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Introduction* Let t(θ) be a real function in L\T) where Γis the
real numbers modulo 1, and let

φ) = [ t(θ)e-2πίkθdθ k = 0,1,

Cn is the Toeplitz matrix of index n associated with t(θ). Cn is clearly
Hermitian and thus has real eigen values,

For some time studies have been made of the asymptotic behaviour
of these eigen values as n—> os. Thus, for example, if N(a, b; n) is,
for n fixed, the number of Xntk's which satisfy a ^ Xn>k ̂  b, and if
v{y) is the Lebesgue measure of the set {θ \ t{θ) < y) then

( 1 ) lim n~λN(a, b; n) = v(a) — v(b) ,

provided a and b are points of continuity of v. This result was proved
by Szego, see [2; p. 64], Detailed investigations have also been made
of the behaviour of Xn>k as n —> co while k is fixed, under various
additional assumptions on t(θ). Suppose that t(θ) is continuous for
θ e T, has a unique absolute maximum at θ = 0, and that t(θ) is twice
continuously differentiate in a neighborhood of θ = 0 with £"(0) < 0.

-1/2

It was shown in 1953 by Kac, Murdock, and Szego that under these
assumptions
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I)-

as n-> oo for k fixed, k = 1, 2, . In 1958 Widom, [14], proved that
if t(Θ) is even and four times continously differentiable near Θ = 0 (in
addition to the assumptions already made) then

(3) Xn,k = ί(0) -

as n—> oo, where

a(n + I)"1]

= Γ / 2
Ϊ2π \ λctn'πθλdΘ .

More recently Widom and Parter, see [9]~[11] and [15]-[17], have
studied the behaviour of λΛtfc under less restrictive assumptions on the
nature of the maximum of t(θ). Suppose that t(0) is again the unique
maximum of t(θ), and that there exist constants σx > 0, σ2 > 0, and
ω > 0 such that

f ^ - ^ w θ—^°+
(ί(0) - σ 2 | / 9 | ω θ > 0 - .

1/2 1/2

Then

= ί(0) - o(n~ω)

where 0 < μ^ μ2^ , limfc_oo μ* = °° are eigen values of a certain
operator depending only on σlf σ2, and ω. The formula (4) evidently
includes (2) as a very special case.

Let a,β > 1 be fixed and let

2nn\P^β)(x) = (-1)"(1 - ^)-Λ(l + x)~βDn[(l - x)"+*(l + α?)p+ ] ,

where D = cί/daj, be the Jacobi polynomial of order n, n = 0,1, 2, .
The Jacobi polynomials are orthogonal on the interval [ — 1,1] with
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respect to the weight function

u

more precisely

x)*(l + xf

S i
Pnoi:β)(x)P^'β)(x)w(x)dx = δ(n, m)hn

- 1

where δ(n, m) is the Kronecker delta and where

(2n + a + β + ΐ)n\Γ(n + a + β + l)hn

= 2«+β+1Γ(n + a + ϊ)Γ(n + β + 1) .

Let t(x) be a real function in L\w) and let

for j , k = 0,1, •••. If

C. = [c(ifft)] λfc = 0, ,w

then Cw is a generalized Toeplitz matrix of index n associated with
t(x). Since Cn is real and symmetric its eigen values {λn>k}i+1 are real.
In part the studies carried out for ordinary Toeplitz matrices have
also been carried out for various classes of generalized Toeplitz matrices,
and in particular for the generalized Toeplitz matrices constructed
using Jacobi polynomials. For example, if we again define N(a, b; n)
to be the numbers of Xn,k's which satisfy a < Xntk S b and if v(y) is π~x

times the Lebesgue measure of the set {θ \ 0 ^ θ ύ π, t(cos θ) < y], then

( 5 ) lim —N(a, b; n) = v(a) — v(b)

whenever a and 6 are points of continuity of v{y). See [2; p. 114].
In [5] the author obtained formulas analgous to (2) and (3) but

applying to generalized Toeplitz matrices constructed using the various
classical orthogonal polynomials. Thus, for example, Let t(x) be defined
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and continuous for — 1 <: x <: 1, and have a unique absolute maximum
at x0, —l<xo< 1. Let t(x) be continuously differentiable in a neigh-
borhood of x0 and let t"(xQ) = — σ2 < 0. If Cn is the generalized Toeplitz
matrix constructed from t(x) using the Jacobi polynomials, then

( 6 ) = t(x0) - (1 - o(n~2) as

Let £(#) have a unique absolute maximum at x = 1, let ί(a>) be con-
tinuously differentiable in a neighborhood of 0 = 1, and let t'(l) = σ > 0.

Then

( 7 )

where 0 < zaΛ < za>2 < •••, are the positive zeros of Ja{z). See [5],
where a more precise result analagous to (3) is also given.

In the present paper we will obtain formulas analogous to (4) for
generalized Toeplitz matrices constructed using Jacobi polynomials.
For example let t(x) be continuous for — 1 ^ x ^ 1, let the unique
absolute maximum be at x — 1, and let
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t(x) — t(l) - σ(l - x)ω x -> 1 - ,

where σ and ω are positive. We then have

( 8 ) Xn>k = ί(l) - μk(kln)*> + o(n~^)

as n —•> co where 0 < μx^ μ2^ , lim*..,*, μk= <χ>, are the eigen values
of an operator depending only upon σ and ω, and α but not other-
wise upon ί(α?) nor upon /3. The case of a unique absolute maximum
in the interior of — 1 5Ξ a? ̂  1 is also considered.

The program of demonstration of our results runs parallel to that
employed in [17] Sections 2-7 are devoted to developing an appro-
priate perturbation theory in Hubert space. This theory is a rearticu-
lation and partial generalization of the perturbation theory constructed
by Widom. In sections 8-14 and 15-19 this theory is applied to the
case where the maximum of t(x) occurs at an end point of — 1 ^ x ^ 1,
and to the case where the maximum occurs at an interior point,
respectively.

A large number of known properties of Jacobi polynomials, Jacobi
functions of the second kind, Bessel functions, etc. are required in
the course of this paper. Many of these results are collected in the
Appendix.

2 A perturbation problem* Let H be a Hubert space with ele-
ments /, g, h, etc. The inner product and norm in H are denoted
by (I) and || | |. Let S and Sn be unbounded self-ad joint operators
in H with spectral resolutions.

S = \\dΦ(X) ,

Sn -

If S is the closure of the strong limit of the Sn's as n —> co then
Rellich's theorem asserts that in the strong operator topology

lim Φn{X) = Φ{X)
n—»oo

for every λ, — co < x < co, not in the point spectrum of S. See
[13, p. 56].

Let F and Fn be bounded not necessarily self-adjoint transforma-
tions of H, such that F is the strong limit of the Fn's as n—• co.
In order to fix our attention suppose that the Sn's are bounded, but
not necessarily S. Then for each n Sn>F — F£SnFn is a bounded self-
adjoint transformation. Let its spectral resolution be
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(1) S ^

Formally let SF = F*SF,

( 2 ) S,

The problem we wish to study is that of passing from the convergence
of the Sn's to S and the Fn's to F to the convergence of the Ψn(xYs
to Ψ(X). However there are several difficulties. First F*SF is not
in general self-ad joint or even densely defined. Secondly the Sn>F'&
may not suitably converge to SF. In §§ 3-6 we will show essentially
that if 0 ̂  Sn n = l,2, ---, 0 S S, (that is if the Sn's and S are
bounded from below) then these difficulties can be overcome.

Throughout we assume that the Hubert space H is separable,
while this is not at all necessary, it makes possible a simpler and
more intuitive language.

3 Definition, of SF. We assume henceforth that:
i. 0 ^ S is a self-ad joint operator on H;

ii. F is a bounded operator on H.
We define

S={f\FfeD(S112)} .

Here S112 is the unique positive square root of S and D(Slβ) is its
domain. We do not assume that S is dense in H although this is the
most interesting special case. Let M be the closure of S in H* M
is a closed subspace of H and inherits the structure of a Hubert space
from H. Our goal is to construct a self-adjoint transformation SF

on the Hubert space M with the properties:

(1) D(SF)dS;

(2) (

for all / G D(Sr) and for all geS. The construction of SF with these
properties has long been known, see for example [13; p. 35], however
it is included for the sake of completeness. We will need the follow-
ing simple and well known fact which we record as a lemma.

LEMMA 3a. Let A be a self-adjoint transformation on H and
let hneD(A) n = l,2, •••. / /

hn-^>h as n—> <χ>

and
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II A M = 0(1) as %-><*> ,

then h e D(A) and Ahn -* Ah.

Here "—>" indicates strong convergence and "-» " indicates
weak convergence in H. Lemma 3a is a special case of Lemma 4a
which is proved in §4.

For f,geS let us define

<f\β>= (Sll2Ff I S^Fg) + (f\g),

LEMMA 3b. With the definition of inner product and norm given
by (3) S is a Hubert space.

Proof. It is evident that S is a pre-Hilbert space. We need only
verify that S is complete. Suppose / , 6 S w = l,2, , | | |/w -fm ||| -> 0
as n , m — co. Since | |/Λ - / m |[ ^ | | |/Λ - / m ||| there exists/ e H such
that H / - / J I - 0 a s n - c o . Since || S^F(fn - fm) \\ ^ \\\fn - / m | | |
there exists ^e H such that || Sll2Ffn — ff || —> 0 as n—> oo. Applying
Lemma 3a with /&„ = F/% and A = S1/2 we see (since weak and strong
limits coincide when both exist) that Ffe D(S112) and that g = Sll2Ff.
Thus feS and

LEMMA 3C. There exists a linear transformation W of M into
S such that (f\g) = < f\ Wg > for all fe S, g e M and:

i. || Wf II 1̂11 Wf\\\ ύ\\f\\ forallfeM;
π. (Wf\g) = (f\Wg) forallf,geM;

iii. 0<(Wf\f) forallfeM.

Proof. For geM fixed (/\g) is a linear functional on Sand since

ffll^ I l l / I l l l l f f l l

(/1 g) is a bounded linear functional on S. Therefore there exists a
unique element g1 e £? such that

(/Iff) = </lfl1> for a l l / e S .

Clearly the mapping g —> g1 defines a linear transformation of M into
S, g1 = Wg. It is evident that ||| Wg \\\ ^ || g || so that i. holds. Sup-
pose that f,geS. Then
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so that ii. is valid if /, g e S. By continuity it is also valid for f,geM.
Thus W is a self-adjoint transformation on M. Since

(Wf\f) = <Wf\ Wf>>0 feS

and since S is dense in M we have 0 ̂  W. To show that 0 < W we
need only verify that Wf = 0 is impossible unless / = 0. If Wf — 0,
then

0 for all geS,

but since S is dense in M this implies that / = 0.

THEOREM 3d. There exists a self-adjoint operator SF on M satis-
fying conditions (1) and (2).

Proof. We define

S,= W-1- I.

It is evident from this definition that SF is a self-adjoint operator,
and that

D(Sr) = D(W-χ) = R(W)czS,

w h e r e R ( W ) i s t h e r a n g e o f W. I f f e D ( S F ) a n d geS t h e n

(SFf\g) = (W~y\g) -(f\g) = <f\g>-(f\g),

= (S1}2Ff\Sll2Fg) ,

and our proof is complete.

4* The resolvant relation* Let A be a closed linear operator on
M. It is not assumed that D{A) is dense in M. A subset CaD{A)
is said to be a core for A if the set {(/, g) | g — Af, fe C} in H x H
is dense in the set {(/, g)\g = Af, feD(A)}. Let An and A be closed
linear operators in H and let C — {f \ Anf-^> Af as n —> oo}. If C =
D(A) we say that A is the strong limit of the An's; if C is a core
for A we say that A is the closure of the strong limit of the An's.

LEMMA 4a. Let An and A be self-adjoint operators on H and
let A be the closure of the strong limit of the An's. Then if

fn-f, II Anfn || = 0(1) ,

we have

feD(A) and Anfn A-f.

Proof. We denote by p the positive integers {1, 2, 3, •}. A
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subsequence ft of p is then a subset {nu n2, ns •} of p with 1 ^
Wi < w2 < . By "αΛ —• α as n —> co in ft" we mean that lim^ooa%k =
α. This notation enables us to dispense with awkward subscripts.

Let C — {/1 Anf —> Af as ^ —> co}. By assumption C is a core for
A. Since || Anfn \\ = 0(1) given any subsequence ft of p there exists a
subsequence p2 of ft such that Anfn -* # as w —* co in p2 for some
g G H. This is because bounded sets in H are weakly conditionally
compact. In particular if h e C then

(Anfn \h)-*(g\h) as n -> co in p2 .

On the other hand

(Anfn I λ) - (ΛIΛΛ)

for all (large) ^ and thus

(Anfn \h)-+(f\Ah) as w -> co in ft ,

so that

(g\h) = (f\Ah).

G i v e n fc e D{A) a n d δ > 0 t h e r e e x i s t s heC s u c h t h a t \\k — h\\ <δ,

\\Ak — Ah\\ < δ. T h i s i m p l i e s t h a t

(g\k) = (f\ Ak) for all fc e D(A) .

Consequently / 6/>(A*) and A*f = g; but A* = A. Since every sub-
sequence ft contains a subsequence ft such that Anfn -^ Af as w —> co
in ft it follows that Anfn -*- Af as n —• co in ft

In what follows we assume that:
iii. 0 ίg Sn is a self-adjoint transformation on JET w = 1, 2, •; JPW

is a bounded transformation on H n = 1, 2, •; R{Fn) c D{Sn) n =
1, 2, . Assumption iii. implies that Sn>F — F%SnFn is a bounded
operator on H for n — 1, 2, . We further assume that:

iv. F is a bounded operator on H and i*7 is the strong limit of
Fn as n —> co

v. S1/2 is the closure of the strong limit of ST as w—> co;
vi. S1I2F is the closure of the strong limit of Sll2Fn as w-> co.

We set

S' = {/1 Sl'*Fnf-+ S1I2Ff as n - c*} .

It is evident that S ' c S .

THEOREM 4b. Under assumptions i-vi i/ ίΛerβ exists δ > 0 sucΛ,
tfcαt dist {z, ̂ (S^)} ^ δ, dist {z, σ(Sn,F)} ^ δ, ^ = 1, 2, , then for all
feM
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{Sn,F - zl}-1/ — {SF - zl}-1/ as n -> oo „

Proof. Take feM. We will show that if p± is an arbitrary sub-
sequence of p then px contains a subsequence p2 such that

{Sn,F - zl}-1/ — {SF - zl}~ιf as n -> oo in fc .

This will prove our result. Because dist {z, σ(Sn,F)} ^ d it follows that
II {Sn>F — z/}""1/ II = 0(1) as n—+ co. Therefore we can find a subsequence
fe of p1 such that if gn = {Sw>i, — ^ /}"1/ then #„ -^ r̂ as n —• oo in ^2

for some # e ZΓ. We must show that # = {SF — zl}'1/. Since JP is
the strong limit of Fn we have

^ ^ % -*Fg as ti -> co in p2 f

and since SntFgn = f + zgn we have

( S i ^ f f . I S^Fngn) - (S.., ff I gn)

- (/ + w I gn) = 0(1).

Therefore by Lemma 4a FgeD(S1/2) and Sll2Fngn-*> Sll2Fg as w— oo
in £2. In particular fifeS. Take /&eS'; then by the above

lim (Sn,Fgn I h) = lim ( S i ^ ff I SpFJi)
P 2 P2

- (Sll2Fg I S1/2F/ι) .

On the other hand

l i m (SntFgn \ h) = l i m ( / + zgn \ h ) = (f + zg \ h ) .

Thus

( 1 ) (Sll2Fg I Sll2Fh) = (f + zg\h)

for all heS'. Since S' is by assumption a core for S1/2i^ (1) holds,
for all heS, and thus for all heD(SF). For such an h we have

(Sll2Fg I S 1 / 2 i^) - (g \ SFh)

by Theorem 3d. Consequently we have shown that

(9 I SFh) = (f + zg\h)

or equivalently

(g\{Sr-z*I}h) =

for all h e D(SF). This implies that

{Sr-z*I}*g=f
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and hence that
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5* Spectral resolutions* Let

Sn,F = Γ \d¥n(x)

Jo-

be the spectral resolution of SnιF on H and
SF = \°°XdΨ(X)

Jo-

be the spectral resolution of SF on M. We assume throughout that

ψn(\) = Ψn(χ+), 0 ^ λ < oo, n = 1, 2, , that 2^(0-) = 0, and simi-

larly for Ψ(X).

THEOREM 5a. If λ ^ 0 is not in the point spectrum of SF and
if feM then

as n

Proo/. Fix / e l , and let A = Ψ(X)f, K = ^%(λ)/. It is enough
to show that if & is any sequence such that hn-^h' as n —> co in &,
then fe' = /̂ . In order to identify h' we proceed as follows. We assert
that if g e H then

( 1) lim {2πi)A {{Sn,F - zl^f \ g)(X - z)dz
p Jσ

= {2πi)A ({SF - ziy'f I ff)(λ - z)dz ,
Jσ

where C is the curve pictured below.

Indeed by Theorem 4b

lim({Sn,F-
P

"1/1 g) =
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for all z on C except z = λ. Moreover starting from the inequality
|| (A — si)"1!! = 1/dist {z, o{A)} one can easily show that for z on C
and some constant k(C)

I ({Sn,F - si}"1/1 g) I ̂  fc(C)| λ - 2 n\f || || ^ || .

Applying the Lebesgue limit theorem we obtain (1).
A simple computation gives

j ( 0 if μ > λ .

We have

i)-1( ({SF - 2/}

= (2τri)-1( (λ - z)dz\~ (μ - zyHμ
Jo Jo-

This iterated integral is absolutely convergent and therefore using
Fubini's theorem and (2) we obtain

(3 ) {2πi)A ({SF - zl}-1/1 ff)(λ - z)dz - Γ (μ - X)d»(Ψ{μ)f \ g) ,
J(7 J O -

= ({SF-Xl}Ψ(X)f\g),

= ({SF - Xl}h I g) .

Similarly

( 4 ) (2τri)-1( ({SH., - 2/}-1/1 flr)(λ - z)dz = ({Sn,r - \I}ΨΛ(\)f I fir) ,
Jσ

= ({SM,F - λ/}A. I fir) .

Using (1), (3), and (4) we see that

( 5 ) ({Sn,F - X l } K I g) - > ( { S ί - Xl}h \g) as w -> <χ> in t».

Since ftm = !Γn(λ)/ it follows that

n I S^ 2 F M fc κ ) - ( S n , F h n I Λ.)

We also have, since F is the strong limit of Fn, that

i^/i,, -*• Fh' as w —* co in

Applying Lemma 4a we find that h'eS and that STFJιn
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as n —> co in ft. Suppose that geS; then

(Sn,Fhn \ 9) = {STFnhn I S^Fng)

and thus

(6 ) (Sn,FK I g) - (Sll2Fhf I Sll2Fg) as n - co in ft

also

( 7) (S,Λ I flf) = ( S 1 ' 2 ^ I S^ify) .

Inserting (6) and (7) in (5) we find that

( 8 ) {Sll2FW I Slί2Fg) - X(h' | g) = (Sll2Fh \ Sll2Fg) - X(h \ g)

for all g e S'. Using assumption vi. we see that (8) holds for all
geS and therefore in particular for all geD(SF). Appealing to
Theorem 3d we obtain

(hf - h I SFg) = λ(Λ' - h I flf)

for all geD(SF). Since h' — heScM this implies that

S,(A' - A) = λ(A' - h) .

However by assumption λ is not in the point spectrum of SF so that
hr — h = 0 and our proof is complete.

6. The perturbation theorem* In this section and also in § 7 we
make the following convention. Suppose that P is a subspace of H.
If E is a projection of P onto a subspace Q of P then i£ may also
be regarded as projection of H, namely the projection of H onto Q.

THEOREM 6a. Under assumptions i-vi we have for every feH

Ψn(\)f-> Ψ(X)f as n-* co ,

for every λ not in the point spectrum of SF.

Proof. It follows from Theorem 5a that

(1) Ψn(X)f^Ψ(X)f a s * * - * * ,

for all / e l . Suppose next that g J_ M. Since || Ψn{X)g \\ = 0(1),
given any subsequence & there is a subsequence £2 of ft such that

^h as ?ι —> co in ft

for some h e H. If fe M then



120 I. I. HIRSCHMAN, JR.

Since (Ψn(X)f | g) = (f\V,(\)g) we have using (1)

Thus (h\f) = 0; i.e. h ± M. Now

= {Sn,FΨJ\)g \ g),

Therefore by Lemma 4a FheD(S112); that is, heScM. But h A_ M
so that /& — 0. We have thus shown that

( 2 ) Ψn(X)g — 0 as w->c*> if # j _ M

The relations (1) and (2) together prove that

( 3 ) Ψn(\)f-Ψ(X)f asu-c,

for all / e H. Since weak convergence of projections implies strong
convergence our proof is complete.

7 Convergence in dimension. In this section we will show how
starting from the conclusion of Theorem 6a and one further assumption
it is possible to prove that the dimensions of the spectral projections
converge. Suppose that 0 ̂  Rn n — 1, 2, are bounded self-adjoint
operators defined on subspaces Nn of a Hubert space H. Let 0 fg R
be a self-adjoint operator on a subspace N of H. Let

be the spectral resolutions of Rn on Nn and of R on JV. We list two
conditions.

a. En(κ) —• ^(λ) as ^ —• oo for all λ > 0, λ g σp(i2), the point
spectrum of iϋ. Here "—>" is in H.

b. there is a number m > 0 such that if fn e Nn, ||/» || = 1, and
(•B»/» I fn) ^ Wj < m for w e t)χ, then ft contains a subsequence p2 such
that / n — / Φ 0 as w -^ oo in ft. Here " -- >? is in ίΓ.

THEOREM 7a. Under assumptions a. αm£ b. we

(1) dim E(\) < oo 0 ̂  λ < m ,
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and

( 2) lim dim En{X) = dim E(X)

for 0 <; λ < m, λ ί ^ (

Proof. We first note that assumption a. alone implies that if
0 ^ λ < oo, x$σp(R), then

( 3 ) lim dim En(X) ^ dim ^(λ) .

In (3) we admit "oo ;> co". Suppose ά\mE(X) ^ &. Then there exist
orthonormal vectors gl9 g2, , gk in E(X)H. By assumption a. we have

lim En{X)gό = E(X)g3 = gd j = l,---,k,

from which it follows that for all sufficiently large n {En(X)gj}ϊ, which
belong to En(X)Nn, are linearly independant.

From this point on we use assumptions a. and b. We suppose
that X $ σp(R) and that 0 ^ λ < m. If dim ^(λ) = co then we can
find an infinite orthonormal set of vectors {g3)T in E(X)H. Using a.
we see that there exists a subsequence ft = {0 < nλ < n2 < } such
that

\\ Enk(X)gk-gk \\-+0 as fc— oo .

If we set fnk - ^ ,(λ)^/ | | En]c(X)gk \\ then / , is defined for nePl. We
haveΛeiV,, | | / , | | = 1, and (Rnfn\fn)^X for wefc. Therefore by
b. there is a subsequence p2 of ^, such that fn~^f as w—• oo in p2,
and / Φ 0. But then gn-^fφ0 as w —> oo in £2. However it is obvious
that gn -^ 0 as w —> co. Thus dim ^(λ) = oo leads to a contradiction
and (1) is true.

We assert that (2) is true. Set k = dim E(X). If (2) is not true
then in view of (3) there is a subsequence ft such that dim En(X) > k
for n 6 ft. Let glf , gk be an orthonormal basis for E(X)H. For
each n e ft we can choose fn e En(X)Nn such that \\fn\\ = 1, / n _L glf ,
#£. We have (Rnfn \fn)^X and therefore by b. there is a subsequence
ft of ft such that fn-^fφ0 as n -> oo in ft. Now / n = En(X)fn and
by a. En(X)fn -^ E(X)f as w -> oo in ft. Therefore / = E(X)f and
/ e E(X)H. Since f ± glf , 0* / must be 0. This is a contradiction
and our assertion follows.

8* Maximum at the end point. As we announced in the intro-
duction §§8-14 are devoted to the case in which t(x) has a unique
absolute maximum at x — 1. We assume that t(x) is continuous for
— 1 ^ x ^ 1 and that



122 I. I. HIRSCHMAN, JR.

(1) t(x)

We further assume that

( 2) t(l) - t(x) — (1 - α?)ωL(l - x) as x -> 1 - .

Here ω > 0, and !/(?/), defined for 0 < y ^ 2, is positive, continuous,
and slowly oscillating as y—*0+. We recall that L(y) "slowly oscil-
lating" means that for every ε > 0, L(y)yΈ is increasing and L(y)y~*
is decreasing for 0 < y < a(ε) if α(ε) is sufficiently small.

In what follows it will be necessary for us to work with four
Hubert spaces. The first Hubert space is L, the elements of which
are complex functions f(k) defined for k = 0,1, , with inner product

The second Hubert space is IT the elements of which are complex
measurable functions on — 1 ^ x ^ 1 with inner product defined by

(/!»)** =

Here watβ(x) = w(x) = (1 — x)"(l + x)β, a > — 1, β > — 1. The mapping
Φ from L to LΓ defined by

(the partial sums of this series converge in the metric of LΓ) and its
and its inverse Φ~τ from LΓ to L defined by

are unitary mappings. Both H and £Γ^ have as elements complex
measurable functions on [0, oo) with inner products

= \~f(u)g(u)*udu ,

\f((r
JO

The mapping α/r from H to £F~ defined by

ff'(n) = \ f(z)Ja{zn)zdz
Jo

(the partial integrals converge in the metric of H~) and its inverse

ΨΛ~1/ (̂ ) = \ f(u)Ja(uz)ud
Jo

u
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are also unitary mappings. See in this connection [1; p. 73] and the
references given there.

Let us set

/ Λ,\«/2/ 0 , \β/2/ Λ, \l/2

θ?'β)(u) = ( l - cos—j ( l + cos— J [sin—J wll2n-112

for 0 < u ^ πn. If u > nπ then ί̂f β)(u) is defined to be 0. For each
n = 1, 2, we define a mapping from IT to flΓ by the formula

Xnf-(u) = /(cos ^y«>β)(u) O^u^nπ.
v n/

Note that χnf-(u) is 0 for t6 > nπ. A simple computation shows that
the mapping χn is isometric and into. We further define

χ*/.(α?) = /(w arc cos x)(n arc cos a;)1/2(l - x2yil4w

The mapping χ* is a partial isometry of EΓ onto L^. Specifically χ*
is isometric on χ w i ^ and zero on (χnLΓ)L, the orthogonal complement
of χnLΓ in ΈΓ. Note that χ*χ% - ί o n Γ and χ w χ: - J on χ,L" and
0 on (xJT)\

We next introduce various operators on these Hubert spaces.
a. En is defined on L by the formula

The following operators are defined by "transferring" En:

E2 on ZΓ denned by E2 = ^.E^- 1

FΓ on H" defined by F? = χ.E;χ* .

b. T~ is defined on IT by

τy (χ) = [ί(D - «(*)]/(*).

We set:

T on L defined by T= Φ^T^ψ

2T on H defined by ΓΓ = X.T^χi

S; on H~ defined by S ; =

c. S" is defined on H~ by

d. F is defined on H by
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We set

F~ on H defined by F~

If λΛfi Ξ> ^ \n,n+i are the eigen values of Cn, see § 1, then

are the eigen values of the following operators:

where these symbols are to be read "EnTEn restricted to EnU\ etc.
The eigen values of

are in increasing order {(ί(l) - λWffc)2ω^2ωL(tι-2)-1}SJίί. In the following

sections we will show that F^S^F^ "converges" to S~^ as n —> oo,

and thus, using the results of sections 2-7, that if

0 < μx <: μ2 ^ , lim μk = + co

are the eigenvalues of

then

lim (ί(l) - λB,,)2^2ML(w-2)-1 = ft fc = 1, 2,

or equivalently

9. Convergence of (SC)1'2 to (S")1'2. It follows from § 8 that for
every feH~ we have

where
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ίί(l) - t(cos-) 0 < u < nπ
tn(u) = \ \ n/ ~ ~

to nπ < u .
Consequently

where

LEMMA 9a. Under the assumption of § 8 we

( 1 ) Urn βΛ(u) = u 2 ω 0 ^ w < co ,

αwd /or (my ε > 0 ί/tere is α constant M(s) such that for n = 1, 2,

( 2 ) 0 ^ sn(w) ^ M(ε){^ε + u~ ε K ω , 0 g % < co .

Proof. By assumption

( 3 ) ί(l) - *(α?) - (1 - x)ωL(l - x)A(x) as x — 1 -

where L(2/), continuous and positive for 0 < y ^ 2, is slowly oscillating
as y—>0+, and where J ( l - ) = 1. It is well known and easily veri-
fied that this implies that if 0 < yu 0 < y3, and 0 < aλ ^ ^ / ^ ^ α2

then

( 4 ) L(^/1)/L(τ/2) -> 1 as yx and ya — 0

We have

sn(u) = (Win— VTLf2sin)/L(^)l^ίcos

for 0 ^ ^ ^ nπ, and (1) is an immediate consequence of this for-
mula.

From the fact that L(y) is slowly oscillating as y—>0+ it is
easily verified that for each ε > 0 there is a constant A(ε) such that
if 0 < yx ^ 2, 0 < y2 ^ 2 then

( 5 ) L(Vl)IL(y2) S A(ε)[(yjy2y

It follows from (3) that if M is sufficiently large then

0 ^ ί(l) - t(x) ^ M(l - ί»)ωL(l - α?) - 1 ^ a? ^ 1 .

Consequently if 0 ^ u ^ nπ we have
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0 ^ sn(u) ̂  M ^ s i n ^ Y X φ s i n 2 — ) / L{n~2)\ ,
V 2nl L V 2nπ J

0 ^ sn(u) ^ A(ε)M^2472^2sin2—Y + f2n2 sin2 — V Ί ,
LV 2nl V 2n/ J

from which (2) follows.

THEOREM 9b. (S")1/2 is tfcβ closure of the strong limit of (S2)112

as n —* co.

Proo/. Let / e D[(ST)1/2] and ε > 0 be given. Let f8(u) - e~8uf(u).
It is evident that if <5 is sufficiently small then

11/ - / β IU-

and

II (Sy'Xf - Λ) |UΛ - {j j/W Γl 1 - ^δ M IV^duJ'2 < ε .

Moreover using (1) and (2) and the Lebesgue limit theorem it is evident
that

(s:y!2A - (SΊII2A in jsr as *->«>.

1(X Convergence of F~ to F~.

THEOREM 10a. If F~ and F" are defined as in % 8 then F~
converges strongly to F~ as n—* en.

Proof. In order to shorten our formulas let us set

— ̂ Γ'jsin ^ Γ V 1 / 2 .
nn I n)

Starting from the definition of F~ as χnE^χt it is easy to verify that
for all / e JEΓ

(1) F:p(u) = — Σ R(k, n, u)a{k, n)
n k=o

if 0 ^ u ^ nπ and F*f (u) = 0 if u > wπ, where

, n, ζ)ζdζ .

Let us now assume that f(u) is continuous for 0 g u < oo and
vanishes except for 0 < α i ^ ^ ^ α 2 < oo. We will show that under

R(k, n, u) = h^Ψt^ίcos— )\w(cos
V n/y \
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this assumption i C / (u) —* F~f (u) uniformly in any subset 0 < bλ ^
u ^ b2 ^ co. We first note that

< 2 ) lim (2a+βh^)lk = 1 .

This follows immediately from the formula of § 1 defining hk. Formula
(5) of the Appendix asserts that

< 3 ) lim k-«Pk

{«>v(cos —) = (zl2)-«J«(z)
k-^co \ k /

uniformly for z in any compact subset of the complex plane. It is
easily deduced from this that there exists a constant M such that

( 4 ) \R(k,n,Q\£ - - / * - u 1 λ α + ( 1 / 2 )

n

if

0 < α 1 ^ ζ ^ α 2 < c o , 0 ^ k ^ n , n = 1, 2, .

Let us set

Σ (δ> w, w) = — Σ ^(^> n, u)a{k, n) ,

= — Σ

Then Fnf-(u) = Σ i (δ, ̂ , u) + Σ 2 (δ, n, u). Using (2), the inequality
(4), and the corresponding inequality for R(k, n, u) when 0 < bx ^
^ <̂  62 < co we find that

Σ (δ, n,u)\£ Mn-2-2* Σ (k + 1)
1 0^k<δ

2*+1

for

&! ̂  % ̂  62 , 0 < δ < 1 , n = 1, 2, .

It follows from (3) that

( 5 ) lim ΪR(kf n, ζ) - (—Tj^kζn'1)] = 0

uniformly for

nδ ^ k ^ n , ax S ζ ^ α2

^Consequently

l i m [α(fc, n ) - gikn-'Xkln)1'2] = 0
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where

uniformly in k for nd ^ k ^ n. Here of course g = ψ"1/. Using (5)
again we have

limΪR(k, n, u) - (— = 0

uniformly for

It now follows that

(6) lim

nd ^ k ^ n

-i- Σ

Su 5Ξ; δ2 .

= 0

uniformly for £>! :£ u ίΞ 62 We assert that

(7) l i m i Σ 9(kn-1)Ja(kn-1uy^-=[g(z)Ja(uz)zdz
n-*oo % nδ^k^n n Jδ

uniformly for bλ ^ u ^ δ2. Indeed the sum on the left is a Riemann
sum for the integral on the right, so that (7) is certainly true for
each u > 0. To show that it holds uniformly for 6X ^ u ^ 62 it is
sufficient to note that

JLJL
du n n

<M

uniformly for 6i ^ w ^ 6a n = 1, 2, so that the sequence of func-
tions on the left in (7) is equicontinuous. Given ε > 0 let us choose
δ > 0 so small that

Σ(<5, n, u) < ε/2 , I Γ g{z)Jΰύ{nz)zdz
1 I JO

<e/2,

for 6j ^ u ^ δ2. It then follows on collecting our estimates that
I Fnf (u) - Fy(u)\ < e for bx ^ u ^ δ2 and for all sufficiently large w..

Let C~ be the set of functions / e H~ which are continuous and
have support in a±^n ^ a2 for some 0 < a± < α2 < co. Using what
we have proved above and the fact that || F~ \\ = 1 n = 1, 2, , we
see that if / € C" then F*f-*Fy as ^-> oo. Since CΓ is dense in
£Γ^ we see, again using the fact that || F~ || = 1 n = 1, 2, , that
i^" -^ F as ^ ~> c». However weak convergence for projections implies
strong convergence so that F? —> F~ as n —» oo.

l l Convergence of Γ to (S")1/2F Part L It remains to
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prove that (Sy/2F~ is the closure of the strong limit of ( ^ ) C
The considerations here are considerably more involved than those of
§§ 9 and 10 and will occupy §§ 11-13.

Let D be the set of functions h(z) in H which can be written in
the form h(z) = zahx(z) where hx{z) defined for - oo < z < oo is even,
infinitely diίferentiable and has compact support. We set LΓ = ψD.

LEMMA l la. / / / e / Γ then f(u) = u«f1(u) where f,(u) is the
restriction to 0 < u < oo of an even continuous function satisfying
fλ{u) = 0(u~r) as u —» + oo for every r.

Proof. Suppose that feβΓ then, with an evident notation,

where QfΛ(s) = z-aJa(z) is an even continuous function satisfying
I 9U«) I ^ A(l + I z \q) for 0 g z ^ oo. Here g = max [0, - α - (1/2)].
If we set

Δk-(z) = k"(z) k'{z) ,

then

Consequently

where in the last step we have integrated by parts repeatedly. It is
easy to deduce our assertion from this last formula.

Consider the rectangle

-1/2 4- iτ 1/2 + iτ

1/2
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Let 7*(0) be the harmonic measure of the side σk with respect to the
point iθτ. Later in this section we will need estimates of the 7fc(#)'s.

LEMMA l ib. With the above notations we have the inequalities:

Ίi(θ) ^ 1 - θ - 2θτ cosh τπ ,

7,(0) ^ θ

78(0) ^ τθ cosh τπ ,

74(#) S TΘ cosh τπ .

Proof. For the definition of harmonic measure and its basic prop-
erties see [8]. By the principle of domain extension 72(θ) is less than
or equal to the harmonic measure of the line segment connection
— (1/2) + iτ to (1/2) + iτ in the strip bounded by the lines Imz = τ
and Imz = 0

<> iθτ

z plane

This is trivially less than the harmonic measure of the whole line
Imz = τ. But this last is θ, and thus 72(θ) ̂  θ.

A second application of the principle of domain extension shows
that 73(<9) + 74(#) is less than the harmonic measure of the segments
connecting -1/2 to -(1/2) + iτ and 1/2 to (1/2) + iτ in the half strip
bounded by the lines Rlz = —1/2, Rlz = 1/2, and Imz = 0 and lying
in the upper half plane.

-1/2 1/2

This is trivially less than the harmonic measure of the two vertical
bounding lines. If w = sin πz then the half strip is mapped conf ormally
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- 1

i sinh πθτ

w plane

onto the half plane Imw ^ 0. The point iθτ goes over into i sinh πθτ.
Since harmonic measures are invarient under conformal mapping we
see that 73(#) + 74(#) is less than the harmonic measure 7 of the infinte
intervals (oo, —1] and [1, oo) with respect to isiήhπθτ. But this
can be exactly computed using the Poisson formula for the half-plane.
We find that

7 ^ — sinh πτθ \°°[x2 + sinh2 πτθ\~Ύdx ,
π Ji
2

rg — sinh πτθ .
π

Since Ύ3(θ) = yA(θ) by symmetry and since 78(0) + yA(θ) < 7 we find that
78(0) and 74(#) are both less than (1/π) sinh πτθ. Using the mean value
theorem we see that (1/π) sinh πτθ ^ τθ cosh πτ, etc.

Let A be the subset of D consisting of those functions in D
which vanish for cx ^ z < co for some cλ < 1, and let DC = ψDτ. Let
i>2 be the subset of D consisting of those functions in D which vanish
for 0 g z ^ c2 for some c2 > 1 and let Z)f = ψ\Da The principal result
of the present section is the following.

THEOREM 11C. If fe DC or DC and if (as in § 10)

α(fc, n) - \n'f(ζ)R(k9 n, ζ)ζdζ
Jo

then for v fixed v = 0, ± 1 , ± 2 , , we have

a(n, n + v) == 0(π~r) as tι —> oo

/or β̂ er̂ / r.

Proof. We first consider the case / 6 />^ or DC We have

α(&, n) =

where

^(fc, w) = \*"*f(ζ)R(k, n, ζ)ζdζ ,
Jo

<φ, n) = Γ
J%x/2
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Using Lemma l la and the relation

\nXR(k9 n, ζ)%dζ = n
Jo

it is apparent that a3(n, k) = Q{n~r) as n -> oo for every r > 0. Suppose
now feDf. If we set

at(h9 n) -

aτ(k, n) -

where

and where Λ(ζ) = ζ^/(ζ) then, see (10) of the Appendix,

πiax{k, n) = αf(fc, n) — ai{ky n) .

Note that if β is large Q£(cos ζln)Uζ)Θn{Q may not be integrable
near ζ = nτr This is the reason for splitting off a2(n, k). Apply
Cauchy's theorem to teach of the curves below and then let /?

inτ/2

radius p

—inτβ

We obtain

where

αf(fc, n) = l ί

(ίwτ/2) + («,χ/2)

inτl2

+ _
8 —*
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In all cases the integrand is

\ n

Let us put

( f Λ -α»/2 ( f Λ - β / 2 f f Λ1/2

Θi(t) = ΛΓ1^cosh — - ]Λ icosh — + 1 \ \t sinh — \ t«

for 0 < t < co. Keeping careful track of arguments we find that

Since fτ(ζ) is even If — Ix

+ = 0 and thus

If h — ψ"1/ then we have

where ^ < 1. It follows that fx{ζ) is an entire function of ζ and
that for any c, cλ < c < 1,

0

see [1; p. 85]. By (11) of the Appendix we have

Qn+Jcos ί—iτ + ξn-'X] I ^

if y is fixed. Since

^ξ^ nπ/2

0 ^ f ^

we see that If vanishes exponentially as n —> co. 1+ can be similarly
treated.

In order to estimate If we consider the rectangle below.
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—n(π + 1) -f iτn

This rectangle is similar to the rectangle of Lemma lib. Let

Mt = l.u.b. I Λ(ζ) I ζ on σt ΐ = 1, 2, 3, 4 .

By the principle of harmonic majoration

log fi^-nπ + inτθ) I ̂  Σ ΎίW logMt.

We have Mx ^ An~\ M, ^ Aecrίl i = 2, 3, 4. By Lemma l ib if τ is
sufficiently small

+ 7s(0) + ylθ)} ^ Θ , o ^ 0 ^ — .
^ 2

For τ so chosen

fi(—nπ + i $ ^ Aβ^" r / 3 0 ^ )? g τn/2 f

uniformly in n. On the other hand by (11) of the Appendix

ί AnQe~v 0 <>7] <^ τn/2 r

and an elementary argument shows that

kna 0 ^ Ύ] S τn/2 »

Since r is arbitrary these estimates imply that If = 0(w~r) as n -> oo
for every r. I3

+ can be dealt with similarly.
We now turn to the case feD?. We have, if h = ψ*-1/,

/(ζ) = j\(«)ΛK)^ ,

where 1 < cx < c2 < co. Since, see [1; p. 4],

we have
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where

and hence

where

ai(k, n) = a^(k, n) + a[2)(k, n)

, n, ζ)ζdζ , ΐ = 1, 2 .

The functions /(1)(ζ) and /(2)(ζ) are analytic in the plane slit from — oo
to 0. Let us apply Cauchy's theorem to one or the other of the two
curves below and then let p-^0 + .

inτβ

radius p

-inτβ

\

1

> I

1

^ Ί
1

A

We see that

S inτβ Γ{inτl2) + (nπl2

Til) _ \

0 Ji%τ/2

S -inτj2 n-inτj2) + (nπ

7(2) _ I
f ±2 — \

0 J-inτl2

In I^\ j = 1, 2, 3 the integrand is

where

ΐ = 1, 2

Γ d )
Γnx/2

Γwx/2

( r \i/2/ r \i/2

cos^-) (sin-^-) ζ+1/2
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From this we see that if

/ f \α>/2/ f \β/2Γ f
Q\(t) = hϊMcosh— - 1) (cosh— + 1) itsinh±

\ n / \ n / I n

1/2

ni

then

Adding we find that

(cosh— )Ωl(t)dt.
\ n/

Since arg t = 0

e^HPiUP1*) + e-rt'^HPite-**1*) = 0 ,

see [1; p. 5]. We have /χ(1) + /i(2) = 0 and t h u s

α^w, fc) = /2

(1) + J3

(1) + /2

(2) + ί3

(2) .

I t follows from [1; p. 85] t h a t if 1 < c < c2 then

l-iτn + f) I ̂  Aβ^C7ίl/2 0 ̂  f ^

while by (8) of the Appendix

Pn+v(cosϊ—iτ + ξn-1!] I ̂  A^geTίl/2 0 ^ f ^ nπ/2 .

Since trivially

(-|ΐnτ + ξ) I ̂  An O^ξ ^

we see that 72

(1) vanishes exponentially as %->oo and thus that /2

(1) =
0(n~r) as ^—* oo for every r. Similar considerations apply to 72

(2).
Using Lemmas lla and lib we can deal with 73

(1) and J3

(2) very
much in the way we dealt with 73

+ and 73~\

12. Convergence of (SC)1/2iC to (Syi2F~. Part II.

LEMMA 12a. Let g e D^ Then for every nonnegative integer N
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we have

lim [
n->°o Jo

2udu ^ (lλr[u**\ g(u) \2udu .
2 / JO

Proof. By (1) of § 10 we have,

9 n)

where

S nπ
R{kt n, u)g(u)udu .

0

Let g^u) — g(u)(l — cos u/ri). Using the recursion formula, (1) of the
Appendix, a short computation shows that

(l - cos^Wflf M - Fϊg

Using Theorem l ie this implies that

l - c o s ^
n

and thus since 11 F? 11 =

( 1 )

Now

( 2 )

1 - c o s —
n

- cos —
n

udu

1 - c o s —
n

2udu + 0(n~r) ,

I g(u) \2udu + 00

n

^ 2 ( — - ^ O^u^nπ
7C 2n/

0 ^u <

Multiplying (1) through by (1/4) π V and using (2) we find that

(*V| F?g-(u) \2udu ̂  f—Yί V | ff(w) |%ώ^ + 0(^"r+2) ,
Jo \ 2 / Jo

which implies our result for N = 1. The argument however is valid
in general if we use (1 — cos u\ny in place of (1 — cos u\n).

THEOREM 12b. If feD? then
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lim ii (syι*F~f - (s:yι*F:f\\ = o
n-*oo

Proof. An elementary argument gives

where

I, = Γ| u-F~f>(u) - sn(uy*F:f-(u) \*udu ,
Jo

J3 ^
Jr

I3= \\(u)\Kf'(u)\*udu.
Jr

By (2) of § 9 (if T ̂  1) then

J3

Choose iV so that if α = AN - (2ω + 1) then a > 0. We then have

t4*! F:/-(U) \*udu .

It is now evident from Lemma 12a that if T is sufficiently large then

( 3) ϊίm" I, < e/4 .
71—>oo

Since F~f*{u) = f(u) for feD? we see using Lemma l la that for all
sufficiently, large T

(4) / 2 < ε / 4 .

Suppose now that T has been chosen so that (3) and (4) hold. Since
lim^oo sn{nfβ = uω boundedly for 0 ̂  u ^ T and since by Theorem 10b
Fnf-(u)-*Fy-(u) in £Γ we have

(5) lim Λ = 0 .
n—>oo

Combining (3), (4) and (5) gives

ΐϊS 11 (sywy - (S Γ-F;-/ II ̂  e,
71->oo

but ε is arbitrary, etc.

LEMMA 12C. Let g e D7; then for every nonnegative integer N
we have

) \2udu ^ fϋLY^ί^j g(u) \2udu .
\ 2 J
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THEOREM 12d. If feJD£ then

n—*oo

Note that for fe D?, Fy = 0.
The demonstrations of Lemma 12c and Theorem 12d are so much

like those of Lemma 12a and Theorem 12b that they are omitted.

13 Convergence of (Sy/2F~ to (Sy/2F~, Part III. If

f(u) = \~ f*(z)JΛ(zu)zdz

Jo

g*(z)Jφ(zu)zdz
0

and if

S oo

{f(u)g(v,yur*}J0(uz)udu
0

then h*(z) is a "convolution" of f*(z) and g*(z). Indeed if a ^ -1/2
then there exists a very interesting formula for h* in terms of / *
and g*9 and it is possible using this formula to read off simple prop-
erties concerning supports such as those proved below. See, for
example, [3] or [4]. However these arguments are not available if
- 1 < a < -1/2.

Let δ(z) be a nonnegative function in Dx such that

(1) [°°δ{z)z«+1dz = 2"Γ(a + 1) a > - 1 .
Jo

We define

Δ(u) = 1 δ(z)Ja(zu)zdz .
Jo

Let also Aτ(v) = vr*A(u). We know from Lemma lla that Ax{v) =
0(u~r) as u —• + oo for every r. It is easily seen using (1) that A±(0) = 1.
Also Δλ{u) is the restriction to the real axis of an even entire function
Ax(w) which satisfies | Δλ{w) \ ̂  Aelvl(l + | w \q), w = u + iv, where
q = max (0, —1/2 — a).

LEMMA 13a. Let f*(z) e H. If

l f*(z) vanishes for c ^ z < co;

2. f(u) = \~f*(z)Ja(uz)zdz;
Jo

3 . /*(λ,2) =
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then z-«f*(X,z) is the restriction to 0 g z < GO of an even infinitely

differentiable function and / * ( λ , z) == 0 for c + X^z < <».

Proof. We will merely sketch the demonstration. Since

we have

2/*(λ, 2) = (
JO

It is easily seen that this can be rewritten as

2/*(λ, z) = Γ m\zu)flu)ΔiXu)u«^du
J-oo

where ^ has argument 0 for 0 < u < oo and argument TΓ for
— co < u < 0. By Cauchy's theorem if

•= Γ H

then

where

1= ϋ

S -Γ+ίΓr fίΓ+iίΓr

Fixing r conveniently we can show by arguments like those in § 11
that if z > c + λ, I19 72, 73-^ 0 as Γ-^oo. Using the fact that
fitήJiiXu) = 0(^~r) as w -> oo for every r we see from the formula
defining /*(λ, z) that z'*f*(X, z) is the restriction to 0 ^ z < oo of
an even infinitely differentiable function. By continuity /*(λ, z) = 0
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for z — c + λ.

LEMMA 13b. Let f*(z) e H. If

l f*(z) vanishes for 0 ^ z S c, c > 0

2. f(u) = \~ f*(z)JΛ(uz)zdz (M2);
Jo

then z~~*f*(X9 z) is the restriction to 0 < z < oo of an even infinitely

differentiate function and / * ( λ , z) — 0 / o r O ^ ^ ^ c — λ if c — λ > 0.

Proof* Again we merely sketch the proof. We have

where

= \~H™(zu)f(z)zdz
Jo

and thus

where

2/*(λ, «) = li

pi) = 1 f^(u)Δ1(\u)JΛ(uz)udu

By Cauchy's theorem

ju> = jo) + jo) + jo)

Γ(2)

\ ^ I T-iτT
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where

S iτT CiτT-\-T CT

7(1) _ I 7(1) — \

0 JiτT JiτT+T

S —iτT C—iτT+T CT

7(2) _ \ 7(2) __ I
0 J— iτT J—iτT+T

It is easily verified that ii(1) + Ii2) = 0, and arguments like those used
in §11 suffice to prove that /2

(1), /3

(1), /2

(2), and /3

(2) — 0 as Γ-> co if τ

is suitably chosen, for 0 g z < c — λ, etc.
THEOREM 13C. Let feD[(Syi2F~]; then given ε > 0 there exists

heD[(Syi2F~] such that:

(1) | | / _ Λ | | < e , | |(ST2iH/
(2) (S:)ll2F:h — (Syi2F~h as n -> oo .

Proof. It is obviously sufficient to consider two cases. F Ύ = /
and Fy = 0.

Suppose that JP^/ - / . By assumption / e D[(S~)1I2F~] so that

*\f(v) \2udu < oo .

For 0 < θ < 1 let g(u) = f(θu). Then if / * = f-1/, 0* - ^ - ^ w e

have

g*(z) = [° f(θu)JΛ(uz)udu (M2)
Jo

(M2)

Fy = f implies that /*(z) = 0 for s > 1. It follows that g*(z) = 0
for z>θ. Consequently F~g = g as well. It is also evident that
g e D[(Syi2F~]. Since

11/-0 ir = Ί
Jo

= [ V | / («) -/((?u) \>udu ,
Jo

it is apparent that by taking θ sufficiently near 1 we can insure that

11/ - ff | | < e/2, II (Sy'2F~{f -g}\\< e/2 .

We next define h(u) == g(u)Δx{Xu). If λ > 0 is so small that λ + θ < 1
then by Lemma 13a if h* = ψ~τh h*(z) = 0 for z > 1, and thus JFΛΛ =
Λ. Since
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Ik - h ||2 - Γ | g(u) |211 - Δ(\u) \2udu ,
Jo

g - h} ||2 = ( V I flr(«t) I211 -
J

it is evident that we can choose λ > 0 so small that λ + θ < 1, and
that

|| g - h | | < ε/2 , || (Sy>*F~{g -h}\\< ε/2 .

Thus h satisfiies (1). By Lemma 13a h e D~, and therefore by Theorem
12b (2) holds as well.

Suppose that F~f = 0. Then, if / * = f'1/, f*(z) = 0 for 0 < z < 1.
Choose 1 < cx < c2 < oo so that if #*(z) =f*(z) for cx < z < c2 and
gr*(̂ ) = o otherwise then | | /* - g* \\ < ε/2. Let g = ^ * . Clearly
i r ^ = o. We have

while

Next let /̂ (̂ ) = Δx{Xu)g{u), where λ > 0 is so small that cλ — λ > 1,
which implies using Lemma 13b, that F~h — 0, and so small that
1|flr-Λ||<ε/2. Then | | / - Λ | | < e and || (S~)lt%F~{f - h} || = 0, so
that (1) holds. By Lemmas 13a and 13b he D7 and thus Theorem 12d
can be applied to verify (2).

14. The asymptotic formula. Let SP be constructed from F~
and S~ as in §3. Note that if ST = {f\fe H, FyeD(Sy>2} then
S~ is dense in ZP so that S? is a self-adjoint transformation on H
itself. Let

£ £ =

Jo-

be the spectral resolution of S? on H, and let

be the spectral resolution of SZF = F^S^Fn. It follows from Theorems
9b, 10a and 13c combined with Theorem 6a that

( 1 ) ^ (λ) — yΛ(λ) 0 ̂  λ < ex)

ίor evey λ £ ίJpίSP).
Let us define
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Jtt — oF jy~ , iV = r n. ,

Since, as is easily seen, ϋΓ > 0, R2 > 0, we have the spectral resolu-
tions

JΓ - (°°λcί£r/N(λ) on iV" ,
Jo

where

E~(\) = yΛ(λ) - yΛ(0) 0 ^ λ < co ,

and

λ) on Nn

0

where

E?(\) = yί(λ) - Ψ2(0) 0 ^ λ < co .

Since 2^(0) = I-F~, ?F;(0) - I - FΓ, it follows from (1) that

( 2 ) E~{X) —> ̂ " ( λ ) 0 ^ λ < CO

for all X$ap(R).
LEMMA 14a. With the above definitions let fneNn, and let

\\fn || = 1, (Rnfn \fn) ^ w < co for n e p. We assert that if fn -»/
as n —> co in fa then f Φ 0.

Proof. If / . e JVΓ then

jf%(^) = -w,-1 Σ 22(fc, >w,, u)a(kf n) 0 ^ ^ ^ me

and /%(^) = 0 for u > TITΓ. We have

By Schwartz's inequality

Since, see § 10 for a similar estimate, if 0 ^ k ^n

IR(k, n,u)\£ M(^tlX+ιmuoi 0
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it follows that

( 3 ) \

Next

n

Since, as is easily verified,

I R'(k, n, IA

we have

( 4 ) \fi(u)\£

It follows from (3) and (4) that the {fn(u)}T are uniformly bounded
and equicontinuous on any interval 0 < aτ ^u ^ a2 < oo. Therefore
since fn(v)-»f(u) as n in ft we have (if f(u) is suitably redefined on
a set of measure zero)

( 5 ) lim fn(u) — f(u) uniformly for aλ ^ u S a2

Given any number m1 > 0 we assert that there exists a number
α2 > 0 and an integer N such that if n ^ N

(6 ) sn(u) ^ mx a2 -^ u -^ nπ .

The inequality (6) is an immediate consequence of the relations

See §9. We have

JO J α 2

By (6) if n ^ N

O ^ j \ M / 1 J <yΛ IAJJ lAiKλj IΛJ £—.. llv-^ I J M\ (Λ/1 (ΛJKΛJ IAJ #

α2

Therefore if n ^ JV we have

a2
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and thus, since | | / J | = 1,

(7) \a)fn(u)\*udu^l-^L.
Jo mλ

The relations (3), (5), and (7) imply that

^ l - ^ > 0
mx

and thus that / Φ 0 in £Γ\ as desired.
Applying Theorem 7a we now see that if 0 < μx S μ2 ̂  ft

μk = co, are the eigen values of S? then

lim 2ωriiωL(n-yi[t(l) - Xnk] = μk k = 1, 2,
71—»oo

We have thus proved the following.

THEOREM 14b. Under the assumptions of §8 we have

Xn>k =

as n —> co /or eacfc â?ec? & = 1, 2, .

If we take o) — 1, L(i/) = σ then we obtain as a very special case
of Theorem 14b formula (7) of § 1.

15* Maximum at an interior point* We will next take up the
case where t(x) has a unique absolute maximum at x0, — 1 < x0 < 1.
We assume that t(x) is continuous for — 1 ^ x ̂  1 and that

σ21 x — α?0 \
ωL(x — xQ)

We further assume that

t(xQ) - t(x) =

where σ1 > 0, σ2 > 0, α> > 0 and L(τ/) is a positive even function defined
for —2^y^2 and continuous there except at y = 0. At # = 0 L(y)
is slowly oscillating.

In what follows we will again find it necessary to work with four
Hubert spaces.

L is, as before, the Hubert space of complex valued functions
f{k) defined for k = 0,1, 2, , with inner product
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Similarly LΓ is, as before, the space of Lebesgue measurable functions
on — 1 S x ^ 1 with inner product

where wΛ β(x) is defined in §1.
E~ and E are Hubert spaces of Lebesgue measurable functions on

{-co, co) with inner products

= Γ f{u)g{u)*du,
J—oo

(f\9)E= Γ f(z)g(z)*dz .
J —oo

We have the following maps between these spaces. There is, as
before, a mapping φ from L to LΓ defined by

The series on the right is the limit of the partial sums in the metric
of LΓ. The inverse mapping is

These mappings are unitary.
There is a mapping ψ from E to E~ defined by

= Γ e2πiuz

J-oo

where the integral on the right is the limit of the partial integrals
in the metric of E~. The inverse mapping is

-y.(z)= Γ e~2πiuzf(u)du ,
J-oo

where etc. These mappings are also unitary.
Let 0 < ξ0 < π be such that cos ξQ = x0. We set

θn{u) =

[1 - cos (2πun-1 + ξ0)]*/2[l + cos (2πun-1 + ξQ)f12 sin^πun-1 + ξQ) .

For each n = 1, 2, we define a mapping χn from LΓ to EΓ by
setting

(/(cos [27ΓWW-1 + ξo)]θn(u)(2πln)1{2 0 ^ 2τr^ + f0 ^
χnf (u) = j

I 0 otherwise .
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Clearly χn is an isometric map of LΓ into E". We define a mapping:
χ* from E~ to LT by

Zί/ (aO - / ( - ^ [ - f o + arc cos a?])(l - x^y^w^xy^nβπ)1^ .

χί is a partially isometric mapping of JSP onto LΓ. χj is isometric on:
χwZΓ and zero on (χ^ZΛ)1, the orthogonal complement of χ»£Λ in J5"\
Moreover χtχn = I and χwχί = ί o n χnZΓ and χwχ* = 0 on the orthogo-
nal complement of χnL^.

We now introduce various operators on these Hubert spaces.
a. En is defined on L by

F f <k\ \f{k) O^k^n.
( 0 otherwise .,

Ĵ w induces the following additional operators:

E2 on IT defined by JST =

F: on JF^ defined by F? =

b. Γ Λ is defined on ZΓ by

Starting from T~ we obtain the following related operators:

T on L defined by Γ = ^- X Γ>

T: on £7" defined by T% = χ.Γ^χί :

>S; on ^ Λ defined by S2 = {n«\

c. S~ is defined on JE"̂  by

where

(α 1(-2π[sin| :

o]u)ω u ^ 0
s(u) =

(σ2(2τφin£0fy)ω u>0

d. F is defined on E by

' '* ) = I 0 \z\ > 1 ..
We introduce

i*7^ on 2<Γ defined by ί7^ = ψFψ-1 .

If λftfi ^ Xn>2 ̂  ^ λw n + 1 are the eigen values of Cn, see § 1,,
then
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t(x0) - Xn$1 g t(x0) - Xn>2 g ^ t(x0) - Xntn+1

are the eigen values of the following operators:

EnTEn

7 7 7 X S > /TΊ^ TJT^
hln 1 Jίfn

77T / > > ΠTI*^ 7τΓ ' / X

•F n -L n " n

The eigen values of

• are, in increasing order, {[ί(x0) — ̂ ^ l ^ L ^ 1 ) " 1 } ^ ! . Our program in
what follows is like that carried out in sections 8-14, in that we will
show that FnSnFn * 'converges'' to SP as n—• co and thus that if

0 < μ± ^ μ2 S -slim ft = co ,

are the eigen values of

then

lim (t(x0) - X^ynrLin-1)-1 - ft k - 1, 2, . . . ,

•or equivalently

Because the material of §§ 15-19 is in large part like the ma-
terial of §§8-14 we will only give in detail those arguments which
differ from those given there. These occur primarily in § 16 and § 17.
In the later sections we will simply list the various results since the
^details can be easily supplied.

16. Convergence of (S£)1/2 to (ίΓ)1/2 (interior maximum). We
suppose throughout that t(x) satisfies the assumptions of § 15. Let
ϋ < ξ0 < π be such that cos ξQ = xQ.

It follows from § 15 that T»f(u) = tn{n)f{u) where tn(u) =
£(cos ?0) — £[cos {2πn~ιu + ξ0)] for 0 ̂  2πn~xu + ξQ ̂  π and is zero other-
wise. Consequently Snf(u) — sn(u)f(u) where sn(u) =
l e t s(u) be defined as in § 15.

LEMMA 16a. With the above definitions
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( 1 ) lim sn(u) = s(u) — co < u < co t
n.-»oo

and for any ε > 0 there is a constant M(ε) independent of uf

— co < u < co, and n = 1, 2,

( 2 ) sn(u) ύ M(ε)[\u\* + \u\-*]\u\« .

Proof. It follows from the assumptions of § 15 that if X(u) =
cos (2πu + ξ0) — cos ξ0 then

£(cos ξo) - ί cos (2τra + f 0)

( ^ I λ(w) |ω L(\(u)) u -> 0 - .

Since λ(w)«-« 2ττt6 sin f0 as % —> 0 we find using (4) of § 9 t h a t

f σ2(2π sin ξ0)
ωuωL(u) as u -+ 0 +( 3 ) [ί(cos ξo) - ί cos ( 2 ^ + £0)] .

( σ ^ π s i n f ) (—u) L{n) as

Thus for u fixed, u Φ 0, we see that as w —• co

fσ2(27r sin ξ^uωL(un-λ)\L{n--λ) u > 0

' ( ^(2TT sin f 0)
ω( - nYLiun-^ILin-1) u < 0 .

A second application of (4) of §9 yields (1). I t follows from (3) t h a t
if b is a sufficiently large positive constant then

£(cos ξ 0) - £[cos (2πu + f 0)] ^b\u\ω L(u) ,

and t h u s

8n(u) ^b\u\ωLinn-1)!Lin-1) .

Using (5) of §9 we obtain our desired result.

THEOREM 16b. (S")1/2 is the closure of the strong limit of (SΓ)1/2:

as n —> co.

Proof. LetfeD[(Sy12] and ε > 0 be given. If δ > 0 is sufficiently
small then it is evident that if fh{u) = e~8u2f(u) then

11/ - /a | | a ~ ^ e ,

Moreover it is evident from (1) and (2) that

(S:yl2fδ -> (S^)1/2/δ in E~ as n -

17* Convergence of F* (interior lαaximum).

THEOREM 17a. // iC and F~ are defined as in § 15 then
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converges strongly to F~ as n-^> oo.

Proof. Let us write

R(k, n, u) = h^2P^(cos 2πun~1 + ξQ)θn(u)V2π .

Q(k, n, u) = cos (2π(fc + η)n-ιu + kξ0 + ζ) ,

where η = (a + β + l)/2, ζ - ξQ(a + β + l)/2 - (α + (l/2))ττ/2. It fol-
lows from (6) of the Appendix that

(1) R{k, n, u) ~ 2Q(k, n,u)—>0 as k —> oo

uniformly in n and u, if for some fixed e > 0

5 ^ 2πun~1 + ξ0 ^ π — ε .

Starting from the definition of F? we find that

( 2) i C / (%) = — Σ B(k9 n, u)a(k, n)
n fc=o

where

( 3) α(fc, n) = ί f(v)R(k, n, v) dv .
Jin

Here Jn - {v | 0 ̂  2π -̂1'V + | 0 g π}.
Let us now assume that f(u) is continuous for — oo < u < oo

and vanishes except for | u \ ̂  a. We first show that under this
assumption F^f-(u) —* F~f (u) uniformly in any set | u | g b < oo. It
follows from (1) that there exists a constant M such that if n is
sufficiently large.

(4) \RQc9n,u)\ ^M

for I u I g α , and fc = 0,1, . Let us set

Σ i (̂ , w, n) = — Σ

9 u)a(k, n) .

Using (4) and the corresponding inequality for | u \ ̂  6 we find that
for all large n

(5) Σn(Sfn>u)^MS if IuI g 6 .

Let βf = α/r-1/ so that
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Using (1), but writing the cosine in complex form, we find that

lim \a(n, k) - e-
i{kξo+Pg(Ά±JL) _ e w o W . H

it-** I \ n / V n

Using (1) again we see that as n—> co

(6) \Σ*(δ,n,u) - Σ i - Σ n ~ Σ//i - Σ/r 1 -

uniformly for | u | ^ & where

-1 Σ
n

Σ/ and ΣJ/J are Riemann sums so that

(7) l i m Σ / =

(7') lim Σ/H = ("ββ««fir(2)d2 ,

for I u I S b. Since we can easily prove that the functions Σ/ (̂ f >̂ ̂ )
are for n sufficiently large equicontinuous for | u \ S b it follows that
(7) holds uniformly for | u \ g b. Similar remarks apply to Σ/// If
we sum Σ/i by parts, the summation being applied to e~2ikξ% it is
easily seen that lim,^ Σ u = 0 uniformly for | u \ ^ b and similarly
for Σ/r Given ε > 0 let us choose d so small that

i (8, n,u)\< ε/2 , I \[g(z)e2πiu*dz <ε/2,

for I u I ^ 6. It then follows on collecting our estimates that
I F?f (u) - F~f-(u) I < ε for | u \ ^ 6, for all sufficiently large rc. The
demonstration can be completed as in § 10.

18. Convergence of (Sn)ll2F^ to (Syi2F~ (interior maximum).
The considerations here are parallel to those of § 11, § 12, and § 13
but somewhat simpler.

Let D be the set of functions h(z) in E which are infinitely dif-
ferentiable and have compact support, and let D~ = ψD. Let Dx be
the subset of D consisting of those functions which have support in
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I z I ^ cx f or some cx < 1, and let D7 = ψDx. Let A be the subset of
D consisting of those functions which have support in | z | ^ c2 for
some c2 > 1, and let D7 — ψD2.

THEOREM 18a. If felK or D2 and if, as in §17,

Φ, n) = \ /(ζ)Λ(fc,

ί/z-eti /or v fixed, v — 0, ± 1 , ± 2 , , we

a{n, n + v) = 0(n~r) as n —• oo

/or every r .

Proof. We will carry out only the first steps of the demonstra-
tion since it will be evident in a moment that the arguments used
in § 11 apply almost without change.

We recall that In = {ζ | — yλn ^ ζ ^ Ύ2n} where 72 = (TΓ — |0)/2π ,
7i = lo/2τr. Choose δl9 0 < ^ < τx and <52, 0 < δ2 < τ 2. Then

α(fc, w) = ^(fc, w) + α2(&, ̂ ) + ajjc, n)

where

<Φ,n) = \^f(ζ)R(k,n,ζ)dζ,

a2(k9 n) = \ f(ζ)R(k, n, ζ)dζ ,

aB(k, n) — \ ι f(ζ)R(k, n, ζ)dζ .
J —y^n

Since /(ζ) e D~ we have

/(O = Γ 9(z)e™°ζdz
J-oo

where βf = 'Vr""1/ is infinitely differentiable with compact support. Re-
peated integration by parts shows that

(1) /(ζ) = O(|ζ|-) ζ-±co

for every r . Using

and Schwartzes inequality we see that
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and using (1) that a2(k, n) = 0(n~r) as n —» co uniformly in k. Similar
considerations apply to az{k, ri). If we set

1 + ξ0)]Θn(Of(Odζ ,

1 + ξo)]Θn(ζ)f(ζ)dζ ,

cos

—πia^k, n) = αr(fc, w) — α (̂fe, ^) .

Let us apply Cauchy's theorem to each of the curves below.

%τn

δ2n

ai{k, n) =

aϊ{k, n) =

where

ΘΛQ — [1 — cos (2πζn~1

then

—iτn

We find that

af{k, n) = I? + If + It

where

j —o^n J— δjίl + tΓTl

S δ 2 w-ir»

—h-^n—iτn

In all cases the integrand is

-1 + ξo)]θn(ζ)dζ .

It is sufficient to verify that each of these six integrals is 0(n~r) [as
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n —> co. Since the methods of § 11 now apply almost without change
the remainder of the proof for the case / e Z>Γ is omitted, as well as
the proof for the case / e D7

LEMMA 18b. Let g e D^ or D^. Then for any nonnegaUve inte-
ger N and some finite constant AN we have

lim ( u2N I F~g.{u) |2 du ^ AN Γ u2N \ g(u) ]2 du .
n-*oo Jin J—oo

We will only sketch the proof of this result. Let

+ ξ0) — cos ξ0Y .

Using the recursion formula and Theorem 18a it is easy to see that
if gn(u) = pn(u)g(u)

for ue In. It follows that

lim \ pn(u)2 [ F^g*{u) (2 du t

^ ϊϊϊn I I gn(u) |2 du ,
n—>oo J —oo

since î Γ is a projection; that is

p i" co

lim \ pn(u)21 F^g-(u) \2 du ^ lim I ί>%(^)21 ̂ f(u) |2 du .

We have

cos (2πun~1 + | 0 ) — cos ξ0 = —2 sin (πun~ι) sin {πun~ι + ξQ) .

Since 0 g 2ττ^^~1 + f 0 ^ π if u e In we have

0 < fo/2 ^ π ^ - 1 + g0 ^ (TΓ + £0)/2 for w e Jn .

It follows that there exist finite positive constants Ax and A2 such
that

( ( c o s 2 π u n ~ 1 + ξ0) — cosξo\ ^ A 1 \ u \ — oo < u < co ,

^ A21 u 1 w e

etc.

THEOREM 18C. Let feDΪ or D?. Then

:f\\ - o .
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Note that if fe D7, F~f - 0.

THEOREM 18d. (S~)1I2F~ is the closure of the strong limit of
as n->oo.

Note that the demonstration of Theorem 18d is simpler than that
of its analogue, Theorem 13c, in that, because convolution is possible
in E, the analogues of Lemmas 13a and 13b are completely trivial.

19* The asymptotic formula (interior maximum)* In this section
we will complete the theory for the case of an interior maximum
giving some details. Let ££ be constructed from F~ and S^ as in § 3.
Note that if S~ = {/|/e JEΓ, Γ / G / ) ( S T } then S~ is dense in E~
so that S7 is a self-adjoint transformation on E~ itself. Let

jo-

be the spectral resolution of S# on E~, and let

s:,F = \~ xdw
J o -

be the spectral resolution of S^F = F^S^F^. It follows from Theo-
rems 16b, 17a, and 18b, combined with Theorem 6a that

(1) SPTM — ¥~(X) 0 ^ λ < oo

for every X$
Let us define

R = Sp *r^ N = F E 9

Since, as is easily seen, R~ > 0, R~ > 0, we have the spectral resolu-
tions

R~ = [\dE~(X) on JV", Rn = [°XdE^(X) on iVΓ
Jo Jo

where

E"(\) - ?FΛ(λ) - ?P"XO) 0 ^ λ < co ,
^ ( λ ) = ξΓ^(λ) _ 5r^(0) 0 ^ λ < co .

Since Ψ~(0) = I- F~, ψ~(0) = I - F~ it follows from (1) that

( 2 ) JC(λ) -> JE?"(λ) 0 ^ λ < co
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for all \$σp(R~).

Lemma 19a. With the above definitions let fn e ΛC, and, let
H/JI = 1, {Rnfn\fn)^m for nep. We assert that if / „ - * / as
n —> co in p± then f ψ 0.

Proof. If fn e JVΓ then

Λfa) = — Σ R(k, n, u)a(k, n) ueln

n k=o

and fn(u) = 0 if u$In. Here jβ(ft, n> u) is defined as in § 17, and

α(fc, n) - ( R(ky n9 ζ)/»(ζ)(2ζ

we have

l = IIΛII1 = - Σ
n fc=

and therefore by Schwarz's inequality

\fΛ)\±
n k=o

j (1) of § 17 if I u I g a < oo then there exists a constant M such
tat I R(k, n,u)\ ^ M for & ~ 0,1, provided n- is sufficiently large,
follows that for all large n

5)

ext

/"e assert that if | u \ S a then for all sufficiently large n and a suitable
distant Mf \ R\k, n, u) \ ^ M for ft = 0, 1, , n. This inequality
λtv be reduced by means of the formula

dx

o the one given above. See [1; p. 170]. We may therefore apply
chwarz's inequality again to obtain for all sufficiently large n

t follows from (3) and (4) that the {/Λ(w)}Γ are uniformly bounded
,nd equicontinuous on any interval \u\ <L a < oo. Therefore if fn -*/
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as n —> co in & we have

( 5 ) \imfn{u)=f(u) \u\^a
Pi

uniformly, provided f(u) is suitably redefined on a set of measure
zero.

Given m1 > 0 it is easy to see that there exists a number a > 0
and an integer N such that if n ^ N

(6) sn(u) ^m1 {u e In \ \ u | ^ a} .

The remainder of the proof follows the lines § 14 so closely it is
omitted.

THEOREM 19b. / /

0 < f t ^ A ^ A ^ , lim μk = co ,

are the eίgen values of R^ then for each k — 1, 2,

λ. k = t(x0) - n-Lin-1)^ + o(l)]

as n —> co.

Let us consider as an example the case where t(x) has a unique
absolute maximum at x0 and is twice continuously differentiate in a
neighborhood of x0. Then t'(x0) = 0. We assume that £"(#0) = — ̂ 2 < 0.
Then in terms of the notation of §15, ω = 2, ^ = tf2 = σ2/2, L = l ,
Consequently

s(w) = τr(72(sin2 ξo)u2 — co < u < co ,

and the eigen values 0 < μx ^ of R~ are easily seen to be the
eigen values of the differential operator R = ψ^R^ψ defined by

the domain D{R) consisting of those functions f(z) with support in
— 1 ^ z ^ 1 which are such that/(2) and/'(^) are absolutely continuous
for - l < z < l , f"(z)eL\-l,l) and /(1-) = / ( - l + ) = 0. Since
μk = o 2(sin ξQfk2β we find that

K,u = t(x0) - σ\l - xl)k2/8n2 + o(n~2)

as n -» co for each & = 1, 2, . See (6) of § 1.

APPENDIX

The Jacobi polynomials Pi"tβ)(x) defined in § 1 satisfy the recursion
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formula, [1; p. 168],

where

An = 2(n + l)(n + a + β + l){2n + a + β + I)" 1

( } .(2n + a + β

( 3) Bn = -(a2 - β2)(2n + a + β + 2)~\2n + a + β

(4) Cn = 2(n + a)(n + β)(2n + a + β)~\2n + a + β

We have the following limit relation

( 5 ) lim tt-*P1[-*>(cos sw-1) = (zl2)~«Ja(z)

uniformly for z in any bounded subset of the complex z plane, [1; p. 173].
We also have

(6 ) hTPl"'β)(cos θ)[watβ(co& θ)]112 sin1/2 θ - / — cos (Nθ + 7) -> 0
r n

as n —* 00 uniformly for ε ^ θ ^ π — εf if ε > 0. Here

7 =

See [12; p. 190].
Let q = max(α, /S, —1/2); then

where A depends upon a and β, [12, p. 163]. Furthermore if w —
u + iv then, see [12; p. 190],

I Pi^Xcos w) \^A(n + l)~^e^n

uniformly for | v \ ̂  vQ > 0. Here A depends only upon a, β and v0.
Applying Hadamard's three lines theorem to Pi*>β)(cos w) we find that
for all w

.(8) I P^'^ίcos w) I ̂  A(t̂  + l)qelυln

where A and ^ are independent of n and w. The inequality (8),
although crude, has the advantage that it holds uniformly in n and w.

We set

< 9) QM = M Pi«>β)(t)(z - tY'w
2 J-i
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for all complex zg [—1,1]. We then have

Qn(z) = (1 - z)*{z + lfQ^\z) ,

where Q{*φ){z) is the standard Jacobi function of the second kind,
[1; p. 170]. We will use Qn{z) rather than Ql?tβ)(z) because it is single
valued in the 2-plane slit from — 1 to 1. If we set

Qt(x) - lim Qn(x + ίe)
ε->o+

Q~(x) = lim Qn(x - is)
ε->o+

then for — 1 < x < 1

(10) Q~(x) - Qi(x) = πiP<r-»(x)wa,β(x) .

By an argument analogous to that used to prove (8), see [12; p. 219],
we can show that if v — Imw Φ 0 then

(11) I Q%(cos w) sin2 w \ ̂  A(n + iγe~
mn-2)

where A and q are independent of n and w. Like (8) this inequality
is quite crude, but it is important because it is uniform in n and w.
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