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1. Introduction. Let C, D and % denote odd positive integers,
D > 1 and CD without any squared factor > 1. Let K = Q(V/—CD),
where @ is the field of rational numbers. Let further % denote the
number of classes of ideals in K and put D + (—=1)2+2 =2".D,
(D, 2)=1. In two previous papers [4] and [5] I have proved the
following three theorems concerning the diophantine equation Cx®+ D =

Y™
I. The diophantine equation
(1) Cx*+ D=y, n>1

is impossible in rational integers « and y if A %= 0 (modn), m is odd
and either CD =1 (mod 4) or CD = 3 (mod 8) with # %= 0 (mod 3).

II. The diophantine equation
(2) Cx* + D = y?, qg>3

where ¢ denote an odd prime and CD = 7 (mod 8), is impossible in
rational integers « and y if h == 0 (modgq), m is even and ¢q = CD,
(mod 8).

III. If D=1 (mod4), CD = 7 (mod 8) and m is even, then the equa-
tion (2) has only a finite number of solutions in natural numbers 2z, ¥
and primes ¢ if CD, =5 (mod8) or if C =1 with D, = 3 (mod 8) for
given C and D. The possible values of ¥ and an upper limit for the
number of primes ¢ may always be determined after a finite number
of arithmetical operations.

From the proofs it immediately follows that these theorems also
hold good if CD =T (mod8), provided y is an odd integer. This
gives a far-reaching extension of results obtained by D. J. Lewis in
his paper [2]. Putting C =1, D=7 we find, from 1:

The diophantine equation 2+ T =1y° z>1, is impossible in
rational integers x, y and z if y 48 an odd integer.

Equations of the type (1) have also been studied by T. Nagell
[6], [8], [9] and B. Stolt [11].
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586 W. LJUNGGREN
2. The equation Cx* + 4D = y*, y odd.

THEOREM 1. Let n be the power of a prime q > 3, and suppose
that h = 0 (mod n). Then the diophantine equation

(3) Cx* + 4D = y~ n>1, y odd

has mo solutions in rational integers x,y if q = 3C(—1)9~” (mod 8).
Likewise, tf D = 0 (mod q), equation (3) has no integral solution.

Proof. We put » = ¢*. The principal ideals
[Cx + 2V —CD] and [Cx— 2V —CD]

have the greatest common ideal divisor [C, 1V —CD], because [C] =
[C,V'—CDP, v is an odd integer and (z,y) =1. From (3) it then
follows

[Cx + 2V —CD] =[C,V —CD]-i**,
where i denotes an ideal of the field Q' —CD). Further we get
(4) [Cx + 2V —CDJ = [C]-1#°(, = %) .

If the class number % is divisible by ¢ (0 < 8 < @) and not by
¢P*, there exist two rational integers f and g such that

fq* — gh = ¢* .
Then by (4) we get the following equivalence
i~ i~ 1.
Hence we obtain the ideal equation

(5) [Cx + 2/ —CD] = [C]-[—é—(u + 0V =CD CD)]‘I‘”'B

where % and v are rational integers, u = v (mod 2). Since ¢ > 3 all
the units in the field Q' —CD) are ¢®™ powers. Then it follows
from (5)
(6) (Cx+2V/=CDYy = C(—;—(ul + 9V =CD ))q , w =0, (mod2).
By means of (6) we derive

%(ul + 9/ —CD) = (%(aﬂ/?—l— b11/——D)>2 . @ =b (mod2)

Inserting this expression in (6) we get
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(1) «V/C +2V=D = (%(aﬂ/ﬁ n b,g/—D))q . a,=b, (mod?2) .

Equating the coefficients of ¥"—D we obtain the relation

(7,) 2q+1 _ (q§/2<2 ({[_ 1)ag—1—2rbg'r+lC[(q——-l)/2]—'r(_D)’I’
=0 \&T ’

whence b, = +2°, 0 s =< q + 1.
Equation (7’) gives modulo ¢

bi(— D) = 21mod ),

or

For ¢ > 5 b, and a, must be even numbers, so that we have
(8) 2/ TF2V =D = @/ TF 8V =Dy.
If ¢ =5 and b, = +1 it follows from (7’) that

2
?

D'+ 8= 5(—;—(0@2 — D)>

which is impossible mod 8. Equation (8) is then valid if ¢ > 3. Cor-
responding to (7') we get

(g=1)/2
(8,) 2 = g <2’)" q_}— 1>(Ca2)[(1—1)/2]—7‘b2r+1(_D)r

Equation (8) is impossible if ¢ divides D. If (D, q) =1 it follows
from (8)

2 = b(— D)l = b(:qg> (mod q) ,
whence
-52).

Inserting this expression for b in (8) we obtain

{(9) (%) = (qgm(z,’, ({l- 1>(Ca2)[(q—1)/2]-—7‘(_4D)r .

At first we want to prove that (9) is impossible if ¢ = 1 (mod 4).
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Treating (9) as a congruence mod 4 we find

(i) -1,

q

Suppose now that ¢ — 1 is divisible by 25, but not by 2%*!, 6= 2.
Equation (9) may be written

q—1)/2
(10) 1— g+ ql = (€)= "5y (5, )(Caryoinr(—aDy .

The general term in the right-hand side in (10) we then prefer
to give the following shape

qg¢ — 1) . 2r,< q—2 > 2\[lg—1)/2—7 . ( _ )
(11) _—27'(27' —y 2 or — 1 (Ca? (—D) .

Here the numerator is divisible by 2%+, The denominator is:
divisible by a power of 2 which is =< 2. Since for all r =1 2* > 2r,
we conclude that the integer (11) is divisible at least by 2°*'. Hence:
equation (10) is impossible, because (Ca?)'*"* — 1 is divisible at least.
by 2%+, while ¢ — 1 is divisible by 2° but not by 2%+,

It remains to consider the case ¢ = 3 (mod 4). From (9) it then
follows

(qu—> = ¢C (mod 4)
whence

<ﬁ> = —1 for C=1 (mod4),
q
(12)

<:Q) — 41 for C =3 (mod 4).
q
Treating (9) as a congruence mod 8, we get
(13) <Z;D—> = ¢C + 4 (mod 8)
q

Combining (12) and (13) we find
q = 3C(—1)7 (mod 8)
which was to be proved.
REMARK., Theorem 1 remains true if ¢ =3, provided CD # 3
(mod 8): All units in Q(V'—CD) are still ¢* powers, such that equa-

tion (7) also holds good for ¢ = 3. Since b, = +4 (mod g), we have
in addition to consider the cases b, = +1 and b, = +2. If b,= +1
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we deduce from (7) that D = 3Cai+16, which implies CD = 3 (mod 8),
a contradiction. If b, = +2, @, must be even. Putting a, = 2a, we
find D = 3Cal+2 and y = 4Cal+2. But we assumed ¥ to be an odd
integer, and then our assertion is proved.

We now proceed to prove two lemmas.

LEMMA 1. Putting

. [(n—1)/4] n . [(n—38) /4] n
) S= N (g y) emd Si= 5 (47 )

we have if n =3 (mod 8)

(16) S: =0 (mod 3), S, =1 (mod3),
and 1f n =7 (mod 8)
an S, =1 (mod 3), S, =0 (mod3) .

Proof. Inserting x =1 and x = 7 in the identity
1 . wy — (T n M\t oL
(@ — A —a)) = (1) + (3 + (B + -,

we get
=8, +8S,,
and
2=l (1)t = §, — S, , n = 3 (mod 4) ,
from which (16) and (17) easily follow.

LEMMA 2. Equation (9) 1s impossible for q > 3 if
(18) D = (—1)°"" (mod 3) ,
and besides one of the three following conditions is satisfied:

1° C =0 (mod 3)
(19) 2° C = +1 (mod 8)
3° C=+3 (mod8) and C = (—1)°""? (mod 3).

Proof. If @ =0 (mod3) or if C =0 (mod 3) it follows from (9)
and (12) that
(=190 = —(4D)e 2 = —D (mod 3), because D* =1 (mod3) .
But this contradicts condition (18).
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If ¢ =1 (mod3), C =0 (mod3) we find

= (o= (o~ (-

or
(20) (=1 = C8, — DS, (mod 3) .

The congruence C = +1 (mod 8) may be written C = (—1)¥”?
(mod 8). By Theorem 1 we then conclude ¢ =3C(—1)“2=3 (mod 8).
According to Lemma 1 it follows from (20)

(—1)e2 = —D (mod 3) ,

a contradiction.
The congruence C = +3 (mod 8) is equivalent to C = 3(—1)“+v/2
(mod 8). By means of Theorem 1 we conclude

g =3C(—1)9"* =T (mod 8),
and Lemma 1 then gives
(=12 = C (mod 3) ,
which contradicts the second part of the condition 3°.

Our lemma is proved.

THEOREM 2. Let C, D, n and h be defined as before, h = 0
(mod n). If D= (—1)"""? (mod3) and if further one of the condi-
tions (19) is satisfied, then the diophantine equation

(21) Cx* + 4D =y, n>1, ¥y odd
has no solutions in rational integers x and y, provided n %= 0 (mod 3)

in case CD = 3 (mod 8).

Proof. Suppose that (21) is solvable in integers x, ¥, where ¥ is
odd. There must exist a prime factor ¢ of » with the following
property: ¢ is a factor of m but not of the class number h. We
put m = q% n = mr and 2 = y". Then the equation

(22) Ca* + 4D = zm

should be solvable in integers = and z. But this is impossible on
account of Lemma 2 and the remark to Theorem 1.

ExXAMPLE. The equation 3x* 4+ 28 = y*, n = 3, has mo solutions
wn rational integers x, y with y odd.
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Here is C=3, D=T7=1 (mod3) and CD =5 (mod 8). Putting
x = 2x, ¥y = 2y, we get 3x! + 7 = 2" %7, which implies n = 3, because
3x? + 7= 2 (mod 4). Equation 3x} + 7 = 2y? has at least the solutions
x, = +9, ¥y, = 5.

3. The equation. «* + 4D = y*, y odd. In this section we restrict
ourselves to the simple case C = 1. According to Theorem 1 and the
remark attached to this it will be sufficient to deal with the case
q = 3 (mod 8), ¢ = 3 included. Putting

r=a+2V-D and N =a-—2V—-D
it follows from (8), with b = 2(—D/q) = 2(—1)9*+2 = —2:

AL — N
23 —_—— = -1,
(23) Y
The following identity is easily verified:
(24) Ale—biz )\,:(q_l)lz SV N @Iy = (\\)e D2 4 AT — A9 ]
AN— N A =N
Since ¢ = 8t + 3, (24) may be written
WL )\t

(25) y ()\44t+2 __{_ x’4t+2) — __(a2 + 4D)4t+l . 1 .

A— A

The second factor on the left-hand side of (25) is divisible by
(A + \'?%/2 = a* — 4D. Suppose now a’ — 4D > 0. Since a? —4D =5
(mod 8), this number contains at least one prime factor » = 7 (mod 8)
or =5 (mod8). By means of (25) we derive that the Legendre
symbol ((—a* — 4D)/p) = —1, which implies (—2/p) =1, i.e. p =8t + 1
or 8t + 3, contrary to the assumption. We therefore conclude
a’*— 4D < 0, or

(26) a* < 4D .

These considerations yield the following theorem:

THEOREM 3. Let D > 1 denote an odd positive integer without
any squared factor > 1. If the class number of QV' —D) is indi-
visible by the odd prime q, then the diophantine equation

@27 2+ 4D =y*, ¥ odd

has mo solutions in rational integers if q = 3 (mod8). If ¢q=3
(mod 8), then (27) has only a finite number of solutions im rational
integers x and y and primes q for given D. The possible values
of ¥y and an upper limit for the number of primes q may always
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be determined after a finite number of arithmetical operations.

That an upper limit for the number of primes may be determined,
follows as a consequence of a theorem due to Th. Skolem [10]. How-
ever, in special cases it will be more convenient to use other methods.

Example 1. x2* + 28 = y?. We have h = 1 and must examine the
case ¢ = 3 (mod 8). The inequality (26) gives the possibilities:

a*=1, &> =9 and o®* = 25. The corresponding values of %? are
29, 37 and 53 respectively.

We make now use of the formula

(®+y) — o' — y* = gqey(x + y)(@* + 2y + ¥°)"-Qu, v) ,
where ¢ > 3 and

u=@+zy+9y), v=(@yx+y),
r =2 for ¢ =1 (mod 3)

and r =1 for ¢ = 2 (mod 3), and Q(u, v) is a polynomial in # and »
with integral coefficients [1]. Putting * =\, y = —\’, we obtain

rg—1 AL — \? (22 4 2
()\'—N)q '_—7\’——7—'—— —Q)\,)\,()\, — A 4N )T'Q(u’v)y

or

(28) (16D)" =1 (mod ¢-(a* + 4D)-(a* — 12D)), ¢ = %(q 1.

If =1 we get 1127 =1 (mod29), or 2" = —1 (mod29). Since
2¥ = —1 (mod 29) and 2° = —1 (mod 14) for 0 = s < 14, we must have
g =1 (mod 14), which implies (¢/7) = 1. From (28) we further find
112 = 1 (mod g), i.e.

a contradiction.

If > =9 we get 112Y =1 (mod 5), or 2 =1 (mod5), which is
impossible for ¢ = 8¢ + 3.

If o = 25 we obtain 1127 = 1 (mod 53), or 67 = 1 (mod 53). Now
6 belongs to the exponent 26 mod 53, which is impossible since ¢’ is
an odd number.

It then remains ¢ = 3, where

x+2V =T =(a — 2V =T),

whence 2 = 56 — 6a’ i.e. a* =9, = 225 and
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225 + 28 = 37° .

We have then proved:

The diophantine equation x* + 28 = y*, 2z >3 and odd, has no
solutions im integers x,y and 2z if y is an odd integer. If m =3
there are exactly two solutions, namely x = +225 and y = 37.

This is a comprehensive generalization of a result obtained by
D. J. Lewis [2].

Example 2. «* + 12 =y Here is h =1, and (26) gives a* =1
or @’ = 9. The last possibility must be excluded, giving ¥y = 0 (mod 3).
If ¢ > 3 it follows from (27)

il

487 =1 (mod 13),

or
27" = —1 (mod 13)

implying ¢ =1 (mod 6), or (¢/3) = 1. But according to (12) (—3/q) =
—1, or (¢/3) = 1, a contradiction. It is further known that 2* + 12 = #°
has no integral solution. This may be shown in the following manner:
1° y odd. We write our equation in the form

24+ 4=(y— 2 + 2y + 4)

Since (x,2) =1, all prime factors of 2+ 4 must be of the
form 4¢ + 1. Consequently, ¥ = 3 (mod 4). But this implies that
y* + 2y + 4 = 3 (mod 4), which clearly is impossible.

2° y even. Then x must be even, and putting o = 2z, ¥y = 2y, we
get :

x] + 8 = 277y]
whieh is impossible modulo 8, because ¢ == 4.

Then we have proved:

The diophantine equation x* + 12 =1y~, n > 1 and odd, has no
solutions im rational integers x and .

4. The equation Cx* + DM* =y, y odd, (x,y) = 1. Let M de-
note any positive integer, such that (C, M) = 1. In order to find
criteria for the solvability of the equation

(29) Cx*+DM*=y", n>1, yodd and (x,y) =1,

similar to those obtained in the previous sections, we are again led to
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deal with an expression of the type

(80) 2vC+ MV —D = %(azl/ C + bzx/j))" . a,=b, (mod?2),

q denoting an odd prime. From (29) it follows

31 2. M — aQ{e q g—1-2r  pard1, (@D, (— D)
(1) 2 \gp g )i B COE (D)

It is easily seen that
(32) b,| M .

If (Db, q) =1, we find, treating (81) as a congruence
oM = (lll>bz (mod g) ,
q

from which we conclude
(33) q|2M £+ b, .

According to (32) and (33) there are only a finite number of pos-
sibilities for b, and for the primes ¢q if b, # 2M(—D/q). It then only
remains to consider the case

where (30) can be written
(34) #V'C +V —DM* = (av/'C + bv/—DM?)¢,
and
(=D
b= <—q-> .
But now we can utilize the results obtained for M = 1.
Erxample.

>+ 63=y", y odd, n > 1.

If (x,y) =1 we solve
—=_ (@, + bV =T\

Here we have y = (a; + Tb})/4, i.e. a, and b, are even integers
because ¥ is odd. This gives
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(35) x4+ 3V =T = (a + b/ =T)

with b= +1 or b= +3. It is obvious that ¢ == 7, such that 3 = d(—"7/q)
(mod q). This implies »* = 1. For g = 3 equation (35) is impossible
mod 9. Then we must have b = 3(—7/q). Since y is odd, @ must be
even, and from (34) we conclude (—7/q¢) = 1 and

(36) 1= C{)aﬂ“l — <g>a,‘1—3-7-32 4o <g>(_7)<q—1)/2.3q—1 .

Since ¢ =1 (mod 3) and ¢* = 1 (mod 3), it can be shown that (36)
is impossible, exactly in the same way as we earlier proved the im-
possiblity of (10), exchanging only the prime 2 by the prime 3. Our
equation is then impossible if (x, %) = 1. If (x,y) = 3 we get, putting
x = 3%, ¥ = 3,

2+ 7=38"%"=0 (mod3),

whieh is impossible. Then we have proved:

The diophantine equation x* -+ 63 = y* is tmpossible in integers
2,y if ¥y is odd and n > 1 s an odd number.

5. Remark on earlier results. The diophantine equation
(37) ax® + bx + ¢ = dy" ,

where the left-hand side is an irreducible polynomial of the second
degree, having integral coefficients and d is an integer = 0, has only
a finite number of solutions in rational integers x,y when n = 3.
This was first shown by A. Thue and later on by Laundau and
Ostrowski. See for instance [7]. However, no general method is known
for determining all integral solutions « and ¥ for a given equation of
the form (37).

Equation (1) was solved completely by T. Nagell in case y odd,
C arbitrary and D = 1,2 or 4 [9]. Nagell has also examined equation
1 when C = 1 and D a square-free integer congruent to 1 or 2 modulo
4, but the results obtained are far from being complete [6]. He has
further found interesting theorems concerning the equation «* + 8D =
y*, (D, 2) =1 [8]. The first complete solution of the equation «* 4 2 =
y* was given by Ljunggren [3]. An upper bound for the number of
solutions of (1), in terms of D and n, was derived by Stolt [11]. It
must be emphasized that we in this note have deduced bounds which
are independent of n. For other equations of the type (1) see [9].

If y is odd, but the classnumber & is divisible by », we have to
deal with ¢rreducible binary forms of degree n = 3. This occurs also
if y is even. The problem of representation of rational integers by
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such forms is not solved. For the determination of an upper bound
for the number of solutions of our eguations in these cases compare
[2], p. 1075.
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