AN APPROXIMATE GAUSS MEAN VALUE THEOREM

Watson Bryan Fulks
AN APPROXIMATE GAUSS MEAN VALUE THEOREM

W. Fulks

1. Introduction. The mean value theorem of Gauss, and its converse, due to Koebe, have long been known to characterize harmonic functions. Since any second order homogeneous elliptic operator L can, by an appropriate linear change of variables, be reduced (at a given point) to the Laplacian, it seems reasonable to expect that solutions of $Lu = 0$ should, when averaged over appropriate small ellipsoids, satisfy an approximate Gauss-type theorem, and one could hope that such a mean value property would characterize the solutions of the equation.

It turns out that this is the case. In fact the operator need not be elliptic, but may be parabolic, or of mixed elliptic and parabolic type. While the methods used here do not permit the weak smoothness conditions on the solutions admitted by Koebe's theorem, the result is stronger than might be expected in that no smoothness, not even measurability, is required of the coefficients of L: they need only be defined.

Since the result applies to parabolic equations, it seems of interest to examine the heat equation, for it can be cast in the required form. This leads to a characterization of its solutions in terms of averages over parabolic arcs.

2. The basic theorem. In the following $A = \sum \alpha_{ij} y^i y^j$, $D_{ij} = \partial_i \partial_j$, $u_{ij} = D_{ij} u$, and ∇_y is the gradient operator with respect to the components of y.

It is convenient to consider equations of the form $Lu = f$, where f need only be defined, and may depend on u and any of its derivatives.

Lemma. Let $A = [a_{ij}]$ be an $n \times n$ constant nonnegative definite symmetric matrix, and denote by $B = [b_{ij}]$ the unique nonnegative definite symmetric square root of A. Let u be defined in a neighborhood of a point y in E_n, and be twice differentiable at y. For this y define the quadratic function q of x by

$$q(x) = (Bx \cdot \nabla_y)^2 \Phi(y).$$

Then the sum of the coefficients of the squared terms of $q(x)$ is $\sum_{i,j} a_{ij} u_{ij}(y)$.

Received July 24, 1963. This paper was prepared at Oregon State University under an NSF grant.
Proof. We have

\[q(x) = (Bx \cdot \nabla)^2 u = \left(\sum_{i,m} b_{im} x_m D_i \right) \left(\sum_{j,k} b_{jk} x_k D_j \right) u = \sum_{k,m} \left(\sum_{i,j} b_{im} b_{jk} u_{i,j} \right) x_k x_m . \]

The sum of the coefficients of the squared terms is then

\[\sum_k \left(\sum_{i,j} b_{ik} b_{jk} \right) u_{i,j} = \sum_{i,j} \left(\sum_k b_{ik} b_{kj} \right) u_{i,j} = \sum_{i,j} a_{ij} u_{i,j} . \]

Theorem. Let \(L = \sum_{i,j} a_{ij}(y) D_{ij} \) be a well defined symmetric differential operator with a nonnegative definite matrix \(A(y) = [a_{ij}(y)] \) in an open region \(R \) in \(\mathbb{E}_n \). Let \(B(y) = [b_{ij}(y)] \) be the unique nonnegative definite square root of \(A \), and for \(y \in R \) and \(r \) sufficiently small, define

\[u_r(y) = \frac{1}{\Omega_r} \int_{|x|=r} u(y + B(y)x) d\Omega_r , \]

where \(\Omega_r \) is the area of the sphere \(\{|x|=r\} \). Let \(u \) be a function defined in a neighborhood of a point \(y_0 \in R \), which is twice differentiable at \(y_0 \). Then for \(u \) to be a solution of \(Lu = f \) at \(y_0 \) it is necessary and sufficient that

\[u_r(y_0) = u(y_0) + C_n r^2 f(y_0) + o(r^2) \quad \text{as} \quad r \to 0 , \]

where \(C_n \) is a certain constant depending only on \(n \), in fact it is easily verified that

\[C_n = \frac{n-1}{2n} \frac{\Gamma(n/2)}{\Gamma((n+1)/2)} . \]

Proof. Denote the constant matrices \(A(y_0), B(y_0) \) by \(A \) and \(B \) respectively. Since \(u \) is twice differentiable at \(y_0 \) we have

\[u(y_0 + B(y_0)x) = u(y_0) + Bx = u(y_0) + (Bx \cdot \nabla_y)u(y) |_{y_0} + \frac{1}{2} (Bx \cdot \nabla_y)^2 u(y) |_{y_0} + o(|Bx|) . \]

But \(|Bx| \leq ||B|| |x| \). Thus on \(\{|x|=r\} \), (3) becomes

\[u(y_0 + B(y_0)x) = u(y_0) + (Bx \cdot \nabla_y)u(y) |_{y_0} + \frac{1}{2} (Bx \cdot \nabla_y)^2 u(y) |_{y_0} + o(r^2) . \]

Dividing (4) by \(\Omega_r \) and integrating over \(\{|x|=r\} \) we get

\[u_r(y_0) = u(y_0) + \frac{1}{2\Omega_r} \int_{|x|=r} (Bx \cdot \nabla_y)^2 u(y) |_{y_0} d\Omega_r + o(r^2) . \]
We next observe
\[
\frac{1}{2\Omega_r} \int_{|x|=r} x_i x_j d\Omega_r = C_n r^2 \delta_{ij}
\]
where C_n is a constant depending only on n. Thus (5) becomes, by the lemma,
\[
(6) \quad u_r(y_0) = u(y_0) + C_n r^2 \sum_i a_{i,j}(y_0) u_{,ij}(y_0) + o(r^2).
\]
But (6) is compatible with (2) if and only if $Lu = f$ at y_0.

3. The heat equation. As an application of the main result let us consider the heat operator $Hu = u_{xx} - u_t$. If we make the change of variables given by $x = \xi$, $t = \tau - (1/2)\xi^2$ and set $u(x, t) = v(\xi, \tau)$ then we see that our operator takes the form $v_{\xi\xi} + 2\xi v_{\xi\tau} + \xi^2 v_{\tau\tau}$. In this case the matrix A is given by
\[
A = \begin{pmatrix} 1 & \xi \\ \xi & \xi^2 \end{pmatrix}.
\]
To compute B we observe that $A^2 = (1 + \xi^2)A$, so that $B = A/\sqrt{1 + \xi^2}$. Then
\[
(7) \quad B\begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix} = \frac{1}{\sqrt{1 + \xi^2}} \begin{pmatrix} r \cos \theta + \xi r \sin \theta \\ \xi r \cos \theta + \xi^2 r \sin \theta \end{pmatrix}.
\]
For each ξ, there is an α satisfying $-(\pi/2) \leq \alpha \leq (\pi/2)$ for which
\[
\frac{\cos \theta + \xi \sin \theta}{\sqrt{1 + \xi^2}} = \cos (\theta - \alpha),
\]
so that (7) takes the form
\[
(8) \quad B\begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix} = \begin{pmatrix} r \cos (\theta - \alpha) \\ r \xi \cos (\theta - \alpha) \end{pmatrix}.
\]
Then $v_r(\xi_0, \tau_0)$ becomes
\[
v_r(\xi_0, \tau_0) = \frac{1}{2\pi} \int_0^{2\pi} v(\xi_0 + r \cos (\theta - \alpha), \tau_0 + r\xi_0 \cos (\theta - \alpha)) d\theta.
\]
Replacing $\theta - \alpha$ by θ and using the symmetry of the cosine function this reduces to
\[
v_r(\xi_0, \tau_0) = \frac{1}{\pi} \int_0^{\pi} v(\xi_0 + r \cos \theta, \tau_0 + r\xi_0 \cos \theta) d\theta.
\]
By changing back to (x, t) coordinates and defining $x_0 = \xi_0, \ t_0 = \tau_0 - (1/2)\xi_0^2$ then
τ₀ - (1/2) ξ₀² and ur(x₀, t₀) = v_r(ξ₀, τ₀) we get

\[u_r(x₀, t₀) = \frac{1}{\pi} \int_0^\pi \frac{1}{2} (x₀ + r \cos \theta - x₀) \, d\theta \]

\[= \frac{1}{\pi} \int_0^\pi x₀ \cos \theta, t₀ - \frac{1}{2} r^2 \cos^2 \theta \, d\theta \]

\[= \frac{1}{\pi} \int_{-r}^r u(x₀ + z, t₀ - \frac{1}{2} z^2) \, \frac{dz}{\sqrt{r^2 - z^2}} \]

or finally

(9) \[u_r(x₀, t₀) = \frac{1}{\pi} \int_{-1}^1 \frac{1}{2} (x₀ + rz, t₀ - \frac{1}{2} r^2 z^2) \, \frac{dz}{\sqrt{1 - z^2}} \]

which is easily seen to be a weighted average of u over the tip of a parabola with vertex at (x₀, t₀), having the line t = t₀ as its axis and opening down.

This gives us the following theorem.

Theorem. If u is twice differentiable at a point (x₀, t₀), then a necessary and sufficient condition that Hu = f at (x₀, t₀) is that

\[u_r(x₀, t₀) = u(x₀, t₀) + C_2 r^2 f + o(r^2) \quad \text{as} \quad r \to 0, \]

where \(u_r(x₀, t₀) \) is given by (9).

To study the heat equation in higher dimensions one can make similar transformations. But it is easier to guess the form the previous theorem would take and verify it directly by the methods which established our basic theorem. The result is given below where \(\Delta u \) is the n-dimensional Laplacian, and \(\Omega \) is the area of the unit sphere in \(n + 1 \) dimensions.

Theorem. If u is twice differentiable at a point \((x₀, t₀) \) in \(n + 1 \) dimensions, then a necessary and sufficient condition that \(\Delta u = u_\tau = f \) at \((x₀, t₀) \) is that

\[u_r(x₀, t₀) = u(x₀, t₀) + C_{n+1} r^2 f + o(r^2) \quad \text{as} \quad r \to 0 \]

where

\[u_r(x₀, t₀) = \frac{2}{\Omega} \int_{|z| < 1} u(x₀ + rz, t₀ - \frac{1}{2n} z^2 r^2) \, \frac{dz}{\sqrt{1 - |z|^2}} \]

with \(dz = dz_1 dz_2 \cdots dz_n \).
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Tom M. (Mike) Apostol and Herbert S. Zuckerman, *On the functional equation*
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \] .. 377

Reinhold Baer, *Irreducible groups of automorphisms of abelian groups* 385

Herbert Stanley Bear, Jr., *An abstract potential theory with continuous kernel* 407

E. F. Beckenbach, *Superadditivity inequalities* ... 421

R. H. Bing, *The simple connectivity of the sum of two disks* 439

Herbert Busemann, *Length-preserving maps* .. 457

Heron S. Collins, *Characterizations of convolution semigroups of measures* 479

Paul F. Conrad, *The relationship between the radical of a lattice-ordered group and complete distributivity* .. 493

P. H. Doyle, III, *A sufficient condition that an arc in \(S^n \) be cellular* 501

Carl Clifton Faith and Yuzo Utumi, *Intrinsic extensions of rings* 505

Watson Bryan Fulks, *An approximate Gauss mean value theorem* 513

Arshag Berge Hajian, *Strongly recurrent transformations* 517

Morisuke Hasumi and T. P. Srinivasan, *Doubly invariant subspaces. II* 525

Lowell A. Hinrichs, Ivan Niven and Charles L. Vanden Eynden, *Fields defined by polynomials* .. 537

Walter Ball Laffer, I and Henry B. Mann, *Decomposition of sets of group elements* ... 547

John Albert Lindberg, Jr., *Algebraic extensions of commutative Banach algebras* ... 559

W. Ljunggren, *On the Diophantine equation \(Cx^2 + D = y^n \)* 585

M. Donald MacLaren, *Atomic orthocomplemented lattices* 597

Moshe Marcus, *Transformations of domains in the plane and applications in the theory of functions* .. 613

Philip Miles, *\(B^* \) algebra unit ball extremal points* 627

W. F. Newns, *On the difference and sum of a basic set of polynomials* 639

Barbara Ososky, *Rings all of whose finitely generated modules are injective* 645

Shoichiro Sakai, *Weakly compact operators on operator algebras* 659

James E. Simpson, *Nilpotency and spectral operators* .. 665

Walter Laws Smith, *On the elementary renewal theorem for non-identically distributed variables* .. 673

T. P. Srinivasan, *Doubly invariant subspaces* ... 701

J. Roger Teller, *On the extensions of lattice-ordered groups* 709

Robert Charles Thompson, *Unimodular group matrices with rational integers as elements* ... 719

J. L. Walsh and Ambikeshwar Sharma, *Least squares and interpolation in roots of unity* ... 727

Charles Edward Watts, *A Jordan-Hölder theorem* ... 731

Kung-Wei Yang, *On some finite groups and their cohomology* 735

Adil Mohamed Yaqub, *On the ring-logic character of certain rings* 741

Paul Ruel Young, *A note on pseudo-creative sets and cylinders* 749