. Since the μ measure of the frontier of A_{δ_1} is zero, those cubes with centers on the frontier of A_{δ_1} need not be considered. Also, the subsequence that is obtained for the set A_{δ_1} is the one that should be used in the procedure for $A - A_{\delta_1}$. Hence, we will obtain a subsequence of the sequence obtained for A_{δ_1} and a set A_{δ_2} such that A_{δ_2} is the finite union of open disjoint cubes with $A_{\delta_2} \subset \mathbb{R}^n - A_{\delta_1}$, $\mu(\mathbb{R}^n - (A_{\delta_1} \cup A_{\delta_2})) < \delta_2$, and $W(\tau_i \cap A_{\delta_2} - A \cap A_{\delta_2}) < \delta_3$ for all i. Continue this process and let $H_i = \bigcup_{i=1}^{\infty} A_{\delta_i}$. Then, $\mu(A - H_i) = 0$ and by employing Cantor's diagonal process, we obtain the following: if $S_j = \bigcap_{i=1}^{\infty} A_{\delta_i}$, then there exists an integer j_0 such that for $j \geq j_0$,

$$\gamma(A \cap H_j - A \cap S_j) < \delta/3$$

and

$$\mu(\mathbb{R}^n - S_j) = \mu(A \cap H_j - A \cap S_j) < \delta/3.$$

Hence, $M(A \cap H_j - A \cap S_{j_0}) < \delta/3$. Since $\|\tau_i\| \rightarrow \mu$ and since S_{j_0} is open, there exists one integer $i_0(j_0)$ such that for $i \geq i_0(j_0)$, $M(\tau_i - \tau_i \cap S_{j_0}) < \delta/3$. Therefore, for $i \geq i_0(j_0)$,

$$W(\tau_i - A \cap H_j) \leq W(\tau_i - \tau_i \cap S_{j_0}) + W(\tau_i \cap S_{j_0} - A \cap S_{j_0})$$

$$+ W(\tau_i \cap S_{j_0} - A \cap H_j)$$

$$\leq \delta/3 + \sum_{i=1}^{j_0} \delta_i + \delta/3 < \delta.$$

We now have, for every $\delta > 0$, an open set H_j and a subsequence $\{\tau_i\}$ such that $\mu(A - H_j) = 0$ and $W(\tau_i - A \cap H_j) < \delta$ for all i.

Part 4. Choose $\delta > 0$ and again let $\{\delta_i\}$ be a sequence of real numbers tending to zero. After obtaining the set H_{δ_1}, repeat parts 1, 2, and 3 to the set $A \cap H_{\delta_1}$ and to the sequence that was obtained for $A \cap H_{\delta_1}$. Since H_{δ_1} is open, we can require that $H_{\delta_2} \subset H_{\delta_1}$. Continue this process and let $E = \bigcap_{i=1}^{\infty} H_{\delta_i}$ to obtain $\mu(A - E) = 0$. By employing Cantor's diagonal process, we obtain a sequence $\{\tau_i\}$ such that $W(\tau_i - A \cap H_{\delta_i}) < \delta_i$ for large i. Choose j_0 such that $\delta_0 < \delta/2$ and $\gamma(A \cap H_{\delta_i} - A \cap E) < \delta/2$. Thus

$$W(\tau_i - A \cap E) \leq W(\tau_i - A \cap H_{\delta_{j_0}}) + W(A \cap H_{\delta_{j_0}} - A \cap E)$$

$$\leq \delta/2 + \gamma(A \cap H_{\delta_{j_0}} - A \cap E) < \delta$$ for large i,

and therefore the conclusion of the theorem follows.
BIBLIOGRAPHY

INDIANA UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS
Stanford University
Stanford, California

M. G. ARSOVE
University of Washington
Seattle 5, Washington

J. DUGUNDJI
University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
T. M. CHERRY
D. DERRY
M. OHTSUKA
H. L. ROYDEN
E. SPANIER
E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Pacific Journal of Mathematics
Vol. 13, No. 4 June, 1963

Dallas O. Banks, Bounds for eigenvalues and generalized convexity 1031
Jerrold William Bebernes, A subfunction approach to a boundary value problem for
ordinary differential equations .. 1053
Woodrow Wilson Bledsoe and A. P. Morse, A topological measure construction 1067
George Clements, Entropies of several sets of real valued functions 1085
Sandra Barkdull Cleveland, Homomorphisms of non-commutative *-algebras 1097
William John Andrew Culmer and William Ashton Harris, Convergent solutions of
ordinary linear homogeneous difference equations 1111
Ralph DeMarr, Common fixed points for commuting contraction mappings 1139
James Robert Dorroh, Integral equations in normed abelian groups 1143
Adriano Mario Garsia, Entropy and singularity of infinite convolutions 1159
J. J. Gergen, Francis G. Dressel and Wilbur Hallan Purcell, Jr., Convergence of
extended Bernstein polynomials in the complex plane 1171
Irving Leonard Glicksberg, A remark on analyticity of function algebras 1181
Charles John August Halberg, Jr., Semigroups of matrices defining linked operators
with different spectra ... 1187
Philip Hartman and Nelson Onuchic, On the asymptotic integration of ordinary
differential equations .. 1193
Isidore Heller, On a class of equivalent systems of linear inequalities 1209
Joseph Hersch, The method of interior parallels applied to polygonal or multiply
connected membranes ... 1229
Hans F. Weinberger, An effectless cutting of a vibrating membrane 1239
Melvin F. Janowitz, Quantifiers and orthomodular lattices 1241
Samuel Karlin and Albert Boris J. Novikoff, Generalized convex inequalities 1251
Tilla Weinstein, Another conformal structure on immersed surfaces of negative
curvature ... 1281
Gregers Louis Krabbe, Spectral permanence of scalar operators 1289
Shige Toshi Kuroda, Finite-dimensional perturbation and a representation of
scattering operator .. 1305
Marvin David Marcus and Afton Herbert Cayford, Equality in certain
inequalities .. 1319
Joseph Martin, A note on uncountably many disks ... 1331
Eugene Kay McLachlan, Extremal elements of the convex cone of semi-norms 1335
John W. Moon, An extension of Landau’s theorem on tournaments 1343
Louis Joel Mordell, On the integer solutions of \(y(y + 1) = x(x + 1)(x + 2) \) 1347
Kenneth Roy Mount, Some remarks on Fitting’s invariants 1353
Miroslav Novotný, Über Abbildungen von Mengen .. 1359
Robert Dean Ryan, Conjugate functions in Orlicz spaces 1371
John Vincent Ryff, On the representation of doubly stochastic operators 1379
Donald Ray Sherbert, Banach algebras of Lipschitz functions 1387
James McLean Sloss, Reflection of biharmonic functions across analytic boundary
conditions with examples ... 1401
L. Bruce Treybig, Concerning homogeneity in totally ordered, connected topological
space .. 1417
John Wermer, The space of real parts of a function algebra 1423
James Juei-Chin Yeh, Orthogonal developments of functionals and related theorems
in the Wiener space of functions of two variables 1427
William P. Ziemer, On the compactness of integral classes 1437