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In this paper we shall consider a family of transformations S,
(n=1,2,+-+) operating on open or closed sets in the complex plane z.
S, is defined relatively to a fixed point called the center of transfor-
mation, and it transforms an open set into a starlike domain which,
for n > 1, is also n-fold symmetric with respect to this point. There-
fore, for n > 1, S, may be classified as a method of symmetrization.
This method of symmetrization was already defined by Szego [4] for
domains which are starlike with respect to the center of transformation.

The definition of S, will be extended (in the way usually used
for symmetrizations) so that S, will operate also on a certain class of
functions and a family of condensers, in the plane. It will be proved
that S, diminishes the capacity of a condenser and this result will be
used in order to obtain certain theorems in the theory of functions.

1. Definitions and notations. The transformations S, are defined
as follows.

DEFINITION 1. Let Q be an open set in the plane 2z, which does
not contain the point at infinity, and let z, be a point of 2. If
|z — 2,| < p, (0<p), is a circle contained 1m Q, we define:

(1) L) = | 2,

where |2 — 2,| = r and

E={z]zeQ,|z—2|>parg(z — 2) = 9} ;

(2) L"(p) = %ZZ: LP<9D + 2;1:]‘7 > ;
R(p) = pexp {Ly(®)}
(3) R™(p) = [ﬁlR@) 4 2ak >]w = pexp {L"(P)} .
k=0 n

Evidently, R™(®) does not depend on p.
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614 MOSHE MARCUS

Now, the set obtained from 2 by the transformation S, = S,(z,),
with center 2z, is defined as follows:

(4) S.2={z|z—2,=7re,0=<r < R"”(®),0 < < 2r}.

If imstead of £ we have a compact set H, which has an interior
point z, we define:

4) S.H={z|z—2,=7r¢%,0=r < R"p),0 <p < 2r}.

It is easily verified that S,2 is a simply-connected domain and
that S,H is a connected compact set. Both sets are starlike with
respect to z,.

We shall extend the definition of S, over a family of functions
<% which will now be defined. A non-constant real function ¢(z)
belongs to & if it is continuous over the extended plane z, if it takes
its maximum value at infinity and if its minimum is assumed on a
set of points, the interior of which is not empty. Let g(z) be a
function of & and let m and M be its minimum and maximum values,
respectively. We define the following sets:

G, = {2]9() = m},

(5) G, =1{z]9k) <¢}, for m <c=M.

G, (for m < ¢ < M) is an open bounded set while G, is a compact
set. Let 2z, be an interior point of G, and suppose that the circle
|2 — 2z,] = p, (0 < p), is contained in G,. Denote by L,(c, ), L™ (e, ®),
R™(¢, @) the functions defined by (1), (2), (3) with G. replacing 2.
Clearly, for a fixed @, L,c, ®) is strictly monotonic increasing, for
m=c=<M. We also have:

liHle(c, @) = LP(d’ (p)y fOI‘ m < d é M;
( 6) c—d

lim Ly(c, ) = Ly(m, p) .

Let S, = S,.(z,). From these properties of L. (c, @), it follows that:

(7) S.G.C S.G. , formse<d<L M,
(8) S,.G., = LEJ S.G. , for m <c=M,;
m=d<e
(9) S.G.= N S.Gi.
m<d<M

Since G, S Necacw G4 We also have:

(10) Snéc g n SnGd ’ m é (4 < M .

c<d<M

DEFINITION 2. Let ¢g(z)e &. Using the notations introduced
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above, we define the function g™ (z) obtained from g(z) by the trans-
formation S, = S,(z,), as follows:

inf {c|z € S,G.}, for z¢ S,Gy ,

= gn =
(11) S,9 = 9"(2) { M, otherwise .

From (8) and (9) we now conclude:

12) {SnGe ={z]9g™(z) < ¢}, for m<c¢c=M,

SnGm = {z ‘ g(n)(z) - m} M
2. A lemma concerning the function g™ (z).

LEMMA 1. The function g™ (2) is continuous over the extended
plane z. If moreover g(z) is Lip on every compact subset of G, then
g™ (2) is Lip on every compact subset of S,Gy.

Proof. We begin by proving the continuity of g'(z). If z*e S,G.,.
and g™(z*) =d > m then by (10) and (12), the set S,Gi.— S,.Gi .
(where m < d* — e < d* + e < M) is an open neighbourhood of 2* in
which | g™ (z) — g™ (2*)| <e. If 2* belongs to S,G,. or z* belongs to
the complement of S,G,, then the set S,G...(m < m 4+ ¢ < M), and
the complement of S,G,-.(m < M — e < M) respectively, are open
neighbourhoods of 2* in which | g™ (z) — g™ (z*)]| < .

In order to prove the second assertion of the lemma it is sufficient
to show that g™(z) is Lip on every set S,G.(m <c¢ < M). Without
loss of generality we may suppose that z, = 0 and that p =1. (And
in this case we shall write L™(c, @) instead of L{"(¢c, ®).) We now
map the z plane, cut along the positive real axis from zero to infinity,
by a branch of w = log 2, (w = u"iv), onto the strip 0 < v < 27. (The
points of the positive real axis will be mapped both on v =0 and
v = 2r). We denote by H, and H! the images of G, and S,G. by this
mapping, and we put h(w) = g(e®) and L™ (w) = g™'(e®).

Let ¢ be a fixed number in the open interval (m, M). Since g(2) is
Lip on G, the function A(w) is Lip on H,, and if it is shown that
h™(w) is Lip on H?, the required result follows.

Since h(w) is Lip on H,, there exists a number p > 0 such that:
{h(w,) — h(w,)| < p|w, — w,|, for any w,, w,e H,.

We need the following assertion:

If 6 is a positive number and w»,, v,, ¢;, ¢, are real numbers such that:

(13) ]'01—1)2|<8,m<cl<cz—p5<c—p5,

t A function g¢(z) is Lip on a set E if there exists a constant p, such that for any
two points 21, 2:€ E, we have | g(z1) — g(z2)| < pl21 — 22].
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then
(14) L™ (e, v;) = L™(c;, v1) + [0° — (v, — )] .

Because of the definition of L™(e, v), it is enough to prove (14) for
n = 1. Without loss of generality we may suppose that 0 =< v, < 27,
k=1,2).

Denote by J, the intersection of the half line Imw = v,, Rew =0,
with the set H,,, for k=1,2. The Lebesgue measure of J, is L(c,, vy).
Using (5) and (13) the following is easily verified:

Let w,ed,. If w,=wu,+ 4, u,=0 and |w, — w,| =0, then

w, € J,. From this and the fact that J, is bounded on the right, (14)
follows for n = 1.
It will now be shown that

[ (w') — B (w"”)| < p|w — w”|, for any w', w”’e H}.

Suppose that there are two points w,, w, in H* for which this ine-
guality does not hold, and let 6 be a number such that:

(15) | ™ (w,) — B (wy) | > pd > plw, — w,] .
Let 2™ (wy) < A'"™(w,). Then we can find numbers ¢,, ¢, such that:
(16) m = k" (w) < e <e—pd < h™(w) —pé<c— pd.

Now the numbers ¢, ¢, v; = Imw,, v, = Imw, satisfy (13), and therefore
inequality (14) holds. Since, for m < ¢ < M,

H={w|0 = Imw =21, k" (w) < ¢} = {w|0 = v < 2x, u < L™(c, v)},

it follows (by (16)) that w, € H; and w, ¢ H.}; hence u,=Rew,<L™(c,, vy)
and u, = Rew, = L™(c,, v,). These inequalities together with (14) yield
Jw, — w,| > 0, which is in contradiction to (15). This completes the
proof of the lemma.

ReMARK. The following is a consequence of the second part of the
lemma: If g(2) is Lip on every compact subset of G, — G,, then g™ (z)
is Lip on every compact subset of S,Gy — S,G..

3. On a class of functions (C, z,). Let C = (D, E,, E,) be a con-
denser in the complex plane z, i.e. a system consisting of a domain
D and two disjoint closed sets E, and E,, such that D does not contain
the point at infinity, E; is bounded, E, is unbounded and the union
of E, and E| is equal to the complement of D.

Suppose that E, contains an interior point z,, let 2 — 2, = e’ and
denote by S, the ray arg (z — 2,) = ®. Then a subclass (C, z,) of & is
defined as follows.
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A real funection g(2), continuous over the extended plane z, belongs
to (C, zy) if:

(1) ¢g(z) possesses continuous first partial derivatives, in D.

(ii) g =01in E, g)=1in E, and 0 < g(z) < 1 in D,

(iii) The set of points on the ray S,, at which ¢(z) assumes a
given value ¢ (0 < ¢ < 1), is finite.

(iv) Any compact set of points on S,, which is contained in D,
contains only a finite number of points (possibly zero) at which
dg(r, p)for = 0.

Suppose that the Dirichlet problem of the equation 4u = 0, with
continuous boundary values, always has a solution in D. Then there
exists a real function w(z), continuous over the extended plane z, which
is harmonic in D, vanishes on E, and assumes the value 1 on E,. This
function is the potential functions of C. Evidently, it belongs to
(C, 2).

Let g(z)e(C, 2)). Using property (iii) we find that (6) may be
replaced by

1m lim Ly(¢, 9) = Ly(¢s, P), for 0<¢ =<1.

Therefore in this case, the function g™(z) = S,(z,)g may be defined in
the following way:

0, for r < R™(0, @),
(18) 9" (z) = g™(r, ) = ¢, for r = R™(c, 9),0 < ¢ <1,
1, for r =z R™(, @) .

Since, for a fixed @, g (r, ®) is a strictly monotonic increasing function
of  in the interval R™(0, @) < r < R™(1, ») and since g™(r, @) is
continuous over the entire plane, it follows that R™(c, ) is continuous
in both variables for 0 <c¢ <1, 0 = @ < 2m.

The following definition extends the transformation S, over a
family of condensers {C}.

DEFINITION 3. Let C = (D, K, E)) be a condenser in the complex
plane z, such that E, contains an interior point 2,, Put G, = DU E,
and suppose that S,G. (with S, = S.(2,) does not contain the entire
open plane. Then, the condenser C™ obtained from C by the trans-
formation S, = S,(2,) ts defined as follows:

C(n) — (D(n), Eo(n)’ E’l(n)) ,

where D™ = S.G, — S, E,, E™ = S,E, and E/™ = the complement of
S.G..
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4, A theorem concerning the Dirichlet integral of functions be-
longing to (C, z,).

THEOREM 1. Let C = (D, E,, E)) be a condenser in the complex
plane z, such that E, contains an interior point z,, Suppose that
g(2) belongs to (C, z,) and that its Dirichlet integral over D tis finite.
If S, = 8S.(z), (n=1,2,8, «++), g"™() = S,g9, and D™ is the domain
mentioned 1n Definition 3, then:

(19) [\, . @gvrdedy = || 7ordedy .

REMARK. This theorem was proved by Szego [4], for n = 2,3, ---,
in the special case where, D is a doubly-connected domain bounded by
two smooth curves which are starlike with respect to z,; FE, and FE,
are connected sets; and the function ¢(z) is the potential function of
the condenser C.

Proof. By property (i) of g(z) and by the remark at the end of
Lemma 1 it follows that g™ (z) is Lip on every compact subset of D™,
Therefore the first partial derivatives of ¢g™(z, ¥) exist almost every-
where in D™ and are bounded in every compact subset of D™,

Without loss of generality we may suppose that 2z, = 0 and that
the circle |z| < p = 1 is contained in E,. Again we shall write L™ (¢, @)
instead of L\"(c, #). We also introduce the following notations:

D(a, b) = {z]a < g(z) < b},
D™(a, b) = {z|a < g™(z) < b}, for 0<a<b<l1.

The sets D(a, b) and D™ (a, b) will be mapped by w=log z (0= Imw < 21)
on two sets which we denote by H(a, b) and H™(a, b), respectively.
Finally we define: h(w) = g(e®), h™(w) = g™ (e®) and

Yo ={w|0 < Imw < 2x, h(w) = ¢}, for0<e<1.

The proof of the theorem rests on the following inequality:
(20) SS [L + e@h™y ] dudy < SS [1+ 0 hy [ dudy ,
2 (a,b) H(a,b)

where w =u + v, 0 <a <b<1and e>0.

Inequality (19) is derived from (20) by a standard argument which
we shall briefly describe.

The closures of the sets D(a, b) and D™(a,b) are compact sets
contained in D and D™, respectively. Therefore the first partial
derivatives of A(u, v) (A™(u, v)) are bounded in H(a, b) (H'"(a, b)). It
is evident from the definitions that the area of H(a,b) equals that



TRANSFORMATIONS OF DOMAINS IN THE PLANE 619

of H™(a,b). Taking into account these facts and using the binomial
expansion of the integrands in (20), (for ¢ small enough), we obtain:

—Ez—gg Fr™Ydudv + O < —E-Z—SS
H{M) (a,b) 2

T hYdudv + O(*) .
2 \b)

Ha

Dividing by ¢* and letting ¢ tend to zero we find that

H{a,b)

ngm o Frmydudy < SS Fh)dudv .

Since the Dirichlet integral is invariant under a simple conformal
mapping, it follows that

SS Fgmydady < SS (Fgydady .
D) (a,b) D(a,b)

Hence, letting a tend to zero and b tend to one, we obtain the required
inequality.

In the proof of (20) we may suppose that ¢ = 1.

The first step is the following assertion. Suppose that w* =
u* + w*e H"(a,b) and 0 < v* < 2x/n). Put A™(u*, v*)=c*. If
8hjou #+ 0 at all the points of intersection of the set 7, and the lines
Imw = v* 4+ @rm/n) (m =0, «--, n — 1), then there exists a neighbour-
hood of w* in which A™(u, v) e C*.

In order to prove this assertion we shall show first that L(e, v) € C*
in a neighbourhood of (¢*, v*). By property (iii) the set v, intersects
the line Im w = v* in a finite number of points, which we denote by
Wy, *+*, W,, Where Rew, < Rew, < -+ < Rew,. By hypothesis, 0h/0u =0
at these points. Let ¢ be a positive number such that the circles
K,:\lw—w;|=q, (=1, --+, p), are contained in H(a, b) and 6k/ou + 0
in them. Then the following is easily verified:

There exists a rectangle

P={c,v)llc—c*[=90,|v—v"]=0d},

(where a < c¢* —0d<c*+0<b, 0<v*—0<v*+0<(2r/n), such
that:

(a) If (c,v)e P then 7, intersects the line I'm w = v in exactly »
points, one point in each circles K;.

(b) The set H(c*—J,c*+0) intersects the strip v* —6 < Imw <v*+4
in exactly p domains @;, where Q,C K;, (=1, ---, p).
Solving ¢ = h(u, v) for u in Q; we obtain a function v = u,(c, v). This
function belongs to C! in the rectangle P where

(B o))
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Since by definition:

(22) Lie, v) = 3, (—1)" X uy(e, v)
i=1

it follows that L(c, v) e C'[P]. We observe that in Q; we have 0h/ou =
(—1)** x |dhjou| so that

(23) EL_:Z Ou;

, in P.

Evidently, similar results hold for any of the points ¢ = ¢*, v =
v* + (2rmfn), for m =0, --+, n — 1. Therefore it is possible to find
a positive number 7(y =< 0) such that L™(c, v)e C* and (0L™]6c) > O
in the rectangle |¢c —c¢*| <%, |v —v*| <. By (18), for any fixed
v, ¢ = h'™(u, v) is the inverse function of u = L™ (¢, v) in the interval
0 < ¢ < 1. Hence it follows that in a certain neighbourhood of (u*, v*),
h™(u, v) e C* and

ah(n) aL(n) —1 6h(n) 6 (n) {(n) \ —1
ev = (%) = (%) < (%)
% oc ov ov oc

Denote by A(v) and A,(v) the intersections of the line Imw = v
with the sets H(a, b) and H™(a,b) respectively. Let we A(v) and
Mw) =¢, (0 <v < 2r). If at one of the points of intersection of 7,
with the line Im w = v, 6h/0w vanishes then we shall say that w is a
critical point of A(v). Let we 4,(v) and A (w) = ¢. If the intersection
of v, with one of the sets A(v + 27m/n), (m =0, --+, » — 1), contains.
a crititical point of that set, we shall say that w is a critical point.
of A,(v). By properties (iii) and (iv) the set of critical points of A(v)
is finite, and consequently, the set of critical points of A,(v) is finite..

We shall prove now that

(25) SA ML ROy < SA( L+ Ry,

for 0 < v < 2r. Inequality (20) for n =1, follows from (25).

Let v, be a fixed point in the interval (0, 27) and let {c,, +« -, ¢,—.}-
be the set of values (possibly void) taken by h(w) at the critical points.
of A(v,). We assume that these values are ordered as follows:

a=c << e <Gy <=0,

Denote by B, that subset of A(v,) which consists of open segments,
free from critical points, such that at the endpoints of each segment.
h(w) assumes the values ¢, and ¢;.,. Evidently, forany! (=0, --:,k—1)
the set B; is not void and A(v,) = Uiz B..

Now let m be a fixed integer, 0 =m =k — 1, and denote by «;, - - -, ¢,
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the segments contained in B,, which were described above. We shall
assume that «; is at the left of «a;,, (=1, .-+, p—1). In some
neighbourhood of «; it is possible to solve ¢ = h(u, v) for % and thereby
obtain a function w = u,(c, v). By (21) we obtain:

(26) S [1 4+ (Ph(u, v))]"du = Scmu[l + (Pusle, v))]"de

ay em
for j=1, .-+, p.

Denote: u} = L(c;, v,) and wi = u} + v, ( =0, --+, k). Then w;
and w, are the endpoints of A,(v,) while w{, -+, w,_, are the critical

points of A,(v,). Denote by B, the open segment with endpoints w),
Whn+. By (22) and (24) (with n = 1) we get:

7 S [1 + (PR, v) ] du = S"‘* [1 + (7 L(c, v))]"de
0 2 .
0 - Sc”‘“{1 + [17 g (—1) (e, vo)]z}llzdc :

°m

By (26), (27) and the well known inequality

» 2 » 2 P 2)1/2 »
@ {(Se) +(Zu) +(S6)] sS@ e,
(®;, ¥;, t; being real numbers) we finally obtain:

|, [+ RO, vPPrdu < | 1L+ (PR, o)) du

(29) on o

=2 | 1+ ere, o1du .
Jj=1 o&j

Since (29) holds for any m, (m =0, -+, k— 1) inequality (25) follows.
It remains to prove inequality (20) for n = 2,3, ---. Since this
inequality is proved for % = 1, it is enough to show that

(30) m x S 1+ (PR (u, v))]"*du = fg [1 + (Fh®(u, v,)) [ du
4p(vg) 7=0 Jajp

n 1

where 0 < v, < (27/n) and v; = v, + (27j/n).

Let {c¢f, -+, ¢} be the set of values (possibly void) assumed by
h"(w) at the critical points of A,(v,), these values being ordered as
follows:

a=cF<cf< <o <ckr=b.

Put ux = L™(ck, v,) and u}, ; = L(ck, v;). By (24) we get:
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gu:n LA R, vo) T du = Sc:"“[l + (TL™(c, v))]"*de

(31) = %S"‘*[n + (5 7L v) | de

cm

Joo I RO = [V LG, o) Tde,
m,J Cm

for m =0,---,7r—1land =0, -+, — 1. From (31) and (28), ine-
quality (380) follows. This completes the proof of the theorem.

5. The transformation S, diminishes the capacity of a condenser.
Let C = (D, E,, E,) be a condenser in the complex plane z, satisfying
the conditions of Definition 3. It will be assumed that the Dirichiet
problem for Fu = 0, with continuous boundary values, always has a
solution in D, (Sufficient conditions for the validity of this assumption
are given, for example, in Hayman [2], Th. 4.2, pp. 63-64. Following
Hayman’s terminology we shall say that a domain is admissible if it
satisfies these conditions.) The capacity of the condenser C is defined
as the Dirichlet integral over D, of the potential function w(z) of C,
(see §3).

Let C™ = §,C = (D™, E™, E™), (where S, = S,(2,)). The domain
D™ ig admissible so that the capacity of C™ is defined. We now
prove the following:

THEOREM 2. Let C and C™ be the condensers mentioned above
and denote their capacities by I and I, respectively. Then we have
I, = I

Proof. Let w™(z) = S,w(z), (S, = S.(z)). Since w(z)< (C, z,), by
Theorem 1 we have

(32) S Py dudy < S Coydsdy = I .

pn D
The function w'™(z) is continuous over the extended plane z and Lip
in every compact subset of D™; it vanishes on FE, and assumes the

value 1 on E,. Hence, by the Dirichlet minimum principle (see,
Hayman [2], Th. 4.3, pp. 65--67) we have

(33) Inég L omydady |
D n
The required result follows from (32) and (33).

We shall apply Theorem 2 in order to obtain a result about the
inner radius. Let D be a domain in the complex plane 2, 2, a point
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of D, and (D, z,) the inner radius of D at z,. (We refer here to the
definition given, for example, in Hayman [2] pp. 78-80, where the
inner radius is defined without any assumptions on D.) The domain
D can be approximated from within by a series of bounded analytic
domains {D,}, which contain the point z,, such that lim,_. r(D,, z,) =
r(D, z,). (An analytic domain is a domain bounded by a finite number
of disjoint, simple closed, analytic curves.) By a well known method
of Polya and Szego (see Polya-Szego [3] pp. 44-45; also Hayman [2]
pp. 81-84) the following theorem is obtained as a consequence of
Theorem 2.

THEOREM 3. Let D be a domain in the complex plane z and let
zeD. If S, = S.(2), then
(34) r(D, z,) £ r(S,D, z,) .

6. Applications in. the theory of functions. In this section we
denote by w = f(2) a function which is regular in |2| <1 and by D

the domain of all values w assumed by this function at least once in
|z] < 1. It is known that

(35) |f'0) | = (D, £(0)),

equality holding if and only if f(2) is a (1,1) mapping, (see Hayman
2], Th. 4.5, p. 80).
As a consequence of Theorem 3 we obtain the following:

THEOREM 4. Let S, = S,.(f(0)) and suppose that S,D does not
contain the entire open plane. Let w = F(z) be a (1,1) conformal
mapping of 2| <1 onto S,D, such that F(0) = f(0). Then we have
£ 0] = F'(0)].

Proof. By (385) we get: |f(0O)| = (D, £(0)) and |F'(0)| =
(S, D, F(0)). From these relations together with (34), the required
inequality follows.

The following results are based on Theorem 4,

THEOREM 5. Let f(2) = a2 + ag’+ +--. Define R™(p) as n
Definition 1, for the domain D and the point w = 0. Then,

(36) la.| = 4 R™(p), 0= 9<2n)
and equality holds for the function

w = 9,() = te"r2/(L + ey, (t and @ real numbers) .
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Proof. Let @, be a fixed real number and suppose that B™(p,) =
d < o. Denote by D, the domain containing the entire w plane, with
the exception of % rays: arg w = @, + (2nk/n), d < |w|, (k=0, «-+,n—1).
The domain S,D(S, = S.(0)) is contained in D,. The function w =
4 de*f,(z) where

(37) fal?) = 2[(1 4 2"y,

maps |z| < 1 conformally, (1,1) onto D,. Therefore, by the principle
of subordination and Theorem 4 it follows that |a,| < 4d, and
inequality (36) is proved. The assertion concerning the function w =
¥, (%) is evident.

The following theorem may be proved by the same method.

THEOREM 6. Let f(z) = a2z + a,2> + ---. Suppose that R™(p) =
M < o for 0 <@ < 2r and that R™(p) = MO0 < B8 =1). Then

(38) la | < BM - 4|1 + Byin,
and equality holds for the fumnction
w = ¢n(z) = M3i¢0f;1[qfn(ei9z)] ’

where f,(2) s defined by (87), 0 =0 < 27 and q = 4 B)(1 + B)".
We now prove
THEOREM 7. Let f(2) = a2 + a,2* + --- and define:
(39) R, = exp [—1— Szx log R(cp)ng] = exp [—l— S% log R“”(f,D)ng] .
2 Jo 2 Jo
Then |a,| £ R, and equality holds for w = azz.?

Proof. First suppose that w = f(2) is regular in |z| =< 1 and that
f'®)#=0 on |z] =1. Then R(®) is a continuous function of @, and
we have

n—1
(40) lim R™(@) = lim exp [_1_ S log R(o + @ﬁ)] R,
n—oo n—oo n k=0 nw
for any real @. Therefore, if a positive ¢ is given and # is sufficiently

large, the domain S,D (where S, = S,(0)) is contained in the ecircle
|2]| < R, + e. Hence, by Theorem 4 and the principle of subordi-

2z
2 The author obtained this result in a weaker form, with 7, = —ZLn:SO R (p)de instead

of Ro. (By the geometric-arithmetic mean theorem Ry £ 7, for every n). The stronger
form written above was suggested by the referee, to whom our thanks are due.
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nation, we get |a,| £ R, + ¢. In order to prove the theorem in the
general case, we approximate the function w=f(2) by functions w =
f(pz), with 0<<p<1.

Let 2 be an open set in the plane 2z and let z,€ 2. Denote by
m(®) the linear (Lebesgue) measure of the set E(p)={z|arg(z —7,) =
@, z€ £}, and define

(41) m(%)(g)) — _l_nil m(g) + 271']{; ) .
N k=0 n

We shall show that Theorems 5, 6, 7, remain true if R(®) is replaced
by m(@), and R™(®) by m™(®). This is a consequence of the follow-
ing inequalities:

(42) R(p) = m(®) ,
(42) R™(p) = m™(p), for 0 = » < 27 .

If R(®) is finite, equality holds in (42) if and only if the set E(®) is
contained in a segment K* such that E* — E(®) is a set of measure
zero. (We shall refer to this condition as the MR condition.) Ine-
quality (42") follows from (42) by the geometric-arithmetic mean theo-
rem. Hence, if R™ (@) is finite, equality holds in (42’) if and only if

ork
n

o2k

R@) = R(9 + 25 = m(@) =m(p + 2L (=1, ;0 — 1)
From this it follows that when we replace R(®) by m(®) and R"™(p)
by m‘™(p), the functions mentioned at the end of Theorems 5, 6, 7,

are in each case, the only functions for which equality holds.

In order to prove (42) we may suppose that m(p) is finite. In
this case, for any ¢ > 0 we can find a subset F' of E(®@), consisting
of a finite number of segments, such that the linear measure of
E(p) — F is smaller than ¢. Therefore it is enough to prove (42) in
the case that E(®) consists of a finite number of segments. Suppose
that these segments are not adjacent. Then, by shifting them toward
2, (so that they do not overlap), we increase R(®), while m(®) is
invariant. But if the segments are adjacent we have R(p) = m(®).
Therefore (42) is proved.

Evidently, the MR condition for E(®) is sufficient in order that
R(p) = m(p). Suppose now that R(p) is finite and that FE(p) does
not satisfy the MR condition. Then it is possible to find a subset F)
of F(p) and a subset F, of the complement of E(®) on the ray
arg {(z — z,) = @, such that the two subsets have equal, positive measures
and F, separates F, from z,. Replacing F, by F, we increase R(®),
but not m(®). Therefore we must have R(®) < m(®).
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