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Let B denote a region of Euclidean n space, with points & =
(2, @3y +++, 2,)€ B, and let u = u(x) be such that each partial deriva-
tive, u,, is a differentiable function of z. If

> a(x)uw;; + g((gradw|) = 0 and (a;;)) 2 0,

then appropriate conditions on (a,;;) and on the function g ensure that
% satisfies the maximum principle. That is, the inequality # < m on
0S implies v =< m in S for every constant m and every compact set
Sc B.

For example: Let g(s) be positive, continuous and increasing for
s >0, and let

Sl ds _
°0g(s)
Suppose there exists a function ¢(x) e C® such that, for xze S,
inf 3 a;(@)ei(x)e(w) >0,  inf 3 a;(@)ei(w) > —oo.
Then the maximum principle holds [1].
If g(s) = o(s) the weaker condition [2]
inf 3} a;(2)e;;(x) > 0

suffices; for example, let (a;;) be continuous and nonvanishing. Even
when g(s) = o(s), the maximum principle fails if (a;;) vanishes at one
point. But if g(s) = 0, a great many zeros can be allowed, and that
is the reason for this note.

We shall establish:

THEOREM 1. Let u be a C® solution of > a;(x)u; =0, where
(a;;) = 0. Suppose that the set of points x€ B where (a;;) = (0) has
no interior points. Then u satisfies the maximum principle.

The proof depends on the following lemma.

LEMMA 1. Let ueC® in a bounded region B, and let we C®
be in the closure, B, of B. Let B be a dense subset of B. If
SUD,cz U > SUD,con ¥ then there exists a quadratic polynomial 0(x)
with arbitrarily small coefficients so that (6;;) > 0 and u + 0 attains
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its maximum in B.

Proof. Choose h>0 so small that sup,, (u+h |z [*) <supz (u+h|x|?).
Then the function v =« + h |« |* attains its maximum at a point
®,€ B. The function w =v— (h/2) | ® — 2, |* has @, as a unique maximum
point and satisfies (w;;(%,)) = (v;(®,)) —hI < —hI < 0 and therefore
(w;5(x)) < 0 in a neighborhood N:|x — x,| < 4. The surface S:z =
w(x) is strictly concave for xe€ N, while for 2 ¢ N we have w(x) <
w(w,) — ho*2. Since the tangent plane of S at x, is horizontal and
its direction varies continuously in N, there is a neighborhood N, N
of x, so that tangent plane of S at any point @,€ N, lies entirely
above S, except at the point x, itself.

Choose @, € N; N B. Then function w(x) — w(®,) — X w(x.)(x — )
is negative everywhere in the closure of B except at x,. Thus, the
function

0@ = hlof — 2h|o — 5l — 3w — o)

has the desired properties, since (€;;) = hI > 0 and we can choose &
and w;(x,) arbitrarily small.

Proof of Theorem 1. Let B be the set for which (a;;) # 0. If
for some compact subset S of B we would have # attain its maximum
in the interior of S, then according to Lemma 1 we could choose 6
so that w + 6 attained its maximum at a point of BN S. This
leads to a contradiction since (u;;) = —(8;;) < 0 at this point.

The foregoing proof makes essential use of the condition we C®,
We now assume only that « is differentiable.

A singularity is a point where one or more of the following
undesirable things happen:

(1) Some derivative u; fails to be differentiable.

(2) The differential inequality > a;;(®)u;; = 0 fails.

(8) The matrix (a;;) = (0).

(4) The condition (a;;) = 0 fails.

A “smooth surface” is a surface of form ¢(x) = 0, where ¢ C*® and
grad ¢ += 0. We can now state:

THEOREM 2. Let u be differentiable for xc B, and let the
singularities be contained in the union of countably many smooth
surfaces. Then u satisfies the maximum principle.

The proof again depends on a small modification of % which
moves the maximum outside the surfaces of singularities.
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LEMMA 2. Let u be differentiable in the bounded region B and
continuous in the closure of B. Let ¢%(x) be twice differentiable
with bounded ¢ and grad¢®(x)+0in B; k=1,2, --

If supyu > sup,pu then there ewists a function 6(x) twice
differentiable in B so that 6,0, 0, are arbitrarily small in B;
;) >0 and u + 0 attains its maximum at a point of B which
does not lie on any surface ¢ (x) = 0.

Proof. We write 0 =h|x]? + 3¢, 6" (x) where h > 0 is chosen
so small that supz(w + k|2 ) > supyz (u + k|@|*) + h and the ¢,
are determined successively as follows. Set 0© =h|x|* and 0™ =
Rl + o cd™(@). If u + 6™ does not attain its maximum on
¢™*V(x) = 0 then we set ¢,.; = 0. If u + 6" does attain its maximum
on ¢**Y(x) = 0 then we choose ¢,.; > 0 but so small that

D) (i@ < o+

2n+1 ’

(2) ¢y | " (®) | < ——(max, (u + %) — max (w + 6%y,

2n+1 (i)(
k= 1y27 e, N,
h
®) Cans|9%0@) | < ey 0una | 80(@) | < o

for all e B.

Since grad ¢®*tY £ 0 it follows that « -+ 6" does not attain its
maximum on ¢“+"(x) = 0 while condition (2) guarantees that it also
does not attain its maximum on ¢*(x) =0, k=1, -.-, n. Conditions
(1) and (3) guarantee the convergence of § to a twice differentiable
function which together with its first and second derivatives is small
for small choices of £. By condition (2) u + 0 does not attain its
maximum on any surface ¢*%(x) =0, but since |0| < h|x*+ h it
attains its maximum in B. Finally, condition (1) makes

0:) > 2] — S 6(| 6 ) > 2RI — z_g;z: nl.

The proof of Theorem 2 now proceeds exactly as the proof of
Theorem 1.

Combining the ideas of Theorems 1 and 2 we obtain the follow-
ing generalization of Theorem 1.

THEOREM 3. Let u be differentiable in B, and have continuous
second derivatives except on the wunion of countably many smooth
surfaces. If the conditions

Z a‘u(x)u’u = 0 (a’ij) = 0 ’ (a’ij) * (0)
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I hold on a dense subset of B, then w satisfies the maximum principle.

Proof. According to Lemma 2 we can find a function, ¢ so that
() > 0 and w + 6 attains its maximum at a point of continuity of
(u;;). The construction in the proof of Lemma 1 therefore yields a
function § so that w + 6 + 6 attains its maximum at a point of the
set of points in B at which (a;;) # 0, and (0,;) + @.;) > 0.

It is fairly obvious that these theorems are in many ways best
possible. Certainly if the set at which (a;;) = 0 has interior points
the maximum principle fails.

The integral of a singular (Cantor) function satisfies u, =10
except at points of the Cantor set, but it need not satisfy the
maximum principle. Thus the restriction to a denumerable number
of surfaces of singularities in Theorems 2 and 3 cannot be substantially
relaxed.
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