ON THE FUNCTIONAL EQUATION

\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]

Tom M. (Mike) Apostol and Herbert S. Zuckerman
ON THE FUNCTIONAL EQUATION
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]

TOM M. APOSTOL AND HERBERT S. ZUCKERMAN

1. Introduction. Let \(f \) be a completely multiplicative arithmetical function. That is, \(f \) is a complex-valued function defined on the positive integers such that

\[f(mn) = f(m)f(n) \]

for all \(m \) and \(n \). We allow the possibility that \(f(n) = 0 \) for all \(n \). (If \(f \) is not identically zero then we must have \(f(1) = 1 \).) Given such an \(f \) we wish to study the problem of characterizing all numerical functions \(F \) which satisfy the functional equation

(1)

\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]

where \((m, n)\) denotes the greatest common divisor of \(m \) and \(n \). When \(f(n) = n \) for all \(n \), Equation (1) is satisfied by the Euler \(\Phi \) function since we have

\[\phi(mn)\phi((m, n)) = \phi(m)\phi(n)(m, n) \]

More generally, it is known (see [1], [2]) that an infinite class of solutions of (1) is given by the formula

\[F(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right)g\left(\frac{n}{d}\right) \]

where \(\mu \) is the Möbius function and \(g \) is any multiplicative function, that is,

\[g(mn) = g(m)g(n) \quad \text{whenever} \ (m, n) = 1 \]

Some work on a special case of this problem has been done by P. Comment [2]. In the case \(f(1) = 1 \) he has investigated those solutions \(F \) of (1) which have \(F(1) \neq 0 \) and which satisfy an additional condition which he calls “property \(O \)” : If there exists a prime \(p_0 \) such that \(F(p_0^\alpha) = 0 \) then \(F(p_0^\beta) = 0 \) for all \(\alpha > 1 \). Comment’s principal theorem states that \(F \) is a solution of (1) with property \(O \) and with \(F(1) \neq 0 \) if, and only if, \(F \) satisfies the two equations

\[F(mn)F(1) = F(m)F(n) \quad \text{whenever} \ (m, n) = 1 \]

and

\[\text{PROPERTY OF} \]

Received May 28, 1963.
\[F(p^\alpha) = F(p)f(p)^{\alpha-1} \] for all primes \(p \) and all \(\alpha \geq 1 \).

In this paper we study the problem in its fullest generality. In the case of greatest interest, \(F(1) \neq 0 \), we obtain a complete classification of all solutions of (1).

2. The solutions of (1) with \(f(1) = 0 \). If the given \(f \) has \(f(1) = 0 \) then \(f \) is identically zero and Equation (1) reduces to

\[F(mn)F((m, n)) = 0 \]

for all \(m, n \). To characterize the solutions of (2) we introduce the following concept.

Definition 1. A (finite or infinite) set \(A = \{a_1, a_2, a_3, \ldots \} \) of positive integers is said to have property \(P \) if no \(a_i \) is divisible by any \(a_j^2 \).

Two simple examples of sets with property \(P \) are the set of primes and the set of products of distinct primes. The solutions of (2) may now be characterized as follows:

Theorem 1. A numerical function \(F \) satisfies (2) if, and only if, there exists a set \(A \) with property \(P \) such that \(F(n) = 0 \) whenever \(n \notin A \).

Proof. Let \(A = \{a_1, a_2, a_3, \ldots \} \) be a set with property \(P \). Define \(F(a_1), F(a_2), F(a_3), \ldots \), in an arbitrary fashion and define \(F(n) = 0 \) if \(n \notin A \). We shall prove that \(F \) satisfies (2).

Choose two integers \(m \) and \(n \) and let \(d = (m, n) \). If \(d \notin A \) then \(F(d) = 0 \) and (2) holds. If \(d \in A \) then \(mn \notin A \) since \(d^2 | mn \). In this case we have \(F(mn) = 0 \) and again (2) holds. Therefore \(F \) satisfies (2) in all cases.

To prove the converse, assume \(F \) satisfies (2) and let \(A \) be the set of integers \(n \) such that \(F(n) \neq 0 \). We shall prove that \(A \) has property \(P \). Choose any element \(b \) in \(A \). If \(b \) were divisible by \(k^2 \) for some \(k \) in \(A \), say \(b = qk^2 \), then we could take \(m = qk, n = k \) in (2) to obtain

\[F(b)F(k) = 0 \]

which is impossible since both \(b \) and \(k \) are in \(A \). Therefore \(A \) has property \(P \) and the proof of Theorem 1 is complete.

3. The solutions of (1) with \(f(1) = F(1) = 1 \). Since we have characterized all solutions of (1) when \(f(1) = 0 \) we assume from now on that \(f(1) \neq 0 \) which means \(f(1) = 1 \). We divide the discussion in
two parts according as \(F(1) \neq 0 \) or \(F(1) = 0 \). In the first case we introduce \(G(n) = F(n)/F(1) \) and we see that (1) is equivalent to

\[
G(mn)G((m, n)) = G(m)G(n)f((m, n))
\]

with \(G(1) = 1 \). This means that the case with \(F(1) \neq 0 \) reduces to the case \(F(1) = 1 \). In this case we make a preliminary reduction of the problem as follows.

Theorem 2. Assume \(f(1) = 1 \). A numerical function \(F \) satisfies (1) with \(F(1) = 1 \) if, and only if, \(F \) is multiplicative and satisfies the equation

\[
F(p^{a+b})F(p^b) = F(p^a)F(p^b)f(p^b)
\]

for all primes \(p \) and all integers \(a \geq b \geq 1 \).

Proof. Assume \(F \) satisfies (1). Taking coprime \(m \) and \(n \) in (1) we find \(F(mn) = F(m)F(n) \), so \(F \) is multiplicative. Taking \(m = p^a \), \(n = p^b \) in (1) we obtain (3).

To prove the converse, assume \(F \) is a multiplicative function satisfying (3) for primes \(p \) and \(a \geq b \geq 1 \). Choose two positive integers \(m \) and \(n \). If \((m, n) = 1 \), Equation (1) is satisfied because it simply states that \(F \) is multiplicative. Therefore, assume \((m, n) = d > 1 \) and use the prime-power factorizations

\[
m = \prod_{i=1}^{\infty} p_i^{a_i}, \quad n = \prod_{i=1}^{\infty} p_i^{b_i}, \quad d = \prod_{i=1}^{\infty} p_i^{c_i}
\]

where \(a_i \geq 0 \), \(b_i \geq 0 \), \(c_i = \min(a_i, b_i) \), the products being extended over all primes. Since \(F \) is multiplicative we have

\[
F(mn)F(d) = \prod_{i=1}^{\infty} F(p_i^{a_i+b_i})F(p_i^{c_i})
= \prod_{0 \leq i \leq a_i} F(p_i^{a_i})F(p_i^{b_i}) \cdot \prod_{0 \leq i < b_i} F(p_i^{a_i})F(p_i^{c_i})f(p_i^{c_i})
\]

The factors corresponding to \(b_i = 0 \) or \(a_i = 0 \) are

\[
\prod_{0 \leq i \leq a_i} F(p_i^{b_i}) \cdot \prod_{0 \leq i < b_i} F(p_i^{a_i}) = \prod_{a_i = b_i = 0} F(p_i^c)F(p_i^{c_i})f(p_i^{c_i})
\]

since \(F(1) = f(1) = 1 \). For the remaining factors we apply (3) to each product and we obtain

\[
F(mn)F(d) = \prod_{0 \leq i \leq a_i} F(p_i^{a_i})F(p_i^{b_i})f(p_i^{b_i}) \cdot \prod_{0 \leq i < b_i} F(p_i^{a_i})F(p_i^{c_i})f(p_i^{c_i})
= \prod_{i=1}^{\infty} F(p_i^{a_i})F(p_i^{b_i})f(p_i^{b_i}) = F(m)F(n)f(d)
\]

This completes the proof of Theorem 2.
We turn now to the problem of finding all solutions of (3). If \(p \) is a prime for which \(f(p) = 0 \), then for this prime (3) becomes

\[
F(p^{a+b})F(p^b) = 0 \quad \text{whenever } a \geq b \geq 1.
\]

For a fixed \(p \) the solutions of (4) may be characterized as follows:

Theorem 3. An arithmetical function \(F \) satisfies (4) for a given prime \(p \) if, and only if, there exists an integer \(c \geq 1 \) such that

\[
F(p^i) = 0 \quad \text{for } 1 \leq i \leq c - 1 \quad \text{and for } i \geq 2c.
\]

Proof. Assume \(F \) satisfies (5) for some \(c \geq 1 \). Choose two integers \(a \) and \(b \) with \(a \geq b \geq 1 \). If \(b \leq c - 1 \) then (5) implies \(F(p^b) = 0 \) so (4) is satisfied. If \(b \geq c \) then \(a + b \geq 2b \geq 2c \) so \(F(p^{a+b}) = 0 \) and (4) is again satisfied.

To prove the converse, assume \(F \) is an arithmetical function satisfying (4) for some prime \(p \). If \(F(p^i) = 0 \) for all integers \(t \geq 1 \) then (5) holds with \(c = 1 \). Otherwise, we let \(c \) be the smallest \(t \geq 1 \) for which \(F(p^t) \neq 0 \). Then \(F(p^i) = 0 \) for all \(i \leq c - 1 \). Now take any \(i \geq 2c \) and write \(i = a + c \) where \(a \geq c \). Taking \(b = c \) in (4) we find \(F(p^i) = 0 \) for \(i \geq 2c \). Therefore (5) is satisfied for this choice of \(c \) and the proof of Theorem 3 is complete.

We consider next those primes \(p \) for which \(f(p) \neq 0 \). For such \(p \) the problem of solving (3) may be reduced as follows:

Theorem 4. Let \(p \) be a prime for which \(f(p) \neq 0 \). An arithmetical function \(F \) satisfies (3) if, and only if, there exists an arithmetical function \(g \) (which may depend on \(p \)) such that

\[
F(p^a) = g(a)f(p)^a \quad \text{for all } a \geq 1,
\]

where \(g \) satisfies the functional equation

\[
g(a + b)g(b) = g(a)g(b) \quad \text{for all } a \geq b \geq 1.
\]

Proof. Assume there exists a function \(g \) satisfying (7) and let \(F(p^a) = g(a)f(p)^a \). Then if \(a \geq b \geq 1 \) we have

\[
F(p^{a+b})F(p^b) = g(a + b)f(p)^{a+b}g(b)f(p)^b
\]

and

\[
F(p^a)F(p^b)f(p^a)f(p^b) = g(a)f(p)^ag(b)f(p)^bf(p)^b.
\]

\(^1\) If \(c = 1 \) the inequality \(1 \leq i \leq c - 1 \) is vacuous; in this case it is understood that (5) is to hold for all \(i \geq 2 \).
Using (7) we see that F satisfies (3).

To prove the converse, assume F satisfies (3) and let

$$g(a) = \frac{F(p^a)}{f(p)^a}$$

for $a \geq 1$. From (3) we see at once that g satisfies (7), so the proof of Theorem 4 is complete.

Next we determine all the solutions of the functional equation (7).

Theorem 5. Assume g is an arithmetical function satisfying (7). Then there exists an integer $k \geq 1$, a divisor d of k, and a complex number C such that

(8) $g(n) = 0$ for $1 \leq n \leq k - 1$, and for $n \geq k, n \equiv 0 \pmod{d}$,

(9) $g(n) = C$ for $n \geq k, n \equiv 0 \pmod{d}$.

Conversely, choose any integer $k \geq 1$, any divisor d of k, and any complex number C. For those n satisfying $n \geq k$ and $n \equiv 0 \pmod{d}$ let $g(n) = C$, and let $g(n) = 0$ for all other n. Then this g satisfies (7).

Proof. Assume g satisfies (7). If g is identically zero then (8) and (9) hold with any choice of k and d and with $C = 0$. If g is not identically zero, let k be the smallest positive integer n for which $g(n) \neq 0$ and let $C = g(k)$. Then $g(n) = 0$ for $1 \leq n \leq k - 1$. If $n \geq 2k$ we may write $n = k + r, r \geq k$, and use (7) with $a = r, b = k$ to obtain the periodicity relation

(10) $g(k + r) = g(r)$ for $r \geq k$.

In particular, $g(2k) = g(k)$. Therefore, to completely determine g we need only consider $g(n)$ for n in the interval $k + 1 \leq n \leq 2k - 1$. If $g(n) = 0$ for all n in this interval then $g(n) = 0$ for all $n \equiv 0 \pmod{k}$ and (8) and (9) hold with $d = k, C = g(k)$. Suppose, then, that $g(n) \neq 0$ for some n in the interval $k + 1 \leq n \leq 2k - 1$ and let $k + d$ be the smallest such n. Then $1 \leq d \leq k - 1$. We prove next that $d \mid k$, that $g(n) = 0$ if $n \equiv 0 \pmod{d}$, and that $g(n) = C$ if $n \equiv 0 \pmod{d}$.

For this purpose we define a new function h by the equation

$$h(n) = \frac{g(n + k)}{g(k)}$$

for $n \geq 0$.

Then the periodicity property (10) implies

(11) $h(n + k) = h(n)$ if $n \geq 0$.

We also have
(12) \[h(0) = h(k) = 1, \quad h(n) = 0 \quad \text{if} \quad 1 \leq n < d, \quad h(d) \neq 0. \]

Now for \(n \geq 0 \) we have

\[h(n + d) = h(n + d + 2k) = \frac{g(n + d + 3k)}{g(k)} \quad \text{and} \quad h(d) = \frac{g(d + k)}{g(k)}, \]

Since \(n + 2k > d + k > 1 \) we may use (7) with \(a = n + 2k, b = d + k \), to obtain

\[h(n + d)h(d) = \frac{g(n + d + 3k)g(d + k)}{g(k)^2} = \frac{g(n + 2k)g(d + k)}{g(k)^2} = h(n + k)h(d) = h(n)h(d). \]

Since \(h(d) \neq 0 \) this implies

(13) \[h(n + d) = h(n) \quad \text{if} \quad n \geq 0. \]

Using (13) along with (12) we find

\[h(n) = 0 \quad \text{if} \quad n \not\equiv 0 \pmod{d}, \quad h(n) = 1 \quad \text{if} \quad n \equiv 0 \pmod{d}. \]

Also, \(d \mid k \) since \(h(k) = 1 \). This implies that \(g(n) = 0 \) if \(n \not\equiv 0 \pmod{d} \), and that \(g(n) = g(k) = C \) if \(n \equiv 0 \pmod{d} \).

Now we prove the converse. Given \(k \geq 1 \), a divisor \(d \) of \(k \), and a complex number \(C \), define \(g \) as indicated in (8) and (9). We must prove that this \(g \) satisfies (7). Choose integers \(a \) and \(b \) with \(a \geq b \geq 1 \). If \(a \leq k - 1 \) then \(b \leq k - 1 \) and \(g(a) = g(b) = 0 \) so (7) is satisfied. Suppose, then, that \(a \geq k \). We consider two cases: (i) \(a \not\equiv 0 \pmod{d} \), and (ii) \(a \equiv 0 \pmod{d} \).

If \(a \not\equiv 0 \pmod{d} \) we have \(g(a) = 0 \) and the right member of (7) vanishes. If \(a + b \not\equiv 0 \pmod{d} \) then \(g(a + b) = 0 \). If \(a + b \equiv 0 \pmod{d} \) then \(b \equiv 0 \pmod{d} \) and \(g(b) = 0 \). Therefore we always have \(g(a + b)g(b) = 0 \) so the left member of (7) also vanishes. This settles case (i).

In case (ii), \(a \equiv 0 \pmod{d} \), we again consider the two alternatives \(a + b \not\equiv 0 \pmod{d}, a + b \equiv 0 \pmod{d} \). If \(a + b \not\equiv 0 \pmod{d} \) then \(b \not\equiv 0 \pmod{d} \) and both sides of (7) vanish. If \(a + b \equiv 0 \pmod{d} \) then \(b \equiv 0 \pmod{d} \) so \(g(a) = g(b) = g(a + b) = C \) and Equation (7) is satisfied. This completes the proof of Theorem 5.

Theorems 2 through 5 give us a complete classification of all solutions of (1) in the case \(f(1) = F(1) = 1 \).

4. **The case** \(f(1) = 1, \quad F(1) = 0 \). **In this case any** \(F \) **which satisfies** (1) **must also satisfy**

(14) \[F(m)F(n) = 0 \quad \text{whenever} \quad (m, n) = 1. \]
These functions may be characterized by means of sets of integers with the following property.

Definition 2. A (finite or infinite) set \(S = \{k_1, k_2, k_3, \ldots\} \) of positive integers will be said to have property \(Q \) if \(1 < k_i < k_{i+1} \) and \((k_i, k_j) > 1 \) for all \(i \) and \(j \).

For example, the set of all multiples of a given integer \(k > 1 \) has property \(Q \), but there are more complicated sets with this property.

Theorem 6. A numerical function \(F \) satisfies (14) if, and only if, there exists a set \(S \) with property \(Q \) such that \(F(n) = 0 \) whenever \(n \in S \), and \(F(n) \neq 0 \) whenever \(n \in S \).

Proof. Assume \(F \) satisfies (14). Then \(F(1) = 0 \). If \(F \) is identically zero the theorem holds with \(S \) the empty set. If \(F \) is not identically zero there is a smallest integer \(k_i > 1 \) with \(F(k_i) \neq 0 \). The set \(\{k_i\} \) has property \(Q \). If \(F(n) = 0 \) for all \(n > k_i \) we may take \(S = \{k_i\} \). Otherwise there exists a smallest integer \(k_3 > k_i \) with \(F(k_3) \neq 0 \). The set \(\{k_i, k_3\} \) has property \(Q \) because (14) implies \((k_i, k_3) > 1 \). If \(F(n) = 0 \) for all \(n > k_3 \) we may take \(S = \{k_i, k_3\} \). If \(F(n) \neq 0 \) for some \(n > k_3 \) we let \(k_3 \) be the smallest such \(n \). Then (14) implies \((k_i, k_3) > 1 \) and \((k_2, k_3) > 1 \) so the set \(\{k_i, k_2, k_3\} \) has property \(Q \). Continuing in this way we obtain a set \(S = \{k_i, k_2, k_3, \ldots\} \) (finite or infinite) with the properties indicated in the theorem.

To prove the converse, choose any set \(S \) with property \(Q \), assign arbitrary nonzero values to the elements of \(S \) and let \(F(n) = 0 \) if \(n \in S \). To show that \(F \) satisfies (14), choose integers \(m \) and \(n \) with \((m, n) = 1 \). Both \(m \) and \(n \) cannot be in \(S \) since \(S \) has property \(Q \). Therefore at least one of \(m \) or \(n \) is not in \(S \) so at least one of \(F(m) \) or \(F(n) \) is zero. This completes the proof of Theorem 6.

Since Theorem 6 characterizes all solutions of (14), all solutions of the more general equation (1) with \(F(1) = 0 \) must be found among those described in Theorem 6. For those solutions \(F' \) of (14) which also satisfy (1) more can be asserted about the set \(S \) on which \(F \) does not vanish. We shall treat only the case in which \(f \) is never zero. In this case, if we write \(G(n) = F(n)/f(n) \), Equation (1) is equivalent to

\[
G(mn)G((m, n)) = G(m)G(n) .
\]

In other words, if \(f \) never vanishes the problem reduces to the case in which \(f \) is identically 1. Moreover, \(G(n) = 0 \) if, and only if, \(F(n) = 0 \) so the set \(S \) on which \(G \) does not vanish is the same as that on which \(F \) does not vanish. For those \(G \) satisfying (15) with \(G(1) = 0 \) we shall prove:
THEOREM 7. Let G be a solution of (15) with G(1) = 0 and let
S = \{k_1, k_2, \ldots\} be a set with property Q such that G(n) \neq 0 if, and
only if, n \in S. Then S contains mn and (m, n) whenever it contains
m and n. Moreover, every element in S is a multiple of k. If
\(tk_1^a \in S\) for some \(t \geq 1, a \geq 1\), then G is constant on the subset
\(\{tk_1^a, tk_1^{a+1}, tk_1^{a+2}, \ldots\}\).

Proof. If \(m, n \in S\), then \(G(m) \neq 0\) and \(G(n) \neq 0\). Therefore
Equation (15) implies \(G(mn) \neq 0\) and \(G((m, n)) \neq 0\), so S contains mn
and \((m, n)\). Let \(d = (k_i, k_i)\). Then \(d \in S\) so \(d = k_i\) since \(k_i\) is the
smallest member of S. Therefore each \(k_i\) in S is a multiple of \(k_i\), as
asserted.

If \(tk_1^a \in S\), let \(S(t) = \{tk_1^a, tk_1^{a+1}, tk_1^{a+2}, \ldots\}\). This is a subset of S.
Taking \(m = k_i\) and \(n = tk_i^{a+r}\) in Equation (15) we find
\(G(tk_i^{a+r+1}) = G(tk_i^{a+r})\) so G is constant on \(S(t)\).

BIBLIOGRAPHY

1. Douglas R. Anderson and T. M. Apostol, The evaluation of Ramanujan’s sum and

2. P. Comment, Sur L’équation fonctionelle \(F(nm)F((n, m)) = F(n)F(m)f((m, n))\),

CALIFORNIA INSTITUTE OF TECHNOLOGY AND
UNIVERSITY OF WASHINGTON
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

ROBERT OSSERMAN
Stanford University
Stanford, California

M. G. ARSOVE
University of Washington
Seattle 5, Washington

J. DUGUNJII
University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Tom M. (Mike) Apostol and Herbert S. Zuckerman, *On the functional equation*
\[F(mn)F((m, n)) = F(m)F(n) f((m, n)) \] .. 377

Reinhold Baer, *Irreducible groups of automorphisms of abelian groups* 385

Herbert Stanley Bear, Jr., *An abstract potential theory with continuous kernel* 407

E. F. Beckenbach, *Superadditivity inequalities* .. 421

R. H. Bing, *The simple connectivity of the sum of two disks* 439

Herbert Busemann, *Length-preserving maps* ... 457

Heron S. Collins, *Characterizations of convolution semigroups of measures* 479

Paul F. Conrad, *The relationship between the radical of a lattice-ordered group and complete distributivity* .. 493

P. H. Doyle, III, *A sufficient condition that an arc in S^n be cellular* 501

Carl Clifton Faith and Yuzo Utumi, *Intrinsic extensions of rings* 505

Watson Bryan Fulks, *An approximate Gauss mean value theorem* 513

Arshag Berge Hajian, *Strongly recurrent transformations* ... 517

Morisuke Hasumi and T. P. Srinivasan, *Doubly invariant subspaces. II* 525

Lowell A. Hinrichs, Ivan Niven and Charles L. Vanden Eynden, *Fields defined by polynomials* .. 537

Walter Ball Laffer, I and Henry B. Mann, *Decomposition of sets of group elements* 547

John Albert Lindberg, Jr., *Algebraic extensions of commutative Banach algebras* 559

W. Ljunggren, *On the Diophantine equation $Cx^2 + D = y^n$* 585

M. Donald MacLaren, *Atomic orthocomplemented lattices* .. 597

Moshe Marcus, *Transformations of domains in the plane and applications in the theory of functions* .. 613

Philip Miles, *B^* algebra unit ball extremal points* .. 627

W. F. Newns, *On the difference and sum of a basic set of polynomials* 639

Barbara Ososky, *Rings all of whose finitely generated modules are injective* 645

Calvin R. Putnam, *Toeplitz matrices and invertibility of Hankel matrices* 651

Shoichiro Sakai, *Weakly compact operators on operator algebras* 659

James E. Simpson, *Nilpotency and spectral operators* .. 665

Walter Laws Smith, *On the elementary renewal theorem for non-identically distributed variables* .. 673

T. P. Srinivasan, *Doubly invariant subspaces* ... 701

J. Roger Teller, *On the extensions of lattice-ordered groups* ... 709

Robert Charles Thompson, *Unimodular group matrices with rational integers as elements* .. 719

J. L. Walsh and Ambikeshwar Sharma, *Least squares and interpolation in roots of unity* .. 727

Kung-Wei Yang, *On some finite groups and their cohomology* 735

Adil Mohamed Yaqub, *On the ring-logic character of certain rings* 741

Paul Ruel Young, *A note on pseudo-creative sets and cylinders* 749