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1. Introduction. Let X be a locally compact Hausdorff space
and /£ a positive Radon measure on X. Let 57 be a separable Hibert
space and let L;’Z, (1 = p £ + ) denote the space of 5#-valued func-
tions on X which are weakly measurable and whose norms are in
scalar L*(dy). Call P a measurable range function if P is a function
on X defined a.e. (dyt) to the space of orthogonal projections on %
which is weakly measurable. We shall regard two range functions
P, P’ to be the same if P(x) = P'(x) l.a.e., i.e. P(x) = P’(x) a.e. on
every compact subset of X. We shall denote by P the operator on
L%, defined by (Pf)(z) = P(z)f(z) la.e. Let A be a subalgebra of
the algebra C(X) of bounded continuous functions on X such that
A U A (where the bar denotes complex conjugation) is weakly* dense
in L=(dp). Say that a subspace .Z of L}, is doubly invariant if

(i) 4 is closed in Ly, if 1 = p < o and weakly* closed if p = o,

(ii) _# is invariant under multiplication by functions in A U A.
We shall refer to the following theorem as Wiener’s theorem for Li,:

THEOREM. Ewvery doubly invariant subspace 7 of Ly, (1 <p = o)
18 of the form PLj, for some measurable range function P (and
trivially conversely); _# determines P uniquely.

For compact spaces X, Wiener’s theorem was proved in [4] for
arbitrary 57 for p = 2 and for the scalar 57 (the space of complex
numbers) for arbitrary p. It was pointed out in [4] that the L},
theorem is true for locally compact spaces and the proof was outlined
considering the real line as an example. It was also mentioned in [4]
that the L3, theorem is a special case of a known theorem on rings
of operators [2; p. 167, Théoréme 1]. But the proof in [4] and the
proof of the more general theorem in [2] implicitly assume the o-
finiteness of p or at least of the separability of L7, (as opposed to
the separability of 7). The theorem itself is true without this
restriction not only for p = 2 but for all » and all (separable) 5%
(not necessarily the scalar 57°). Indeed the general Lj, theorem is
true even under the weaker assumption that the restriction of A U A
to every compact subset K of X is L*-dense in L*dp| K), instead of
being weakly* dense in L=. In this paper we prove this theorem
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(Theorem 4) in its full generality (with the above weaker assumption).
This is done as follows: Using the techniques employed in [5] we first
show in § 2 (Theorem 2) that a general class of subalgebras dense in
L* is weakly* dense, which seems to be of independent interest. This
enables us to reduce the L’density case to that of weak* density.
To overcome the difficulties caused by the (possible) non-separability
of L;z’ we extend in §3 (Theorem 3) a theorem of Dunford-Pettis
[1; p. 46, Corollaire 2] to apply to our setup. We finally use the L;f
theorem for compact X in [4] and the broad techniques in [4] to
complete the proof. As pointed out in [4], the L}, theorem for p # 2
is of special interest as it shows that the doubly invariant subspaces
of L} admit projections of norm 1 commuting with bounded (scalar)
functions; as is well known, a closed linear subspace of a Banach
space does not in general have any bounded projection at all. In the
final section of the paper we extend a known theorem [2] on operators
in L}, which commute with multiplication by bounded (scalar) fune-
tions (Theorem 5).

2. Weak™* density of certain subalgebras of L*.

THEOREM 1. Let (X, m) be a finite measure space. Any sub-
algebra o7 of L=(dm) which 1s conjugate-closed and dense in L*(dm)
18 weakly* dense in L>(dm).

The following three lemmas will lead to the proof of the theorem.

LeMMA 1. Let <% be a conjugate-closed subalgebra of L=(dm)
which contains constants and is closed in L>(dm). Then <Z is closed
for absolute values.

Proof. Let fe#, 0<f=<1/2, say. Then fi=(@1— (1 —f)?}
can be expressed as the sum of a convergent series in L=(dm) whose
terms come from <7; it follows that f2 e <# for all non-negative f e 7.
Since <Z is conjugate-closed, the lemm follows.

LEMMA 2. Let (X, m) be a finite measure space and A a sub-
algebra of L=(dm) such that A U A is dense in LXdm). Then every
closed subspace _Z of LXdm) which is invariant under multiplica-
tion by fumctions in A U A 1is of the form CyL*dm) for some measur-
able subset S of X (where Cy denotes the characteristic function of S).

Proof. Let <Z be the closed subalgebra of L=(dm) generated by
A U A and the constants. Then _# is clearly invariant under multi-

1 A weaker result was proved in [5].
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plication by functions in <#. By Lemma 1, <Z is closed for absolute
values. Let q be the orthogonal projection of the constant function
lon _#. Then1l—q .l #. Since _# is invariant under multipli-
cation by funection in <7, it follows that

(2.1) | Fadm = \£1q1am

for all fe.#. lLet Y be any measurable subset of X and let {f,} be
a sequence of functions from <z which converges to C, in L*dm).
Since |f, — f.|€ &, we have from (2.1)

[1£a=suliardm = {17, - £, qam

and the last integral is less than <S|f’" — fa |’*dm>7 X <S|q [2dm>§. It

follows that {f,|q %} is 2 Cauchy sequence in L'(dm). Hence f,|q¢|*—
Cy g in LYdm); in particular,

(2.2 |#tgram—| 1qram.

Since f, — Cy in L¥dm), f.q9 — Cyq in L*(dm) and thus

(2.3) gfnqclm — qudm .

It follows from (2.1)—(2.3) that g lg*dm :S qgdm for all measurable

Y

subsets Y; hence |¢|”=¢q a.e. Thus ¢ = C;s a.e. for some S C X.

Because of invariance, CyL*dm) < .. 1f the inclusion were
strict, let ge . #Z © CsL’(dm). Then g | Cy<# also Cy e 7+ (where
S'=X—S8) and _#* is also invariant along with _# under multi-
plications by funections in <&&. So g | Cy.<#. It follows that g | <Z
and because of density of <& in L*dm), we have g = 0 a.e. Thus
A = CgLA(dm).

LEMMA 3. Let (X, m) and A be as in Lemma 2. Then every
closed subspace of L{dm) which 1is invariant under multiplication
by functions in A U A is of the form CyLYdm) for some measurable
subset S.

Proof. This follows from Lemma 2 above and Theorem 7 in [4].

Proof of Theorem 1. Let 7 — { fe L dm): S fgdm =0 for all
ge } Then _# is . -invariant, meaning invariant under multi-
plication by functions in .o and Lemma 3 applies for _# (with &
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replacing A). Thus _# = CgL*(dm) for some S, so .Z N Ldm) =
CsL(dm). But .2z N L¥dm) = L¥dm)© 5. Since & is dense in
Ldm) by assumption, it follows that Cy = 0 a.e. Therefore .27 ={0}
and the theorem follows.

REMARK. One of the corollaries of Theorem 1 is the ‘“uniqueness”
of the Fourier coefficients of any function in LYG), for a compact
Abelian group G. The characters are dense in L*G) so that the sub-
space 7 of their finite linear combinations is weakly™ dense in L*(dm)
by Theorem 1 and the unigueness follows.

We now extend Theorem 1 to infinite measure spaces. For con-
venience we state the result in terms of Radon measures on locally
compact spaces. We have

THEOREM 2. Let X be a locally compact Hausdorff space and
a positve Radon wmeasure on X. Let v be a subalgebra of the
algebra of bounded continuous functions on X such that

(i) &7 is conjugate-closed,

(i) 7 | K s dense in LXdyr| K) for every compact subset K of
X. Then &7 is weakly* dense in L=(dy).

Proof. Let # = {fe LXdp): ngd/x =0 for all ¢ e&/}. If we
show that _# = {0}, the theorem is proved. Now _# is clearly a

closed subspace of L'(d) and is .97 -invariant. We need the following
lemma which will be proved below.

LemmA 4. Every closed 7-invariant subspace _# of LNdy) is
of the form Cg Ldp) for some measurable subset S (where & is as
in Theorem 2).

Assuming Lemma 4, the main theorem follows at once. For, since
A = CsLMdpy), 7 < #1 = CgL=(dp). If p(S) > 0, then S contains
a compact subset K of positive measure. Since & C CoL=(dp),
&7 | K = {0}, contradicting the density of &% | K in L*(dp¢| K). Hence
1(S) =0, so .7 = {0}, completing the proof of the theorem.

Proof of Lemma 4. Let #Zyx = Cx #, x = Cx ¥ and px =
Cxpt. We shall identify L*(dp| K), L*(dps) and CgL”(dyt) which are
clearly mutually isometrically isomorphic. Each _#; is closed and
S-invariant in LY(d ), so by Lemma 3, _#Zx = Cyx, L'(dptg) for some
S(K)c K. If K’' D K, compact, then
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Comy LHAY) = Cyy LNdtg) = Hx = CxCxr A
= CKCS(K')Ll(dﬂK') = CS(K'mKLl(dF‘K')
= Cynnxli(dp) ,

so that S(K) = S(X') N K (modulo null sets).
Let .27 denote the set of all continuous functions with compact
support and let o be the linear functional on .24 defined by

(2.4) o(p) = L(mcpdy

for ¢ € 2 where K is any compact subset containing the support of
®. Then o is well-defined and is continuous in the L'-norm, so can
be uniquely extended to a bounded linear funetional on L'(dt), which
we again denote by o¢. Let o be realized by the L>=-function g so
that

(25) o(f) = | fady:

for all fe L'(dy). From (2.4) and (2.5) it is easy to see that g| K =
Cysx, a.e. for every compact subset K; so we may assume g = Cy for
some measurable S with S N K = S(K) (modulo null sets). Now

CKCsLl(d/v‘) = CsnKLl(d)u) = CymL'dp) = #x = Cx

for all compact K. Since for any feL'dy), Cxf—f in LYdp), it
follows from the above that C L'(dy) = _Z.

REMARK. The assumption that & is an algebra is crucial in
both Theorems 1 and 2; the conclusion would be false if . were
merely a linear subspace satisfying the rest of the assumptions. The
following example shows that, in the locally compact case for instance,
a conjugate-closed linear subspace of L>(dtt) may be weakly* dense
on every compact subset but not on the whole space.

Let X be a locally compact space and f£-a non-finite Radon measure
on X. Let feL'(dy) be real and have a support of infinite f-measure.
Then the support is non-compact. Let &% :{geL"“(dﬁ): Sg fdp = O}.
Then & is clearly not weakly* dense in L~(dy¢). But if ¢ is any
continuous function with compact support which is “orthogonal” to
&, then g must be in the linear span of f in LYdg). It follows
from our assumption on f that g is the zero function. Henece .7 is
weakly* dense on every compact subset.

3. Dunford-Pettis theorem. Let X denote a locally compact
Hausdorff space and ¢ a positive Radon measure on X. Let E be a
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separable Banach space and 5% denote the space of continuous func-
tions from X into K with compact support. For 1 < p < o, let F;?
be the space of all functions f from X into E with

N, = ({17 @ I dpe) ) < oo

*
WhereS denotes the upper integral. .7 is then a locally convex

space with respect to the seminorm N,. Let .&¥” denote the closure
of 277 in Z7 and let L% = <5747 where _+;7 is the set of all
functions fe. &7 with N, (f) =0. Then L% is a Banach space with
the norm induced by N, in the obvious way.

Denote by &~ the space of all weakly* measurable functions f
on X to the dual E* of K such that ||f(x)|| = A < « lae. (J|f(x)]| = A
a.e. on every compact subset). For fe. o537 let

N.(f) = supg (ess. sup,ex || f (@) |])

where K ranges over all compact subsets of X. Then N, is a semi-
norm which makes &5 a locally convex space. Let L3z. be the
quotient of .77 by the space of all functions in &5 which vanish
l.a.e. Then L;3. is a Banach space.

The following theorem is well-known (ef. for instance [1; p. 46,
Corollaire 2]):

THEOREM (Dunford-Pettis). Let F be a separable Banach space.
For feLz. and ge LYdp), let

wito) = | ardn.

Then wqg) € F'* and the mapping f— w; induces an isometric iso-
morphism from L. onto & (L', F'*), the space of bounded linear
maps from LNdp) to F'*,

We need the following variant of the Dunford-Pettis theorem:

THEOREM 3. Let E, F be separable Banach spaces. For any
bounded linear map w of Ly into F'* there exists a function @ from
X into F(E, F*) such that

(i) <@(x)s, t> is measurable for every sc E, teF,

(ii) N.(@) < oo, and

(i) w(f) :S O(x) f(x)dp(x) for every fe Ly with ||ul|| = N.(D).
Conversely, any function @ satisfying (i) and (ii) defines a bounded
linear map u satisfying (iii).
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Proof. Only the direct part needs a proof. First we note that
< (E, F*) can be regarded as the strong dual of the projective tensor
product £ ® F. Indeed, the strong dual of F ®F is canonically
identified with the space B(E, F') of bounded bilinear forms on Ex F
and & (K, F'*) is canonically isomorphic with B(¥, F'). Since E, F'
are separable, so is E’®F and therefore &7 (K, F'*) can be regarded
as the strong dual of a separable Banach space.

Let % be a bounded linear map of L} into F*. Then w induces
a bounded bilinear form # on L' x E into F* by 4(f, s) = u(f K s)
for fe L', se K. For any fixed fe L', s— @(f, s) is a bounded linear
map of FE into F'* which we shall denote by u;. Then u;: f— u, is
a bounded linear map from L!into & (E, F'*) with |[u,||=|/u]||. By
the Dunford-Pettis theorem, there exists a function @: X — < (E, F'¥)
such that

(i) <@(x)s, ty is measurable for each se E, te F

(i) No(®) = [l ||, and

(i) w(f) =u = | S@O@0pe).

X
Hence

WSRS) = UF, ) = usls) = | fosdp
= o @sn.
Because of the continuity of u, the theorem follows.

4, Doubly invariant subspaces. In this section we prove Wiener’s
theorem in the general setup. Let as usual X denote a locally com-
pact Hausdorff space, ¢t a positive Radon measure on X, 57 a sepa-
rable Hilbert space and .22, the space of continuous functions from
X into =7 with compact support. Let A be a subalgebra of the alge-
bra of bounded continuous functions on X and .7 denote the algebra
generated by AU A and the constants. A subspace _# of L3, is
clearly invariant under multiplication by functions is 4 U 4 if and
only if it is .%7-invariant. We recall that _# is doubly invariant if

(i) . isclosed in Ly, if 1 = p < o and weakly* closed if p = oo,

(il) . # is .7-invariant.

Then we have

THEOREM 4. If 7 |K is dense in LAdp| K) for every compact
subset K, then every doubly invariant subspace # of Ly, (1 =< p =< oo)
s of the form PLj, for some measurable range function P; _#
determines P uniquely.

Proof. We divide the proof into three parts; in the first and the
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second we assume #(X) < o and the proof is an imitation of that of
the secalar case in [4]. In the last part we treat the case of arbitrary
measure spaces and an indication of the proof in this case was given
in the proof of Theorem 2.

(i) X)) < o, 1=Zp=2. By Theorem 2, . is weakly* dense
in L*(dy) and in this case the theorem has been proved in [4] for
p=2., Let 129p<2 and 4+ = %DL“ Then _# is a doubly
invariant subspace of L}, and so 4" = PL" for some measurable
range function P. We WlSh to show that % PL”

For any fe . # let fi(x) =|/f(»)['~** and fz(w) Si(@)7f (x) (of
course fy(x) = 0 if fi(x) = 0). Then f; € L’(dy) where (1/s) + (1/2) = (1/p)
and fgeL2 Let _#; be the doubly invariant subspace of L% gener-
ated by f,. Then _#;= PL% for a measurable range function P,.
Here we may assume that P,(x) =0 for those  for which fi(x) = 0.
For any @ ¢ ﬁf%,

fiBpefPLy, = fitic A .
On the other hand, since s > 2,
fPpels, C LY,
as fie Lf, P,p is bounded and M(X) < . Hence
fiPpe #nLy=_y =PL,

This means that PP WP = P2f1</7 for all PE Ty So, Py(x) =< P(x)
l.a.e. Thus we have _7; = PL“’ c PL2 Hence

f:f1f2ef1~/V2Cf1PL;g CPL;/( y

the last inclusion resulting from the fact that f,€L® where
(1/s) + (1/2) = (1/p). This shows that _# c PL},.

Since % DN = PL2 , we have _#Z D P% But 27;, is dense
in L%, and P is L”-contmuous So .# D PL, and we have # =
PL%,.

(i) MX) <o, 2<p=oco. Let 2" ={feLl:f | #} where
1/9) + 1U/p) = 1. Then 1=2g<2and #Z' is doubly invariant in L},.
Hence by (i) #' = P’L" for some measurable range function P’
Then it is easy to see that A = PL” where P(x) =I1— P'(x), 1
denoting the identity operator on 27,

(iii) M(X) not necessarily finite, 1 < p < «. Consider any com-
pact subset K of X. Let #x = Cx. ', Vi = Cx . and g = Cgft.
We shall identify LJ,(d¢|K), Lj.(dtg) and CxL%(dgt) which are
obviously mutually 1sometr1cally isomorphic and denote any of them
by Ly (K). Now _#; is a doubly invariant subspace of L%, (dt)
(with &/ replacing &) and %% is dense in L*(dpty). Hence by (i)
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and (ii) above, _Zx = PKL%,(K). We extend P, to the whole of X
by defining Pg(x) = 0 outside of K.
For any two compact subsets K, K, with K, D K, we have

Py Ly, = Py L) (K) = Ay, = Cx,Cxy# = C,Pr L2, (K)

= P C, L (K) = Pr Cr L2, .

Hence Py, = P Cg, a.e. It follows from this that the map o: 97, —
&7 given by

o) = | Pew@ip),

where K is any compact subset containing the support of @, is well-
defined. o 1is clearly continuous with respect to the Ll%-norm and so
can be uniquely extended to the whole of Lf%, to be continuous. We
shall denote the extended map by &. By Theorem 38 there exists a
weakly measurable bounded operator-valued function @: X— &7 (57, 27)
such that

o(f) = | 0@/ @iu)
for all fe L'. Then, since & entends o, it is obvious that
?| K = Py a.e.

for every compact set K; so there exists a measurable range function
P such that @ = P l.a.e.

We assert that 7 :PL;Z. This follows from the fact that
Cx 7 = CgPL}, for every compact set K and every fe _# is the
L*-limit (or the weak™ limit if p = o) of Crf. This completes the
proof.

The uniqueness of P (for a given _#") follows from the uniqueness
established in [4] for finite measure spaces.

5. Decomposable operators. Let X, ¢, A and . be as in §4
and let T be an operator in L%, bounded if 1 = p < o and in addition
weakly* continuous if p = «. Clearly T commutes with multiplication
by functions in A U 4 if and only if it commutes with functions in
%7, and any operator 7' which operates pointwise (l.a.e.), meaning

(TH)(x) = T(x)f(x) la.e.

for an operator-valued function T'(x), clearly has this property. We
wish to prove the following converse.

THEOREM 5. If T 4s a bounded (and weakly* continuous, if
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p = ) linear map from LY, into L}, (1 < p = ) which commutes
with multiplication by functions in 7, then there exists an operator-
valued function T(x) defined a.e. with T(x)e L (57, 5F) which s
weakly measurable and uniformly bounded such that

(TH)@) = T(@)f (@) a.e. (Tf)@)=T@f() Lae. if p= )

This theorem is usually stated for L;t, [2; p. 162, Theoreme 1]
and as far as we are aware, the existing proofs require L3, to be
separable. We use the variant of Dunford-Pettis theorem established
by us in § 3 to get around the difficulties that may be caused by non-
separability (we of course assume that the Hilbert space 57 is separable).

Proof of Theorem 5. We first consider the case 1 < p < =, for
convenience we assume that T' is bounded by 1. Let feLj,. Then

| ITH@ I de) = | 17 @11 dputa)

Since T commutes with multiplication by functions in .7, this yields

[ la@ Pl (TA)@ I dp@ = | ja@ P1F@P dee)
for all «e 2. From the weak* density of & in L=, it follows that
T = f@)] ae.

If L7, is separable, we can obtain 7'(z) by an explicit construc-
tion. In the general case we argue as follows:
Define a map u: 9, — 2# by setting

we) = | (To@du@), oe .57, .

Then % is continuous with respect to the L;,-norm on ., because

|1, ro@are | = | 11T |l due)
= llo@ l1an@) .

Since .7, is dense in Lj,, u can be extended by continuity to the
whole Lf%, without increasing its norm. We denote the extended map
also by #u. By Theorem 3 there exists a function @(x) from X into
F(2F, 2#) such that @ is weakly measurable, uniformly bounded
with [[@@) || < ||u] =1 and

w(f) = | 0@ f @dpa)
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for every fe L;?. Thus for any @e Ty
| (TP@du@) = ue) = | oEp@ineE) .

Since T commutes with multiplication by functions in . and every
ac . is continuous, we get

| a@o@e@dy@ = | o@a@r@due)
~ | (rap)@iu@) = | a@(To)@ap@) .

By the weak™ density of .97 in L=, this implies
(Tp)(x) = O(x)P(x) a.e.

for all pe F If & denotes the operator in L;’? defined by
@f)(@) = O(@)f (@) ae.,

then we have Tp = dp for all pe H g Since both T anii D are
bounded in Lf, and .97, is dense in L}, it follows that T'= @. Now
we have only to put @(x) = T'(x) in order to get the theorem.

If p= o and T is bounded and weakly* continuous, then the
transposed map T* of T maps Lj into Lj. Since T'* commutes
with multiplication by functions in .o, T* is expressed by an operator-
valued function which is weakly measurable and uniformly bounded.
Therefore T is also a uniformly bounded and weakly measurable
operator-valued function T'(x). In this case, we clearly have

(Tf) @) = T(x)f(x) lLa.e.
for all feLs3,.
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