ON FINITE SUMS OF RECIPROCALS OF DISTINCT nTH POWERS

RONALD LEWIS GRAHAM
ON FINITE SUMS OF RECIPROCALS OF
DISTINCT nth POWERS

R. L. GRAHAM

Introduction. It has long been known that every positive rational number can be represented as a finite sum of reciprocals of distinct positive integers (the first proof having been given by Leonardo Pisano [6] in 1202). It is the purpose of this paper to characterize (cf. Theorem 4) those rational numbers which can be written as finite sums of reciprocals of distinct nth powers of integers, where n is an arbitrary (fixed) positive integer and "finite sum" denotes a sum with a finite number of summands. It will follow, for example, that \(\frac{p}{q} \) is the finite sum of reciprocals of distinct squares if and only if

\[
\frac{p}{q} \in \left[0, \frac{\pi^2}{6} - 1 \right) \cup \left[1, \frac{\pi^2}{6} \right).
\]

Our starting point will be the following result:

Theorem A. Let \(n \) be a positive integer and let \(H^n \) denote the sequence \((1^{-n}, 2^{-n}, 3^{-n}, \ldots)\). Then the rational number \(\frac{p}{q} \) is the finite sum of distinct terms taken from \(H^n \) if and only if for all \(\varepsilon > 0 \), there is a finite sum \(s \) of distinct terms taken from \(H^n \) such that \(0 \leq s - \frac{p}{q} < \varepsilon \).

Theorem A is an immediate consequence of a result of the author [2, Theorem 4] together with the fact that every sufficiently large integer is the sum of distinct nth powers of positive integers (cf., [8], [7] or [3]).

The main results. We begin with several definitions. Let \(S = (s_1, s_2, \ldots) \) denote a (possibly finite) sequence of real numbers.

Definition 1. \(P(S) \) is defined to be the set of all sums of the form \(\sum_{k=1}^{\infty} \varepsilon_k s_k \) where \(\varepsilon_k = 0 \) or \(1 \) and all but a finite number of the \(\varepsilon_k \) are 0.

Definition 2. \(Ac(S) \) is defined to be the set of all real numbers \(x \) such that for all \(\varepsilon > 0 \), there is an \(s \in P(S) \) such that \(0 \leq s - x < \varepsilon \). Note that in this terminology Theorem A becomes:

\[
(1) \quad P(H^n) = Ac(H^n) \cap Q
\]

Received May 13, 1963.

1 This result has also been obtained by P. Erdös (not published).
where Q denotes the set of rational numbers.

Definition 3. A term s_n of S is said to be smoothly replaceable in S (abbreviated $s.r.$ in S) if $s_n \leq \sum_{k=1}^{\infty} s_{n+k}$.

Theorem 1. Let $S = (s_1, s_2, \cdots)$ be a sequence of real numbers such that:
1. $s_n \downarrow 0$.
2. There exists an integer r such that $n \geq r$ implies that s_n is smoothly replaceable in S.

Then

$$Ac(S) = \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$$

where $P_{r-1} = P((s_1, \cdots, s_{r-1}))$ (note that $P_0 = \{0\}$) and $\sigma = \sum_{k=r}^{\infty} s_k$ (where possibly σ is infinite).

Proof. Let $x \in \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma)$ and assume that $x \notin Ac(S)$. Then $x \in [\pi, \pi + \sigma)$ for some $\pi \in P_{r-1}$. A sum of the form $\pi + \sum_{i=1}^{k} s_{i}$ where $r \leq i_1 < i_2 < \cdots < i_k$ will be called “minimal” if

$$\pi + \sum_{i=1}^{k-1} s_{i} < x < \pi + \sum_{i=1}^{k} s_{i}$$

(where a sum of the form $\sum_{i=a}^{b} s_{i}$ is taken to be 0 for $b < a$). Note that since $x \notin Ac(S) \supset P(S)$ then we never get equality in (2). Let M denote the set of minimal sums. Then M must contain infinitely many elements. For suppose M is a finite set. Let m denote the largest index of any s_j which is used in any element of M and let $p = \pi + \sum_{k=1}^{n} s_{j_k} + s_m$ be an element of M which uses s_m (where $r \leq j_1 < j_2 < \cdots < j_m < m$ and possibly n is zero). Thus we have

$$\pi + \sum_{k=1}^{n} s_{j_k} < x < \pi + \sum_{k=1}^{n} s_{j_k} + \sum_{t=m}^{\infty} s_{m+t}$$

since s_m is s.r. in S. Therefore there is a least $d \geq 1$ such that $x < p' = \pi + \sum_{k=1}^{n} s_{j_k} + \sum_{t=m}^{d} s_{m+t}$. Hence p' is a “minimal” sum which uses s_{m+d} and $m + d > m$. This is a contradiction to the definition of M and consequently M must be infinite. Now, let $\delta = \inf\{p - x : p \in M\}$. Since $x \notin Ac(S)$ then $\delta > 0$. There exist $p_1, p_2, \cdots \in M$ such that $p_n - x < \delta + \delta/2^n$. Since $s_n \downarrow 0$ then there exists c such that $n \geq c$ implies that $s_n < \delta/2$. Also, there exists w such that $n \geq w$ implies that p_n uses an s_k for some $k \geq c$ (since only a finite number of p_j can be formed from the s_k with $k < c$). Therefore we can write $p_w = \pi + \sum_{j=1}^{n} s_{j_k}$ where $k_n \geq c$. Hence
which is a contradiction to the assumption that p_w is "minimal." Thus, we must have $x \in Ac(S)$ and consequently

$$
\cup \{\pi, \pi + \sigma \} \subset Ac(S).
$$

To show inclusion in the other direction let $x \in Ac(S)$ and suppose that $x \notin \cup_{\pi \in P_{r-1}} \{\pi, \pi + \sigma\}$. Thus, either $x < 0$, $x \geq \sum_{k=1}^{w} s_k$, or there exist π and π' in P_{r-1} such that $\pi + \sigma \leq x < \pi'$ where no element of P_{r-1} is contained in the interval $[\pi + \sigma, \pi')$. Since the first two possibilities imply that $x \notin Ac(S)$ (contradicting the hypothesis) then we may assume that the third possibility holds. Therefore there exists $\delta > 0$ such that

$$
x \leq \pi' - \delta.
$$

Let p be any element of $P(S)$. Then $p = \sum_{i=1}^{m} s_{i_t} + \sum_{u=1}^{w} s_{j_u}$ for some m and n where

$$
1 \leq i_1 < i_2 < \cdots < i_m \leq r - 1 < j_1 < j_2 < \cdots < j_n.
$$

Thus for $\pi^* = \sum_{t=1}^{m} s_{i_t}$ we have $p \in [\pi^*, \pi^* + \sigma)$. Consequently any element p of $P(S)$ must fall into an interval $[\pi^*, \pi^* + \sigma)$ for some $\pi^* \in P_{r-1}$ and therefore, if p exceeds x then it must exceed x by at least δ (since $p \notin [\pi + \sigma, \pi')$ and thus by (4) $p > x \in [\pi + \sigma, \pi')$ implies $p \geq \pi' \geq x + \delta$). This contradicts the hypothesis that $x \notin Ac(S)$ and hence we conclude that $Ac(S) \subset \cup_{\pi \in P_{r-1}} \{\pi, \pi + \sigma\}$. Thus, by (3) we have $Ac(S) = \cup_{\pi \in P_{r-1}} \{\pi, \pi + \sigma\}$ and the theorem is proved.

Theorem 2. Let $S = (s_1, s_2, \cdots)$ be a sequence of real numbers such that:

1. $s_n \downarrow 0$.
2. There exists an integer r such that $n < r$ implies that s_n is not s.r. in S while $n \geq r$ implies that s_n is s.r. in S.

Then $Ac(S)$ is the disjoint union of exactly 2^{r-1} half-open intervals each of length $\sum_{k=1}^{r} s_k$.

Proof. By Theorem 1 we have $Ac(S) = \cup_{\pi \in P_{r-1}} \{\pi, \pi + \sigma\}$ where $\sigma = \sum_{k=1}^{w} s_k$ and $P_{r-1} = P((s_1, \cdots, s_{r-1}))$. Let $\pi = \sum_{k=1}^{r} s_{i_k}$ and $\pi' = \sum_{k=1}^{r} s_{j_k}$ be any two formally distinct sums of the s_n where $1 \leq i_1 < \cdots < i_r \leq r - 1$ and $1 \leq j_1 < \cdots < j_r \leq r - 1$ and we can assume without loss of generality that $\pi \geq \pi'$. Then either there is a least $m \geq 1$ such that $i_m \neq j_m$ or we have $i_k = j_k$ for $k = 1, 2, \cdots, v$ and
In the first case we have
\[\pi = \sum_{k=1}^{u} s_{i_k} = \sum_{k=1}^{m-1} s_{j_k} + \sum_{k=m}^{u} s_{i_k} > \sum_{k=1}^{m-1} s_{j_k} + \sum_{k=1}^{\infty} s_{i_{m+k}} \text{ (since } s_{i_m} \text{ is not s.r. in } S) \]
\[> \pi' + \sigma \text{ (since } j_m \geq i_m + 1) . \]

In the second case we have
\[\pi = \sum_{k=1}^{u} s_{i_k} = \sum_{k=1}^{v} s_{j_k} + \sum_{k=v+1}^{u} s_{i_k} > \sum_{k=1}^{v} s_{j_k} + \sum_{k=1}^{\infty} s_{i_{v+k}} \text{ (since } s_{i_{v+1}} \text{ is not s.r. in } S) \]
\[\geq \pi' + \sigma \text{ (since } i_{v+1} + 1 \leq i_u + 1 \leq r) . \]

Thus, in either case we see that \(\pi > \pi' + \sigma \). Consequently, any two formally distinct sums in \(P_{r-1} \) are separated by a distance of more than \(\sigma \) and hence, each element \(\pi \) of \(P_{r-1} \) gives rise to a half-open interval \([\pi, \pi + \sigma)\) which is disjoint from any other interval \([\pi', \pi' + \sigma)\) for \(\pi \neq \pi' \in P_{r-1} \). Therefore \(\Ac(S) = \bigcup_{\pi \in P_{r-1}} [\pi, \pi + \sigma) \) is the disjoint union of exactly \(2^{r-1} \) half-open intervals \([\pi, \pi + \sigma)\), \(\pi \in P_{r-1} \), (since there are exactly \(2^{r-1} \) formally distinct sums of the form \(\sum_{k=1}^{r-1} \epsilon_k s_k, \epsilon_k = 0 \) or \(1 \)) where each interval is of length \(\sigma \). This proves the theorem.

We now need three additional lemmas in order to prove the main theorems.

Lemma 1. Let \(S = (s_1, s_2, \ldots) \) be a sequence of nonnegative real numbers and suppose that there exists an \(m \) such that \(n \geq m \) implies that \(s_n \leq 2s_{n+1} \). Then \(n \geq m \) implies that \(s_n \) is s.r. in \(S \) (i.e., \(s_n \leq \sum_{k=1}^{\infty} s_{n+k} \)).

Proof. If \(\sum_{k=1}^{\infty} s_k = \infty \) then the lemma is immediate. Assume that \(\sum_{k=1}^{\infty} s_k < \infty \). Then
\[
\begin{align*}
n \geq m &\implies s_{n+k} \geq \frac{1}{2} s_{n+k-1}, \\
&\implies \sum_{k=1}^{\infty} s_{n+k} \geq \frac{1}{2} \sum_{k=1}^{\infty} s_{n+k-1} = \frac{1}{2} s_n + \frac{1}{2} \sum_{k=1}^{\infty} s_{n+k} .
\end{align*}
\]
Therefore, \(s_n \leq \sum_{k=1}^{\infty} s_{n+k} \) i.e., \(s_n \) is s.r. in \(S \).

Lemma 2. Suppose that \(k \leq (2^{i/n} - 1)^{-1} \) and \(k^{-n} \) is s.r. in \(H^* \) (where \(H^* \) was defined to be the sequence \((1^{-n}, 2^{-n}, \ldots)\)). Then \((k + 1)^{-n} \) is also s.r. in \(H^* \).
Proof.

\[k \leq (2^{1/n} - 1)^{-1} \implies \frac{1}{k} \leq 2^{1/n} - 1 \]

(5)

\[\implies \left(1 + \frac{1}{k} \right)^n \geq 2 \]

\[\implies k^{-n} \geq 2(k + 1)^{-n}. \]

Since by hypothesis, \(\sum_{j=k+1}^{\infty} j^{-n} \geq k^{-n} \), then by (5)

\[\sum_{j=k+2}^{\infty} j^{-n} \geq k^{-n} - (k + 1)^{-n} \geq 2(k + 1)^{-n} - (k + 1)^{-n} = (k + 1)^{-n}. \]

Hence, \((k + 1)^{-n}\) is s.r. in \(H^n\) and the lemma is proved.

Lemma 3. Suppose that \(k \geq (2^{1/n} - 1)^{-1} \). Then \(k^{-n} \) is s.r. in \(H_n\).

Proof.

\[r \geq k \implies r \geq (2^{1/n} - 1)^{-1} \]

\[\implies \frac{1}{r} \leq 2^{1/n} - 1 \]

\[\implies \left(1 + \frac{1}{r} \right)^n \leq 2 \]

\[\implies r^{-n} \leq 2(r + 1)^{-n}. \]

Therefore, by Lemma 1, \(r^{-n} \) is s.r. in \(H^n\).

Theorem 3. Let \(t_n \) denote the largest integer \(k \) such that \(k^{-n} \) is not s.r. in \(H^n\) and let \(P \) denote \(P((1^{-n}, 2^{-n}, \ldots, t_n^{-n})) \). Then

\[Ac(H^n) = \bigcup_{\pi \in P} [\pi, \pi + \sum_{k=1}^{\infty} (t_n + k)^{-n}] \]

is the disjoint union of exactly \(2^n \) intervals. Moreover, \(t_n < (2^{1/n} - 1)^{-1} \) and \(t_n \sim n/\ln 2 \) (where \(\ln 2 \) denotes \(\log_e 2 \)).

Proof. With the exception of \(t_n \sim n/\ln 2 \), the theorem follows directly from the preceding results. The following argument, due to L. Shepp, shows that \(t_n \sim n/\ln 2 \).

Consider the function \(f_n(x) \) defined by

(6)

\[f_n(x) = x^n \left(\sum_{k=1}^{\infty} \frac{1}{(x + k)^n} - \frac{1}{x^n} \right) \]

for \(n = 2, 3, \ldots \) and \(x > 0 \). Since

\[f_n(x) = \sum_{k=1}^{\infty} \left(1 + \frac{k}{x} \right)^{-n} - 1 \]

then \(f_n(x) < 0 \) for sufficiently small \(x > 0 \), \(f_n(x) > 0 \) for sufficiently
large x, and $f_n(x)$ is continuous and monotone increasing for $x > 0$. Hence the equation $f_n(x) = 0$ has a unique positive root x_n and from the definition of t_n it follows by (6) that $0 < x_n - t_n \leq 1$. Thus, to show that $t_n \sim n/\ln 2$, it suffices to show that $x_n \sim n/\ln 2$. Now it is easily shown (cf., [4], p. 13) that for $a > 0$, $(1 + a/n)^{-n}$ is a decreasing function of n. Thus, $f_n(\alpha n)$ is a decreasing function of n and since $f_2(2\alpha) < \infty$ for $\alpha > 0$ then

$$
\lim_{n \to \infty} f_n(\alpha n) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \left(1 + \frac{k}{\alpha n}\right)^{-n} - 1 = \sum_{k=1}^{\infty} \lim_{n \to \infty} \left(1 + \frac{k}{\alpha n}\right)^{-n} - 1 = -1 + \sum_{k=1}^{\infty} e^{-k/\alpha} = (e^{1/\alpha} - 1)^{-1} - 1
$$

since the monotone convergence theorem (cf., [5]) allows us to interchange the sum and limit. Suppose now that for some $\varepsilon > 0$, there exist $n_1 < n_2 < \cdots$ such that $x_{n_t} > n_t(1/\ln 2 + \varepsilon)$. Then

$$
0 = \lim_{t \to \infty} f_{n_t}(x_{n_t}) \geq \lim_{t \to \infty} f_{n_t} \left(n_t \left(\frac{1}{\ln 2} + \varepsilon\right)\right) = (e^{(1/\ln 2 + \varepsilon)^{-1}} - 1)^{-1} - 1 = (2^{1/(1+\varepsilon \ln 2)} - 1)^{-1} - 1 > 0
$$

which is a contradiction. Similarly, if for some ε, $0 < \varepsilon < 1/\ln 2$, there exist $n_1 < n_2 < \cdots$ such that

$$
x_{n_t} < n_t \left(\frac{1}{\ln 2} - \varepsilon\right),
$$

then

$$
0 = \lim_{t \to \infty} f_{n_t}(x_{n_t}) \leq \lim_{t \to \infty} f_{n_t} \left(n_t \left(\frac{1}{\ln 2} - \varepsilon\right)\right) = (e^{(1/\ln 2 - \varepsilon)^{-1}} - 1)^{-1} - 1 = (2^{1/(1-\varepsilon \ln 2)} - 1)^{-1} - 1 < 0
$$

which is again impossible. Hence we have shown that for all $\varepsilon > 0$, there exists an n_0 such that $n > n_0$ implies that

$$
n \left(\frac{1}{\ln 2} - \varepsilon\right) \leq x_n \leq n \left(\frac{1}{\ln 2} + \varepsilon\right)
$$

or equivalently

$$
-\varepsilon \leq \frac{x_n}{n} - \frac{1}{\ln 2} \leq \varepsilon.
$$
Therefore, \(\lim_{n \to \infty} x_n/n = 1/\ln 2 \) and the theorem is proved.\(^2\)

The following table gives the values of \(t_n \) for some small values of \(n \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t_n)</th>
<th>([(2^{1/n} - 1)^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>100</td>
<td>?</td>
<td>143</td>
</tr>
<tr>
<td>1000</td>
<td>?</td>
<td>1442</td>
</tr>
</tbody>
</table>

We may now combine Theorem 3 and Theorem A (cf. Eq. (1)) and express the result in ordinary terminology to give:

Theorem 4. Let \(n \) be a positive integer, let \(t_n \) be the largest integer \(k \) such that \(k^{-n} > \sum_{j=1}^{\infty} (k+j)^{-n} \) and let \(P \) denote the set \(\{ \sum_{j=1}^{\infty} \varepsilon_j j^{-n} : \varepsilon_j = 0 \text{ or } 1 \} \). Then the rational number \(p/q \) can be written as a finite sum of reciprocals of distinct \(n \)th powers of integers if and only if

\[
\frac{p}{q} \in \bigcup_{n \in P} [\pi, \pi + \sum_{k=1}^{\infty} (t_n + k)^{-n}].
\]

Corollary 1. \(p/q \) can expressed as the finite sum of reciprocals of distinct squares if and only if

\[
\frac{p}{q} \in \left[0, \frac{\pi^2}{6} - 1\right) \cup \left[1, \frac{\pi^2}{6}\right).
\]

Corollary 2. \(p/q \) can be expressed as the finite sum of reciprocals of distinct cubes if and only if

\[
\frac{p}{q} \in \left[0, \zeta(3) - \frac{9}{8}\right) \cup \left[\frac{1}{8}, \zeta(3) - 1\right) \cup \left[1, \zeta(3) - \frac{1}{8}\right) \cup \left[\frac{9}{8}, \zeta(3)\right)
\]

where \(\zeta(3) = \sum_{k=1}^{\infty} k^{-3} = 1.2020569\ldots \)

Remarks. In theory it should be possible to calculate directly from the relevant theorems (cf., [2], [3]) an explicit bound for the number of terms of \(H^n \) needed to represent \(p/q \) as an element of \(P(H^n) \). However, since the theorems were not designed to minimize such a bound, but rather merely to show its existence, then understandably, this calculated bound would probably be many orders of

\(^2\) In fact, it can be shown that \(x_n \) has the expansion \(n/1n2 - 1/2 + c_1n^{-1} + \cdots + c_\kappa n^{-k} + O(n^{-k-1}) \) for any \(k \).
magnitude too large. Erdős and Stein [1] and, independently, van Albada and van Lint [9] have shown that if \(f(n) \) denotes the least number of terms of \(H^1 = (1^{-1}, 2^{-1}, \cdots) \) needed to represent the integer \(n \) as an element of \(P(H^1) \) then \(f(n) \sim e^{n-\gamma} \) where \(\gamma \) is Euler's constant.

It should be pointed out that a more general form of Theorem A may be derived from [2] which can be used to prove results of the following type:

COROLLARY A. The rational \(p/q \) with \((p, q) = 1 \) can be expressed as a finite sum of reciprocals of distinct odd squares if and only if \(q \) is odd and \(p/q \in [0, (\pi^2/8) - 1) \cup [1, \pi^2/8) \).

COROLLARY B. The rational \(p/q \) with \((p, q) = 1 \) can be expressed as a finite sum of reciprocals of distinct squares which are congruent to 4 modulo 5 if and only if \((q, 5) = 1 \) and

\[
\frac{p}{q} \in \left[0, \alpha - \frac{13}{36} \right] \cup \left[\frac{1}{9}, \alpha - \frac{1}{4} \right] \cup \left[\frac{1}{4}, \alpha - \frac{1}{9} \right] \cup \left[\frac{13}{36}, \alpha \right]
\]

where \(\alpha = 2(5 - \sqrt{5})\pi^2/125 = \sum_{k=0}^{\infty} ((5k+2)^{-2} + (5k+3)^{-2}) = 0.43648\cdots \)

It is not difficult to obtain representations of specific rationals as elements of \(P(H^n) \) (for small \(n \)), e.g.,

\[
\frac{1}{2} = 2^{-2} + 3^{-2} + 4^{-2} + 5^{-2} + 6^{-2} + 15^{-2} + 18^{-2} + 36^{-2} + 60^{-2} + 180^{-2},
\]

\[
\frac{1}{3} = 2^{-2} + 4^{-2} + 10^{-2} + 12^{-2} + 20^{-2} + 30^{-2} + 60^{-2},
\]

\[
\frac{5}{37} = 2^{-3} + 5^{-3} + 10^{-3} + 15^{-3} + 16^{-3} + 74^{-3} + 111^{-3} + 185^{-3} + 240^{-3} + 296^{-3} + 444^{-3} + 1480^{-3}, \text{ etc.}
\]

REFERENCES

BELL TELEPHONE LABORATORIES, INC.
Richard Arens, *Normal form for a Pfaffian* .. 1
Charles Vernon Coffman, *Non-linear differential equations on cones in Banach spaces* .. 9
Ralph DeMarr, *Order convergence in linear topological spaces* 17
Peter Larkin Duren, *On the spectrum of a Toeplitz operator* 21
Robert E. Edwards, *Endomorphisms of function-spaces which leave stable all translation-invariant manifolds* .. 31
Erik Maurice Ellentuck, *Infinite products of isols* .. 49
William James Firey, *Some applications of means of convex bodies* 53
Haim Gaifman, *Concerning measures on Boolean algebras* 61
Richard Carl Gilbert, *Extremal spectral functions of a symmetric operator* 75
Ronald Lewis Graham, *On finite sums of reciprocals of distinct nth powers* 85
Hwa Suk Hahn, *On the relative growth of differences of partition functions* 93
Isidore Isaac Hirschman, Jr., *Extreme eigen values of Toeplitz forms associated with Jacobi polynomials* .. 107
Chen-jung Hsu, *Remarks on certain almost product spaces* 163
George Seth Innis, Jr., *Some reproducing kernels for the unit disk* 177
Ronald Jacobowitz, *Multiplicativity of the local Hilbert symbol* 187
Paul Joseph Kelly, *On some mappings related to graphs* 191
William A. Kirk, *On curvature of a metric space at a point* 195
G. J. Kurowski, *On the convergence of semi-discrete analytic functions* 199
Richard George Laatsch, *Extensions of subadditive functions* 209
V. Marić, *On some properties of solutions of \(\Delta \psi + A(r^2)X\nabla \psi + C(r^2)\psi = 0 \)* .. 217
William H. Mills, *Polynomials with minimal value sets* 225
George James Minty, Jr., *On the monotonicity of the gradient of a convex function* .. 243
George James Minty, Jr., *On the solvability of nonlinear functional equations of ‘monotonic’ type* .. 249
J. B. Muskat, *On the solvability of \(x^e \equiv e \pmod{p} \)* 257
Zeev Nehari, *On an inequality of P. R. Bessack* ... 261
Raymond Moos Redheffer and Ernst Gabor Straus, *Degenerate elliptic equations* .. 265
Abraham Robinson, *On generalized limits and linear functionals* 269
Bernard W. Roos, *On a class of singular second order differential equations with a non linear parameter* .. 285
Tôru Saitô, *Ordered completely regular semigroups* .. 295
Edward Silverman, *A problem of least area* .. 309
Robert C. Sine, *Spectral decomposition of a class of operators* 333
Jonathan Dean Swift, *Chains and graphs of Ostrom planes* 353
John Griggs Thompson, *2-signalizers of finite groups* 363
Harold Widom, *On the spectrum of a Toeplitz operator* 365