ON AN INEQUALITY OF P. R. BESSACK

ZEEV NEHARI
ON AN INEQUALITY OF P. R. BEESACK

ZEEV NEHARI

In a recent paper [1], P. R. Beesack derived the inequality

\[|g(x, s)| \leq \frac{\prod_{\nu=1}^{n} |x - a_{\nu}|}{(a_{n} - a_{\nu})(n - 1)!} \tag{1} \]

for the Green's function \(g(x, s) \) of the differential system

\[y^{(\nu)} = 0, \quad y(a_{\nu}) = 0, \quad \nu = 1, 2, \ldots, n, \]
\[-\infty < a_{1} < a_{2} < \cdots < a_{n} < \infty. \tag{2} \]

In addition to being interesting in its own right, this inequality is a useful tool in the study of the oscillatory behavior of \(n \)th order differential equations. It would therefore appear to be worth while to give a short proof of (1). The derivation of this inequality in [1] is rather complicated.

We denote by \([x_{0}, x_{1}, \ldots, x_{k}] \) the \(k \)th difference quotient of the function \(g(x) = g(x, s) \), i.e., we set

\[
[x_{0}, x_{1}] = \frac{g(x_{0}) - g(x_{1})}{x_{0} - x_{1}}, \\
[x_{0}, x_{1}, \ldots, x_{\nu}] = \frac{[x_{0}, x_{1}, \ldots, x_{\nu-1}] - [x_{1}, x_{2}, \ldots, x_{\nu}]}{x_{0} - x_{\nu}}, \quad \nu = 2, \ldots.
\]

This difference quotient can also be represented in the form

\[[x_{0}, \ldots, x_{k}] = \int \cdots \int g^{(k)}(t_{0}x_{0} + t_{1}x_{1} + \cdots + t_{k}x_{k})dt_{0}dt_{1}\cdots dt_{k-1}, \tag{3} \]

where the integration is to be extended over all the positive values of the \(t_{\nu} \) for which

\[t_{0} + t_{1} + \cdots + t_{k} = 1. \tag{4} \]

This formula, which goes back to Hermite, is easily verified by induction (cf., e.g., [2]). It holds if \(g(x) \) has continuous derivatives up to the order \(k - 1 \), and if \(g^{(k)} \) is piecewise continuous.

Since, by its definition, \(g(x, s) \) has continuous derivatives up to the order \(n - 2 \), while \(g^{(n-1)} \) has the jump

\[g^{(n-1)}_{+}(s) - g^{(n-1)}_{-}(s) = -1 \tag{5} \]

Received April 11, 1963. This research was supported by the United States Air Force Office of Scientific Research.

261
at $x = s$, we may apply (3) with $k = n - 1$. We shall do so twice, identifying the points x_0, \ldots, x_{n-1} with x, a_1, \ldots, a_{n-1} and x, a_2, \ldots, a_n, respectively. Since, because of $g(a, s) = 0$, $\nu = 1, \ldots, n$, we have

$$[x, a_1, \ldots, a_{n-1}] = \frac{g(x, s)}{\prod_{\nu=1}^{n-1} (x - a_\nu)}$$

and

$$[x, a_2, \ldots, a_n] = \frac{g(x, s)}{\prod_{\nu=2}^{n} (x - a_\nu)}$$

we obtain, upon subtracting these expressions from each other,

$$\frac{(a_n - a_1)g(x, s)}{\prod_{\nu=1}^{n} (x - a_\nu)} = \int_D g^{(n-1)}(v)dt - \int_D g^{(n-1)}(u)dt,$$

where, for brevity, $dt = dt_0dt_1 \cdots dt_{n-2}$, D denotes the region defined by (4) (with $k = n - 1$ and $t_v > 0$, $\nu = 0, \ldots, n - 1$), and

$$u = t_0x + t_1a_1 + \cdots + t_{n-1}a_{n-1}, \quad v = t_0x + t_1a_2 + \cdots + t_{n-1}a_n.$$

Both for $a_1 \leq x < s$ and $s < x \leq a_n$, $g(x, s)$ is a polynomial of degree $n - 1$. Accordingly, the function $g^{(n-1)}(x, s)$ is capable only of two constant values, say α and β, which according to (5) are related by $\alpha = \beta + 1$. If we denote by D_1 the subset of D in which $a_1 \leq u < s$ (where u is defined in (7)), we have

$$\int_D g^{(n-1)}(u)dt = \alpha \int_{D_1} dt + \beta \int_{D-D_1} dt = \alpha \int_{D_1} dt + (\alpha - 1) \int_{D-D_1} dt = \alpha \int_D dt - \int_{D-D_1} dt.$$

Similarly,

$$\int_D g^{(n-1)}(v)dt = \alpha \int_D dt - \int_{D-D_2} dt,$$

where D_2 is the subset of D in which $a_1 \leq v < s$. Substituting these expressions in (6), we obtain

$$\frac{(a_n - a_1)g(x, s)}{\prod_{\nu=1}^{n} (x - a_\nu)} = \int_{D-D_1} dt - \int_{D-D_1} dt.$$

The differential dt is positive, and we thus have

$$-\int_D dt \leq -\int_{D-D_1} dt \leq \int_{D-D_1} dt - \int_{D-D_1} dt \leq \int_{D-D_2} dt \leq \int_D dt.$$
Since

\[\int_{D} dt = \frac{1}{(n - 1)!} \]

(as can be seen by applying (3) to the function \(x^{n-1}\) and setting \(k = n - 1\)), this shows that

\[\left| \int_{D_2} dt - \int_{D_1} dt \right| \leq \frac{1}{(n - 1)!} \]

In view of (8), this establishes the inequality (1).

REFERENCES

CARNEGIE INSTITUTE OF TECHNOLOGY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

ROBERT OSSERMAN
Stanford University
Stanford, California

M. G. ARSOVE
University of Washington
Seattle 5, Washington

J. DUGUNDJI
University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
Richard Arens, *Normal form for a Pfaffian* ... 1
Charles Vernon Coffman, *Non-linear differential equations on cones in Banach spaces* .. 9
Ralph DeMarr, *Order convergence in linear topological spaces* 17
Peter Larkin Duren, *On the spectrum of a Toeplitz operator* 21
Robert E. Edwards, *Endomorphisms of function-spaces which leave stable all translation-invariant manifolds* ... 31
Erik Maurice Ellentuck, *Infinite products of isols* 49
William James Firey, *Some applications of means of convex bodies* 53
Haim Gaifman, *Concerning measures on Boolean algebras* 61
Richard Carl Gilbert, *Extremal spectral functions of a symmetric operator* .. 75
Ronald Lewis Graham, *On finite sums of reciprocals of distinct nth powers* ... 85
Hwa Suk Hahn, *On the relative growth of differences of partition functions* ... 93
Isidore Isaac Hirschman, Jr., *Extreme eigen values of Toeplitz forms associated with Jacobi polynomials* .. 107
Chen-jung Hsu, *Remarks on certain almost product spaces* 163
George Seth Innis, Jr., *Some reproducing kernels for the unit disk* 177
Ronald Jacobowitz, *Multiplicativity of the local Hilbert symbol* 187
Paul Joseph Kelly, *On some mappings related to graphs* 191
William A. Kirk, *On curvature of a metric space at a point* 195
G. J. Kurowski, *On the convergence of semi-discrete analytic functions* 199
Richard George Laatsch, *Extensions of subadditive functions* 209
V. Marić, *On some properties of solutions of \(\Delta \psi + A(r^2)X \nabla \psi + C(r^2)\psi = 0 \) .. 217
William H. Mills, *Polynomials with minimal value sets* 225
George James Minty, Jr., *On the monotonicity of the gradient of a convex function* ... 243
George James Minty, Jr., *On the solvability of nonlinear functional equations of ‘monotonic’ type* ... 249
J. B. Muskat, *On the solvability of \(x^e \equiv e \pmod{p} \) 257
Zeev Nehari, *On an inequality of P. R. Bessack* 261
Raymond Moos Redheffer and Ernst Gabor Straus, *Degenerate elliptic equations* ... 265
Abraham Robinson, *On generalized limits and linear functionals* 269
Bernard W. Roos, *On a class of singular second order differential equations with a non linear parameter* .. 285
Tôru Saitô, *Ordered completely regular semigroups* 295
Edward Silverman, *A problem of least area* .. 309
Robert C. Sine, *Spectral decomposition of a class of operators* 333
Jonathan Dean Swift, *Chains and graphs of Ostrom planes* 353
John Griggs Thompson, *2-signalizers of finite groups* 363
Harold Widom, *On the spectrum of a Toeplitz operator* 365