TOEPLITZ MATRICES AND INVERTIBILITY OF HANKEL MATRICES

CALVIN R. PUTNAM
1. Introduction. Let \(\{c_n\} \), for \(n = 0, \pm 1, \pm 2, \ldots \), be a sequence of real numbers satisfying \(c_0 = 0, c_{-n} = c_n \) and \(0 < \sum_{n=1}^{\infty} c_n^2 < \infty \), and let \(f(\theta) \neq 0 \) be the even function of class \(L^2(-\pi, \pi) \) defined by

\[
f(\theta) \sim \sum_{n=-\infty}^{\infty} c_n e^{in\theta} = 2 \sum_{n=1}^{\infty} c_n \cos n\theta .
\]

Define the Toeplitz matrix \(T \) and the Hankel matrices \(H \) and \(K \) by

\[
(1) \quad T = (c_{i-j}) \quad H = (c_{i+j-1}) \quad K = (c_{i+j}), \quad \text{where} \quad i, j = 1, 2, \ldots .
\]

Then

\[
(2) \quad T = F + K , \quad \text{where} \quad F = \int_0^\pi f(\theta) dE_0(\theta) ,
\]

and \(\{E_0(\theta)\} \) is the resolution of the identity of the matrix belonging to the quadratic form \(2 \sum_{n=1}^{\infty} x_n^2 x_{n+1} \). (See [12], p. 837.)

A self-adjoint operator \(A \) on a Hilbert space, with the spectral resolution \(A = \int \lambda dE(\lambda) \), will be called absolutely continuous if \(||E(\lambda)x||^2 \) is an absolutely continuous function of \(\lambda \) for every element \(x \) of the Hilbert space. If the function \(f(\theta) \) of (1) is (essentially) bounded then \(T \) must be bounded (Toeplitz). Since \(F \) must also be bounded, so also are \(H \) and \(K \). It was shown in [12], p. 840, using methods involving commutators of operators, that if the function \(g(\theta) \) defined by

\[
(3) \quad g(\theta) \sim \sum_{n=1}^{\infty} c_n e^{in\theta}
\]

is bounded (hence \(f(\theta) \) is also bounded) then \(T \) must be absolutely continuous if either

\[
(4) \quad 0 \text{ is not in the point spectrum of } H \text{ (that is, } H^{-1} \text{ exists)} ,
\]
or

\[
(5) \quad F \text{ is absolutely continuous} .
\]

Rosenblum [17] has shown, using results of Aronszajn and Donoghue [1], that in fact \(T \) is always (with no restrictions) absolutely continuous.

Received February 8, 1963. This research was supported by the National Science Foundation research grant NSF-G18915.
In addition, it was shown in Putnam [12], using a theorem of Rosenblum [16], and generalized by Rosenblum in [17] using results of Kato [7], that if \(\sum_{n=1}^{\infty} |c_n| < \infty \) or, equivalently, if
\[
\sum_{n=1}^{\infty} n |c_n| < \infty,
\]
and if (6) holds, then \(T \) and \(F \) are unitarily equivalent, so that
\[
T = UFU^*, \quad U \text{ unitary}.
\]

The absolute continuity of \(F \) is equivalent to the requirement that
\[
\text{meas} \{ \theta : f(\theta) \notin \mathbb{Z} \} = 0 \quad \text{whenever} \quad \text{meas} \ Z = 0.
\]

In the present paper a sufficient condition, involving the negation of (5), for (6), that is, for the validity of (9), will be obtained. Before stating the theorem it will be convenient to define the operators \(F_k(k = 0, 1, 2, \ldots) \) by
\[
F_k = \int_0^\infty f_k(\theta) dE_\delta(\theta), \quad \text{where} \quad f_k(\theta) \sim \sum_{n=1}^{\infty} c_n n^{-k} \cos n\theta.
\]
(In particular, \(F_0 = F \).

There will be proved the following

Theorem 1. Suppose that
\[
0 \text{ is in the point spectrum of } H.
\]

Then,

(a) the point spectrum of \(F \) is empty, and
(b) each of the operators \(F_1, F_2, \ldots \) is absolutely continuous.

(c) If, in addition to (11), it is assumed that \(\sum_{n=1}^{\infty} |c_n| < \infty \),

then \(F_i \) is absolutely continuous.

(d) If, in addition to (11), relation (7) is assumed, then (6) holds.

From part (d) of the theorem and the results mentioned earlier there follows the

Corollary. Relations (7) and (11) imply (8).

It will remain undecided whether (11) alone, without the additional assumption (7), is sufficient to imply not only the assertion of (a) but also (6). It is interesting to observe though that, if the implication (11) \(\rightarrow \) (6) is valid, then either (5) or (6) must hold, and, at least if \(g(\theta) \) is bounded, the absolute continuity of \(T \) (cf. [17]) can be deduced from the commutator methods of [12] (cf. also [11]) as.
noted above.

It is to be noted that the function $f(\theta)$ determines explicitly the operator F and its spectrum. On the other hand, the structure of T as determined by $f(\theta)$ is not so clear. It is known however that the spectrum of T, in case T is self-adjoint, is the interval $[m, M]$, where m and M denote the essential lower and upper bounds of $f(\theta)$ (Hartman and Wintner [6], pp. 868, 878). Although necessary and sufficient conditions involving $f(\theta)$, or rather $g(\theta)$, for the boundedness of H (Nehari [10]) and the complete continuity of H (Hartman [4]) are known, apparently no similar results are known relating the spectrum of H to the function $f(\theta)$. Concerning the spectrum of H in certain specific cases, see, e.g., Hartman and Wintner [6], p. 366, Magnus [8].

2. Proof of (a) of Theorem 1. Let $\{x_n\}$ and $\{d_n\}$, for $n = 1, 2, \ldots$, be two sequences of complex numbers satisfying $\sum_{n=1}^\infty |x_n|^2 < \infty$ and $\sum_{n=1}^\infty |d_n|^2 < \infty$, let $x(\theta) \sim \sum_{n=1}^\infty x_n e^{in\theta}$ and $h(\theta) \sim \sum_{n=1}^\infty d_n e^{in\theta}$. Then it is easily verified that

$$\int_{-\pi}^{\pi} x(\theta) (g^*(\theta) + h(\theta)) e^{ij\theta} d\theta = \sum_{n=1}^\infty c_{n+j} x_n$$

holds for $j = 0, 1, 2, \ldots$, where the asterisk denotes complex conjugation. If $d_n = c_n$ then $g^*(\theta) + h(\theta) = f(\theta)$ and so 0 is in the point spectrum of H if and only if

$$\int_{-\pi}^{\pi} x(\theta) f(\theta) e^{ij\theta} d\theta = 0 , \text{ where } j = 0, 1, 2, \ldots ,$$

holds for some $x(\theta) \neq 0$ as defined above. Relation (13) implies that the function $x(\theta)f(\theta)$, of class $L(-\pi, \pi)$, has a Fourier series of the form

$$x(\theta)f(\theta) \sim \sum_{n=0}^\infty a_n e^{in\theta} .$$

For a fixed constant p, $0 < p < \infty$, consider the class H_p (after Hardy; see, e.g., Zygmund [19], p. 158) of functions $A(z)$ analytic in the disk $|z| < 1$ and for which $\int_{-\pi}^{\pi} |A(re^{i\theta})|^p d\theta$ remains bounded for $0 \leq r < 1$. If $p \geq 1$, the class L^{p+} of functions $B(\theta) \in L^p(-\pi, \pi)$ with Fourier series of the form

$$B(\theta) \sim \sum_{n=0}^\infty b_n e^{in\theta} \quad (b_n = (2\pi)^{-1} \int_{-\pi}^{\pi} B(\theta) e^{-in\theta} d\theta) ,$$

coincides with the class of boundary functions $B(\theta) = A(e^{i\theta})$; see Rogosinski and Shapiro [15], p. 293. Furthermore, it is known that
if \(p > 0 \) and if \(A(z) \) is of class \(H_p \) and if \(A(z) \neq \text{const.} \), then \(A(e^{i\theta}) = a \), for an arbitrary constant \(a \), can hold at most on a set of measure zero. For \(p = 2 \), this result is due to F. and M. Riesz ([14]); for \(p \neq 2 \), see F. Riesz [13].

Returning to (14), since \(x(\theta)f(\theta) \in L^1 \), it follows that \(f(\theta) \neq 0 \) almost everywhere. A similar argument with \(x(\theta)f(\theta) \) replaced by \(x(\theta)(f(\theta) - a) \), for any constant \(a \), shows that \(f(\theta) \neq a \) almost everywhere, that is,

\[
(16) \quad \text{meas} \{ \theta : f(\theta) = a \} = 0.
\]

But (16) holds if and only if the operator \(F \) has no point spectrum and the proof (a) is complete.

3. Proof of (b) of Theorem 1. In order to show that \(F_z \) is absolutely continuous, it must be shown that the set \(S_z = \{ \theta : f_z(\theta) \in Z \} \) is a zero set whenever \(Z \) is a zero set. Since \(\sum_{n=1}^{\infty} |c_n n^{-1}| < \infty \), \(f_z'(\theta) \) is continuous and the set \(\{ \theta : f_z'(\theta) \neq 0 \} \) is open. If its canonical decomposition is the finite or infinite union of open intervals \(I_n \), \(n = 1, 2, \ldots \), then \(f_z(\theta) \) is strictly monotone on each \(I_n \). Also, on \(I_n \), both \(f_z \) and its inverse \(g_\theta \) are absolutely continuous. Since \(I_n \cap S_z \) is the image under \(g_\theta \) of a subset of \(Z \), it follows (cf., e.g., Natanson [9], p. 249) that

\[
(17) \quad I_n \cap S_z \text{ has measure } 0.
\]

If it is shown that \(f_z'(\theta) \neq 0 \) almost everywhere, it will follow from (17) that \(\text{meas} S_z = 0 \), as was to be proved.

In order to prove that \(f_z'(\theta) \neq 0 \) almost everywhere, note that \(f_z'(\theta) \) is absolutely continuous and that \(f_z''(\theta) = (-1/2)f_z'(\theta) \) almost everywhere. Hence, if \(f_z'(\theta) = 0 \) on a set of positive measure, then also \(f(\theta) = 0 \) on a set of positive measure, a contradiction. Hence \(F_z \) is absolutely continuous.

Next, it will be shown that \(F_z \) is absolutely continuous. In the definition of \(h(\theta) \), choose \(d_n = -c_n \), so that in (12), \(k(\theta) = g^*(\theta) + h(\theta) = 2i \sum_{n=1}^{\infty} c_n \sin n\theta \). The argument of § 2 shows that \(x(\theta)k(\theta) \) is of class \(L^1 \) and hence \(k(\theta) \neq 0 \) almost everywhere. Since \(f_z'(\theta) \) is continuous, and since \(f_z'''(\theta) = (1/2i)k(\theta) \), an argument similar to that used above shows that \(F_z \) is absolutely continuous.

In like manner, it follows that \(F_\alpha, F_z, \ldots \) are absolutely continuous and the proof of (b) is complete.

4. Proof of (c) of Theorem 1. In order to prove the absolute continuity of \(F_\lambda \), it must be shown that the set \(S_\lambda = \{ \theta : f_\lambda(\theta) \in Z \} \) is a zero set whenever \(Z \) is a zero set. The hypothesis of (c) implies
that $f_1'(\theta) = (-1/2i)k(\theta)$ is continuous. Since $k(\theta) \neq 0$ almost everywhere, a relation similar to (17) implies that $\text{meas } S_1 = 0$, and the proof of (c) is complete.

5. Proof of (d) of Theorem 1. Since (7) implies that $f'(\theta)$ is continuous, then $x(\theta)f'(\theta)$ is of class $L(-\pi, \pi)$. It will be shown that $x(\theta)f'(\theta)$ is also of class L^+, so that

\begin{equation}
(18) \quad x(\theta)f'(\theta) \sim \sum_{n=0}^{\infty} b_n e^{in\theta},
\end{equation}

and hence (cf. the above reference to [15]) the F. and M. Riesz theorem can be applied to yield $f'(\theta) \neq 0$ almost everywhere. Once this has been shown, the absolute continuity of F follows by an argument similar to that used above.

There remains then to prove (18). Since $f(\theta)$ is now bounded, it follows from the definition of $x(\theta)$ and (14) that both $x(\theta)$ and $x(\theta)f(\theta)$ belong to L^+. Let $u(z)$ and $v(z)$ denote the functions analytic in $|z| < 1$ and possessing the respective boundary functions $x(\theta)$ and $x(\theta)f(\theta)$. Let $U(\theta) = u(e^{i\theta})$ and $V(\theta) = v(e^{i\theta})$, so that $x(\theta)f'(\theta) = U(\theta)(V(\theta)/U(\theta))'$.

A heuristic argument leading to (18) is the following. Let U' and V' be defined by the formal trigonometrical series obtained by term by term differentiation of the corresponding series for U and V, and suppose that $U'(V/U)' = UV' - U'V$ is meaningful. Since the trigonometrical series for U, V, U' and V' are of the type $\sum_{n=0}^{\infty} f_n e^{in\theta}$ then so also are the products UV' and $U'V$ as well as their difference.

A rigorous proof of (18) can be given as follows. Let the Fourier series of $U(\theta)$ and $V(\theta)$ be given by

\begin{equation}
(19) \quad U(\theta) \sim \sum_{n=0}^{\infty} a_n e^{in\theta}, \quad V(\theta) \sim \sum_{n=0}^{\infty} b_n e^{in\theta}.
\end{equation}

Since $V(\theta) = U(\theta)f(\theta)$, where $U(\theta)$ and $f(\theta)$ each belongs to class $L^2(-\pi, \pi)$, then $\sum_{n=0}^{\infty} a_n c_{n-k} = b_n$ for $n = 0, 1, 2, \cdots$, and

\begin{equation}
(20) \quad \sum_{k=0}^{\infty} a_k c_{n-k} = 0 \text{ for } n = -1, -2, \cdots;
\end{equation}

cf. Zygmund [19], p. 90. Note that the convergence of the series defining the b_n is assured by the Schwarz inequality. Similarly, the Fourier series of $U'(\theta)$ is given by

\begin{equation}
(21) \quad U'(\theta) \sim \sum_{n=0}^{\infty} A_n e^{in\theta}, \quad A_n = \sum_{k=0}^{n} a_{n-k} a_k.
\end{equation}

Since, by (7),
and, since $x'(\theta) = U'(\theta)$ is of class $L(-\pi, \pi)$ and $f'(\theta)$ is bounded, the Fourier series of $x'(\theta)f'(\theta)$ is given by

$$x'(\theta)f'(\theta) \sim \sum_{n=-\infty}^{\infty} B_n e^{in\theta}, \quad B_n = i \sum_{\ell=-\infty}^{\infty} A_{n-\ell} k c_{\ell} ;$$

cf. Zygmund [19], p. 90.

Since $U'(\theta) \in L(-\pi, \pi)$ then, by the Riemann-Lebesgue lemma, $A_n \to 0$ as $n \to \infty$, and the absolute convergence of each of the series defining the B_n is assured by (7). Also the same assertion holds for the series corresponding to the above B_n but where $U(\theta)$ is replaced by the function with the Fourier series $\sum_{n=-\infty}^{\infty} |a_n| e^{in\theta}$. Since $B_n = i \sum_{m=0}^{\infty} A_m (n - m) c_{n-m}$, this implies that each of the iterated series

$$B_n = i \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} a_{m-k} a_k (n - m) c_{n-m}$$

is absolutely convergent. Consequently, an interchange of the order of summation leads to

$$B_n = i \sum_{k=0}^{\infty} a_k \left[(n - k) \sum_{p=0}^{\infty} a_p c_{n-k-p} - \sum_{p=0}^{\infty} p a_p c_{n-k-p} \right].$$

On reversing the order of summation in the second iterated sum, it follows from (20) that $B_n = 0$ for $n = 0, -1, -2, \cdots$, so that (18) follows from (23). This completes the proof of Theorem 1.

6. Some dual results. A theorem similar to Theorem 1 but with the cosines replaced by sines is valid. In particular, whereas (a) of Theorem 1 states that (11) implies (16) while (d) states that (11) and (7) imply (9), the duals of these assertions become the following

THEOREM 2. Let $j(\theta)$ be defined by

$$j(\theta) \sim 2 \sum_{n=1}^{\infty} c_n \sin n\theta ,$$

and suppose that (11) holds. Then, for every constant α,

$$\text{meas } \{ \theta : j(\theta) = \alpha \} = 0 .$$

If, in addition to (11), relation (7) is assumed, then

$$\text{meas } \{ \theta : i(\theta) \in Z \} = 0 \quad \text{whenever } \text{meas } Z = 0 .$$

The proof follows from the observation that the function $k(\theta) = ij(\theta)$ considered in the beginning of § 3 plays a role similar to that
of \(f(\theta) \).

7. Remarks. If \(A(z) \epsilon H_p \), then \(B(\theta) = A(e^{i\theta}) \) satisfies, for every constant \(\alpha \), not only

\[
\text{meas } \{ \theta : B(\theta) = \alpha \} = 0, \text{ unless } B(\theta) \equiv \alpha,
\]

but even

\[
\int_{-\pi}^{\pi} | \log | B(\theta) - \alpha || \, d\theta < \infty.
\]

This result was proved by Szego [18] for \(p = 2 \). Its validity for arbitrary \(p > 0 \) was pointed out by F. Riesz ([13], pp. 91-92) to be a consequence of his factorization theorem for functions of class \(H_p \). Thus, for every constant \(\alpha \), relations (16) and (27), and even

\[
\int_{-\pi}^{\pi} | \log | f(\theta) - \alpha || \, d\theta < \infty \quad \text{and} \quad \int_{-\pi}^{\pi} | j(\theta) - \alpha || \, d\theta < \infty,
\]

are seen to be necessary conditions in order that 0 be in the point spectrum of \(H \), or, what is the same thing, in order that the translated sequences \((c_1, c_3, \cdots), (c_2, c_4, \cdots), \cdots \) fail to form a fundamental set for the Hilbert space \(l^2 \) of vectors \(x = (x_1, x_2, \cdots) \) with \(\sum_{n=1}^{\infty} |x_n|^2 < \infty \). (In connection with this latter form of (11), it is interesting to compare the present situation relating to the completeness of shifted sequences, with a similar, but different one considered in the papers of Beurling [2] and Halmos [3].) That the condition (31) is not sufficient for 0 to be in the point spectrum of \(H \) can be seen for the case \(c_n = 1/n \) (\(n = 1, 2, \cdots \)). Then \(f(\theta) \) of (1) becomes \(-2 \log (2 | \sin (\theta/2) |) \) and \(j(\theta) \) of (26) becomes the odd function on \((-\pi, \pi)\) defined on \((0, \pi)\) by \(j(\theta) = \pi - \theta \), and so (31) holds for every constant \(\alpha \). However, 0 is not in the point spectrum of \(H = ((i + j - 1)^{-1}) \); in fact, the spectrum of \(H \) is known to be purely continuous (Magnus [8]).

Since (7) holds if, say, \(f''(\theta) \) is continuous, it follows from the Theorems 1 and 2 that for such functions \(f \), in order that (11) hold, not only (16) and (27), but even the more restrictive conditions (9) and (28) must be satisfied. It is to be noted that even if, say, \(f''(\theta) \) is continuous, (16) does not imply (9). In order to see this, let \(C \) denote a closed, nowhere dense (Cantor) set of positive measure on \([0, \pi]\), and define a function \(q(\theta) \) so as to have a continuous derivative on \([0, \pi]\) and satisfy \(q(\theta) = 0 \) on \(C \) and \(q(\theta) > 0 \) on \([0, \pi] - C \).

Then \(q(0) = q'(0) = 0 \) and \(f(\theta) = \int_{0}^{\theta} q(u) \, du \) is a strictly increasing function on \([0, \pi]\); hence, if \(f(-\theta) = f(\theta) \) for \(0 \leq \theta \leq \pi \), \(f(\theta) \) is of the form (1), has a continuous second derivative, and satisfies (16). If \(T \) denotes the image under \(f \) of the set \(C \), then \(T \) is measurable.
and \(\text{meas } T = \int_{\mathbb{C}} \left| df \right| = \int_{\mathbb{C}} q(\theta)d\theta = 0 \), so that (9) fails to hold with \(T = Z \).

REFERENCES

18. G. Szego, \textit{Über die Randwerte einer analytischen Funktion}, Mathematische Annalen, 84 (1921), 232-244.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Tom M. (Mike) Apostol and Herbert S. Zuckerman, *On the functional equation*
\[F(mn)F((m, n)) = F(m)F(n) f((m, n)) \] .. 377

Reinhold Baer, *Irreducible groups of automorphisms of abelian groups* 385

Herbert Stanley Bear, Jr., *An abstract potential theory with continuous kernel* 407

E. F. Beckenbach, *Superadditivity inequalities* ... 421

R. H. Bing, *The simple connectivity of the sum of two disks* 439

Herbert Busemann, *Length-preserving maps* .. 457

Heron S. Collins, *Characterizations of convolution semigroups of measures* 479

Paul F. Conrad, *The relationship between the radical of a lattice-ordered group and complete distributivity* .. 493

P. H. Doyle, III, *A sufficient condition that an arc in S^n be cellular* 501

Carl Clifton Faith and Yuzo Utumi, *Intrinsic extensions of rings* 505

Watson Bryan Fulks, *An approximate Gauss mean value theorem* 513

Arshag Berge Hajian, *Strongly recurrent transformations* ... 517

Morisuke Hasumi and T. P. Srinivasan, *Doubly invariant subspaces. II* 525

Lowell A. Hinrichs, Ivan Niven and Charles L. Vand en Eynden, *Fields defined by polynomials* .. 537

Walter Ball Laffer, I and Henry B. Mann, *Decomposition of sets of group elements* .. 547

John Albert Lindberg, Jr., *Algebraic extensions of commutative Banach algebras* 559

W. Ljunggren, *On the Diophantine equation Cx^2 + D = y^n* 585

M. Donald MacLaren, *Atomic orthocomplemented lattices* ... 597

Moshe Marcus, *Transformations of domains in the plane and applications in the theory of functions* .. 613

Philip Miles, *B*^*+* algebra unit ball extremal points ... 627

W. F. Newns, *On the difference and sum of a basic set of polynomials* 639

Barbara Ososky, *Rings all of whose finitely generated modules are injective* 645

Calvin R. Putnam, *Toeplitz matrices and invertibility of Hankel matrices* 651

Shoichiro Sakai, *Weakly compact operators on operator algebras* 659

James E. Simpson, *Nilpotency and spectral operators* .. 665

Walter Laws Smith, *On the elementary renewal theorem for non-identically distributed variables* .. 673

T. P. Srinivasan, *Doubly invariant subspaces* .. 701

J. Roger Teller, *On the extensions of lattice-ordered groups* 709

Robert Charles Thompson, *Unimodular group matrices with rational integers as elements* .. 719

J. L. Walsh and Ambikeshwar Sharma, *Least squares and interpolation in roots of unity* .. 727

Charles Edward Watts, *A Jordan-Hölder theorem* .. 731

Kung-Wei Yang, *On some finite groups and their cohomology* 735

Adil Mohamed Yaqub, *On the ring-logic character of certain rings* 741

Paul Ruel Young, *A note on pseudo-creative sets and cylinders* 749