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1. Introduction. Let A denote a commutative normed algebra
with multiplicative unit and norm || -]||. In [2], Arens and Hoffman
showed that it is possible to norm A[x]/(a(x)), where a(x) = X2, a2’
is a monic polynomial over A, in such a way that the canonical mapping
of A into A[x]/(a(x)) is an isometry as well as an isomorphism; in fact,
they give a family of norms on Alx]/(«()), all of which are equiva-
lent. Specifically, let ¢ be a positive number which satisfies ¢ =
ol + [la ][t + <+« + [[a,— ||t Let 3357 a@® + (a(x)) be any coset
in Alx]/(ae(x)). Asis well known, 3,75 a,x* is the unique representative
of this coset of lowest degree. Thus, || 2720 a@’ + (a(x)) || = S5 || @, | ¢
is well defined and makes A[x]/(a(x)) into a normed algebra. Clearly,
a—a + (ax)),ac A, is an isometry of A into Afzx]/(a(x)). (Unless
otherwise stated, we assume without loss of generality that ¢ = 1.)
From the form of the norm we see that A[x]/(«(x)) is a Banach algebra
under this norm precisely when A is a Banach algebra under || - ||. In
the present paper, we deal mainly with the case where A is a Banach
algebra. In section nine we deal with, at some length, more general
algebras.

In this paper we are mainly interested in the algebraic aspects of
the extension B = Alx]/(a(x)). However, we also present results which
are Banach algebraic in nature. For example in section three we give
a complete description of the Silov boundary of B. Section four is
devoted to the study of the inheritance by B of the Banach algebra
properties of regularity and self-adjointness. In particular, we show
that if A is regular then B is also regular. Self-adjointness is not
always inherited as Example 4.3 shows. A sufficient condition (which
is satisfied, for example, when the discriminant of a(x) is invertible)
is given under which this property is inherited. (This condition states
that the set S(a(x), A) of singular points of «a(x) is empty. This means
that the natural mapping of the carrier space of B onto the carrier
space of A is a local homeomorphism with respect to the weak* topologies.
See section two for a complete discussion of this concept.)

In section five we once again make use of the condition that a(x)
has no singular points. Theorem 5.2 states that if A is semi-simple

Received January 17, 1962, and in revised form October 23, 1963.
This paper is based on portions of the author’s Doctoral dissertation which was
prepared under the guidance of Professor B. R. Gelbaum, University of Minnesota. The

author was supported, in part, by the Office of Ordnance Research, under contract
SAR G DA ORD 12, while at Yale University.

559



560 JOHN A. LINDBERG, JR.

and if S(a(z), A) = ¢, then B decomposes into the direct sum of a closed
subalgebra of the form A[b], with a(b) = 0, and the radical of B.

The next section is motivated by a well-known result in classical field
theory. If A is a field and a(2) an irreducible polynomial, then any root
be B of a(x) = 0 gives rise to an automorphism (7% a.x* + (a(x)) —

—+a;b') of B which leaves invariant each element of A. In the
present context this is no longer generally true. However, we are
able to give two sets of conditions which assure us of this conclusion.
Theorem 6.1 states that if A[b] is dense in B, then >\'5) a0t + (a(x)) —

7= a;b¢ is an automorphism. Theorem 6.2 requires that the discriminant
d of a(x) satisfy the condition that da € Rad(A) imply a € Rad(A) (Rad(A)
denotes the radical of A) and that the Gelfand transform of b satisfy
a certain separation property. Also in section six we give conditions
under which the automorphisms of B which leave each element of A
invariant are periodic. The period is shown to be a factor of =l
n = degree of a(x) over A. Examples can be given which show that
in the absence of any restrictions some of the automorphisms of B
leaving invariant each element of A have infinite order.

In the next two sections we deal exclusively with polynomials over
A which have invertible diseriminants in 4. Section seven is concerned
with the problem of extending a ring isomorphism of A, onto 4, to
an isomorphism of AJx]/(a(x)) onto A,[x]/(a(x)). A necessary and
sufficient condition is given under which such an extension exists. The
extension is not necessarily unique. Prior to establishing this theorem
we characterize those elements b€ B such that B = A[b] (= algebra of
polynomials in b with coefficients in A). Attention is given to extending
involutions on A to involutions of B,

In section eight we show that repeated extensions are again simple
algebraic extensions (algebraically and topologically) of the type under
discussion in this paper.

In the last section we give a complete description of the radical
of B. The major results are stated for algebras over fields of character-
istic zero. The main theorem (9.2) states that if A is semi-simple,
then the radical of B is a nilpotent ideal. The degree of nilpotency
is also specified. As a corollary, we have that if B is semi-simple,
then A is semi-simple and the discriminant of a(x) is not a zero divisor
in A, or zero. Applying this to the case of a tractable normed algebra
(intersection of the closed maximal ideals is (0)), we show that the
radical of B and the intersection of the closed maximal ideals of B
coincide.

We now proceed to section two which contains some preliminaries
gathered from other sources.

2. DPreliminaries. If A is a Banach algebra (always assumed to
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be commutative and to possess a multiplicative unit ¢), then @, (called
the carrier space of A, [12]) is to denote the space of (non-trivial)
multiplicative linear functionals on A to C (= complex numbers). If
(h,\)e @, x C, then (h, \) can be considered as a multiplicative linear
functional on A[x], its action on elements Ja '€ A[x] being defined by
(h, M) 2ax" = Zhia))\'. In [2] it is shown that @, B = A[x]/(a(x))
(throughout this paper, B will be used to denote A[x]/(a(x)), a(x) monic),
is (identifiable with) the set {(2, M) e @, X C: (h, N)a(x) = 0}. It should
be noted that if (&, \) € @5, then |A| < 1 (recall that we are assuming
2]l £1 so that ||« + (a(@)) || = 1). The coset a + (a(x)) will be
denoted by a for ac A and x + (a(x)) will be denoted by [x].

@ will be considered as an indeterminant over A (= Gelfand rep-
resentation of A) and C as well as an indeterminant over A. If B(x) =
3B e A[x], then B(x) is to denote the polynomial 3¥3,#' over A and
B.(x) is to denote the polynomial I3, (k)2 over C. If B(x) € Alx] and
B() = 0, xe C, but B,(x) not the zero polynomial, then we denote the
multiplicity of N as a root of B,(x) =0 by Mg(h, »). We call M; the
multiplicity function of A(x).

We include for the convenience of the reader several results that
we will need from other sources.

2.1. 7 defined by n(h,\) =k, (h, \)€ @5, is an open continuous
mapping of @, onto @,.

2.2. For each he @, there are disjoint neighborhoods V, -+, V,,
in @, of the points in 7w7'(h) = {(k, \), ++ -, (B, \,,)} such that n(V) =
TC( V’L)i ’I: = 27 °t %y my a'nd 77"_1(71.( Vl)) = Zn:l Vi-

2.3. M, is locally constant at (k, \) € @, if and only if 7 is a local
homeomorphism at (k, \).

2.4. (Arens and Calderdén) If B(x)e Afx] (not necessarily monic)
and if fe C(®@,) such that B(f) =0 but 5’(f) never vanishes on @,
(B'(x) is the formal derivative of B(x)), then a unique element be A
exists such that 8(b) = 0 and b= f. (Arens and Calderdn did not assert
the uniqueness of b. However, it is easily established. Write B(x) =
(x — b)Q(x), Q(x) € A[x] and suppose b’ e A, B(®') = 0 and b = b. Then
' — bREO) = 0. Since f(h) is a simple root of 5,(x) = 0, Qb)" (k) = 0
for every he @, so that Q(b) is invertible in A. Hence b =b".)

Related to the above is

2.5. If a(x)e A[x] is a monic polynomial, if fe C(@,) suchA that
a(f) =0 and if M,(-,f(+)) is locally constant on @,, then fe A. (A
stronger conclusion similar to the above can not be drawn here.)
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2.1,2.2,2.3 and 2.5 are proved in [10] while 2.4 is proved in [1].

Let a(x) e A[x] be monie. If he @, is such that each point of 7'(h)
possesses a neighborhood on which M, is constant, or what is equivalent
(in view of 2.3), 7 is a local homeomorphism at each point of 7~'(h),
then we call & an ordinary point of a(x). If he @, is not an ordinary
point of a(x), we say that it is a singular point of a(x) and the set
of such points will be denoted by S(a(x), A). It is clear that if e @,
is an ordinary point of a(x), then each A’ sufficiently close to % is also
an ordinary point of a(x) so that S(a(x), A) must be a closed subset
of @,. S(a(x), A) is a subset of the set D where d vanishes, where
d is the discriminant of a(x) (cf. [2] and page 93, [14]). (Note that
3(h) is the discriminant of «,(x).) S(a(x), A) can be null even if D is
not null. On the other hand, S(a(x), A) can be all of D. Because the
cardinality of the sets #~'(k) is uniformly bounded by 7 (= degree of
a(x)), S(a(x), A) is easily shown to be nowhere dense in @,.

3. The Silov Boundary of A[x]/(a(x)). Let A’ be a Banach algebra
extension of the Banach algebra A, let 04, 6A’ denote respectively the
Silov boundaries of A and A’, and 7 the natural mapping of @,, into
@, defined by h = (k') = h'| A, b € @,. Then it is well known that
(@A) D0A. If A’ is the extension B = A[x]/(a(x)), then this result
can be sharpened; indeed, we have that 8B = n(04). In the proof
of this assertion, we need (Theorem 5, Appendix IV, [5]): A necessary
and sufficient condition that h,€ 04 is that for each neighborhood V
in @, of h, there is a function fe A whose absolute value | f | attains
its maximum (which we may assume is 1) on V and is less than that
on @, ~ V.

THEOREM 3.1. 0B = n~'(04).

Proof. We first show that 77'(0A) C9B. Let h,c0A, let W, be
a neighborhood in @; of (h,, \{"), and let g€ B~ such that g(h,, A'V) =1
and zero at the other points (f,, M) of the fiber #7'(h,). Let W,cC W,
be an open neighborhood in @, of (h,, \{") such that |g(k, \)| > 1/2 if
(h,\)e W, and W, an open neighborhood in @; of (h,, "), © # 1, such
that [g(h, )| < 1/2 if (k, )€ W,. Since 7 is an open mapping, V, =
N: ©(W,) is an open neighborhood in @, of h,. Let V;= W, N 7a(V,).
Now, by the theorem quoted above, there is a function fe A such
that || fll. =1, |f(h) | =1, ke V,, and |f(h)| < 1if he @, ~ V,. Since
@, ~ V, is closed, it is compact and hence there is a positive integer
N so large that

[f(h) |V = for heo, ~ V,.

~ 2igll
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Then, if h¢ V, and (k, \) € @5, we have that

|(FY0) (b M) | = 1B 1Y g )| = —2 gl =L,
2 gl 2
and if (h,\)¢ V. but he V,, we have that
[(F¥g) (M) | < g, V) | g%.

But for (h, N)e V,,
[(fg) (B, M) | = | glhy, M) | > %

Thus, |f¥g| assumes its maximum value on V), and hence, on W, and
is less than that outside V, or outside of W. By the above quoted
theorem, (hy, A\{) € 0B, and 7w~ (0A) C0B. We next show the reverse
inclusion.

Let (hy, \) € 0B, and let V be any neighborhood in @, of h,. Let
W be an open neighborhood in @; of (h, A\,) such that 7(W)c V and
no (hg, M) = (g, \o) liesin W. Let ge B be a function such that ||g||.
is assumed by |g| on W and |g| < ||¢|l. outside of W. As in the
above paragraph, we may assume that |g(h, N)| < 1/2n if (h, N) € @5 ~
W. Let f be the function defined by

F(R) = 390k, n(h)

where the \;(h) denote all the roots (each distinct root repeated according
to its multiplicity) of «,(x) = 0. Then fe A. Now, for h¢n(W)

1

W1 = | S ot 2| < o, 1)1 < £

There exists (2, \)€ W such that |g(h;, )|, = ||¢]|l.. (Assume that
A = M(hy).) Then

LAY L= g, ) 4+ 3 0, N0

n—1,1,
2n 2

> 190, M) | = 351900, M@ | > 1 =

Thus, h,€0A and w(0B) C0A. Using the fact that 7'(0A) C 8B, we
have that 77'(0A) D8B. This completes the proof of the theorem.

4. Inheritance of the properties of regularity and self-adjointness.
The properties of regularity and self-adjointness are possessed by many
important and interesting Banach algebras and hence it is of interest
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to know whether these properties are inherited by the extension B.
G. A. Heuver in [6] has shown that if A is regular and self-adjoint
and if in addition the discriminant of the monic polynomial a(x) is
invertible in A, then B is both regular and self-adjoint. In this section,
we show that regularity is always inherited (without the assumption
of self-adjointness). As a corollary we show that if A is dense in
C(®,), then B is dense in C(®,). (For a discussion of the inheritance
by B of the sup norm completeness of A, the reader is referred to
[7].) Example 4.3 shows that the self-adjointness of A is not always
inherited by B. We finally show that if S(a(x), A) = ¢, then self-
adjointness is inherited.

THEOREM 4.1. Let A be a regular Banach algebra and let a(x)
be a monic polynomial over A. Then B is regular.

Proof. 1t suffices to show that if given (k,, \,) € @5 and a neighbor-
hood Win @, of (h,, \,), then there exists a funection be B such that
b(he, No) =1 and b(h, \) = 0 if (b, \)e @, ~ W. From 2.2, it follows
that there is a neighborhood V in @, of &, so small that V< a(W)
and (V) = U, V; where the V; are disjoint neighborhoods of the
points in 77%(h,) with WD V.. We assume (without loss of generality)
that the sets V,, --+, V,, are closed. Since A is regular the set V is
hull-kernel closed in @,, from which it follows that 7=*(V) is hull-kernel
closed in @,. Now, let I denote the ideal in B of elements whose
transforms in B vanish on 7 V). Since I is a closed ideal, B/l is a
Banach algebra with carrier space (identifiable with) z=*(V) (cf. [11]).
By [13], there is an idempotent f in B/I such that f(k,\) =1 if and
only if (h,A)e V.. But f=f|z*V) for some f,e B. Since A is
regular there is an element a € A such that @(h,) = 1 and & vanishes
outside of V. Then b = af, is an element of B such that b(k, \) = 1
and g(h, A) = 0 outside of V,c W, This completes the proof of the
theorem.

The corollary below extends the following result of Heuer [6]: If
A is dense in C(@,) and if for each singular point A, 77'(h) consists of
exactly one point, then B is dense in C(@z). The proof given below
is essentially due to Heuer.

COROLLARY 4.2. If A is a Banach algebra and if A is dense in
C(@,), then B is dense in C(@,).

Proof. Since A is dense in C(®,), it is easily shown that B =
(A[z]/(@(x)))" is dense in B, = (C(@)[x]/(@(x)))", with both algebras
being viewed as subalgebras of C(@;). Thus, it suffices to show that
B, is dense in C(@;). (It need not be the case that B, is all of C(@;)
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as Example 4.3 of this section shows.) Let he @, be arbitrarily given.
By the theorem, B, is regular so that if Vi, ..., V, are disjoint
neighborhoods of the points in 7~'(h), then there exists a function
fe€ B, which takes the value ¢ on V,2=1,2,+---,m. Let g be a
real-valued function in C(@,) such that g(h) = 1 and g vanishes outside
of N, #(V;). Then (gf)" is a real-valued function in B, which separates
the points of 77%(%). Since C(@,) is (isomorphic to) a subalgebra of B,
any two points (k, \), (b, N) € @,, with h = k', can be separated by a
real-valued function in B,. Hence any two points in @, can be separated
by a real-valued function in B,. The conclusion of the corollary now
follows from the Stone-Weierstrass Theorem.

We now turn our attention to the question of inheritance of the
property of self-adjointness, and first give an example which shows
that this property is not always inherited by the extension.

ExampPLE 4.3. Let A =C(4), 4={2€C:|z| = 1} and a(x) = «* — f,,
fo() = 2. Then A[x]/(a(x)) is not self-adjoint. For if it were, then
([#]")~ = @, + a@,Jx]” for some choice of a,, a;€ A. But this means that
a,(z) = exp (—argz),z # 0. This is a contradiction since exp (—arg z)
is not extendable to a continuous function on 4.

THEOREM 4.4. Let A be a self-adjoint Banach algebra and a(x) =
o’ be a monic polynomial over A. If S(a(x), A) = ¢, then
Alz]/(a(x)) ts self-adjoint.

Proof. Let f(h, \) = X for (b, \)€ @,. Then fe C(@,) and B(f) =
0, where B(x) = S, B, B = (@),4=0,1,+--,m —1, and B, = e.
Since the multiplicity function M, of a(x) is locally constant on @, it
follows that Mgy(-, f(+)) is locally constant on @, where M, is the
multiplicity function of S(x) when viewed as a polynomial over B. By
2.5, it follows that fe B so that B is self-adjoint since (3 @,([x] "))~ =
2. (@) fieB.

5. On the Wedderburn decomposition. of B. In this section we
discuss the Wedderburn decomposition of the extension B, that is, the
decomposition of B into the direct sum of a closed subalgebra B, of
B and the radical Rad(B) of B (B = B, Rad(B)). As is well known,
such a decomposition in general does not hold for Banach algebras,
even in the weaker sense where one does not require that the subalgebra
be closed. We will give an example which supports this statement.
Badé and Curtis have given an example in [3]. Feldman, in [4], gave
an example where the stronger Wedderburn decomposition failed to hold.
For this example, the weaker decomposition holds.
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The condition that S(a(x), A) = ¢ (A semi-simple) is sufficient for
such a decomposition of B to hold. When this condition holds, a(x)
is forced to factor; precisely, there exist mutually orthogonal idem-
potents €y %y C0, positive integers k,;, and polynomials a;;(x) € Alx], 5 =

- S8S;i=1,---,;m, such that e, (x) is monic over ¢A, the
dlscrlmlnant of 1'[J Le.a;;(x) is invertible in e;4, and

m S5
5.1 a(x) = 3, e; [ a;i(x)*ii .
i=1 =1

Furthermore, the radical of A[x]/(a(x)) is a principal ideal generated
by B(z]), where B(x) = > e; [[;L, a;(x) (cf. Theorem 2.3, [10]).

THEOREM 5.2. Let A be a semi-simple Banach algebra and oa(x)
a monic polynomial over A. If S(a(x), A) = ¢, then there exists an
element be B such that a(b) = 0, A[b] is closed in B and B = A[b] D
Rad(B).

Proof. To simplify the proof, we first assume that m = 1 in the
above paragraph. Thus, a(x) is of the form [];, a;,(x)*, where each
a,(x) is monic over A and B(x) = [15-, a,(x) has an invertible discriminant
in A.

Since A([2]") = 0 and since B(x) has an invertible discriminant in
A, and hence in B, there exists an element be B such that B(b) =0
and b = [¢]". Thus, a(b) = 0 also. Since b= [«]", there is an element
ReRad(B) such that [x] =0+ R so that > afo]f = S5 ab’ +
(polynomial in R, with zero constant term) (r = degree of a(x)). Hence,
B is the sum of A[b] and Rad(B). We next show that the sum is a
direct sum. Let ¢ be the degree of B(x) over A. Then 37} aib‘ can
be expressed in the form >~} a0’ for some choice of a, -+, a,, in
A. Suppose now that >\iZja;b'c Rad(B). Then >Zia;x’ is a multiple
of B(x) (this follows since the radical of B is a principal ideal generated
by A(lz])). Thus, the a;’s must all be 0. Thus, the sum is direct.
(Note also that >z ab’ = 0 if and only if ¢,=0,7=0,1, «--,t — 1.)

In order to show that A]b] is closed, we introduce a mapping ¢
of B onto Aly]/(B(y)) as follows: ¢(ZaeJx]") = JaJy]'. ¢ is well defined
and a homomorphism since a([y]) = 0. Furthermore, ¢ is continuous
since

HF

o0

§K§l|a¢II=K

’

where K = max {1, || [¥]]|, «+-, || [¥]|[*""}. Since Rad(B) is generated by
B(x]), #(Rad(B)) = 0. But [x] — be Rad(B) so that #(b) = ¢([z]) = [v].
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Thus, if S5 B:lIk* < k', where B(y) = Xii-, B, then

<K||

S llaclle =| | 5 ador Sabl |2 K Slel
where K’ = Kmax {1, ||b]||, ---, ||b]|""}. Since A is complete, the norm
on B restricted to A[b] is complete or equivalently, A[d] is closed in
B. This completes the proof of the theorem if we assume that m = 1.

The general situation follows immediately from what was proved
above and the following observations. Let e, e, ---, e, be the idem-
potents which appear in the factorization of «(x) which was displayed
in5.1. ThenA=e¢A®D - ---Pe,Aand B=e¢,BP --- P e,B, the direct
sums being topological. Since the natural isomorphism ¢; of e¢,B onto
B; = (¢;A)[x]/(e;(x)) is bi-continuous and since Rad(B;) = ¢,(e; Rad(B)),
it follows from the above that there exists b; € e;B such that e,a(b;) =
0, (¢;A) [b,] is closed in ¢;B and e,B = (¢;A) [b;] D e¢;(Rad B). If we set
b=, b;, then a(b) = 0, A[b] is closed in B and B = A[b] @ Rad(B).
This completes the proof of the theorem.

We now present an example that shows if we drop the condition
that S(a(x), A) = ¢, then the conclusion of Theorem 5.2 is not assured.

ExamMPLE 5.3. Take A to be the algebra of functions f which are
continuous on the disc 4 = {ze C:|z| < 1}, analytic in the interior of
4 and f'(0) =0. For a(x), take (x — fo)*(x + 2f,) where f,(2) =z,
ze 4. Then a(x)e A[x] and S(a(x), A) = {0}. (@, is identifiable with
4.) Now, there is no subalgebra B, of B isomorphic to B~. (If B =
B,® Rad (B), then B, =~ B = B/Rad (B).) For if this were the case,
then B, would coincide with A[b] for some b€ B and b would have to
satisfy f5(b — fo) (b + 2f,) = 0. This is easily shown to be impossible.
It follows from Theorem 9.2 that the degree of nilpotency of Rad (B)
is two.

6. Automorphisms and conjugate roots. If g: A[x]/(a(x)) —
Alx}/(a(x)) is an automorphism such that g(a) = a for all ac A, then
g([x]) is obviously a root of a(x) =0 and A[g([z])] = Alx]/(x(x)).
Conversely, if a(b) = 0, b € A[x]/(a(x)), need the homomorphism g: Sa,[x]*—
2ab® be an automorphism of B? The answer is no in general (recall
Theorem 5.2). However, there are various conditions (see 6.1 and 6.3)
under which such homomorphisms ¢ are automorphisms. In 6.4 we
give conditions under which automorphisms of the above type are periodic.
We begin with

THEOREM 6.1. Let a(x) be a monic polynomial over the Banach
algebra A. If be B such that A[b] is dense in B and a(b) = 0, then
g: St afx]f — =y abt is an automorphism.
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Proof. What we actually prove is this: if 7 is a linear transfor-
mation of A" =AX --- XA onto a dense subset of A" such that
a-T(ay, +++,a,) = T(aa,, -++, aa,), then T is one-to-one and onto. For
a norm in A" we take |[(a;, -+, a,) || = X%, ||a;]|. (Clearly the homo-
morphism g has these properties; note that as a Banach space B = A".)

Let he @, and let T, denote the mapping T,: (h(ay), «--, h(a,)) —
(h(a), -, h(a;)) where (ai, -+, a;) = T(a,, ++-,a,). Clearly, T, is a
linear transformation of C" into itself since C = A/h~*(0). (For a norm
in C*, we take |(A, -+, N | = > N ].) Now, T,.(C™) must be dense
in C*. For if (A, +++, N,), (¢4, --+, ) € C", then there are elements
a;, b;€ Asuch that h(a;) =N, and h(b) =, 1 =1, «++,m. If (a, <+, a;)=
T(a;, -+, a,), then

| ThO"l; R (#1’ ) ﬂn)l
= [ (May), +++, Maz)) — (h(by), - -+, k(b,))|

= S @) — h®) | = 3 llai — b
= ” T(a’ly “"an) - (blr "'rbn)H .

It follows from the above that 7,(C") is dense in C”. But this means
that T, is one-to-one and hence onto.

Now, consider n-linear equations in a; (considered to be unknowns)
represented by

*) S al(e) = (b, -+, b)),

where ¢; is the vector in A" with e in the tth place and zero elsewhere.
If D is the determinant of the matrix of the coefficients of system (x),
then h(D) is precisely the determinant of the matrix associated with
the linear transformation 7. Since T, is onto, h(D) == 0.

Since h € @, in the above argument is quite arbitrary, h(D) == 0
for all he @, so that D is invertible in A. But this means that (x)
has a unique solution (a,, a,, -+ -, a,) € A for each (b,, --+,b,) € A*. Hence
T is both one-to-one and onto.

Let G(B : A) denote the group of automorphisms of B which leave
invariant each element of A. If ge G(B: A), let g* denote the homeo-
morphism of @, onto itself which satisfies g(b)" (k, \) = b(g*(h, \)) for
all be B and all (k, \) € @, (cf. [11]). E(@;: d,) is to denote the group
of homeomorphisms ¢ of @, onto itself such that wo ¢ = 7.

LEMMA 6.2. If geG(B:A), then g*(h, \) = (h, g([x])"(h, \)) for
every (h,\) e @, and consequently g* € E(@,: @,). Also, (g*)*' = identity
homeomorphism (n = degree of a(x)).

Proof. By the definition of ¢g*, we know that for a€ A and
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(h,N) e @y, a(h) = a(h, \) = g(a) (b, N) = a(g*(h, \))=a(h’), where (b', \) =
g*(h, \). Since Aisa separating algebra of functions on @,, it follows
that » = h'. Thus, g*(h, \) = (h, \') or equivalently, w o g* = . The
last assertion of the lemma follows from the fact that if ¢e E(@,: @),
then ¢ |7~'(h) is a permutation of 77'(h) so that ¢*' must be the identity
homeomorphism on @;.

THEOREM 6.3. Let a(x) be a monic polynomial over the Banach
algebra A. If the discriminant d of «a(x) has the property that
da e Rad (4) implies that acRad(A) and if be B, a®d)=0 and b
separates the points of w(h) for each he @, then g: > ax] —

—rabt is an automorphism.

Proof. Corresponding to the homomorphism g: 3377 a.le]'— 2= a;bf,
let ¢ denote the mapping ¢(k, \) = (h, g([])"(h, \)). Since b = g([z])"
separates the points of each fiber 77'(h), ¢ is one-to-one and onto. Hence,
pe H(@,:0,). For each ¢, it is easily shown that &%k, \) =
(h, (@'([z]))" (R, \)) for each (h, \)e @,. Thus, we have that ¢"' is the
identity homeomorphism on @;. It now follows that ¢"'([x])” = [2]” or
equivalently, g"'([x]) — [«z] € Rad (B).

Let T = ¢g*. Then T([x]) — [x] € Rad (B). It further follows that
for each ¢ =0, ---,n — 1, T([x]°) — [x]' € Rad (B). Since da € Rad (4)
implies that @ € Rad (4), where d is the discriminant of a(x), d is not a
zero divisor in A and Rad(B) = (Rad(4))[[«]] (ef. [2]). Thus, there
exist elements 7,;€ Rad(4),4,5 =0, ---,n — 1, such that T([z])) =
[x]F + >z rislx]’. When T is viewed as a linear transformation on
A", the determinant associated with T is invertible in A so that T is
one-to-one and onto. But then g must also be one-to-one and onto.
This completes the proof of the theorem.

COROLLARY 6.4, Maintain the hypothesis (on d) of the theorem.
If either

(i) Rad(A4) ¢s a nilpotent ideal and d is not a zero divisor in
A, or

(ii) there ewists (£ > 0 such that ||dr || = p|| r || for all r € Rad(A4),
obtains, then each gec G(B: A) is periodic; in fact, if (9*)* is the
identity homeomorphism, then g° is the identity automorphism of B.

Proof. From the theorem we know that g”([x]) — [¢] = R < Rad(B)
if (g*)? is the identity homeomorphism. We will show that if either
(i) or (ii) obtains, then B = 0 so that g?([x]) = [#¢]. If case (i) obtains,
then Rad(B) is a nilpotent ideal (by Corollary 9.4). If we write a(y) =
(y — [=])@(y), Q(y) € Bly], then R-Q([«] + B) =0. Now there are elements
b;eB,1=1, -+, n —1, such that Q([z] + R) = «'([z]) + > b, R’
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(by direct computation). If BR™== 0 but R™* =0, then R™ a'([#]) =0. If
we write a(y)s(y) + o' (Wt(y) = d, s(y), t(y) € Aly] (cf. formula 4, page
96, [14]), then «'([z])t(Jx]) = d. Thus, B™-d = 0; hence R™ =0, This
is a contradiction so that R = 0.

Suppose next that case (ii) obtains. We first show that d is not
a zero divisor in A. For if da = 0, then we know that a < Rad(4).
But 0 ={|da]| = ¢|la|| and hence ¢ = 0. Now, as in the above, we
have that R-Q([z] + E) = 0 or R-a'([z]) = 32= b, R*+* for some choice
ofb,2=1,.-+,n—1,in B. Thus, R-&'([z])t(x]) = R-d = t([z]) .= R***,
t({x]) as above. If R-d = 0, then R = 0. Suppose therefore that R =+ 0.
Then it follows that R* == 0 for all k. For if R* = 0, then R*'d =0
and hence R** = 0. Now

| (Rd)* [['* = K|| R ||"*

where K = || t([«])- S22 b,R*"|| # 0. For each integer k, we have that
[|(Rd)* ||M* = tef| R*|[M*. For if R* = 31z »# [x]}, ¥ € Rad(4) (recall
that Rad(B) = (Rad(A)) [[«]], then

1/k

IRay e = (S 1@ l)) " = (S e 1) = sl RH e

Combining the above inequalities, we have
Ll R¥ | < K[| R*|P* .

Since R* = 0 for all k, we have that ¢ < K || R*||"*. But Re Rad(B)
so that lim,_., || R*|["* = 0. Thus a contradiction and so R must have
been zero.

Condition (ii) of the above corollary is satisfied when d is not a
topological divisor of zero in A but may still be satisfied if d is a
topological divisor of zero in A.

The case where the discriminant d of a(z) is invertible in A deserves
special attention. In this case, if fe C(@;) and a(f) = 0, then there
exists a be B such that a(b) =0 and b = 5 (cf. 2.4 or [1]). Now, if
¢c E(@,: @), then define f(h, \) = ¢t where (h, 1£) = #(h, ). It is easily
shown that f is a continuous function on @,. Since a(f) = 0, there
exists a be B with the above properties. Since ¢ is one-to-one, b
(= f) separates the points of 7~*(%) for each he @,. Hence, it follows
from Theorem 6.3 that ¢: 3= afx]f — =t a;b* is an automorphism
of B. (Note that g* = ¢.) If we write (x) for the mapping g — g*,
g€ G(B: A), then we have

COROLLARY 6.5. If d 1s invertible in A, then (x):G(B:A)—
E(®y,: @) is one-to-one and once.

In closing, we remark that if g€ G(B: A), then ¢ is continuous and
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hence bi-continuous.

7. Extensions of ring isomorphisms. If 4 is a Banach algebra
with an involution (%), then we ask: when can (x¥) be extended to an
involution on A[zx]/(a(x))? Or more generally, if ¢: A, — A, is a ring
isomorphism (need not commute with scalars), A, and A, Banach algebras,
when can ¢ be extended to a ring isomorphism of A,[x]/(a.(x)) onto
A [yl/(ay)) (degree a,(x) = degree a,(y))? Simple examples show that
(¥) and ¢ can not always be extended. However, under the added
assumption that the discriminants of «a,(x) and «a,(y) are invertible in
A, and A,, respectively, then there is a necessary and sufficient condition
that ¢ exist. The condition is stated in terms of a topological mapping.
The case of extending (*) is less simple. In the proofs of our results
on extending (*) and ¢, we must consider elements b € A[z]/(a(x)) such
that b separates the points of the fibers 7~(h), he @,. We will show
that if the discriminant of a(x) is invertible, then such elements generate
all of B over A. Before we prove this, we state a lemma which says
that repeated extensions are algebraic in the strict sense of the word.
The lemma is more general than needed here but will be used in the

next section,

LemMMmA 7.1. Let A be a commutative ring (with unit) and let
B, = B,_|Jx]/(a(x)), B,=A,1=1,2, «--, m, where a,(x;) is monic over
B, for each ©. If be B,, then there exists a monic polynomial o(x)
over A of degree m = [, n; (n, = deg a(x,;)) such that a(d) = 0.

A proof of this lemma is to be found in [15] (page 255).

THEOREM 7.2. Let A be a Banach algebra and let a(x)e Alx] be
a monic polynomial with an invertible discriminant in A. Then
be B has the property that A[b] = B if and only if b separates the
points of w7 (k) for each he @,

Proof. Suppose that A[b] = B. Then there are elements a;c A
such that [x] = Jab’. If b(h, N) = b(h, \') where (h, \) and (&, \) are
points in @,, then [x]” (k, ) must be equal to [#]” (h, ') so that » =\
since [x]” separates points of 7'(k). Hence, b separates the points
of #7*h) for each he @,

Suppose now that b separates the points of 7~ (h) for each he @,.
By Lemma 7.1, we know that b satisfies a monic polynomial B(x) of
degree n (= deg a(x)). Since for each he @, b takes on n distinct
values on 7(h), the discriminant of S(x) must be invertible in A. Let
B, denote the extension A[y]/(,@(y)). Then @, = {(h, 1)@, x
C: (h, 1) Bly) = 0}, and 6: (h, \) — (h, b(h, \)) is a continuous one-to-one
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mapping to @, onto @, and hence a homeomorphism. Therefore,
[2]" o 67! is a function continuous on @, and a(x]" o6 = 0. Hence
by the Arens-Calderon theorem (see 2.4 or [1]) there is an element
b, e B, such that a(b) = 0 and b, = [2] o6~ If ¢ denotes the homo-
morphism

-

n—

n—1
S adyl - 5 adt

and if
b= alyl,
then
66000 = 6(5 alul) (0 = (5 ab) @0 = & @) Gih, vy

= 5 @) (WD) Ok, V) = B0k, V) = [o](k, 1)

for all (h, \)e @,. Hence, ¢(b,)” = [2]” and since a(4(b,)) = 0, we have
that ¢(b,) = [«] by 2.4. Thus, ¢ is onto and Alb] =

COROLLARY 7.3. Maintaitn the hypotheses on A and a(x). If
feC@y) ,6i(y) € Bly] such that

(i) B() =0,

(ii) f separates the points of w='(h) for each he @, and

(iii) Mg((h, V), f(h, N)) (Mz = multiplicity function of L(y)) is
lecally constant on @y, then there exist be B such that A[b] = B and.
b=f.

The corollary follows immediately from 2.5 and the theorem.

COROLLARY 7.4. Maintain the hypotheses on A and a(x). If b
separates the points of w*(h) for each h and B(y)ec Aly] is a monic
polynomial (of degree equal to the degree of a(x)) satisfied by b, then.
é: ZaJyl — Zab' is an isomorphism of Aly]/(B(y)) onto Alx]/(a(x)).

Proof. (We use the notation of the theorem.) By the theorem.
we know that A[b,] = A[y]/(B(¥)) so that if (2= aly]) = 621 aiby) =
0, then >\t al[x]° = 0. But this means that a} = 0 for each % and ¢
is an isomorphism,

Note that the above ¢ is continuous and hence bi-continuous.

Before we state and prove the next result, we require the following-
comments, Let ¢g: A, — A, be a ring isomorphism (onto). Define.
g*: @4 — @,, as follows: for he @,, let g*(h) be the linear functional
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associated with the maximal ideal g(£7*(0)) in 4,. Since g is one-to-one
and onto, so is ¢g* one-to-one and onto. We now prove

LemMmA 7.5. Let A, and A, be Banach algebras. If g: A,— A, 1s
a ring isomorphism (onto), them g*: @, — d, 18 a homeomorphism
(with respect to the weak* topologies on @, and @,).

Proof. We can assume that A, and A, are semi-simple since g
induces an isomorphism of A,/Rad(A4,) onto A,/Rad(4;). Now, by a
theorem of Kaplansky [9], 4, = >\%.. D e;A, where the e; are mutually
orthogonal idempotents in A, ¢4, = C for ¢ = 3,4, ---, p, and g|¢ A,
is linear while g | ¢,A4, is conjugate linear. Thus, @, = UZ, 9, , and the
@,,4, are disjoint open subsets of @,. Since each @, , consists of exactly
one point if 3 =1 = p, g*| U~ @, is continuous. That g*|@, , is con-
tinuous follows from a now classical result (cf. Theorem 24B, [11]). To
show shat g*|@,,, is continuous, we take a € ¢,4; and let A = h(a),h € @, 4.
Then (¢ — re,)) e h7(0). Since g|e,A, is conjugate linear, g(a — \e,) =
g(a) — ng(e,) € g*(h)7(0), and hence g(a)~(¢*(h)) = (@(h))". From this it
follows immediately that ¢* | @, , is a continuous mapping.

THEOREM 7.6. Let A, and A, be Banach algebras, a,(x,) e Ax,]
and a,(x,) e Ajfx,] be monic polynomials with invertible discriminants
wm A, and A, respectively, and B; = Ajx])/(a(x)),1=1,2. If g 1s
a ring isomorphism of A, onto A,, then there exists am isomorphism
g of B, onto B, which extends g if and only if there exists a homeomor-
phism v of @y, onto @y such that mov = g* om, where w, is the
usual mapping of @, onto @ 4 1f 0 and g, are any two such extensions
of g, then g,0 g; € G(B,: A,).

(Note that if v exists, then ax) and a)x,) must have the same
degree since for he @,, wi'(h) and w7 (9*(h)) have the same number
of points.)

Proof. If § extends g, then we take v = §*. By the above lemma,
v is a homeomorphism. < is onto since § is onto. Now, if M is a
maximal ideal in B,, then

gMNA)=gMNA)=gd)NGA) = gM)N 4, .

But this means that the restriction of §*(h,\) to A4, is g*(h) if
(h, \)™0) = M. Thus, m,0 §* =g*om,.

Suppose, now, that 7v: @, — @, has the prescribed properties. Let
Blx) = 32, (07a,,,) i = 0, where an(x) = 32, xi. We will show
that there is a function f in B which separates the points of z;(k)
for each & in @, and B(f) =0. Lete, ---, e, be the mutually orthogonal
idempotents discussed in the proof of the above lemma. We define f
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as follows. If (h,N)eni(@,,), let f(h,\) = [2]"(v(h,7)) and if
(hy M) € YD), let flh, ) = ([%.]"(v(h, N))~. For he ULD,,, let
t(h), « -+, £,(h) denote the m distinct roots of X7, (07 () (h)xi = 0
and let (k, My(h)) be the » points in 77*(h). For (h, Mi(R)), let f(h, Ny(h)) =
pc,(h) As defined, f is a continuous function on @, and satisfies
,8(951) = 0. Since f separates the points of 7;'(h) for each he @,, and
since B(x) has an invertible discriminant in 4,, the Arens-Calderdn theorem
tells us that there exists be B, such that b = f and 3.7, g7'(a,,.)b° = 0.
It follows from Corollary 7.4 that A,Jb] = B, and B, is isomorphic to
B, = AJyl/(F9~a,,.)y). But B, is, of course, isomorphic to B, =
Aj[x.]/(ax(z,)) so that B, and B, are isomorphic.

Suppose, now, that g, and g, are any two extensions of g. Then
g:0 97" is clearly an automorphism of B, onto itself. Since g, = g, on
A, g,09;" leaves A, invariant elementwise, that is, g,0¢: € G(B,: A,).

The above theorem has the following interesting consequence if 4
is the group algebra L@), G = integers. Let a(x) € A[x] be an irreducible
monic polynomial with an invertible discriminant. The irreducibility
of a(x) together with the fact that the diseriminant is invertible imply
that @, is connected (cf. Theorem 2.4, [10]). Then the above theorem
implies that A[x]/(a(x)) and Alx]/(x" — a,) are isomorphic, where 7 =
degree a(x) and aoeA is the unique element such that @y(z) = z,
ze{reC:|p|=1 =0, IfacA,letd(a)=>where b(z) = .. bz

and d(z) = 32 _. bz, Then ¢: 317 a,fx] — St é(a;)ai is clearly an
isomorphism of A[z]/(" — @) onto A so that A[x]/(a’(x)) is isomorphic
to A = LY(G).

Another interesting consequence is that if a(x)<€ A[x] is a monic
polynomial with an invertible discriminant, then Afx]/(a(x)) is isomorphic
to Alx]/(a(x) + R(z)) where R(x)c (Rad A)[z] and deg R(x) < deg a(x).

We now turn our attention to the case where g: A — A is a periodic
automorphism and, in particular, an involution of a certain type. The
following example shows that not every such automorphism is extendable.
Let A=C{zeC:|z+1|=1or |z — 1] =1}and a(®) = * — f, f(z) =
2z+1if |z+1|=1and f(¢) =11if |z—1|=1. For an involution,
we take f*(z) = (f(—2))~. ¢ has no extension to B since this would
imply that there exists a homeomorphism v of @z onto @, such that
7(z, N) = (—2, [2]"(¥(2, \)). But it is impossible for such a homeomorphism
to exist. Hence, g has no extension.

However, if g: A— A is a periodic automorphism which has an
extension § to B (we are assuming that «(x) has an invertible discrimi-
nant), then § is periodic and its period divides %! p, » = period of g.
For if g? =identity automorphism, then §*?(h, N)=(g**(h), [x] (§*?(h, N))) =
(h, [#]"(*?(h, \)) so that §*°e E(@,:@,). Hence (§**)" = identity
homomorphism. Thus, §* is periodic. By Corollary 6.4, §**' is the
identity automorphism. Simple examples show that the period of &
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may be p-n! We now restrict our attention to the case where ¢ is
a symmetric involution, that is, (a*)"(h) = (@(h))".

THEOREM 7.6. Let A be a Banach algebra and a(x) e A[x] a monic
polynomial with an invertible discriminant in A. If (*):A— A 1is
a symmetric involution, then there exists a unique symmetric involution
('): B— B which extends (*). If (") is any involution extending (*),
then (") = (') o g for some ge G(B:A) which ts of period two.

Proof. Leta*(x)= 3" afx where a(x) = ' ', Then &*(f) =
0 where f(h,\) = . By the Arens-Calderon theorem, there is an
element b,e B such that a*(b) =0 and b,=f. Let () denote the
mapping defined by (322 a[x]?) = izt a}bi. Clearly (') is a homomor-
phism and a(b;) = 0. But

@k, 0 = (5 azti) ) = (§ @) o)

= (5 @mn) = =2, 0
where b, = > 7=} a,[«], and (h, \) is any point of @;. Thus, (b)) =
[2]", and it follows that b, = [®]. Thus, (') is an involution. That (')
is symmetric follows from the fact that ((Za]x]?))” = 2(@:))f% f =
(1)

If () is any symmetric involution on B which extends (*), then
a*([x]") = 0. But ([#]")" = b, so that [x]”" = b,. Thus (') is a unique
symmetric involution extending (*).

If () is any involution (not necessarily symmetric), then ()™ o () =
g belongs to G(B: A). To show g is of period two, consider the following.
Since the involution defined on B~ by conjugation commutes with
every involution, ¢*b)” is equal to b for every b e B; hence, in particular,
g ([z])” = [«]". But a(g’(x])) = 0 so that ¢°(Jx]) = [«] and g is of period
two.

8. Primitive elements in repeated extensions. As seen in § 6, there
is some analogy between the present study and the classical case of
field extensions. We carry this analogy one step further by proving a
theorem about the existence of primitive elements in repeated extensions.
It will follow from our theorem, that if a(x) is a monic polynomial
with an invertible discriminant, then there exists an extension of the
form A[x]/(B(x)) over which a(x) factors into linear factors.

THEOREM 8.1. Let A be a Banach algebra. If B,= A and B; =
B, [x]/(a(x)), 1 =1, 2, «+-, m, where x; is an indeterminate over B, ,
and a(x;) e B;_j|x;] is @ monic polynomial with an invertible discrimi-
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nant wn B;_,, then there exists a monic polynomial a(x)e Alx] with
an invertible discriminant and an element be B,, such that a(d) = 0
and A[b] = B, = Alx]/(a(x)) (algebraically and topologically).

Proof. The proof is by induction. We shall prove the case m = 2.
Consider [x,]7(k, N) + c[x.]"(h, N, ) = N + ¢/, where ¢ is a complex
number, and (k,\, £)€ @5. We will show that we can choose ¢ > 0
such that v +cpt =N + et if (b, N, 1) = (B, N, ). If

F(h) = min {|x — \'|: (h, M), (h, M) € @ and N # \'} for each hed,,

then F' is a continuous function on @, since a,(«,) has no singular points
in @,. Since @, is compact and since F(h) > 0 for each h e @,, there
exists s > 0 such that F(h) >s on @,. Choose ¢ >0 so that s>
2-c¢+||[2,]" ||». For this choice of ¢, let b = [x,] + ¢[x,]. Now, if (h, N, ) #
(h, \, '), then b(h, N, ) = b(h, N, 1) and if (h, \) = (h,\), then

|6y N, 1) — bR, N, () [ = [N — N | —ce| e — 2]
>s—c|pp— | >s—2c|[w]]l.>0.

From this it follows that if a(x) is the monic polynomial (constructed
in Lemma 7.1) of degree m = n,n, satisfied by b, then its discriminant
is invertible since corresponding to each h, a,(x) = 0 has nn, distinct
roots.

Let B = A[x]/(a(x)). Then @, is (identifiable with) {(k, ) € @, X C:
(h, M)a(x) = 0}, Hence 7: (k, N, 1) — (h, b(h, ), 1) is a homeomorphism
of @, onto @;. Thus, [%,]” o v~! is continuous on &, and a([z] o™ =
0. By the Arens-Calderon theorem, there exists b, € B such that b, =
[2.]" o7 and a,(b) = 0. Now, if g: D1t ax]' — 1= a;bi, then g is
a homomorphism of B onto A[b]. By an argument in the proof of
Theorem 7.2, we have that ¢g(b,)” =[x,]". But a,(b;) = 0 so that a,(g(b,)) =
0 from which it follows that g(b,) = [x,] since the discriminant of «,(x;)
is invertible. Thus, A[b] contains [«,] and hence [x,] € A[b], i.e., A[b] =
B,. It remains to show that g is one-to-one and bi-continuous. Clearly,
9| A[b,] is one-to-one so that there is an element b, € B which satisfies
2, (g | A[b])@®)bi = 0 and b, = [x,]" o v, where ay(x) = 312, aat,
As before, a,(g,)) =0 and g¢(b,)" = [#,]” so that g¢(b,) = [x,]. Hence,
g| Alb, + ¢b,] is a one-to-one mapping. But (b, + ¢b,)” = [¢]” so that
Alb, + ¢b,] = A[x]/(a(x)). Thus, g is one-to-one. (Note that this means
that b, + ¢b, = [¢].) The continuity of g follows as in Theorem 7.2.
The bi-continuity follows from the closed graph theorem.

COROLLARY 8.2. If a(x)ec Alx] is a monic polynomial with an
tnvertible discriminant in A, then there exists an extension of the
Jorm Alz]/(B(x)) over which a(x) factors into linear factors, where
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T B(x) is a monic polynomial with an invertible discriminant.

In view of the theorem, the proof of the corollary follows from
the fact that if a(x) = (x — b)), ---, (x — b,)Q(x) over A[x]/(a(x)), then
Q(x) must have an invertible discriminant over A[x]/(a(x)).

9. On the radical of B. Let A be a normed algebra and let K(A)
denote the intersection of the closed maximal ideals of A. If K(A) =
(0), we say that A is tractable. In [2] it is shown that if A is tractable
and if the discriminant of a(x) is not a zero divisor in A, or zero,
then B is also tractable. It is further shown that if A is tractable
and if a(x) = «" — a, then B is tractable if and only if @ is not a zero
divisor in A, or zero. Actually, these results are true for a wider
class of algebras, namely, commutative algebras (with unit) over fields
of characteristic zero, with “tractable” replaced by “semi-simple.”

In this section, we will show that the converse of the above theorem
is also valid; indeed, we formulate our theorems and corollaries in the
general context of algebras over fields of characteristic zero. To do
S0 requires no extra effort, except that of characterizing the maximal
ideals of B in terms of those of A. It will follow from the general
results presented that when A is tractable, then the radical of B and
the intersection of the closed maximal ideals of B coincide, a result
that is generally not wvalid for normed algebras. (An example of a
semi-simple normed algebra which is not tractable is given at the end
of this section.) Thus, until further notice, we assume that 4 is a
commutative algebra (with unit) over a field F' of characteristic zero.
Let M, denote the maximal ideal space of A. We first identify M,
in terms of M,. If m, is a maximal ideal in B, then B/m, is a field
which contains an isomorphic copy of F' and hence is also of characteristic
zero. Let ¢ denote the canonical homomorphism of B onto B/m,. Then
#(A) is a subfield of B/m, since the latter is a simple algebraic extension
of #(A) (cf. page 259, [15]). Thus we see that m, N 4 is a maximal
ideal of A. On the other hand, if m is a maximal ideal in A, then
we can extend m to (at most n = degree of a(x)) a maximal ideal of
B. We proceed to show this assertion and at the same time give a
description of the extensions.

If I'is an ideal in A, then let AB,(x) denote 3(B; + I)x* where
B(x) = IBa".

Let m e M, and v(x) denote a monic polynomial over A such that
Y.(x) is an irreducible factor of a,(x). Let (m, v(x)) denote the set

{(g ai[x]") Y([x]) + g m;[x]' i a; € A, m; e m} )

It is clear that (m, ¥(x)) is an ideal in B. If we define 6 by
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o(5 alal) = £ @+ m) @ + (@)

then 6 is a homomorphism of B onto (A4/m)[x]/(7..(x)). Clearly (m, v(x)) &
67%0). Now if > (a; + m) (x + (V.(2)))* = 0, then
n—1

S @+ me = 7, @Q.0) ,

where Q(x) € A[x] or equivalently,

3
—-

ax’ — v(@)Q(x) e mfa] ,

i
o

7

Thus, >75 af«] € (m, v(x)). Hence, 67(0) = (m, v(x)) and so (m, 7(x))
is a maximal ideal of B.

From the above, it is clear that if (%) — 7.(x) e m[x], then
(m, 7.(x)) = (m, 7x)). We now show the converse. Suppose (m, 7,(x)) =
(m, 7(x)). There exists p(x) € Alx] and m(x) € m[x] such that v,(x) =
T(2)p(x) + m(x). Now, 7,,.(%) = V. (2)p,.(®). Since both v,,.(x) and 7,,(x)
are irreducible, and monic, p,.(x) = ¢ + m. The degrees of v,(x), 7.(x),
71() and 7,,,(x) are all equal so that p(x) = e. Thus, 7,(x) — 7:(x) € m[z].

So far we have shown that each maximal ideal of A extends to
at least one maximal ideal of B. Furthermore, each maximal ideal of
B extends a unique maximal ideal of A. We shall now show that each
maximal ideal m, of B is of the form given above, with m = m, N A.
From earlier comments we know that B/m, is a simple algebraic ex-
tension of the field ¢(A), where ¢: B— B/m, is the canonical homomor-
phism. Since ¢([x]) is a root of a,.(x) = 0, #(Jx]) must satisfy one of its
irreducible factors, say B.(x). Hence B/m, must be isomorphic to
H(A)[x]/(Bu(x)). Thus, if #(r%5afz])=0, then > (a; + m)x' =
Qn(®)Bn(x). Thus, m, = (m, B(x)).

In summary, we have that M, may be viewed as the set of ordered
pairs (m, B8(x)), m € M,, B(x) monic and B,(x) an irreducible factor of
a,.(x). Of course, we identify any two such pairs (m, B(x)) and (m’, v(x))
if and only if m = m’ and B(x) — v(x) e m[x]. As before, we let «
denote the (onto) mapping (m, 8(x)) — m.

In what follows, let a(m) denote the coset a +m,ac A, me M,.

In order to avoid interrupting the proof of the main theorem, we
will next state and prove a lemma about the existence of a common
factor of aa(x) and ba’(x) for suitable elements a and b in A. In
general, ¢ and b will not be invertible elements (consider the a(x) in
Example 5.3). We will need the following result [15]: Let f(x) and
g(x) be polynomials over A of respective degrees m and %, let k =
max (m — % + 1, 0) and let a be the leading coefficient of g(x). Then
there exist polynomials Q(x) and R(x) over A such that
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a'f(@) = Q)g(x) + E(x)

and R(x) is either of degree less than 7 or is the zero polynomial.

LEMMA 9.1. Let A be semi-simple. If the discriminant d of a(x)
18 a zero divisor in A (say de = 0,c¢ = 0) or if d = 0, then there are
nonzero elements a and b in A and polynomials v(x), 6(x) and R(x)
over A such that

(i) aa(x) = v(x)R(x)

(il) ba'(x) = o(x)R(x)

(iii) for me M,, a(m) = 0 if and only if b(m) = 0, and if ¢(m) =
0, then a(m) = 0, and

(iv) if Bn.(x) (me M) is a factor of «,(x) and al(x), then B, (x)
18 o factor of R, (x).

- Proof. We first prove the lemma for the case d = 0. Let R_(x)
and Ry(x) denote a(x) and «'(x), respectively. In view of the above
quoted result, we assume that we have found polynomials Q,..(x),
R;.(x),0 = j =<1, over A such that

(*) Rozky Rj—1(x) = Ro,j—le(x)QjH(x) + Ri+1(x)

and R, ;R;,.,(x) =+ 0 for 0 <j <, where R, ; denotes the leading coefficient
of R,; R;(x) and k; = max {deg (E;_,(x)) — (deg R,,;,R;(x)) + 1, 0}. The
polynomial R, ;R;..(x) is never a non-trivial constant polynomial. This
follows from the fact that if m e M,, then «,(x) and «.(x) have at
least one irreducible factor in common since d(m) = 0 (recall that A/m
is a field of characteristic zero). For each m, let 5,(x) be one such
factor. Thus, it follows that if R, ;(m) = 0, then B,(x) is a factor of
R, (m) (R;1).(x). Thus, if R, ;R;.,(xr) were a constant, say ¢, then
¢(m) =0 for all me M,. Since A is semi-simple, ¢ = 0. From this
fact and the fact that degree R, (x) < degree R, ;R,;(x), we can
conclude that there is a first integer, say %, such that (*) holds with
J =1,and Ry R; .(x) = 0. Since the coefficients of R;,(2) belong to
the same maximal ideals that R, belongs to, we have that R;.,(x)
is the zero polynomial. Hence

R(?’;EoRio—l(x) = Ry,iRo,:;(0)Q;i () .
Let R) = R, Ry Ri(@), 0 = [I;% Rof and b= [[;%, RY. Then o

05 %
and b are nonozero and belong to the same maximal ideals to which
R,,; belongs. Now, by repeated substitutions, we find polynomials v(x)
and 6(x) over A such that aa(x) = v(x)R(x) and ba'(x) = o(x)R(x). From
the above it is clear that if B,(x) is a factor of «,(x) and a;,(x), then
it is a factor of R,.(x).
If de =0(d = 0, ¢ # 0), then let D denote the set of maximal ideals
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of A to which ¢ doesn’t belong, and I denote the intersection of the
maximal ideals in D. By the first part of the proof, there are elements
a’', b e A, b ¢I)and polynomials 5(x), 5(x) and F(x) over A such that
for the cosets @’ + I and & + I and the polynomials ¥,(x), 6,(x) and
B (x), the four conditions of the lemma are fulfilled over 4/I. It then
follows that the same four conditions are fulfilled over A if we take
a = ca’, b= c,v(x) = c¥(x), dx) = ed(x) and R(x) = ¢R(x). (Note that
a and b are not zero since if so we would have that o’ and b belong
- to 1) This completes the proof of the lemma.

It is necessary to introduce the following notation at this point.
Let A be semi-simple and a(x) a monic polynomial over A, M,(m, B.(x))
is to denote the power to which 5,(x) appears in the factorization of
a,(x) into irreducible factors. Let d, denote the resultant of a(x) and
a'®(x) (= the formal kth derivative of a(x)), 1 <k <n — 1 (cf. page
96, [14]) and let k() denote the smallest integer k, if it exists, such
that d, is not a zero divisor in A, or zero, and # if all the d, are zero
divisors in A, or zero. From the definition it follows that if & > k(«),
then d, is not a zero divisor in A or zero.

By a nil ideal in A we mean an ideal all of whose elements are
nilpotent. If I is an ideal in A for which there exists an integer k
such that a,-day+ <++ +a, = 0 whenever a;€¢l,7=1,2,--+,k, then we
say that I is nilpotent (and write I* = (0)) and if k is the smallest
such integer, then we call ¥ the degree of nilpotency of I.

THEOREM 9.2. Suppose that A is semi-simple and that a(x) is a
monic polynomial over A for which k(a) = 2. Then the radical of
B ts nontrivial comsisting precisely of the milpotent elements of B.
Furthermore, Rad B is nilpotent and its degree of wmilpotency is k().

Proof. It is well known that the radical of an algebra contains
all the nilpotent elements of the algebra. We show that Rad(B) consists
of precisely nilpotent elements by showing the last assertion of the
theorem, from which it follows that Rad(B) is nontrivial.

Suppose that Bi([x]), - - -, Biw([*]) € Rad(B) and set B(x) = JI:Y Bi(x).
Then there are polynomials Q(x) and R(x) over A such that B(x) =
a(x)Q(x) + R(x), with degree R(x) < degree a(x). We will show that
B(x]) = 0 by showing that R(x) is the zero polynomial. Suppose first
that m e M, has the property that M (m,¥,.(x)) < k(a) for every irreducible
factor v,.(x) of a,(x). Since B;([x]) € Rad(B), we know that 7,(x) must
divide (8;).(x), and hence v,.(x)?, § = M ,(m, 7,.(x)) divides B,.(x). Further-
more 7,(x)? divides «,(x) (by definition of j7) so that 7v,(x)? also divides
R,(x). But 7v,(x) is an arbitrary irreducible factor so it follows that
a,(x) divides B,(r) and consequently also divides R,(x). Since degree
R (x) < degree a,(x), R,(x) is the zero polynomial over A/m, or equiva-
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lently, the coefficients of R(x) lie in m. If thereis a m € M, such that

M (m, v,.(x)) > k() for some v(x), then d,, €m. Thus, the coefficients

of d,R(x) lie in every maximal ideal in A and hence are all zero.

But d,., is neither a zero divisor in A or zero, so that R(x) is the

zero polynomial over A. Thus, B(x) = a(x)Q(x), or equivalently, B([x]) =
1 B([=]) = 0.

To show that Rad(B)**~' = (0) (recall that k(«) is assumed to be
greater than one), it suffices to show that there is an element f < Rad(B)
such that f**~' == 0. We will show that f = av([x]) is a suitable choice,
where @ and v(x) are supplied to us by Lemma 9.1. (We may assume
that ¢ in the lemma has the property that ¢d;—, = 0, ¢ #= 0.) Let us
first note that av([x]) # 0. For if not, then av(x) = Q(x)a(x) for some
Q(x) € A[z]. But aa(x) = v(x)R(x) so that a’a(x) = Q(x)R(x)a(x) or a* =
Q@)R(x). If e(m) =0, then a(m) = 0. If c¢(m) == 0, then d(m) = 0 so
that «,(x) and a/(x) have a common factor which is also a factor of
R,.(x) by (iv) of the lemma. Thus, a(m) = 0 for all m e M, and hence
a = 0, which is a contradiction. We show next that av([x]) € Rad(B).

Let m be a maximal ideal such that a(m) == 0 and 8, (x) an irreducible
factor of a,(x). If B,.(x) is not a factor of b(m)a,(x), then B,(x) is
not a factor of R,(x) (cf. lemma). Hence 8,(x) must be a factor of
Y.(x). If, on the other hand, 58,(x) is a factor of b(m)a,,(x), then B,(x)
is a factor of a(x) (b(m) == 0 since a(m) = 0). Thus, from the lemma,
we can conclude that 8,.(x)*, k = M,(m, B,.(x)) — 1, is also a factor of
a,, (), hence a factor of R, (x) since B,(x)*** is a factor of «,(x). Thus,
B.(x) must be a simple factor of 7,(x). We can now conclude that
av([z]) belongs to every maximal ideal of B.

We now show that (av([x]))**~* = 0 or equivalently, av(x)** =
Qx)a(x) for every Q(x)c Alx]. Since k(a) = 2, we know that there is
at least one irreducible factor S,(x) of «,(x) for some me M, such
B.(x) is also a factor of a,(x) and B,(x)** is a factor of «a,(x) (take
any m e M, such that d,.—-,€m). From what we showed above, we
have that B.(x) is a simple factor of v,(x). If (av(x))*** = Q(x)a(x)
for some Q(x) € A[x], then B,.(x)*'® would be a factor of (a(m)7,(x))***
or else a(m)=0. Since ad;—, = 0 (recall our assumption that cd,,—, = 0),
we may assume that a(m)=-0. Hence a contradiction since 8,.(x) is only
a simple factor of v,(x). Thus, (av([x]))* '~ = 0.

COROLLARY 9.3. If B is semi-simple, then A 1is semi-simple and
the discriminant d of a(x) is mot a zero divisor in A, or zero.

The proof follows immediately from the theorem. To use the
theorem, we need to know that A is semi-simple. But this is true
since each maximal ideal of A extends to at least one of B. This
situation is special. (There are examples of semi-simple algebras with
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non-semi-simple subalgebras.)

COROLLARY 9.4. Let A be a commutative algebra with non-trivial
radical R = Rad(A). Then Rad(B) = {be B:b*c R[[x]]}, k = k(az). If
R is a nil ideal, then so is Rad(B). If R is nilpotent, say R* = (0),
then so is Rad(B) and Rad(B)** = (0).

Proof. SinceRad(B)DR, it isclear that Rad(B)=2{b e B: b* € R[[«]]}.
Now, consider the homomorphism ¢ of B onto (A/R)[x]/(cx(x)) defined
by $(Za.[#]")=3(a;+ R)x’ +(ax(x)). Then ¢(Rad(B))SRad((4A/R)[x]/(ax(x)))
(cf. page 10, [8]). The kernel of ¢ is R[[x]]. Thus, if b€ Rad(B), then
#(b*) = (4(d))* = 0 by the theorem. It follows that b* c¢~*(0) so that
Rad(B) £ {be B:b*c R[[x]]}. Thus equality holds and the first assertion
of the corollary is established.

Suppose now that R is a nil ideal. Let b € Rad(B). Then by the
above, b**® ¢ R[[z]]. Let b**& = S »-1b[x}, b;e R. Since A is com-
mutative, the elements b, ---, b,_, generate a nilpotent ideal in A (cf.
page 193, [8]). If p is the degree of nilpotency of this ideal, then
(b¥*r)?» = 0, Thus, Rad(B) is a nil ideal.

The last assertion follows immediately from what we just proved.

If the degree of nilpotency of Rad(4) is p, it may well be the
case that the degree of nilpotency of Rad(B) is less than pk(a;). For
example, take an algebra for which » =2 and let a(x) = «*. Then
Rad(B)* = {0}. (It is easy to modify this example so that a(x) = 0 has
no solution in A.) On the other hand, the degree of nilpotency of
Rad(B) may be equal to k(ag)p.

We now turn our attention to the case where A is a commutative
normed algebra. For such an algebra, K(A) denotes the intersection
of its closed maximal ideals.

THEOREM 9.5. Let A be a tractable normed algebra. T hen K(B)
coincides with the radical of B. Hence if B is tractable, then A 1is
tractable and d is not a divisor of zero in A, or zero.

In order to prove the theorem we only have to establish that the
elements of K(B) are nilpotent. To do this, we must know which
maximal ideals of B are closed. Of course, each closed maximal ideal
of B extends a maximal ideal of A so that @, (= space of closed maximal
ideals of B) is a subset of D = {(h, \) € @,xC: a,(\) = 0}. Actually,
@, =D, To see this, observe that

las) | = [N =l [N = e = e[ V] =l a]]

If [x]>1, then the right hand side is greater than zero so that
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la, (AN} > 0 for all he®@,. Thus, if (h,X)e D, then [X]| = 1 and hence
(h, \) defines a continuous multiplicative linear functional (recall that
we are assuming that ||a,|| + [|a || + <+« + || || = 1).

Now, using the fact that @, = D, we use the method of proof of
the first assertion of Theorem 9.2 to establish that K(B) is nilpotent.
Hence K(B) S Rad(B). On the other hand, Rad(B) < K(B) so that
K(B) = Rad(B).

The second assertion now follows from Corollary 9.3.

As we have pointed out earlier, there are normed algebras which
are semisimple but not tractable. A simple example illustrating this
is as follows: Let A be any normed algebra with no nonzero nil ideals
but possessing a nontrivial radical. A[x] is a normed algebra under
| 2axt|| = 2)|a;]l. Clearly, A[x] is not tractable. However A[x] is
semi-simple (cf. Theorem 4, page 12, [8]).
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