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LENGTH-PRESERVING MAPS

HERBERT BUSEMANN

l Introduction* If any two points of the metric space R can
be connected by a rectiίiable curve then a map of R into a metric
space R! is length-preserving or equilong, if the length of any curve
in R equals that of its image in R'. An equilong map of R means
such a map of R into itself.

Folding a piece of paper repeatedly and in different ways exhibits
a great variety of equilong maps of the euclidean plane. The
original purpose of the present investigation was to determine all
equilong maps which are not too pathological of the euclidean spaces
and to find out whether other interesting1 spaces admit length pre-
serving maps which are not isometries.

However, equilong maps are connected with other important
concepts. If the metric of R is intrinsic, i.e., if the distance of any
two points equals the infimum of the lengths of all curves in R
connecting these points, then an equilong map a of R into a metric
space Rr does not increase distance: xy ^ axay. We denote as
shrinkage any map of a metric space R into R' satisfying this
inequality. Shrinkages which are not equilong enter significantly
many branches of mathematics.2 In fact, the linguistically preferable
term "contraction" was avoided here, because it is widely used in
functional analysis for the special shrinkages satisfying xy ^ kaxay
with k > 1 (see, for example, [5]). Therefore it seemed worthwhile
to study the elementary properties of shrinkages as such.

On the other hand, isometries and local isometries are most
important special maps (the latter in the theory of covering spaces)
which preserve length. Our results on equilong maps will allow us
to weaken the hypotheses in various theorems concerning (local)
isometries. It often turns out that the axioms for a G-space (see [1])
need not all be satisfied and that a map can be proved to be onto
where hitherto this had been assumed.

As to our original aims: we will determine all locally finite
equilong maps of the euclidean, hyperbolic, and spherical spaces.
The maximal open connected sets on which an equilong map is in-

Received May 22, 1963. This work was supported by a grant from the National
Science Foundation.

1 " Interesting " is an essential qualification because there are many spaces with
isolated equilong maps.

2 Among the less known applications, the shrinkages of cones on certain surfaces
constructed by Resetnyak [6] deserve special mention, because they yield elegant solutions
of extremal problems in differential geometry.
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jective are—in contrast to fundamental sets—uniquely determined.
They are convex and their closures cover the space. Local finiteness
refers to this covering. We thus obtain a division of the space into
convex polyhedral regions Du D2, , from which the equilong map
is easily reconstructed.

A locally finite division of the space into convex polyhedral
regions Dl9 D2, belonging to an equilong map is characterized by
the following property which is appealing through its simplicity
(although the proof is not simple): the number of (n — l)-dίmensional
faces of the D{ having a common (n — 2)-face is even and if
δu ' * i ^2k ar# the angles between these (n — l)-faces in cyclic order
then

î + δ3 + + S2k-i — ̂ 2 + δ4 + + δ2k .

Because the existence of length preserving maps implies homo-
geneity properties of the space, the most interesting spaces from the
point of view of these maps are those which possess large groups of
motions. We will see that neither general Minkowski spaces nor the
hermitian and quarternion elliptic or hyperbolic spaces admit other
locally finite equilong maps than motions.

The initial stages of this work profited from discussions of the
author with Professor G. Tallini in Rome.

2* Shrinkages^ For purposes of comparison we define an expan-
sion of one metric space R into another, Rf, as a map β satisfying
xy g βxβy. A shrinkage of R into R is continuous but need not be
injective. An expansion β is injective, the inverse map β~λ of β(R)
on R is a shrinkage and hence continuous, but β may be nowhere
continuous. For R — R' we speak of a shrinkage or an expansion of
R.

The symbol (x, y, z) means that x Φ y, y Φ z and xy + yz — xz.
We begin with a simple observation concerning the displacement xax
of a point under a shrinkage. This function is continuous because

| xax — yay | ^ xy + axay ^ 2xy .

(1) Let a be a shrinkage of R. If {p, x, ap) then xax ^ pap
with equality only when px = apax and (x, ap, ax).

If (x, p, ap) then xax ^ pap with equality only when axap — xp
and (x, ax, ap).

For (p, x, ap) gives

xax ^ xap + apax ^ px + xap = pap
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and xax — pap implies first that apax = px > 0 and then (x, ap, ax).
From (x, p, ap) we conclude

xax ^ xap — axap ^ xap — xp = pαp > 0 .

(2) If β is an expansion of R and (p, βp, x) then xβx ^ pβp
with equality only when βpβx = px and {βp, x, βx).

This follows from

xβx ^ /9p/3# — βpx ^ px — βpx — pβp > 0 .

The length of the curve C: x(t) (a ^t g 6) in a metric space
(see [1] or [7]) is denoted by L(C). Obviously,

(3) If a is a shrinkage of R in Rf and C: x(t) is a rectifiable
curve in R and aC: ax(t) is its image then L(aC) tί L{C).

If C is the curve x(t) (a g t <g b) and we put x(a) = u, x(b) = v
then L(C) ^ uv. If the equality sign holds we call C a segment
T(u, v) from u to v, because T{u, v) is isometric to an interval of
length uv on the real axis ([1] or [7]|).

(4) If a is a shrinkage of R in R' and uv — auav then a
maps a segment T(u, v) isometrically on a segment T(au, av).

For if z e T(u, v) then

uv = uz + zv Ξ> auaz + azav ^ auav = uv ,

whence uz = auaz and zv •=• azav. If w is a fourth point of T(u, v),
say on the subsegment T(u, z), then it follows from what we just
proved that wz = awaz. This yields:

(5) If p and q are fixed points of a shrinkage of R and if
exactly one segment T(p, q) exists then a leaves all points of T(p, q)
fixed.

Thus the fixed points of a shrinkage of a euclidean or hyperbolic
space form a set which is empty or convex and closed.

A ray in a metric space R is the isometric image of the non-
negative real axis and hence may be represented in the form p(t)
(t ^ 0) with p{tx)p{t2) = | tλ - t2 \. We prove:

( 6 ) Assume that for any two points x,y in R a segment T(x, y)
exists and that (w, x, y) and (x, y, z) imply (w9 x,z). If a is a
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shrinkage of R and the displacement attains at p a positive minimum

(i.e., pap = inf xax > 0), then p is the origin of a ray which a
\ xeR I

translates into itself.
Conversely, if p is the origin of a ray which a translates (prop-

erly) into itself then pap = inf xax.
xβB

Let T be a segment from p to ap and x an interior point of T.
Put Ti = aιT, Pi = a% x{ = a% (i = 0,1, •), P<*2> = p. Then (1)
yields xax = /> and (a?, j ^ , a )̂. Hence by hypothesis (p, pu xt). Apply-
ing (1) to x and x1 we obtain (pl9 xlf p2) hence (p, xl9 p2) and xxx =
P1P2 — PPi From (4) we conclude that 2\ is a segment from px to
#2 and from (x, pu xx) and (#, xlf p2) that Γ U Tx is a Γ(p, #2). Con-

00

tinuing in this manner we prove that \J T{ is a ray #(£) (t Ξ> 0) withJ

Conversely, if a induces the translation ap(t) = p(ί + jθ) (/? > 0)
of the ray p(t), then for an arbitrary point x

n

+ XP^ PX + Σl %i-l%i + XnVn ^ PPn =

Dividing by n and letting n—> 00 we obtain xxλ ^
In order to see how (6) can be applied we prove

(7) Let R be a convex subset of a Banach space with strictly
convex spheres and a a shrinkage of R. The set S of the points
where the displacement xax takes its minimal value is either empty
or convex. If the minimum is positive then S is the union of
parallel rays and a coincides on S with a translation δ of the space.

If the minimum is 0 we know from (5) that S is convex. If
pap — inf xax = p > 0 then, by (6) a induces a translation on a ray
Sp with origin p. If also qaq = p then the says Sp and Sq are
parallel because otherwise aιpaιq —> co for i —• 00 whereas a*pa*q ^ pq..
Therefore a coincides on Sp U Sq with an ordinary translation δ of
the space. This implies pq = apaq and it follows from (4) that a
maps T(p, q) isometrically on T(ap, aq). (Segments are unique be-
cause the spheres are strictly convex) Therefore xax = pap for
x e T{p, q), whence T(p, q)aS and ax — δx on S.

We add an observation which is of interest in connection with
contraction maps (see Introduction).

(8) For any two points x,y of R let a segment T(x, y) exist
and let a be a map of R in itself satisfying xy > axay for x Φ y.
If the displacement xax attains a relative minimum at f, then f is
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a fixed point (so that the minimum is absolute) and there is no
other fixed point. If xax attains at g a relative maximum then no
point z with (z, g, ag) exists.

If fψaf then by (1) any point x o n a T(f, af) would satisfy
either xax < faf or fx = afax. Both relations contradict the hy-
pothesis. A second fixed point / ' satisfies / / ' = afaf hence / ' = / .
If a point z with (z, g, ag) existed then a segment T(z, g) would
contain a point x with (x, g, ag) and arbitrarily small xg. But (1)
would yield either xg = axag or xax > gag.

If R is a differentiable manifold with a Riemann or Finsler
metric then the nonexistence of z means that g lies on the so called
cut locus or minimum point locus of ag. For compact R both / and
g exist. If R is a spherical, or more generally, a spherelike ([1, p 128])
space, then g is also unique because ag is then the antipode to g
and any two points and their antipodes have equal distance.

As mentioned in the introduction, the metric of R is called
intrinsic if any two points x, y of R can be connected by a curve
of finite length and

xy = inf L(Cxy) ,
oxy

where Cxy traverses all curves from x to y. If in such a space a
curve of minimal length from x to y exists it is a segment T(x, y).

Denote by S{p, q) (p > 0) the set of all points x for which
px < p. If the metric of R is intrinsic and the closure S(p, 2p) of
S(p, 2p) is compact then a segment T(x, y) exists for any two points
x, y in S(p, p). In particular, if R is compact or finitely compact
(which means that all S(p9 p) are compact) then a T(x, y) exists for
arbitrary x, y. (These facts are implicit in the results of [1] and
[7, p 142])

If the metric of R is intrinsic the following converse of (4)
holds:

(9) If a is a shrinkage of the space R with an intrinsic metric
in the space R', moreover uv = auav and the image aC of the curve
C from u to v is a segment T(au, av) then C is a T(u, v) and a
maps C isometrically on aC.

For if C were not a T(u,v), a curve Co from u to v with
L(C0) < uv would exist and it would follow that

auav ^ L(aC0) S L(C0) < uw .

(10) Let R be a space with an intrinsic metric and a a con-
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tinuous map of R in R. Then a is a shrinkage if and only if,
L(C) ^ L(aC) for any curve C in R.

The necessity follows from (3). Let C be a curve from x to y
with L(C) < xy + ε; then

xy + ε> L(C) ^ L(aC) ^ axay

proves the sufficiency.
An important corollary of (9) was already mentioned:

(11) A length preserving map of a space R with an intrinsic
metric into a space Rf is a shrinkage.

It is clear that a shrinkage of a noncompact space onto itself or
of a compact space into itself need not be an isometry. However
Freudenthal and Hurewicz proved in [4]:

(12) A shrinkage of a compact space onto itself is a motion.5

In conjunction with (11) this yields:

(13) A length preserving map of a compact space with an intrinsic
metric onto itself is a motion.

In particular, a locally isometric map of a compact G-space onto
itself is a motion, a fact which the author proved in [1, p 172]
without being aware of the paper [4]. A much more interesting
generalization is given in (19).

It may be useful to emphasize that in (13) compactness cannot
be replaced by finite compactness. If (xu , xn-u z) — (x, z) are
cartesian coordinates in En then the relations

a(x, z) =

'(x, z + 1) for z < 0 ,

(x, 1 - z) for 0 ^ z ^ 1 ,

(x, z - 1) for z > 1 ,

define an equilong map of En on itself which is not a motion.
Since the inverse of an expansion is a shrinkage, (12) is valid

also for expansions. However, according to [4] a stronger statement
holds:

(14) An expansion of a compact space into itself is a motion.

3 A motion of R is an isometry of R onto itself.
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In particular:

(15) An isometry β of a compact space R into itself is a motion.

Since we will apply (15) we give a short proof: If pe R — βR
existed then putting p = pOf pi = β% R = Ro, R{ = β*R we would
have (for k |Ξ> 1) PiβRi — Ri+1, PiPi+k = pi?* ^ ί>i?i > 0, and the p<
would not have an accumulation point.

From (12) interesting results on special spaces may be obtained.
For example:

(16) Let a be a shrinkage of the spherical space Sn which is not
a motion. Then a has at least one fixed point, maps at least one
point on its antipodef and sends at least one pair of antipodes into
the same point. a(Sn) lies in a closed hemisphere.

The first two statements follow from well known topological
facts, because by (12) the degree of the mapping a is zero. They
can also be seen directly: If ax were never antipodal to x then the
point xt on T(x, ax) with xxt = t(xax) (0 ^ t ^ 1) would be well
defined and depend continuously on x, so that x—*xt would by (12)
yield a continuous deformation of Sn into a proper subset. If δ is
the antipodal map then δa is a shrinkage, hence maps some point
u on its antipode, and an = u.

If a is not a motion then it may by (12) be regarded as a map
of Sn into the ^-dimensional euclidean space, and it follows from
the Theorem of Borsuk and Ulam see [3, p. 337], that a sends at least
one pair a, a' of antipodal points into the same point b.

If Sn has curvature 1, then any point x satisfies min (xa, xar) ^ ττ/2.
Therefore axb ^ ττ/2 for all x and a(Sn) lies in the hemisphere of Sn

with center b.

3 Locally injective equilorxg maps From now on we concent-
rate on length preserving maps. In particular we study regions in
which these maps are injective. At each stage we will make it
clear which properties on the spaces enter. The first is domain
equivalence. We say:

Domain equivalence holds for two topological spaces R, Rr if
the topological image in R! (R) of an open set in R{Rr) is open in
R\R).

For R ~ R' we follow the classical terminology and speak of
domain invariance rather than equivalence. Brouwer's theorem
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states that domain equivalence holds for any two topological manifolds
of the same dimension. Therefore all manifolds considered in differ-
ential geometry have the property of domain in variance. The finite
dimensional, and probably all, G-spaces have this property.

Some simple examples will help to elucidate this concept and the
facts which we are going to prove. First let R be the set in E*
with cartesian coordinates x, y, z consisting of the plane z = 0 and
the line x = y = 0. The metric of R is here and in the second
example the intrinsic metric induced by the euclidean metric in E3.
The interval 1 < 2 < 3, x = y = 0 is isometric to the interval 1 < y < 3,
x = z = 0 but the former is the sphere S((0, 0, 2), 1) and is open,
the second is not. Domain in variance does not hold in R. The map
a of R in itself defined by

<x(x, y, 0) - (x, y, 0), α(0, 0, t) = (0, t, 0)

preserves length and takes the first interval into the second.
Next take R as the set in E* consisting of the three coordinate

axes. The interval x = y = 0, 1 < z < 3, is isometric to the interval
x = y = 0, — 1 < 2 < 1. The former is open in i?, the second is not.
The map a which leaves all points on the x-axis, on the y-axis and
the points z ^ 1 on the 2-axis fixed and maps (0, 0, z) with z > 1 on
(0,0,1—2) preserves length and takes the first interval into the
second.

For later purposes we point out that in both these spaces motions
exist which are not the identity and leave S((0, 0,2), 1) pointwise
fixed.

As third example we take the ray t ^ 0 with the metric | tλ — t2 \.
The set 0 ^ t < 1 is isometric to 1 ^ t < 2, the first is open, the
second is not. V = t + 1 takes the first set into the second and is
an isometry, but is not a motion because it does not map R onto
itself.

Denoting the restriction of a map a to a set M by aM we say
that a is injective on M if aM maps M bijectively on a(M). We
prove

(17) Let R, R' be locally compact spaces with intrinsic metrics
and domain equivalence and a an equilong map of R in R' which
is injective on the open set G. Then for every point p of G a
positive pp exists such that aQ {and hence a) maps S(p, pp) iso-
metrically on S{ap, ρp).

Choose δ > 0 such that S(p, δ) is compact and lies in G. Then
aQ maps S(p, δ) topologically on aGS(p, δ) = aS(p, δ). It follows from
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domain equivalence that aS(p, δ) is open, hence p = pp > 0 exists
such that S(p', 2ρ) {pf = ap = aGp) lies in αS(p, δ) and is compact.

For any two points x', yf in S(p', p) there is a segment T(x', y')
which is contained in S(p, 2p). Since aQ is topological in S(p, δ) and
preserves length OQ T{X'9 y

f) is a curve from x = α£ V to ?/ = α^V
of length L(T(cc', y')) = a&V ^ #2/, hence by (11) α?V — xy. In par-
ticular pV = px. Therefore oL^Sty p) is isometric to S(p, p) and
contained in S(p, p). It follows from (15) that S(p, p) = a^Sip', p),
which proves (17), Our examples show that (17) is not valid without
the hypothesis of domain equivalence.

A map β of R in R is locally injective if every point of R has
a neighborhood on which β is injective. Adhering to the terminology
of [1] we do not use the strict analogue to define local isometries
but require a little more: The map a of R in Rr is locally isometric
if for every point p of R a positive pp exists such that a maps
S(pt Pv) isometrically on S(ap, pp). We now prove the important
fact

(18) THEOREM. If R and Rr are finitely compact spaces with
intrinsic metrics and domain equivalence then a locally injective
equilong map of R into R' is a local isometry of R onto Rr.

Our third example shows that (18) does not hold without the
hypothesis of domain equivalence even if R' = R.

Proposition (17) yields the existence of a positive function σp

defined in R such that a maps S(p, pp) isometrically on S(ap, pp) and
hence S(p, pP) on S(ap, pp). Let p(p) be the supremum of the num-
bers ε for which a maps S(p, ε) isometrically on S(ap, ε). If ρ(p) = co
then a is an isometry of R on R' and p{x) = co for all x in R. If
j0(p)<°° then S(p, e)=)S(?, ε—pq) for pq<e shows that | p(p) — p(q)\^pq.
Therefore p(p) is a positive continuous function which has a positive
minimum on every S(x, σ) (which is compact by hypothesis).

Let q be any point of R and qf—aq. We must prove that for a
given point r' of R' a point r in R exists with ar = r\ Because Rf

is finitely compact and has an intrinsic metric there is a segment T'
from q' to r\ Let δ > 0 be the minimum of p(p) for peS(q,q'r')
and choose <?£ = q', q[, , gi = rf on T' such that (gί^, g{, g{+1) and

_

Since α maps S(g, δ) isometrically on S(q'f δ) there is a segment
T(q, ?i) in S(ί, δ) which α maps isometrically on the subsegment
T(q'9 q[) of T\ For the same reason α maps a suitable segment
T(qlf q2) in S ^ , δ) on the subsegment T(q[, q'2) of T\ Thus we arrive
at a segment Γί?*-!, qn) mapped on the subsegment T(q'n-lf q'n) =
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T(q'n-U r') of T. With qn = r we have ar = r\ It follows, by the

way, from (9) that U T(q^lf ?<) is a Γ(g, r).
ΐ = l

Notice the following application of (13) and (18):

(19) THEOREM, If R is a compact space with an intrinsic metric
and domain invariance, then a locally injective length preserving
map of R in itself is a motion.4"

Compactness in (19) cannot be replaced by finite compactness, see
[1, p 173], but there are various conditions under which it can.
Define p(p) as in the proof of (18). We introduce the condition

( *.) inf ρ(p) > 0 for each p'eaR ,

which holds when both R and R' are (?-spaces [1, p 171]. Under
the hypotheses of (18) R and Rf are arcwise and locally arcwise
connected and (*) guarantees that R is a covering space of R'.
Therefore we have (compare [1, p 174])

(20) Let R and Rf he finitely compact spaces with intrinsic metrics
and domain equivalence. If the locally injective length preserving
map a of R in Rr satisfies (*) and the fundamental group of R
is not isomorphic to a proper subgroup of that of Rf, then a is
an isometry of R on R'

Papers [8], [9] and the last part of [2] deal with conditions
which can replace the requirement on the fundamental groups.
From (18) and [2] it may be deduced, for example, that a locally
injective equilong map of any (complete) locally Minkowskian space
into itself is a motion.

4. Regions of injectivity* A region of injectivity of the map
β of the space R into the space Rτ is a maximal open connected set
on which β is injective. If β is a locally isometric map of R on R'
then such a region is what is usually called a fundamental domain
(or, depending on the terminology, its interior). We are here
interested in regions of injectivity of equilong maps of spaces in
themselves. No interesting statements are possible unless the space
has special properties, in particular besides domain invariance, one
or more of the following three:

4 The following example shows that domain invariance is necessary : The space
consists of the origin 0 and the circles — 2 3-n + 3~neίθ (n = 0, 1, 2, •) of the complex
plane; the metric is given by arclength. Then a defined by α(0)=0 and a{—2-3-n+3-neiθ)
= •— 2'3~n~1 + 3-n-1euθ is locally injective and equilong but is neither onto nor isometric*
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I. A motion of the space which leaves all points of a nonempty
open set fixed is the identity.

All spaces considered in differential geometry and all G-spaces
have this property, [1, p 178]. The first two examples in §4 are
spaces for which I does not hold.

II. If (x, y, z) then the segment T(x, y) is unique. Every point
p has a neighborhood S{p, d) such the segment T(x, y) is unique for
points x, y in S(p, d).

Again all the usual spaces of disfferential geometry and all
G-spaces have this property. A Minkowski space of dimension greater
than one does not have it unless its spheres are strictly convex.

III. An isometry of a sphere S(p, p) on a sphere S(q, p) (p > 0)
can be extended to a motion of the space.

This condition may be trivially satified, namely when no isometric
spheres with distinct centers exist and the only isometry of S(p, p)
is the identy. Such a space satisfies I. If, in addition, domain
invariance and property II hold, then our theory implies that its only
locally finite (see below) equilong map is the identity.

All simply connected complete Riemann spaces with analytic
metrics satisfy II. Particularly interesting among these are the
elementary, i.e. the euclidean, hyperbolic, and spherical (dim>l)
spaces, the hermitian or quaternion elliptic and hyperbolic spaces
and the elliptic and hyperbolic Cay ley planes. Apart from the elliptic
spaces these are the only finitely compact G-spaces with pairwise
mobility, which means: Given four points x, y, xf, y' with xy — x'yf

then a motion exists which takes x into x' and y into y' (see [1] for
the compact case and [10] for the general case.

Finally we mention that, because of the existence of dilations
the Minkowski spaces also satisfy III.

In order not to interrupt our arguments later, we first prove a
lemma:

(21) Let M be a closed set with a nonempty interior Mt in a
finitely compact space which has an intrinsic metric and satisfies
II. If M contains with any two points x, y the segment T(x, y)
when it is unique, then M — Mi and with x and y the set M con-
tains at least one, and Mi contains all, T(x, y).

Let pe M, qe Mt and T = T(p, q). We show first that T- paM{.
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If q'eT is sufficiently close to, but different from, q then T{q', q)
lies in Mi9 and T(q\ q), T(q\ p) are unique, hence are subsegments of
T and lie in M. If a point of T — p not in Mt existed then travers-
ing T(p9 q

f) from qr towards p we would meet a first point b φ p not
in Mi. Choose δ > 0 such that T(x, y) is unique for x9 y in S(b, p)
and then u, v on T with (p, u, 6), 6w < p, (δ, v, g') and bv < ft The
segments T(u, x) with a? e Mt Π S(6, />) lie in M, because they are
unique and x, u lie in M. The set (J T(u, x) — u is open and con-
tains 6 which would imply b e M{.

Thus T — pcMi whence pe Mt and M = J0"<β Also, trivially,
TczMi for peMί9 hence Af* contains all T{p,q). If p, g are given
points of ilί then sequences p l f p2, and ίlf ?a> in Mt exist
tending to p and g respectively. Because T(pif qJczMi and {Γfe, ?<)}-
contains—by finite compactness—a subsequence tending to a segment

)> the latter lies in M. Next we observe:

(22) Lei R be a metric space which has a countable base and
satisfies I and III. Then a bijective locally isometric map β of a
connected open set G in R on an open set Gf in R can be extended
to a motion of R.

By hypothesis each point p of G has a neighborhood S(p9 pp)

which β maps isometrically on S(βp, pP). Since G is connected and

R has a countable base there is a sequence of points pl9 p2, in G

such that β maps S(pi9 Pi) = S(pif pPi) isometrically on S(βPi, Pi)9

G=(j S(pif ρd9 and S(pi+1, ρi+1) ΠS^Φ where & = U S(P<, ft).
< = 1 A ; = l

It follows from III that the restriction of β to S(pίf ft) is the
restriction of a motion i^ of ί2. It suffices to prove that /3 = vx on
each Si. The assertion is trivial for Sλ. Assume it has been proved
for Sn. Then vn+1 = β = vx on S(pn+l9 pn+1) Π S%. Since this set is
not empty it follows from I that vn+1 = vu in particular vn+1 — vx — β
on S»+i. This result and (17) yield

(23) Lβ£ R be a finitely compact space with an intrinsic metric
and domain invariance satisfying I and III. If the equilong map
a of R is injective on the connected open set G then aG can be ex-
tended to a motion of R.

We add the following:

(24) If (under the hypotheses of (23)) G is a region of injec-
tίvity then no boundary point p of G has a neighborhood on which
a is injective. Hence two distinct regions of injectivity are dis-
joint.
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For an indirect proof assume that a is injective on S(p, p)
(p > 0). Put Sn = S(p, pjn). For each n there would be a point
qn e Sn — G U Sn and a point rneG such that arn = aqn. Otherwise
a would be injective on GO Sn. Because a is injective on S(p, p)
we have rnp ^ p.

Let qr e Sn Π G. It follows from (22) that α:<^α:r% = ?>„. On the
other hand

2p/n > qnq'n ̂  aqnaq'n ^ aq'narn - aqnarn = αt f^n = g>Λ

^rnp-pq'n> p- pin .

If two distinct regions G, D of injectivity were not disjoint
then, since neither can be contained in the other, D would contain
a boundary point p of G because it is connected.

We now come to an important fact which will enable us in the
most interesting cases either to prove the nonexistence of equilong
maps which are not motions or to construct all length preserving
maps which are not too wild.

(25) THEOREM. Let R be a finitely compact space with an intrinsic
metric and domain invariance satisfying I, II and III. A region
of injectivity D of an equilong map of R in itself contains with
two points x, y all segments T(x, y), its closure D therefore contains
with x, y at least one T{x, y). Moreover cί# is injective and is the
restriction of a motion of R to D.

By (22) there is a motion β of R extending aD, i.e., βx = aDx =
ax on D. Therefore β"τa is an equilong map of R which leaves all
points of D fixed. Denote the set of all fixed points of β^a by M.
Then M is closed, contains D and β~xax = x or ax = βx on M hence
aM is injective. By (5) M contains T(x, y) when x, y lie in M and
T(x, y) is unique. It follows from (21) that the interior M{ of M
contains with any two points x, y all T(x, y) and that M = Mt.
Since Mi is connected and contains D, moreover a is injective on Λf4
and D is maximal we conclude Mi = D.

Under the hypotheses of (25) we call a locally finite if R is the
union of the closures of the regions of injectivity of a and if this
covering of R is locally finite. There will then be a finite or count-
able number of regions of injectivity Dl9 D2, . For each A there
is a motion β{ such that β^a leaves Dι point wise fixed. Therefore
studying the properties of a we may assume that a leaves D1 point-
wise fixed.

An ellipsoid R in E2 with three axes of different lengths and
with its intrinsic metric admits a finite number of equilong maps.
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These are generated by the reflections in the three planes P< con-
taining two axes and the following maps β^ If Rίf RI are the sets
on R bounded by P* then β{ leaves Ri pointwise fixed and maps R\
on Rι by reflection in P{. Obviously there is such a variety of spaces
possessing isolated equilong maps that neither is it feasible nor would
it be worthwhile to determine all spaces admitting equilong maps.

Clearly, the interesting spaces are those which possess large
groups of motions. We are now going to examine such spaces for
proper equilong maps, that is, length preserving maps which are not
motions.

5 Spaces without proper equilong maps* The one dimensional
cases, although trivial, are basic. The regions of injectivity of a
proper locally finite equilong map a of the real axis are intervals or
rays whose endpoints form a discrete set. We may assume that D1

has a right endpoint x2. Let D2, D[9 be the regions of injectivity
to the right of x2 in their natural order. Denote the left endpoint
of D[ by Xι and let Ri be the reflection xr = 2x — xt of the real axis
in Xi. Then for x > x2 the map a is given by

(26) ax = R2R3 R3x for x e Ό] .

The procedure is analogous for the D3 preceding Dx (if any).
If the space is the unitcircle (with length as metric) the con-

struction is similar. Orient the circle. There is a finite number of
regions of injectivity for a proper locally finite equilong map a which
are arcs and which we call Du , Dm in the order of the orienta-
tion. Denote by Ri the reflection in the diameter of the circle
passing through the left endpoint of Dim Then we still have

ax = R2RZ R3 for xe D3 ,

but the Dj must satisfy two conditions. Their number m must be
even, m = 2k, otherwise a would be injective on Dm (J A . The right
endpoint of Dm must stay fixed. If δ{ is the length of D{ this yields

(27) Σ δ 2 ί _ x = Σ δ 2 ί ( = π).

We want to establish that certain spaces with at least transitive
groups of motions do not possess proper equilong maps.

(28) THEOREM. A Minkowski space R (dim R = n Ξ> 2) with strictly
convex spheres5 admits a locally finite proper equilong map, if, and

5 The validity of (28) is not contingent upon the strict convexity of the spheres.
The latter is equivalent to II and hence necessary for applying (25).
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only if, it possesses the reflection in some hyper plane.

Proof. Assume that R can be reflected in the hyperplane H.
Then the reflections in all hyperplanes parallel to H also exist.
Choose aflfine coordinates xlf , xn such that x{ is Minkowski length
on the #Γaxis, H is given by xn = 0 and the line xx = 0, , xn-x = 0
is normal to H in the Minkowski sense. Then all lines xt = const.
(ί = 1, . . . , n — 1) are normal to all xn — const. Let xn —» β(α?n) be a
locally finite equilong map of the xπ-axis on itself. Then

(xlf , »„_!, a?w) — (a?!, , xw_!, /9(aΛ))

defines an equilong map of R. Thus a considerable variety of equilong
maps can be derived alone from the reflection in H.

Conversely, assume R possesses a locally finite proper equilong
map a. Then at least two regions Du Z>2, of injectivity exist
and by (25) all these are convex polyhedral regions. Du which by
agreement is left pointwise fixed by a, has a boundary point p such
that for a suitable p > 0 the sphere S(p, p) intersects only D1 and a
single other Dif say D2. Then a leaves the disk S(p, p) Π A Π A
fixed and coincides on S(p, p) Π A with a motion β of iϋ. But β
must be either the identity, which is impossible because then Dλ

would not be a region of injectivity, or the reflection in the hyper-
plane carrying A Π A .

Then same can be proved for plane quasihyperbolic geometry
(see [1, pp 360, 363, 371, 407]) and also for its higher dimensional
analogues. Hyperplanes through arbitrary n points (if dim R = n > 2)
do in general not exist and the result must be interpreted to mean
that a hyperplane H and the reflection in H exist.

Next we show that the spaces, which after the elementary and
elliptic spaces, have the greatest degree of mobility, do not possess
proper equilong maps:

(29) THEOREM. The hermitian elliptic and hyperbolic spaces of
(real) dimension greater than 2, the quaternian elliptic and hyper-
bolic spaces of dimension greater than 4, and the Cayley elliptic and
hyperbolic planes6 do not possess locally finite length preserving
maps other than motions.

None of the spaces in (29) have constant curvature. Therefore,
using the result mentioned in the preceding section, it suffices to
prove:

6 The Cayley planes have dimension 16. The hermitian spaces of dimension 2 and
the quarternion spaces of dimension 4 are elementary, see [1].
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(30) Let R be a finitely compact metric space with an intrinsic
metric and a pairwise transitive group of motions. If R possesses
a proper equilong map, then R has constant curvature.

Even without the hypothesis that R admits a proper equilong
map all spaces in question of dimension less than 4 have constant
curvature, so that we may assume that n = dim R ^ 3. Moreover
all spaces satisfy I, II, III.

As in the preceding proof there is a point p on the boundary of
A and a sphere S(p, p) (p > 0) such that S(p, ρ)aD1{J A . We
choose p so small that T{x, y) is unique for x, y e S(p, p). Then
S(p, p) is homeomorphic to En. By (25) the set

N = A n A n S(p, p)

contains with any two points the segment T(x, y) and separates S{p, p)
into two sets. In the language of differential geometry N is there-
fore an (n — l)-dimensional totally geodesic set. Let (p, dxN) be the
lineal element normal to N at p. If any other lineal element {q, dy)
is given, then pairwise transitivity guarantees the existence of a
motion taking (p, dxN) into (q, dy). This motion takes N into a
totally geodesic set through q and normal to dy. It follows from
the wellknown theorem of Beltrami, that R has constant curvature.

6 Equilong maps of the elementary spaces* We now study the
locally finite equilong maps a of the elementary spaces of dimension
n ^ 2 which are not motions. Then there are at least two regions
of injectivity. As before we denote these by Du D2, and assume
that a leaves A point wise fixed. By (25) the A and A are convex
sets. We remember that a set in a spherical space Sn is called
convex if it contains with two points at least one segment. Such
a set either lies in a closed hemisphere or is the entire S*. There-
fore each A and A is indeed convex and A lies in an open hemisphere
of S*. For brevity we write (D) for the set of the A

The r-faces (0 ^ r ^ n — 1) of (D) are the r-faces of the in-
dividual A Of course, we will call the 0-faces, and l-faces also
vertices and edges. If the A are known then a is easily recon-
structed. A string s = (A, •••, A), where each D\ is a Dif has the
property that A and D'i+1 (j = 1, , r — 1) have a common (n — 1)-
face. This face is unique if Ό] Φ D'j+1. In this case we define Rj+1

as the reflection of the space in the hyperplane containing Df

5 Π D'ί+1;
or Dj = Df

j+1 then Rj is the identity map ε of the space R. We
define

β(s) = R2R, Rr



LENGTH-PRESERVING MAPS 473

and complete this definition by putting /3(A) = e for strings consist-
ing of a single Dim

In terms of strings the map can be described as follows:
Let sk = (DI, , Dr) be a string from A to Dk9 i.e., D[ = Dl9 Dr

r =
Dk. Then

(31) ax = β(sk)x for x e Dk .

This follows from our discussion of the Minkowski case.

(31) implies that β(sk)x is independent of the string from Dλ to Dk.
Conversely, if for a given locally finite division D = (Dl9 D29 •)

of an elementary space into convex regions the map β(sk) is in-
dependent of the string sk leading from DΎ to Dk, then (31) defines
an equilong map with the A as regions of inactivity which leaves
Όλ pointwise fixed.

Let (D) consist of the regions of injectivity of a locally finite
equilong map and consider an m-face fm of (D) (0 ^ m ^ n — 1).
Take an interior point w of fm (w = /„ for m = 0) and a hypersphere
Kf

w about w whose radius p > 0 is so small that the ball wx ^ p
intersects no other D{ than those, D[, « ,Z^, which have fm as a
face. Let the (n — m)-flat normal to fm at w intersect Kr

w in the
(n — m — l)-sphere Kw (Kw = K'w if m = 0). The equilong map β
with (D) as regions of injectivity which leaves D[ pointwise fixed
induces an equilong map of Kw in itself for which the Ό) Π Kw are
the regions of injectivity.

If (D) is an arbitrary locally finite division of the space into (at
least two) convex regions, and its m-faces are again defined as those
of the individual Di9 we may define Kw for a given fm as before
and denote by C(fm) the condition that the D] Π Kw be the regions
of injectivity for an equilong map of Kw. These conditions are
essentially independent of the choice of w and p in the sense that
for different choices leading to KZ* a homothetic transformation will
send the D) Π Kw into the D) n KZ*.

The conditions C(fn-^ are trivial, they are satisfied by any (D)
and hence will no longer be mentioned. The C(fn-2) are particularly
simple. In this case Kw is a circle and we obtain from (27):

(32) The condition C(/n_2) means: If fl_l9 ,/i_i are9 in cyclic
order, the (n — l)-faces of (D) which have fn-2 as face then I is
even and9 if dt is the angle between f\_x and fit\ (fι

nt\ = f\) then

Si + δ3 + + δ^ = δ2 + δ4 + + δ, .

We have shown:
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(33) If Du D2, are the regions of injectivity of a locally finite
equilong map of an ^-dimensional (n > 2) elementary space, then they
satisfy the conditions C(fm) for all m-faces fm (0 ^ m ^ n — 2).

The converse of (33) also holds, but it is clear that the C{fm)
are not independent. Our discussion of the general case applied to
Kw contains

(34) If fm is a face of fm+k (k ^ 1) then C(fm) implies C(fm+k).
Thus, if all fm with m > 0 have vertices, then the C(/o) yield

the remaining C(fm). It is much more surprising that the simple
conditions C(fn-2) are also sufficient. Although our proof of the
converse of (33) will use the C(fn-2) only, it is of interest to see
directly why the C(fm) with m < n — 2 are redundant. Therefore
we show:

(35) If the converse of (33) holds, then the conditions C(fn-2) are
sufficient.

For n = 2 the conditions C(/o) = C{fn-2) are the only ones in
(34), hence (35) is true. Assume (35) has been proved for n ^ N — 1.

Let fm be an m-face of (D) in EN (m ^ N — 2) and construct a
corresponding (N — m — l)-sphere Kw (wefm) as above. With the
previous notations D[, , D'r with fm as face determine regions
D[ Π Kw on Kw. An (m + fc)-face of (Df) = (D[, --,D'r) containing
fm i n t e r s e c t s Kw i n a (k - l ) - f a c e / U of (DΪΓίKw, ---, D'kΓi K v ) .
The condition C(ff

k-i) for this set is equivalent to C(fm+k) for (J9')>
in particular C(/Vm_3) to C{fN-2).

By the induction hypothesis applied to the (N — m — l)-sphere
iΓw it follows from the C(/^_m_3) that the Ό[ (Ί if«, are the regions
of injectivity for an equilong map of Kw. Therefore C(fm) holds
and it follows from (34) that the A are the regions of injectivity
for an equilong map of R. Thus our principal result on elementary
spaces is this:

(36) THEOREM. Let (D) = (Dl9 D2, •••) be a locally finite division
of an elementary space R (dim R = n ^ 2) into convex regions.
Necessary and sufficient for the Di to be the regions of injectivity
of an equilong map a of R—which is then determined up to motions
by (31)—is that every (n — 2)-face /w_2 of any Di satisfy the condition:

If /i_i, , /£_i are the (n — 1)-faces of the Di having fn-2 as face
in cyclic order and £< is the angle between /*_! and / i t U / i - ^ / i - i )
then I is even and

S1 + δ3 + + δ^ = δ2 + δ4 + + δι .
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The proof is the content of the last section.

7 Proof of the main, theorem, on elementary spaces. If s =
{D[, , Dr) and s' = (A1 ~ D'r, A2, , At) are strings (always in the
given system (D)), then we denote the string {D[, « ,Z)r', Al9 * ,At)
by s s'. Our conventions on β(s) show that then

(37) β(8)β(8') = β(s . *') .

With s-1 standing for (Dr, D'r-U , D[) we have

(38) β(s)β(s'1) - β(s s-1) - βis-^βis) = ε .

The string s is closed if D[ — D'r. If s is closed then sc =
(D'3, , D'r, D[, , £);_!, JD;.) (1 < j ^ r) is closed and it follows from
(37) that

(39) β(s) = ε implies β(se) = ε αmϊ conversely.

(40) /f Sj = sis ami s2 = s^sj ί/^β^ /S(sxs2) = /3(sίsO.

This is a corollary of (37) and (38). Finally: If s = s^Sg and s' =
sίβΓ^ί are closed strings and /S(s) = ^S(s') = ε then (39) yields βis^s^) =
/^(SΓ^SO = ε, hence

(41) /3(β3βAfsί) = /S(8i8ίsίβ3) = e .

Let s = (D'lf , 2)' = JDί) be any closed string. A polygonal
path π belongs to s if it has the following properties: it begins and
ends at a point of D[. It is the product π = πx πr of paths 7̂
{in the sense of homotopy theory), where π< lies, except possibly for
its endpoints, in D\. The endpoint of πt (i < r) and hence the initial
point of ττί+1 is an interior point of the common (n — l)-face of Ό\
and A +i if D[ Φ DUi and lies in Ό[ if Ό\ = D'i+1.

Conversely, let a closed polygonal path π = τtx πr be given such
that it begins and ends at a point of D", each ΊZi lies, the endpoints
possibly excepted, in a D", and if the endpoint of π{ (i < r) does not
lie in D" then D" and A +i have exactly one common (n — l)-face
and the point is an interior point of this face. Then (D", « ,Dί' =
DJ') is a closed string, and the only one, to which π belongs.

Our rules (37) to (41) contain the following fact:

(42) If π, πi are polygonal paths belonging to closed strings s and
si (i = 1, ., m) and if π ~ πx ττm, in the sense that π remains
after subpaths of the π{ traversed in opposite senses have been
cancelled, then β(s{) = ε implies β(s) = ε.

The considerations of the preceding section reduce the proof of
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(36) to the following:

(43) If (D) satisfies the conditions C(/Λ_2) then β(s) = ε for every
closed string s in (D).

Let the closed string s = (D'lf , D'r = D[) be given. We may-
assume that D'i Φ D'i+1 (1 ̂  i ^ r — 1). Then points ^ e Z), (p = px =
pr) can be chosen to satisfy the following conditions:

(a) The points p, pi9 pi+1 (2 ̂  i ^ r — 2) are not collinear (do
not lie on a great circle in the spherical case). The segments T\ =
T{p, pd (2 ̂  i ^ r - 1) and Γ< = T(pi9 pi+1) (1 ̂  i ^ r, p r + 1 - p) are
then unique also in the spherical case.

(b) TI or Ti have at most one common point with a given
(n — l)-face of (D) and do not intersect a face of dimension lower
than n — 1. The path π formed by the segments Ti oriented from
Pi towards pi+1 then belongs to s.

(c) The 2-simplex Si (2 ̂  i ^ r — 2) spanned by p, #<, p i + 1 does
not intersect a face of (D) of dimension less than n — 2.

There is a finite number (if any) of points ul9 * 9ut in which
U Si intersects the (n — 2)-faces of (D), and the u3- are interior points
of the Si in which they lie.

Let qm.+l9 qmi+2, , qmi+1 (wa = 0) with q, = p2 and gm. = p, denote
points lying in this order on T{. Let ί0 = 0 < ίx < < tA = 1, and
denote by qv>i the point on the (even in the spherical case unique)
segment T(p, <?*) (i = 1, , mr_2) for Λvhich pqVti = ίv(Mi).

The points ^i and the numbers ίv can be chosen in such a manner
that the qVti have the following properties: No T(qVti9 qv+lfi) or
T{qv,i9 9v,*+i) has more than one common point with a given (% — 1)-
face of (D), or intersects a face of (D) of dimension less than n — 1.
Consequently, these segments also avoid the points %. Denote by
Qv>ί the (convex) quadrangle with vertices qVfi, qv+1>i, qv+1,ί+1, qi+1,v and
by πv,ί its boundary with the orientation corresponding to this order
of the vertices. If the q{ and tv are properly chosen then these
quadrangles have the following further properties: QQ>i<z:D[ for all i.
For v > 0 a Qv>i lies either in one D'i9 or QVfi has common points with
exactly two D\ which have a common (n — l)-face and intersects this
(n — l)-face in interior points, or, finally, ζ)V)ί contains exactly one %
and lies in the union of D\ with a common (n — 2)-face.

Then πvΛ belongs to a closed string sVf< and TΓ ̂  Π v̂,». It is
clear that /8(so,») — ε a ϊ l ( i the /3(sV)i) = ε for v > 0 in the first two
cases because of our rules (37) to (41). In the last case, if Qv>i

contains u3 and %e/{_ 2 then C(/ί_2) and (37) to (41) guarantee that
β(sv>i) = ε. It now follows from (42) that β(s) = ε.
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In conclusion we point out that this investigation leads to a
variety of questions: A first type concerns general shrinkages of
special spaces and is exemplified by (16). A second type inquires into
the structure of the regions of injectivity of equilong maps of spaces
which do not satsify III. A third deals with the equilong maps of
special (e.g. the locally elementary) spaces. While it does not seem
worth the effort to determine all equilong maps of the elementary
spaces, it should be decided, whether the spaces in (29) possess proper
equilong maps which are not locally finite.

In addition there are many topics suggested by length preserving
maps, for instance, maps of En into itself which preserve, with a
suitable definition, the areas of all two-dimensional surfaces. The
locally finite equilong maps of E* have this property for any reason-
able area.

REFERENCES

1. H. Busemann, The Geometry of Geodesies, New York 1955.
2. , Geometries in which the planes minimize area, Annali Mat pur. appl. (IV)
5 5 (1961), 171-190.
3. D. G. Bourgin, Modern Algebrai Topology, New York 1963.
4. H. Freudenthal and W. Hurewicz, Dehnungen, Verkurzungen, Isometrien Fund.
Math., 26 (1930), 120-122.
5. A. N. Kolmogorov and B. V. Fomin, Functional Analysis vol I, Rochester 1957.
6. Yu. G. Resetnyak, On a special map of a polyhedron (Russian), Mat. Sbornik 53
(95) (1961), 39-52.
7. W. Rinow, Die innere Geometric der metrischen R'άume, Berlin-Gottingen-Heidelberg
1961.
8. J. Szenthe, ϋber lokalisometrische Abbildungen von G-Rdumen auf sich, Annali Mac.
pur. appl. (IV) 55 (1961) 37-46.
9. , ϋber metrische R'άume, deren lokalisometrische Abbildungen Isometrien sind,
Acta Math. Acad. Sci. Hungar., 13 (1962), 443-441.
10. J. Tits, Sur certaines classes d'espaces homogenes de groupes de Lie, Mem. Acad.
royale Belgique, Cl. Sciences, vol in 8°, 29 (1955), fasc. 3.





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
ROBERT OSSERMAN

Stanford University
Stanford, California

M. G. ARSOVE

University of Washington
Seattle 5, Washington

J. DUGUNDJI

University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced), and on submission, must be accompanied by a separate author's
resume. Manuscripts may be sent to any one of the four editors. All other communications to
the editors should be addressed to the managing editor, L. J. Paige at the University of California,
Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 14, No. 2 June, 1964

Tom M. (Mike) Apostol and Herbert S. Zuckerman, On the functional equation
F(mn)F((m, n))= F(m)F(n) f ((m, n)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Reinhold Baer, Irreducible groups of automorphisms of abelian groups . . . . . . . . . . . . 385
Herbert Stanley Bear, Jr., An abstract potential theory with continuous kernel . . . . . . 407
E. F. Beckenbach, Superadditivity inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
R. H. Bing, The simple connectivity of the sum of two disks . . . . . . . . . . . . . . . . . . . . . . . 439
Herbert Busemann, Length-preserving maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Heron S. Collins, Characterizations of convolution semigroups of measures . . . . . . . . 479
Paul F. Conrad, The relationship between the radical of a lattice-ordered group and

complete distributivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
P. H. Doyle, III, A sufficient condition that an arc in Sn be cellular . . . . . . . . . . . . . . . . 501
Carl Clifton Faith and Yuzo Utumi, Intrinsic extensions of rings . . . . . . . . . . . . . . . . . . . 505
Watson Bryan Fulks, An approximate Gauss mean value theorem . . . . . . . . . . . . . . . . . 513
Arshag Berge Hajian, Strongly recurrent transformations . . . . . . . . . . . . . . . . . . . . . . . . . 517
Morisuke Hasumi and T. P. Srinivasan, Doubly invariant subspaces. II . . . . . . . . . . . . . 525
Lowell A. Hinrichs, Ivan Niven and Charles L. Vanden Eynden, Fields defined by

polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Walter Ball Laffer, I and Henry B. Mann, Decomposition of sets of group

elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
John Albert Lindberg, Jr., Algebraic extensions of commutative Banach

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
W. Ljunggren, On the Diophantine equation Cx2

+ D = yn . . . . . . . . . . . . . . . . . . . . . . 585
M. Donald MacLaren, Atomic orthocomplemented lattices . . . . . . . . . . . . . . . . . . . . . . . 597
Moshe Marcus, Transformations of domains in the plane and applications in the

theory of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Philip Miles, B∗ algebra unit ball extremal points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
W. F. Newns, On the difference and sum of a basic set of polynomials . . . . . . . . . . . . . 639
Barbara Osofsky, Rings all of whose finitely generated modules are injective . . . . . . . 645
Calvin R. Putnam, Toeplitz matrices and invertibility of Hankel matrices . . . . . . . . . . . 651
Shoichiro Sakai, Weakly compact operators on operator algebras . . . . . . . . . . . . . . . . . 659
James E. Simpson, Nilpotency and spectral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Walter Laws Smith, On the elementary renewal theorem for non-identically

distributed variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
T. P. Srinivasan, Doubly invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
J. Roger Teller, On the extensions of lattice-ordered groups . . . . . . . . . . . . . . . . . . . . . . . 709
Robert Charles Thompson, Unimodular group matrices with rational integers as

elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
J. L. Walsh and Ambikeshwar Sharma, Least squares and interpolation in roots of

unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Charles Edward Watts, A Jordan-Hölder theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
Kung-Wei Yang, On some finite groups and their cohomology . . . . . . . . . . . . . . . . . . . . 735
Adil Mohamed Yaqub, On the ring-logic character of certain rings . . . . . . . . . . . . . . . 741
Paul Ruel Young, A note on pseudo-creative sets and cylinders . . . . . . . . . . . . . . . . . . . 749

Pacific
JournalofM

athem
atics

1964
Vol.14,N

o.2

http://dx.doi.org/10.2140/pjm.1964.14.377
http://dx.doi.org/10.2140/pjm.1964.14.377
http://dx.doi.org/10.2140/pjm.1964.14.385
http://dx.doi.org/10.2140/pjm.1964.14.407
http://dx.doi.org/10.2140/pjm.1964.14.421
http://dx.doi.org/10.2140/pjm.1964.14.439
http://dx.doi.org/10.2140/pjm.1964.14.479
http://dx.doi.org/10.2140/pjm.1964.14.493
http://dx.doi.org/10.2140/pjm.1964.14.493
http://dx.doi.org/10.2140/pjm.1964.14.501
http://dx.doi.org/10.2140/pjm.1964.14.505
http://dx.doi.org/10.2140/pjm.1964.14.513
http://dx.doi.org/10.2140/pjm.1964.14.517
http://dx.doi.org/10.2140/pjm.1964.14.525
http://dx.doi.org/10.2140/pjm.1964.14.537
http://dx.doi.org/10.2140/pjm.1964.14.537
http://dx.doi.org/10.2140/pjm.1964.14.547
http://dx.doi.org/10.2140/pjm.1964.14.547
http://dx.doi.org/10.2140/pjm.1964.14.559
http://dx.doi.org/10.2140/pjm.1964.14.559
http://dx.doi.org/10.2140/pjm.1964.14.585
http://dx.doi.org/10.2140/pjm.1964.14.597
http://dx.doi.org/10.2140/pjm.1964.14.613
http://dx.doi.org/10.2140/pjm.1964.14.613
http://dx.doi.org/10.2140/pjm.1964.14.627
http://dx.doi.org/10.2140/pjm.1964.14.639
http://dx.doi.org/10.2140/pjm.1964.14.645
http://dx.doi.org/10.2140/pjm.1964.14.651
http://dx.doi.org/10.2140/pjm.1964.14.659
http://dx.doi.org/10.2140/pjm.1964.14.665
http://dx.doi.org/10.2140/pjm.1964.14.673
http://dx.doi.org/10.2140/pjm.1964.14.673
http://dx.doi.org/10.2140/pjm.1964.14.701
http://dx.doi.org/10.2140/pjm.1964.14.709
http://dx.doi.org/10.2140/pjm.1964.14.719
http://dx.doi.org/10.2140/pjm.1964.14.719
http://dx.doi.org/10.2140/pjm.1964.14.727
http://dx.doi.org/10.2140/pjm.1964.14.727
http://dx.doi.org/10.2140/pjm.1964.14.731
http://dx.doi.org/10.2140/pjm.1964.14.735
http://dx.doi.org/10.2140/pjm.1964.14.741
http://dx.doi.org/10.2140/pjm.1964.14.749

	
	
	

