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1. Introduction. Let H, be a symmetric operator in a Hilbert
space .. If H is a self-adjoint operator in a Hilbert space  such
that ©, C  and H, C H, then H is called a self-adjoint extension of
H,. If $O 9, is finite-dimensional, then H is called a fintte-dimension-
al self-adjoint extension of H,. H is called a minimal self-adjoint
extension if neither § O , nor any of its subspaces different from
{0} reduces H.

Suppose H is a self-adjoint extension of H,. If E(\) is the spectral
function of H and if P, is the operator in © of orthogonal projection
on 9, then the operator function E,(\) = P.E(\) restricted to 9, is
called a spectral function of H,. We shall say that the spectral
function E,(\) is defined by the self-adjoint extension H.

The family of spectral functions of H; is a convex set, i.e., if

'(\) and E!'(\) are spectral functions of H, and if @ and b are non-
negative real numbers such that a + b =1, then aE/(\) + bE{'(\) is
also a spectral function of H,. A spectral function E,(\) of H, is said
to be extremal if it is impossible to find two different spectral func-
tions E/(\), EY(\) and positive real numbers o and b, @« + b = 1, such
that E,(\) = aE/(\) + bE!'(\).

For further information we refer the reader to Achieser and
Glasmann [1].

M. A. Naimark [6] has shown that the finite-dimensional extensions
of a symmetric operator define extremal spectral functions of the
operator. Finite-dimensional extensions exist, however, only for sym-
metric operators with equal deficiency indices. In §4 of this paper
it is shown that self-adjoint extensions defined by the addition of
maximal symmetric operators determine extremal spectral functions
for a symmetric operator with unequal deficiency indices. The proof
uses the proposition of M. A. Naimark [6] that if E,(\) is defined by
the minimal self-adjoint extension H, then E,(\) is extremal if and
only if every bounded self-adjoint operator A which commutes with
H and satisfies the condition (Af, 9) = (f, ¢9) for all f, g€ D, is reduced
by .. Section 2 is devoted to a description of the self-adjoint ex-
tensions of a symmetric operator, and section 3 identifies some extremal
spectral functions of a symmetric operator with infinite equal deficiency
indices other than the ones defined by finite-dimensional extensions.
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The proof is based on the proposition of M. A. Naimark mentioned
above.

2. Self-adjoint extensions of a symmetric operator. The linear
operator H in the Hilbert space 9 is said to be Hermitian if (Hf, g) =
(f, Hg) for all f,geD(H). H is symmetric if it is Hermitian and
DH) = 9. If His a closed Hermitian operator and X\ is a nonreal
number, we define the subspaces M(\) and €(\) by the equations €(\) =
R(H — XE) and M(\) = DO L(\). (FE stands for the identity operator.)
M(\) is called a deficiency subspace of H and has the same dimensions
for all )\ in the same half-plane (upper or lower.) If m = dim M),
n = dim M(\), then (m, n) are called the deficiency indices of H (with
respect to A). (We add “with respect to N’ because the ordered pair
(m, n) depends on the half-plane ) is in.) The operator U(\) =
(H — \E)(H — \E)™* is an isometry mapping £() onto &X). It is
called the Cayley transform of H., We have that H =
AU — XEY UM — E)™. Since ) is a fixed non-real number in the
following, we shall write U in place of U(\). For fixed A the corre-
spondence between a Hermitian operator and its Cayley transform is a
one-to-one inclusion-preserving correspondence between the set of closed
Hermitian operators H and the set of closed isometric operators U for
which (U — E)™* exists. We note, finally, that a subspace 9, reduces
H if and only if $, reduces U. In this circumstance, if 9, = HO D,
and if H; and U, are H and U respectively restricted to 9;, then U;
is the Cayley transform of H; and H=H, H, U= U, U..

M. A. Naimark [5] has proved the following theorem which de-
scribes all self-adjoint extensions of a symmetric operator.

THEOREM 1. Let N be any fixed nonreal number. Let H, be a
closed symmetric operator with deficiency indices (m,, m,) (with re-
spect to \). Then every self-adjoint extension H of H, is obtained
as follows:

(1) Let H, be a closed Hermitian operator in 9, with deficiency
indices (m,, my) (with respect to \) satisfying m, + m, = n, + N,
my, = N,

(2) Let Hh=H ®H, in =P D,. (H, is therefore a closed
Hermitian operator with equal deficiency indices (m, + m,, n, + n,),
and if U, is the Cayley transform of H;,, 1 = 0,1, 2, then U,= U, P U,.
Further, TM,(\) = M(V) D (L), M) = V(L) D (V).

(8) Let V be an arbitrary isometric operator mapping My(X)
onto M(\) satisfying the condition @eM(X), VoeM(\) implies
P =0.

(4) Let D(H) be defined asall g = f + Vo — @, where fe D(H,),
P € My(X).
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B) If geD(H), let Hg = H.f + AV — Aop.

Then, H s self-adjoint extension in  of H, and every self-
adjoint extension of H, is obtained in this way. We have that
@(Hz) = @(H) n 'g?z-

We say that H, and V of Theorem 1 define the self-adjoint ex-
tension H of H,.

We can put the operator V into correspondence with a matrix
(V) of operators such that Vi: M(X)— M(N), Vi V&GN — MWO),
Va: L) — PON), Vier M(N) — M,(\).  Then condition on V in (8)
of theorem 1 then becomes V,,» = 0 implies @ = 0.

We now give a theorem which gives a more detailed analysis of
the structure of V.

THEOREM 2. Suppose that M,(\), WL(N), W(\), W(N) are Hilbert
spaces and that V is an isometry which maps M) D M,(N) onto
(V) DB P(N). (N here has nothing to do with the theorem and s
retained only as a notational convenience.) If V = (V,) in matriw
form, suppose that V,p = 0 tmplies that @ = 0. Then the following
conclusions are true:

Q) If Mr(\) is defined by the equation M;(\) = [VL.DLN)]° (¢
indicates closure of a set) and if WN(\) is defined by N,\) =
PN © M (N), then N(\) is the null space of Vi. Thus, Vi s
one-to-one on My (\). Further, M(X) = [ VEMT (V).

(2) V*= V" maps N,(\) onto a subspaces of W), which we
denote by N.(N). Thus, N() = VRN), Rr) = VRNX).

@) If Mr(\) 1s defined by the equation M (N) = M,(N) © N(N),
then V maps Mr(N) D W(X) isometrically onto M (N) B M(N).

Thus, Vi, M7 (Z) < M (V).

4) V, is one-to-ome on M (X), and N(X) is the null space of
Vi MW(\) = [Vm%l_(x)]c-

(B) Vi is one-to-one on W,(\) and My (X)) = [ ViDL

©) If m, = dimMWN), n, = dim W), m, = dim MO, 7, =
dim M,(\), then m, + m, = n, + n,, M, = dim W,(X) = dim My V) < n,,
n, = dim NV,(O\) = dim MWy (X) =< m,.

(T If my=m,, m = n,.

Proof. (1) Since N,(\) is the orthogonal complement of the
closure of the range of Vi, (\) is the null space of Vii, and V3 is
one-to-one on W (\).

Suppose g€ W,(\) and g is perpendicular to ViMi;(\). Then 0 =
(9, Vif) = (Vyg, f) for all feMr(x). Therefore, V,,g0 = 0, and, since
V., is one-to-one, g = 0. Thus, M,(\) = [VET (V).
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(2) Since
Vi Vi
V* = R
( Vi Vz;“)

V*RON) = VERO) < M(X). Thus, V* = V- maps N,(\) onto a sub-
space of M,(N).

(8) Clear, since !,(\) = VR.(N).

(4) We first show that V, is one-to-one on M (X). Suppose
FeMr(N), Vuf=0. Then, VFf= Vyuf+ Vauf = VufeMr(\). Let
9= Vuf=Vf, so that f= V*g= Viig + Viig. Since fec M N,
Vige Mr(N), Vige My(N), we have that Viig =0. By (1) and the
fact that geM;y(\), ¢ = 0. Thus, f = V*g =0, and our contention
is proved.

Since N,(\) = VION), Vouf =0 for all feN(X). On the other
hand, we have just shown that V, is one-to-one on My (A). It follows
that N,(X) is the null space of V,,.

Because (V,5)* = V,, and the null space of (V)* is the orthogonal
complement of the closure of the range of V., we see that My (}) =
[ Vade(]e.

We claim finally that 9,(\) = [V,.M;(N)]°. Suppose g € My(\) and
that g is perpendicular to V,, M (X). Therefore, 0 = (V. f, 9) = (f, Vi9)
for all fe M (N). Since Viige M (V), it follows that V,*g = 0. Thus,
V*g = VigeM(\). Let f=V*g. Then, g = Vf= Vy,f+ Vuf, where
g € M(N), Vo f € Mr(N), Vi f € W(V). Hence, Vi, f =0and f = 0. Whence,
g = Vf=0. This proves our claim and completes the proof of (4).

(5) We have already shown in (4) that My (X)) = [ Vi0L(\)]°. Since
we also showed in (4) that WM,\) = [V, (V)]°, it follows that the
null space of V,f is empty and therefore V. is one-to-one on M,(N\).

6) m,+ m,=mn, +n, follows from the fact that V maps
PL(N) D M,(N) isometrically onto M, (A) B M,(N).

We claim now that dim 9,(%) = dim M (A). Let {p,} be a complete
orthonormal system in 9M,(\). Then {V,®,} is a fundamental set in
My (N). (See Nagy [4] for definitions.) Therefore dim M,(\) = P{p,} =
P{V,»,} = dim M (), where P stands for cardinality. Using V} and
an analogous argument, we obtain that dim M;(\) = dim M,(X). Thus,
dim PM,(X) = dim My (\), and m, = dim D,(X) = dim M; (V) < n,.  Simi-
larly, », = dim M,(\) = dim My (X)) < m,.

(7) The proof is clear from the inequalities in (6).

Theorem 2 is therefore completely proved.

THEOREM 3. (M. A. Naimark [5]). For each self-adjoint extension
H in 9 of a symmetric operator H, in 9, there exists a minimal
self-adjoint extension H, in O, such that

1 SCH c9;
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() HcH,CH,;
(8) H, and H define the same spectral function of H,.

THEOREM 4. Suppose that H, is a closed symmetric operator and
that H, and V define a self-adjoint extension H of H,. Let H, be
a self-adjoint extemsion of H, having the properties that , C O, C 9
and H,C Hy,cC H. Then the following statements are true:

(1) If we write ‘%0: &1@@3: “@:@o@%4: ‘%1@@3@%47 'S:?z:
9:D 9., then H is reduced by 9, and H = H,P H, where H, is a
sel f-adjoint operator in 9,.

(2) D&M N LMY, M(N) € Dy, M(V) C 9.

(8) H, is reduced by O, and H, = H,P H, where H, is a closed
Hermitian operator in O, with the same deficiency subspaces M,(\),
M,(N) as H,.

(4) H, is defined by H, and V.

(5) H and H, define the same spectral function of H,.

Proof. (1) Since H, C H,C H, we have that U, c U,c U. Be-
cause U, maps 9, isometrically onto 9, and U maps O isometrically
onto , we have that U maps 9O, isometrically onto 9,. Thus, D,
reduces U, and hence U= U,Pp U,, H= H,P H, where H, is a self-
adjoint operator in O, with Cayley transform U,. This proves (1).

(2) We claim first that 9, < 8(\). Let f€9,. Since H,C 9, =
M) B L&), £ =1+ f", where f' e W,(N), £ €(X). Hence, Uf =
Uf' + Uf" = Vf' + Uf" = Vaf' + Vaf' + U.f"”, where Uf e 9, C 9,
Vif' e Ma(N) € Oy, Vi f' € W\ € O,y Uof" €8V € 9, Thus, Vi f' =
0, and therefore f’=0. It follows that f = f"e&(\) and that
< &0 }

Since $, < D.\), and since U maps 9, isometrically onto $, and
2,(\) isometrically onto L,(\), we conclude that 9, 2,(\). Hence,
9. &) N &M). It follows immediately that M,(X) < 95, WLV C D
(2) is therefore completely proved.

(8) Because U, = U on Z,(\), we see that U, maps 9, isometrically
onto ©,. We know, however, that U, maps £,(}) isometrically onto
(). It follows that 9, reduces U,. Thus, U, = U, P U, where U,
maps L,(\) © 9, isometrically onto ,(\) © 9., and H, = H, P H,, where
H, is a closed Hermitian operator in &, with Cayley transform U,.
Noting that D, = M,(\) D [L(V) © D] = ML(V) D [0 © D.], we see
that H, has deficiency subspaces M,(1), M,(N). This proves (3).

(4) By Theorem 1, H, and V define a self-adjoint extension H;
of H in §,= 9. P 9,. If U/ is the Cayley transform of H], then
U=U=Uon &N, Uy=V=U on MHANDMWX), U =U=U
on &) O .. It follows that U= U on . P H, = ,. But since
U,c U, U,=U on 9, hence, U, = U], and therefore H, = H/. This
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proves (4).

(5) As we have shown, H = H,@ H,. Thus, EQ\) = E,(\) D E,(\),
and therefore E(\)f = E,M\)f for all f€$,. If P is the operator of
orthogonal projection of  onto O, and if P, is the operator of orthogo-
nal projection of 9, onto ©,, PE(\)f = PE\)f = P,E(\)f for all f€ 9,
so that H and H, define the same spectral function of H,. This proves
(6), and the proof of theorem 4 is completed.

3. Extremal spectral functions of a symmetric operator with equal
deficiency indices.

THEOREM 5. Let H be a self-adjoint extension of the closed
symmetric operator H,. Suppose that H is defined by H, and V.
Then the following statements are equivalent:

L) DH) = {0}.

(2) M) = DG() = 9,

() DH)N D, = {0}

Proof. That (1) implies (2) is clear from the definition of MW,(X)
and M,(\). Suppose, on the other hand, that MM,(N\) = M(\) = D..
Then, R(H, — \E) = R(H, — XE) ={0}. If feDH,), Hf —rf=0
and H,f — Af =0. Subtracting the first equation from the second,
(A —XN)f =0, and therefore f = 0. Thus, D(H,) = {0}, and we have
proved that (2) implies (1).

By Theorem 1, O(H,) = D(H) N ., so that (1) and (3) are clearly
equivalent.

THEOREM 6. Let H, be a closed symmetric operator. Suppose
that H is a self-adjoint extension of H, defined by H, and V. If
D(H,) = {0}, the following statements are true:

1) m, = n, i.e., the deficiency indices of H, are equal.

(2) H is minimal.

(8) The spectral fumction E\(\) of H, defined by H 1is extremal.

Proof. (1) By Theorem 5, D(H,) = {0} implies that m, = n,.
By. theorem 2, (7), m, = n,.

(2) By Theorem 5, O(H,) = {0} implies that V,(\) = WM(\) = D..
Hence, &) = &) = {0}. It follows from Theorem 3 and Theorem
4, (2), that H is minimal.

(3) Let A be any bounded operator in © having a matrix repre-

sentation,
E B
A~ R
(B * C )
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where E is the identity in ©;, B maps 9, into 9,, C maps 9, into 9,,
and C is self-adjoint. Suppose that A commutes with H. We shall
show that this implies that B =0. By the proposition of M. A.
Naimark [6] mentioned in the introduction, then, it follows that the
spectral function E,(\) defined by H is extremal,

Since A commutes with H, it commutes with the Cayley transform
U of H. If we represent U as a matrix, U ~ (U;,), where U;, maps
O: into O;, then the fact that A commutes with U implies that
BU, = U,B*. Taking adjoints, we also have that Uj}B* = BU.
We observe, further, that U= ¥V on ,N\) D My(X\) and that U* =
U'=V*'=V*on M) D W,(N).

Using the equation BU* = Ut B*, the fact that MM,(\) = 9., and Theo-
rem 2, we obtain that BVIMIO\) = BUXMI ) = UxB* M) Uik, =
UiM,(\) = Vadl,(\) < M(N). Since by Theorem 2 Vi (\) is dense
in M,(x) = 9, and since B is bounded, it follows that B9, < M.(X).

Similarly, using the equation BU, = U,B*, we obtain that
BV, (M) = BU.D (V) = UpB* W (V) € UnD: = Up,M,(N) = V() C
M,(\), and therefore BH, = I(\).

Thus, B, < () N W,(V). But M%) N M, (V) = {0}, because M,(X)
and ME(\) are the deficiency subspaces of a symmetric operator. Hence,
B =0. This complete the proof of Theorem 6.

By use of a somewhat less general form of Theorem 6, M. A. Nai-
mark [6] has shown that every finite-dimensional extension H of a closed
symmetric operator H, defines an extremal spectral function of H,.

THEOREM 7. If H 1is a finite-dimensional extension of a closed
symmetric operator H,, then H, must have equal deficiency indices.

Proof. Suppose that H is defined by H, and V. Then H, is a
Hermitian operator in the finite-dimensional space ©,. Since U, maps
2,(X) isometrically onto 2,()), it follows that dim 2,}) = dim &).
Hence dim M,(N) = dim M,(\), i.e., My = n,. By Theorem 2, (7), m, =
n,. This proves Theorem 7.

4, Extremal spectral functions of a symmetric operator with
unequal deficiency indices. We first introduce the notion of a partial
isometry and some of the properties thereof. (See Murray and von
Neumann [3].) A bounded linear operator W in a Hilbert space 9 is
called a partial isometry if it maps a subspace € isometrically onto
another subspace ¥, while it maps H O € onto {0}. € is called the
wnitial set of W, and & is called the final set of W. If W is a partial
isometry, then the following statements hold:

(1) If P(€) is the operator of orthogonal projection on € and if
P() is the operator of orthogonal projection on &, then P(G) = W*W;
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P(®) = WW*,
(2) U™ is a partial isometry with initial set § and final set €.
(3) As a mapping of § onto &, U* is the inverse of U as a
mapping of & onto F.

THEOREM 8. Suppose that W is a partial isometry with initiol
set M and final set . Let N=HOM. Then, M =W P WM,
where

1) W maps M’ isometrically onto IM;

©2) if feNRPW, lim,.., W?f = 0.

Proof. Let M; = (W*R, i=0,1,2,---. Then each IM; is a
subspace (i.e., a closed linear manifold), and the following statements
are true:

(@) M;cM for 9=1,2, ---. This is clear because W* is a
partial isometry with initial set $ and final set 9.

(b) If fe,, where n =0, then W?fe,_, for 1 < p < n, and
W?f =0 for p > n. Proof: If feI,, then f = (W*)"g for some g N.
Since WW* = E, Wf = (W*)*?geM,_,, 1<p=n. If p>n, Wof=
Wer=rg = 0.

(c) If feM;, +=0,1,2,-.+, and if n is a positive integer, then
(W*)“fe M;,,. Proof: If FEM;, f = (W*)g, where geN. Therefore,
(W*)f = (W*)Hrg e My,

(d) M; is perpendicular to M; if ¢ # 5. Proof: Suppose % < j,
and let feM, gecM,;. Then there exists f;e N and g, € N such
that f = (W*)fy, ¢ = (W*)g.. Hence, (f,9) = (W*)f, (W*)ig,) =
(f1, (W*)~°g)) = 0, since f,eR, (W*)~'g,e M;_; < M.

Now let I = 3=, M;,. Then M’ is a subspace of M. Let
WM’ =M WM. We shall show that I’ and M” satisfy (1) and (2).

Since M =M DM’ and H=NP W B M”, and since W maps
M isometrically onto 9, in order to prove (1) it is sufficient to show
that W maps I’ onto NP M. Suppose feM’. Then, f= . f;,
where f;eM;, and Wf = 32, Wf,. Because by (b) Wf,e M,_,, we see
that WfeRNRPW'. Thus, W maps M into NP M. To show that
the map is onto let geNP M. Then, g=33,f;, where f;eM,.
Iff=W*= Z W*f.e W, by (c). Further, Wf = WW*g=g. Hence,
W maps W onto NP W,

: We now prove (2). Let feMR@PW. Then, f= 3,f;, where
fieM,. By (b), Wf = 3z, Wof; = 32, W’fi.. Hence, | W*f|=

ol W2l = 25 ||| Thus, lim, .| W?f|*=0. This proves
(2) and completes the proof of the theorem.

THEOREM 9. Let )\ be a fixed nonreal number. Suppose that H,
18 a closed symmetric operator in O, with deficiency indices (m, n)
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(with respect to \), and suppose that m + n. Let H be a self-adjoint
extension of H, defined by H, and V, where H,is a closed Hermitian
operator with deficiency indices (0,8), n+s=m, ©tf m >n and
(5,0, m+s=mn, if m <n. Then the spectral function defined by
H s extremal.

Proof. Assume that m > n. The case m < n then follows by
interchanging the roles of X and A in Theorem 1 and defining H by
H, and V*.

By Theorem 3 there exists a minimal self-adjoint extension H, of
H, such that $, Cc 9, 9, H, < H,C H, and H, and H define the same
spectral function of H,. By Theorem 4, H, is defined by V and a
Hermitian operator H, with the same deficiency subspaces as H,.
Since we can always consider H, instead of H, it follows that without
loss of generality we can consider H to be a minimal self-adjoint
extension.

Since M,(X) = {0} and LON) = 9,, we have that if fe D,
Ufe\) 9, If we represent U as a matrix, U ~ (U;,), where
U;, maps 9, into O;, then it follows that U, =0 on ,. Further,
Uf = U,f for all f€ 9, so that U, maps 9, isometrically onto 2,(\).
U,, is thus a partial isometry in ©, with initial set , and final set
2,(\), while U; is a partial isometry with initial set ,(\) and final
set .. We have that E = P(9,) = Uz U, while P(&,\)) = U,U;.

Now let A be any bounded operator in  with matrix representa-

tion
E B
A~ ,
(B * C )

where E is the identity in 9,, B maps 9, into $,, C maps 9, into O,,
and C is self-adjoint. Suppose that A commutes with H. We shall
show that this implies B =0. Then by the proposition of M. A.
Naimark [6] mentioned in the introduction, it follows that the spectral
function E,(\) defined by H is extremal.

Since A commutes with H, it commutes with the Cayley trans-
form U of H. This implies that BU,, = U,B* and U, + BU, =
U.,B + U,C. Since U, =0, these equations become BU, =0 and
BU, = U;B. On M(N), U, =V, and therefore BV, M(\) =
BU,M,(N\) = {0}. Becaese by Theorem 2, V, (%) is dense in M, (\),
BW,(\) = {0}, i.e., BP(M,(\)) =0. From the equation BU,, = U,B
we have that BP(&(\) = BU,U; = U,BU;;. Adding BP(&(\)) =
U,BU; with BP(I,(\)) = 0, we obtain that B = U,BU,f. By iterat-
ing this equation we see that B = UAB(U,)? for every positive integer
p. Since || Uull £ 1, || Bf| = || Bl || (U#)*f|| for each fe , and each
Ppositive integer p.
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By Theorem 8, 2,(\) = W P WM, where U,k maps WM’ isometrically
onto M”, and if feWO\) D W, then lim,.. || (Ux)f||=0. But if
Uk maps M isometrically onto W', then U, and therefore U maps
M’ isometrically onto M”’. This means that U and therefore H is
reduced by W, a subspace of ,. Since H is a minimal self-adjoint
extension of H,, M = {0}. Hence, , = V,(\) P I, and thus if fe 9,
lim, .. || (U2)*f|l = 0. Since || Bf|[ <[ B] [[(Us)’f|l for each fe,
and for every positive integer p, it follows that B =0 on .. This
completes the proof of Theorem 9.

Since the operator H, in Theorem 9 is a Hermitian operator with
deficiency indices (0, s) or (s, 0), it may seem that we are dealing with
a wider class of operators than the maximal symmetric operators.
That this is not so is shown by Theorem 10 below.

THEOREM 10. If H 1is a Hermitian operator with deficiency
wndices (0, s) or (s, Q), then H is o maximal symmetric operator. If
H is a Hermitian operator with deficiency indices (0, 0), then H ts
a self-adjoint operator.

Proof. If H is a Hermitian operator and B = 9O [D(H)]’, then
BNLY) =10} (If ReBN LX), then h =(H — \E)g, Hence, 0 =
(h, 9) = (Hyg, g9) — M9, 9). Since (Hg, g) is real while X is not, g = 0.
This simple argument is due to M. A. Krasnosel’skii [2, Lemma 2].)
If H has deficiency indices (0, s), M(X) = {0} so that B < (). Thus,
B = {0} and H is symmetric. Similarly, H is symmetric if its de-
ficiency indices are (s, 0). It follows immediately that if H has de-
ficiency indices (0, 0), H is self-adjoint. Theorem 10 is proved.
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