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Introduction. Let t(f) be a real function in L*(T) where T is the
real numbers modulo 1, and let

o(k) = STt(ﬁ)e“z”“‘"dﬁ k=01,

Co = [e(d — B)lin=0,en

C, is the Toeplitz matrix of index n associated with ¢(9). C, is clearly
Hermitian and thus has real eigen values,

>\'n,1 g )\"n,2 g e _2._ )\’n,n+1 .

For some time studies have been made of the asymptotic behaviour
of these eigen values as n — . Thus, for example, if N(a, b; n) is,
for n fixed, the number of \,,’s which satisfy ¢ <\, =b, and if
v(y) is the Lebesgue measure of the set {§|t(0) < y} then

(1) lim n*N(a, b; n) = v(a) — v(d),

provided a and b are points of continuity of v. This result was proved
by Szegos, see [2; p. 64]. Detailed investigations have also been made
of the behaviour of A,, as n — o while k is fixed, under various
additional assumptions on #(f). Suppose that #(f) is continuous for
6e T, has a unique absolute maximum at ¢ = 0, and that (6) is twice
continuously differentiable in a neighborhood of # = 0 with ¢"(0) < 0.

—1/2 0 1/2
It was shown in 1953 by Kac, Murdock, and Szego that under these
assumptions
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108 I. I. HIRSCHMAN, JR.
(2) Moy = H(0) — %@-k”(n + 1) + o(n~?)

as n— o for k fixed, k=1,2,---. In 1958 Widom, [14], proved that
if t(0) is even and four times continously differentiable near 6 = 0 (in
addition to the assumptions already made) then

(3)  Nup=10) — L"él)wn + DL + ae + 1) + o(n™)

as 7 — oo, where

o= Sl_/:n[csc%ﬁ] log [an(ﬂo—i#%tn’nﬁ]dﬁ .

More recently Widom and Parter, see [9]-{11] and [15]-[17], have
studied the behaviour of X\, , under less restrictive assumptions on the
nature of the maximum of ¢(f). Suppose that £(0) is again the unique
maximum of ¢(f), and that there exist constants o, > 0, ¢, >0, and
o > 0 such that

t0) —al0° 06— 0+

4) t0) — a3l 0]° 6 —0— .

~1/2 0 12
Then
(4) Ao = 8(0) — 507 + o(n™")

where 0 < f, S ¢4, <+, lim,_.. i, = o are eigen values of a certain
operator depending only on o, 0, and w. The formula (4) evidently
includes (2) as a very special case.

Let a,8 > 1 be fixed and let

2m) P P (z) = (=11 — 2)~*(1 + x)~*D"[(1 — z)**+*(1 + w)P+]

where D = d/dx, be the Jacobi polynomial of order n,n =0,1, 2, ---.
The Jacobi polynomials are orthogonal on the interval [—1, 1] with
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respect to the weight function

Was(®¥) = w(@) = (1 — 2)*(1 + 2)°;
more precisely

| Pien (@) P @w@ds = o(n, mt,
-1
where o(n, m) is the Kronecker delta and where

Crn+a+ B+ 100+ a+ B+ Dh,
= 2N (n + 0 + DI(n + B+ 1) .

Let #(x) be a real function in L'(w) and let

(G, ) = (b ™| P @) P (@)t(ao(@)d

for j,k=0,1, ..., If
Cn:[c(y!k)] jyk:Oy"'yn

then C, is a generalized Toeplitz matrix of index = associated with
t(x). Since C, is real and symmetric its eigen values {\, ,}7*' are real.
In part the studies carried out for ordinary Toeplitz matrices have
also been carried out for various classes of generalized Toeplitz matrices,
and in particular for the generalized Toeplitz matrices constructed
using Jacobi polynomials. For example, if we again define N(a, b; n)
to be the numbers of \, ,’s which satisfy & < \,, = b and if v(y) is 7~

times the Lebesgue measure of the set {# |0 < 6 < 7, t(cos §) < y}, then

(5) lim L N(a, b; n) = v(a) — v(b)
n—oe n
whenever a and b are points of continuity of v(y). See [2; p. 114].
In [5] the author obtained formulas analgous to (2) and (3) but
applying to generalized Toeplitz matrices constructed using the various
classical orthogonal polynomials. Thus, for example, Let t(x) be defined

g
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and continuous for —1 < # <1, and have a unique absolute maximum
at @, —1 < @, < 1. Let t(x) be continuously differentiable in a neigh-
borhood of @, and let ¢"'(x,) = —o0* < 0. If C, is the generalized Toeplitz
matrix constructed from t(x) using the Jacobi polynomials, then

(6) Mo = H®)) — (1 — 2D)0o?k?/8n? + o(n~?) as n— o ,

Let t(x) have a unique absolute maximum at « = 1, let t(x) be con-
tinuously differentiable in a neighborhood of # =1, and let ¢'(1) =0 > 0.

___-/

-1 0 1

Then

(7) M = t1) — 222" 1 o)

where 0 < 2,; < %2 < +++, are the positive zeros of J,(2). See [5],
where a more precise result analagous to (3) is also given.

In the present paper we will obtain formulas analogous to (4) for
generalized Toeplitz matrices constructed using Jacobi polynomials.
For example let #(x) be continuous for —1 < 2 <1, let the unique
absolute maximum be at ¢ = 1, and let
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t(x) —t1) — ol — x)° x—1—,
where ¢ and @ are positive. We then have
(8) M = U(1) — (k)™ + o(n~)

as n— o where 0 < ¢, =, < -+, lim,_., tt, = oo, are the eigen values
of an operator depending only upon ¢ and @, and « but not other-
wise upon t(x) nor upon B. The case of a unique absolute maximum
in the interior of —1 < # < 1 is also considered.

The program of demonstration of our results runs parallel to that
employed in [17]. Sections 2-7 are devoted to developing an appro-
priate perturbation theory in Hilbert space. This theory is a rearticu-
lation and partial generalization of the perturbation theory constructed
by Widom. In sections 8-14 and 15-19 this theory is applied to the
case where the maximum of #(x) occurs at an end point of —1 =2 <1,
and to the case where the maximum occurs at an interior point,
respectively.

A large number of known properties of Jacobi polynomials, Jacobi
functions of the second kind, Bessel functions, etc. are required in
the course of this paper. Many of these results are collected in the
Appendix.

2. A perturbation problem. Let H be a Hilbert space with ele-
ments f, g, h, ete. The inner product and norm in H are denoted
by (]) and || ||. Let S and S, be unbounded self-adjoint operators
in H with spectral resolutions.

S = Sxd@(x) ,
S, = Sxown(x) :

If S is the closure of the strong limit of the S,’s as n— o then
Rellich’s theorem asserts that in the strong operator topology

lim @,(\) = O(\)

for every A, —o < A< o, not in the point spectrum of S. See
[13, p. 56].

Let F and F, be bounded not necessarily self-adjoint transforma-
tions of H, such that F' is the strong limit of the F,’s as n— oo,
In order to fix our attention suppose that the S,’s are bounded, but
not necessarily S. Then for each » S, = F}S,F, is a bounded self-
adjoint transformation. Let its spectral resolution be
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(1) Sur = MT,0) .
Formally let S, = F*SF,
(2) S, = Sxdélf(x) )

The problem we wish to study is that of passing from the convergence
of the S,’s to S and the F,’s to F to the convergence of the Z,(\)’s
to ¥(\). However there are several difficulties. First F*SF is not
in general self-adjoint or even densely defined. Secondly the S, ;’s
may not suitably converge to S;. In §§3-6 we will show essentially
that if 0<S, n=1,2, ..., 0 <S8, (that is if the S,’s and S are
bounded from below) then these difficulties can be overcome,

Throughout we assume that the Hilbert space H is separable.
while this is not at all necessary, it makes possible a simpler and
more intuitive language.

3. Definition of Sy. We assume henceforth that:
i. 0= S is a self-adjoint operator on H:
ii. F is a bounded operator on H.

We define

S ={f|FfeD(S")}.

Here S'* is the unique positive square root of S and D(S"?) is its
domain. We do not assume that S is dense in H although this is the
most interesting special case. Let M be the closure of S in H. M
is a closed subspace of H and inherits the structure of a Hilbert space
from H. OQur goal is to construct a self-adjoint transformation Sy
on the Hilbert space M with the properties:

(1) D(S,)CS;
(2) (Srf19) = (S"'Ff| S*Fg)

for all f € D(Sy) and for all g€ S. The construction of S, with these
properties has long been known, see for example [13; p. 85], however
it is included for the sake of completeness. We will need the follow-
ing simple and well known fact which we record as a lemma.

LEMMA 3a. Let A be a self-adjoint transformation on H and
let h,e D(A) n=1,2,+.., If

h,—h as n— o

and
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|| Ah, || = O(1) as n— o
then he D(A) and Ah, — Ah.

Here ‘“—’’ indicates strong convergence and ‘‘ —’’ indicates
weak convergence in H. Lemma 3a is a special case of Lemma 4a
which is proved in § 4.

For f,g9¢€ S let us define

flgy=(S"Ff|S"Fg)+ (fl9),

(3)
WA =LFI.
LeMMA 3b. With the definition of inmer product and norm given
by (8) S is a Hilbert space.

Proof. It is evident that S is a pre-Hilbert space. We need only
verify that S is complete. Suppose f, €S n=1,2,+++, |[|fu — fulll—0
as n,m— oo, Since ||f, — full = || fu — Fu |l there exists f € H such
that |[f — f.||— 0 as m— . Since || S"F(f, —fu) Il = [[[fa — fulll
there exists g € H such that || S"*Ff, —g||— 0 as n— o. Applying
Lemma 3a with h, = Ff, and A = S"* we see (since weak and strong
limits coincide when both exist) that F'f e D(S*?) and that g = S**FY.
Thus f€ S and

Nf =Ll =1 SFF(f —f) P+ |f —fullP—0 as n— oo,

LEMMA 3c. There exists a linear tramsformation W of M into
S such that (f|g) = < f| Wg > for all fe 8, geM and:
L NWAl =l WEN =LAl for all feM;
ii. (Wflg)=(fIWo) Sor all f,geM;
iii. 0<(WFI|f) for all feM.

Proof. For ge M fixed (f|g) is a linear functional on S and since

LAl =gl =1ANN gl

(f|g) is a bounded linear functional on S. Therefore there exists a
unique element g¢'€ S such that

(flg)=<F1g> for all feS.

Clearly the mapping g — ¢* defines a linear transformation of M into
S, ¢t = Wg. It is evident that ||| Wg||| = |/ ¢l so that i. holds. Sup-
pose that f,g9€S. Then

(Wrlg) =<Wf| Wg>=(f| Wg)
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so that ii. is valid if f, g€ S. By continuity it is also valid for f, g€ M.
Thus W is a self-adjoint transformation on M. Since

(WELS) =<WFI Wf> >0 fes

and since S is dense in M we have 0 < W, To show that 0 < W we
need only verify that Wf = 0 is impossible unless f = 0. If Wf =0,
then

@1f)=<gIWf>=0 for all ge S,
but since S is dense in M this implies that f = 0.
THEOREM 3d. There exists a self-adjoint operator Sy on M satis-
Sying conditions (1) and (2).
Proof. We define
Spy=W11—-1,

It is evident from this definition that S, is a self-adjoint operator,
and that

D(S;) = D(W™) = R(W)CS,

where R(W) is the range of W. If fe D(S;) and g S then
Sefle)=(W7flg) —(flo)=<Lfle>—(fl9),

= (SY*Ff | S**Fg) ,

and our proof is complete.
4, The resolvant relation. Let A be a closed linear operator on

M. 1t is not assumed that D(A) is dense in M. A subset C< D(A)
is said to be a core for A if the set {(f,9)|9 = Af, fe€C}in HXx H
is dense in the set {(f,9) |9 = Af, fe D(A)}. Let A, and A be closed
linear operators in H and let C={f|A,f— Af as n— o}, If C=

D(4) we say that A is the strong limit of the A,’s; if C is a core
for A we say that A is the closure of the strong limit of the A4,’s.

LEMMA 4a. Let A, and A be self-adjoint operators on H and
let A be the closure of the strong limit of the A,’s. Then if

we have
feD(A) and A.f, A—f.

Proof. We denote by p the positive integers {(1,2,8,--:}. A
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subsequence p, of p is then a subset {n, M, 7y +++} of p with 1 =
n <M< -:+-. By “a,—a asn— o inp,” we mean that lim,_.a,, =
a. This notation enables us to dispense with awkward subsecripts.
Let C={f|A.f— Af as n— o}. By assumption C is a core for
A. Since || 4,f,. || = OQ) given any subsequence p, of b there exists a
subsequence p, of p, such that A,f.,—¢ as n— o in p, for some
gc H. This is because bounded sets in H are weakly conditionally

compact. In particular if %z e C then
(A, fulh)— (g h) as m— o in p,.
On the other hand

(AnfulB) = (fu] ALh)
for all (large) n and thus

(Anfnlh’)'_)(flAh) as 'n'_"OOin ’p29
so that

(91h) = (f| Ah) .

Given ke D(A) and 0 > 0 there exists he C such that [k — R <39,
|| Ak — Ak || < 6. This implies that

(91k) = (f|Ak) for all ke D(4) .

Consequently fe D(A*) and A*f = g; but A* = A. Since every sub-
sequence P, contains a subsequence p, such that A,f,— Af as n— o
in p, it follows that A,f, — Af as n— o in p.

In what follows we assume that:

jii. O £ 8, is a self-adjoint transformationon Hn=1,2, «+-; F,
is a bounded transformation on H n=1,2, ---; R(F,) < D(S,)n =
1,2, --- . Assumption iii. implies that S, , = F}S,F, is a bounded
operator on H for n=1,2, -.-. We further assume that:

iv. F' is a bounded operator on H and F is the strong limit of
F, as n— o;

v. SY% is the closure of the strong limit of S}Y* as % — oo;

vi. SYF' is the closure of the strong limit of SY*F, as m — oo.
We set

S = {f|S)F,f — S"’Ff as n— oo},
It is evident that S’ S.
THEOREM 4b. Under assumptions i-vi if there exists 6 > 0 such

that dist{z, 0(Sp)} = 0, dist{z, 0(S,. )} 29, n=1,2, -+, then for all
feM
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{8, 5 —2IVYf —={S; — 2I}7'f as w— oo .

Proof. Take fe M. We will show that if p, is an arbitrary sub-
sequence of p then p, contains a subsequence p, such that

{Spr —2IY ' f = {S; —2I}'f asnm— oo inp,.

This will prove our result. Because dist {z, (S, )} = ¢ it follows that
| {Sa.r — 2I}7f || = 0(1) as n— co. Therefore we can find a subsequence
p, of p, such that if g, = {S,r —2I}'f then g, —~9g as n— o in b,
for some ge H. We must show that g = {S» — zI}"'f. Since F is
the strong limit of F), we have

F,9,— Fg as n— oo in p,,
and since S, 9, = f -+ 29, We have

(S}L/Zann ‘ Silengn) = (Sn,F g'n i gn)
=(f+20.19.) =0Q) .

Therefore by Lemma 4a Fge D(S*?) and S}*F,9,— S'’Fg as n— o
in p,. In particular g€ S. Take k€ S’; then by the above

ligzn (Sa.x0n | k) = lgn (S:°Fog, | Si*F k)
= (S'*Fg | S'"*Fh) .
On the other hand
lgzn (Sar8ul ) = lgn (f+20.1h)=(f+29|R).

Thus
(1) (S'*Fg | S""Fh) = (f + 29 | h)

for all heS’. Since S’ is by assumption a core for S*?F' (1) holds
for all k€S, and thus for all 2 € D(S;). For such an h we have

(S**Fg | S**Fh) = (9| Srk)
by Theorem 3d. Consequently we have shown that
(91Ssh) = (f + 29| k)
or equivalently
(9 [{Sr — 2*I}h) = (f | h)
for all € D(Sy). This implies that
{Sr —2*I}'g =f
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and hence that

9 =A{S; —2I}'f.

5. Spectral resolutions. Let

Sur = S:_xdwn(x)

be the spectral resolution of S, on H and
Sr = | rarey

be the spectral resolution of S, on M. We assume throughout that
M) =7,A+), 0=xv< oo, n=1,2, ..., that ¥,(0—) =0, and simi-

larly for #(\).

THEOREM Ha. If N =0 s not in the point spectrum of Sy and
if feM then

T.Nf—=TN\f as m— o,
Proof. Fix feM, and let h = T(\)f, h, = T,(\)f. It is enough
to show that if p, is any sequence such that h, —h’ as n— c in p,,

then &’ = h. In order to identify h' we proceed as follows. We assert
that if g€ H then

(1) lim (220)°] (S, — 21 £ 9)0n — 22
= @) (S; — 27 F | 9O — e,

where C is the curve pictured below.

|
]
|
l
|
|
|
]

r—————71

Indeed by Theorem 4b
lign ({Su.r — 2I}*f | 9) = ({Sr — 2I}7'f | 9)
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for all z on C except 2 = n. Moreover starting from the inequality
[| (A — 2I)7*|| < 1/dist {#, 6(A)} one can easily show that for z on C
and some constant k(C)

| ({Sa.r — 2L} 1 9) | = RO M — 2|7 AT gl

Applying the Lebesgue limit theorem we obtain (1).
A simple computation gives

p—x if 0sp=x

(2) @meL:£M={ 0 if g>2

t—z
We have

@ri)>| (S; — 2F |9 — D)
= @ri)=] v 2de] (1 - D@1 9).

This iterated integral is absolutely convergent and therefore using
Fubini’s theorem and (2) we obtain

(3) ()| (S - el 10— 2z = | (= Na@(@f | 9),

= {Sr —MIFMNf9),
= {8, — 2D}kl 9) .

Similarly

(4) (Zﬂi)‘lgo({sn,p —2I} 1 9O — 2)dz = ({S,.» — M.V 9)
= ({Sa.r — M}, 9) .
Using (1), (3), and (4) we see that
(5) ({Sa.r — M}h, | 9) — (S — NI}R | 9) as m— o in p.
Since h, = ¥,(\)f it follows that

=\, v 0f I
= MIFIE.
We also have, since F is the strong limit of F,, that
F.h,— Fh' as n— o in p,.

Applying Lemma 4a we find that »'€S and that S.*F,h,— S"*Fh'
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as n— co in p,. Suppose that ge.S; then
(Sn,th ‘ g) = (S;IZFnhn l S'rlbleng)

and thus

(6) (Sn.rha | 9)— (S*°FI | 8¥Fg) as n— oo in P, ;
also

(7) (Syh | g) = (S*Fh | S"*Fy) .

Inserting (6) and (7) in (5) we find that
(8) (S'*Fh' | S"*Fg) — MR’ | g) = (S**Fh | S'*Fg) — Mh | 9)

for all g S’. Using assumption vi. we see that (8) holds for all
g€ S and therefore in particular for all ge D(S;). Appealing to
Theorem 3d we obtain

(W —h|Srg) =Ml —R|9g)
for all g€ D(Sy). Since A" — heSC M this implies that
Sp(h' — h) =MW — h) .

However by assumption \ is not in the point spectrum of S, so that
h' — h = 0 and our proof is complete.

6. The perturbation theorem. In this section and also in § 7 we
make the following convention. Suppose that P is a subspace of H.
If E is a projection of P onto a subspace Q of P then E may also
be regarded as projection of H, namely the projection of H onto Q.

THEOREM 6a. Under assumptions i—vi we have for every fe H
T.Nf—TNSf as n— o ,

for every \ mot in the point spectrum of Sg.

Proof. It follows from Theorem b5a that
(1) 7Nf=~TNSf as i — o,

for all fe M. Suppose next that g | M. Since ||¥.(\)gll = 0(1),
given any subsequence p, there is a subsequence p, of p, such that

r.(\Ng—h as n— o in b,
for some he H. If fe M then
lipm(%(h)glf)= (h|S) .
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Since (Z.(\)f9) = (f | Z.(\)g) we have using (1)
lgn(%(x)g If)=(17MNf)=0.
Thus (k| f) = 0; i.e. & L M. Now
| SiPF 2.\ [P = (S, »7.(Mg | 9),
AN X
=Mglr.

Therefore by Lemma 4a Fhe D(S'?); that is, heScM. But h 1| M
so that # = 0. We have thus shown that

(2) r.\g—0 asn—o if g1 M
The relations (1) and (2) together prove that
(3) T.MNf—=TNSf as n— oo,

for all fe H. Since weak convergence of projections implies strong
convergence our proof is complete.

7. Convergence in dimension. In this section we will show how
starting from the conclusion of Theorem 6a and one further assumption
it is possible to prove that the dimensions of the spectral projections
converge. Suppose that 0 < R, n =1, 2, --- are bounded self-adjoint
operators defined on subspaces N, of a Hilbert space H. Let 0 < R
be a self-adjoint operator on a subspace N of H. Let

R, = ["MaEM,
R= S:_xdE(x) ,

be the spectral resolutions of R, on N, and of R on N. We list two
conditions.

a. E,MN)— EQX) as n— o for all x>0, M¢o,(R), the point
spectrum of R. Here “—” is in H.

b. there is a number m > 0 such that if f,eN,, ||f.|| =1, and
(B, ful|fu) < m, <m for nep, then p, contains a subsequence p, such

that f, -~ f+# 0 as n— o in p,. Here “—"" is in H.

THEOREM 7a. Under assumptions a. and b. we have

(1) dim E(\) < oo 0=n<m,
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and

(2) lim dim E,(\) = dim E(\)

n—ro0

Jor 0 =A< m, Mgo,(R).

Proof. We first note that assumption a. alone implies that if
0 =M< oo, MN¢0,(R), then

(3) lim dim E,(\) = dim E(\) .
In (3) we admit ‘o0 = o”’, Suppose dim E(\) = k. Then there exist
orthonormal vectors ¢,, g,, +++, ¢, in E(\)H. By assumption a. we have

il_'m” E.MNg; = E(\Ng; = 9; g=1,,k,

from which it follows that for all sufficiently large n {E,(\)g,}¢, which
belong to E,(\)N,, are linearly independant.

From this point on we use assumptions a. and b. We suppose
that N¢o,(R) and that 0 = A <m. If dim E(\) = o then we can
find an infinite orthonormal set of vectors {g,}i in E(\)H. Using a.
we see that there exists a subsequence p, = {0 < n, < n, < +++} such
that

||Enk(7\')gk—gk||_”0 as k— oo .

If we set f,, = E, Mg/l E,,(M)g, || then f, is defined for nep,. We
have f,eN,, ||f.ll =1, and (R,f.|f.) =N for nep,. Therefore by
b. there is a subsequence p, of p,, such that f, —f as n— o in b,
and f # 0. But then g, —f#* 0 as » — o in p,. However it is obvious
that g, — 0 as n— . Thus dim E(\) = o leads to a contradiction
and (1) is true.

We assert that (2) is true. Set k& = dim E(\). If (2) is not true
then in view of (38) there is a subsequence p, such that dim E,(\) >k
for nep,. Let g, -+, 9, be an orthonormal basis for E(\)H. For
each n € p, we can choose f, € E,(\)N, such that ||f. || =1, fulLgy, =+,
9:. We have (R,f,|f.) =) and therefore by b. there is a subsequence
p, of p, such that f, ~f#*0 as n— o« in p,. Now f, = E,N)f. and
by a. E,\)f,— EM\)f as n— o in p,. Therefore f= E(\)f and
fe E\)H. Since f 1 ¢y, +++, 9, f must be 0. This is a contradiction
and our assertion follows.

8. Maximum at the end point. As we announced in the intro-
duction §§8-14 are devoted to the case in which #(x) has a unique
absolute maximum at x = 1. We assume that #(x) is continuous for
—1 =2 =1 and that
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(1) t(x) < t(1) —-1=5x<1.
We further assume that
(2) t1) — t(x) — (1 — x)°L(1 — x) as e —1— .

Here @ > 0, and L(y), defined for 0 < y < 2, is positive, continuous,
and slowly oscillating as y — 04+. We recall that L(y) “slowly oscil-
lating” means that for every ¢ > 0, L(y)y® is increasing and L(y)y—
is decreasing for 0 < y < a(e) if a(e) is sufficiently small.

In what follows it will be necessary for us to work with four
Hilbert spaces. The first Hilbert space is L, the elements of which
are complex functions f(k) defined for k =0, 1, - .-, with inner product

(10 = 35/ WaCl)* -

The second Hilbert space is L~ the elements of which are complex
measurable functions on —1 < # < 1 with inner product defined by

1

-1

1 Per = S F(@)g(@)*w, g(x)de .

Here w, (%) = w(x) = (1 — 2)*(1 + «)?, « > —1, 8> —1. The mapping
¢ from L to L~ defined by

of (@) = 3. (hi PP (@)

(the partial sums of this series converge in the metric of L™) and its
and its inverse ¢! from L~ to L defined by

67 f ) = | @R P @, @)

are unitary mappings. Both H and H~ have as elements complex
measurable functions on [0, «) with inner products

(f 10 = | fg udu,
(19 = | @y ade
The mapping + from H to H™ defined by
vf-(u) = S: f @) (zu)zdz
(the partial integrals converge in the metric of H") and its inverse

¥vf(2) = S: F W) (uzyudu
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are also unitary mappings. See in this connection [1; p. 73] and the
references given there.
Let us set

@/2 Bl2s | /2
0. (u) = <1 — COoS8 ﬂ-) <1 + cos ﬁ) (sm _u_) w2
n n n

for 0 < u = 7wn. If w > nr then 6 P(u) is defined to be 0. For each
n=1,2,--- we define a mapping from L~ to H" by the formula

Xuf (u) = f (cos l)t’?;‘”'f"(u) 0=<u=nr.
n
Note that x.f-(w) is 0 for 4 > nw. A simple computation shows that
the mapping ¥, is isometric and into. We further define
Yif-(x) = f(n arc cos x)(n arc cos )1 — &?)w, 5(x) !,

The mapping ¥ is a partial isometry of H" onto L~. Specifically ¥}
is isometric on ¥,L~ and zero on (y,L”)*, the orthogonal complement
of %L~ in H". Note that ¥, = I on L™ and %, x¥ = I on ),L" and
0 on (Y.L™)*.

We next introduce various operators on these Hilbert spaces.

a. FE, is defined on L by the formula

(f) HO0=Zk=mn
Ef-) =1 ifk>n.

The following operators are defined by “transferring” E,:

E; on L~ defined by E, = ¢E,¢7";
F, on H" defined by F, = y.E. 1} .

b. T" is defined on L™~ by
T7f-(x) = [t(1) — U®)]f () .
We set:

Ton L defined by T =2¢"'T"¢;
T, on H™ defined by T, = 3. T xF ;
S, on H” defined by S, = 2°n*L(n)"'T, .

¢. S is defined on H™ by
S°f-(u) = u*f(u) .
d. F'is defined on H by
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0z=<1
Ff-@) = ng) _zz_

>1
We set

F” on H defined by F~ = Ft,
If vy, = s+ =N, 11 are the eigen values of C,, see §1, then
B1) = Ny < +o 0 = H1) — Nyois
are the eigen values of the following operators:
E,TE,
E;T"E,;

E,L’
EL,
FT2F| g

where these symbols are to be read “E,TE, restricted to E,L”, ete.
The eigen values of

F.S,F,

F;-H”

are in increasing order {({(1) — A, .)2°n*L(n~?)'}2, In the following
sections we will show that F,S.F, “converges” to S~ F~ 88 m— <,

and thus, using the results of sections 2-7, that if
o< =<, lklm)uk: + o0
are the eigenvalues of

S” n
F o

then
lim (¢(1) — N, )20 L(n~")7 = p, k=1,2,...,
or equivalently

N = H1) — 270" L(n~*) + o[n~*L(n7%)] .

9. Convergence of (S;)"* to (S7)"%. It follows from §8 that for
every f€ H” we have
T.f-(w) = tu(uw)f(u) 0=u< oo,

where
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) = #(1) — t(cos %) 0<u=nr
0 nr < u.
Consequently
Sof () = s,(u)f (u)
where

8u(u) = 2°n*[L(n ") 7"t (w)

LEMMA 9a. Under the assumption of §8 we have

(1) lim s, (u) = u* 0=u< oo,

n—roo

and for any € > 0 there is a constant M(c) such that for n =1,2, «--

(2) 0= s,(w) = M@E){u® + usu>, 0=u<oo,

Proof. By assumption
(3) 1) — t(x) = (1 — 2)°L(1 — x)A(x) as x—1—

where L(y), continuous and positive for 0 < ¥ = 2, is slowly oscillating
as y— 0+, and where A(1—) = 1. It is well known and easily veri-
fied that this implies that if 0<%, 0<¥, and 0 < a, =¥ /¥. = a,
then

( 4 ) L(yl)/L(yZ) —1 as Y, and Y,— 0.
We have

s, (u) = (277, sin %)M[L@ sin? Euq;> / L(n“z)]A<cos %)

for 0 <u <nm, and (1) is an immediate consequence of this for-
mula.

From the fact that L(y) is slowly oscillating as y— 0+ it is
easily verified that for each ¢ > 0 there is a constant A(¢) such that
fo<y, <2 0<9y,=2 then

(5) L(y)/L(y,) = A@(%:/v.)° + (/9] .
It follows from (3) that if M is sufficiently large then
0=t —tx) = MA — 2)°L(1 — %) -1=sx=<1.

Consequently if 0 =< v < nw we have
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0sw)=M <2n sin —230—> [ (2 sin’ / L(W/”z)]

n

0 < s,(u) < A(e)MuZ'”[<2n sin? ;;) + (2%2 sin® 222 >_8] ’

from which (2) follows.

THEOREM 9b. (S7)/? is the closure of the strong limit of (S,)V?
as n— oo,

Proof. Let fe D[(S7)"?] and € > 0 be given. Let fs(u) = e~ f(u).
It is evident that if ¢ is sufficiently small then

1f = Follan = {[T17@ P11 = e puan}” < e
and
LS YHF = £ llar = {[ 1 F@ P11 = e pumvanf ™ < e

Moreover using (1) and (2) and the Lebesgue limit theorem it is evident
that

(S2)2fs — (S7V2fs in H> as n— oo ,
10. Convergence of F, to F.

THEOREM 10a. If F, and F~ are defined as in §8 then F,
converges strongly to I~ as n— oo,

Proof. In order to shorten our formulas let us set

R(k, n, u) = h;'"P® ’”(cos ﬂ—){w(cos f—“—)}m{sin l}llzu‘”” .
n

n n

Starting from the definition of F, as x.E, xF it is easy to verify that
for all fe H™

(1) Ff+(w) = == 33 R(l, m, wa(k, n)
=0
if 0 <u < nr and F,f-(u) =0 if u > nr, where

atle, ) = |"FORG, », Odc .

Let us now assume that f(u) is continuous for 0 = u < o and
vanishes except for 0 < a, < u < a, < . We will show that under
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this assumption F, f-(u) — F"f-(u) uniformly in any subset 0 < b, <
U =b, = . We first note that
(2) lim (2**h; )k =1 .

k—oco

This follows immediately from the formula of § 1 defining ;. Formula
(5) of the Appendix asserts that

(3) lim k—wP,gw(cos %) — (2/2)-J(2)

k—co

uniformly for 2z in any compact subset of the complex plane. It is
easily deduced from this that there exists a constant M such that

(4) |R(k,n,0)| = M (EELY
n
if
<, 2ELZ2a,< o, 0zk=n, n=1,2 ¢
Let us set

S 6 mu) =L S Rk, n, wak, ) ,

1 N 0sk<ns

S0mw = 5 Rk, n,walk,n) .

nd<k=n

3

Then F,f-(u) = 3, (0, n, u) + >, (8, n, u). Using (2), the inequality
(4), and the corresponding inequality for R(k,n,u) when 0 < b, =
# < b, < oo we find that

| 320, u) | = Mn== 5, (k + 1)
1 0=<k<n

< Mo+
for

by=u =b,, 0<o<l, n=1,2 .
It follows from (3) that
(5) tim | Bk, m, ©) = (2) " 7.0e2n] = 0
uniformly for

w=k=Zn, o, <= a,

Consequently
lim [a(k, n) — g(kn)(k/n)"*] = 0

n—oe



128 I. I. HIRSCHMAN, JR.
where
alen=) = | F©Tu(kenyzdc
.

uniformly in k for no <k <
again we have

Here of course g = 4'f. Using (5)

lim [R(k, n, u) — (—%>1/2Jw(kun“1)] —0

n—rco

uniformly for

nw=k=<n bb=u=<sb,.

It now follows that

(6) lim|$0,mw)—+ g(kn-1>Jw(kn—lu)-§—| =0

oo | 2 nd=Zk=

uniformly for b, < u < b,., We assert that
(7) limL S gen—)J(en—u) X = Slg(z)J,,(uz)zdz
nd=k=n n 8

uniformly for b, < # < b,. Indeed the sum on the left is a Riemann
sum for the integral on the right, so that (7) is certainly true for
each 4 > 0. To show that it holds uniformly for b, <u < b, it is
sufficient to note that

LY

g(k‘ln)Jm(kn“lu)—k—l <M
du M nSiksn n

uniformly for b, =u <b, n=1,2, --- so that the sequence of func-
tions on the left in (7) is equicontinuous. Given &€ > 0 let us choose
0 > 0 so small that

};(5, n, u)‘ <ef2, ‘S:g(z)Jw(uz)zdz' <ef2,

for b, <u =<0b,. It then follows on collecting our estimates that
| Frof-(uw) — F f(u)] < ¢ for b, = u < b, and for all sufficiently large n.

Let C~ be the set of functions fe€ H~ which are continuous and
have support in a, < u =< a, for some 0 < a;, < a, < . Using what
we have proved above and the fact that || F,||=1 n=1,2, .-+, we
see that if feC” then F,f — F"f as n— . Since C” is dense in
H~ we see, again using the fact that || F, ||=1#n=1,2, .-, that
F. — F as n— o, However weak convergence for projections implies
strong convergence so that F, — F~ as n— o,

11. Convergence of (S;)?’F, to (S7)?F Part I. It remains to
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prove that (S7)"*F” is the closure of the strong limit of (S;)VF..
The considerations here are considerably more involved than those of
8§89 and 10 and will occupy §§ 11-13.

Let D be the set of functions h(z) in H which can be written in
the form A(z) = 2*h,(2) where h,(2) defined for —o < z < o is even,
infinitely differentiable and has compact support. We set D~ = ¥ D.

LeMMA 1la. If feD™ then f(uw)= ufu) where fi(u) is the
restriction to 0 <u < o of an even continuous fumction satisfying
Si(w) = 0(u™") as u— + oo for every r.

Proof. Suppose that fe D~ then, with an evident notation,

£ = [ @iz

where J,(2) = 27*J,(2) is an even continuous function satisfying
| Jal?) | = AL + |27 for 0 <2< . Here ¢ = max [0, —a — (1/2)].
If we set

dk+(2) = k"(z) + 2.‘?‘Z+_1k'(z) ,

then _
AJal2u) = —w'Ju(2u) .
Consequently

(—urfiw) = | h@(—wrSuadz,
= S:hl(z){d"'ﬁ}w(uz)}z”“dz ,
= S:{A”hl(z)}sm(uz)z%“dz ,

where in the last step we have integrated by parts repeatedly. It is
easy to deduce our assertion from this last formula.
Consider the rectangle

02

—=1/2 + i 1/2 + iz

o4 ® 07 o3

01

—-1/2 1/2
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Let v,(0) be the harmonic measure of the side o, with respect to the
point ¢6z. Later in this section we will need estimates of the v,(6)’s.

LeEMMA 11b. With the above notations we have the imequalities:

Y(0) =1 — 6 — 207 coshzr ,
7(0) = 0

v{0) = 70 cosh tr ,

v(0) £ t0coshrr .

Proof. For the definition of harmonic measure and its basic prop-
erties see [8]. By the principle of domain extension v,(#) is less than
or equal to the harmonic measure of the line segment connection
—(1/2) + 47 to (1/2) + 4t in the strip bounded by the lines Imz =7
and Imz =0

z plane

This is trivially less than the harmonic measure of the whole line
Imz = . But this last is ¢, and thus 7,0) = 6.

A second application of the principle of domain extension shows
that v,(0) + v(6) is less than the harmonic measure of the segments
connecting —1/2 to —(1/2) + 47 and 1/2 to (1/2) + ¢z in the half strip
bounded by the lines Rlz = —1/2, Rlz = 1/2, and Imz = 0 and lying
in the upper half plane.

';—+ir

—1/2 1/2

This is trivially less than the harmonic measure of the two vertical
bounding lines. If w = sin 7z then the half strip is mapped conformally
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® ¢ sinh z6r
w plane

————— - —

onto the half plane Imw = 0. The point 767 goes over into ¢ sinh 7éz.
Since harmonic measures are invarient under conformal mapping we
see that 7,(0) + 7.(0) is less than the harmonic measure v of the infinte
intervals (oo, —1] and [1, o) with respect to ¢sinhzfr. But this
can be exactly computed using the Poisson formula for the half-plane.
We find that

v £ = ginh n7d r[xz + sinh®z76]dx ,
1

2
T
2

fiA

sinh 778 .
T

Since 7,(0) = v,(8) by symmetry and since v,(6) + v(8) < v we find that
v40) and v,(0) are both less than (1/z)sinh 7z6. Using the mean value
theorem we see that (1/x) sinh 77 < 76 cosh w7, ete.

Let D, be the subset of D consisting of those functions in D
which vanish for ¢; £ 2z < o for some ¢, < 1, and let D = «D,. Let

D, be the subset of D consisting of those funections in I which vanish
for 0 =<z = ¢, for some ¢, > 1 and let D;” = +rD,. The principal result
of the present section is the following.

THEOREM llc. If feD; or D; and if (as in § 10)

alke, ) = | FQOR(k, n, OdL
then for v fized v =0, =1, +2, -+, we have
a(n, n + v) = 0(n") as n— oo
for every r.
Proof. We first consider the case fe D or D;”. We have
alk, n) = a(k, n) + a,k, n)

where

ae,m) = | FORE,n, Oz,
ae,m) =" O, n, 0L .
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Using Lemma 11a and the relation
| "R, m, 0z = m
0

it is apparent that a,(n, k) = 0(n~") as n— oo for every r > 0. Suppose
now feD. If we set

nx/2
0

ate,m) = [ Qt(cos SN0,z

nx(2
0

ai(h,m) = | Qr(cos Lo, 0at

where
6.8 = hi{u(cos £ ) foin £ gserm

and where f,({) = {~*f(¢) then, see (10) of the Appendix,
mia(k, n) = ai(k, n) — ai(k,n) .

Note that if 8 is large Qf(cos(/n)fi(0)0.(() may not be integrable
near { =mnz. This is the reason for splitting off a,(n, k). Apply
Cauchy’s theorem to teach of the curves below and then let 0—0+.

/2 ¢
radius p \\ L nx/2
7
—int/2 L)
We obtain
af(k,n) = IF + IFf + If,
where

int/2 (int/[2)+ (nx[2) _ nx/2
=" = L=

int(2 (in7/2)+(nx/2) ’
—int/2 " (—int[2)+ (nx/2) " nx[2
§ ’ Iz = ’ Is =

»
—inz/2 (—int/2)+(nx/2)
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In all cases the integrand is
F£(0Qu(cos = )6,(0)dC .
n
Let us put
O (t) = h;m{cosh t_ 1}"“'2{coshi + 1}’3'2{15 sinh i}”’tw
n " n
for 0 <t < . Keeping careful track of arguments we find that
I = [ nanQu cosn Lo,
0 n
I = —S”’” fl(—it)Qk<coshi Yoyt .
0 n
Since fi(¢) is even I — I' = 0 and thus
ﬂial(k, n) - I{- + Iz_ - IZ+ - I3+ .
If h = +'f then we have
£©) = | et e iz

where ¢, < 1. It follows that f,({) is an entire function of { and
that for any ¢, ¢, < ¢ <1,

f1(§ + —;—im)l = Aer 0<E=nrn2;

see [1; p. 85]. By (11) of the Appendix we have

Q,M[cos (%m- + En“)]l < Ante—*, 0=Z&=nm/2.

if v is fixed. Since

@i(%iz' + s)[ < Anet 0 < &< naj2

we see that I; vanishes exponentially asn— o, I, can be similarly
treated.

In order to estimate I, we consider the rectangle below.
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g2 %’n(ﬂ + 1)+ utm

1

ZME = 1) + irn
g4 g3
nw —;-n(n +1)

D=

—;'n(n: -1

g1

This rectangle is similar to the rectangle of Lemma 11b. Let
M; =lu.b.|f(¢)] ¢ on o 1=1,2,8,4.

By the principle of harmonic majoration

log

fl(%nfr + imﬁ) l = Ei] 7i(0) log M; .

We have M, < An~", M; < Ae*" ©=2,3,4. By Lemma 11b if = is
sufficiently small

7(0) = % . en0) + 1) + @) =6, 0<0

IA

L
5 -

For 7 so chosen

fl(%mr + iv)’ = Aen"?® 0=n=wn2,

uniformly in #». On the other hand by (11) of the Appendix

Q,,+,,<cos <—;—7r + ivn“)) ' < An%e 0=n=1wn/2,
and an elementary argument shows that

@,(%mz‘ + 277>| < An® 0=7n=wn/2.

Since 7 is arbitrary these estimates imply that I; = O(n~") as n — oo
for every r. I can be dealt with similarly.
We now turn to the case fe D;. We have, if h = ¢ 'f,

F© = | ez,
°1
where 1 < ¢, < ¢, < . Since, see [1; p. 4],
— 1 (1) 1 (2)
Ju(?) = ‘2_Hw () + ?Hw (2)

we have

2fQ =520 + 90,
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where
£o0 = | "M HD 02z,
£ = | "nayH @0edz
and hence
a(k, n) = a{’(k, n) + a{(k, n)
where

a(k, n) = r/zf”"(C)R(k, n, 0Ll t=1,2.

The functions f*({) and f®({) are analytic in the plane slit from —oo
to 0. Let us apply Cauchy’s theorem to one or the other of the two

curves below and then let 0 — 0+.

mef2 F———————— >————— =" ]

|

. | Vi

radius p\_/\ S ;_____~__,—2—m

i === 1

3 |

i A

-2 e ———— > —————— ~

We see that
alil(k, n) = IV + I + I i=1,2.

int/2 (int/2)+(nx/2) nx/2

=" = ;=

’
0 int[2 (int[2)+ (nx[2)

—inT/2 (—in7/2)+(nw/2) nx/2

=" =] ;=

0 —int(2 (—in7/2)+(nx/2)

In I¥] 5 =1, 2,3 the integrand is

@) P #(cos £ )0,z

n

where

2.0 = h;”‘"w(cos %)llz<sin £>112C+”‘" .

n
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From this we see that if
o/ Bl
Qi) = h?“(cosh—t— — 1> 2<cosh—t— + 1) 2{t sinh i}m
n n n
then
Tn/
19 = —eion "™ po e Pieo cosh L)autyat
0 n
Tnf
I® = __e—m'wlzg 2f(2)(,:6—7:1'/2)P1£m B)(COSh—t->Qi(t)dt .
0 n
Adding we find that
Il(l) + Il(ﬁ) —_ Srn/zleniwlﬁf(l)(teniﬂ) + e——xiw/2f(2)(te—1ri/2)]
0
(@ B) t ¥
. P (cosh_ Q4 tydt .
"
Since arg t =0
ex‘ioﬂ/ﬁHél)(teﬁiﬂ) + e—-nioﬁ/ZHém(te—ﬁiﬂ) — 0 s
see [1; p. 5]. We have [ 4+ I} = 0 and thus

an, k) = P + I + I + I .
It follows from [1; p. 85] that if 1 < ¢ < ¢, then

| f“’(%itn + 5)] < Agorrie 0<¢ < a2

while by (8) of the Appendix

P,,H(cos [—%iz' + En“])' < Anter? 0<&éZnm2.

Since trivially

Qn(-;—im: + S)] < An 0= ¢=nn/2
we see that I¥ vanishes exponentially as n — o and thus that I¥ =
0(n~") as m — o for every r. Similar considerations apply to L.

Using Lemmas 11la and 11b we can deal with I and I* very
much in the way we dealt with I} and I;.

12. Convergence of (S;)*F, to (S7)Y*F”. Part IIL.

LEMMA 12a. Let ge DY. Then for every monnegative integer N
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we have

——— o ~ 7[ AN (foo
th w | Frg-(w) Pfudu < <—> S | g(u) P udu .
n—oo JO 2 0

Proof. By (1) of §10 we have,
Frg-(uw) =n"" é}R(k, n, wya(k, n)
where
alk, n) = S:WR(IC, n, w)g(wyudu .

Let ¢,(u) = g(u)(1 — cosu/n). Using the recursion formula, (1) of the
Appendix, a short computation shows that

(1 — cos L) Frg-(u) — Fro.- ()
"

= hilhEC, a(n + 1, n)R(n, n, w) — hilLh P Aa(n, n)R(n + 1,m, u) .
Using Theorem 1lc¢ this implies that

(1= cos2)Frg-u) — Frow-| = 0w

and thus since || F} || =1

Snz‘
0

1- cos%f{ Fog-() Pudu = |7 Frg, @) Pudu + 0(n~)
0

(1)
Sm 1-— cosﬁr| F.g-(w) Pudu = g ll — cosl( | g(w) Pudu + 0O(n) .
0 n 0 n
Now
= 2(—2-—@—>2 0=u=snw
% ; % T 2n
(2) l—cos—:2s1n"<--> )
" 2 =22 0=u<o.
2n

Multiplying (1) through by (1/4)7*n* and using (2) we find that
Snﬁu4| F;\g.(u) Izud’bl, < <E_)4S°°u4l g(u) I“’udu + O(n‘*“) ,
0 2/ Jo

which implies our result for N = 1. The argument however is valid
in general if we use (1 — cosu/n)" in place of (1 — cos u/n).

THEOREM 12b. If fe D then
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lim [[ (S)2F"f — (SO F 1 = 0.

Proof. An elementary argument gives

[(SVPFf — (SOYFFIfIP = L + 2L + 21,

where
L= \"1wFf-@) — s,(uy"Ff ) Pudu
L= "we | P Pudu,
1= | s, Fof-o) Pudu .

By (2) of §9 (if T= 1) then
L= Aru"“’“ | F - (u) Pudu .
T

Choose N so that if ¢ = 4N — (2w + 1) then a > 0. We then have
I < AT—“ruWI FOf-(u) Pudu .
0

It is now evident from Lemma 12a that if T is sufficiently large then

(3) Tm I, < ¢4 .

00

Since F"f-(u) = f(u) for fe D] we see using Lemma 1la that for all
sufficiently large T

(4) L<el4.

Suppose now that 7' has been chosen so that (3) and (4) hold. Since
lim,_..s,(#)"* = 4* boundedly for 0 =u < T and since by Theorem 10b
F,f-(u)— F"f+«(u) in H~ we have

(5) limZ,=0.

n—rco

Combining (3), (4) and (5) gives
Iim || (S")YPF°f — (SO Fof || S ¢,

but ¢ is arbitrary, ete.

LEMMA 12¢. Let ge D;; then for every monnegalive integer N
we have

Ti—ruml Flg-() Pudu < (lzf_)NruN; 9(u) Pudu .

n-—o0 J0
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THEOREM 12d. If fe D; then
lim || (ST)"F"f — (SO)"F fll=0.

Note that for fe D;, F'f =0.
The demonstrations of Lemma 12¢ and Theorem 12d are so much
like those of Lemma 12a and Theorem 12b that they are omitted.

13. Convergence of (S,;)*F, to (S7)*F”, Part L. If
fu) = rf*(z)J,,(zu)zdz
0
g(u) = Smg*(z)Jw(zu)zdz

and if
@ = | @@l @eudu

then 2*(2) is a ‘‘convolution’ of f*(z) and ¢g*(z). Indeed if @ = —1/2
then there exists a very interesting formula for h* in terms of f*
and g*, and it is possible using this formula to read off simple prop-
erties concerning supports such as those proved below. See, for
example, [3] or [4]. However these arguments are not available if
-1<a< —1/2,

Let 8(z) be a nonnegative function in D, such that

(1) Sja(z)z““dz — 2@ + 1) a>—1.
We define
Aw) = S:&(z)Jw(zu)zdz :

Let also 4(u) = w=*4(x). We know from Lemma 1lla that 4,(u) =
O(u™") as u — + oo for every r. It is easily seen using (1) that 4,(0) = 1.
Also 4,(u) is the restriction to the real axis of an even entire function
4(w) which satisfies |4y(w)| = Ae”'(1 + |w]|9), w =u + 1v, where
q = max (0, —1/2 — «).

LemMA 13a. Let f*()e H. If

1. f*(z) vanishes for ¢ =z < oo;

2. f) =\ @ Juur)eds

3. £*0w9) = | Fwaowdaedu,
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then 2=°f*(\,2) is the restriction to 0 =z < o of an even infinitely
differentiable function and f*(\,2) =0 for ¢ + N =2 < oo,

Proof. We will merely sketch the demonstration. Since
T = S[HE@) + HO@)
we have
27*(, 2) = || THD ) + HP @)l f 0y vdu. .
It is easily seen that this can be rewritten as

270, 2) = |_HPGu) )4 000udu

where 2zu has argument 0 for 0 < u < o« and argument 7 for
—o < u < 0. By Cauchy’s theorem if

I= S:H;”(zu) Fiuw) A Oviyusdu

then
I=L+L+1,

where

—T+iTt T+iTt T

I = g ’ L= S . L = S .
—7 —T+iT7 T+iTr
—T+iTr T+ 1Tz
0

Fixing = conveniently we can show by arguments like those in §11
that if 2>¢+N L, L, I,—0 as T— . Using the fact that
f@)4,(0vu) = 0(u™") as u— o for every r we see from the formula
defining f*(\,2) that z~f*(,2) is the restriction to 0 =2 < = of
an even infinitely differentiable function. By continuity f*(:,2) =0
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for z=1¢ + \.

LeMMA 13b. Let f*(z)e H. If

1. f*(z) vanishes for 0 <z =¢, ¢ > 0;

2. f) = rr@lmedz (L)

0
3. F*0nu) = S” F )T u(uzyudu ;
0

then z=2f*(\, 2) is the restriction to 0 < 2z < o of an even infinitely
differentiable function and f*(\,2) =0 for 0 2z=c— 1 tf ¢ —1A>0.

Proof. Again we merely sketch the proof. We have
2f () = ) + P (w)

where

row = |"HD G @iz,

row = |TEP s ez,
and thus

27*(v, 2) = lim [1 + 1]
where

™= S: FOU) A0 (uzyudw

I® = ST F o) 4,0m)J (uz)yudw .
0
By Cauchy’s theorem

I(l) — Il(l) + Iz(l) + Ig(l) ,
I® =1® + I® + [@,

[ B — e | T+'I:TT

k ¥

A 1

N - d T
_____ =———=9

r A
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where

" T n ttT+T " T

’
icT 1tT+T
—itT+T

Lw:S , I;ng , I3‘2>:ST

.
—irT —icT+T

It is easily verified that I/ 4+ [ = 0, and arguments like those used
in §11 suffice to prove that I, IV, I}, and I'> -0 as T— o if T
is suitably chosen, for 0 < z < ¢ — ), ete.

THEOREM 13c. Let fe D[(S")/*F"); then given € > 0 there exists
he D[(S")*F"] such that:

(1) If=hil<e, NSV FAf—H<e,
(2) (SO F h — (S°)"F"h as m— oo,

Proof. It is obviously sufficient to consider two cases. F f = f
and F"f =0.
Suppose that F"f = f. By assumption f € D[(S”)/*F"] so that

| (SR £ | = ru; Fw) Pudu < o .

For 0 <6 <1 let g(u)=f(0u). Then if f* = 'f, g* =479 we
have

g*(2) = S: F(Ou)T(uzyudu (M,)

- S“ F) (w260 udw (M)
— FH207)07" .

Ff = f implies that f*(z) = 0 for z > 1. It follows that g*(z) =0
for z > 0. Consequently F"g =g as well. It is also evident that
g€ D[(S7)*F"]. Since

1 =gl = [ 1r@) - 70w pudu,
| (SYRF™F = g} I = | wl fw) — £ (6w) Pudu
it is apparent that by taking 6 sufficiently near 1 we can insure that

IF—gll <e2, SV F{f — gt <ef2.

We next define 2(u) = g(u)d,(vu). If A >0 is so small that v + 6 < 1
then by Lemma 13a if h* = A h*(z)=0 for 2>1, and thus F"h =
h. Since
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lg = nlr ="l |1 = d0w) Pudu,
1Y F g — By = | o) P11 — 40w [ udu,

it is evident that we can choose N > 0 so small that A + 6 <1, and
that

lg — Rl <el2, (S F{g — h}[ <el2.

Thus & satisfiles (1). By Lemma 13a k€ D7, and therefore by Theorem
12b (2) holds as well.

Suppose that F7f = 0. Then, if f* =47'f, f*@)=0for 0< 2z < 1.
Choose 1< ¢, < ¢, < o so that if g*() = f*() for ¢, <2 <e¢, and
9*(z) = 0 otherwise then [[f* —g*| <¢/2. Let g = +g*. Clearly
F~g =0. We have

=gl =1*—9%Il<e¢/2,
while
1S )Y 2F™{f —g}]|=0.

Next let h(u) = 4,(0\u)g(u), where x> 0 is so small that ¢, — A>1,
which implies using Lemma 13b, that F"h =0, and so small that
lg —hl||<e2 Then ||f—h]| <e and || (S)F{f —h}||=0, so
that (1) holds. By Lemmas 13a and 138b &€ D; and thus Theorem 12d
can be applied to verify (2).

14. The asymptotic formula. Let S; be constructed from F~
and S” as in §3. Note that if S™={f|feH, F"feD(S")"*} then
S” is dense in H” so that S, is a self-adjoint transformation on H
itself. Let

S = S” AT ()
o
‘be the spectral resolution of S7 on H, and let
So, = g“’ ATV
o

be the spectral resolution of S, , = F, S, F, . It follows from Theorems
‘9b, 10a and 13¢ combined with Theorem 6a that
(1) 7o) — (V) 0=A< o

for evey N\ ¢ 0,(S7).
Let us define



144 I. I. HIRSCHMAN, JR.
RA——:S;INA, N =F'H",
R;\:S:,F N/\, N,,:\—':F/,:\HAo

Since, as is easily seen, R~ > 0, R, > 0, we have the spectral resolu-
tions

R = rxdE"(x) on N,
0
where
E°(\) =77(\) — #7(0) 0=A< oo,
and
Ry = S:xdE;(x) on N7
where
E;(\) =7, — 7.(0) 0SA< oo,
Since F7(0) = I — F~, ¥, (0) = I — F,, it follows from (1) that
(2) E;(\)— E™(\) 0SN< oo

for all M ¢ o (R).

LEMMA 14a. With the above definitions let f,eN,, and let
full =1, (Bifulfw) = m< oo for nep. We assert that of f,—f
as n— o in p, then f + 0.

Proof. If f,€ N, then

fo(u) =n"t I;i]lR(k, w, wya(k, n) 0=u=nrw
and f,(u) =0 for v > nr. We have
L=l = n7 35 |atk, m) .
By Schwartz’s inequality
o) | < 07 3 Rk, my w)
Since, see §10 for a similar estimate, if 0=k <= n

| Rk, n,u)| < M(%lyﬂlmum 0<u<a <o,
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it follows that
(3) | fa(w)| = Mu® 0=u=a,.
Next

EEOTETb W AR

Since, as is easily verified,

| R'(k, m, w)| = M( L 1>°‘+“’2’W,~1 0<u=a
n
we have
(4) | fo(w) | < Mu~ 0<u=a,.

It follows from (3) and (4) that the {f,(u)}” are uniformly bounded
and equicontinuous on any interval 0 < a, <u < a, < . Therefore

since f,(u) — f(u) as n in p, we have (if f(u) is suitably redefined on
a set of measure zero)

(5) lim f,(u) = f(w) uniformly for a, =u = a,.
21

Given any number m, > 0 we assert that there exists a number
a, > 0 and an integer N such that if n = N

(6) s, (u) = m, a,=u=snT.

The inequality (6) is an immediate consequence of the relations

s, (u) = (Zn sin %)2 [ (2 sin’ > / L(n‘z)]
s,(wy=M (6)<2n sin %) [<2n sin® 21:) + <2n2 sin’ -;7)_2]_1 .
See §9. We have
(Vs .0 P ud + [ a,0) 1 £GP ude = (B2 VL.

|01 £ [ udu < m.

By (6) if n = N
[ s 1. P udu = m, {7170 udu

Therefore if w = N we have

m |1 0) P udu < m
a3
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and thus, since || f,.|l =1,

(7) [ rudez1 - 2

1

The relations (3), (5), and (7) imply that

S%lf(u) Pudu=1—-22>0
0 m.

1

and thus that f+ 0 in H™, as desired.
Applying Theorem 7a we now see that if 0 <t S, < My oee,
lim,_., tt, = oo, are the eigen values of S; then

lim 2°n L(n~*) " [t(1) — A ] = M k=12 ---

n—00

We have thus proved the following.

THEOREM 14b. Under the assumptions of §8 we have
N = 1) — 27°L(nm [, + o(1)]

as n— o« for each fized k=1,2, «--.

If we take w = 1, L(y) = ¢ then we obtain as a very special case
of Theorem 14b formula (7) of §1.

15. Maximum at an interior point. We will next take up the
case where £(x) has a unique absolute maximum at 2, —1 <2, <1.
We assume that #(x) is continuous for —1 < © < 1 and that

Ux) < t(x,) 15251, v+x.
We further assume that
o |6 — 2 |°L(x — 2 x— x,t
oy — 1y = |77~ Bl Lo — ) -
o, | @ — %, [°L(x — @) T — &

where o, > 0, 0, > 0, @ > 0 and L(y) is a positive even function defined
for —2 <y < 2 and continuous there except at ¥y = 0. At y =0 L(y)
is slowly oscillating.

In what follows we will again find it necessary to work with four
Hilbert spaces.

L is, as before, the Hilbert space of complex valued functions
f(k) defined for £k =0,1,2, ---, with inner product

(Floy = 5 fR)a(k)*



EXTREME EIGEN VALUES OF TOEPLITZ FORMS 147

Similarly L™ is, as before, the space of Lebesgue measurable functions
on —1 < =<1 with inner product

(F19 = | @) v p(w)dz

where w, () is defined in §1.
E” and E are Hilbert spaces of Lebesgue measurable functions on
{—co, ) with inner products

(f 195 = | f@oydu,
(19 = |~ F@e)dz.

We have the following maps between these spaces. There is, as
before, a mapping ¢ from L to L~ defined by

6f (@) = 33 F()hi P (@) .

The series on the right is the limit of the partial sums in the metrie
of L”. The inverse mapping is

671 f (k) = S_l F @R PP () w, o(2)da

These mappings are unitary.
There is a mapping + from E to E~ defined by

P fe(u) = S:e“i“ f(z)dz ,

where the integral on the right is the limit of the partial integrals
in the metric of E”. The inverse mapping is

¥@ = | e,

where ete. These mappings are also unitary.
Let 0 < & < 7 be such that cos &, = ©,. We set

[1 — cos (2munm™ + &)1 + cos (2run~" + £)JP? sin'*2run~" + &) .
" For each n=1,2,.-- we define a mapping . from L”~ to E”~ by
setting

feos [2run=" + £)10,(u)Cx/n)"? 0=2nrun"+ & =x
0 otherwise .

rf =1
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Clearly ¥, is an isometric map of L™ into E”. We define a mapping
Xy from E” to L™ by

Xaf (@) =f <£_L_‘[""Eo + arc cos w])(l — &) M, g(x) 1 (n[2m) .

%% is a partially isometric mapping of E~ onto L™, yx; is isometric on
Y.L~ and zero on (),L")', the orthogonal complement of ¥,L" in E”.

Moreover Yix, = I and %,x% = I on ,L” and %% = 0 on the orthogo-
nal complement of y,L".

We now introduce various operators on these Hilbert spaces.
a. K, is defined on L by

S (k) 0<k=n
E,.f-(k) = .
0 otherwise .

FE, induces the following additional operators:

E; on L~ defined by E, = ¢E, ¢

F, on E” defined by F, = y.E, x¥.

b. T" is defined on L~ by
T7f(x) = [t(mo) — t(x)]f (=)

Starting from T~ we obtain the following related operators:

T on L defined by T =¢"T"¢;
T, on E~ defined by T, = %.T % :
S, on E” defined by S, = [n*/L(n Y] T, .

c. S is defined on E” by
S™f(u) = f(u)s(u)

where
o(—2x[sin &Ju)® u=0
s(u) = .
0,(2x[sin &Ju)” u>0.
d. F is defined on E by

2 lz] =1
Ff'(z):{f(f) ]z:>1.4
We introduce
F~ on E~ defined by F~ = Fyt .
If N1 = Npo= ++» = N\, oq1 are the eigen values of C,, see §1,

then
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B(@0) = Nt S B(@0) = Ny S+ v = HB) — Ny
are the eigen values of the following operators:

E.,TE,

E;T"E;

F. T Fy

E,.L;
ETL ;
F E™ .

‘The eigen values of

FrSUF,

F E”

. are, in increasing order, {[t(®,) — N, Jn°L(n~")7'}zil. Our program in
what follows is like that carried out in sections 8-14, in that we will
show that F', S, F, ‘‘converges’”’ to S, as % — < and thus that if

O< st =0, limpy, = oo,
k—oo
are the eigen values of
Sr|\ g,
then
lim (t(wo) - A’n,k)nwL(n_l)Ml = /’ck k = 1; 2) e
or equivalently

N = Uo) — n~°L(n ™) + o(1)]
as n— oo,

Because the material of §§15-19 is in large part like the ma-
terial of §§8-14 we will only give in detail those arguments which
differ from those given there. These occur primarily in § 16 and § 17.
In the later sections we will simply list the various results since the
details can be easily supplied.

16. Convergence of (S;)"* to (S7)* (interior maximum). We
suppose throughout that ¢(x) satisfies the assumptions of §15. Let
0 < & < 7 be such that cos & = .

It follows from §15 that 7T, f(u) = t.(w)f(u) where t,(u)=
teos &) — t[eos 2rn~u + &)] for 0 < 27n~'u + &, < « and is zero other-
wise. Consequently S, f(u) = s, (u)f(u) where s,(u) = t,(w)n°L(n~)".
Let s(u) be defined as in §15.

LEMMA 16a. With the above definitions
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(1) lim s,(u) = s(u) —o < u< o,
and for anmy € >0 there ts a constant M(c) independent of wu,
—o < U< o, and n=1,2, -+ such that
(2) su(u) = M@ ul|® + |u|[~]{ul".

Proof. It follows from the assumptions of §15 that if \u) =
cos (2w + &) — cos &, then

o, | Mu) |° L(M(u)) % — 0+

t(cos &) — t -
(cos &) — t cos (2mu + &) {01 @) * L)) h O .
Since Mu) — 27u sin & as v — 0 we find using (4) of §9 that

0,27 sin &)*u”L(u) as u— 0+

3 t —1 2 —
(3) [tleos &) cos (2mu + &)l {01(275 sin &)°(—u)°L(n) as u—0— .
Thus for u fixed, u + 0, we see that as n— <

0,27 sin &)°u* L(un=")/L(n™") % >0
0,(27 sin &)°(—w)°L(un~")/L(n™") u<0.

(4) su(u) —
A second application of (4) of §9 yields (1). It follows from (3) that
if b is a sufficiently large positive constant then
t(cos &) — tleos (2nu + &) < b|u|® L(u) ,
and thus
8,(u) = b|u|” Llun™)/L(n™) .

Using (5) of §9 we obtain our desired result.

THEOREM 16b. (S7)Y* is the closure of the strong limit of (S,)*
as n— oo,

Proof. Let fe D[(S7)"*] and ¢ > 0 be given. If 6 > 0 is sufficiently
small then it is evident that if fs(u) = ¢*’f(u) then

Nf=Folle~=e, SV —f)lle~ =€
Moreover it is evident from (1) and (2) that

(S fs — (S7)fs in E” as n— oo .
17. Convergence of F, (interior maximum).

THEOREM 17a. If F, and F~ are defined as in §15 then F,”
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converges strongly to F~ as n— oo,

Proof. Let us write
R(k, m, u) = h"*P{*P(cos 2rum + £)0.(u)V/ 21 .
Q(k, m, w) = cos 2r(k + Nn~w + k& + (),

where 7 = (¢ + 8+ 1)/2, { = &(a + B + 1)/2 — (@ + (1/2)%/2. It fol-
lows from (6) of the Appendix that

(1) Rk, n, u) — 2Q(k, n, u) — 0 as k— o
uniformly in » and wu, if for some fixed ¢ > 0
EZ2runt+ & ST —¢.

Starting from the definition of F” we find that

(2) FLf-(u) = - 33 Rlk, m, wa(l, n)
where
(3) alke, m) = S F@)R(k, n, v)dw .

Here I, = {v|0 = 2tn~"v + & =< 7}.

Let us now assume that f(u) is continuous for —eo < u < o
and vanishes except for |u| =< a. We first show that under this
assumption F, f-(u) — F~f-(u) uniformly in any set |u| = b < o, It
follows from (1) that there exists a constant M such that if » is
sufficiently large.

(4) | R(k, m, w)| = M

for |[u| =< a, and k=0,1, ---. Let us set

S8, 1, u) = % S R(k,n, walk, n),

0sk<n

> (6, 7, u)si S R(k, n, walk, n) .

ndsksn

Using (4) and the corresponding inequality for |u| =b we find that
for all large n

(5) S (8, m, u) < Mo if [u]<b.
Let g = 4'f so that

o) = |~ flwe=idu.
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Using (1), but writing the cosine in complex form, we find that

lim {a(,n, k) — e—i(keo+g)g<_l_‘7__%‘_7z_) _ ei(keg+§)g<_k_;|;_72_>} —0.

k00
Using (1) again we see that as n — o
(6) | 2500, n,u) — X0 — S — X — v | — 0

uniformly for |u| = b where

S,=n S, geitemun <k + 7]>

dnsksn
Z” — ,n—-l 621(k60+§) 2ri(k+n)un™ < )
Sn<ksn
— —2ri -1
ZIII =n 1 e 2ri (k+-n)un ( )
Snsk=n
- ~ - - (k+
ZIV = n 1 e 2z(k60+§)e 2rilk+n)un < >
dnLk=n

> and >, are Riemann sums so that
(7) lim %, = | gz,
-5
(1) lim S, = S eivg(a)dz
n—soo -1

for |u| = b. Since we can easily prove that the functions 3, (3, n, u)
are for n sufficiently large equicontinuous for [« | < b it follows that
(7) holds uniformly for |#| = b. Similar remarks apply to >;. If
we sum >,;; by parts, the summation being applied to e 2%, it is
eagily seen that lim, .. >,;; = 0 uniformly for || <b and similarly
for >y;». Given ¢ > 0 let us choose 0 so small that

Semwl<e2, || g@edz| <,

for |u|<b. It then follows on collecting our estimates that
| Fy fe(u) — F"f-(u)]| < e for |u| < b, for all sufficiently large n. The
demonstration can be completed as in §10.

18. Convergence of (S;)*F, to (S°)*F" (interior maximum).
The considerations here are parallel to those of §11, §12, and §13
but somewhat simpler.

Let D be the set of functions A(z) in £ which are infinitely dif-
ferentiable and have compact support, and let D™ = D. Let D, be
the subset of D consisting of those functions which have support in
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|z] = ¢, for some ¢, < 1, and let DT = 4D,. Let D, be the subset of
D consisting of those functions which have support in |z| = ¢, for
some ¢, > 1, and let D; = +D,.

THEOREM 18a. If fe Dy or D, and if, as in § 17,
all, ) = | FQRGE, 7, 0L,
then for v fized, v =0, +1, +2, -+-, we have
a(n,n +v) = 0n"") as n— o
for every r.

Proof. We will carry out only the first steps of the demonstra-
tion since it will be evident in a moment that the arguments used
in §11 apply almost without change.

We recall that I, = {¢| —vm = { < v,;n} where v, = (7 — &)/2r,
v, = &/f2r. Choose d;, 0 < 6, <7, and 0,, 0 < 6, < 7.. Then

a(k, n) = a,(k, n) + a\k, n) + ay(k, n)

where

aileym) = | FOR(E,n, 0L,

alle,m) = |\ FOR(E, m, O,
ak,m) = | FQOR(, m, 0L
Since f(¢)e D" we have
F© = |7 g@esaz

where g = 4'f is infinitely differentiable with compact support. Re-
peated integration by parts shows that

(1) S =0(<1™) {— £ o

for every r. Using
[, Rom, Cyde = n
Ip

and Schwartz’s inequality we see that

ae, m P =n 7@ R,
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and using (1) that auk, n) = 0(rn~") as © — o uniformly in k.
considerations apply to a,(k, n). If we set

hiQleos (2nln + )10, ()AL,

Similar

-8

af(k, m) = S
ar(,n) = | BQileos (2min= + £010.OF (E

-8

where

0.(8) = [1 — cos 2rLn™" + &)]=*"[1 + cos (2nln~" + &)]P"
-sin'? (2n¢n~ + &)V 2r .

then
—nia,(k, n) = a7 (k, n) — af(k, n) .

Let us apply Cauchy’s theorem to each of the curves below.

in
—51’)’& ) - 52%
‘¥
—itn
We find that
ai(k,n) = I + I + I
where
=8yn+itn Son+itn 8on
I1—":‘S ’ Iz—:S ’ Is=S ’
—&n —8yn+irn Sgntirtn
—§in—itn Sgn—itn 8o
S I S R S R
—&;n =8 n—itn Sgn—itn

In all cases the integrand is

F(OhiQ, [cos (2nLn~ + £)10.(0)dL .

It is sufficient to verify that each of these six integrals is 0(n~") fas
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1 — o, Since the methods of §11 now apply almost without change
the remainder of the proof for the case fe D7 is omitted, as well as
the proof for the case fe Dj.

LeEMMA 18b. Let ge D7 or D;. Then for any nonnegative inte-
ger N and some finite constant A, we have

ca

lim | W | Fog-@du = 4y |" g Pdu
I —

n—oo

We will only sketch the proof of this result. Let
O.(w) = [cos Crun= + &) — cos &)~ .

Using the recursion formula and Theorem 18a it is easy to see that
it g.(u) = p.(w)g(u)

() F g (w) = Frg,-(u) + 0(n™)

for weI,. It follows that

T | o) | Fog-( P du < T | [ Fog,e(uyPdu,

n—co n—0

=T | 9. du,
since F," is a projection; that is

T | o) | Frg-u)] du < Tim| ™ o, g du .

n-—eo

We have
cos (2run~" + &) — cos & = —2sin (run) sin (Tun" + &) .
Since 0 < 2run= + & <« if we I, we have

O0< g2 mun™ + & = (m+ &)/2 for uel,.

It follows that there exist finite positive constants A, and A, such
that

[(cos 2run=" + &) —cos & | < A, | u| —oo <UL o,
= A, | u] wel,,

ete.

THEOREM 18c. Let fe D7 or D;. Then
lim || (SYF”f — (SO)PF fll = 0.
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Note that if feD;, F°f=0.

THEOREM 18d. (S™)"*F” is the closure of the strong limit of
(S,)*F, as m— oo,

Note that the demonstration of Theorem 18d is simpler than that
of its analogue, Theorem 13¢, in that, because convolution is possible
in E, the analogues of Lemmas 13a and 13b are completely trivial.

19. The asymptotic formula (interior maximum). In this section
we will complete the theory for the case of an interior maximum
giving some details. Let S7 be constructed from F~ and S” asin §3.
Note that if 8" ={f|feE", F"feD(S8)"} then 8" is dense in E~
so that S7 is a self-adjoint transformation on E~ itself. Let

Sp = S” TV
o—
be the spectral resolution of S; on E~, and let
Soy = r AT
o

be the spectral resolution of S, = F, S, F,. It follows from Theo-
rems 16b, 17a, and 18b, combined with Theorem 6a that
(1) 7o) — 70 0=A< oo

for every A ¢ o,(S7).
Let us define

B = 8;|nn N =FE",
Ry = Sus| p- N, =FJE".

Since, as is easily seen, R >0, R, > 0, we have the spectral resolu-
tions

R = rxdE"(x) on N, R = rxdE,f(x) on N
0 0

where

E~\) =7"(\) — 77 (0) 0=M< oo,
E;0N) =7, — 7.(0) 0=r< .

Since ¥"(0) = I — F~, ¥,(0) = I — F, it follows from (1) that
(2) EZ(0) — BTN 0=x< oo
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for all Mg o, (R").

Lemma 19a. With the above definitions let f,e N, and let
N6ll =1, (B fulfa) Em for nep. We assert that if f,—f as

n— o in b, then f + 0.
Proof. If f,e N, then

Falw) = = 3% Rk, n, walk, n)

S|

and f,(u) =0 if w¢ I,. Here R(k,n,u) is defined as in §17, and

alle,m) = | R(E,m, 0f.(0dL .

we have

L=lfulF = = 5 latm, B,
and therefore by Schwarz’s inequality

[falw) ' = = ZR(k n, u) .

7 (1) of §17 if |#] = @ < o then there exists a constant M such
at | Rk, n,uw)| =< M for k=0,1, --- provided 7 is sufficiently large.
follows that for all large n

3) [fu(w)| = M lu|<a.

ext
fiw) [ = - 5 R/, m, u)

Te assert that if |%| = o then for all sufficiently large n and a suitable
nstant M, |R'(k,m,u)| =M for k=0,1,---,n. This inequality
an be reduced by means of the formula

2L pep(@) = (n + @ + 6 + DPEP()

o the one given above. See [1; p.170]. We may therefore apply
chwarz’s inequality again to obtain for all sufficiently large n
4) [faw)| = M [u|=a.

t follows from (8) and (4) that the {f,(w)}; are uniformly bounded
nd equicontinuous on any interval |u| £ @ < o. Therefore if f, —f
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as n»— o in p, we have

(5) lipmfn(u)=f(u) lul=a

uniformly, provided f(u) is suitably redefined on a set of measure

Zero.
Given m, > 0 it is easy to see that there exists a number a > 0

and an integer N such that if n = N
(6) su(u) = m, {uelL|lu]lza}.
The remainder of the proof follows the lines §14 so closely it is
omitted.
THEOREM 19b. If
0< M EMEp< e, limp, =0,

f—oo

are the eigen values of R™ then for each k =1,2, ..
Xa i = (&) — nL(n7)[ 4 + o(1)]

as n— oo,

Let us consider as an example the case where ¢(x) has a unique
absolute maximum at z, and is twice continuously differentiable in a
neighborhood of #,. Then #'(x,) = 0. We assume that t"(x,) = —0a* < 0.
Then in terms of the notation of §15, w =2, 0, =0,=0%2, L= 1.
Consequently _

s(u) = wo*(sin® &)u’ —o <UL oo,

and the eigen values 0 < ft, < --- of R™ are easily seen to be the
eigen values of the differential operator R = 4 'R"+ defined by

Rf-(2) = — %2 sin’ &77(2) ,

the domain D(R) consisting of those functions f(z) with support in
—1 = 2z £ 1 which are such that f(z) and f'(z) are absolutely continuous
for —1<2<1, f"®el*(—1,1) and f(1—)=F(—1+)=0. Since
2, = o%(sin £)’k*/8 we find that

A = ) — 01 — 2K 81 + o(n~?)
as n— oo for each k =1,2,..-. See (6) of §1.

APPENDIX

The Jacobi polynomials P *#(x) defined in § 1 satisfy the recursion
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formula, [1; p. 168},

(1) rP>P(x) = A, P (%) + B,P* P(x) + C, P2 (x)
where
(2) A, =2m+Dn+a+B8+1D)Cn +a+ B+ 1)

Cn+a+B+2)",
(3) B,=—(@—8)2n+a+B+27'Cn +a+p),
(4) C.=2m+a)n+B2nr+a+ B2 +a-+B+1)".
We have the following limit relation

(5) lim n~2P®P(cos 1) = (2/2)~*J(2)

n-—00

uniformly for z in any bounded subset of the complex z plane, [1; p.173].
We also have

(6) hi2P*P(cos 0w, s(cos 6)]'* sin'/? § — 1/ % cos (N6 + v)— 0
as n — oo uniformly for e £ 0 <m — ¢, if ¢ > 0. Here
N=n+@+B8+1)2, v= —<a+—;—>n'/2.
See [12; p. 190].
Let ¢ = max («a, 8, —1/2); then

(7) | Pi*B(cosu) | = A(n + 1)* —oo < U < oo

where A depends upon o and B, [12, p. 163]. Furthermore if w =
% + tv then, see [12; p. 190],

| Pi@B(cos w) | = A(n + 1)7%""

uniformly for |v|= v, > 0. Here A depends only upon «, S8 and v,.
Applying Hadamard’s three lines theorem to P{*#(cos w) we find that
for all w

(8) | P{*P(cos w) | = A(n + 1)%™™

where A and ¢ are independent of # and w. The inequality (8),
although crude, has the advantage that it holds uniformly in % and w.
We set

(9 Q&) = —|_ Per(t)e — iy was0)dt -
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for all complex z¢[—1,1]. We then have
Q.(2) = (1 —2)*(z + 1)!QP(2) ,

where Q7 *(z) is the standard Jacobi function of the second kind,
[1; p. 170]. We will use @,.(2) rather than QP (2) because it is single
valued in the z-plane slit from —1 to 1. If we set

Q(w) = lg)g Q.(% + €)
Qr (%) = lin_lF Q.(x — 1¢)
then for -1 <2z <1
(10) Q. (%) — Qi (x) = TP P (x)w, 6(x) .

By an argument analogous to that used to prove (8), see [12; p. 219],
we can show that if v = I,w # 0 then

(11) [ Q.(cos w) sin® w| < A(n + 1)% v

where A and ¢ are independent of # and w. Like (8) this inequality
is quite crude, but it is important because it is uniform in n and w.
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