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ON THE FUNCTIONAL EQUATION
F(mή)F{{m, n)) = F(m)F(ή)f((m, n))

TOM M. APOSTOL AND HERBERT S. ZUCKERMAN

l Introduction* Let/ be a completely multiplicative arithmetical
function. That is, / is a complex-valued function defined on the
positive integers such that

f(mn) = f{m)f{n)

for all m and n. We allow the possibility that f(n) = 0 for all n.
(If / is not identically zero then we must have/(I) = 1.) Given such
an / we wish to study the problem of characterizing all numerical
functions F which satisfy the functional equation

(1) F(mn)F((m, n)) = F(m)F(ri)f((m, n)) ,

where (m, n) denotes the greatest common divisor of m and n. When
f(n) = n for all n, Equation (1) is satisfied by the Euler Φ function
since we have

ψ(mn)Φ((m, n)) — φ(m)Φ{n)(m, n) .

More generally, it is known (see [1], [2]) that an infinite class of
solutions of (1) is given by the formula

where μ is the Mobius function and g is any multiplicative function,
that is,

g(mn) = g(m)g(n) whenever (m, n) = 1 .

Some work on a special case of this problem has been done by P.
Comment [2]. In the case /(I) = 1 he has investigated those solutions
F of (1) which have F(ϊ) Φ 0 and which satisfy an additional condition
which he calls "property 0": If there exists a prime pQ such that
F(p0) = 0 then F(p%) = 0 for all a > 1. Comment's principal theorem
states that F is a solution of (1) with property 0 and with F(l) Φ 0
if, and only if, F satisfies the two equations

F(mn)F{l) — F(m)F(n) whenever (m, n) = 1

and
PROPERTY OF
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378 TOM M. APOSTOL AND HERBERT S. ZUCKERMAN

F(pa) = F(p)f(p)oί~1 for all primes p and all a ^ 1 .

In this paper we study the problem in its fullest generality. In
the case of greatest interest, F(l) Φ 0, we obtain a complete classifi-
cation of all solutions of (1).

2. The solutions of (1) with/(I) = 0. If the given / has/(I) = 0
then / is identically zero and Equation (1) reduces to

(2) F(mn)F((m9 n)) = 0

for all m, n. To characterize the solutions of (2) we introduce the
following concept.

DEFINITION 1. A (finite or infinite) set A = {alf α2, α3, •} of
positive integers is said to have property P if no a{ is divisible by
any αj .

Two simple examples of sets with property P are the set of primes
and the set of products of distinct primes. The solutions of (2) may
now be characterized as follows:

THEOREM 1. A numerical function F satisfies (2) if, and only
if, there exists a set A with property P such that F(n) = 0 whenever
n<£A.

Proof. Let A = {alf a2, α3, •} be a set with property P. Define
F(a^), F(a2), F(as), , in an arbitrary fashion and define F(n) = 0 if
n$A. We shall prove that F satisfies (2).

Choose two integers m and n and let d = (m, n). If d ί A then
F(d) — 0 and (2) holds. If d e A then mn $ A since d2 \ mn. In this
case we have F(mn) — 0 and again (2) holds. Therefore F satisfies
(2) in all cases.

To prove the converse, assume F satisfies (2) and let A be the
set of integers n such that F(n) Φ 0. We shall prove that A has
property P. Choose any element 6 in A. If 6 were divisible by k2

for some k in A, say b = qk2, then we could take m = qk, n = k in
(2) to obtain

F(h)F(k) - 0

which is impossible since both 6 and k are in A. Therefore A has
property P and the proof of Theorem 1 is complete.

3, The solutions of (1) with /(I) = F(l) = 1. Since we have
characterized all solutions of (1) when /(I) = 0 we assume from now
on that /(I) Φ 0 which means /(I) = 1. We divide the discussion in
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two parts according as ^(1) ̂  0 or F(l) = 0. In the first case we
introduce G(n) = F(n)/F(l) and we see that (1) is equivalent to

G(mn)G((m, n)) = G(m)G(n)f((m, n))

with G(l) = 1. This means that the case with JP(1) Φ 0 reduces to
the case F(l) = 1. In this case we make a preliminary reduction of
the problem as follows.

THEOREM 2. Assume /(I) = 1. A numerical function F satisfies
(1) with F(l) = 1 if, and only if, F is multiplicative and satisfies
the equation

( 3 ) F(pa+b)F(pb) = F(pa)F(pb)f(pb)

for all primes p and all integers a ^ b ̂  1.

Proof. Assume F satisfies (1). Taking coprime m and n in (1)
we find F(mn) = F(m)F{n), so F is multiplicative. Taking m = pa,
n — pb in (1) we obtain (3).

To prove the converse, assume F is a multiplicative function
satisfying (3) for primes p and a ^ b ̂  1. Choose two positive integers
m and n. If (m, n) — 1, Equation (1) is satisfied because it simply
states that F is multiplicative. Therefore, assume (m, n) = d > 1 and
use the prime-power factorizations

m = Π PP , n=f[pb

i*, ί = Πp?
i=l i=l i—\

where a{ ^ 0, b{ ̂  0, c< = min (ai9 6J, the products being extended over
all primes. Since F is multiplicative we have

F(mn)F(d) =

= π F(pa

%

i+hi)F(pVy Π

The factors corresponding to 6̂  = 0 or a{ = 0 are

Π W ) Π F(3>ίO= Π
b

since i^(l) = / ( l ) = 1. For the remaining factors we apply (3) to each
product and we obtain

F(mn)F(d)= Π F{p«i)F{p\i)f{p\i) Π

= Π F(pi*)F(rt)f(pp) = F(m)F(n)f(d) .
i=l

This completes the proof of Theorem 2.
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We turn now to the problem of finding all solutions of (3). If p
is a prime for which f(p) = 0, then for this prime (3) becomes

(4) F(pa+b)F(pb) = 0 whenever a ^ b ̂  1 .

For a fixed p the solutions of (4) may be characterized as follows:

THEOREM 3. An arithmetical function F satisfies (4) for a given
prime p if, and only if, there exists an integer c *> 1 such that

( 5 ) F(pt) = 0 for1 1 ̂  i ^ c - 1 and for i ^ 2c .

Proof. Assume F satisfies (5) for some c ̂  1. Choose two integers
a and b with α ^ & ^ l . If δ ̂  c - 1 then (5) implies F(pb) = 0 so
(4) is satisfied. If b ̂  c then a + b ̂  26 ̂  2c so F(pα+δ) = 0 and (4)
is again satisfied.

To prove the converse, assume F is an arithmetical function
satisfying (4) for some prime p. If F{pt) = 0 for all integers t Ξ> 1
then (5) holds with c = 1. Otherwise, we let c be the smallest t ^ 1
for which .Fφ*) ̂  0. Then F(pι) = 0 for all ΐ ^ c - 1. Now take
any i ^ 2c and write i = a + c where a ^ c. Taking 6 = c in (4) we
find F{pι) — 0 for i ^ 2c. Therefore (5) is satisfied for this choice of
c and the proof of Theorem 3 is complete.

We consider next those primes p for which f(p) Φ 0. For such
p the problem of solving (3) may be reduced as follows:

THEOREM 4. Let p be a prime for which f(p) Φ 0. An arithme-
tical function F satisfies (3) if, and only if, there exists an arithme-
tical function g (which may depend on p) such that

( 6) F(pa) = g(a)f(p)a for all a ^ 1 ,

where g satisfies the functional equation

(7 ) g(a + b)g(b) = g(a)g(b) for all a ^ b ̂  1 .

Proof. Assume there exists a function g satisfying (7) and let
F(pa) = g(a)f(p)a. Then if a ^ b ̂  1 we have

= g(a + b)f(p)*+
b
g(b)f(p)

b

and

F(p")F(p
b
)f(p

b
) = g{a)f(pfg{b)f{p)

b
f{p)

b
 .

1 If c = 1 the inequality l ^ i ^ c — 1 is vacuous; in this case it is understood t h a t

(5) is to hold for all i ^ 2.
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Using (7) we see that F satisfies (3).
To prove the converse, assume F satisfies (3) and let

for a Ξ> 1. From (3) we see at once that g satisfies (7), so the proof
of Theorem 4 is complete.

Next we determine all the solutions of the functional equation (7).

THEOREM 5. Assume g is an arithmetical function satisfying
(7). Then there exists an integer k ^ 1, a divisor d of k, and a
complex number C such that

{8) g(n) = 0 for 1 ^ n ^ k — 1 , and for n 2> k,n φ. 0 (mod d) ,

( 9 ) g(n) = C forn^k,n = 0 (mod d) .

Conversely, choose any integer k ^ 1, any divisor d of k, and any
complex number C. For those n satisfying n^k and n = 0 (mod d)
let g(n) = C, and let g(n) = 0 for all other n. Then this g satisfies (7).

Proof. Assume g satisfies (7). If g is identically zero then (8)
and (9) hold with any choice of k and d and with C = 0. If g is not
identically zero, let k be the smallest positive integer n for which
g(n) Φ 0 and let C = g(k). Then g(n) = 0 for 1 ^ n ^ k - 1. If
n ^ 2k we may write n = k + r,r ^k, and use (7) with a = r, b = fc
to obtain the periodicity relation

(10) f/(& + r) = g(r) for r ^ fc .

In particular, g(2k) = g(k). Therefore, to completely determine g we
need only consider g(n) for n in the interval k + l^n^2k — 1. If
#(w) = 0 for all n in this interval then g(n) = 0 for all n Ξ£ 0 (mod fc)
and (8) and (9) hold with d = k, C = g(k). Suppose, then, that g(n) Φ 0
for some n in the interval k + l^n^2k — 1 and let k + d be the
smallest such n. Then 1 ^ cί ^ A; — 1. We prove next that d | k, that
#(^) = o if n 3= 0 (mod d), and that ^(^) = C if w Ξ 0 (mod d).

For this purpose we define a new function h by the equation

h(n) = g(n + fc) for n ^ 0 .
0(*O

Then the periodicity property (10) implies

(11) h(n + k) = fc(n) if w ^ 0 .

We also have
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(12) ft(0) - h(k) = 1, h(n) = 0 if 1 ^ n < d, h(d) Φ 0 .

Now for n ^ 0 we have

h(n + d) = h(n + d + 2k) = g(n + d + 3fc> and h(d) =
9(k)

Since n + 2k>d + k>lwe may use (7) with a = n + 2k,b = d + k,
to obtain

d)h(d) = g(» + d + Sk)g(d + k)
g{kf

= g(n + 2k)g(d + fc) =

Since Ẑ (cί) ̂  0 this implies

(13) h(n + d) = h(n) if n ^ 0 .

Using (13) along with (12) we find

h(n) = 0 if n Ξ£ 0 (mod d), /^(^) = 1 if n = 0 (mod d) .

Also, d | fc since h(k) = 1. This implies that g(n) = 0 if n ^ 0 (mod d),
and that #(w) = (/(&) = C if n = 0 (mod c£).

Now we prove the converse. Given k ^ 1, a divisor cί of fc, and
a complex number C, define # as indicated in (8) and (9). We must
prove that this g satisfies (7). Choose integers a and b with a i> b ^ 1.
If a^k-1 then 6 ^ jk - 1 and #(α) = g(b) = 0 so (7) is satisfied.
Suppose, then, that a ^ fc. We consider two cases: (i) α ξέ 0 (mod d),
and (ii) a = 0 (mod d).

If α ^ 0 (mod d) we have #(α) = 0 and the right member of (7)
vanishes. If a + b =έ 0 (mod d) then g(a + b) = 0. If α + δ = 0 (mod d)
then & Ξ£ 0 (mod d) and g{b) = 0. Therefore we always have #(α + 6)^(6) = 0
so the left member of (7) also vanishes. This settles case (i).

In case (ii), a = 0 (mod d), we again consider the two alternatives
a + b ξέ 0 (mod d), a + b = 0 (mod d). If α + 6 ΐ 0 (mod d) then 6 =έ
0 (mod d) and both sides of (7) vanish. If a + b = 0 (mod d) then
6 Ξ 0 (mod d) so #(α) = g(b) = g(a + b) = C and Equation (7) is satisfied.
This completes the proof of Theorem 5.

Theorems 2 through 5 give us a complete classification of all solu-
tions of (1) in the case / (I ) = F(l) = 1.

4Φ The case/(I) = 1, F(l) = 0 In this case any F which satisfies
(1) must also satisfy

(14) F(m)F{n) = 0 whenever (m, n) = 1 .
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These functions may be characterized by means of sets of integers
with the following property.

DEFINITION 2. A (finite or infinite) set S = {ku k2, k3, •••} of
positive integers will be said to have property Q if 1 < k{ < kί+1 and
(kif kj) > 1 for all i and j .

For example, the set of all multiples of a given integer kx > 1
has property Q, but there are more complicated sets with this property.

THEOREM 6. A numerical function F satisfies (14) if, and only
if, there exists a set S with property Q such that F(n) = 0 whenever
ng S, and F(n) Φ 0 whenever n e S.

Proof. Assume F satisfies (14). Then F(l) = 0. If F is identi-
cally zero the theorem holds with S the empty set. If F is not
identically zero there is a smallest integer kx > 1 with F(k^) Φ 0. The
set {A J has property Q. If F(n) = 0 for all n > kλ we may take
S = {fci}. Otherwise there exists a smallest integer k2 > kλ with
F(k2) Φ 0. The set {kl9 k2} has property Q because (14) implies (kl9 k2)>l.
If F(n) = 0 for all n > k2 we may take S = {kl9 k2}. If F(n) Φ 0 for
some n > k2 we let k3 be the smallest such n. Then (14) implies
(klf k3) > 1 and (k2, kd) > 1 so the set {kl9 k2, k3} has property Q. Con-
tinuing in this way we obtain a set S = {kl9 k2, ks, •} (finite or in-
finite) with the properties indicated in the theorem.

To prove the converse, choose any set S with property Q, assign
arbitrary nonzero values to the elements of S and let F(n) = 0 if
ng S. To show that F satisfies (14), choose integers m and n with
(m, n) = 1. Both m and n cannot be in S since S has property Q.
Therefore at least one of m or n is not in S so at least one of F(m)
or F(n) is zero. This completes the proof of Theorem 6.

Since Theorem 6 characterizes all solution of (14), all solutions of
the more general equation (1) with F(l) = 0 must be found among
those described in Theorem 6. For those solutions F of (14) which
also satisfy (1) more can be asserted about the set S on which F does
not vanish. We shall treat only the case in which / is never zero.
In this case, if we write G(n) = F(n)/f(n), Equation (1) is equivalent to

(15) G(mn)G((m, n)) = G{m)G{n) .

In other words, if / never vanishes the problem reduces to the case
in which/ is identically 1. Moreover, G(n) — 0 if, and only if, F(n) = 0
so the set S on which G does not vanish is the same as that on which
F does not vanish. For those G satisfying (15) with G(l) = 0 we shall
prove:
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THEOREM 7. Let G be a solution of (15) with G(ί) = 0 and let
S = {klf k2, } be a set with property Q such that G(n) Φ 0 if, and,
only if, n e S. Then S contains mn and (m, n) whenever it contains
m and n. Moreover, every element in S is a multiple of kx. If
tkζ € S for some t ^ l , a ^ l , then G is constant on the subset
{tkϊ,tkΐ+1,tkΐ+2, •••}.

Proof. If meS,neS, then G(m) Φ 0 and G(n) Φ 0. Therefore
Equation (15) implies G(mn) Φ 0 and G((m, n)) Φ 0, so S contains mn
and (m, n). Let d = (fĉ , Λi). Then d e S so d ~kx since fcx is the
smallest member of S. Therefore each k{ in S is a multiple of &!, as
asserted.

If tkΐ G S, let S(t) = {ίfcj, ί/c?+1, £&ί+2, •}. This is a subset of S.
Taking m = kx and w = tkl+r in Equation (15) we find G(tkt+r+1) =
G(tkΐ+r) so G is constant on S(ί).
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IRREDUCIBLE GROUPS OF AUTOMORPHISMS
OF ABELIAN GROUPS

REINHOLD BAER

The group Γ of automorphisms of the abelian group A is termed
irreducible, if 0 and A are the only Γ-admissible subgroups of A. It
is our aim to investigate the influence of the structure of the abstract
group Γ upon the structure of the pair A, Γ. In this respect we succeed
in proving the following results:

If Γ is locally finite, then A is an elementary abelian p-group and
the centralizer Δ of Γ within the ring of endomorphisms of A is a
commutative, absolutely algebraic field of characteristic p. If we impose
the stronger hypothesis that Γ possesses an abelian torsion subgroup
of finite index, then the rank of [the vector space] A over Δ is finite
and Γ is a group of finite rank. If we add the further hypothesis
that the orders of the elements in Γ are bounded, then A and Γ are
finite.

NOTATIONS

Locally finite group = group whose finitely generated subgroups are
finite.

Almost abelian group = group possessing abelian subgroups of finite
index

Group of finite rank = group whose finitely generated subgroups may
be generated by fewer than a fixed number
of elements

m-group = group by whose subgroups the minimum
condition is satisfied.

Composition of the elements in the basic abelian group A is denoted
by addition. The effect of the endomorphism a of A upon the element
a in A will usually be denoted by aσ unless A is considered as a vector
space over some field of scalars in which case the scalars may appear
to the left of the vectors.

PROPOSITION. // the irreducible group Γ of automorphisms of
the abelian group A[Φ 0] is locally finite, then

(a) the centralizer Δ of Γ [within the ring of endomorphisms of A]
is a commutative, absolutely algebraic field of characteristic p,
a 'prime,
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(b) A is an elementary abelian p-group and

(c) the ring A of endomorphisms, spanned by Γ, is locally finite.

Terminological Notes. The group Γ of automorphisms of the
abelian group A[Φ 0] is irreducible, if no proper subgroup of A is
jΓ-admissible.—The ring A of endomorphisms, spanned by Γ, consists
of all the endomorphisms of the form ^ ciσi with integral ĉ  and <τ{

in Γ.—A group [ring] is locally finite, if its finite subsets are contained
in finite subgroups [subrings].

Proof. It is an immediate consequence of Schur's Lemma—see
e.g. Jacobson [p. 26, Theorem 2]—that

(1) the centralizer A of Γ is a [not necessarily commutative] field.
If t is an element in A, then tA is a Γ-admissible subgroup of A,

since the ring A of endomorphisms is spanned by Γ. Application of
the irreducibility of Γ shows that

(2) tA = A for every t Φ 0 in A.
Consider now some element σ in Δ and some element t Φ 0 in A.

From (2) we deduce the existence of an element σ' in A [depending
on σ and t] such that tσ = tσ'. Since A is centralized by A, we have
σσ' = σ'σ; and it follows by complete induction that

to1 = tσn for every positive i .

Since A is spanned by /\ there exist [finitely many] automorphisms
σ{ in Γ and integers <?< such that σ' = 2ϋ?=i C Λ The subgroup # of
Γ, generated by σu •••,<?«, is finite, since Γ is locally finite. The
subgroup S = {tθ} of A is consequently finitely generated. By con-
struction S contains all the elements tσ'j = tσj; and the subgroup
generated by them is as a subgroup of a finitely generated abelian
group likewise finitely generated. Thus we have shown:

( 3) If t is an element in A and o an element in J, then the subgroup
{t, tσ, , tσ1, tσi+1, •} of A is finitely generated.

Assume by way of contradiction that A is torsionfree. Then
[multiplication by] 2 is an element, not 0, in the field A [by (1)] so
that multiplication by 2"1 is likewise an automorphism of A [which
belongs to Δ\. Application of (3) shows that for every t Φ 0 in A the
subgroup

T={t,2~% . .-,2-% .-•}

is finitely generated and consequently a free abelian group, not 0, of
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finite rank. But such a group is not closed under multiplication by
2"1. This is a contradiction showing that A is not torsionfree. Conse-
equently there exists a prime p such that A contains elements of order
p. The set of elements x in A with px = 0 is therefore a Γ'-admissible
subgroup, not 0, of A; and we deduce from the irreducibility of Γ that

(4) pA = 0 for some prime p.
Thus (b) is proved.

If t Φ 0 is an element in A and σ Φ 0 an element in A, then
T={t,tσ, , tσ\ tσi+1, •} is finitely generated by (3) and hence finite
by (4). From Tσ £ T and (1) we deduce now that σ Φ 0 induces an
automorphism of positive [finite] order n in T. From £(α"w — 1) = 0
and (1) we conclude that σn = 1. Consequently

(5) there exists to every σ in A a positive integer fc with σ — σk.
Because of (1) and (5) we may apply a Theorem of Jacobson [p. 217,

Theorem 1] showing that

( 6 ) the field A is commutative.
From (4) we conclude that p is the characteristic of A; and it

follows from (5) that A is absolutely algebraic. Thus we have verified (a).
If Ξ is a finite subset of the ring A, spanned by Γ, then there

exists a finite subset Ξ* of Γ such that every element in B has the
form Σc(σ)σ for a in B* and integral c(σ). Since Γ is locally finite,
Ξ* is part of a finite subgroup θ of Γ. It is a consequence of (4)
that the subring of Λ, spanned by θ, is finite. Hence 3 is contained
in a finite subring of A, proving (c).

REMARK 1. Assume that A is a commutative, absolutely algebraic
field of prime number characteristic p and that V is a vector space
over A.

If firstly the rank of V over A is finite, then it is well known
and easily verified that the ring of linear transformations of V over
A [and its group of units] is locally finite.

We assume secondly the infinity of the rank of Fover Δo Denote
by A the ring of all linear transformations of V over A and by Γ the
group of units in A [= group of regular linear transformations in A],
It is obvious that Γ is not even a torsion group so that we are quite
far away from local finiteness. Cp. Corollary 1 below. We are going
to construct various irreducible substructures of A and Γ.

Denote by Ao the totality of linear transformations σ in A with
the property:

( 0 ) the subspace of vectors v in V with vσ = 0 has finite co-rank in V.
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It is clear and well known that AQ is an ideal in A, the minimal
ideal, not 0. Since Δ is a subring of A, we may form the sum Ao + Δ
which is easily seen to be a locally finite subring of A. Its group of
units is likewise locally finite and it is an irreducible group of automor-
phisms of the abelian group V.

If we denote by I the subring of the integral multiples of 1 in
A, then I is the prime field of characteristic p. The sum Ao + I is
again a locally finite subring of A; and its group of units is likewise
locally finite and an irreducible group of automorphisms of the abelian
group V. In general, Ao + I does not contain its centralizer Δ.

The preceding constructions show that such vector spaces V over
Δ always "arise" from locally finite irreducible groups of automorphisms
of the abelian group V. On the other hand it is impossible to prove
that an irreducible group of automorphisms of the abelian group V
which is contained in A always contains a locally finite, irreducible
group of automorphisms of V. This may be seen from the following
construction:

the vector space V over Δ is the direct sum V = Σv S(v) of
subspaces S(v) of rank 1. Their [infinite] cardinal is the rank of V
over Δ. Denote by θ the group of all [regular] linear transformations
σ in Γ with the properties:

\S(v)σ = S(v) for every v and

\σ induces the identity in almost all S(v) .

If we denote by θ{v) the subgroup of all those σ in θ which induce
the identity in every S(μ) with v Φ μ, then it is easily seen that θ is
the direct product of the θ(v) and that every θ(v) is isomorphic to the
multiplicative group of Δ and hence an abelian torsion group of rank
1 without elements of order p.

The groups θ(v) and θ are equal to 1 if, and only if, Δ is the
prime field of characteristic 2; and this possibility we exclude in the
sequel.

Every infinite set possesses a torsionfree, simply transitive permu-
tation group, as follows from the existence of torsionfree groups of
any preassigned infinite cardinality. Consequently there exists a subgroup
θ* of Γ which is torsionfree and induces faithfully a simply transitive
group of permutations on the set of the S(v). Naturally θ is normalized
by θ* so that the product θθ* is a subgroup of Γ.

Every torsion subgroup of ΘΘ* is a subgroup of θ so that none
of the torsion subgroups of ΘΘ* is an irreducible group of automorphisms
of the abelian group V.

Consider a ##*-admissible subgroup T Φ 0 of V. Then there exists
an element t Φ 0 in T; and this element t has the form
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* = Σ tiv) with t(v) in S(v)
V

where almost all t(v) are 0. But t Φ 0 implies the existence of some
μ with t(μ) Φ 0. There exists a linear transformation σ Φ 1 in
and the element

t — tσ =

is an element, not 0, in Γfl S(μ). Consequently [T f] S(μ)]θ(μ) = S(μ)
is part of T; and now it is clear that T = Tθθ* = F. Thus θθ* is
in irreducible group of automorphisms, as we wanted to show.

LEMMA 1. The following properties of the group G are equivalent:

( i ) G is locally finite.

(ii) If the epimorphic image H of G is not locally finite, then there
exists a minimal normal subgroup of H and there exists a normal
subgroup N Φ 1 of H such that H induces in N a locally finite group
of automorphisms.

(iii) Every epimorphic image H Φ 1 of G possesses a locally finite
normal subgroup N Φ 1.

1 (a) // J is the intersection of all the normal subgroups X
of G with locally finite G/X, then G/J is locally finite.
(b) If the normal subgroup X of G with locally finite G/X

(iv) { is itself not locally finite, then there exists a normal subgroup
Y of G with YczX such that X/Y is locally finite or nUpotent.
(c) // an epimorphic image of G is not locally finite, then

κ it possesses a minimal normal subgroup.

Terminological Reminder. A group is nilpotent, if every epimorphic
image, not 1, has a center, not 1.

NOTES I. If the minimum condition is satisfied by the normal
subgroups of G, then every epimorphic image, not 1, of G possesses
a minimal normal subgroup. Furthermore there exists among the normal
subgroups X of G with locally finite G/X a minimal one, say M. If
K is a normal subgroup of G with locally finite G/K, then M Π K is
a normal subgroup of G and G/(M Γl K) is isomorphic to a subgroup
of the direct product of the locally finite groups G/M and G/K. Hence
G/(M Π K) is likewise locally finite; and we deduce M = M Π K SΞ K
from the minimality of M. It follows that M is the intersection J of
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all the normal subgroups X of G with locally finite G/X, showing the
local finiteness of G/J. Thus we have seen that in the presence of the
minimum condition for normal subgroups of G condition (iv.a) and the
first half of condition (ii) may be omitted.

II. Dr. Karl Gruenberg (London) has pointed out to me that the
group G is—as a consequence of our Proposition—locally finite, if the
minimum condition is satisfied by the normal subgroups of G and if
a finite term of the derived series of G equals 1. This fact is, by
Note I, an obvious special case of Lemma 1: the equivalence of (i) and
(iv). It was this suggestion of Dr. Gruenberg which led us to the
present Lemma 1.

Proof. For future use in this proof we restate first two well
known properties of local finiteness:

(1) An extension of a locally finite group by a locally finite group
is a locally finite group.

( 2 ) Products of locally finite normal subgroups are locally finite normal
subgroups.

For the proofs of (1) and (2) see Specht [p. 141, Satz 40*].
Since epimorphic images of locally finite groups are locally finite,

condition (ii) is an immediate consequence of (i). -Assume next the
validity of (ii) and consider a homomorphic image ΈL Φ 1 of G. We
want to show then the existence of a locally finite normal subgroup,
not 1, of H. This is certainly the case, if H itself is locally finite.
Hence we assume next that H is not locally finite. Then there exists,
by (ii), a normal subgroup N Φ 1 of H such that H induces in N a
locally finite group of automorphisms. If N happens to be locally
finite, then we have again reached our goal; and thus we assume next
that N is not locally finite. There exist normal subgroups X of H
with N f] X = 1; and among these there exists a maximal one, say L
[Maximum Principle of Set Theory]. Then N fΊ L = 1 so that NL/L = N.
Hence NL/L is a non locally finite normal subgroup of the epimorphic
image H/L of H and G. Thus H/L itself is not locally finite; and a
second application of condition (ii) shows the existence of a minimal
normal subgroup K/L of H/L. From the maximality of L we deduce
that the normal subgroup N Γ\ K of H is different from 1. If X is
a normal subgorup of H with 1 c X £ N f] K, then X Γl L = 1 so that
L c LX £ K. From the minimality of K/L we deduce K = LX; and
from Dedekind's modular law it follows that N Π K = X(N ΐ\K{\L) = X.
Hence N Π K is a minimal normal subgroup of H. Denote by C the
centralizer of N Π K in H. Then C is a normal subgroup of H and
H/C is essentially the same as the group of automorphisms, induced in
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N n K by H. This latter group is an epimorphic image of the group
of automorphisms, induced in N by H, which is locally finite. Thus
H/C is locally finite. If N f] Kf] C = 1, then Nf] K is isomorphic to
the subgroup C(N Π K)/C of the locally finite group H/C; and we have
found a desired locally finite normal subgroup, not 1, of H. If
Nf] Kf] C Φ 1, then we deduce Nf]K= NΓ\Kf]C^C from the minimality
of Nf] K; and this implies the commυtativity oΐ Nf] K. The minimality
of the normal subgroup N f] K of H is equivalent with the irreducibility
of the group of automorphisms, induced in N f] K by H. Since N f] K
is abelian, and since the induced irreducible group of automorphisms
is locally finite,we may apply our Proposition (b). Thus N f] K is an
elementary abelian p-group; and as such it is locally finite. This
completes the derivation of (iii) from (ii).

Assume next the validity of (iii). Form the product P of all the
locally finite normal subgroups of G. This is by (2) a locally finite
characteristic subgroup of G. If P Φ G, then we could deduce from
(iii) the existence of a locally finite normal subgroup Q/P Φ 1 of G/P.
Then Q is an extension of the locally finite group P by the locally
finite group Q/P; and we deduce from (1) the local finiteness of Q.
Hence Q S P C Q by the construction of P so that P = Q and Q/P= 1,
a contradiction. Consequently G = P is locally finite; and we have
proved the equivalence of (i)-(iii).

If G is locally finite, then the intersection J, occurring in (iv.a),
is equal to 1 and G/J= G is locally finite; and (iv.b) is satisfied because
of the absence of normal subgroups of G which are not locally finite.
Likewise (iv.c) is satisfied by default because of the absence of epimorphic
images which are not locally finite. Thus (iv) is a consequence of (i).

Assume finally the validity of (iv). Then G/J is locally finite by
(iv.a), if J is the intersection of all normal subgroups X with locally
finite G/X. Assume by way of contradiction that J is not locally
finite. Then there exists by (iv.b) a normal subgroup N of G with
Ncz Jsuch that J/N is locally finite or nilpotent. If we let G* = G/N
and J* = J/N, then J* is a normal subgroup of G* with locally finite
G*/J* and J* is locally finite or nilpotent.

Assume first that J* is nilpotent. Since every epimorphic image
of G* is an epimorphic image of G, we deduce from (iv.c):

( + ) If an epimorphic image of G* is not locally finite, then it possesses
a minimal normal subgroup.

Consider next an epimorphism σ of G* upon some group which is
not locally finite. Since G*/J* is locally finite, G*σ is not an epimorphic
image of G*/J* so that J*0* Φ 1. Since J* is nilpotent, so is J* σ . It
follows that the center Z of J*σ is different from 1. Since Z is a
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characteristic subgroup of the normal subgroup J* σ of 6r*σ, it is a
normal subgroup of G*σ. Since Z is centralized by J*0", the group of
automorphisms, induced in Z by G*σ, is an epimorphic image of G*σ/J*σ

and hence of the locally finite group G*/J*. Thus we have shown:

( + + ) If an epimorphic image of G* is not locally finite, then it
possesses a normal subgroup, not 1, in which it induces a locally finite
group of automophisms.

Combining ( + ) and ( + + ) we see that condition (ii) is satisfied by
G*. Hence G* = G/N is locally finite. Consequently NcJ^N by
the definition of J, a contradiction showing that J/N is locally finite.
But then G/N is an extension of the locally finite group J/N by the
locally finite group G/J so that G/N is by (1) locally finite. Again
we obtain the impossible NczJ^N. This contradiction shows that
J is locally finite. Hence G is, by (1), locally finite as an extension
of the locally finite group J by the locally finite group G/J. Thus (i)
is a consequence of (iv) and we have shown the equivalence of conditions
(i)-(iv).

As usual we say that a group is almost-abelian, if it possesses an
abelian subgroup of finite index. The principal more or less well known
properties of almost-abelian groups that we are going to need are collected
in the following

LEMMA 2. Assume that G is an almost-abelian torsion group.

(a) G is locally finite and possesses an abelian normal subgroup of
finite index in G.

(b) Every abelian normal subgroup of finite index in G is a product
of finite abelian normal subgroups of G.

(c) G is an rn-group if, and only if, the minimum condition is
satisfied by the normal subgroups of G.

Terminological Note. The group G is an m-group, if the minimum
condition is satisfied by the subgroups of G.

Proof. If A is an abelian subgroup of finite index in G, then A
possesses but a finite number of conjugates in G, since the normalizer
of A contains A and has therefore finite index in A. By Poincare's
Theorem the intersection B of the subgroups conjugate to A in G has
finite index too and is, naturally, an abelian normal subgroup of G.—
If U is a finitely generated subgroup of G, then ϊ7/(ϊ7n B) = UB/B
is finite. It follows that UΓΪB is finitely generated; cp. e.g. Baer
[1; p. 396, (1.3)]. The finitely generated subgroup UΓi B of the abelian
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torsion group B is finite as is U/(UΠ B) and hence U is finite. This
completes the proof of (a).

If K is an abelian normal subgroup of G with finite G/K, then
G induces in K a finite group of automorphisms. Hence tΘ is, for every
element t in K, a finite class of conjugate elements. The finitely
generated abelian torsion group {tσ} is a finite abelian normal subgroup
of G, proving (b).

Assume that the minimum condition is satisfied by the normal
subgroups of G. There exists by (a) an abelian normal subgroup N
of G with finite G/N. Thus G induces in JV a group of automorphisms
of finite order n. An immediate application of Baer [2; p. 4, Lemma 1]
shows that N is an m-group. Since G/N is finite and N an m-group,
G is an m-group, proving (c).

THEOREM. If the irreducible group Γ of automorphisms of the
[non-trivial] abelian group A is an almost-abelian torsion group, then

(A) A is an elementary abelian p-group,

(B) the centralizer A of Γ [within the ring of endomorphisms of A]
is a commutative, absolutely algebraic field of characteristic p,

(C) the rank of A over A is finite,

(D) Γ is of finite rank.

Note on Terminology. The group X is of finite rank, if there
exists a positive integer n, the rank of X, such that every finitely
generated subgroup of X may be generated by n [or fewer] elements.

Note on Hypotheses. It is a consequence of Lemma 2, (a) that Γ
is locally finite. But this hypothesis which sufficed for the Proposition
is not sufficient under the present circumstances as may be seen from
the following construction: Suppose that A is a countably infinite,
elementary abelian p-group. Denote by Γ the set of all automorphisms
σ of A with the property:

The subgroup of fixed elements of a has finite index in A.
It is easy to see that this set Γ of automorphisms of A is a locally finite

group and that it is an irreducible group of automorphisms of A. The
centralizer A of Γ [within the ring of endomorphisms of A] is the
prime field of characteristic p so that the rank of A over A is infinite.
Hence (C) does not hold and (D) does not hold either.

Proof. Γ is by Lemma 2, (a) locally finite so that properties (A)
and (B) are immediate consequences of the Proposition. Before effecting
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the general proof of (C) we treat the following

Special Case. Δ is algebraically closed.

We may consider A as a vector space over Δ and the ^/-admissible
subgroups of A we may consequently term subspaces. If U is a subset
of A, then we denote by [U] the subspace Σ t t€σ w4 of A spanned by U.

Let θ be a finite abelian normal subgroup of Γ and σ a homo-
morphism of θ into the multiplicative group of roots of unity in Δ.
Then we term the subspace S of A a σ-subspace [or more precisely a
#-σ-subspace] of A, if

xa = xaσ for every x in S and every a in θ .

There exists an element v Φ 0 in A and vθ is a finite subset of
A, since θ is finite. Hence [vθ] is a subspace, not 0, of A which is
of finite positive rank and ^-admissible. Consequently there exists
among the ^-admissible subspaces of finite, positive rank one R of
minimal rank. In R a finite abelian group θ* of automorphisms
[= linear transformations] is induced by θ. From the minimality of
the rank of R we deduce

R = [rθ] == [rθ*] for every r Φ 0 in R .

The ring A of endomorphisms of R which is spanned by θ* and Δ is
commutative, since θ* and Δ are commutative and centralize each other;
and 0 and R are the only J-admissible subgroups of R. Application
of Schur's Lemma—cp. Jacobson [p. 26, Theorem 2]—shows that the
centralizer J* of A [within the ring of endomorphisms of R] is a field.
From the commutativity of A we deduce J £ / . Hence A is part of
some commutative field of characteristic p. All the roots of unity of
this field are already contained in the algebraically closed subfield Δ.
Since θ* is finite and contained in A, the elements in θ* are roots of
unity and belong therefore to Δ. If σ is the homomorphism of θ which
maps every element upon the automorphism it induces in R, then σ
is the epimorphism of θ upon θ* £ Δ with ra = raσ for every r in
R and a in θ. Thus R is a σ-subspace of A; and from the minimality
of the positive rank of R we deduce that the rank of R is 1. Thus
we have shown:

(1) If θ is a finite abelian normal subgroup of Γ, then there exists
a σ-subspace of rank 1 of A for some homomorphism σ of θ into Δ.

If σ is a homomorphism of the finite abelian normal subgroup θ
of Γ into /f, then there exist σ-subspaces of A [like 0] and the sum
A(σ) = A(θ, σ) of all the σ-subspaces of A is again a σ-subspace of A.
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If 7 is an automorphism in Γ, then mapping the automorphism a
in the finite abelian normal subgroup Θ of Γ upon yay"1 = α 7" 1 is an
automorphism of θ and mapping the automorphism a in θ upon ay~1(r

is a homomorphism 7~1tf of # in zί. Since the numbers in Δ commute
with the automorphisms in Γ, we find that

for every x in A(σ) and α in fl. This proves:

{ 2) If θ is a finite abelian normal subgroup of Γ, if σ is a homomor-
phism of θ into zf and 7 is an automorphism in Γ, then

Consider again a finite abelian normal subgroup θ of Γ and a finite
set Ξ of homomorphisms σ of θ into Δ with A(#, CΓ) Φ 0. If the sum
of the A(σ) with <7 in Ξ were not their direct sum, then there would exist
a minimal subset Ξ' of Ξ such that the sum of the A(σ) with σ in S"
is not their direct sum. It is clear that 5" contains at least two
homomorphisms. Hence we may number the homomorphisms in Ξr as
follows: σ(0), σ(l), , σ(k) with 0 < k. Because of the minimality of
5" we have: S = Ylt=iA[σ{ϊ)\ is the direct sum of the A[<x(i)], but
ΣLoA[σ(ί)] is not. Hence

A[σ(0)] Π S ^ O .

Consequently there exists an element s Φ 0 in A[σ(0)] Π S. Clearly

k

s — Σ sί with Si in A[α"(i)] .

If some Si were 0, then s would belong to A[cr(0)] Π Σ ; ^ ; A[σ(j)] so
that this intersection were not 0 and the sum of the A[σ(j)] with
j Φ i were not their direct sum contradicting the minimality of 5".
Thus Si Φ 0 for i = 1, , k. If a is an automorphism in θ, then

k k k

t = l % ί=l % i=i

Since S is the direct sum of the A[<τ(i)] with i — 1, , k, we deduce
s.ασ(0) = s{α:σ{i) for i = 1, , k from this equation. Since every SiΦO and
every α σ is a number in the field Δ, we conclude aσ{0) = α σ ( ΐ ) for every
ί. Since this last equation is true for every a in θ, we have shown
σ(0) = σ(i) for i = 1, , fc; and this is impossible. Thus we have shown
that the sum of the A(σ) with σ in Ξ is their direct sum.

Let now B be the sum of all the A(σ) Φ 0. Then the result of
the preceding paragraph of our proof shows that B is the direct sum
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of the A{σ), If 7 is an automorphism in Γ, then we deduce B = By
from (2). Since B φ 0 is therefore a inadmissible subspace of A, and
since Γ is an irreducible group of automorphisms, we have B = A.
If finally n is the exponent of θ [so that θn = 1], then θ is mapped
by every homomorphism σ of θ into Δ into the finite group of wth
roots of unity in the field Δ. Hence there exists only a finite number
of homomorphisms of θ into Δ. We summarize these results as follows:

( 3 ) If θ is a finite abelian normal subgroup of Γ, then A is the direct
sum of the finitely many A{θ, σ) Φ 0 [with σ a homomorphism of θ
into Δ].

Next we recall that Γ is an almost-abelian torsion group. Application
of Lemma 2 shows the existence of an abelian normal subgroup A of
Γ with finite Γ/A; and A is the product of finite normal subgroups of
Γ. Let h = [Γ: A].

Consider next a finite abelian normal subgroup θ of Γ with ί g A
If λ is an automorphism in A, then λ induces the identity automorphism
in θ [since A is abelian]. If σ is a homomorphism of θ into J, then
σ = Xσ; and consequently there exist at most h distinct homomorphisms
of the form yσ for 7 in Γ. Assume now that the homomorphism σ
of θ into A has the additional property A(σ) Φ 0. Denote the distinct
homomorphisms of the form yσ for 7 in Γ by 0"(1), •••, #•(&). Then
k ^ h. The subspace S = Σΐ=i ^.[^(Ό] is different from 0; and S is
jΓ-admissible because of (2). Application of the irreducibility of Γ shows
S = A. From (3) we deduce now that S is the direct sum of the
A[ίτ(i)] and that to every homomorphism σ' of θ into Δ with A(σ') Φ 0
there exists an i with σ' = σ(i). If we say now that σ is a relevant
homomorphism of θ, if σ is a homomorphism of θ into Δ with A(0, tf) Φ 0,
then we may express our results as follows:

( 4 ) If the finite abelian normal subgroup θ of Γ is part of A, then
there exist at most h relevant homomorphisms σ of ^ and if σ', σ"
are relevant homomorphisms, then there exists an automorphism 7 in
Γ with σ' = yσ".

Because of (4) there exists among the finite abelian normal subgroups
of Γ which are contained in A one, say A*, with a maximum number
of relevant homomorphisms.

Suppose now that θ is a finite abelian normal subgroup of Γ with
A* ϋ θ £ A. If σ is a relevant homomorphism of θ and <7* is the
restriction of σ to A*, then

xaσ* — xaσ = ίeα: for £ in A(θ, σ) and α in i * .

It follows that A{θ, σ) £ A(J*, σ*). Hence α* is a relevant homomor-
phism of J * . But A is by (3) both the direct sum of all the A(θ, σ)
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with relevant σ and all the A(A*, τ) with relevant r. This implies in
particular that A{A*, τ) is for every relevant τ the direct sum of
all the A{Θ, σ) with relevant σ such that σ* = τ, since we have
A{Θ, σ)^ A(A*, #•*) = A(A*f τ). Hence the mapping σ—>σ* is a single
valued mapping of the set of all the relevant homomorphisms of θ upon
the full set of all the relevant homomorphisms of J*. Because of the
maximality of the number of relevant homomorphisms of J* it follows
that this mapping is actually one-to-one. This implies in particular
that A{θ, σ) = A(A*9 σ*) for every relevant homomorphism σ of θ. Thus
we have shown the following facts:

( 5) If σ is a relevant homomorphism of A*9 if θ is a finite abelian
normal subgroup of Γ with J* g θ g A, then there exists one and only
one relevant homomorphism σ' of θ with

A(A*, σ) = A{θ, σf) and

xaσ = xaσ> — xa for every x in A(A*, σ) and a in J* .

By (1) there exists at least one relevant homomorphism σ of J*.
Let S = A(A*9 σ). If λ is an automorphism in A, then there exists a
finite abelian normal subgroup θ of Γ which contains J* and λ and
which in turn is contained in A, since A is the product of finite abelian
normal subgroups of Γ. By (5) there exists one and only one relevant
homomorphism σf of θ with S = A(θ, σ'). It follows in particular that
S = SX and that the automorphism induced in S by λ is just the multi-
plication by the number λσ/ in Δ. Thus we have shown:

( 6) S = SA and the automorphisms induced in S by elements in A
are multiplications by numbers in Δ.

If t Φ 0 is some element in S9 then T = tΔ is a subspace of rank
1. By (6) we have T = TAQ S. The automorphisms in Γ map T
upon subspaces of rank 1; and because of T = ΓJ and [Γ: A] = h the
number of these subspaces is finite and does not exceed h. The sum
of these subspaces T Ί for 7 in Γ is different from 0 and it is /^-admis-
sible. Because of the irreducibility of Γ it is A; and thus we have
shown that A is the sum of finitely many subspaces of rank 1. Since
their number does not exceed h, we have shown:

(7) the rank of A over Δ does not exceed h.
By (7) we have proven (C) in the special case.

Reduction of the general case to the special case. We note first
that Δ is by (B) a commutative, absolutely algebraic field of characteristic
p. Let zί* be the algebraic closure of Δ. Then there exists a vector



398 REINHOLD BAER

space V over J* with the following properties:

( i ) A is a subgroup of V and the subfίeld Δ of A* operates on A in
the preassigned way.

(ii) The z/*-vector space V is spanned by its subset A.

(iii) There exists a group Γ* of A*-automorphisms of V such that A
is Γ*-admissible and mapping every automorphism in Γ* upon its
restriction on A effects an isomorphism of J7* upon Γ.

Denote by Γ** the group of automorphisms of the additive group
V, generated by Γ* and the multiplications by elements, not 0, in A*.
The isomorphic groups Γ and Γ* are almost-abelian torsion groups.
Since J* is an absolutely algebraic field of characteristic p, its multi-
plicative group is an abelian torsion group. Since Γ* and J* centralize
each other, /"** is an almost-abelian torsion group.

We don't claim that /""** is an irreducible group of automorphisms
of V. Hence we consider the Γ^-admissible subgroups X of V [these
are exactly the /^-admissible ^*-subspaces of V] which satisfy Af)X = 0.
There exist such subgroups X as for instance X = 0. Application of
the maximum principle of set theory shows that among these subgroups
X there exists a maximal one, say M. We may form the z/*-vector
space V/M and Γ** induces on V/M a group of linear transformations
Ξ which, as an epimorphic image of .Γ**, is an almost-abelian torsion
group.

Suppose that S/M is a ^-admissible subspace, not 0, of V/M. Then
S is a Γ**-admissible subspace of V with McS. Because of the
maximality of M we have S Π A Φ 0. Because of the irreducibility of
Γ the subgroup of A which is spanned by the Γ-admissible subset
(S Π A)Γ is A. It follows from (i) to (iii) that V is spanned by the
subset (S[)A)Γ**. Hence S = V, proving that Ξ is an irreducible
group of automorphisms of V/M. Its centralizer contains A*. Since
J* is algebraically closed, and since the centralizer of the irreducible,
almost-abelian torsion group Ξ of automorphisms is, by Lemma 2, (a)
and the Proposition, absolutely algebraic, Δ* is exactly the centralizer
of Ξ [within the ring of endomorphisms of V/M]. Application of the
Special Case shows that the rank of V/M over J* is finite. From
M Π A = 0 and (i)-(iii) we deduce that the ranks of A over A and of
V/M over J* are equal. Hence the rank of A over A is finite, proving (C).

Since A and A centralize each other, we may form the product ψ
of the abelian group A and the multiplicative subgroup of the, by (B)r

commutative field Δ. It is clear that Φ is an abelian group of automor-
phisms of A. The group A is a torsion group as a subgroup of the
torsion group Γ. The field A is by (B) an absolutely algebraic field
of prime characteristic so that its multiplicative group is a group of
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roots of unity and hence a torsion group. The abelian group Φ is
therefore a product of two torsion subgroups and hence is a torsion
group. Next we note that a subgroup of A is ^-admissible if, and
only if, it is a J-admissible Δ- subspace of A.

Since the rank of A over Δ is, by (C), finite, and since ^-admissible
subgroups of A are subspaces of A, there exists among the ^-admissible
subspaces, not 0, of A one D of minimal positive rank. The abelian
group Φ of automorphisms of A induces in D an abelian group 0* of
automorphisms. If X Φ 0 is a 0*-admissible subgroup of D, then X
is ^-admissible and hence a subspace of A. Because of the minimality
of the rank of D, the subspaces X and D have the same rank; and
this implies X = D so that Φ* is an irreducible group of automorphisms of
Zλ It is a consequence of Schur's Lemma—cp. Jacobson [p. 26, Theorem
2]—that the centralizer 0** of Φ* within the ring of endomorphisms
of D is a [not necessarily commutative] field. But ^* is a subgroup
of the center of ^** which is a commutative field. Furthermore Φ*
is a torsion group as an epimorphic image of Φ. Thus we see that Φ*
is a subgroup of the group of roots of unity of a commutative field
and as such φ* is an abelian torsion group of rank 1.

Since D Φ 0 is ^-admissible, D is a J-admissible subspace of A.
Since Γ/A is finite, DΓ is a finite set of subspaces of A. The sum
T = ΣσeΓ Dσ of these finitely many subspaces is a /"-admissible subspace
of A; and we deduce T=A from the irreducibility of Γ. Denote by
Dl9 , Df the finitely many distinct subspaces of the form Dσ with
σ in Γ; and denote by A{ the totality of automorphisms in A which
induce the identity automorphism in D {. If [as we may assume without
loss in generality] D — Dlf then A/Aλ is essentially the same as a subgroup
of Φ* showing that A/A1 is of rank 1. If D{ = Dxσy then A{ — σ~ΎAλσ
proving the isomorphy A/Ai ~ A/Al9 Hence all the A\A{ are abelian
torsion groups of rank 1. An automorphism in A belongs to Λ Π Γ) Δf

if, and only if, it induces the identity automorphism in all the Dσ
with σ in Γ and hence in their sum T — A. Thus A1 f] Π Af = 1;
and this shows that A is isomorphic to a subgroup of the direct product
of the / isomorphic groups A\AΛ of rank 1. Hence A is an abelian
group of rank not exceeding / . But Γ/A is finite [and Γ is locally
finite by Lemma 2, (a)] proving that Γ too is of finite rank.

REMARK 2. The reader should notice that throughout the proof
of Properties (C) and (D) we have not fully used the requirement that
Γ be an irreducible group of automorphisms. All we used is the fact
that Γ is an irreducible group of linear transformations of A over Δ.

REMARK 3. It is impossible to prove (D) in the stronger form:

Γ is an m-group .
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For let K be the algebraically closed, absolutely algebraic field of
characteristic a prime p. If we denote by A the additive group of K,
then every element, not 0, in K induces in A an automorphism by
multiplication. The group A of these automorphisms of A is clearly
irreducible and an abelian torsion group of rank 1. But it is not an
m-group, since it contains elements of every positive order prime to p.
For a similar construction see Duguid-McLain.

If Γ is a group of automorphisms of the abelian group A, then
a ring A of endomorphisms of A is spanned by Γ. It is clear that Γ
and A are centralized by the same automorphisms of A and that a
subgroup of A is inadmissible if, and only if, it is J-admissible. In
particular Γ is an irreducible group of automorphisms of A if, and
only if, A is an irreducible ring of endomorphisms of A. Because of
this relation between Γ and A it is possible to express our results more
forcefully within the framework of the theory of endomorphism rings.

The following lemma puts a number of well known results in a
form convenient for our applications.

LEMMA 3. The following properties of the vector space V of rank
> 1 over the [not necessarily commutative] field Δ are equivalent'.

(a) The rank of V over Δ is finite.

(b) // Δ is the centralizer of the irreducible ring A of endomorphisms
of the abelian group V, then A is the centralizer of Δ.

(c) There exists a finite irreducible group of linear transformations
of the vector space V over Δ.

Notational Remark. The set Ξ of endomorphisms of the abelian
group A is irreducible, if 0 and A are the only ^-admissible subgroups
of A; and the set A of linear transformations of the vector space V
over Δ is irreducible, if 0 and V are the only J-admissible subspaces
of V.—Groups of linear transformations consist of automorphisms.

Proof. Assume first that the rank of V over Δ be finite. If Δ
is the centralizer of the irreducible ring A of endomorphisms of the
abelian group V, then we apply the Density Theorem of Jacobson
[p. 28] to see that A is the ring of all linear transformations of the
vector space V over Δ. Hence (b) is a consequence of (a).

Assume next that the rank of V over Δ be infinite. Denote by
A the ring of all the linear transformations σ of the vector space V
over Δ with the property:

The rank of the subspace Vσ of V is finite .
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If S is a subspace of V of finite co-rank, then the transformations in
A annihilating S induce in the vector space V/S over A the ring of
all linear transformations. This implies in particular that Δ is the
centralizer of J . If v Φ 0 is an element in V, then vA = V. Since
the rank of V over A is infinite, A is not the ring of all linear
transformations of the vector space V over Δ. Thus (b) is not satisfied
by V and Δ; and this shows that (a) is a consequence of (b), proving
the equivalence of (a) and (b).

Assume again that the rank n of V over Δ be finite. Then there
exists a finite basis B of V over Δ. We distinguish two cases.

Case 1. The characteristic of Δ is not 2.
Denote by θ the set of all the linear transformations σ of V over

Δ with the property:
σ is an automorphism of V which maps every element in B upon

an element of the form ±b for b in B.
It is clear that θ is a group whose order is 2n(nl). The ring of

endomorphisms of V which is spanned by θ contains for every pair of
elements x, y in B one and only one linear transformation λ of V over
Δ such that xX = y and bX = 0 for b Φ x in B. These form a soc.
system of matrix units over Δ, showing that θ is a finite irreducible
group of linear transformations of the vector space V over Δ.

Case 2. The characteristic of Δ is 2.
Then B generates a subgroup C of the abelian group V whose

order is exactly 2\ Denote by θ the set of all the linear transformations
σ of the vector space V over Δ with the property:

σ induces an automorphism in the abelian group C .

Every σ in θ is an automorphism of V and θ is a group of automorphisms
of V which is essentially the same as the group of all the automorphisms
of C. Since C is finite, so is θ. The ring of endomorphisms of V
which is spanned by θ contains for every pair x, y of elements in B
one and only one linear transformation of V over Δ which maps x onto
y and all the other elements in B upon 0, since θ is transitive on the
elements, not 0, in C. These linear transformations form a soc. system
of matrix units over Δ, showing again that θ is a finite irreducible
group of linear transformations of the vector space V over Δ. Thus
we have shown in both cases that (c) is a consequence of (a).

Assume finally the validity of (c). Then there exists a finite
irreducible group θ of linear transformations of the vector space V
over Δ. If v Φ 0 is an element in V, then vθ is a finite subset of V
which spans a subspace S Φ 0 of the vector space V over Δ. Since
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S is ^-admissible and θ is irreducible, we have S = V; and from the
finiteness of vθ we deduce the finiteness of the rank of V. This
completes the proof.

COROLLARY 1. The following properties of the irreducible ring
A of endomorphisms of the abelian group A and of the centralizer
A of A [within the ring of endomorphisms of A] are equivalent
provided the rank of A over Δ is > 1 :

(i) A is spanned by an almost abelian torsion group of automorphisms
of A.

(ii) Δ is a commutative, absolutely algebraic field of prime number
characteristic p [so that pA = 0] and the rank of A over Δ is finite.

(iii) The rank of A over A is finite and the group of automorphisms
in A is locally finite.

(iv) A is the centralizer of A and the group of automorphisms in
A is locally finite.

Proof. It is the content of our Theorem that (ii) is a consequence
of (i).—If (ii) is true, then we note that A is a ring of linear trans-
formations of the vector space V over Δ; and it is well known [and
easily verified] that because of (ii) finite subsets of A span finite subrings
of A; cp. Proposition (c). Thus (iii) is a consequence of (ii).

Assume the validity of (iii). Because of the irreducibility of A
we may deduce from Schur's Lemma—see Jacobson [p. 26, Theorem
2]—that Δ is a [not necessarily commutative] field. Since the rank of
A over Δ is finite, we may apply Lemma 3. Consequently

( + ) A is the ring of all linear transformations of the vector space
A over the field zί; and

(+ +) there exists a finite irreducible group θ of linear transformations
of the vector space A over the field Δ.

Denote by Γ the group of all the automorphisms in A. Then we
deduce from ( + ) easily [because of the finiteness of the rank] that A
is spanned by Γ and that Γ is consequently an irreducible group of
automorphisms of A. Since Γ is locally finite [by (iii)], it follows from
our Proposition that Δ is a commutative field. Application of ( + )
shows that Δ is the center of A. Another application of ( + ) shows
that the group θ [of (+ +)] is contained in A. If Δ* is the multiplicative
group of all the elements, not 0, in Δ, then Δ*θ is a subgroup of Γ
which is clearly an almost abelian torsion group of automorphisms of A.
The irreducibility of this group of automorphisms of A is a consequence
of ( + + ) ; and thus we have deduced (i) from (iii).
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If the equivalent conditions (i)-(iii) are satisfied by A, then A is
by Lemma 3 the centralizer of Δ so that (iv) is a consequence of (i) to
(iii).—Assume conversely the validity of (iv). If the rank of A over
Δ were infinite, then there would exist a linear transformation σ of
the vector space A over Δ which induces a permutation of order 0 on
some basis of A over Δ. Clearly σ is an automorphism of A; and σ
belongs by (iv) to the group of automorphisms in A. This group is
consequently not a torsion group; but, by (iv), it is locally finite. This
contradiction shows the finiteness of the rank of A over Δ so that (iii)
is a consequence of (iv), completing the proof.

REMARK 4. The reader should note that we have deduced (i) from
(iii) in the following somewhat stronger form:

(i*) A is spanned by a torsion group of automorphisms with finite
central quotient group .

Inspection of this proof shows that we have deduced from (iii) the
following facts [which are clearly contained in the equivalent conditions
(i)-(iv)]:

Δ is part and hence the center of A and A contains a finite group
θ of automorphisms such that the ring A is spanned by Δ, θ.

It is then clear that every element in A has the form

Σ S(σ)σ with δ(σ) in Δ .
σ-eθ

As A may be considered as a vector space over its commutative subfield
[its center] Δ, we may conclude now that

A has finite rank over its center Δ .

REMARK 5. Condition (iii) is contained in conditions (ii) and (iv);
and it is an immediate consequence of Lemma 3 that (iv) may be
deduced from (iii). Thus (iv) appears somewhat weaker than (iii) and
(iii) does not tell anything that it is not contained in the other conditions.
Observation of the proofs shows that the insertion of (iii) has been
convenient for them.

REMARK 6. Suppose that Δ is a commutative, absolutely algebraic
field of prime number characteristic p, that V is a vector space of
finite rank over A and that A is the ring of all the linear transformations
of V over Δ. Assume furthermore that Γ is a group of automorphisms
in A spanning A. Then Γ and A are irreducible; and it is a consequence
of Corollary 1 that

( * ) /"is locally finite;
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and we deduce from Lemma 3 the existence of a finite irreducible
group Θ of linear transformations of the vector space V over Δ. Since
the ring A is spanned by Γ, and since Θ is finite, there exists a finite
subset Σ of Γ such that θ is part of the subring Σ. By (*) a finite
subgroup Σ of Γ is generated by Σ. Since Σ and Σ span the same
subring 21* of J which contains the irreducible group θ of linear
transformations, we have shown:

(**) Γ contains a finite irreducible group of linear transformations
of V over Δ.

If it were known that the elements, not 0, in Δ are contained in
Γ, then we would have shown that Γ contains an irreducible torsion
group of automorphisms of V with finite central quotient group; and
this would constitute a considerable improvement on the property (i*)
of Remark 4. But we have not been able to decide whether or not
Γ contains an irreducible, almost abelian torsion group of automorphisms
of V.

COROLLARY 2. The following properties of the irreducible, almost
abelian torsion group Γ of automorphisms of the abelian group A
are equivalent:
( i ) A is finite.
(ii) A is of finite rank.
(iii) The orders of the elements in Γ are bounded.
(iv) Γ is finite.
(v) // the abelian torsion group θ of automorphisms of A centralizes
Γ, then the orders of the elements of θ are bounded.

Proof. It is fairly obvious that the conditions (ii)-(v) are conse-
quences of the finiteness of A. To prove the converse we note first
that as a consequence of the Theorem and of the general hypotheses
of our Corollary the following properties of A, Γ are satisfied:
(1) A is an elementary abelian p-group.
(2) The centralizer Δ of Γ within the ring of endomorphisms of A
is a commutative, absolutely algebraic field of characteristic p.
(3) The rank of A over Δ is finite.
(4) The rank of Γ is finite.

Elementary abelian p-groups of finite rank are finite, since the
orders of its finite subgroups are bounded. Hence (i) is a consequence
of (ii) and (1).

Assume next that the orders of the elements in Γ are bounded.
There exists by hypothesis an abelian subgroup Σ of Γ whose index
[Γ: Σ] is finite. The rank of Σ is finite by (4) and Σ is a torsion
group the orders of whose elements are bounded. Then Σ is the direct
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product of finitely many primary groups; and the primary components
of Σ are finite, since they are of finite rank and the orders of their
elements are bounded. Hence Σ itself is finite, implying the finiteness
of Γ. Thus (iv) is a consequence of (iii).

If Γ is finite, then we deduce from (1) that every element in A
is contained in a finite Γ'-admissible subgroup of A. Thus the finiteness
of A is a consequence of the irreducibility of Γ and we have verified
the equivalence of (i)~(iv).

Assume finally the validity of (v). The elements not 0 in Δ form
by (2) an abelian torsion group Θ of rank 1 which by (v) is finite.
Hence Δ is finite. Application of (3) shows the finiteness of A,
completing the proof.

COROLLARY 3. Assume that Δisa commutative, absolutely algebraic
field of characteristic p [a prime], that V is a vector space over Δ
and that Γ is the group of all [regular] linear transformations of
V over Δ. Then the rank of Γ is finite if, and only if, V is finite
or the rank of V over Δ is [0 or] 1.

Proof. It is clear that our conditions are suίRcient for the finiteness
of the rank of Γ; and thus we assume next that the rank of Γ is
finite.

Assume first by way of contradiction that the rank of V over Δ
is infinite. Then it is easy to construct a subgroup of Γ which induces
a group of permutations in some preassigned basis of V over Δ and
which is an infinite, elementary abelian 2-group. This subgroup is not
of finite rank so that Γ itself is not of finite rank. This is a contradiction
showing that

( + ) the rank n of V over Δ is finite.

Assume next that 1 < n. Then we may represent V in the form
7 = S © Γ where S and T are subspaces of V over Δ and where the
rank of S is 2. Denote by a, b a basis of S. Consider the set Θ of
all the linear transformations of V over Δ with the properties:

aσ = a + δb with δ in Δ ,

bσ = b and xσ = x for x in T .

It is easily seen that θ is a subgroup of Δ which is isomorphic to the
additive group of Δ. Hence θ is an elementary abelian p-group; and
the rank of θ is finite if, and only if, θ is finite. But the rank of Γ
is finite implying the finiteness of the rank of the subgroup θ of Γ.
Consequently θ is finite; and this implies the finiteness of the field Δ.
Application of ( + ) shows that V is finite; and thus we have shown:
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If 1 < n, then V is finite .

But this is just the fact that we wanted to prove.

REMARK 7 One should compare Corollary 3 and the statement
(D) of the Theorem.
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AN ABSTRACT POTENTIAL THEORY WITH
CONTINUOUS KERNEL

H. S. BEAR

l Introduction.. In the study of complex function algebras, it
is a standard technique to consider the functions as being defined on
the spectrum (maximal ideal space) of the algebra. In other words,
one routinely replaces a function algebra A by its Gelfand represen-
tation A. Recall that the Gelfand representation of a Banach algebra
is just the standard representation of any normed space A as a family
of functionals on A*. Each xeA is represented as the functional x
on points FeA* defined by x(F) = F{x). The Gelfand representation
simply restricts the domain of x to the very small set consisting of
those FeA* which are multiplicative (i.e., to the homomorphisms of
the algebra A). Of course this restriction is necessary if A is to be
again an algebra. However, a fair amount of structure accrues to
the representation by virtue of this restriction (cf. [17]).

To consider the standard example, let A be the algebra of con-
tinuous complex valued functions on the unit circle in the complex
plane which have analytic extensions to the unit disc. Then the
spectrum SA is (homeomorphic to) the disc, and the representation /
gives the analytic extension for each feA. Now consider the space
C of all continuous real functions on the unit circle. These functions
also have natural extensions, as harmonic functions, to the unit disc.
It follows that the disc is embedded as a compact subset Σ of C*, and that
the harmonic extensions appear as functionals on C * restricted to this
set Σ. In this setting, the disc is not a unique set to which the
functions extend "naturally," since the circle can be put on other
Riemann surfaces on which the Dirichlet problem is solvable.

In this paper we present axioms for a subset Σ of C*, where
C = C(Γ) for an arbitrary compact space Γ, so that the representation
described above does give an effective generalization of the classical
potential theory on the disc or sphere in %-sρace. The theory we
develop in this way is quite different in intent from those developed
in recent years by Bauer, Brelot, and others (cf. [1], [2], [7]). In par-
ticular, we start with assumptions which insure that a global Dirichlet
problem is automatically solvable.

Our set Σ in C* consists of positive continuous functions z on Γ
weighting a given positive measure μ on Γ. That is, we restrict the
canonical representation of C as functionals on C* to a subspace of
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C* consisting of functionals of the form zμ, where for each ueC we
have (zμ)(u) = \uzdμ. The functionals zμ are generalizations of the
Poisson measures on the circle or sphere, and the representation u
on Σ obtained for each u e C is a generalized solution of the Dirichlet
problem with boundary value u. A surprising amount of the classical
theory of harmonic functions on the disc or sphere turns out to depend
on the purely topological assumptions we make.

2 Basic assumptions^ We list here a set of assumptions and
some notation which will be used throughout.

Let Γ be a compact Hausdorff space with topology J7~.
Let C = C(Γ) be the linear space of all continuous real-valued

functions on Γ, with the topology ^~u of uniform convergence. The
uniform norm in C is denoted \\u\\.

Assume there is given a positive probability measure μ on the
Baire sets of Γ. In addition, we are given a set Δ of strictly posi-
tive continuous functions z on Γ such that

(1) \z(θ)dμ(θ) = 1

for all zeΔ. The function identically one is assumed to be in Δ, and
is denoted z0: zQ(θ) = 1. Hence the measures zμ, for zeΔ, are func-
tionals of norm one in C*9 and include μ = zoμ.

We want to extend the functions u e C to a compact set con-
taining Γ, and consisting of Γ and the points represented by the
continuous kernels zeΔ. We do this by representing C as a space of
continuous functions on a subset of C* consisting of evaluation func-
tionals, and the functionals zμ. Accordingly, define Γ* = {eθ: θeΓ}9

where eθ(u) = u(θ) for all ueC. Similarly, let Δ* = {zμ: z e Δ}, where
zμ(u) = \uzdμ for all ueC. We let Σ* = Γ* (J Δ*, and introduce the

axioms below on Σ*, A*, Γ* and μ. Unless otherwise specified, the
topology in C*, and subsets thereof, is the w* topology, ^"*.

Axiom 1. Σ* = J* U Z1* is a compact set in C*.
Axiom 2. Γ* is the boundary of A* in Σ*.
Axiom 3. The mapping z—>zμ is a homeomorphism of A, ^"u

onto A*, j ^ ~ * .
The representation of C as functions on Σ* is as follows: for each

u e C, we define ΰ on I7* by

That is, ΰ(eθ) = u{θ) for θ e Γ, and ΰ(zμ) = vuzdμ for zeA. For sim-

plicity we will denote the points of J* as z rather than zμ, and write
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( 3 ) u(z) = \u(θ)z(θ)dμ{θ) (zeΔ) .

We let H denote the space of all functions u on 2'*, for ue C.
Axiom 1 merely expresses the fact that we want a compact ex-

tension of our given space Γ (or its homeomorphic image Γ1*). The
second axiom makes it clear that the Silov boundary of our linear
space H is in fact a bona fide topological boundary (cf. [5, p. 229], [2]).
Although Axiom 3 appears to be quite strong, it turns out to be exactly
the necessary assumption for a theory with jointly continuous kernel.
Notice that the axioms above are satisfied in the classical case which
we shall consider our model: Γ is the unit circle in the plane, μ is
the normalized Lebesgue measure, and Δ is the set of Poisson kernels.

LEMMA 1. 21* is Hausdorff. Γy jf is homeomorphic to Z1*,
Each ΰe H is continuous on 21*.

Proof. The subspace 21* is Hausdorff since C* is. If θn—>θ in
^~, then certainly u{θn)—>u{θ) for all ueC, or ββfi—>ββ in ^"**. The
mapping θ —> ed is therefore a continuous one-to-one mapping on a
compact space to a Hausdorff space, and hence a homeomorphism.
The w* topology on C* is by definition the weakest such that the
functions ΰ of (2) are continuous. Therefore the functions ΰ are in
particular continuous on the subset Σ*.

LEMMA 2. H is a uniformly closed linear subspace of C(Σ*)
and H contains the constant functions.

Proof. The functionals of Σ* are all of norm one, by (1), and
the restriction H | JΓ* can be identified with C on Γ. Hence uniform
convergence on Γ1* is equivalent to uniform convergence on all of Σ*,
and H is in fact isomorphic and isometric with C. The constant func-
tions are in H since c(z) = c for all zed, by assumption (1).

Our axioms are given in terms of Γ* and J* as subsets of C* to
facilitate the description of a topology on the union .Γ* U Δ*. How-
ever, the embedding Γ U i - ^ Γ * U Δ* is one-to-one, as we shall show
in Lemma 5. It follows that we can consider our assumptions as
statements about a given compact set Γ and a distinguished subset
Δ of C(Γ). Accordingly, we will drop the stars from Γ1* and Δ*9

and regard Σ = Γ U Δ as the object under consideration. The points
of Σ are the points θ of Γ, and the points (functions) z of Δ. The
topology J ^ * on Σ coincides on Γ with the given compact topology
J7~, and on Δ with the uniform topology J7~u of C relativized to Δ.
We write ΰ(θ) = u{θ) for θeΓ, and u{z) = \u{θ)z{θ)dμ{θ) for zeΔ.
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LEMMA 3. // ΰ(z) = 0 for all zeΔ, then u = 0. If ΰ(z) ^ 0 for
all ze Δ, then u ^ 0.

Proof. Both of these statements are immediate from the facts
that Δ is dense in Σ (Axiom 2), and the functions ΰ are continuous
on Σ.

LEMMA 4. If U is a nonempty open set in Γ, then μ(U) > 0.

Proof. Assume that μ(U) = 0 for some nonempty open set UczΓ.
Let u be a function in C such that u = 0 outside U, and u ^ 0.

Then for every 2GJ, i&(s) = iwzcϊμ^O, since u = 0 off ί7, and μ = 0

on Ϊ7. This contradicts Lemma 3, and proves the statement.

LEMMA 5. The mapping Γ U ^ f * U 4 * = ί* is one-to-one.

Proof. The representation of a functional in C* as a measure
on Γ is of course unique. The lemma asserts that the representation
of this measure in the form zfi for continuous positive z, or the form
eθ (unit point mass at θ), is unique. This is clearly the case if (and
only if) the support of μ is all of Γ.

Since Σ — Γ U Δ consists of distinct functionals in C*, H is a
separating linear subspace of C(Σ). Such a subspace has a Silov
boundary in Σ; i.e., a unique minimal closed set Y in Σ such that
each ΰeH attains its maximum on Y. ([2], or for an elementary
proof, [4]). Since each functional ζ e Σ has norm one, it is clear that
each ΰeH attains its maximum on Γ. Moreover, H\Γ = C(Γ), so Γ
is a minimal closed set with this property. We have proved the fol-
lowing:

THEOREM 1. The Silov boundary for H in Σ is the topological
boundary Γ of Δ in Σ.

It is of course true by definition that a maximum principle holds
for the functions in H and the Silov boundary Γ. The fact that μ
is supported by all of Γ, which follows from the fact that Γ is the
topological boundary of Δ, allows us to sharpen the maximum principle
to strict inequality. This situation also occurs in some function alge-
bras (cf. [3], [13]).

THEOREM 2. (Strict maximum principle) If ΰ{z) = \\ΰ\\ for some
z G Δ, then ΰ is a constant.

Proof. Assume t h a t u{z) = \\ΰ\\ = \\u\\, and t h a t u is non-constant
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and hence u is non-constant). Let u(θ) = \\u\\ — v(θ), where v(θ) ̂  0
and v is not identically zero. Let v(θ) Ξ> ε > 0 for all θ in some open
set UaΓ. Then

u(z) = \u(θ)z(θ)dμ(θ)

= \[\\u\\-v(θ)]z(θ)dμ(θ)

= \\u\\-^v(θ)z(θ)dμ(θ)

S \\u\\ — εμ(U) min z

< \\u\\ .

This contradicts the assumption that ΰ(z) = \\u\\. Hence u and ΰ are
constant.

COROLLARY. If ΰ ^ 0 on Σ and ΰ(z) = 0 for some ze Δ, then
ΰ = 0.

Proof. If v = || u || — u, then v = \\u\\ — ΰ, and v assumes its
maximum, \\u\\, at the point ze Δ. Hence v is a constant, and ΰ = 0.

THEOREM 3. Δ is closed in C if no singleton in Γ is open and
closed. In particular, Δ is closed in C if Γ is connected.

Proof. Let {zn} be a sequence of distinct functions in Δ which con-
verges uniformly toweC. We must show that we Δ. The uniform con-
vergence of the zn implies that the functionals znμ converge in J^~*
to wμ. Since Σ is compact in the w* topolgy, wμeΣ. Thus either
we Δ and we are done, or wμ is evaluation at some θ0e Γ, for all
ueC. For wμ to be unit point mass at θ0, we must have μ{θ0} > 0,
w(θo) > 0> and w = 0 on Γ — {#0}. This implies that {#0} is open, since
w is continuous; {#0} is automatically closed since Γ is Hausdorff.

The following example, which gives the natural "potential theory"
in one dimension, shows that the hypothesis on Γ in Theorem 3 is
necessary.

EXAMPLE. Let Γ consist of the two points —1 and 1, with the
discrete topology. Let μ assign mass 1/2 to each point. We denote
functions % on Γ by pairs, u = (α, 6), where a = u{—1), 6 = ^(1).
The family Δ will consist of the functions zx = (1 — x, 1 + x), for
— 1 < x < 1. The function z0 is identically one, and for each function
zn we have

Γ 1 1
\zxdμ = (1 — x) — + (1 + x) — = 1 .
J 2 2
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The family Γ* U Δ* is clearly homeomorphic to the compact interval
[—1,1], and Γ* is the boundary of 4*. Here Δ is not closed in C(Γ),
since the function (0, 2) is the uniform limit of functions (1 — x, 1 + x}
as x —• 1. The functions ΰ can be represented as follows: if u = (α, b)r

then

ΰ(zx) = \uzβdμ

Hence the graph of u is the line joining (—1, α) and (1, 6), and u(zx}
is the point on this line above x.

3* The harmonic functions on Δ. In this section we extend our
class H to a class of functions which are "harmonic" on Δy without
necessarily being continuously extendable to all of Σ. We show that
the kernels P(z, θ) = z(θ) are harmonic in z for each fixed θ, and
that they are extreme points of certain compact convex sets of har-
monic functions. With one additional assumption on Δ, which holds
in the classical case, we show that the set of differences of positive
harmonic functions is isomorphic and homeomorphic with C*.

LEMMA 6. If P(z, θ) = z{θ) for all zeΔ, all θe Γ, then P is
jointly continuous on Δ x Γ with the product topology.

Proof. The statement of the lemma holds for any family (here Δ)
of continuous functions on a compact space, with the uniform topology
[14, p. 224].

In connection with the above lemma, it is worth noting that the
uniform topology is the weakest such that P is jointly continuous.
Thus Axiom 3 is necessary if we are to develope a theory based on
the idea of a jointly continuous kernel.

With the above definition of P, the representation (3) for func-
tions ΰ £ H can be written in the familiar form

(4) ΰ(z)= \^u(θ)P(z, θ)dμ(θ) .

DEFINITION. Let W be the topology of uniform convergence on
compact subsets of Δ (the u.c.c. topology, or compact-open topology).
Let Sίf denote the ^-closure of H\Δ. That is, £ίf is the set of all
u.c.c. limits on Δ of functions in H. The functions in £έf will be
called harmonic. The set ^f forms a locally convex real linear
topological space with the topology ^ , since the basic neighborhoods*
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of zero, {v: sup^ | v(z) | < ε}, are convex.
We interrupt our development here to point out explicitly that

the family έ%f just defined is the set of all harmonic functions in
the classical case.

PROPOSITION. If Γ — {z: | z \ = 1}, Δ is the set of Poisson kernels
on Γ (or the open unit disc {z: \ z | < 1}, and μ is normalized Lebesgue
"measure on Γ, then £ίf is the set of all functions on Δ which are
harmonic in the classical sense.

Proof. The proposition is simply the observation that every
harmonic function on the open unit disc is the u.c.c. limit of harmonic
functions continuous on the closed disc. To see this, let v be harmonic
on Δ, v + iw be analytic on Δ, and {pn} be a sequence of polynomials
in z which converge u.c.c. to v + iw on Δ. Then the continuous
harmonic functions {Repn} converge u.c.c. to v.

LEMMA 7. Δ is locally compact, and each harmonic function is
continuous on Δ.

Proof. For each z e Δ there are disjoint neighborhoods U and V
in Σ such that z e U and Γ a V. Hence U~ is compact, and each
point of Δ has a compact neighborhood U~ c Δ. Since a harmonic
function is a uniform limit of continuous functions on some (compact)
neighborhood of each ze Δ, each v e 3(? is continuous on Δ.

LEMMA 8. If K is a compact subset of Δ, then K is an equi-
continuous family of functions on Γ. The functions in K are uni-
formly bounded, and uniformly bounded away from zero.

Proof. Since K c Δ, the hypothesis is that K is compact in the
uniform topology S~u. K is therefore a bounded set in the norm || ||
of J7~u, which means the functions ze Kare uniformly bounded on Γ.
If the functions in K were not uniformly bounded away from zero,
then there would be a limit point z e K, since K is compact,
with minimum value zero. This minimum value would be attained
on the compact set Γ, which contradicts the assumption that all ze Δ
are strictly positive. The set K is equicontinuous since the uniform
topology ^~u is jointly continuous, and Kis compact in ̂ ~u [14, p. 233].

DEFINITION. We will let H+ denote the nonnegative functions in
H, and Jg^+ the closure in ^ of H+ \ Δ.

THEOREM 4. (Harnack's inequality—see e.g. [8, p. 153]) If K is
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a compact subset of Δ, then there are positive numbers m and M
such that for every v e

( 5) mv(z0) ^ v(z) ^ Mv(z0)

for all zeK.

Proof. Recall that the function z0 in (5) in identically one: zo(θ) =
1. We prove that the inequality (5) holds for every ΰeH+, and then
the theorem follows by taking uniform limits on the compact set
K U {s0}.

Assume that u Ξ> 0 on Γ, and let min z = min {z(θ): θ e Γ}. We
have

mm zu\(z0) = mmz\u ldμ

^ \uzdμ

= ΰ(z)

£\\z\\\u-ldμ

If m is a uniform lower bound for the functions z e K, and M is a
uniform upper bound, then we have

mΰ(z0) ^ ΰ(z) ^ Mΰ(z0)

for all zeK, all ΰeH+.

COROLLARY. (Harnack's second convergence theorem) // {ΰn} is
an increasing sequence of functions in H+, and {ΰn(z)} is bounded
for any z e Δ, then {ΰn} converges u.c.c. on Δ.

Proof. Suppose that ΰn(z) g B for all n, so that the positive
series Σ [ϋn(Zi) — ̂ n-iCO] converges. Let K be any compact set in
Δ and let m and M be the constants of Theorem 4 for the set K U {z^.
Then from (5) we have

and hence for all zeK,

— [ΰ
m

M _

K
mTherefore the series Σ [̂ »(̂ ) ~~ ̂ »-i(^)] converges uniformly on K.
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Since K is arbitrary, this says that {ΰn} converges u.c.c. on Δ.
Notice that the corollary is stated for H+, rather than ^f+.

This is because it is not clear that if v, w e ^g^+, and v — w ^ 0, that
v — we £ϊf+, as would be required in the above proof (βέf+ is defined
as the set of limits of H+, and not as the positive functions in έ%f).

Now we can prove that the kernel P(z, θ) is harmonic in z for
each fixed θeΓ, and moreover, that each P{-,θ)e

THEOREM 5. // θoeΓ9 then P( ,θo)

Proof. Let if be a compact subset of Δ, and ε > 0. We must
find n e H+ such that

| ΰ(z) - P(z, θo)\<e

for all zeK.
Since K is an equicontinuous family, there is a neighborhood U

of θ0 in Γ such that | z(θ) - z(θQ) \ < ε f or all z e K and all θeU. Let
u be a nonnegative continuous function on Γ such that u = 0 off U>

c

and \udμ = 1. For z e K we have
J

! ΰ(z) - P(z, β0) | = | ^u(θ)z(θ)dμ(θ) - z(β0)

- z(θo)]dμ(θ)

^ sup | z(θ) - z(θ0) | f

Since K and ε are arbitrary, and ΰ ^ 0, P( , ̂ 0)
The next two theorems are extensions to our abstract setting of

classical results of Herglotz [11], Bray-Evans [6], Evans [9], and
Martin [15, p. 153].

THEOREM 6. A function v on Δ is in β^+ if and only if there is
a positive Baire measure v on Γ such that for all ze Δ,

(6) v(z) = JP(«, θ)dv{θ) .

Proof. Assume first that v is given by (6). The integral in (6)
can be approximated at any finite number of points z e Δ by a Riemann
sum of the form

( 7 )

Any function of the form (7) is in £έf+ by Theorem 5. The set of
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functions of the form (7) is equicontinuous on Δ, since

| ΣP(z, Θ

= \\z-z1\\v(Γ).

That is, any function of the form (7) will vary by less than ε on the
sphere of radius s/v(Γ) around zλ. Therefore pointwise convergence
of sums (7) will be uniform on any compact set KcΔ [14 , p. 232].
Hence v is in the ^-closure of the ^-closed set J%f+; i.e., v e βέ?+.

Now assume that v e £έ*+, and let {ΰa} be a net of functions in
H+ which converges uniformly on compact sets to v:

v(z) — lim ΰΛ(z)

= lim \p(z, θ)ua{θ)dμ(θ) .

The measures {uωμ} are all in some closed ball of C*, since

II uaμ || = \ua{θ)dμ{θ) = u«(z0) — v(z0)

(recall that zo(θ) = 1). The closed balls in C* are ^~* compact, so
there is a subnet of {uΛμ} which converges w* to a positive measure
v. For this subnet, also denoted {u^μ}, and the continuous function
P(z, •) on Γ, we have

v(z) = lim [p(z, θ)ujφ)dμ(θ)
j

(«, θ)dv{θ) .

COROLLARY. V G J T + - Jg^+ if and only if v = [pdv for some

signed Baire measure v.

DEFINITION. HM = lΰeH: [\u\dμ ^ M\. Let j%?M be the <%r-

closure of HM \ Δ.

The hypothesis v^§ίfM is our replacement of the classical Fatou

| v{reid) \dθ ^ M
for all r < 1 (Fatou [10] or [16, p. 201]). If Γ = {z: \z\ = 1}, Δ is
the set of Poisson kernels, etc., so the classical situation obtains, then
£ί?u is the set of harmonic functions v such that the functions vr are
uniformly bounded by M in the Lx norm, where vr{eid) = v(reίθ) (see
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[12, pp. 33-39]). The families Sίfu are compact sets of harmonic
functions (Theorem 8 below), and this compactness accounts for much
of their tractability.

LEMMA 9. For each θoeΓ, P( , θo)e £έf[.

Proof. In the proof of Theorem 5 (that P( ,θo)e <%"+) we found for

a given compact K c Δ a function ΰ e H+ such that | ΰ(z) — P(z, ΘQ) | < ε

for all zeK. This function ΰ was in Hl9 since u ^ 0 and \udμ = 1.

Thus P( ,0O) is the u.c.c. limit of functions in Hu or P( yθQ)e ^fx.
For the following theorem in the classical context, see [18, p. 143]

or [12, p. 33].

THEOREM 7. A function v is in 3$fM if and only if there is a
signed measure v on Γ, with \\v\\ ̂  M, such that for all zeΔ,

\ i ) υ\z) -

Proof. Assume that v e βέfMj and that {ΰa} is a net of functions
in HM which converges uniformly to v on compact subsets:

v(z) = lim ΰa(z)

= lim \p(z, θ)ua{θ)dμ{θ) .

The measures {uaμ} are all in the Λf-ball of C*, since by hypothesis

\\uωμ\\ = [\uΛ\dμ ^ M .

As in the proof of Theorem 6, there is a w* accumulation point v of
{uaμ}y and \\v \\ ^ M. If {uaμ} is a subnet converging w* to y, then

φ ) = lim [p(z, θ)u«{θ)dμ{θ)

= j P(z, ̂ )dv(^)

for each «e Δ.
Now assume that | | μ | | ̂  ikί and v is given by (7). We showed

in the proof of Theorem 6 that v can be uniformly approximated on
any compact Kc Δ by a finite sum ΣP( fθ^)v{E^f where {E%) is a
partition of Γ. By Lemma 9, each P( , 0<) occuring in this sum can
be uniformly approximated (within ε/w||v||, if there are n summands)
by a function Ui e Hλ fl i ί + . Hence there is a sum ̂  = Σv{Ei)ΰi which
is uniformly close to v on the given compact set K. Clearly w e H,
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and we have

s
H.

w\dμ ^

=

VII

—

S. BEAR

Σ v(Ei)

IMI
M.

Thus w e HM, and v can be uniformly approximated on K by functions
in HM, so ve

COROLLARY. £έf+ — <%*+ = \}{gerM: M = 1, 2, •}.

Proof. This follows from the corollary of Theorem 6

LEMMA 10. HM is equicontίnuous on A.

Proof. If zfz1eA and u e HM, then

| ΰ(z) - ΰ{zx) | - | \u{θ)[z{θ) - φ)\dμ(θ)

^\\z-z1\\\\n{θ)\dμ{θ)

THEOREM 8. έ%?u is compact in the topology %f.

Proof. The pointwise closure (and, a fortiori, u.c.c. closure) of
an equicontinuous family is equicontinuous, and hence Sίfu is equi-
continuous. By Ascoli's theorem [14, p. 233], the subfamily 3^fu of
C{Δ) is compact in the topology ^/ if and only if ^ίf^ is closed, J g ^
is equicontinuous, and Mz): v^3ίfM} is bounded for each zeA. We
have only the last condition to check. For each ze A, {\ v(z) \: ve
is bounded by Λf| |2| |, since for UQHMJ

\ΰ{z)\^\\u{θ)\z{θ)dμ{θ) ^ M\\z\\ ,

and this estimate carries over to SίfM on the compact set {z}.

COROLLARY. Sίf^ — ̂ g^+ is σ-compact.

Proof. This follows from the corollary of Theorem 7.

In the classical case of the unit ball in Euclidean space, the corre-
spondence between functions in £έf+ — J%f+ and measures is one-to-
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one. The proof uses the specific form of the Poisson kernels [18, p.
143, 144], The uniqueness of a representing measure v is of course
equivalent to the non-existence of a nontrivial measure orthogonal to
all the functions ze A. Restated, the measure corresponding to a
function in J%f+ — ̂ f^ is unique if the linear span of A is uniformly
dense in C. We incorporate this hypothesis in the next theorem to
make the statement explicit for the classical case.

THEOREM 9. // the linear span of A is uniformly dense in C,

then the isomorphism v-^\Pdv is a homeomorphism of C* onto

Proof. As noted above the hypothesis contains the assumption
that the mapping is one-to-one. Since this isomorphism maps the
compact M-ball of C* onto the compact set <%% it is sufficient to
show the mapping is continuous in either direction. We will show
the mapping v—* v from £έf+ — J%f+ to C* is continuous. Let va—*v
in the topology ^ , and let va, v be the corresponding measures. Then

\zdvΛ-+\zdv for all zeA. Since the linear span of A is uniformly

dense in C, we have \gdvΛ—*\gdv for every continuous g, or va-+v

in ^~*.

COROLLARY. The extreme points of £ίfx are the functions ± P ( , θ)9

for θ e Γ.

Proof. These are the images under the isomorphism above of
the unit point masses on Γ which are the extreme points of the unit
ball of C*. (The positive extreme points are the minimal positive
harmonic functions of R. S. Martin [15].)
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SUPERADDITIVITY INEQUALITIES

E. F. BECKENBACH

l Introduction^ In the theory of analytic inequalities, a principal
tool is the notion of convex function [6, 1]. A hierarchy of convexity
conditions, useful in this theory, can be expressed as follows: Let
J£α(α, b) denote the class of functions p that are positive and continuous
on an interval a ̂  x gΞ b and such that sign (x) [pix)]* is convex on
{a, b] if a Φ 0, and log p{x) is convex on [α, b] if a — 0; then for all
real a and β with β > a we have K\a, b) c Kβ(a, b) [8],

A different sort of hierarchy has been established by Bruckner
and Ostrow [3]. In the present paper we are concerned with an
illustration and some applications of this latter hierarchy. To describe
it, we need a few definitions.

2. Definitions* Let K(b) be the class of real-valued functions /
that are continuous and nonnegative on a given closed interval
0 ^ x g b and vanish at the origin, /(0) = 0.

The average function F of a function feKφ) is the function
FeK(b) defined by

F(x) = l-\Xf(t)dt , 0 < x ̂  b ,
X Jo

F(0) = 0 .

The function feK(b), with average function F, will be said to be of
class

Kλ(b) if and only if / is convex on [0, &], i.e., if and only if for
every x and y e [0, 6], and for every a, 0 gΞ a ̂  1, we have

(1) f[ax + (1 - a)y] £ af(x) + (1 - a)f(y)

!£>(&) if and only if FeK^b);
Kz(b) if and only if / is starshaped (with respect to the origin)

on [0, 6], i.e., if and only if for every x e [0,6], and for every
oc, 0 S oc ̂  1, we have

(2) f(ax)^af(x);

K4(b) if and only if / is superadditive on [0, 6], i.e., if and only
if for every x and y e [0, b] such that also (x + y) e [0, 6] we have

Received August 27, 1963. The preparation of this paper was sponsored by the
Office of Naval Research. Reproduction in whole or in part is permitted for any
purpose of the United States Government.
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(3) f(χ + v)^f(χ)

Kδ(b) if and only if FeKM;
KM if and only if FeKM
If feK2(b), KM, or KM, then / is said [3] to be, respectively,

convex, starshaped, or superadditive on the average on [0, &].
If feKiψo), then clearly fzKM for all positive b < b0.

3. The hierarchy* The following class-inclusion implications have
been established by Bruckner and Ostrow [3]:

KM c KM c KM c KM c KM c KM .

They have further given examples to show that none of the
reverse implications are valid; i.e., they have given examples showing
that

(4 ) KM ς£ KM, K-0{b) qL KM, KM £ KM, KM qL KM, KM £ KM .

Thus they have pointed out that the function / defined on [0, 1]
by

f(χ) ΞΞ X2 — X3

is convex on the average on [0, 4/9] but convex only on [0, 1/3], that
the function g defined on [0, oo) by

<x\ 0 ^ x ^ 1 ,

\χ, x > 1 ,

is starshaped on [0, b] for an arbitrarily large value of b but convex
on the average only on [0,1], that the function h defined on [0, oo)
by

h(x) = n + (x — nf, n ^ x < n + 1 , n = 0,1, 2, ,

is superadditive on [0,6] for an arbitrarily larger value of 6 but
starshaped only on [0,1], etc.

It is our purpose first to use a single illustrative function / and
its average function F to establish the fact that none of the fore-
going reverse implications hold, and secondly to derive some general
inequalities for convex, starshaped, and superadditive functions and
to apply them to our particular illustrative functions.

4. Example, From

F(x) = λ\Xf(t)dt , 0 < x ^ b ,
X Jo
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we obtain

F'(x) = ±-f(x) - ±[f{t)dt = i-[/(x) - F(x)] ,
X X2J0 X

whence

( 5) f{x) = F(x) + xF\x) .

We might call / the inverse average function of F.
Let us consider the function F defined on [0, oo) by

( 6 )

Then

<7)

(5) gives

/(O)

F(x)

- ( *

= 0.

—

+

0 .

0

f

< X <

0 < x

CO ,

<

In the following Sections 5-9 we establish the maximum values
hi such that the function / defined by (7) is of class K^b^, i —
1,2, . . . , 6 .

5* Convexity• A function / of class C" is convex on an interval
if and only if we have f"{x) ^ 0 throughout the interval.

For the function / given by (7), a computation yields

f»(x) = .1(1 -
x

Accordingly, feK^b) for

but for no larger value of 6. The function is concave on the interval
11/3, oo).

Similarly, for the function F given by (6), we have

F"(x) = 1 ( 1 - 2x)e~1Ix .

Thus the maximum interval of convexity of F is [0,1/2], and F is
concave on the interval [1/2, co). Therefore feK2(b) for

Δ
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but for no larger value of 6.
A function that is convex on a left-hand portion of its interval

of definition, and concave on the complementary right-hand portion,
is said to be convexo-concave [1], Thus both the function / given by
(7) and the function F given by (6) are convexo-concave on the
interval [0, oo).

6* Starshapedness• A function / of class C", fe K(b), is starshaped
on the interval [0,6], i.e., feK3(b), if and only if f3]

f(x) ^ IM for all x e (0, 61 .
x

For the function / given by (7), we have

f(z) - (
X X3

whence it follows that / e K»{b) for

(10) b = 63 = V T

but for no larger value of b.
Similarly, for the function F given by (6) we obtain

F'(x) - ΪM = JL(1 - a)*-*/- ,

so that feKδ(b) for

(11) 6 - 6 5 - I ,

but for no larger value of 6.
Thus it happens that the maximum interval of starshapedness of

the function / forms a golden section [7] of the maximum interval
of starshapedness of the function F.

7 Superadditivity* Tests for superadditivity appear to be difficult
to establish, and more difficult to apply. None are given, for
example, in the treatments [5] and [9] of superadditive functions. A
few tests, however, have been advanced by Bruckner [2]; see also
§ 14, below. One of Bruckner's tests, which we shall use in order
somewhat to shorten our determination of the maximum interval of
superadditivity of the function / given by (7), and of the function
F given by (6), can be stated as follows:

BRUCKNER'S TEST. Let the function feK(b) be convexo-concave*
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Then f is superadditive on [0, 6], i.e., feK4(b), if and only if

f(j + *)+ f(j -ή< fΦ) for all x e [o, A] .

In §§ 8 and 9, below, we shall prove the following results:

THEOREM 1. The function f, defined by

f(x) = (l + —V1'* , 0 < x < co ,
\ X '

/(0) = o,

is superadditive on [0, b] for

0 < b ^ 6* ,

where b* is the unique positive solution of the transcendental equation

2 β ~ 1 / δ - 1

(approx. 6* = 0.8955), but for no larger value of b.
That is, the function / e K4(b) for

(12) b = b4 = 6* - 0.8955 ,

but for no larger value of 6.

THEOREM 2. The function F, defined by

F(x) = e-1/a: , 0 < x < oo ,

- 0 ,

is superadditive on [0, b] for

10 < b ^
log 2 '

but for no larger value of b.
That is, the function feK6(b) for

(13) b = b6 = log 2 '

but for no larger value of b.

8. Proof of Theorem 2. The method of proof we shall use is
largely the same for both theorems. Since the formulas are simpler
and the details shorter for Theorem 2, we shall treat it first and
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then follow substantially the same pattern for Theorem 1.
Relative to the function F given by (6), consider the function G

defined for b e (0, oo) and x e [0, δ/2] by

G(x; b) = e~
llw+x) + β"1"4 '1-' - e~1!b , XΦ — ,

2(14)

In accordance with Bruckner's test, we shall establish the maximum
interval [0, b] of superadditivity of the function F by determining
the maximum value 6 such that

G(x; b) S 0 for all x e Γo, A l .
L Z J

In particular, for F to be superadditive on [0, 6], it is necessary
that we have

(15) G(0; b) = 2*r2/δ - e"1/δ ^ 0 ,

or

log 2 - | . ^ —Γ

whence

° Iog2

Hence the function F is not superadditive on [0, b] for any
b > δ6. We shall show, however, that F is superadditive on [0, δ6]
(and therefore, of course, on [0, b] for every positive b < δ6). That
is, we show that

(16) G(x; δ6) ^ 0 for all x 6 Γo, -^1 .

By (14), we have

(17) G ( - | ; 6.) = 0 ,

and by the choice of 66 we have also

(18) G(0; 6β) = 2<r2/66 - e~1!h* = 0 .

We shall prove somewhat more than is needed for what is claimed
in Theorem 2; namely, we shall show that we have not merely (16)
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but actually the strict inequality

(19) G(x; bβ) < 0 for all x e (o, ^) .

In § 11, below, we shall make essential use of the fact that this is a
strict inequality.

If (19) did not hold, then, by (17) and (18), G(x; δβ) would attain
a nonnegative maximum value at some interior point x0 of (0, 6β/2).
At x0 we would have

1 ^ x) _ Q

da? (66/2 + α;)2 (66/2 - xf

and therefore we would have

(20) G(x0; δβ) = Φ(x0) ^ 0 ,

in which the function Φ is defined by

Φ(x) =

The function 0 is more tractable than the function G, in t h a t it
permits us rigorously to establish the transcendental inequality (19)
by investigating only a quadratic function. We shall show t h a t we
have

(21) Φ(x) < 0 for all x e (o, ΪΛ ,

thus contradicting (20) and establishing the theorem.
A computation yields

dx (6β/2 + xf

where Q is the quadratic polynomial function defined by

(23) Q(x) = (1 + log 2)x2 - (1 - log 2)(^J.

Since

Q(0) = - ( 1 - log

and the coefficient of cc2 in (23) is positive, it follows that Q(x) has
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precisely one zero on (0, bj2), actually at

r _ h j l - log 2

being negative on (0, x0) and positive on (x0, 66/2). Accordingly, by
(22), Φ(x) is strictly decreasing on (0, x0) and strictly increasing on
(x0, 66/2), whence the desired inequality (21) follows from

W> = #(fJ=O.

9* Proof of Theorem 1Φ In place of the function G of § 8,
relative to the function F given by (6), we now consider, relative to
the function / given by (7), the function g defined for 6e(0, oo) and
x e [0, 6/2] by

g(χ; 6) =
6/2 + x

To prove the theorem, we shall show that the maximum value 6
such that

g(x;b) SO for all xeΓθ,— Ί
ι_ ĵ J

is given by (12).
In particular, for / to be superadditive on [0, 6], it is necessary^

that we have

0(0; b) =

(25)
0 .

Now, as we see through differentiation, on [0, oo) the function a,,
defined by

a(b) = δ(2e-1/δ - 1) , 0 < δ < co ,
( 2 6 ) α(0) = 0 ,

is convex; a(b) is strictly decreasing from the value 0 at 6 = 0 to a.
negative value at the root 60 (approx. 60 = 0.60) of the transcendental
equation
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2
6 =

- 2 '

which expresses the relation da/db = 0, and then a(b) is strictly
increasing on [60, co).

On the other hand, the function β, denned on [0, co) by

β(b) = 1 - ie-v* , 0 < b < co ,
< 2 7 )

is strictly decreasing on its entire interval of definition.
Since

a(b0) < 0 and β(bQ) = 4 — ^ > 0 ,
1 + o0

it therefore follows from (25), (26), and (27) that the equation

<7(0; 6) = 0

has a single root b e (0, co), namely, at the solution

6 = δ4 = 6* = 0.8955

of the transcendental equation

a(b) = £(δ) ,

and that further ^(0; 6) satisfies the inequalities

0(0; b)< 0 , 0 < δ < 64 ,
( ^ <7(0;δ)>0, b>bA.

By (28), the function / is not superadditive on [0, b] for any
b > δ4; it remains for us to show that / is superadditive on [0, &J.

For this, it is sufficient that we establish the inequality

(29) g(x; &4) ̂  0 for all x e Γo, -^1 .

By (24), we have

<30) fl(| ; δ4) = 0 ,

and by the choice of b4 we have also

(31) ff(0; h) - e^l[bl2e-^ - 1) - (1 - ie'^ή] = 0

We shall prove that
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(32) g(x; 64) < 0 for all x e (o, M ,

thus establishing (29) and with it the validity of the theorem.
If (32) did not hold, then, by (30) and (31), g(x; δ4) would attain

a nonnegative maximum value at some interior point x0 of (0, 64/2).
At x0 we would have

X] O4) ^ 1 g-l/(64/2+aj) 1 g - l / ( 6 4 / 2 - « ) __ Q

da; ~ (64/2 + a;)3 (bJ2 - xf

and therefore

(33) g(x0; h) = φ(x0) 2= 0 ,

in which the function ψ is defined by

+

We shall show that we have

(34) φ(x) < 0 for all x 6 (o, -^) ,

thus contradicting (33) and establishing the theorem.
A computation yields

dx (bJ2 + x)5

where q is the cubic polynomial function defined by

KIT - d ) Ί - [-<!)' -KD"+(!)"]•
Since

and the coefficient of x5 in (36) is negative, it follows that q(x) has
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precisely one zero on (0, bJ2), say at x — xQ. Then q(x) is negative
on (0, x0) and positive on (x09 bJ2). Accordingly, by (35), φ{x) is
strictly decreasing on (0, x0) and strictly increasing on (x0, bJ2), whence
the desired inequality (34) follows from

= φ(^) = 0 .

10. The reverse implications. The numbers bi9 i — 1,2, , 6, as
given by (8)-(13), satisfy

δi-i <bl9 i = 2, 3, . . . ,6 ,

in accordance with the following table of approximations:

i

1

2

3

4

5

6

bi

0.3333

0.5000

0.6180

0.8955

1.0000

1.4428

Accordingly, since b{ is the maximum of all numbers b such that
the function / given by (7) is of class Kt(b), it follows that
but / ί Ki-iφi), whence

M ΐ = 2,3, . . . , 6 .

This establishes (4).

11. The sign of equality* In determining maximum intervals
of superadditivity, we have established the following results, except
for the specification of the conditions under which the sign of
equality holds.

THEOREM 3. With the notation of Theorem 1, we have

(37) f(χ + y)^f(χ)

for all nonnegative x and y satisfying

The sign of equality holds in (37) if and only if either at most one
of x and y is different from 0 or else
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THEOREM 4. With the notation of Theorem 2, we have

(38) F(x + y)^ F(x) + F(y)

for all nonnegative x and y satisfying

x + y ^ - ^ - .
log 2

The sign of equality holds in (38) if and only if either at most one
of x and y is different from 0 or else

1
x = y =

2 log 2

Proof. We have only to discuss the conditions under which the
sign of equality holds in (37) and (38).

To establish the validity of Bruckner's test, which we have used
in the proof of Theorems 1 and 2, we observe that if / 6 K(b) is
convexo-concave, then the difference

(39) lf(χ)+f(y)]-f(χ + y)

is either nonincreasing, or nondecreasing, or first nonincreasing and
then nondecreasing, in each of its variables, in the triangular region

x^O , 3 / ^ 0 , x + y Sb ,

and hence attains its maximum value either on the line x + y = b
or at the origin. For the functions with which we are dealing,
however, the above difference is either strictly decreasing, or strictly
increasing, or first strictly decreasing and then strictly increasing,
in each of its variables, except when the other is 0.

Hence, in applying Bruckner's test, the only points we have
bypassed at which the sign of equality might hold lie along the axes,
and thus the difference attains it maximum value only on the tri-
angular boundary.

The boundary consists of the segments 0 ̂  x ̂  biy 0 ̂  y ^ bi9

and the portion of the line x + y — b{ in the first quadrant, where
bi = δ4 = δ* and δ* = bβ = l/(log 2) for Theorems 3 and 4, respectively.
The difference (39), for the functions of Theorems 3 and 4, vanishes
identically on the axes, whereas on the interior of the remaining side,
by (18) and (19), and by (31) and (32), it vanishes at the midpoint and
otherwise is negative, as specified in the statement of the two theorem.

We note, in passing, that to establish Theorems 2 and 4 without
recourse to Bruckner's test, we might adjust the foregoing proofs as
follows. For any 6', 0 < b' ̂  66, by (14) we have

(40) G ( - | ; 6') = 0
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further, by (15), we have

(41) G(0; V) <£ 0 ,

with equality if and only if V = 6β. The proof of (19) can now be
extended to give

(42) G(x; V) < 0 for all x e (o, —) .

The conclusion of Theorems 2 and 4, including the condition for
equality, follows from (40), (41), and (42). Analogous remarks hold
for Theorems 1 and 3.

12* Superadditivity inequalities* Let feK4(b). An immediate
induction on (3) yields

(43) ±f{xd £ f(± xλ, O^x^b, ΣiX^b.

Since, by definition, any function /eiΓ4(6) is nonnegative, it
follows from (3) that / is nondecreasing. Therefore, by (43), we have

(44) έ / f o ) ^ / W f O^Xi^b, ± x^ b .

Thus, for example, for positive numbers xi9 i — 1, 2, , n9 n ^ 1,
such that

(45) gixi = xo£b*,

by Theorem 3 we have

ί = i

with equality if and only if either (a) n = 1, or (b) n — 2 and

Xl = x2 = 6*/2.

Also, for positive numbers x{ satisfying (45), we have the weaker
inequality

with equality if and only if either (a) n = 1 and xλ = &*, or (b) n = 2
and Xi = x2 = 6*/2.

Similarly, for positive numbers xi9 i = 1, 2, •••, w, such that
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<=i * log 2 '

we have

n
^p β—ijxi <; β—i/χo < g—log 2

with analogous conditions for the sign of equality to hold.

13* Whittaker's inequality* If, for any number a > 1, in the
foregoing discussions we substitute xβoga for x, then we obtain the
following results:

The function faf defined by

fa(χ) = a~llx( 1 + — log a) , 0 < x < oo ,
V x /

Λ(0) - o,

is convex on the interval [0, (1/3) log a], starshaped on the interval
[0, (l/2)(τ/ΊΓ— l)logα], and superadditive on the interval [0, 6* logα].

The function Fa, defined by

Fa(x) ΞΞ a-1'* , 0 < x < oo ,

Fa(0) - 0 ,

is convex on the interval [0, (1/2) log a], starshaped on the interval
[0, log a], and superadditive on the interval [0, Iogα/log2].

In particular, the function F2 is superadditive on the interval
[0,1]. Therefore, for positive numbers xi9 ί = 1, 2, , n, n ^ 1,
such that

(46) Σχi = x°^1>

we have the inequality

n

and the weaker inequality

(4/) £j Δ % ^ Δ .

Substituting 1/(1/4 + 1) for α, in (46) and (47), we obtain the
following result:

If the nonnegative numbers yif i — 1, 2, , n, n ^ 1, are such
that
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then

(48)

we have

n

Σ
i — l

1

n

Σί

1
+ Vi

r-vi <

with equality if and only if either (a) n = 1 GWMZ 2/! = 0, or (b)
M O fiΎ) iΊ 11 Ot —— 1
it/ £< VΛ/it/VΛ/ (J2. 02 •*•

The relation (48) is Whittaker's inequality [10, 4].

14. The method of Boas. The following sufficient condition for
superadditivity was suggested to the author by R. P. Boas in personal
correspondence:

BOAS'S TEST. If the function feK(b) is of class C", and there
are numbers a <£ 6/2 and c ^ a such that

( i ) f is star shaped on [0, 2α],
(ii) f is concave and satisfies f(x/2) ^ (1/2)f(x) on [c, 6],
(iii) /'(0) < f'(b),
(iv) f'(x) — /'(6 — a?) has at most one zero in (0, α),

then f is superadditive on [0, 6].
The validity of the test can be established by considering sepa-

rately the following three cases:

(ii) x ^ a, y ^ a, x + y^b,
(iii) x < a <y < 6, x + y ^ δ.
Boas has observed that his test applies to such convexo-concave

functions, or functions having ogive-shaped graphs, as e~~ιlx<* for
0 < a ^ 1, log (1 + xk), and arc tan xλ, yielding intervals of super-
additivity and consequent inequalities typified by the inequality of
Whittaker given in § 13, above.

A systematic tabulation of maximum intervals of superadditivity
of such functions, of their average functions, and of their inverse
average functions, might well be desirable.

15. Combination inequalities* If the function / is convex for
x e [α, 6], then, by Jensen's inequality [6,1], for any numbers

άi fc [a-, uj , % — ±, Δ, , n ,

and any weights

ai9 <*i > 0, Σ <*i = 1 ,
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we have

(49)

This inequality is an extension of the defining inequality (1).
Analogues of the inequality (49), for functions of the sort treated

in this paper, are given in the two theorems that follow.

THEOREM 5. If the function feK(b) is convex for x e [0, α] and
star shaped for x 6 [0, 5], b > α, then for any numbers

α4e[0,&], i - 1 , 2 , . . . , ft,

and any weights

ai,cti>0, g α 4 = 1,

we have

(50) f(± ± aiXλ rg ± ± a{f(x%) .

Proof. Since the numbers »< satisfy 0 ^ Xi ^ 6, we have 0 ^
α^Jδ ^ α, so that Jensen's inequality (49) can be applied for the
numbers axjb, yielding

(51) / ( Σ α* T x<) ^ Σ α*/(χ »*)

Now since 0 ^ a?< ̂  δ, and α/δ < 1, the defining inequality (2)
for starshapedness gives

(52) f(±x^j £ ±f(Xi) , i = 1, 2, , n ,

and (50) follows from (51) and (52).
For example, for the function / defined by (7) we have a = 1/2,

6 = 1, so that for positive numbers αsf ^ 1 and weights ^ we have

THEOREM 6. // ίfce function feK(c) is convex for x e [0, α],
starshaped for x e [0, 6], α^d superadditive for x e [0, c], c > b > a,
then for any numbers

^ e [ 0 , b] , i = 1,2, . . . , t t f
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(53) Σ «» = c0 ^ c ,

(54) f(ψ) = f(« ±xt)*-£- ±Λxd £ - f f(± x<

on on

Proof. By (50), we have

(55) f(<L±Xi)^<L
\ bn ί=i / bn

and from (43) and (53) we obtain

(56) Σ / ( * i

whence (54) follows from (55), (56), and the fact that / is a non-
decreasing function.

By way of illustration, for positive numbers xt^l satisfying

Σ Xi =
°~ Iog2 '

we have both lower and upper bounds for

given by

e-2n/c0 = e χ p jz2% ^ 1 j . β_i/.4 ^ 1 e χ p

β-V

For a function having a relatively longer interval of superadditivity,
a more useful inequality would result.
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THE SIMPLE CONNECTIVITY OF THE SUM
OF TWO DISKS

R. H. BING

1. Introduction* The following question was called to the
author's attention several years ago by Eldon Dyer.

Question. Is the sum of two disks simply connected if their
intersection is connected?

Later, the author saw a communication in which an erroneous proof
was given that Example 1 of the present paper is not simply con-
nected. We show in §2 that Example 1 is simply connected. How-
ever, we give some examples (Examples 2, 3, 4) in §§3, 4, 5 that
are not simply connected.

A topological characterization is given in § 4 of intersections that
will prevent closed curves which finitely oscillate between two disks
from being shrunk. If the intersection is snake-like or arcwise con-
nected, such finitely oscillating curves can always be shrunk but there
are examples in which infinitely oscillating curves cannot. It is the
topology of the intersection which prevents the sum of two disks
from being simply connected rather than the embeddings of the
intersection in the disks as shown in §§4 and 5. In fact, as pointed
out in §6, much of what we have learned about the sums of disks
applies to the sums of continuous curves.

We use Example 1 in § 7 to construct a peculiar group and show
that a certain relation kills it.

All sets treated in this paper are metric.
Let In denote an n-cell and Bd In its boundary. A set A is

n-connected if each map (continuous transformation) / of Bd In+1 into
A can be extended to map In+1 into A. We say that f {Bd In+1) can
be shrunk to a point if the map can be extended. A set is called an
ε-set if its diameter is less than or equal to ε. A set A is n-ULC if
for each ε > 0 there is a δ > 0 such that each map of Bd In+1 onto a
δ-subset of A can be shrunk to a point on an ε-subset. A compact
continuum is called a continuous curve if it is Q-ULC. A set is
simply connected if it is 1-connected. It is uniformly locally simply
connected if it is 1-ULC. We shall not treat higher types of con-
nectivity in this paper.

We find it convenient to consider an abstract disk D rather than
the square P. A map of Bd D is a closed curve. If h is a homeomor-
phism, h(BdD) is a simple closed curve.

Received March 6, 1963. Research supported by NSF grants NSF-G21514 and NSF-
G11665.
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We shall use cylindrical coordinates (p, θ, z) to describe examples
in Ez (Euclidean 3 space). If no z coordinate is given, it is under-
stood that z = 0. When we use D alone without subscripts it i&
understood that we mean the unit disk (p ^ 1) in the z = 0 plane.

Let / be a map of Bd D into E2 so that the p value of each
point of f(Bd D) is positive. Let k(θ) be a map of the reals into
the reals such that k(θ) mod 2π is the θ value of /(I , θ). We say
that / circles the origin n times if k(2π) — k(0) = 2πn.

2* A false example* Let α, b be fixed numbers with 0 < a < b < 1
and Kx be a spiral connecting the circles p = a and p ~ b as shown
in Figure 1 and given by the following formula.

Figure 1

= <*, δ, or (6 + aeθ)/(l + <>} .

M. K. Fort showed [3] that any bounded plane continuum which ha&
Kx as a continuous image separates the plane.

EXAMPLE 1. Let Dx be a disk in Ez defined by

A = {(ft θ, z)IP ̂  1, s = distance from (p, θ, 0) to
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Let A be the reflection of A through the z = 0 plane. Then A + A
is the sum of two disks whose intersection is the connected set Kx.

THEOREM 1. Example 1 is simply connected.

Proof. Let / be a map of Bd D into A + D2. We show that
A + A is simply connected by showing that / can be extended to
map D into A + A

With no loss of generality we suppose that the p value of each
point of f(Bd D) ^ a.

Special case. (The θ value of each point is fixed under / and
the p value of each point of f(Bd D) < 6.) In this special case we
start by extending / to the circle p = a by insisting that / is fixed'
on this circle.

For each point q = (1, θq) of Bd D such that f(q) e Kl9 let Sq be
the spiral from q about the circle p — a described by the formulas
p^l, p = (2-a + ae{θ-θ^)l(l + e^-^), θq ^ θ. Let / be extended
to map Sq into Kx so that / preserves the θ value of each point of
Sq. This extension is made for each such spiral Sq for each point q
of Bd D such that f{q) e Kx. Note that we have mapped a closed
subset of D into Kx and each component of D — f~\Kl) other than
the interior of p = a intersects Bd D in an open arc.

Let gx be the map of f~\Kx + A . f(Bd D)) = /"'(A) into A
given by extended /. Then gx can be extended to take D into A
For convenience we also call this extended map gx. Similarly there
is a map g2 of D into A such that g2 = / on f~\Kx + A f(Bd D)) =
f~\D2). Let g be the map of D into A + A given by g1 on each
component of D — /"^(Jζ) which has an arc which goes into A under
/ and g = #2 on the rest of Zλ

Less special case, (f circles the origin once and the p value of
each point of f(Bd D) is less than b.) We show that there is a
homotopy ht(0 ^ t ^ 1) of Bd D into A + A such that fe0 = /, hλ

preserves the θ value of each point of Bd D while the p value of
each point of hx(Bd D) is less than b. The less special case then
follows from the special case.

Let k(θ) be the function that shows that / circles the origin
once. For convenience we suppose that k(0) = 0, k(2π) — 2π. Let
kt(θ) = t0 + (1 - t)k(θ)9 (0 ^ t ^ 1). As ί goes from 0 to 1, fc«(0)
goes from &(#) to θ. For each point p = (1, 0P) of f~\K^) we define
fct(j)) as a point in l^ so that the θ value of ht(p) is A X^p). The ^
value of ht(p) is uniquely determined since the three arc components
of Kx are 1-manifolds almost normal to lines through the origin.
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The homotopy ht o n / - 1 ^ ) is extended to Bd D so that ht(p) e Di (i = l, 2)
if f(p) e Di9 hλ preserves the Θ value of points of BdD and the value
of each point of hx(Bd D) is less than b.

The following version of the less special case follows by a similar
argument.

Alternative less special case, (f circles the origin once and the
value of each point of f(Bd D) is greater than α.)

General case. We suppose that f(Bd D) intersects the
spiral of K± in at least three points. Subdivide Bd D into arcs
a?i»2, α?2a?8, , #»#i(w Ξ> 3) so that no f(XiXi+1) (addition on subscripts
is mod n so that xnxn+1 = xnXj) intersects both circles in Kx but each
f(Xi) is on the spiral of Kλ. Let xfox^ be the chord in D from x{ to
xi+1.

Extend the map / of Bd D into D± + D2 to map the chord
XiZiXi+1 into A so that /(a^α^) misses the circles in Kx and / on
XiXi+x+XiZiXi+x circles the origin once. It follows from applications of
the less special case and its alternative form that we can extend /
to take the interiors of the (XiXi+1 + XiZiXi+iys into Dx + D2. We
can then extend / to the disk in D bounded by the chords into Dλ.

3. A true example* Let C be a Cantor set on the numbers
between 1/2 and 1. Let K2 be the set in the plane consisting of the
sum of circles in the plane with centers at the origin and radii in
C and spirals joining adjacent circles as shown in Figure 2 and given
by the following formula.

K2 = {(ft θ)lp e C or p = (b + aeθ)l(l + eθ)}

where a, b are adjacent numbers of C with a < b.

EXAMPLE 2. Let E1 be the disk in E2 defined by

Ex = {(ft θ, z)lp ^ 1, z = distance from (ft θ, 0) to K2} .

Let E2 be the reflection of Ex through the plane z = 0. Then Ex + E2

is the sum of two disks whose sum is the connected set K2.
Before proving that Example 2 is not simply connected we in-

vestigate an interesting property of K2. M. K. Fort, Jr. showed
[3] that any compact continuum in the plane separates the plane if
it maps onto Kx. We modify his argument slightly to show the
following.

THEOREM 2. // / maps a closed bounded connected subset of the
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Figure 2

plane onto K2 then for each circle J in K2y each component of f~~\J)
separates the plane.

Proof. Let S1 be the circle p = 1 and define g: K2 —> S1 by
g(p, θ) = (1, θ). It is easy to verify that (K2, S\ g) is a locally
trivial fiber space with totally disconnected fibers.

Suppose X is a component of f~\J) that does not separate the
plane. There is a homotopy pulling the map gf of X into S1 to a
constant map. Since S1 is an ANR there is a neighborhood N oΐ X
such that the map gf of iV f~\K^) into S1 is homotopic to a con-
stant map. Take ΛΓ so close to X that N does not cover f~\K2).

Let F be a continuum in f~\K2) irreducible from E2 — N to X.
Note that F c AT, Γ X Φ 0, and Γς£ X It follows from the lemma
on page 542 of [3] that f(Y) is contained in an arc component of
K2. This violates the condition that the arc component of K2 con-
taining J does not intersect K2 — J.

THEOREM 3. Example 2 is not simply connected.

Proof. Let x and y be points on the inner and outer circles in
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K2 and xz{y be an arc in Έ{ from x to y. Let / be a map of Bd D
onto xzxy + xz2y so that the upper half of Bd D goes homeomorphically
onto xzM and the lower half of Bd D goes homeomorphically onto
xz2y. We show that Example 2 is not simply connected by showing
that / cannot be extended to map D into E1 + E2.

Assume that / can be extended to send all of D into Ex + E2.
We show that under this false assumption that p = (1,0,0) and
q — (1, π, 0) belong to the same component of f~\K2). If they did
not belong to the same component, it follows from Theorem 14 on
page 171 of [6] (Theorem 10 on page 185 of 1932 edition) that there
is a simple closed curve J in the plane z — 0 which misses f~\K2)
and separates p from q in this plane. There would then be an arc
A in J D that intersects both the upper and lower halves of Bd D.
This is impossible since / takes the upper half of Bd D into Eλ and
the lower half into E2 but no point of A into Ex E2 = K2.

Let Y be the component of f~\K2) containing p and q. Let Z
be a subcontinuum of Y irreducible from p to q. Note that / maps
Z onto K2.

If F is a subcontinuum of Z which separates the plane E2, no
bounded component of E2 — F intersects Z since Z is irreducible
from p to q and neither p nor q is in a bounded component of
E2 — F. Hence Z does not contain uncountably many mutually ex-
clusive subcontinua each of which separates E2. This contradicts
Theorem 2 which says that for each circle J in K2, Z f~\J)
separates E2.

4. Finitely oscillating curves* A map of a simple closed curve
J into the sum of two disks has only finite oscillation with respect
to the two disks if J is the sum of a finite number of arcs such
that the image of each lies in one of the disks. In some examples
(Examples 3, 4, 5 to follow) finitely oscillating curves can be shrunk
to points but some others cannot. The proof of Theorem 3 showed
that Example 2 contained a finitely oscillating curve which could not
be shrunk to a point.

We shall show that whether or not all finitely oscillating curves
in the sum of two disks can be shrunk to points in the sum is
dependent on whether or not the intersection has a certain extremal
inverse property. A set X has the extremal inverse property with
respect to its points p, q if there is a continuum Z in disk D with
points p', qr on Bd D and a map of Z into X that takes p', q' to
p, q respectively.

Let iΓ3 be the sum of a triod T and a spiral S about T as shown
in Figure 3 and given by the following equations.
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T

Figure 3

T = {(p, θ)lp g 1, 0 = 0, 2τr/3, or 4ττ/3} ,
S - {(/o, θ)lp = | cos 30/2 |β + 1/5, 0 ^ 2π} .

EXAMPLE 3. Let Dl9 D2 be two disks whose intersection is K3.

THEOREM 4. Ks has the extremal inverse property with respect
to each pair of its points.

Proof. We consider only the case where pe T and qe S. Let
S' be another spiral about T which misses S,f be a retraction of
S' + T onto T, and pf be a point of S' that maps onto p under / .
Extend / to the identity on S + T. There is a disk containing
T + S + S' which has pτ and q on its boundary.

THEOREM 5. Each snake-like continuum has the extremal inverse
property with respect to each pair of its points.

Proof. Apply the following result to a subcontinuum of the
snake-like continuum irreducible between the two points under con-
sideration.

THEOREM 6. Each snake-like continuum is the image of a
pseudo-arc.
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Proof. This theorem has been proved by each of Fearnley [2],
Lelek [4], and Mioduszewski [5] but we include a slightly different proof.

Let A, A, be a sequence such that A is a 1/i chain properly
covering snake-like continuum X and such that A+i is a refinement of
A It follows from Theorem 7 of [1] that if P is a pseudo-arc there is
a sequence of proper open coverings Elf E2, of P such that Et has
the same number of links as A and for the ith link of A+i there is
an integer n(i, j) such that the ith link of A+i lies in the n(i, j)th
link of A and the jth link of Ei+1 lies in the n(i, j)t\i link of E{.

For each point p of P let e(p, i) be the sum of the links of Et con-
taining p and d(p, i) be the sum of the corresponding links of A Note
that e(p, ί + 1) c e(p, i) and d(p, i + 1) c c?(p, i). For each point p of
P let f(p) be the intersection of the closures of d{p, i)'s. Then / is
a continuous transformation of P onto X.

THEOREM 7. // α se£ /&αs the extremal inverse property, so does
each of its continuous images.

THEOREM 8. Each arcwise connected set has the extremal in-
verse property with respect to each pair of its points.

Note that the following theorem applies to simply connected and
uniformly locally simply connected continuous curves as well as merely
to disks.

THEOREM 9. Let Alf A2 be two compact sets each of which is
O-connected, 1-connected, 0-ULC, and 1-ULC. A necessary and
sufficient condition that each finitely oscillating curve with respect
to Alf A2 can be shrunk to a point in A1 + A2 is that Aλ A2 has the
extremal inverse property with respect to each pair of its points.

Proof. If A1 A2 does not have the extremal inverse property
with respect to point x, y of Ax A2, let / be a map of Bd D into
Ax + A2 such that the upper half of Bd D goes into a path in Ax

from x to y and the lower half of Bd D goes into a path in A2 from
x to y. It follows from the proof of Theorem 3 that f(Bd D) cannot
be shrunk to a point in A1 + A2.

To prove the sufficiency case consider a map / of Bd D into
Aλ + A2 so that Bd D is the sum of arcs xxx2, x2%s, , # A so that
each f(xi) lies on Ax A2 and each /(α?ia?i+1) lies in one of Al9 A2.
Just as we used chords in the general case of the proof of Theorem
1, we consider continua Zl9 Z2, , Zn in D so that Z< contains xt and
xi+1 and / can be extended to take Zx + Z2 + + Zn into Ax- A2.
Then as in the proof of the General Case of the proof of Theorem 1
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we extend / to take the components of D — (Z± + Z2 + + Zn)
which intersect Bd D into the appropriate one of Al9 A2 and then
extend / to take the rest of D into Ax. To extend / to take D into
Ai for example, one would add a null sequence of arcs in D to
Zx + Z2 + " - + Zn to get a set ZQ so that D — ZQ is a null sequence
of open disks, use the fact that Ai is O-connected and 0-ULC to
extend / to Zo, and finally use the fact that Ai is 1-connected and
1-ULC to extend / to take D into A{.

THEOREM 10. Suppose Dlf D2 are two disks whose intersection
is a continuum X and axb is an arc in D1 that intersects X only
at a and b. If f is a map of Bd D into Dλ + D2 such that f takes
the upper half of Bd D onto axb and the lower half into D2, then
f(Bd D) can be shrunk to a point in Dx + D2.

Proof. Since X has the extremal inverse property with respect
to a and b as shown by its embedding in Dlf there is a continuum
Xf in D intersecting the inverses under / of a and b such that /
may be extended to Xr + Bd D. Then / is extended to take the
part of D in component of D — Xr that contains upper arc of Bd D
into A and the rest of D into D2.

Question. The question suggests itself as to which continua have
the extremal inverse property with respect to each pair of their
points. Example 2 does not have it. Example 1 and 3 do. So do
Examples 4 and 5 to be given in the next section. Perhaps Example
2 is unnecessarily complicated as an example of a continuum without
the extremal inverse property in that it separates the plane into
infinitely many pieces. Perhaps there is an example that does not
separate the plane. Does each three branched tree-like plane continuum
have the extremal inverse property with respect to each pair of its
points? (A compact continuum is a three branched tree-like continuum
if it is not snake-like but for each positive number ε it has an
ε-cover whose 1-nerve is a triod.)

5 Infinite oscillation* We use rectilinear coordinates to define
the two sets shown in Figures 4, 5.

KA = {(a?, y)l(x = 0,-2^y^2),(y = l + sin I/a?, 0 < x rg 1) ,

or (y = - 1 + sin I/a;, - 1 ^ x < 0)} .

K5 = sum of points of K3 on or to the left of the vertical line
through (1, 0) plus the interval from (1, 0) to (1,1).

Theorems 5 and 8 show that iΓ4 and K5 have the extremal
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Figure 4

Figure 5

inverse property with respect to each pair of their points. It follows
from Theorem 9 that finitely oscillating curves in the following two
examples can be shrunk to points in the examples.

EXAMPLE 4. Two disks sewed together along ϋΓ4.

EXAMPLE 5. Two disks sewed together along Kδ.

THEOREM 11. Examples 3, 4, 5 are not simply connected.
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We only prove the first third of this theorem since the other
parts are analogous. We suppose that the disks Dl9 D2 of Example 3
are obtained by pushing parts of a circular disk in the z = 0 plane
up and down respectively as done in Examples 1 and 2. Theorem 13
shows that there is no loss of generality in supposing this. The
disks would be larger than those in Examples 1 and 2 since KB is
larger than those disks.

Proof that Example 3 is not simply connected. Let alf a2,
be the points of K3 on the open ray θ = ττ/3 ordered inversely accord-
ing to their distances from the origin q0. Let bu b2, be the
corresponding points of K5 on the open ray θ = π and cu c2, be
the corresponding points on the ray θ = 5π/3.

Let Pi be the point of Bd D whose θ value is 1/i. Let p0 be the
point of Bd D whose θ value is 0. Use p$ά to denote the arc on
Bd D in a clockwise direction from p4 to Pj.

Let / be a map of Bd D into A + A satisfying the following
conditions.

f(Pj) = Qo (origin) (j = 0, 2, 4, 6, .) ,

f(Pei-ύ = bi ,
f(Pβi-i) = Ci ,

/(ί>2i-22>2i-l) C A ,

f(V2i-lP2i) C A .

The 0 value on each f(PiPi+1) is a constant and / takes the 0 values
of PiPi+1 linearly onto the p values of f(PiPi+1).

Assume / can be extended to take D into A + A We call the
extended map /. In this extension we suppose that no component of
f~\Qo) separates the z = 0 plane. (If a component X did separate
the plane, we could modify / to map X plus each of its bounded
complementary domains in z = 0 into q0.)

Let F be the part of A + A whose /> value is less than or equal
to 1. A finite number of spanning arcs in D separates p0 from
f~\D1 + D2 — F) in D so that no one of the arcs intersects f~\q0).
Hence, we can cut down the disk D to a disk E such that E agrees
with D i n a neighborhood of po,f(E)c:F, each point of Bd E f~\qQ)
lies on Bd D, and E agrees with D in a neighborhood of each such
point. Let Z be the closure of Bd E - Bd D. Note that qo$f(Z).
We shall obtain a contradiction to the assumption that / can be
extended to take D into A + A by showing that the map / o f JBcZ E
into i*7 cannot be extended to take E into F.

With no loss of generality we suppose that p09 pu p2, all
belong to Bd E. Note that no component of E-f~\K3) intersects
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two Pi's unless perhaps they both have even subscripts since no two
of al9 α2, , bl9 b29 , cl9 c2, belong to the same component of
Kd F. For i odd, the component Y{ of E f~\K^) containing pi

separates Bd E since f(Bd E) crosses from A to A at f(Pi). Since
Bd D intersects Y{ in at most a finite number of points and f(Bd D)
does not cross from A to A at the image of any of these points
other than pif Yi must intersect Z. Let q{ be a point of Yt Z.

Note that since al9 a2, , 6^ 62, , cl9 c2, belong to different
components of F K39 Y{ Φ Y3 if i, i are different odd positive integers.
Let gΌo be a limit point of ql9 q39 g5, . Since for i sufficiently large
Yi+2 separates Yt from p0 in E, ql9 q3, converges to q^ from the
clockwise side. Since q^ is a limit point of each of ΣYu_δ9 ΣYU^9

2Tβ 4_ l f then /(g..) is a limit point of each of /(2T 6 ΐ_ 5), /(2T 6 i_ 3),
f(ΣYti-ύ The only point common to the closures of these sets is
the point q0, so /(goo) = q0. However, f(qoo)φq0 since q^eZ and

THEOREM 12. T%β s^m o/ ί^o disks is simply connected if their
intersection is connected and locally arcwise connected.

Proof. Let / be a map of Bd D into the sum of two disks
Dl9 D2 such that D1 A is a continuous curve. For each arc ab of
Bd D which intersects f~1(D1 A) only in its end points, extend / to
map the chord acb of D into an arc in A A such that the diameter
of f(acb) is no more than twice the diameter of any other arc in
A A from f(a) to f(b). Let ft be a mapping of D into A that
agrees with / on the part of D going into A under /. Then the
extended / is fλ on the components of D minus the chords which
contain a point of Bd D that / sends into A — A and is f2 on the
rest of D.

THEOREM 13. The topology of the intersection of two disks
determines whether or not their sum is simply connected.

Proof. Suppose Dl9 D29 El9 E2 are disks and h is a homeomorphism
of A ' A onto E1 E2. Let D be a circular disk and / a map of
Bd D into A + A We assume that 2^ + E2 is simply connected
and show that this assumption implies that / can be extended to map
D into A + A We assume there are at least three points of Bd D
that / sends into A A

Let g be a map of /" ' (A A f(Bd D)) into £Ί E2 given by
0 = hf. For each arc αδ of Bd D which intersects f~\ A A /CBd 2?))
only in its end points, extend g to map the chord acb of D onto an
arc in E{ if /(αδ) c A with the restriction that the diameter of
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g(acb) is not more than twice the diameter of any other arc in E{

from g(a) to g(b). Let E be the subdisk of D such that g has been
defined to map Bd E into Ex + E2.

Since Ex + E2 is simply connected, we extend g to map E into
Ex + E2. Call the extension g. Consider g~1(E1 E2 g{E)) = X.
No two points of Bd D can be joined by an arc in D — X unless
the points go into the same one of Dl9 D2 under /.

Define / on X to be h~τg. Let fi be the extended / restricted
to /-2(A f(X + Bd D)). Extend /< to map Z> into A and call the
extended map f{. The extended map / is fλ on each component of
D — X which has points of Bd D which are sent by / into Dx and is
/2 on the rest of D.

6» Adding continuous curves • What we have learned about the
sum of disks partially applies to the sums of other continua. If the
intersection of two disks is so bad as to make the sum of the disks
not simply connected, it is bad enough to keep any two continuous
curves whatever with the same intersection from being simply con-
nected. The following example illustrated in Figure 6 shows that
the converse is not true.

Figure 6
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EXAMPLE 6. Let C< (i = 1, 2, 3, •) be the circle in the x, y
plane with equation (x — 1/ίf + y2 — (1/i)2. Denote the origin by q0.
Let Z"6 = d + C2 + + q0 + C_! + C_2 + . The cone Xx • over
C\ + Ca + + ?o from a point above the ## plane is simply con-
nected as is the cone X2 over q0 + CU + C_2 + from a point
below the xy plane. Although Xx X2 is a point, X1 + X2 is not
simply connected.

THEOREM 14. Suppose Du D2 are two disks and Fl9 F2 are two
continuous curves such that D1 D2 is homeomorphic with Fx F2.
Then Dx + D2 is simply connected if Fx + F2 is.

Proof. The proof is the same as the proof of Theorem 13 except
that g maps Bd E into Fx + F2 instead of into Eλ + E2.

THEOREM 15. Suppose Gu G2f Gs, GA are four simply connected
and uniformly locally simply connected continuous such that Gλ G2

is topologically equivalent to G3 G4. Then the fundamental group
of Gx + G2 is isomorphic to the fundamental group of G3 + G4.

Proof. Whether or not a loop in G1 + G2 can be shrunk to a
point depends on how it crosses back and forth between Gx and G2.
Suppose h is a homeomorphism of Gx G2 onto G3 G4 and xQ is a
point of G2 G2 that acts as a starting point of loops in Gx + G2 to
determine the fundamental group of Gx + G2. We use h(x0) as a
starting point for the loops in G3 + G4 to determine the fundamental
group of G3 + G4.

Let {/} be an element of the fundamental group of Gλ + G2. It
is an equivalence class of maps of the interval [0,1] into Gx + G2

such that the ends of [0,1] go into x0. Let / be an element of {/}.
Let / ' be a map of [0,1] into G3 + G4 such that

Xf(x)eGι G1,
f'(x)eGi+2 if f(x)eGi.

Although these two conditions do not precisely define / ' , any two
maps satisfying this condition are homotopic in G3 + G4. The element
of the fundamental group of G3 + G4 corresponding to the element
{/} of the fundamental group of Gx + G2 is the equivalence class of
loops containing / ' .

Question. The preceding theorem suggests a topological invariant
of compact closed sets. Two sets A, B are alike in a certain sense
provided the sum of two Hubert cubes sewed together along A have
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the same fundamental group as the sum of two Hubert cubes sewed
together along B. Is there a simpler characterization of this
property?

7 An interesting group. One might attempt to compute the
fundamental group of Example 1 by cutting it into two pieces with
a vertical plane through the origin, fatten each piece to make them
intersect in an open subset of their sum, find the fundamental group
of each piece, and then apply Van Kampen's theorem to get the
fundamental group of Example 1. We ignore the fattening since,
being equivalent to taking the slice slightly to one side of the origin,
it does not change the fundamental group of the pieces.

Each piece can be folded like a fan and deformed onto a set
topologically equivalent to a set K7 shown in Figure 7 and defined as
follows.

C_

Fignre 7

K7 = closure of ( d + C2 + + CU + C_2 + •)

where C< is the circle in the xy plane with [(i — l)/i, i/(ί + 1)] as
diameter and C-{ is the circle with [( — (i — 1)1%, —ij{% + 1)] as
diameter. (We used [α, b] to denote the interval on the x axis from
a to b.) The fundamental group of each piece into which we cut
Example 1 is the same as the fundamental group of K7.

Consider the origin as the starting point of loops in K7 to deter-
mine its fundamental group G(K7). Then a loop is a map of the
interval [0,1] into KΊ that sends the ends of the interval to the
origin and an element of G(K7) is an equivalence class of loops. We
can associate words with loops. If a loop goes across the top semi-
circle of d from left to right we write ί; if it goes across this
semicircle from right to left we write i and say i inverse. We call
i and i letters and say that the letter is positive or negative accord-
ing as i is positive or negative. Since we are permitting C/s with
negative subscripts, i inverse differs from — i. The inverse of i is i.
A loop then corresponds to an ordered collection of letters (called
a word) with the following restrictions.



454 R. H. BING

a. No letter appears in any word more than a finite number of
times.

b. There is not infinite oscillation between positive and negative
letters.

Let us consider what words are equated if two pieces into which
we divided Example 1 are joined together again. If a loop is slid
from one piece to the other until it comes back to the first in one
direction, each letter i (or i) in it has been changed to i + 1 (or
i + 1) and if the loop is slid in the other direction, these are replaced
by i — 1 (or i — 1). Since we skipped 0 in putting subscripts on the
Ci'a we suppose —1 + 1 = 1 and 1 — 1 = —1. When we replace
each i or i in a word W by i + 1 ov i + 1, we have produced a
right shift and call the new word R(W). We note that if Wx =
R(W2), then W2 may be obtained from WΊ by a left shift and say

Let us change the group G {equivalence classes of W«/s} by also
putting words in the same equivalence class if they are equivalent
after a shift. This shifting operation is to be permitted in equating
words only a finite number of times as opposed to cancellation which
was permitted infinitely often. We call the resulting group G {equiva-
lence classes of Wa'alR(Wa) = Wa}. Since the fundamental group of
Example 1 is trivial, it follows that this group is trivial.

The inverse of a word is obtained by reversing the order of the
letters and replacing each letter with its inverse. If in a word there
appears two adjacent subwords which are inverses of each other,
the word obtained by canceling the subwords belongs to the same
equivalence class with the original word. Infinite cancellation is
permitted so that for example (1, ϊ, 2, 2, 3, 3, •) is equivalent to
the trivial word.

Two words are, equivalent if and only if they can be cancelled
down to a common word. (We could have given more extensive rules
but they boil down to this.) To multiply two words, we write one
after the other. If {Wω} denotes the collection of words and
G {equivalence classes of Wa

y&} denotes the group of equivalence classes
of words, then

G(K7) = G {equivalence classes of Wa'&} .

To show algebraically that G{equivalence classes of Wa'&IR(Wa) =
Wa} is trivial, consider a word W. Since we did not permit infinite
oscillation between positive and negative letters of W, we can express
W as WΊ W2 Wn where each Wt has either all positive or all
negative letters. We show that W is trivial by showing that each
Wi is. We consider only the case where Wt consists of positive
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letters since the other case is analogous.
Consider X = W.RiWdR'iW^R'iW,) . It is a word since it

only contains positive letters and none appears more than a finite
number of times. Then

W, = W{XX = RiWJRXWt) X = R(X)X = XX = 1 .

One might wonder what would have happened if we had not
imposed the condition that there is not infinite oscillation between
the positive and negative letters in words. This would have been
equivalent to the fundamental group of K7 after the sum of the
bottom simicircles were shrunk to a point. Even after a shift, it
seems that the group is not killed. After the shift we would have
the fundamental group of Example 1 if the annulus in D2 outside
p = a is shrunk to the circle p = α.
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LENGTH-PRESERVING MAPS

HERBERT BUSEMANN

l Introduction* If any two points of the metric space R can
be connected by a rectiίiable curve then a map of R into a metric
space R! is length-preserving or equilong, if the length of any curve
in R equals that of its image in R'. An equilong map of R means
such a map of R into itself.

Folding a piece of paper repeatedly and in different ways exhibits
a great variety of equilong maps of the euclidean plane. The
original purpose of the present investigation was to determine all
equilong maps which are not too pathological of the euclidean spaces
and to find out whether other interesting1 spaces admit length pre-
serving maps which are not isometries.

However, equilong maps are connected with other important
concepts. If the metric of R is intrinsic, i.e., if the distance of any
two points equals the infimum of the lengths of all curves in R
connecting these points, then an equilong map a of R into a metric
space Rr does not increase distance: xy ^ axay. We denote as
shrinkage any map of a metric space R into R' satisfying this
inequality. Shrinkages which are not equilong enter significantly
many branches of mathematics.2 In fact, the linguistically preferable
term "contraction" was avoided here, because it is widely used in
functional analysis for the special shrinkages satisfying xy ^ kaxay
with k > 1 (see, for example, [5]). Therefore it seemed worthwhile
to study the elementary properties of shrinkages as such.

On the other hand, isometries and local isometries are most
important special maps (the latter in the theory of covering spaces)
which preserve length. Our results on equilong maps will allow us
to weaken the hypotheses in various theorems concerning (local)
isometries. It often turns out that the axioms for a G-space (see [1])
need not all be satisfied and that a map can be proved to be onto
where hitherto this had been assumed.

As to our original aims: we will determine all locally finite
equilong maps of the euclidean, hyperbolic, and spherical spaces.
The maximal open connected sets on which an equilong map is in-

Received May 22, 1963. This work was supported by a grant from the National
Science Foundation.

1 " Interesting " is an essential qualification because there are many spaces with
isolated equilong maps.

2 Among the less known applications, the shrinkages of cones on certain surfaces
constructed by Resetnyak [6] deserve special mention, because they yield elegant solutions
of extremal problems in differential geometry.
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jective are—in contrast to fundamental sets—uniquely determined.
They are convex and their closures cover the space. Local finiteness
refers to this covering. We thus obtain a division of the space into
convex polyhedral regions Du D2, , from which the equilong map
is easily reconstructed.

A locally finite division of the space into convex polyhedral
regions Dl9 D2, belonging to an equilong map is characterized by
the following property which is appealing through its simplicity
(although the proof is not simple): the number of (n — l)-dίmensional
faces of the D{ having a common (n — 2)-face is even and if
δu ' * i ^2k ar# the angles between these (n — l)-faces in cyclic order
then

î + δ3 + + S2k-i — ̂ 2 + δ4 + + δ2k .

Because the existence of length preserving maps implies homo-
geneity properties of the space, the most interesting spaces from the
point of view of these maps are those which possess large groups of
motions. We will see that neither general Minkowski spaces nor the
hermitian and quarternion elliptic or hyperbolic spaces admit other
locally finite equilong maps than motions.

The initial stages of this work profited from discussions of the
author with Professor G. Tallini in Rome.

2* Shrinkages^ For purposes of comparison we define an expan-
sion of one metric space R into another, Rf, as a map β satisfying
xy g βxβy. A shrinkage of R into R is continuous but need not be
injective. An expansion β is injective, the inverse map β~λ of β(R)
on R is a shrinkage and hence continuous, but β may be nowhere
continuous. For R — R' we speak of a shrinkage or an expansion of
R.

The symbol (x, y, z) means that x Φ y, y Φ z and xy + yz — xz.
We begin with a simple observation concerning the displacement xax
of a point under a shrinkage. This function is continuous because

| xax — yay | ^ xy + axay ^ 2xy .

(1) Let a be a shrinkage of R. If {p, x, ap) then xax ^ pap
with equality only when px = apax and (x, ap, ax).

If (x, p, ap) then xax ^ pap with equality only when axap — xp
and (x, ax, ap).

For (p, x, ap) gives

xax ^ xap + apax ^ px + xap = pap
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and xax — pap implies first that apax = px > 0 and then (x, ap, ax).
From (x, p, ap) we conclude

xax ^ xap — axap ^ xap — xp = pαp > 0 .

(2) If β is an expansion of R and (p, βp, x) then xβx ^ pβp
with equality only when βpβx = px and {βp, x, βx).

This follows from

xβx ^ /9p/3# — βpx ^ px — βpx — pβp > 0 .

The length of the curve C: x(t) (a ^t g 6) in a metric space
(see [1] or [7]) is denoted by L(C). Obviously,

(3) If a is a shrinkage of R in Rf and C: x(t) is a rectifiable
curve in R and aC: ax(t) is its image then L(aC) tί L{C).

If C is the curve x(t) (a g t <g b) and we put x(a) = u, x(b) = v
then L(C) ^ uv. If the equality sign holds we call C a segment
T(u, v) from u to v, because T{u, v) is isometric to an interval of
length uv on the real axis ([1] or [7]|).

(4) If a is a shrinkage of R in R' and uv — auav then a
maps a segment T(u, v) isometrically on a segment T(au, av).

For if z e T(u, v) then

uv = uz + zv Ξ> auaz + azav ^ auav = uv ,

whence uz = auaz and zv •=• azav. If w is a fourth point of T(u, v),
say on the subsegment T(u, z), then it follows from what we just
proved that wz = awaz. This yields:

(5) If p and q are fixed points of a shrinkage of R and if
exactly one segment T(p, q) exists then a leaves all points of T(p, q)
fixed.

Thus the fixed points of a shrinkage of a euclidean or hyperbolic
space form a set which is empty or convex and closed.

A ray in a metric space R is the isometric image of the non-
negative real axis and hence may be represented in the form p(t)
(t ^ 0) with p{tx)p{t2) = | tλ - t2 \. We prove:

( 6 ) Assume that for any two points x,y in R a segment T(x, y)
exists and that (w, x, y) and (x, y, z) imply (w9 x,z). If a is a
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shrinkage of R and the displacement attains at p a positive minimum

(i.e., pap = inf xax > 0), then p is the origin of a ray which a
\ xeR I

translates into itself.
Conversely, if p is the origin of a ray which a translates (prop-

erly) into itself then pap = inf xax.
xβB

Let T be a segment from p to ap and x an interior point of T.
Put Ti = aιT, Pi = a% x{ = a% (i = 0,1, •), P<*2> = p. Then (1)
yields xax = /> and (a?, j ^ , a )̂. Hence by hypothesis (p, pu xt). Apply-
ing (1) to x and x1 we obtain (pl9 xlf p2) hence (p, xl9 p2) and xxx =
P1P2 — PPi From (4) we conclude that 2\ is a segment from px to
#2 and from (x, pu xx) and (#, xlf p2) that Γ U Tx is a Γ(p, #2). Con-

00

tinuing in this manner we prove that \J T{ is a ray #(£) (t Ξ> 0) withJ

Conversely, if a induces the translation ap(t) = p(ί + jθ) (/? > 0)
of the ray p(t), then for an arbitrary point x

n

+ XP^ PX + Σl %i-l%i + XnVn ^ PPn =

Dividing by n and letting n—> 00 we obtain xxλ ^
In order to see how (6) can be applied we prove

(7) Let R be a convex subset of a Banach space with strictly
convex spheres and a a shrinkage of R. The set S of the points
where the displacement xax takes its minimal value is either empty
or convex. If the minimum is positive then S is the union of
parallel rays and a coincides on S with a translation δ of the space.

If the minimum is 0 we know from (5) that S is convex. If
pap — inf xax = p > 0 then, by (6) a induces a translation on a ray
Sp with origin p. If also qaq = p then the says Sp and Sq are
parallel because otherwise aιpaιq —> co for i —• 00 whereas a*pa*q ^ pq..
Therefore a coincides on Sp U Sq with an ordinary translation δ of
the space. This implies pq = apaq and it follows from (4) that a
maps T(p, q) isometrically on T(ap, aq). (Segments are unique be-
cause the spheres are strictly convex) Therefore xax = pap for
x e T{p, q), whence T(p, q)aS and ax — δx on S.

We add an observation which is of interest in connection with
contraction maps (see Introduction).

(8) For any two points x,y of R let a segment T(x, y) exist
and let a be a map of R in itself satisfying xy > axay for x Φ y.
If the displacement xax attains a relative minimum at f, then f is
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a fixed point (so that the minimum is absolute) and there is no
other fixed point. If xax attains at g a relative maximum then no
point z with (z, g, ag) exists.

If fψaf then by (1) any point x o n a T(f, af) would satisfy
either xax < faf or fx = afax. Both relations contradict the hy-
pothesis. A second fixed point / ' satisfies / / ' = afaf hence / ' = / .
If a point z with (z, g, ag) existed then a segment T(z, g) would
contain a point x with (x, g, ag) and arbitrarily small xg. But (1)
would yield either xg = axag or xax > gag.

If R is a differentiable manifold with a Riemann or Finsler
metric then the nonexistence of z means that g lies on the so called
cut locus or minimum point locus of ag. For compact R both / and
g exist. If R is a spherical, or more generally, a spherelike ([1, p 128])
space, then g is also unique because ag is then the antipode to g
and any two points and their antipodes have equal distance.

As mentioned in the introduction, the metric of R is called
intrinsic if any two points x, y of R can be connected by a curve
of finite length and

xy = inf L(Cxy) ,
oxy

where Cxy traverses all curves from x to y. If in such a space a
curve of minimal length from x to y exists it is a segment T(x, y).

Denote by S{p, q) (p > 0) the set of all points x for which
px < p. If the metric of R is intrinsic and the closure S(p, 2p) of
S(p, 2p) is compact then a segment T(x, y) exists for any two points
x, y in S(p, p). In particular, if R is compact or finitely compact
(which means that all S(p9 p) are compact) then a T(x, y) exists for
arbitrary x, y. (These facts are implicit in the results of [1] and
[7, p 142])

If the metric of R is intrinsic the following converse of (4)
holds:

(9) If a is a shrinkage of the space R with an intrinsic metric
in the space R', moreover uv = auav and the image aC of the curve
C from u to v is a segment T(au, av) then C is a T(u, v) and a
maps C isometrically on aC.

For if C were not a T(u,v), a curve Co from u to v with
L(C0) < uv would exist and it would follow that

auav ^ L(aC0) S L(C0) < uw .

(10) Let R be a space with an intrinsic metric and a a con-
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tinuous map of R in R. Then a is a shrinkage if and only if,
L(C) ^ L(aC) for any curve C in R.

The necessity follows from (3). Let C be a curve from x to y
with L(C) < xy + ε; then

xy + ε> L(C) ^ L(aC) ^ axay

proves the sufficiency.
An important corollary of (9) was already mentioned:

(11) A length preserving map of a space R with an intrinsic
metric into a space Rf is a shrinkage.

It is clear that a shrinkage of a noncompact space onto itself or
of a compact space into itself need not be an isometry. However
Freudenthal and Hurewicz proved in [4]:

(12) A shrinkage of a compact space onto itself is a motion.5

In conjunction with (11) this yields:

(13) A length preserving map of a compact space with an intrinsic
metric onto itself is a motion.

In particular, a locally isometric map of a compact G-space onto
itself is a motion, a fact which the author proved in [1, p 172]
without being aware of the paper [4]. A much more interesting
generalization is given in (19).

It may be useful to emphasize that in (13) compactness cannot
be replaced by finite compactness. If (xu , xn-u z) — (x, z) are
cartesian coordinates in En then the relations

a(x, z) =

'(x, z + 1) for z < 0 ,

(x, 1 - z) for 0 ^ z ^ 1 ,

(x, z - 1) for z > 1 ,

define an equilong map of En on itself which is not a motion.
Since the inverse of an expansion is a shrinkage, (12) is valid

also for expansions. However, according to [4] a stronger statement
holds:

(14) An expansion of a compact space into itself is a motion.

3 A motion of R is an isometry of R onto itself.
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In particular:

(15) An isometry β of a compact space R into itself is a motion.

Since we will apply (15) we give a short proof: If pe R — βR
existed then putting p = pOf pi = β% R = Ro, R{ = β*R we would
have (for k |Ξ> 1) PiβRi — Ri+1, PiPi+k = pi?* ^ ί>i?i > 0, and the p<
would not have an accumulation point.

From (12) interesting results on special spaces may be obtained.
For example:

(16) Let a be a shrinkage of the spherical space Sn which is not
a motion. Then a has at least one fixed point, maps at least one
point on its antipodef and sends at least one pair of antipodes into
the same point. a(Sn) lies in a closed hemisphere.

The first two statements follow from well known topological
facts, because by (12) the degree of the mapping a is zero. They
can also be seen directly: If ax were never antipodal to x then the
point xt on T(x, ax) with xxt = t(xax) (0 ^ t ^ 1) would be well
defined and depend continuously on x, so that x—*xt would by (12)
yield a continuous deformation of Sn into a proper subset. If δ is
the antipodal map then δa is a shrinkage, hence maps some point
u on its antipode, and an = u.

If a is not a motion then it may by (12) be regarded as a map
of Sn into the ^-dimensional euclidean space, and it follows from
the Theorem of Borsuk and Ulam see [3, p. 337], that a sends at least
one pair a, a' of antipodal points into the same point b.

If Sn has curvature 1, then any point x satisfies min (xa, xar) ^ ττ/2.
Therefore axb ^ ττ/2 for all x and a(Sn) lies in the hemisphere of Sn

with center b.

3 Locally injective equilorxg maps From now on we concent-
rate on length preserving maps. In particular we study regions in
which these maps are injective. At each stage we will make it
clear which properties on the spaces enter. The first is domain
equivalence. We say:

Domain equivalence holds for two topological spaces R, Rr if
the topological image in R! (R) of an open set in R{Rr) is open in
R\R).

For R ~ R' we follow the classical terminology and speak of
domain invariance rather than equivalence. Brouwer's theorem
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states that domain equivalence holds for any two topological manifolds
of the same dimension. Therefore all manifolds considered in differ-
ential geometry have the property of domain in variance. The finite
dimensional, and probably all, G-spaces have this property.

Some simple examples will help to elucidate this concept and the
facts which we are going to prove. First let R be the set in E*
with cartesian coordinates x, y, z consisting of the plane z = 0 and
the line x = y = 0. The metric of R is here and in the second
example the intrinsic metric induced by the euclidean metric in E3.
The interval 1 < 2 < 3, x = y = 0 is isometric to the interval 1 < y < 3,
x = z = 0 but the former is the sphere S((0, 0, 2), 1) and is open,
the second is not. Domain in variance does not hold in R. The map
a of R in itself defined by

<x(x, y, 0) - (x, y, 0), α(0, 0, t) = (0, t, 0)

preserves length and takes the first interval into the second.
Next take R as the set in E* consisting of the three coordinate

axes. The interval x = y = 0, 1 < z < 3, is isometric to the interval
x = y = 0, — 1 < 2 < 1. The former is open in i?, the second is not.
The map a which leaves all points on the x-axis, on the y-axis and
the points z ^ 1 on the 2-axis fixed and maps (0, 0, z) with z > 1 on
(0,0,1—2) preserves length and takes the first interval into the
second.

For later purposes we point out that in both these spaces motions
exist which are not the identity and leave S((0, 0,2), 1) pointwise
fixed.

As third example we take the ray t ^ 0 with the metric | tλ — t2 \.
The set 0 ^ t < 1 is isometric to 1 ^ t < 2, the first is open, the
second is not. V = t + 1 takes the first set into the second and is
an isometry, but is not a motion because it does not map R onto
itself.

Denoting the restriction of a map a to a set M by aM we say
that a is injective on M if aM maps M bijectively on a(M). We
prove

(17) Let R, R' be locally compact spaces with intrinsic metrics
and domain equivalence and a an equilong map of R in R' which
is injective on the open set G. Then for every point p of G a
positive pp exists such that aQ {and hence a) maps S(p, pp) iso-
metrically on S{ap, ρp).

Choose δ > 0 such that S(p, δ) is compact and lies in G. Then
aQ maps S(p, δ) topologically on aGS(p, δ) = aS(p, δ). It follows from
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domain equivalence that aS(p, δ) is open, hence p = pp > 0 exists
such that S(p', 2ρ) {pf = ap = aGp) lies in αS(p, δ) and is compact.

For any two points x', yf in S(p', p) there is a segment T(x', y')
which is contained in S(p, 2p). Since aQ is topological in S(p, δ) and
preserves length OQ T{X'9 y

f) is a curve from x = α£ V to ?/ = α^V
of length L(T(cc', y')) = a&V ^ #2/, hence by (11) α?V — xy. In par-
ticular pV = px. Therefore oL^Sty p) is isometric to S(p, p) and
contained in S(p, p). It follows from (15) that S(p, p) = a^Sip', p),
which proves (17), Our examples show that (17) is not valid without
the hypothesis of domain equivalence.

A map β of R in R is locally injective if every point of R has
a neighborhood on which β is injective. Adhering to the terminology
of [1] we do not use the strict analogue to define local isometries
but require a little more: The map a of R in Rr is locally isometric
if for every point p of R a positive pp exists such that a maps
S(pt Pv) isometrically on S(ap, pp). We now prove the important
fact

(18) THEOREM. If R and Rr are finitely compact spaces with
intrinsic metrics and domain equivalence then a locally injective
equilong map of R into R' is a local isometry of R onto Rr.

Our third example shows that (18) does not hold without the
hypothesis of domain equivalence even if R' = R.

Proposition (17) yields the existence of a positive function σp

defined in R such that a maps S(p, pp) isometrically on S(ap, pp) and
hence S(p, pP) on S(ap, pp). Let p(p) be the supremum of the num-
bers ε for which a maps S(p, ε) isometrically on S(ap, ε). If ρ(p) = co
then a is an isometry of R on R' and p{x) = co for all x in R. If
j0(p)<°° then S(p, e)=)S(?, ε—pq) for pq<e shows that | p(p) — p(q)\^pq.
Therefore p(p) is a positive continuous function which has a positive
minimum on every S(x, σ) (which is compact by hypothesis).

Let q be any point of R and qf—aq. We must prove that for a
given point r' of R' a point r in R exists with ar = r\ Because Rf

is finitely compact and has an intrinsic metric there is a segment T'
from q' to r\ Let δ > 0 be the minimum of p(p) for peS(q,q'r')
and choose <?£ = q', q[, , gi = rf on T' such that (gί^, g{, g{+1) and

_

Since α maps S(g, δ) isometrically on S(q'f δ) there is a segment
T(q, ?i) in S(ί, δ) which α maps isometrically on the subsegment
T(q'9 q[) of T\ For the same reason α maps a suitable segment
T(qlf q2) in S ^ , δ) on the subsegment T(q[, q'2) of T\ Thus we arrive
at a segment Γί?*-!, qn) mapped on the subsegment T(q'n-lf q'n) =
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T(q'n-U r') of T. With qn = r we have ar = r\ It follows, by the

way, from (9) that U T(q^lf ?<) is a Γ(g, r).
ΐ = l

Notice the following application of (13) and (18):

(19) THEOREM, If R is a compact space with an intrinsic metric
and domain invariance, then a locally injective length preserving
map of R in itself is a motion.4"

Compactness in (19) cannot be replaced by finite compactness, see
[1, p 173], but there are various conditions under which it can.
Define p(p) as in the proof of (18). We introduce the condition

( *.) inf ρ(p) > 0 for each p'eaR ,

which holds when both R and R' are (?-spaces [1, p 171]. Under
the hypotheses of (18) R and Rf are arcwise and locally arcwise
connected and (*) guarantees that R is a covering space of R'.
Therefore we have (compare [1, p 174])

(20) Let R and Rf he finitely compact spaces with intrinsic metrics
and domain equivalence. If the locally injective length preserving
map a of R in Rr satisfies (*) and the fundamental group of R
is not isomorphic to a proper subgroup of that of Rf, then a is
an isometry of R on R'

Papers [8], [9] and the last part of [2] deal with conditions
which can replace the requirement on the fundamental groups.
From (18) and [2] it may be deduced, for example, that a locally
injective equilong map of any (complete) locally Minkowskian space
into itself is a motion.

4. Regions of injectivity* A region of injectivity of the map
β of the space R into the space Rτ is a maximal open connected set
on which β is injective. If β is a locally isometric map of R on R'
then such a region is what is usually called a fundamental domain
(or, depending on the terminology, its interior). We are here
interested in regions of injectivity of equilong maps of spaces in
themselves. No interesting statements are possible unless the space
has special properties, in particular besides domain invariance, one
or more of the following three:

4 The following example shows that domain invariance is necessary : The space
consists of the origin 0 and the circles — 2 3-n + 3~neίθ (n = 0, 1, 2, •) of the complex
plane; the metric is given by arclength. Then a defined by α(0)=0 and a{—2-3-n+3-neiθ)
= •— 2'3~n~1 + 3-n-1euθ is locally injective and equilong but is neither onto nor isometric*
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I. A motion of the space which leaves all points of a nonempty
open set fixed is the identity.

All spaces considered in differential geometry and all G-spaces
have this property, [1, p 178]. The first two examples in §4 are
spaces for which I does not hold.

II. If (x, y, z) then the segment T(x, y) is unique. Every point
p has a neighborhood S{p, d) such the segment T(x, y) is unique for
points x, y in S(p, d).

Again all the usual spaces of disfferential geometry and all
G-spaces have this property. A Minkowski space of dimension greater
than one does not have it unless its spheres are strictly convex.

III. An isometry of a sphere S(p, p) on a sphere S(q, p) (p > 0)
can be extended to a motion of the space.

This condition may be trivially satified, namely when no isometric
spheres with distinct centers exist and the only isometry of S(p, p)
is the identy. Such a space satisfies I. If, in addition, domain
invariance and property II hold, then our theory implies that its only
locally finite (see below) equilong map is the identity.

All simply connected complete Riemann spaces with analytic
metrics satisfy II. Particularly interesting among these are the
elementary, i.e. the euclidean, hyperbolic, and spherical (dim>l)
spaces, the hermitian or quaternion elliptic and hyperbolic spaces
and the elliptic and hyperbolic Cay ley planes. Apart from the elliptic
spaces these are the only finitely compact G-spaces with pairwise
mobility, which means: Given four points x, y, xf, y' with xy — x'yf

then a motion exists which takes x into x' and y into y' (see [1] for
the compact case and [10] for the general case.

Finally we mention that, because of the existence of dilations
the Minkowski spaces also satisfy III.

In order not to interrupt our arguments later, we first prove a
lemma:

(21) Let M be a closed set with a nonempty interior Mt in a
finitely compact space which has an intrinsic metric and satisfies
II. If M contains with any two points x, y the segment T(x, y)
when it is unique, then M — Mi and with x and y the set M con-
tains at least one, and Mi contains all, T(x, y).

Let pe M, qe Mt and T = T(p, q). We show first that T- paM{.
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If q'eT is sufficiently close to, but different from, q then T{q', q)
lies in Mi9 and T(q\ q), T(q\ p) are unique, hence are subsegments of
T and lie in M. If a point of T — p not in Mt existed then travers-
ing T(p9 q

f) from qr towards p we would meet a first point b φ p not
in Mi. Choose δ > 0 such that T(x, y) is unique for x9 y in S(b, p)
and then u, v on T with (p, u, 6), 6w < p, (δ, v, g') and bv < ft The
segments T(u, x) with a? e Mt Π S(6, />) lie in M, because they are
unique and x, u lie in M. The set (J T(u, x) — u is open and con-
tains 6 which would imply b e M{.

Thus T — pcMi whence pe Mt and M = J0"<β Also, trivially,
TczMi for peMί9 hence Af* contains all T{p,q). If p, g are given
points of ilί then sequences p l f p2, and ίlf ?a> in Mt exist
tending to p and g respectively. Because T(pif qJczMi and {Γfe, ?<)}-
contains—by finite compactness—a subsequence tending to a segment

)> the latter lies in M. Next we observe:

(22) Lei R be a metric space which has a countable base and
satisfies I and III. Then a bijective locally isometric map β of a
connected open set G in R on an open set Gf in R can be extended
to a motion of R.

By hypothesis each point p of G has a neighborhood S(p9 pp)

which β maps isometrically on S(βp, pP). Since G is connected and

R has a countable base there is a sequence of points pl9 p2, in G

such that β maps S(pi9 Pi) = S(pif pPi) isometrically on S(βPi, Pi)9

G=(j S(pif ρd9 and S(pi+1, ρi+1) ΠS^Φ where & = U S(P<, ft).
< = 1 A ; = l

It follows from III that the restriction of β to S(pίf ft) is the
restriction of a motion i^ of ί2. It suffices to prove that /3 = vx on
each Si. The assertion is trivial for Sλ. Assume it has been proved
for Sn. Then vn+1 = β = vx on S(pn+l9 pn+1) Π S%. Since this set is
not empty it follows from I that vn+1 = vu in particular vn+1 — vx — β
on S»+i. This result and (17) yield

(23) Lβ£ R be a finitely compact space with an intrinsic metric
and domain invariance satisfying I and III. If the equilong map
a of R is injective on the connected open set G then aG can be ex-
tended to a motion of R.

We add the following:

(24) If (under the hypotheses of (23)) G is a region of injec-
tίvity then no boundary point p of G has a neighborhood on which
a is injective. Hence two distinct regions of injectivity are dis-
joint.
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For an indirect proof assume that a is injective on S(p, p)
(p > 0). Put Sn = S(p, pjn). For each n there would be a point
qn e Sn — G U Sn and a point rneG such that arn = aqn. Otherwise
a would be injective on GO Sn. Because a is injective on S(p, p)
we have rnp ^ p.

Let qr e Sn Π G. It follows from (22) that α:<^α:r% = ?>„. On the
other hand

2p/n > qnq'n ̂  aqnaq'n ^ aq'narn - aqnarn = αt f^n = g>Λ

^rnp-pq'n> p- pin .

If two distinct regions G, D of injectivity were not disjoint
then, since neither can be contained in the other, D would contain
a boundary point p of G because it is connected.

We now come to an important fact which will enable us in the
most interesting cases either to prove the nonexistence of equilong
maps which are not motions or to construct all length preserving
maps which are not too wild.

(25) THEOREM. Let R be a finitely compact space with an intrinsic
metric and domain invariance satisfying I, II and III. A region
of injectivity D of an equilong map of R in itself contains with
two points x, y all segments T(x, y), its closure D therefore contains
with x, y at least one T{x, y). Moreover cί# is injective and is the
restriction of a motion of R to D.

By (22) there is a motion β of R extending aD, i.e., βx = aDx =
ax on D. Therefore β"τa is an equilong map of R which leaves all
points of D fixed. Denote the set of all fixed points of β^a by M.
Then M is closed, contains D and β~xax = x or ax = βx on M hence
aM is injective. By (5) M contains T(x, y) when x, y lie in M and
T(x, y) is unique. It follows from (21) that the interior M{ of M
contains with any two points x, y all T(x, y) and that M = Mt.
Since Mi is connected and contains D, moreover a is injective on Λf4
and D is maximal we conclude Mi = D.

Under the hypotheses of (25) we call a locally finite if R is the
union of the closures of the regions of injectivity of a and if this
covering of R is locally finite. There will then be a finite or count-
able number of regions of injectivity Dl9 D2, . For each A there
is a motion β{ such that β^a leaves Dι point wise fixed. Therefore
studying the properties of a we may assume that a leaves D1 point-
wise fixed.

An ellipsoid R in E2 with three axes of different lengths and
with its intrinsic metric admits a finite number of equilong maps.
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These are generated by the reflections in the three planes P< con-
taining two axes and the following maps β^ If Rίf RI are the sets
on R bounded by P* then β{ leaves Ri pointwise fixed and maps R\
on Rι by reflection in P{. Obviously there is such a variety of spaces
possessing isolated equilong maps that neither is it feasible nor would
it be worthwhile to determine all spaces admitting equilong maps.

Clearly, the interesting spaces are those which possess large
groups of motions. We are now going to examine such spaces for
proper equilong maps, that is, length preserving maps which are not
motions.

5 Spaces without proper equilong maps* The one dimensional
cases, although trivial, are basic. The regions of injectivity of a
proper locally finite equilong map a of the real axis are intervals or
rays whose endpoints form a discrete set. We may assume that D1

has a right endpoint x2. Let D2, D[9 be the regions of injectivity
to the right of x2 in their natural order. Denote the left endpoint
of D[ by Xι and let Ri be the reflection xr = 2x — xt of the real axis
in Xi. Then for x > x2 the map a is given by

(26) ax = R2R3 R3x for x e Ό] .

The procedure is analogous for the D3 preceding Dx (if any).
If the space is the unitcircle (with length as metric) the con-

struction is similar. Orient the circle. There is a finite number of
regions of injectivity for a proper locally finite equilong map a which
are arcs and which we call Du , Dm in the order of the orienta-
tion. Denote by Ri the reflection in the diameter of the circle
passing through the left endpoint of Dim Then we still have

ax = R2RZ R3 for xe D3 ,

but the Dj must satisfy two conditions. Their number m must be
even, m = 2k, otherwise a would be injective on Dm (J A . The right
endpoint of Dm must stay fixed. If δ{ is the length of D{ this yields

(27) Σ δ 2 ί _ x = Σ δ 2 ί ( = π).

We want to establish that certain spaces with at least transitive
groups of motions do not possess proper equilong maps.

(28) THEOREM. A Minkowski space R (dim R = n Ξ> 2) with strictly
convex spheres5 admits a locally finite proper equilong map, if, and

5 The validity of (28) is not contingent upon the strict convexity of the spheres.
The latter is equivalent to II and hence necessary for applying (25).
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only if, it possesses the reflection in some hyper plane.

Proof. Assume that R can be reflected in the hyperplane H.
Then the reflections in all hyperplanes parallel to H also exist.
Choose aflfine coordinates xlf , xn such that x{ is Minkowski length
on the #Γaxis, H is given by xn = 0 and the line xx = 0, , xn-x = 0
is normal to H in the Minkowski sense. Then all lines xt = const.
(ί = 1, . . . , n — 1) are normal to all xn — const. Let xn —» β(α?n) be a
locally finite equilong map of the xπ-axis on itself. Then

(xlf , »„_!, a?w) — (a?!, , xw_!, /9(aΛ))

defines an equilong map of R. Thus a considerable variety of equilong
maps can be derived alone from the reflection in H.

Conversely, assume R possesses a locally finite proper equilong
map a. Then at least two regions Du Z>2, of injectivity exist
and by (25) all these are convex polyhedral regions. Du which by
agreement is left pointwise fixed by a, has a boundary point p such
that for a suitable p > 0 the sphere S(p, p) intersects only D1 and a
single other Dif say D2. Then a leaves the disk S(p, p) Π A Π A
fixed and coincides on S(p, p) Π A with a motion β of iϋ. But β
must be either the identity, which is impossible because then Dλ

would not be a region of injectivity, or the reflection in the hyper-
plane carrying A Π A .

Then same can be proved for plane quasihyperbolic geometry
(see [1, pp 360, 363, 371, 407]) and also for its higher dimensional
analogues. Hyperplanes through arbitrary n points (if dim R = n > 2)
do in general not exist and the result must be interpreted to mean
that a hyperplane H and the reflection in H exist.

Next we show that the spaces, which after the elementary and
elliptic spaces, have the greatest degree of mobility, do not possess
proper equilong maps:

(29) THEOREM. The hermitian elliptic and hyperbolic spaces of
(real) dimension greater than 2, the quaternian elliptic and hyper-
bolic spaces of dimension greater than 4, and the Cayley elliptic and
hyperbolic planes6 do not possess locally finite length preserving
maps other than motions.

None of the spaces in (29) have constant curvature. Therefore,
using the result mentioned in the preceding section, it suffices to
prove:

6 The Cayley planes have dimension 16. The hermitian spaces of dimension 2 and
the quarternion spaces of dimension 4 are elementary, see [1].
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(30) Let R be a finitely compact metric space with an intrinsic
metric and a pairwise transitive group of motions. If R possesses
a proper equilong map, then R has constant curvature.

Even without the hypothesis that R admits a proper equilong
map all spaces in question of dimension less than 4 have constant
curvature, so that we may assume that n = dim R ^ 3. Moreover
all spaces satisfy I, II, III.

As in the preceding proof there is a point p on the boundary of
A and a sphere S(p, p) (p > 0) such that S(p, ρ)aD1{J A . We
choose p so small that T{x, y) is unique for x, y e S(p, p). Then
S(p, p) is homeomorphic to En. By (25) the set

N = A n A n S(p, p)

contains with any two points the segment T(x, y) and separates S{p, p)
into two sets. In the language of differential geometry N is there-
fore an (n — l)-dimensional totally geodesic set. Let (p, dxN) be the
lineal element normal to N at p. If any other lineal element {q, dy)
is given, then pairwise transitivity guarantees the existence of a
motion taking (p, dxN) into (q, dy). This motion takes N into a
totally geodesic set through q and normal to dy. It follows from
the wellknown theorem of Beltrami, that R has constant curvature.

6 Equilong maps of the elementary spaces* We now study the
locally finite equilong maps a of the elementary spaces of dimension
n ^ 2 which are not motions. Then there are at least two regions
of injectivity. As before we denote these by Du D2, and assume
that a leaves A point wise fixed. By (25) the A and A are convex
sets. We remember that a set in a spherical space Sn is called
convex if it contains with two points at least one segment. Such
a set either lies in a closed hemisphere or is the entire S*. There-
fore each A and A is indeed convex and A lies in an open hemisphere
of S*. For brevity we write (D) for the set of the A

The r-faces (0 ^ r ^ n — 1) of (D) are the r-faces of the in-
dividual A Of course, we will call the 0-faces, and l-faces also
vertices and edges. If the A are known then a is easily recon-
structed. A string s = (A, •••, A), where each D\ is a Dif has the
property that A and D'i+1 (j = 1, , r — 1) have a common (n — 1)-
face. This face is unique if Ό] Φ D'j+1. In this case we define Rj+1

as the reflection of the space in the hyperplane containing Df

5 Π D'ί+1;
or Dj = Df

j+1 then Rj is the identity map ε of the space R. We
define

β(s) = R2R, Rr
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and complete this definition by putting /3(A) = e for strings consist-
ing of a single Dim

In terms of strings the map can be described as follows:
Let sk = (DI, , Dr) be a string from A to Dk9 i.e., D[ = Dl9 Dr

r =
Dk. Then

(31) ax = β(sk)x for x e Dk .

This follows from our discussion of the Minkowski case.

(31) implies that β(sk)x is independent of the string from Dλ to Dk.
Conversely, if for a given locally finite division D = (Dl9 D29 •)

of an elementary space into convex regions the map β(sk) is in-
dependent of the string sk leading from DΎ to Dk, then (31) defines
an equilong map with the A as regions of inactivity which leaves
Όλ pointwise fixed.

Let (D) consist of the regions of injectivity of a locally finite
equilong map and consider an m-face fm of (D) (0 ^ m ^ n — 1).
Take an interior point w of fm (w = /„ for m = 0) and a hypersphere
Kf

w about w whose radius p > 0 is so small that the ball wx ^ p
intersects no other D{ than those, D[, « ,Z^, which have fm as a
face. Let the (n — m)-flat normal to fm at w intersect Kr

w in the
(n — m — l)-sphere Kw (Kw = K'w if m = 0). The equilong map β
with (D) as regions of injectivity which leaves D[ pointwise fixed
induces an equilong map of Kw in itself for which the Ό) Π Kw are
the regions of injectivity.

If (D) is an arbitrary locally finite division of the space into (at
least two) convex regions, and its m-faces are again defined as those
of the individual Di9 we may define Kw for a given fm as before
and denote by C(fm) the condition that the D] Π Kw be the regions
of injectivity for an equilong map of Kw. These conditions are
essentially independent of the choice of w and p in the sense that
for different choices leading to KZ* a homothetic transformation will
send the D) Π Kw into the D) n KZ*.

The conditions C(fn-^ are trivial, they are satisfied by any (D)
and hence will no longer be mentioned. The C(fn-2) are particularly
simple. In this case Kw is a circle and we obtain from (27):

(32) The condition C(/n_2) means: If fl_l9 ,/i_i are9 in cyclic
order, the (n — l)-faces of (D) which have fn-2 as face then I is
even and9 if dt is the angle between f\_x and fit\ (fι

nt\ = f\) then

Si + δ3 + + δ^ = δ2 + δ4 + + δ, .

We have shown:
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(33) If Du D2, are the regions of injectivity of a locally finite
equilong map of an ^-dimensional (n > 2) elementary space, then they
satisfy the conditions C(fm) for all m-faces fm (0 ^ m ^ n — 2).

The converse of (33) also holds, but it is clear that the C{fm)
are not independent. Our discussion of the general case applied to
Kw contains

(34) If fm is a face of fm+k (k ^ 1) then C(fm) implies C(fm+k).
Thus, if all fm with m > 0 have vertices, then the C(/o) yield

the remaining C(fm). It is much more surprising that the simple
conditions C(fn-2) are also sufficient. Although our proof of the
converse of (33) will use the C(fn-2) only, it is of interest to see
directly why the C(fm) with m < n — 2 are redundant. Therefore
we show:

(35) If the converse of (33) holds, then the conditions C(fn-2) are
sufficient.

For n = 2 the conditions C(/o) = C{fn-2) are the only ones in
(34), hence (35) is true. Assume (35) has been proved for n ^ N — 1.

Let fm be an m-face of (D) in EN (m ^ N — 2) and construct a
corresponding (N — m — l)-sphere Kw (wefm) as above. With the
previous notations D[, , D'r with fm as face determine regions
D[ Π Kw on Kw. An (m + fc)-face of (Df) = (D[, --,D'r) containing
fm i n t e r s e c t s Kw i n a (k - l ) - f a c e / U of (DΪΓίKw, ---, D'kΓi K v ) .
The condition C(ff

k-i) for this set is equivalent to C(fm+k) for (J9')>
in particular C(/Vm_3) to C{fN-2).

By the induction hypothesis applied to the (N — m — l)-sphere
iΓw it follows from the C(/^_m_3) that the Ό[ (Ί if«, are the regions
of injectivity for an equilong map of Kw. Therefore C(fm) holds
and it follows from (34) that the A are the regions of injectivity
for an equilong map of R. Thus our principal result on elementary
spaces is this:

(36) THEOREM. Let (D) = (Dl9 D2, •••) be a locally finite division
of an elementary space R (dim R = n ^ 2) into convex regions.
Necessary and sufficient for the Di to be the regions of injectivity
of an equilong map a of R—which is then determined up to motions
by (31)—is that every (n — 2)-face /w_2 of any Di satisfy the condition:

If /i_i, , /£_i are the (n — 1)-faces of the Di having fn-2 as face
in cyclic order and £< is the angle between /*_! and / i t U / i - ^ / i - i )
then I is even and

S1 + δ3 + + δ^ = δ2 + δ4 + + δι .
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The proof is the content of the last section.

7 Proof of the main, theorem, on elementary spaces. If s =
{D[, , Dr) and s' = (A1 ~ D'r, A2, , At) are strings (always in the
given system (D)), then we denote the string {D[, « ,Z)r', Al9 * ,At)
by s s'. Our conventions on β(s) show that then

(37) β(8)β(8') = β(s . *') .

With s-1 standing for (Dr, D'r-U , D[) we have

(38) β(s)β(s'1) - β(s s-1) - βis-^βis) = ε .

The string s is closed if D[ — D'r. If s is closed then sc =
(D'3, , D'r, D[, , £);_!, JD;.) (1 < j ^ r) is closed and it follows from
(37) that

(39) β(s) = ε implies β(se) = ε αmϊ conversely.

(40) /f Sj = sis ami s2 = s^sj ί/^β^ /S(sxs2) = /3(sίsO.

This is a corollary of (37) and (38). Finally: If s = s^Sg and s' =
sίβΓ^ί are closed strings and /S(s) = ^S(s') = ε then (39) yields βis^s^) =
/^(SΓ^SO = ε, hence

(41) /3(β3βAfsί) = /S(8i8ίsίβ3) = e .

Let s = (D'lf , 2)' = JDί) be any closed string. A polygonal
path π belongs to s if it has the following properties: it begins and
ends at a point of D[. It is the product π = πx πr of paths 7̂
{in the sense of homotopy theory), where π< lies, except possibly for
its endpoints, in D\. The endpoint of πt (i < r) and hence the initial
point of ττί+1 is an interior point of the common (n — l)-face of Ό\
and A +i if D[ Φ DUi and lies in Ό[ if Ό\ = D'i+1.

Conversely, let a closed polygonal path π = τtx πr be given such
that it begins and ends at a point of D", each ΊZi lies, the endpoints
possibly excepted, in a D", and if the endpoint of π{ (i < r) does not
lie in D" then D" and A +i have exactly one common (n — l)-face
and the point is an interior point of this face. Then (D", « ,Dί' =
DJ') is a closed string, and the only one, to which π belongs.

Our rules (37) to (41) contain the following fact:

(42) If π, πi are polygonal paths belonging to closed strings s and
si (i = 1, ., m) and if π ~ πx ττm, in the sense that π remains
after subpaths of the π{ traversed in opposite senses have been
cancelled, then β(s{) = ε implies β(s) = ε.

The considerations of the preceding section reduce the proof of
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(36) to the following:

(43) If (D) satisfies the conditions C(/Λ_2) then β(s) = ε for every
closed string s in (D).

Let the closed string s = (D'lf , D'r = D[) be given. We may-
assume that D'i Φ D'i+1 (1 ̂  i ^ r — 1). Then points ^ e Z), (p = px =
pr) can be chosen to satisfy the following conditions:

(a) The points p, pi9 pi+1 (2 ̂  i ^ r — 2) are not collinear (do
not lie on a great circle in the spherical case). The segments T\ =
T{p, pd (2 ̂  i ^ r - 1) and Γ< = T(pi9 pi+1) (1 ̂  i ^ r, p r + 1 - p) are
then unique also in the spherical case.

(b) TI or Ti have at most one common point with a given
(n — l)-face of (D) and do not intersect a face of dimension lower
than n — 1. The path π formed by the segments Ti oriented from
Pi towards pi+1 then belongs to s.

(c) The 2-simplex Si (2 ̂  i ^ r — 2) spanned by p, #<, p i + 1 does
not intersect a face of (D) of dimension less than n — 2.

There is a finite number (if any) of points ul9 * 9ut in which
U Si intersects the (n — 2)-faces of (D), and the u3- are interior points
of the Si in which they lie.

Let qm.+l9 qmi+2, , qmi+1 (wa = 0) with q, = p2 and gm. = p, denote
points lying in this order on T{. Let ί0 = 0 < ίx < < tA = 1, and
denote by qv>i the point on the (even in the spherical case unique)
segment T(p, <?*) (i = 1, , mr_2) for Λvhich pqVti = ίv(Mi).

The points ^i and the numbers ίv can be chosen in such a manner
that the qVti have the following properties: No T(qVti9 qv+lfi) or
T{qv,i9 9v,*+i) has more than one common point with a given (% — 1)-
face of (D), or intersects a face of (D) of dimension less than n — 1.
Consequently, these segments also avoid the points %. Denote by
Qv>ί the (convex) quadrangle with vertices qVfi, qv+1>i, qv+1,ί+1, qi+1,v and
by πv,ί its boundary with the orientation corresponding to this order
of the vertices. If the q{ and tv are properly chosen then these
quadrangles have the following further properties: QQ>i<z:D[ for all i.
For v > 0 a Qv>i lies either in one D'i9 or QVfi has common points with
exactly two D\ which have a common (n — l)-face and intersects this
(n — l)-face in interior points, or, finally, ζ)V)ί contains exactly one %
and lies in the union of D\ with a common (n — 2)-face.

Then πvΛ belongs to a closed string sVf< and TΓ ̂  Π v̂,». It is
clear that /8(so,») — ε a ϊ l ( i the /3(sV)i) = ε for v > 0 in the first two
cases because of our rules (37) to (41). In the last case, if Qv>i

contains u3 and %e/{_ 2 then C(/ί_2) and (37) to (41) guarantee that
β(sv>i) = ε. It now follows from (42) that β(s) = ε.
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In conclusion we point out that this investigation leads to a
variety of questions: A first type concerns general shrinkages of
special spaces and is exemplified by (16). A second type inquires into
the structure of the regions of injectivity of equilong maps of spaces
which do not satsify III. A third deals with the equilong maps of
special (e.g. the locally elementary) spaces. While it does not seem
worth the effort to determine all equilong maps of the elementary
spaces, it should be decided, whether the spaces in (29) possess proper
equilong maps which are not locally finite.

In addition there are many topics suggested by length preserving
maps, for instance, maps of En into itself which preserve, with a
suitable definition, the areas of all two-dimensional surfaces. The
locally finite equilong maps of E* have this property for any reason-
able area.
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CHARACTERIZATIONS OF CONVOLUTION
SEMIGROUPS OF MEASURES

H. S. COLLINS

A problem of fundamental importance in the study of compact
topological semigroups is that of classifying in an intrinsic way each
of a certain class of such semigroups. Unfortunately, virtually nothing
has been done along these lines, even for such geometrically pleasing
semigroups as the affine semigroups introduced by the author and
H. Cohen in [3]. It is the purpose of this note to rectify this situation,
at least for several particular types of compact affine topological semi-
groups; namely, certain convolution semigroups of real valued regular
Borel measures on compact topological semigroups. The author's interest
in this problem dates back to the early papers of Peck [13] and Wendel
[21], and to some unpublished work of Wendel. Since that time, quite
a literature has developed as regards these semigroups (e.g., see the
bibliography), but almost without exception these papers merely study
the properties of the semigroups without making any attempt to
abstract sufficiently many of their properties to characterize them.

If S is a compact Hausdorff space and P(S) denotes the set of
all nonnegative regular Borel measures on S of variation norm one,
it is known that P(S) is a convex set which is compact in the weak-*
topology (a net {μa} of measures in P(S) converges weak-* to μe P(S)
if \fdμa—> \fdμ, for each real continuous function / on SJ. In

similar fashion, the unit ball B(S) of real-valued regular Borel measures
of norm g l is a compact convex set. When S is endowed with a
continuous associative multiplication, each of P(S) and B(S) becomes
a compact affine topological semigroup relative to convolution multipli-
cation (see [10]); when such is the case, we denote these semigroups
by S and S respectively. Note that our use of the symbol S differs
from that of Glicksberg in [10], where S, denoted the ball semigroup
of complex measures.

In §2, the following three types of images of the sets P(S) and
B(S) are determined:

(a) all extremal images of P(S); i.e., all continuous affine images
under mappings which preserve extreme points,

(b) all one-to-one affine bicontinuous images of P(S), and
(c) all one-to-one affine bicontinuous images of B(S). The common

requirements in each of (a), (b), and (c) are that the image K be
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compact and convex, have a separating family of real continuous affine
functions, and have a compact set of extreme points. In (b), the
additional requirement is that K be a simplex in the sense of Choquet
[2] or Loomis [12]. In (c), one must require the existence of a compact
subset T of K and a point z in K such that K is "symmetric relative
to z", T U (2z — T) is the set of extreme points of K, the closed convex
hull Kx of T is a simplex, and there exists on K a continuous real
afϊine function which vanishes at z and is one on Kt.

In § 3, the imposition of a topological semigroup structure on S
(and consequently on P(S) and B(S) via convolution) enables us to
use the results of §2 to characterize

(a) all extremal homomorphic images of S,
(b) all one-to-one affine bicontinuous and isomorphic images of S,

and (c) all one-to-one affine bicontinuous and isomorphic images of S.
The only requirement needed in addition to the corresponding ones in
§ 2 is that the set of extreme points of K in cases (a) and (b) be a
topological semigroup, while case (c) requires that the set T be a
topological semigroup and the point z be a zero of K.

In each of §§ 2 and 3 additional characterizations of some interest
are given. In our use of the Choquet simplex condition we prefer
the formulation Loomis gives in [12], and it is a pleasure to record
here the author's indebtedness to Professor Loomis for recent conver-
sations during a visit by him as consultant to a Banach Algebra seminar
at Louisiana State University.

l Preliminaries* Throughout this paper the letter K will denote
a compact convex subset of some real Hausdorff topological vector space.
A mapping / with domain K and range another such set is affine if
x, y 6 K and 0 S a S 1 imply f(ax + (1 - a)y) = af(x) + (1 - a)f(y).
The symbol L(K) will be used for the set of all continuous real valued
affine functions defined on K, and it is clear that L(K) needs not in
general distinguish points of K. If, however, the vector space con-
taining K is locally convex, the set L(K) will distinguish points, and
thus the assumption of local convexity (which we do not make) would
permit a considerable simplification in the statements of the theorems
to follow. If zeK, the symbol LQ(K) denotes the subset of L(K)
consisting of those functions each of which vanishes at z. It is easy
to see that L(K) separates points of K if and only if L0(K) does. If
each of L(K) and L0(K) is given the supremum norm, then both bocome
real Banach spaces and as such have adjoint spaces of real continuous
linear functionals, denoted respectively by L{K)* and LQ{K)*. In each
of these spaces we make use of the weak-* topology to embed K.
Explicitly, if x e K, denote by x [and x'] respectively the element of
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L(K)* [of L0(K)*] for which x(l) = l(x) for all leL(K) [x'(l) = l(x)
for all leL0(K)]. It is obvious that these mappings are one-to-one if
and only if L{K) separates points of K, and that each is affine and
continuous between K and its image, the latter given the relativized
weak-* topology. The embedding x —»x was used by Loomis in [12]
to formulate and extend Choquet's work [2]. Following Loomis, we
say that K is a simplex if (i) L(K) separates points of K and (ii) the
truncated cone Tr(K) = {az: 0 g a ^ 1, z e K) determined by K in
L{K)* is a lattice relative to the partial order: if x,ye Tr(K), then
x Sy ^V means y — xe Tr(K). Our only contact with Loomis's work
here (aside from borrowing some of his notation) is the use of his
Theorem 6 to prove (when K has a compact set of extreme points)
that K is a simplex if and only if K is the one-to-one affine bicontinuous
image of some P(S). The statement that K is an affine semigroup
means (see [3]) there exists an associative separately affine multiplication
on K; K is an affine topological semigroup if the multiplication function

is also (doubly) continuous. The semigroups S and S are important
examples of such semigroups, as are many semigroups of matrices.
Another important class of such semigroups is the class of group
extremal semigroups (the term is WendeΓs), where by definition the
compact affine topological semigroup K is group extremal if (i) it has
an identity element and (ii) the set of elements with inverse coincides
with the set of extreme points of K. Peck in [13] proved that each
such semigroup has a zero, and Wendel (unpublished) observed that
this result follows also from the fact that each such semigroup is the
homomorphic image of some S, with S a compact group.

2. Affine images of P(S) and B(S). In this section of the paper
K (as above) will be a convex compact set and E(K) will denote its
set of extreme points (a priori, possibly void). However, if L(K)
separates points of K, such is not the case; in fact, the Krein-Milman
theorem holds for K. The first theorem gives conditions on K neces-
sary and sufficient that K be the extremal image of some P(S).

THEOREM 2.1. Suppose that L{K) separates points of K. Then
K is the extremal image of some P(S) if and only if E(K) is compact.

Proof. Suppose first that there exists a compact space S and an
extremal mapping F (F is continuous affine onto and preserves extreme
points) of P(S) to K. By the Kelley-Arens theorem [1, Lemmas 3.1
and 3.2], the set of point measures on S is the set of extreme points
of P(S), hence is compact. Thus F(E(P(S))) is compact and contains
E{K) (this inclusion holds always). Since F is extremal, the other
inclusion is true also; i.e., E(K) is compact.



482 H. S. COLLINS

Conversely, suppose E{K) is compact, and let S = E{K). By
assumption, the embedding K of K in L{K)* is one-to-one bicontinuous
affine and onto. We now define a mapping R on P(S) onto K which
is continuous affine and extremal. For μeP(S), and leL(K), let
RS) = ί ^ μ . Fix a partition {#*}?,* of S by Borel sets, ί< € j£<, 1 ^

i ^ n. Then Σ?=i «(«i)M^) = Σ?=i Ul)μ(Ei) = Σ?=i *(«<)/*(#<) (regarding
i as a linear functional on L(K)*) = l(Σϊ=iMEi)tih Since Σ?=iM#<) = 1>
/*(!£*) ^ 0, and ί< G S, clearly the sum Σ?=i K^i)ΰ e convex hull of S.
Since sums of the form Σ?=i K^ύK^i) converge to I Idμ, this implies
that i2μ e weak-* closed convex hull of S = K. It it clear that R
maps the extreme points of P(S) onto those of K and hence (since R
is obviously continuous and affine) R maps P(S) onto if. This completes
the proof.

The next theorem gives several different sets of necessary and
sufficient conditions that K be the one-to-one affine bicontinuous image
of a P(S). It perhaps should be remarked that the requirement that
K be a simplex can be stated without mentioning explicitly the embed-
ding K. We now do this, merely referring the reader to Loomis [12,
Theorem 6] for the verification. The result will be stated as Lemma
2.1.

LEMMA 2.1. Suppose that L(K) separates points of K. Then K
is a simplex if and only if given {α^jΓ^ and {6̂ -}*=!, where ΣΓ=i α< =
Σ?=Λ = h ai^ °> bj^ 0, xify3-e K, 1 ̂ i ^ m , 1 ̂  j ^ n and ΣΓ-i^Λ =
Σ?=i &il/i> ί^βr6 exists {ckzk}l=1 tt iί/i Σϊ=i cfc — 1> CA; ̂  0 ami f̂c 6 iΓ,
l^k^p,for which (a) Σ L i < % = ΣΓ^α^i = ΣU hyh (b) {1,2, , p}

6β written as the pairwise disjoint union of sets {/;}Γ=i αncϋ {/j}ΐ=i,
1 ^ i ^ m, απrf bό = Σkejj ck,

THEOREM 2.2. The following conditions are mutually equivalent
for K: (1) K is the one-to-one affine bicontinuous image of some P(S),
(2) (a) E{K) is compact and (b) K is a simplex, (3) (a) L{K) separates
points of K, (b) E(K) is compact, and (c) each continuous real
function on E(K) is extendable to be in L(K).

Proof. (1) —» (2). Suppose F on P(S) to K is one-to-one affine
bicontinuous onto, where S is a compact Hausdorff space. It is easily
verified then that E(K) is compact and L{K) separates points of K,
for P(S) has these properties. It thus remains to prove that the
truncated cone Tr(K) determined by K in L(K)* is a lattice. Let C
be the truncated cone determined by P(S) in the vector space of all
real regular Borel measures on S. Clearly C itself is a lattice; we
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will now show that F has an extension G to all of C such that
( i ) G is one-to-one and affine on C onto Tr(K),
(ϋ) G(0) = 0, and
(iii) μ,veC implies μ<Lv ]ί and only if G(μ) ^ G(v). If this

can be proved, it will easily follow that Tr{K) is a lattice. Thus, we
proceed to the definition of G. If aμe C, with 0 S a g 1, μeP(S),
define G(αμ) = aF(μ). If aμ^bv, with αμ, δv e C and / = 1 on S,
then a = α ( /eZμ = ί /d(αμ) = ί jftf(δv) = δf /ώ; = δ; i.e., a=b. Thus,
if α = 0, αμ = δv =*0, and G(α/*) = aF(μ)S^ 0 = 6F(v) = G(δv). If
a Φ 0, then μ = v, so G(α/£) = αF(j«) = bF(v) = G(δv); i.e., G is well
defined on C into Tr(iQ. Clearly G is onto Tr{K). To show G is
one-to-one, let G(α/*) = G{bv). Then αi*\μ) = bF(v); i.e., αx = δ^, with
x,yeK. If Z is identically one on K then Z e L(K) and α — al(x) =
αx(Z) = δ^(i) = 6Z(i/) = δ; i.e., a = δ, and αF(^) = αjP(v). Since α = 0
implies α/* = 0 = δv, we can assume F(μ) = ^(v), whence μ — v and
aμ = bv. It is obvious that (and this has been proved already) G(0) = 0,
so it remains only to verify that G extends F (this is clear), that G
is affine, and (iii) holds. To prove G is affine, let aμ, bveC, O^
and let d = ca + (1 — c)b. If d Φ 0, then

- caF(μ) + (1 - c)δi^(v) = cG(aμ) + (1 -

If d = 0, then ( ld(cαμ + (1 - c)δv) = cαί ldμ + (1 - c)δί ldv =
(1 - c)δ = 0, hence caμ + (1 - c)δv = 0, and ca = (1 - c)δ = 0. The
desired result easily follows. Now, suppose Φ, ψeC, with Φ ̂  ψ. Then
(1/2)0 + (l/2)f = (l/2)f = (1/2)0 + (l/2)(α/r - 0), whence (l/2)G(t) =
(l/2)G(0) + (l/2)G(f) = (1/2)G(Φ) + (l/2)G(ψ - Φ) and this implies G(f) -
G(Φ) = G(f -Φ)e Tr(K); i.e., G(£> ̂  G(ir). To conclude (1) -> (2), we
suppose G(Φ) ^ G(ψ), with Φ, ψe C. Then there is α e C such that
G(α) = G(ψ) - G{Φ), so G{ψ) = G(α) + G(^). From this, it follows that
G(ψ/2) = (l/2)G(f) = G((α + )̂/2) and since G is one-to-one, (ψ/2) =
((a + φ)/2). Thus n/r = α + ^, ψ - Φ = aeC, and ^ ^ α/r.

(2) — (1). Let S = E(K) and define i2 on P(S) into L(ίΓ)* as
in the proof of Theorem 1; thus R is an extremal mapping of P(S)
onto K, and there remains only the proof that R is one-to-one. Let
μ,ve P(S) with Rμ = Rv. Extend μ and v to the Borel sets of K
by defining them to be zero at Borel sets missing S (call these ex-
tensions μ and V), and note then that R^μ = R^, where, for example,
RW>) = \ Wj"> all I e L(K). The mapping Rr is the resultant mapping
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used by Loomis in [12], and in Theorem 6 he proved that (since K a
lattice clearly implies the set of all subelements of x = R]i = iϋf is
a lattice) there exists a unique extremal measure whose resultant is
x. Since S = E(K) is known here to be compact, this says [12, p. 517]
that μ = v. Thus R is one-to-one, and (1) is proved.

(2) —> (3). As was seen in the proof of (2) —> (1), the mapping
R on P(S) to K is one-to-one bicontinuous and affine onto, where
S = E(K). If / is continuous real valued on S, denote by h the
restriction to P(S) of the linear functional on the space of all real

regular Borel measures determined by / : h(μ) = I fdμ, all μeP(S).
JS

Then x e E{K) implies (denote by x the point measure on S determined

by x) f(x) = h{R-\x)) = h(x) = ( / » $ = f(x); i.e., / extends / to be
JS

in L(K).

(3) -> (1). If μ,veP(S) and Rt= Rv, where S = E(K), and /

is continuous real valued on S, let / be its extension to K to be

continuous and affine. Then I fdμ = I fdμ = I Jdv — \ fdv, i.e., μ
JS JS JS JS

and v are equal as functionals on the space of real continuous functions
on S. The Riesz theorem then implies μ — v as measures. This
concludes the proof of Theorem 2.

REMARK 2.1. It is easy to verify that in the preceding theorem
the condition (c) of part (3) may be replaced by (c'): each continuous
real function / on S = E(K) is uniquely extendable to feL(K). It
follows then that f—>f is an isometric isomorphism of C(S) onto L(K),
where C(S) is the space of real continuous functions on S, and each
space is given the supremum norm.

We conclude §2 now with our characterization of all one-to-one
affine and bicontinuous images K of real unit balls of measures. The
conditions given here (in Theorem 2.3) are quite natural with possibly
one exception: the requirement that LQ(K) contain a function which
is identically one on T seems somewhat artificial. However, some
remarks regarding this condition are made following the proof of the
theorem, and these may help place the condition in proper perspective.

THEOREM 2.3. The following conditions are mutually equivalent
for K:

(1) K is the one-to-one affine bicontinuous image of some B(S),
(2) (a) there exists zeK and compact TaK such that xeK

implies 2z - x e K and E{K) = T U (2s - T) (b) if Kx denotes the
closed convex hull Of T, then Kx is a simplex, (c) L(K) separates
points of K and LQ(K) contains a function which is identically one
on Ku
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(3) (a) part (a) of (2) holds and (b) L(K) separates points of
K and each continuous function f on T is extendable to an feL0(K).

Proof. (1) —> (2). Let F be a one-to-one affine bicontinuous
mapping of B(S) onto K, where S is a compact Hausdorff space. Let
z = F(0), T = the image under F of all measures determined by the
points of S. If x e K, there exists μeB(S) such that F(μ) = x. Then
2z-x = 2F(0) - F(μ) = F(2-0 - μ) = F(-μ) e K. The Kelley-Arens
theorem [1, Lemmas 3.1 and 3.2] says £U( — S) is the set of extreme
points of B(S), where S is the set of point measures. Hence E(K)~
F[Sϋ(-S)] = F(S){JF(-S) = T{J(2z - T). Thus (a) of (2) is verified.
Using the Kelley-Arens result again (S is the set of extreme points
of P(S))9 Kλ = F(P(S)) hence Theorem 2.2 implies Kλ is a simplex.
Since B(S) has a separating family of continuous real affine functions
vanishing at 0 and contains one which is identically one on P(S), part
(c) of (2) follows easily. Thus, (2) is proved.

(2) -> (3). Since TcE{K), it is obvious that TcE(K^. On
the other hand, the closed convex hull of T is Kl9 hence T (being
closed) contains E(K^\ i.e., T = E(Kτ). Consider the embeddings K'9
Kl, and -Kl in L0(K)* of (respectively) K, Kl9 and (2z - Kx). Since
K[ and —Kl are compact convex sets whose union contains T' U —Tf —
E{Kr), it is clear that the convex hull of Kl U —Kl is compact (and
convex) and thus coincides with Kf. Now Kl is a simplex (by Theorem
2.2) with E{Kλ) = Tr, so each continuous real function on Tr can be
extended to be continuous and affine on Kl. This fact together with
the fact that x—>x' is one-to-one affine and bicontinuous on K onto
K' reduces the problem to proving that each continuous affine / on
Kl extends to a continuous affine function on Kf which vanishes at
z' = 0e L0(K)*. Fix such an /, and let ax' + (1 - a){-yr) e K', where
O ^ α ^ l , x,y eKx (note that Kf is the union of the line segments
[p, q], with p e Kl, q e -Kl). Define f[ax' + (1 - a)(-y')] = af(xf) -
(l-a)f(yf). We show first that / is well defined. Let ax' + {l-a){-y') =
bw' + (1 - b){-V), with 0 ^ α, b ^ 1, x,y,w,te Kl9 and let l0 e L0(K)
be one on Kx. Then lo(ax' + (1 — a){—y')) = alo(x) + (1 — a)lo(—y) =
a + (1 — α)(—1), since l0 = — 1 on 2a; — JSLΊ. Similarly, lo(bw' +
(1 - δ)(-t')) = 6 + (1 - 6)(-l) so 2α - 1 = 26 - 1, and α = 6. But
then αcc' + (1 - a){-y') = αwf + (1 - α)(-f), hence ax' + (1 - α)ί' =•
αw' + (1 - a)yr. Since / is affine, af(x') + (1 - α)/(ί') = α/(^')_ +
(1 - a)f(y'), so α/(a5') - (1 - α)/(τ/') - af(wj - (1 - α)/(f); i.e., / is
well defined. That / extends/ follows from f(x') = /(I x' + 0 -(-a?')) =
1 •/(»') - 0 •/(—»') =/(»'). To P r o v e / is continuous on K', let
{aax^ + (1 — aa)(—y'a)} be a net in Kf converging (weak-*) to ax' +
(1 — a){—yr). The net {(aa, x'a, —yf

Λ)} in the compact space [0,1] x
Kl x (—Kl) has a subnet, say {(aβ9 x'β, —y'β)}, converging in the product
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space to (δ, w, — t). It follows that aβx'β + (1 — aβ)(—yr

β)—>bw' +
(1 + &)(-«'), whence bw' + (1 - δ)(-ί') = ax' + (1 - a){-y'), and α=δ.
Thus, αα' + (1 - a)(-y') = aw' + (1 - δ)(-f). But then (as above)
af(x') + (l-a)f(t') = af(w') + (l-a)f(y'), whence / K ^ + (l-α
α β /(^) - (1 - aβ)f(y'β) - α/W) - (1 - α)/(t') = af(x') - (1 - α)
f[ax' + (1 — a,)(—y')]; i.e., / is continuous. Note also that /(0) =
7[(l/2)a' + (l/2)(-»')l = d/2)/(s') - (1 - (l/2))/(s') - 0. Finally, we
show / is affine. To this end, let axf + (1 — a)(—y') and bw' +
(1 - b)(-t') eK'f 0 ^ c ^ 1. Then ^ = c[αί»' + (1 - a)(~y')] +
(1 - c)[bw' + (1 - δK-ί')] = cαα' + (1 - Φ ; + c(l - αK-y') + (1 -
c)( l-δχ- ί ' ) . If d - cα + (l-c)δ, then 1-d = c(l-α) + ( l -c) ( l -δ) .
If then cί ̂  0, d Φ 1,

α _

= c[af(x') - (1 - α

c)[bf(w') - (1 -

Each of the cases cϋ = 0 and d = 1 is resolved into easily handled
sub-cases, and the arguments will be omitted. This completes the
proof of (2) — (3).

(3) -> (1). Define R on B(T) into L0(K)* as usual: for μeB(T)
and ϊ e LQ(K), let i?μ(ϊ) = \ ϊd/i. By an argument similar to one used
before, R maps B{T) onto the weak-* closed convex symmetric hull
in LQ{K)* of T'. This set is K', and as before R is affine and con-
tinuous, so the proof that R is one-to-one is all that remains. Let
μ,veB(T) and i2μ = Rv. Then if / is continuous on T, it has an

extension / t o be in L0(ίΓ). But then ί fdμ == ( /d^ = i?μ(/) = JSV(/) =
/<iy = I fdv, and /i = v as functionals on the real continuous

T m JT

functions on T. The Riesz theorem completes the proof that μ — v,
and thus the theorem is concluded.

L E M M A 2 .2 . Suppose K is compact convex, with zeK and TcK
such that xeK implies 2z — xeK and T is compact. Let further
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L0(K) separate points of K, E{K) = T U (2s - T), and K± be the
closed convex hull of T. The following conditions are then mutually
equivalent:

(1) L0(K) contains l0 which is one on Klf

(2) 0 ^ α, B 1, x, y,w,te Kλ and axr + (1 - a)(—y') = bwf +
(1 — &)(—*') imply a — b,

(3) each leL{K^) can be extended to an TeL0(K).

Proof. The implication (1) -> (3) is part of the proof of (2) — (3)
of the previous theorem. If (3) holds, then since L(KX) contains the
function which is constantly one on Klf clearly (1) holds; i.e., (3)—> (1).
The proof that (1) —> (2) is also in the proof of (2) -> (3) of Theorem
2.3, so it remains only to show that (2) —* (1). This proof, however,
is also found in (2) —> (3) of the previous theorem, for all that was
needed to extend feL{K^) to feL0(K) was condition (2) of the present
lemma. In particular, then, the function identically one on Kλ is
extendable; i.e., (1) holds.

REMARK 2.2. Given the hypotheses of Lemma 2.2., each of (1)
through (3) of that lemma is equivalent to the geometric condition:
Let C be the cone {axr; a ^ 0, x e KJ in LQ(K)* determined by Kl.
Then 0 is not in Kl and each Φ Φ 0 in C is uniquely representable
as φ = ax', for some a > 0 and x e Kx. The proof of this statement
is quite easy, as follows. Let ax' = by', with a, b > 0, x,y e Klm Then,
by (1) of Lemma 2.2, a = alo(x) = lo(ax') = lo(by') = blo(y) = b, hence
a = b and thus x' = y'm Clearly, 0 is not in Kl. Conversely, if this
geometric condition obtains, let 0 f§ a, 6 g 1, x, y, w,te Kx and ax' +
(l-a)(-y') = bw' + (1 —6)( —t'). Then ax' + (l-δ)t ' - bw' + (l-a)y'.
Let d = a — b + 1, and note that b — α + l = 2 — d. Thus if d Φ 0,
d Φ 2, we have that d[(a/d)x' + ((1 - b)/d)t'] = 2- d[(b/(2 - d))w' +
((1 - α)/(2 - d))y'], hence (by the condition) d = 2 - d. Thus d = 1,
and a = δ. Note that if cί = 0, then α + l = ί ) g l implies α ^ 0, so
α = 0 and 6 = 1. But then —y' = w', which says (l/2)(w' + y') = 0e Kl.
If d = 2, then b + 1 = a ^ 1 implies 6 = 0 and α = 1. Then x' = -t',
and again 0 e Kl. This completes the proof.

3«. Affine hotαotnorphίc and isomorphic images of S and SL In
this section we are interested in homomorphic and isomorphic (as well

as affine) images K of the convolution semigroups S and S. The
essential difficulties involved in the characterizations we obtain have
already been solved in §2, and the additional requirements are
(primarily) that (a) K be a compact affine topological semigroup and
(b) E{K) or T be a compact topological semigroup.
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The following lemma takes care of most of the additional difficulties
encountered when one requires a topological semigroup structure on S
and K.

LEMMA 3.1. Let K be a compact affine topological semigroup, L
a norm closed linear subspace of L(K) separating points of K, and
TczE(K) be a compact sub-semigroup of K. Denote by x-+x° the
embedding of K into L*, giving L* the weak-* topology determined
by poίntwise convergence on L, and let A (let B) respectively denote
the closed convex symmetric hull of T° (the closed convex hull of I70)-
Then:

(1) If R on P(T) into L* is defined (for μeP(T),leL) by

RJJ) — \ Idμ, then R is a continuous affine homomorphism of T onto Br
JT

(2) If A is contained in K° and has 0 as a zero and Q on B(T)

into L* is defined (for μeB(T) and leL) by Qμ(ΐ) = \ Idμ, then Q1

ΪZ JT

is a continuous affine homomorphism of T onto A. Note that R and
Q are the mappings of Theorem 2.1 and 2.3 respectively, if L — L(K)
and L0(K) respectively.

Proof. The statements regarding Q and R (except for those
involving the homomorphism properties) are proved exactly as in
Theorems 2.1 and 2.3. It therefore suffices, for example, to prove
that Q is a homomorphism, so let μ,veB(T). Suppose first μ —
Σf=i α»A, » = Σi=i hvj9 with Σ Γ α< = 1 = Σ ί h and ai9 bs ^ 0, μί9 vs

extreme points of B(T), all i and j . Then μv = Σ»,i aJ>sfΛiVjf sα
Qμv = Σi. j toihQiipj If both μ{ and vβ are point measures determined
respectively by t< and sβ e T, then QHVj = Qa, where a is the point
measure determined by ί̂ - e T. But then QJJL) = I Ida = 1(^8ά) =
(tiSjy(l) = (t\ 8j)(i) = (QH Qyj)(l); i.e., Qμ<v, = Qμ< QVj. Now if
a,βeB(T), then - α •/? = -(a-β) - α (-i8) and ( - α ) (-/3) = α /3.
Thus if PiiVj) is each the minus of a point measure, say μ{ = — α i f

^ = - f t , then Q^VJ = Qa.βj = Qai Qβj = a;0.»°, with x,yeT. On the
other hand Qμί QVi = (-aj°) ("-tf°) = (2-0 - x°)(2-0-y°) = 4 . 0 - 2 - 0 -
2 0 + x° y° =*a?° y°; i.e., Qμ ί V j = Qμ< QVj. If (say) ̂  and as are point
measures, with vά = -ah then QHVj = -QVj= — (Qμ< Q Λ j ) = - ( ^ 0 ̂ /°).
with x,yeT. On the other hand Qμi QVj = x° (-?/0) = ̂ ° (2 0 - y°) =
2 - 0 - (αj°.tf°)= - ( ^ 0 /̂°); i.e., in all cases, Qμ<Vj = Oμ, Qvr Thus,
Qμv = Σί,i aibsQ^j = (Σί α»Qμ4) ( Σ i & A , ) = Qμ Qv Suppose next that
t* = Σ?=i αίft» w i t h ft extreme points of B(T). Then ^v = Σ?=i α ί f t y ,
so Qμv = Σ?=i QiQw Let {vα} be a net of convex combinations of
extreme points of B(T) converging to v\ then ftvα—>α^y, so Q
continuous implies QH QVa = Qμ,iVa —*a Qμ^ Since QH QVa —\ QH Qvr

it follows t h a t Qμ ί V = QH Qv, 1 ^ i ^ ^ , hence Qμ v = Σ ? = 1 α<(Qμ< Qv) =
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(Σ?=i aiQ^) -Qv = Qμ.- Qv Now let μ, v be arbitrary, {μa} a net of
convex combinations of extreme points converging to μ. Then, by
the preceding, Qμα Qv = Qw ->α ζ>μv, while Qμa Qv —>a Q^ Qv. Thus,
Q is a homomorphism and the argument for R is similar, though
simpler.

THEOREM 3.1. Suppose K is a compact affine topological semigroup
with L(K) separating points of K. Then K is the extremal homo-
morphic image of the convolution semigroup T of measures over some
compact Hausdorff semigroup T if and only if E{K) is a compact
semigroup.

Proof. It is now obvious that the extremal homomorphic image
of a T has a compact semigroup of extreme points. For the converse,
use Theorem 2.1 and Lemma 3.1, letting the L of Lemma 3.1 be L(K),
T = E{K), and letting the mapping be the R of Lemma 3.1, part (1),

COROLLARY 3.1.1. Suppose K is a compact affine topological
semigroup with L{K) separating points of K. Then K is group
extremal {i.e., K has an identity and E{K) is a compact group) if
and only if K is the affine continuous homomorphic image of some
T, with T a compact topological group.

Proof. Suppose first that K has an identity element and E{K)
is a compact group. Now by WendePs theorem [3, Theorem 1] the
maximal group T containing the identity is contained in E{K), hence
E{K) = T. Now the mapping R of Theorem 3.1 and Lemma 3.1 (since
T is a group and R is a homomorphism) is extremal, so K is the
affine continuous and homomorphic image under R of T. If this
condition holds, then K is the extremal image of a semigroup of
measures over a compact group, hence E{K) is a compact group and
K has an identity. This completes the proof.

REMARK 3.1. The group extremal semigroups of the preceding
corollary are known to always have a zero [13, 3]. Familiar examples
of such semigroups are the closed unit disc of complex numbers, with
ordinary complex multiplication, and the interval [ — 1,1] of reals,
with ordinary multiplication.

In the following theorems S will always be a compact semigroup.

THEOREM 3.2. The following conditions are mutually equivalent
for the compact affine topological semigroup K:

(1) K is the one-to-one affine bicontinuous and isomorphic image
of some probability semigroup S,
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(2) (a) E(K) is a compact topological semigroup, and (b) K is
a simplex,

(3) (a) L(K) separates points of K, (b) E(K) is a compact semi-
group, and (c) each continuous real function f on E(K) is extendable
to feL(K).

Proof. If (1) holds, then Theorem 2.2 implies everything claimed
in (2) save the statement that E(K) is a semigroup, and this follows
because E(K) is the isomorphic image of a semigroup, namely S. Now
the implication (2) —> (3) follows directly from (2) and Theorem 2.2.
To conclude the proof of the theorem, we show that (3) —•> (1). Here
again we use Lemma 3.1, letting T = E{K), L = L(K), and the
mapping be the R of Lemma 3.1. Note this function is the same as
that used in (3) —> (1) of Theorem 2.2. The result of applying Lemma
3.1 and Theorem 2.2 is that K is the one-to-one bicontinuous affine
and isomorphic image of f under R.

THEOREM 3.3. Let K he a compact affine topological semigroup.
The following conditions are mutually equivalent.

(1) K is the one-to-one affine bicontinuous and isomorphic image

of some real unit ball semigroup S,
(2) the same as (2) of Theorem 2.3 except for the additional

requirements that the z and T of that theorem be a zero for K and
a semigroup, respectively,

(3) the same as (3) of Theorem 2.3 except requiring additionally
that the z and T of that theorem be a zero for K and a semigroup,
respectively.

Proof. The only conditions which need to be checked (in virtue
of Theorem 2.3) are those involving the semigroup structures on the

spaces involved. Thus, in (1) —> (2), the zero of S maps onto z (hence
z is a zero for K) and S maps onto T (hence T is a semigroup). The
implication (2) —• (3) follows immediately from Theorem 2.3 and the
additional assumptions on z and T. To prove, finally, that (3) —» (1),
note that z maps into 0 e LQ{K)* under the embedding K into K';
thus, 0 is a zero for K'. Further, T maps onto T' and the closed
convex symmetric hull A of Tr in Lύ(K)* is K'. In Lemma 3.1, then,
we take L = LQ{K)*, and let Q on B(T) onto Kf be as in that lemma.
Then Lemma 3.1 together with Theorem 2.3 insure that Kr is the

one-to-one affine bicontinuous and isomorphic image of T, so also then
is K. This completes the proof.

REMARK 3.2. A simple example illustrating the last two theorems
may be constructed in the plane, as follows. Let the K of Theorem



CHARACTERIZATIONS OF CONVOLUTION SEMIGROUPS OF MEASURES 491

3.3. be all pairs (x, y) of reals such that | x | + | y | ^ 1, and let T =
{i, j}, where i = (1, 0), j = (0, 1). Define i2 = i, f = j , ij = ji = j .
The multiplication (on the entire plane) is defined as follows: (aί +
bj)(cί + dj) = α c ί + (ad + be + b d ) j . T h e n K λ i s { ( a ? , y): x , y ^ 0 , x +
y = 1}, a simplex, and is affinely isomorphic with [ —1, 1] with usual
multiplication. K itself is, of course, a unit ball semigroup of measures,
with z = (0, 0).

Examples of similar nature could be constructed on any finite
simplex, of course, the requirements being that multiplications of a
suitable nature be defined on the set of vertices. It is clear that
exactly n distinct geometric figures exist in w-space on which proba-
bility semigroup structures can be defined; namely, the n simplexes
each with i vertices, 2 ^ i ^ n + 1. Thus the number of distinct
probability semigroups in %-space is =Σΐi} A(i)f where A(i) is the
number of distinct associative multiplications on a set of i elements
(isomorphic and anti-isomorphic semigroups are identified).
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THE RELATIONSHIP BETWEEN THE RADICAL OF A
LATTICE-ORDERED GROUP AND COMPLETE

DISTRIBUTIVITY

PAUL CONRAD

1. Xntroductioru Throughout this note let G be a lattice-ordered
group (notation 1-group). G is said to be representahle if there exists
an 1-isomorphism of G onto a subdirect sum of a cardinal sum of
totally ordered groups (notation 0-groups). In particular, every abelian
1-group is representable. G is said to be completely distributive if
for giS e G

A V Oij = V A βifd)
iei jej fβJ1 iei

provided the indicated joins and intersections exist.
For each 0 Φ g in G let Rg be the subgroup of G that is generated

by the set of all 1-ideals of G not containing g. Then Rg is an 1-ideal
of G and the radical of G is defined to be

R(G)= C)Rg (OΦgeG) .

In [2] it is shown that if G is a divisible abelian 1-group, then there
exists a minimal Hahn-type embedding of G into an 1-group of real
valued functions if and only if R{G) = 0. Thus it would be useful to
identify the class of abelian 1-groups with zero radicals, and to ex-
amine the properties of non-abelian 1-groups with zero radicals. In
our main theorem we show that a representable 1-group G is com-
pletely distributive if and only if R{G) — 0. We also show R(G) = 0
if and only if G has a regular representation. This settles a question
raised by Weinberg [6].

With no restrictions on G we show that R(G) is completely de-
termined by the lattice S^ of all 1-ideals of G. In particular, if G
is a representable 1-group, then whether or not G is completely dis-
tributive depends only on £f.

The author would like to express his gratitude to A. H. Clifford
who read a rough draft of this note and made valuable suggestions.
In particular, the present forms of Lemmas 1 and 2 are due to him.

2 Regular and essential L-ideals* If geG and M is an 1-ideal of
G that is maximal with respect to g&M, then M is called a regular
1-ideal of G. Let M* be the intersection of all 1-ideals of G that

Received June 6, 1963. This research was supported by a grant from the National
Science Foundation.
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properly contain M. Then since geM*, it follows that M* is the
unique 1-ideal of G that covers M. Let Γ be an index set for the
set of all pairs (Gγ, Gy) of 1-ideals of G such that Gy is regular and
Gy covers Gy. Define a < β if G" S G> Then Γ is a po-set, and we
say that 7 e Γ is a mZwe of # if # e Gy\Gy. In particular, the set of
all values of g is a trivially ordered subset of Γ. An element T G Γ
is called essential if there exists an 0 Φ h in G such that all the
values of h are ^ 7 . In this case Gy is called an essential 1-ideal of
G, and if # e G7\Cry, then we say that 7 is an essential value of #.

Clearly the set E of all essential elements in Γ is a dual ideal
of Γ (a < βeΓ,aeE~->βeE). The following lemma shows that the
radical R(G) of G is completely determined by the essential ideals of G.

LEMMA 1. The radical of G is the intersection of essential 1-ideals
of G: R(G)= ΠGy(yeE).

Proof. If g$R(G), then gί Rh for some h in G and by Zorn's
lemma there exists an 1-ideal M of G that is maximal with respect
to g$M^ Rh. Thus M = Gy for some yeE, geGy\Gy and hence g
has an essential value. If xe [}Gy, then x has no essential value and
hence xeR(G). Therefore ΠGy^ R(G). If E is the null set, then
G= ΠG7 3 R(G) and if 7G E, then there exists 0ΦhyeG such that
if d is a value of hyj then <5 <£ 7 and hence Gδ ̂  Gy. Thus iϋλ C Gy

and so

n
yeε

a n R9 =
oφeo

COROLLARY. R(G) = 0 if and only if each nonzero element in G
has at least one essential value.

We next show that R(G) depends only on the lattice Sf of all
1-ideals of G. Note that a regular 1-ideal M of G is characterized by
the fact that it is meet irreducible in ^Sf. That is, if Λf * is the inter-
section of all 1-ideals of G that properly contain M, then M is properly
contained in ikί*.

LEMMA 2. βeΓ is essential if and only if Γ\{Gy:ΎeΓ and

Proof. Suppose that 0 < he f]{Gy:ye Γ and 7^/9} and let a be
a value of h. Then h £ Ga and so a ^ β. Thus all the values of h
are ^β, and hence β is essential. Conversely assume that Gβ is es-
sential and pick 0<heG such that all the values of h are ^/3. Then
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he Π{Gy: 7e Γ and 7 £ β}. For if hgGv, where 7^/3, then & must
have a value a ^ 7 which is impossible.

COROLLARY. i?(G) is αw invariant of the lattice Sf of all 1-ideals
of G.

LEMMA 3. For an 1-group G the following are equivalent.
(1) G/M is an 0-group for each regular l-ideal M of G.
(2) G is representable.

Proof. For each 0 Φ g in G pick an Z-ideal Mg of G that is
maximal with respect to not containing g. Then f)Mg = 0, and if (1)
is satisfied, then each G/Mg is an 0-group and the mapping of x e G
upon ( , Mg + x, •) is a representation of G. Conversely suppose
that G has a representation, then clearly

(3) if α, be G+ and a A b = 0, then a A (—x + b +x) = 0 for all
x e G. In fact, Sik [5] established that (2) and (3) are equivalent, but
we only need that (2) implies (3). Let M be an l-ideal of G that is
maximal with respect to not containing 0 < a e G, and let A = M + a.
Suppose (by way of contradiction) that G/M is not an 0-group. Then
there exist strictly positive elements X and Z in G/M such that
XAZ=M.

Case I. X AA = M. Then P(A) = {Ye G/M: | Y\ A A = M} is
a convex 1-subgroup of G/M that contains Xbut not A. If ikf< Ye P(A),
then Y = M + y, where 0 < y e G, and a = a A y + a\ y = a A y +
y', a' Ayf — 0. Moreover

Thus a AyeM and so Y = M + y' and A = M + α'. But by (3),
α' Λ (—0 + 2/' + fir) = 0 for all # in G and hence A Λ — (Λf + #) + Γ +
(ikf + #) = M. Thus P(A) is a nonzero l-ideal of G/M that does not
contain A, and hence there exists an l-ideal of G that properly contains
M but not a, but this contradicts the maximality of M.

Case II. X AAψ M. Then P(X) is an l-ideal of G/M that
contains ^ but not A, and once again we contradict the maximality
of M. Therefore G/M is an 0-group, and hence (2) implies (1).

COROLLARY. If G is representable and R(G) = 0, then an element
g is positive in G if and only Gy + g is positive for all essential
values Ί of g.

Proof. If g is positive in G, then GΊ + g is positive for all values
7 of g, essential or otherwise. If g is not positive, then g = g V 0 +
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g Λ 0 = g+ + g~, where g~ Φ 0 and g+ A — g~ = 0. By the Corollary
to Lemma 1 there exists an essential value 7 of g~ and by Lemma
3, G/Gy is an 0-group, and so g+eGy. Thus Ύ is also an essential
value of g and Gy + g = Gy + g~ is negative.

LEMMA 4. If 0 < ge VAλ, where the Aλ are 1-ideals of G, then
g = & V ••• V flr», w λ e r e 0 ^j fte U A λ / o r i = 1, •••, w .

Proof. This proof is due to T. Lloyd. Clearly # = αx + + anj

where the α {€i4.λ { for i = 1, ••-,%. Thus it suffices to show that
gr ^ αί V V < , where α{e Aλi for i = 1, ••-,%. For then

0 = ((αί V 0) Λ g) V V ( « V 0) Λ g)

= ft V V 0,

where 0 ^ ft e Aλ ί for i — 1, , n. If n = 2, then

αx + α2 ̂  2αt V (αi + α2 — αx + α2) = αί V a[

because

0 ^ | ax — α21 = («! — α2) V (α2 — α2)

= — α2 + (2ax V (di + α2 — αα + αa)) — α2 .

Thus ^ + + an <; (αx + + an^Y V αi, and since (a, + +
α.-0'e V Aλ i (i = 1, , n - 1), (a, + . + α.^) ' = 6i + • + bn-u

where &< e Aλi for i = 1, , n — 1. Thus by induction &!+•••+ δw_i ^
αj V V αi_i and hence # ̂  αj V V α l .

3» Completely distributive L-grouρs«, Let A be a sublattice and
and subdirect sum of a cardinal sum B of 0-groups J3λ(λe A). If for
each λ in A, the projection pλ of A onto Bλ preserves infinite joins,
then A is called a regular subgroup of B. An 1-group G is said to
have a regular representation if it is 1-isomorphic to a regular subgroup
of a cardinal sum of 0-groups. It is easy to prove that an l-group
G with a regular representation is completely distributive [6]. Weinberg
has also shown ([6] Proposition 1.3) that the natural homomorphism
of an l-group G onto G/J, where J is an 1-ideal of G, preserves infi-
nite joins if and only if J is closed (Vj\ e G, {jλ : λ e A} g J—> v i λ e / ) .
Thus it follows that G has a regular representation if and only if
there exists a family of closed 1-ideals Jλ of G such that Π Λ = 0 and
each G/Jλ is an 0-group.

LEMMA 5. (Weinberg) An l-group G is completely distributive
if and only if for each 0 < g in G there exists 0 < #* in G such that

9 = W λ , gλ e G+ -+ ̂ * ^ 0λ /or some λ.
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THEOREM. For a representable 1-group G the following are
equivalent.

(1) Λ(G) = 0.
(2) Each essential l-ideal of G is closed and Γ\Gy = 0 (yeE).
(3) G has a regular representation.
(4) G is completely distributive.

Proof. By Lemma 3, for each 7 in E, G/Gy is an 0-group, and
hence by the preceding discussion (2) implies (3) and (3) implies (4).
Suppose that G is completely distributive, and assume (by way of
contradiction) that 0 < g e R(G). Then by Lemma 5 there exists
0 < ^ * G G such that if g — V g« (g« e G+), then g* g gω for some a.
Since geR(G) it follows that geRg*= VAλ. where the Aλ are the
1-ideals of G not containing #*. Thus by Lemma 4, g = & V V gn,
where O ^ ^ e U Aλ. But then g* g gt for some i, and hence #* e LJAλ

α contradiction. Therefore (4) implies (1).
To complete the proof we must show that (1) implies (2). If (1)

is satisfied, then by Lemma 1, ΓlGγ — 0 (TG E). Let Gδ be an essential
l-ideal of G and assume (by way of contradiction) that Gδ is not closed.
Then there exists geG+\Gδ such that g= Vg3(g3eGi). Since Gδ is
essential there exists 0 < heG such that all the values of h are g δ .
We shall show that for some such ft, g — ft ^ g3- for all j , and hence
Vg3 > Vg3-h = g -h^ Vg3.

Case I. There exists 0 < ft e G such that all the values of h are
g δ and Gδ + h <G& + g. Since g — h$Gδ and gόeG8, g — h — gάΦ 0.
By the Corollary to Lemma 3 it suffices to show that Gβ + g — h — gά

is positive for all values β of g — h — gd in E. If h e Gβ, then Gβ +
g — h — gd — Gβ + g — g3- is positive. If h ί Gβ9 then there exists a
value 7 of h such that 7 Ξ> /3. But then β <Ξ 7 g <?, and since
g - h - g3e Gβ\G5, β = δ. Therefore Gβ + # - h - g3- - G, + g - h is
positive.

Case II. For each 0 <heG such that all of the values of h are
gδ, Gδ + h^Gδ + g. lί 3 > yeE, then we may choose 0 < ke (?
such that all of the values of k are g 7 < δ. But then Gδ + g > G5 =
Gδ + fc. Therefore δ is minimal in E. If all values of 0 < h are g δ ,
then Gs + h^G5 + g and so Go + # Λ fe = Gδ + g. If β is a value
of g A h in £/, then g Λhe Gβ\Gβ and hence h gGβ . Thus there exists
a value 7 of h such that /S g 7 g δ and since δ is minimal in E, β = δ.
Thus without loss of generality, 0 < h e G, δ is the only value of h
in E and Gδ + h = Gδ + #. If g - h - g3- Φ 0 and /3 is a value of
g — h — g5 in i? then ft e Gβ. Otherwise β = δ, but g — h — g3e Gδ.
Therefore Gβ + g — h — g3= Gβ + g — g3- is positive for all values /3
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of g — h — g5 in E. This completes the proof of our theorem. In
proving that (4) implies (1) we did not use the hypothesis that G is
representable. Thus we have

COROLLARY I. If G is a completely distributive 1-group, then
R{G) = 0.

From the Corollary to Lemma 2 we have

COROLLARY II. If G is a representable 1-group, then whether or
not G is completely distributive depends only on the lattice Sf of all
1-ideals of G.

4. Remarks and examples* Let P be the 1-group of all order
preserving permutations of the real line (with fg(x) = f(g{x)) and /
positive if f(x) ^ x for all x). Let

A = {feP:f induces the identity on (— co, a] for some α}, and
B = {fePif induces the identity on [α, co) for some α}.

Let C = A[]B. Then Holland [4] has shown that A, B and C are
the only proper 1-ideals of G, and Higman [3] has shown that C is
algebraically simple. Therefore 0 is the only essential 1-ideal of C
and since C/0 is not an 0-group it follows from Lemma 3 that C is
not representable. Therefore C satisfies property (2) of the theorem,
but not property (3).

(G, B) is the only value of each element in A\B and (C, 0) is the
only value of each nonzero element in C. Thus B and 0 are essential
1-ideals of P, and in particular, P satisfies (1). For each n = l,2,
let

2x

x -

X

•f Sn

2

if

if

if

x S

n ^

Sn

i n

\x<

< x .

Then (V/n)(a0 = 2a, and hence the fn belong to B, but V / n ? ΰ .
Therefore P satisfies (1) but not (2).

A simple application of Lemma 5 shows that P is completely
distributive (or see [6] Example 3.3). Therefore (4) does not imply
(2) or (3). On the other hand for arbitrary 1-groups, (3) -> (2) -> (1).
The remaining question is whether or not (1) or (2) implies (4) for
non-representable 1-groups? Note that if R(G) = 0 implies complete
distributivity, then every 1-group with no proper 1-ideals is completely
distributive, and in particular, every 1-group that is algebraically
simple is completely distributive.

If the radical used in this note is replaced by one constructed in
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exactly the same way, but with 1-ideals replaced by convex 1-subgroups,
then if this new radical is zero, the group is completely distributive.
Also the new radical is an invariant of the lattice of all convex
1-subgroups of G. The proofs of these statements are analogous to
those in this paper using the fact that if C is a regular convex
1-subgroup, then the set of right cosets of C in G is totally ordered by

C + x^C + yiΐ x ^ y + c for some ceC.

Unfortunately the converse to the above is false. For example, the
new radical for P is P itself and yet P is completely distributive.

Let G be an Archimedean 1-group. By Theorem 5.7 in [2],
R{G) = 0 if and only if G has a basis, and by Theorem 7.3 in [1], G
has a basis if and only if G is (isomorphic to) a subdirect sum of a
cardinal sum of subgroups Ry of the reals which contains the finite
cardinal sum of the Ry. Thus we have a new proof for one of the
main results in [6],
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A SUFFICIENT CONDITION THAT AN ARC IN
Sn BE CELLULAR

P. H. DOYLE

An arc A in Sn, the ̂ -sphere, is cellular if Sn — A is topologically
En, euclidean %-space. A sufficient condition for the cellularity of
an arc in E3 is given in [4] in terms of the property local peripheral
unknottedness (L.P.U) [5]. We consider a weaker property and show
that an arc in Sn with this property is cellular.

If A is an arc in Sn we say that A is p-shrinkable if A has an
end point q and in each open set U containing q in Sn, there is a
closed n-ce\l C c U such that q lies in Int C (the interior of C),
while BdC (the boundary of C) meets A in exactly one point. We
note that A is p-shrinkable is precisely the condition that A be
L.P.U. at an endpoint [5]. There is, however, a good geometric
reason for using the p-shrinkable terminology here the letter p
denotes pseudo-isotopy.

LEMMA 0. Let Cn be a closed n-cell and Dn a closed n-cell which
lies in int Cn except for a single point q which lies on the boundary
of each n-cell. If there is a homeomorphism h of Cn onto a geo-
metric n-simplex such that h{Dn)s is also an n-simplex, then there is
a pseudo-isotopy pt of Cn onto Cn which is the identity on BdCn,
while p^D71), the terminal image of Dn, is the point q.

The proof of this is omitted since it depends only on the same
result when Cn and Dn are simplices.

LEMMA 1. Let Cn be a closed n-cell and B an arc which lies
in int Cn except for an endpoint b of B on BdCn. Then there is a
pseudo-isotopy of Cn onto Cn which is fixed on BdCn and which
carries B to b.

Proof. Since B Π BdCn = b we note that there is in Cn an n-
cell Dn which contains B in its interior except for the point δ, Dn —
b c Int Cn, and Dn is embedded in Cn as in Lemma 0. Thus Lemma
0 can be applied to shrink B in the manner required by the Lemma.

THEOREM 1. Let A be an arc in Sn such that for each subarc
B of A, B is p-shrinkable. Then every arc in A is cellular.

Proof. The proof is by contradiction. If A contains a non-cellular
Received January 30, 1963.
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subarc there is no loss of generality in assuming this arc is A. Then
Sn — A Φ En. By the characterization theorem of En in [1], there is
a compact set C in Sn — A and C lies in no open w-cell in Sn — A.
By the Generalized Schoenflies Theorem [2], this is equivalent to the
condition that no bicollared (n — l)-sphere in Sn separates C and A.

Let G be the set of all subarcs of A which cannot be separated
from C by a bicollared sphere in Sn. We partially order G by set
inclusion and select a maximal chain in G. Let B be the intersection
of all arcs in this maximal chain. Evidently B cannot be separated
from C by a bicollared sphere in Sn. Thus B is an arc and each
proper subarc of B can be so separated from C in Sn.

By the hypothesis of the theorem, B is p-shrinkable. So let B
be L.P.U. at an endpoint q. Let U be an open set containing q
and U Π C = •• Then there is an ^-cell CncU, Cn Π B = B\ an
arc, while B1 Γ) BdCn = p, a point. So by Lemma 1 there is a pseudo-
isotopy ρt of S% onto Sn, ρt is the identity in Sn — Cn, and ftί-B1) = p.
But ft(β) is a proper subarc of B which cannot be separated from C
in Sn by a bicollared sphere. But this is a contradiction. Thus A is
cellular as well as each subarc of A.

COROLLARY 1. Let A be an arc in Sn which is the union of
two p-shrinkable arcs, Ax U A2, which meet in a common endpoint p.
Then A is cellular if Ax is L.P.U.

Proof. Each subarc of A is p-shrinkable.

COROLLARY 2. Each non-cellular arc A in Sn contains a subarc
which is not L.P.U. at either of its endpoints.

Even in S3 there is a difference between an arc being L.P.U. at
each point and having the p-shrinkable property for each subarc.
The simplest example is perhaps a mildly wild arc which is not a
Wilder arc. [3].
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INTRINSIC EXTENSIONS OF RINGS

CARL FAITH AND YUZO UTUMI

A module M is an essential extension of a submodule N in case
K Π N Φ 0 for each nonzero submodule K of M. If S is a subring
of a ring JB, and if SR, sS denote the left S-modules naturally defined
by the ring operations of R, then R is a left quotient ring of S in
case SR is an essential extension of SS.

We shall discuss the following problem: (1) Characterize the con-
dition that a ring extension R of S is a left quotient ring of S
wholly in terms of the relative left ideal structures of R and S.

A ring extension R of S is left intrinsic over S in case K n S Φ 0
for each nonzero left ideal K of R. Evidently each left quotient
ring R of S is left intrinsic over S but an obvious example (when R
is a field and S a subfield =£ iϋ) shows that the converse fails. Never-
theless, we ask: (2) When is the condition R is left intrinsic over S
a solution to (1)?

We now specialize S by requiring that:
( i ) S possesses a left quotient ring which is a (von Neumann)

regular ring, or equivalently (R. E. Johnson [2]) by requiring that
the left singular ideal of S vanishes. For such a ring there exists a
maximal left quotient ring S which is unique up to isomorphism over
S, and which is itself a regular ring ([2]). To eliminate the field
example we require that:

(ii) S possesses no strongly regular ideals φ 0. Under these
hypotheses we present the following solution to (1).

A. THEOREM (2.6). Let S satisfy (i) and (ii). Then an exten-
sion ring R of S is a left quotient ring of S if and only if R is a
left intrinsic extension of S such that for each closed left ideal A
of S there corresponds a left ideal B of R such that B (Ί S = A.

(See § 1 for definitions.)
Regarding (2) we add a rather dubious final hypothesis:
(iii) S is right intrinsic over S.

B. THEOREM (3.1). If S satisfies (i )-(iii), then an extension
ring R of S is a left quotient ring of S if and only if R is left

Received May 15, 1963. The first author gratefully acknowledges partial support
from the National Science Foundation under grants G-19863 and G-21514.
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intrinsic over S. (Then there exists a ring monomorphism of R into
S which is the identity on S.)

Combining B with a theorem of Goldie [1] we obtain:

C. THEOREM (3.2). Let S be a prime ring which is both left
and right noetherian, and assume that S is not an integral domain.
Let Q denote the classical quotient ring of S ([1]). Then an exten-
sion ring R of S is left intrinsic over S if and only if there exists
a ring monomorphism of R into Q which is the identity on S.

l A ring S is strongly regular (resp. regular) if for any xe S
there exists yeS such that x2y = x (resp. xyx = x); an ideal / of
S is strongly regular if / is a strongly regular ring.

Let S be a ring. Then SM will denote that M is a left S-module,
and SS denotes the left S-module defined naturally by the ring opera-
tions in S. SM is an essential extension of a submodule N in case
K n N Φ 0 for each submodule K Φ 0 of M. Then, N is said to be
an essential submodule of M. An essential left ideal of S is a left
ideal of S which is an essential submodule of 8S. (Thus a left ideal
/ of S is essential if and only if S is a left intrinsic extension of I.)

An element x e SM is singular in case the annihilator of x in S
is an essential left ideal of S. It is known that the set Z(SM) of
singular elements of SM is a submodule of SM, called the singular
submodule of SM; Z(8S) is an ideal of S called the left singular ideal
of S.

If Z(SS) — 0, then S is said to be a Jι-ring, and S denotes its
maximal left quotient ring; S is a regular ring with identity, and is
left self-injective. If R is any left self-injective ring with identity,
then it is known (Utumi [4], Lemma 8) that Z{RR) coincides with the
Jacobson radical J(R) of R, and that the difference R — J(R) is a regular
ring.

A left ideal A of a ring S is closed if there is no left ideal of S
which is a proper essential extension of A.

In case S is a Jι-ring it is known that the set of closed left ideals
of S forms a complete complemented modular lattice L(S). If R is a
left quotient ring of S, R is also a JΓring, and L(R) is isomorphic
to L(S) by the correspondence A( e L{R)) -+ Aft S. Thus, in this case,
the following condition is satisfied:

(1.1) Condition. Let R be an extension ring of a ring S. For
any closed left ideal A of S there is a left ideal B of R such that
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We call an extension ring R of S left strongly intrinsic if R is
a left intrinsic extension of S, and if Condition 1.1 is fulfilled.

(1.2) LEMMA. Let R be a left intrinsic extension of a Jrring
S. Suppose that the maximal left quotient ring of S is right intrin-
sic over S. Then R is a left strongly intrinsic extension of S.

Proof. Let A be a closed left ideal of S. By [5, Theorem 2.2]
A is an annihilator left ideal of S. Hence B n S = A for some an-
nihilator left ideal B of R, as desired.

It is evident that Condition 1.1 is equivalent to the following:

(1.3) If A and B are left ideals of S such that A n B = 0, then
there exists a left ideal C of R such that C'DA and C Π B = 0.

Let R be a left strongly intrinsic extension of a ring S. Then
the following three properties are easily seen:

(1.4) If A Π B = 0 for a left ideal A of R and a left ideal B of
S, there is a left ideal C of R such that A Π C = 0.

(1.5) If the sum of left ideals {A{} of £ is direct, so is the sum
of {A, + RA%).

(1.6) If A is an essential left ideal of S, then A + RA is an
essential left ideal of R. If C is an essential left ideal of R, C Π S
is also an essential left ideal of S.

(1.7) LEMMA. Le£ R be a left strongly intrinsic extension of a
ring S. Then the following properties are equivalent:

( i ) S is a Jrring;
(ii) R is a Jx-ring\
(iii) the singular submodule Z(SR) of the left S-module R is

zero.

Proof. By (1.6) it is obvious that Z(SR) cZ(BR)czZ(sR). Hence
Z(SR) = Z(RR). This shows the equivalence of (ii) and (iii). Now
Z(SS) = Z(SR) n S , = Z(RR) n S. Since Z{RR) is an ideal of R,
Z{RR) = 0 if and only if Z{RR) f) S = 0. Therefore (i) is equivalent
to (ii), as desired.

The following proposition is known:

(1.8) Let S be a Ji-ring. A left ideal A of S is closed if and
only if Bxc A for xe S and an essential left ideal B of S implies that
xe A.
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(1.9) LEMMA. Let R be a left strongly intrinsic extension of a
Ji-ring S. Then the lattice L(R) of closed left ideals of R is iso-
morphic to the lattice L(S) of closed left ideals of S under contrac-
tion A-+Af)S.

Proof. It is direct from (1.6) and (1.8) that A Π S is closed for
any closed A. Suppose that Ax ΓΊ S = A2 Π S for Au A2e L{R). It is
known that any intersection of closed left ideals of a Jz-ring is closed.
Thus, (A3 =) A1f)A2eL(R). Let B be a left ideal of R such that
BcAu ΰ f l i s - 0 . It follows then that B Π S = 0. Hence B = 0,
which shows that Aλ = A3, since A3 is closed. Similarly A2 — A8, and
therefore Aλ = A2. Finally we shall show that the correspondence is
onto. Let CeL(S). By (1.1), C = Df] S for some left ideal D of R.
By Zorn's lemma there exists a maximal left ideal E of R such that
E n S — C. Let F be a left ideal of R which contains E properly.
Then F f] S Φ C. Since C is closed, we can find a nonzero left ideal
G of S such that G c F n S and G (Ί C = 0. By (1.1) there is a left
ideal H oί R such that i ί Π S is an essential extension of G. Then
0 = (HΓ\ S) Π C = ((H n ί7) n E) Π S. Since i2 is left intrinsic over
S, we have that (HΓi F) Π E = 0. This implies that î 7 is not an es-
sential extension of E. Therefore EeL(R), completing the proof.

2. The following proposition is easily verified:

(2.1) Let M be a left S-module with zero singular submodule..
Suppose that a left ideal A of S is an essential extension of a left,
ideal B of £. Let v and w be left 5-homomorphisms of A into Λί.
If (v — w)B = 0, then v = w.

In fact, v — w induces a homomorphism of A/J5 into M. By as-
sumption Z(A/B) = A/£. Hence (v - w)A = Z((v - w)A) c Z(M) = 0,
as desired.

A left S-module M is called injective if for any left ideal A of"
S, and for any left S-homomorphism v of A into M there exists an
element x such that v(α) = ax for every α e A. A ring S is called
left self injective if the left S-module S is injective, and S has a
unit element. Any left self injective ring which is semisimple (in
the sense of Jacobson) is regular (in the sense of von Neumann). As.
is known, the maximal left quotient ring of a J r ring is semisimple,
in the sense of Jacobson, and left self injective.

We denote by l(P, Q) the set oΐ xeP with xQ = 0. Similarly
r(P, Q) denotes the right annihilator, in P, of Q.

(2.2) LEMMA. Let R be a semisimple left self injective ring,
and suppose that it is a left strongly intrinsic extension of a ring"
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S. Then the left S-module R is an injective module with zero sin-
gular submodule.

Proof. Since R is regular, it is a Jrγing. By Lemma (1.7),
Z(SR) = 0. Let A be a left ideal of S, and v a left S-homomorphism
of A into R. Denote the left ideal of S generated by an element x
by (x)ι. By Zorn's lemma there is a maximal subset {α̂ } of A such
that the sum B of (x^t is direct. Evidently A is an essential exten-
sion of B. By (1.5), the sum of {SXi} is also direct. Now
l(S, xd c l(S, v(Xi)), that is, l(R, x{) Π S c i(i2, v(a)) Π S. Since any an-
nihilator left ideal of the Ji-nng R is closed, it follows by Lemma 1.9
that l(R, xt) c l(R, v{x^)). This shows that xi—^v(x^) generates a left
ϋί-homomorphism w of Σ* -^i ^° ^ By the injectivity of RR there
exists an element a e R such that v(x{) = α̂ α for every i. Thus the
homomorphism v and the right multiplication of a coincide on B.
Since A is essential over B, it follows by (2.1) that v is given by the
right multiplication of α, completing the proof.

(2.3) THEOREM. Let R be an extension ring of a ring S, and
suppose that the left S-module R is an injective module with zero
singular submodule. Then S is a JΓring. Let T be the maximal
one among such submodules of the left S-module R that are essential
over the left S-module S. Then T forms a subring of R, and in
fact it is the maximal left quotient ring of S.

Proof. Since Z(SS) = Z(SR) Π S = 0, S is a JΓring. Let E be
the endomorphism ring of SR, and let ve E. In case SR is essential
over Ker v, Z(SR/Keτ v) = iί/Ker v, and so Imv = Z(Im v) c Z(R) =
0, whence v = 0. In view of [4, Lemma 8] it follows from this that
E is semisimple, and T is uniquely determined. Since ST is essential
over SS, it is easy to see that the set D(x) of elements y of S such
that yxe S is an essential left ideal of S for each xe T. Now we
denote by U the set of xe R such that JD(#) is an essential left ideal
of S. Clearly Tc U. It is not difficult to show that U is a subring
of R. Since Z{SR) — 0, SU is essential over #S. Hence UcT, there-
fore T = U. Thus, T forms a subring of R. T is the maximal left
quotient ring of S because ST is the maximal essential extension of SS.

(2.4) LEMMA. Let R be a ring with unit, and suppose that it
is a left strongly intrinsic extension of a semisimple left self infec-
tive ring S. Then every idempotent of R belongs to S.

Proof. Let e = e2 e R. Then Re e L(R), the lattice of closed left
ideals of R. Hence Re Γ) S e L(S), the lattice of closed left ideals of
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S, by Lemma 1.9. Since every closed left ideal of S is a principal
left ideal generated by an idempotent, S Π Re = Sf for some / =
ΓeS. Evidently Rf Π S = Sf = Re n S, and hence Re = Rf by
Lemma 1.9. Similarly we can find an idempotent geS such that
R(l - e) = Rg. Since S is regular, Sf + Sg = Sh for some h = h2eS.
Then iϋ/& = R, and & = 1. Hence 1 = xf + yg for some x,yeS. Also,

β - xf = e - (1 - yg) = yg - (1 - e) e Rg + jβ(l - β) - R(l - e) .

Hence e — xfe Re f) B(X — β) = 0, and therefore e = xfe S, completing
the proof.

By virtue of [5, Corollary to Theorem 4], any semisimple left self
injective ring R is decomposed into the direct sum of two ideals R±

jand R2 in such a way that Rx is strongly regular, and R2 does not
contain any nonzero strongly regular ideals. The decomposition is
unique. By [5, Theorem 2], R2 is generated by idempotents.

(2.5) THEOREM. Let R be semisimple left self injective ring,
and let R = JSi φ R2 be the decomposition into ideals mentioned above.
Suppose that R is a left strongly intrinsic extension of a ring S.
Then there is a subring T of Rλ with the following properties:

( i ) T contains every idempotent of R19

(ii) T is a strongly regular, (left) self injective ring and
(iii) T φ R2 is the maximal left quotient ring of S.

Proof. By Lemma 2.2, SR is injective and Z(SR) = 0. Thus, by
Lemma 2.3, R contains as a subring the maximal left quotient ring
Q of S. Since R is left intrinsic over S, and RΊ)QZD S, it is evident
that R is left intrinsic over Q. Let A be a closed left ideal of Q.
Then A = Qe, e = e2 e Q, and hence A = Re n Q. This shows that R
is left strongly intrinsic over Q. Thus, by Lemma 2.4 every idem-
potent of R belongs to Q. Since R2 is generated by idempotents,
R2 c Q, and so Q = (Q Π Rx) φ R2. Set T = Q Π Ri. Since Q is regular,
so is its ideal T. Thus, the strong regularity of T follows from the
fact that a regular ring is strongly regular if and only if it has no
nonzero nilpotent elements, completing the proof.

(2.6) THEOREM. Let S be a Jrring. Suppose that the maximal
left quotient ring of S does not contain any nonzero strongly regular
ideals. Then any left strongly intrinsic extension of S is a left
quotient ring of S.

Proof. Let R be a left strongly intrinsic extension of S, and
denote by Q the maximal left quotient ring of R. By Lemma 1.9,



INTRINSIC EXTENSIONS OF RINGS 511

Q is a left strongly intrinsic extension of S. Let Q = Qi Θ Q2 where
Qi is a strongly regular ideal of Q, and Q2 is an ideal of Q which
does not contain any nonzero strongly regular ideals. By Theorem 2.5
there is a strongly regular subring T of Qx such that Γ © Q 2 is the
maximal left quotient ring of S. T contains every idempotent of Qί9

especially the unit element of Qlm Since T = 0 by assumption, it
follows that ζ>! = 0. Thus, Q = Q2 is the maximal left quotient ring
of S. Since QZD RZD S, R is a left quotient ring of S, as desired.

3. The following is the main theorem.

(3.1) THEOREM. Let S be a Jrrίng. Suppose that the maximal
left quotient ring of S is right intrinsic, and does not contain any
nonzero strongly regular ideals. Then any left intrinsic extension
of S is a left quotient ring.

Proof. By Lemma 1.2 any left intrinsic extension of S is left
strongly intrinsic over S, and hence it is a left quotient ring of <S
by Theorem 2.6, as desired.

Goldie proved in [1; Theorem 13] that if a prime ring S satisfies
the maximum conditions for left and right ideals, then S may be im-
bedded into a simple ring R with minimum condition in such a way
that R is the classical quotient ring of S in the following sense:

( i ) Every non-zero-divisor of S has the inverse in R;
(ii) every element x of R is of the forms a~λb and cd*1 for some

α, b, c and d e S. In this case S is a Ji-τing, and R is the maximal
left quotient ring of S. Since R is a right quotient ring of S, it is
right intrinsic over S. R contains a nonzero strongly regular ideal
if and only if R is a division ring, that is, S is an Ore domain. Thus,
by Theorem 3.1 we obtain the following.

3.2. THEOREM. Let S be a prime ring with maximum condi-
tions for left and right ideals, and suppose that it is not an Ore
domain. Then an extension ring of S is left (or right) intrinsic
over S if and only if it is isomorphic, over S, to a between ring of
S and the classical quotient ring of S.
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AN APPROXIMATE GAUSS MEAN VALUE THEOREM

W. PULKS

l Introduction. The mean value theorem of Gauss, and its con-
verse, due to Koebe, have long been known to characterize harmonic
functions. Since any second order homogeneous elliptic operator L
can, by an appropriate linear change of variables, be reduced (at a
given point) to the Laplacian, it seems reasonable to expect that so-
lutions of Lu = 0 should, when averaged over appropriate small el-
lipsoids, satisfy an approximate Gauss-type theorem, and one could
hope that such a mean value property would characterize the solutions
of the equation.

It turns out that this is the case. In fact the operator need not
be elliptic, but may be parabolic, or of mixed elliptic and parabolic
type. While the methods used here do not permit the weak smoothness
conditions on the solutions admitted by Koebe's theorem, the result
is stronger than might be expected in that no smoothness, not even
measurability, is required of the coefficients of L: they need only be
defined.

Since the result applies to parabolic equations, it seems of interest
to examine the heat equation, for it can be cast in the required form.
This leads to a characterization of its solutions in terms of averages
over parabolic arcs.

2. The basic theorem. In the following A = 9/%», A; = θ2lθyβyj9

utij = Di3 u, and Vy is the gradient operator with respect to the com-
ponents of y.

It is convenient to consider equations of the form Lu = /, where
/ need only be defined, and may depend on u and any of its derivatives.

LEMMA. Let A = [αίy] be an n x n constant nonnegative definite
symmetric matrix, and denote by B — [b{j] the unique nonnegative
definite symmetric square root of A. Let u be defined in a neighbor-
hood of a point y in Enj and be twice differentiable at y. For this
y define the quadratic function q of x by

q(x) = (Bχ.Fyfu(v)

Then the sum of the coefficients of the squared terms of q(x) is
Σ i)

Received July 24, 1963. This paper was prepared at Oregon State University under
an NSF grant.
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Proof. We have

q(x) = (Bx Ffu = ( Σ δ, A A ) ( Σ bjkxkD3)u = Σ ( Σ bimbjku,i3)xkxm .
\i,m / \j,k J k,m \ ίj J

The sum of the coefficients of the squared terms is then

Σ ( Σ bikbjk)utij = Σ ( Σ bikbkλutij = Σ auu.ij .

THEOREM. Let L = Σ*,; ai3 (y)Di3 be a well defined symmetric
differential operator with a nonnegative definite matrix A(y) =
[ai3(y)] in an open region R in En. Let B(y) = [bi3(y)] be the unique
nonnegative definite square root of A, and for y e R and r sufficiently
small, define

(1) ur(y) = 4 " t u(y + B{y)x)dQ
Ω J l l

r(y) = 4 " t u(y + B{y)
Ωr Jl*l=r

where Ωr is the area of the sphere {| x \ = r}. Let u be a function
defined in a neighborhood of a point y0 e R, which is twice differenti-
able at y0. Then for u to be a solution of Lu = / at y0 it is neces-
sary and sufficient that

(2) ur(y0) = u(y0) + Cnr
2f(yQ) + o(r2) α s r - 0 ,

where Cn is a certain constant depending only on n, in fact it is
easily verified that

C - n ( ^
2n Γ((n

Proof. Denote the constant matrices A(y0), B(y0) by A and B
respectively. Since u is twice differentiable at y0 we have

( 3) u(y0 + B(yQ)x) = u(y0 + Bx) = u(y0) + (Bx-Fy)u(y) \yQ

± + o(\Bx\>) .
2

But |Bx | ^ | | B | | \x\. Thus on {|*| = r}, (3) becomes

(4) u(y0 + B(yo)x) = u(y0) + (Bx-Vy)u(y) L

Dividing (4) by Ωr and integrating over {| x \ = r} we get

FyYu(y) \y0 dΩr + o(r2) .
ϋl* |=r
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We next observe

Ur J l * l = r2Ω,

where Cn is a constant depending only on n. Thus (5) becomes, by
the lemma,

( 6 ) ur(y0) = u(y0) + Cnr
2 Σ a

» i

But (6) is compatible with (2) if and only if Lu = / at yQ.

3. The heat equation* As an application of the main result let
us consider the heat operator Hu = uxx — ut. If we make the change
of variables given by x = ξ, t = τ — (l/2)^2 and set u(a;, ί) = ^d1, r)
then we see that our operator takes the form vξζ + 2ξvξτ + ξ2vττ. In
this case the matrix A is given by

To compute B we observe that A2 = (1 + |2)A, so that B =
Tψψ. Then

/r cos ^ \ 1 /r cos β + ξr sin (9

\r sin θ ) " l / Γ T f \f r cos <? + f r sin θ J '

For each ξ, there is an a satisfying — (τr/2) g <x ̂  (τr/2) for which

c o s ^ + g s i n g = e 0 B ( < ? - α ) >

so that (7) takes the form

cos θ \ (r COS (ί — a)

\r sin <̂  / \rξ cos (^ — a)

Then ^(lo, τ0) becomes

1 Γ2:c

^r(^o, τ0) = — . I v(ξ0 + r cos (θ - a), τ0 + rξ0 cos (6> - a))dθ .
2π Jo

Replacing θ — a by θ and using the symmetry of the cosine function
this reduces to

1 f*
Vri&f τo) = — I (̂̂ o + r cos <9, τ0 + rξ0 cos ί)dί .

π Jo

By changing back to (x, t) coordinates and defining x0 = f0, t0 =
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τ 0 - (1/2) ξl and ur(x0, ί0) = vr(ξ0, τ0) we get

ur(x0, t0) = — 1 w( #0 + r cos 0, To + r#0 cos 5 (xQ + r cos θf)dθ ,
π Jo V 2 /

-1 ί*^χ 0 + r cos 5, t0 - —
π Jo V 2

= -1 ί*^χ 0 + r cos 5, t0 - — r 2 cos2 θ)dθ ,
π J V 2 /

or finally

dz
9 (a;0, t0) = — I ^(^o + r«, ί0 - ^ -

7Γ J-i V 2 i / l - z2

which is easily seen to be a weighted average of u over the tip of a
parabola with vertex at (x0, t0), having the line t = t0 as its axis and
opening down.

This gives us the following theorem.

THEOREM. If u is twice differentiable at a point (x0, ί0), then a
necessary and sufficient condition that Hu — f at (xQ, t0) is that

ur(x0, ί0) = u(x0, ί0) + C2r
2f + o(r2) as r -> 0 ,

where ur(x0, tQ) is given by (9).

To study the heat equation in higher dimensions one can make
similar transformations. But it is easier to guess the form the pre-
vious theorem would take and verify it directly by the methods
which established our basic theorem. The result is given below where
Δu is the ^-dimensional Laplacian, and Ω is the area of the unit
sphere in n + 1 dimensions.

THEOREM. // u is twice differentiable at a point (x0, t0) in n + 1
dimensions, then a necessary and sufficient condition that Δu — ut —
f at (x0, t0) is that

ur(x0, ί0) = u(x0, ί0) + Cn+ιr
2f + o(r2) as r -> 0

where

ur(x0, ί0) = 77 \ ^ o + zr9 ί0 - ~ z2r
Ω JUKI V 2n

Vl-\z\

with dz — dzxdz2 dzn.
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STRONGLY RECURRENT TRANSFORMATIONS

ARSHAG HAJIAN

Let (X, ^ , m) be a finite or σ-finite and non-atomic measure
space. A set B is said to be measurable if it is a member of ^ .
Two measures on &, finite or σ-finite (one may be finite and the
other cr-finite), are said to be equivalent if they have the same null
sets. In this paper we consider a one-to-one, nonsingular, measurable
transformation Φ of X onto itself. By a nonsingular transformation
Φ we mean m(φB) = m{φ~ιB) — 0 for every measurable set B with
m(B) — 0, and by a measurable transformation Φ we mean φB e £&
and 0-\B e & for every B e &. We shall say that the transformation
Φ is measure preserving (with respect to a measure μ) or equivalently,
μ is an invariant measure (with respect to the transformation Φ) if
μ(φB) = μ(Φ~λB) = μ(B) for every measurable set B.

A recurrent transformation is a common notion in ergodic theory.
This is a measurable transformation Φ defined on a finite or σ-finite
measure space (X, &, m) with the following property: if A is a
measurable set of positive measure, then for almost all xeA Φnx
belongs to A for infinitely many integers n. It is not difficult to
see that every measurable transformation which preserves a finite
invariant measure μ equivalent to m is recurrent. The converse
statement is not in general true; for example an ergodic transforma-
tion which preserves an infinite and σ-finite measure is always re-
current yet it does not preserve a finite invariant equivalent measure.
In this paper we restrict the notion of a recurrent transformation.
We introduce the notion of a strongly recurrent set and define a
strongly recurrent transformation. We show that a transformation
Φ is strongly recurrent if and only if there exists a finite invariant
measure μ equivalent to m (Theorem 2). This is accomplished by
showing the connection between strongly recurrent sets and weakly
wandering sets (Theorem 1). Weakly wandering sets were introduced
in [1], and the condition that a transformation Φ does not have any
weakly wandering set of positive measure was further strengthened
(see condition (W)* below). It was shown in [1] that this stronger
condition was again a necessary and sufficient condition for the
existence of a finite invariant measure μ equivalent to m. We show
that a similar strengthening for a strongly recurrent transformation
is false for a wide class of measure preserving transformations defined
on a finite measure space (Theorem 3).

DEFINITION. A measurable set S is said to be strongly recurrent

Received July 22, 1963.
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(with respect to Φ) if the set of all integers n such that m(ΦnS Π S) > 0
is relatively dense, i.e., if there exists a positive integer k such that

(1) max miΦ^S Π S) > 0

for tι = 0, ± 1 , ± 2 , •••. This condition is obviously equivalent to the
following:

( 2 ) m([J φn-ιS Γ\ S) > 0
\i=0 /

or

( 3 )

for % = 0, ± 1 , ±2, , This last condition means that there exists
a finite number of images of S by the powers of Φ such that any
image of S by any power of Φ has an intersection of positive measure
with at least one of them.

The transformation Φ is said to be strongly recurrent if every
set of positive measure is strongly recurrent. We note that the
property of a transformation Φ being strongly recurrent is preserved
under equivalent measures.

The following notion was introduced in [1]: A measurable set W
is said to be weakly wandering (with respect to Φ) if there exists a
sequence of integers {nk: k = 1, 2, •} such that the sets Φnjc W,
k = 1, 2, are mutually disjoint.

THEOREM 1. Let (X, ^ , m) be a finite or ^-finite measure
space, and let Φ be a one-to-one, nonsingular, measurable transfor-
mation of X onto itself. Then the following two conditions are
equivalent:

(W) m(A) > 0 implies that there exists at most a finite number
of mutually disjoint images of A by the powers of Φ; in other words,
A is not weakly wandering.

(S) m{A) > 0 implies that A is strongly recurrent.
We first prove a Lemma which is by itself of some interest.

LEMMA 1. Let {X, &, m) and Φ be as in Theorem 1, and let
A be a measurable set of positive measure such that

(4) lim inf m(ΦnA) = 0 .

Then given ε with 0 < ε <m(A), there exists a measurable subset A!
of A with m{Af) < ε such that the set S = A — A! is not strongly
recurrent.
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Proof. Let A be a measurable set with m(A) = a > 0 and
lim inf m(ΦnA) = 0. Let ε be a positive number with 0 < ε < a. Let

for k = 1, 2, . Next, for each & = 1, 2, we choose a positive
integer wfc such that

for ί — o, 1, 2, , k - 1. This is possible since Φ is nonsingular and
(4) is satisfied by A. Let us put

Then

oo Jc — 1 °°

k=l i = 0 k = l

Let S = A — A', then it is easy to see that

φnk~ig f) S a Φnk~ιA Π (A — Af) = Φ

for i = 0, 1, 2, , k — 1 and k = 1, 2, . This shows that S is not
strongly recurrent.

Proof of Theorem 1. If a measurable set S of positive measure is
not strongly recurrent, then it is possible to find a measurable subset
N of S with m(N) — 0 such that S' = S — N is weakly wandering.
This is easy, since S not strongly recurrent means that for each
positive integer nk there exists another positive integer nk+1 such that

m(V + 1 S Π U Φ*S) = 0 .
\ i=0 /

In this way we may obtain a sequence of integers {nk: k = 1, 2, •}
such that

^ * * S Π Φn>'S) = m ( S n Φn*-niS) = 0 f o r k ^ j .

It follows that S' = S — N is weakly wandering, where

# = ϋ \jΦnk-niSns

and m(iV) = 0.
Conversely, let W be a weakly wandering set of positive measure.
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Since the measure space is o -finite we can find a sequence of measur-
able sets {At: i = 1, 2, •} which are mutually disjoint, such that
0 < m(Ad < oo for i = 1, 2, and X = \Jΐ=i At. We let

t^pV tor Be& .
i=ι 2tm(Ai)

I t follows t h a t m' and m are equivalent. Since φn*W,k = 1,2, •••

are mutually disjoint and m'{X) < co it follows t h a t lim inf m'(φn W) =
n—>oo

0. Thus, whether m is finite or (/-finite, the set W satisfies (4) with
m replaced by the equivalent and finite measure m\ By applying
Lemma 1 we obtain a measurable subset S of W such that m'(S) > 0
and S is not strongly recurrent. Since m and m' are equivalent,
this proves the theorem.

THEOREM 2. Let (X, &, m) and Φ be as in Theorem 1. Then
condition (S) is equivalent to the existence of a finite invariant
measure μ equivalent to m.

Proof. Theorem 2 is an immediate consequence of Theorem 1
above and Theorem 1 of [1], where it was shown that condition (W)
is equivalent to the existence of a finite invariant measure μ equivalent
to m.

In [1] it was further shown that the following condition:
(W)* Given ε > 0, there exists a positive integer N such that

m(A) ^ ε implies that there exists at most N mutually disjoint
images of A by the powers of T,
is again a necessary and sufficient condition for the existence of a
finite invariant measure μ equivalent to m (see condition (V)*f

§3 of [1]).
Condition (W)* is in appearance a stronger condition than condi-

tion (W). We note that in condition (W)* the positive integer N depends
on ε only and not on the measurable set A. However, it turns out
that these two conditions are equivalent to each other and are in
turn necessary and sufficient conditions for the existence of a finite
invariant measure μ equivalent to m (see Theorem 1 of [1]). By
analogy, we may attempt to strengthen condition (S) in the following
manner:

(S)* Given ε > 0, there exists a positive integer N such that
m(A) ^ ε implies

m(φnA n\j Φ*A) > 0 for n = 0, ± 1 , ±2,
V <=o /

We show that condition (S)* is not a necessary condition for the
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existence of a finite invariant measure μ equivalent to m. In fact,
we shall show that for any ergodic measure preserving transforma-
tion φ defined on a finite measure space (X, ^ , μ) condition (S)* is
not satisfied.

We say that a transformation Φ is ergodic if ΦA = A implies
m(A) = 0 or m(X - A) = 0.

LEMMA 2. Let (X, ^ , μ,) be a finite or σ-finite measure space,
and let Φ be an ergodic measure preserving transformation defined
on it. Then given ε > 0 and a positive integer iV>0, there exists a
measurable set C with μ(C) ^ ε such that

X - C = Q W
ΐ=0

for some measurable set E where E, φE, , φN~1E are mutually
disjoint.

Proof. Given ε > 0 and an integer N > 0, let F be any measur-
able set with 0 < μ{F) ^ e/N. Let

Fx = φ-'F - FQ

F2 = φ~2F - F o U ί 7 !

and in general

Fn = ψ~nF - X) Fά for n = 1, 2, .
io

It follows
more;

We let

that Fn

Φ

* . = .

> n

777

Pin

= 0

- = ί

, 1 ,

71

n-k

2,

F

• are

for k

and n

mutually

= o, .-.,*
= 0, 1, 2,

disjoint,

. . . .

i i V - l

- U Φ~~jF
3=0

and further-

then

^ ^ c FtN-k for Jfc = 0, 1, , iiV; and i = 1, 2,

which implies that the sets

( 5 ) φhE% for fc = 0,1, .- ,ΐΛΓ; and ί = 1,2, . . .

are mutually disjoint.
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Next we let

E=(jEί

and

C = X - \)ΦkE .

It follows from (5) that E, φE, , φN~xE are mutually disjoint, and

μ(C) = μ(x - XjΦkE) ^ Nμ(F) £ ε .

THEOREM 3. Let Φ be on ergodic measure preserving transforma-
tion defined on a finite measure space (X, &, μ) with μ(X) = 1.
Then condition (S)* is not satisfied.

Proof. Let ε — lj(q + 1) for some positive integer q > 3. Let
k > 1 be an arbitrary positive integer. We show that there exists a
measurable set A with μ(A) ̂  ε and

= 0

for some integer nk > k. Let us put N = qk. Then by Lemma 2
there exists a measurable set E with E, φE, , φN~1E mutually dis-
joint and

Since μ(X) = 1, this implies 1 - Nμ(E) ^ ε or μ{E) ̂  (1 - ε)/JV.
Let

Since k = JW/? we have

1
1 -

q N q q +

and

( k—1 # \ /nk + k~λ ^ 2k—2 ^ \

i=0 / \ ί = ̂  *=0 /

for some nk where 2k <nk < (q — l)k = N — k.



STRONGLY RECURRENT TRANSFORMATIONS 523

This shows that condition (S)* is not satisfied since ε is fixed, k
is arbitrary, and nk > k.

REFERENCE

1. A. Hajian and S. Kakutani, Weakly wandering sets and invariant measures,
Transactions A. M. S. 110 (1964), 136-151.

CORNELL UNIVERSITY





DOUBLY INVARIANT SUBSPACES, II

MORISUKE HASUMI AND T. P. SRINIVASAN

1* Introduction* Let X be a locally compact Hausdorff space
and μ a positive Radon measure on X. Let Sίf be a separable Hibert
space and let LL (1 ^ p g +°o) denote the space of §ίf-valued func-
tions on X which are weakly measurable and whose norms are in
scalar Lp(dμ). Call P a measurable range function if P is a function
on X defined a.e. (dμ) to the space of orthogonal projections on Sίf
which is weakly measurable. We shall regard two range functions
P, Pf to be the same if P(x) = P'(x) l.a.e., i.e. P(x) = P\x) a.e. on
every compact subset of X. We shall denote by P the operator on
Lp

% defined by (Pf)(x) = P(x)f(x) l.a.e. Let A be a subalgebra of
the algebra C(X) of bounded continuous functions on X such that
A\J A (where the bar denotes complex conjugation) is weakly* dense
in L°°(dμ). Say that a subspace ^£'of Lp^ is doubly invariant if

(i) ^£ is closed in Lv% if 1 ^ p < oo and weakly* closed if p = co,
(ii) ^£ is invariant under multiplication by functions in A U A.

We shall refer to the following theorem as Wiener's theorem for Lp^:

THEOREM. Every doubly invariant subspace ̂ f of Lp^ (1 ̂  p fg co)
is of the form PL% for some measurable range function P (and
trivially conversely); ^ determines P uniquely.

For compact spaces X, Wiener's theorem was proved in [4] for
arbitrary Sίf ΐor p = 2 and for the scalar £ίf (the space of complex
numbers) for arbitrary p. It was pointed out in [4] that the L2%
theorem is true for locally compact spaces and the proof was outlined
considering the real line as an example. It was also mentioned in [4]
that the L2^ theorem is a special case of a known theorem on rings
of operators [2; p. 167, Theoreme 1]. But the proof in [4] and the
proof of the more general theorem in [2] implicitly assume the σ-
finiteness of μ or at least of the separability of L^, (as opposed to
the separability of £(?). The theorem itself is true without this
restriction not only for p — 2 but for all p and all (separable) ^f
(not necessarily the scalar £ίf). Indeed the general L^, theorem is
true even under the weaker assumption that the restriction of A U A
to every compact subset K of X is ZΛdense in h\dμ \ K), instead of
being weakly* dense in L°°. In this paper we prove this theorem

Received July 18, 1963. This work was done while both authors held visiting ap-
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(Theorem 4) in its full generality (with the above weaker assumption).
This is done as follows: Using the techniques employed in [5] we first
show in § 2 (Theorem 2) that a general class of subalgebras dense in
L2 is weakly* dense, which seems to be of independent interest. This
enables us to reduce the IΛdensity case to that of weak* density.
To overcome the difficulties caused by the (possible) non-separability
of L^, we extend in §3 (Theorem 3) a theorem of Dunford-Pettis
[1; p. 46, Corollaire 2] to apply to our setup. We finally use the U%
theorem for compact X in [4] and the broad techniques in [4] to
complete the proof. As pointed out in [4], the L?% theorem for p Φ 2
is of special interest as it shows that the doubly invariant subspaces
of Uφ admit projections of norm 1 commuting with bounded (scalar)
functions; as is well known, a closed linear subspace of a Banach
space does not in general have any bounded projection at all. In the
final section of the paper we extend a known theorem [2] on operators
in L^, which commute with multiplication by bounded (scalar) func-
tions (Theorem 5).

2. Weak* density of certain subalgebras of L°°.

THEOREM 1. Let (X, m) be a finite measure space. Any sub-
algebra s/ of L°°(dm) which is conjugate-closed and dense in L\dm)
is weakly* dense in Loo(dm).1

The following three lemmas will lead to the proof of the theorem.

LEMMA 1. Let g§ be a conjugate-closed subalgebra of L°°(dm)
which contains constants and is closed in L°°(dm). Then & is closed
for absolute values.

Proof. Let fe <&, 0 ̂  / ^ 1/2, say. Then /* = (1 - (1 - /))*
can be expressed as the sum of a convergent series in L°°(dm) whose
terms come from &\ it follows that /* e & for all non-negative / e ^ .
Since & is conjugate-closed, the lemm follows.

LEMMA 2. Let (X, m) be a finite measure space and A a sub-
algebra of L°°(dm) such that A U A is dense in L\dm). Then every
closed subspace ^S of L\dm) which is invariant under multiplica-
tion by functions in A U A is of the form CsL\dm) for some measur-
able subset S of X (where Cs denotes the characteristic function of S).

Proof. Let & be the closed subalgebra of L°°(dm) generated by
A\J A and the constants. Then ^ is clearly invariant under multi-

A weaker result was proved in [5].
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plication by functions in &. By Lemma 1, & is closed for absolute
values. Let q be the orthogonal projection of the constant function
1 on ̂ C Then 1 — q _L ̂ . Since ^^ is invariant under multipli-
cation by function in ^ , it follows that

(2.1)

for all fe&. Let Y be any measurable subset of X and let {/J be
a sequence of functions from & which converges to Cγ in L\dm).
Since \fm — fn \ e &, we have from (2.1)

\\fm-fn\\q\2dm= \\fm-fn\qdm

and the last integral is less than (\\fm — fn\
2dmj x \\\q\2dmj . I t

follows t h a t {fn | q |2} is a Cauchy sequence in L\dm). Hence fn \ q |2—•
Cγ | g |2 in L\dm)\ in particular,

(2.2)

Since / n —> C r in L\dm), fnq —> CYq in L\dm) and thus

(2.3) [fnqdm —> I gdm .
J Jr

I t follows from (2.1)-(2.3) t h a t \ \q\2dm = \ gdm for all measurable
JF JF

subsets F; hence | q |2 = g a.e. Thus q — Cs a.e. for some S c l .
Because of invariance, CsL\dm) c . J ' . If the inclusion were

strict, let g e ^ QC8L*(dm). Then g 1 C ^ ^ also C^/G^^ 1 (where
S' = X— S) and ̂ //L is also invariant along with ^f/ under multi-
plications by functions in &. So g _L Ca>&. It follows that g 1_ ^
and because of density of ^ in L\dm), we have # = 0 a.e. Thus
^ = CsL\dm).

LEMMA 3. Let (X, m) and A be as in Lemma 2. Then every
closed subspace of L\dm) which is invariant under multiplication
by functions in A {J A is of the form CsL\dm) for some measurable
subset S.

Proof. This follows from Lemma 2 above and Theorem 7 in [4].

Proof of Theorem 1. Let ̂  = \feL\dm): \fgdm = 0 for all

gej^f\. Then ^ is jy-invariant, meaning invariant under multi-

plication by functions in sf and Lemma 3 applies for ^£ (with
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replacing A). Thus ^ = CsL\dm) for some S, so ^ Π L\dm) =
CsL\dm). But ^ ^ n L\dm) — U{dm) Q s/. Since j ^ is dense in
L\dm) by assumption, it follows that Cs = 0 a.e. Therefore ^ f ={0}
and the theorem follows.

REMARK. One of the corollaries of Theorem 1 is the "uniqueness"
of the Fourier coefficients of any function in L\G), for a compact
Abelian group G. The characters are dense in L\G) so that the sub-
space £/ of their finite linear combinations is weakly* dense in L°°(dm)
by Theorem 1 and the uniqueness follows.

We now extend Theorem 1 to infinite measure spaces. For con-
venience we state the result in terms of Radon measures on locally
compact spaces. We have

THEOREM 2. Let X be a locally compact Hausdorff space and μ
a positve Radon measure on X. Let sf be a subalgebra of the
algebra of bounded continuous functions on X such that

(i) S/ is conjugate-closed,
(ii) Szf | K is dense in L\dμ \ K) for every compact subset K of

X. Then S/ is weakly* dense in Lco(dμ).

Proof. Let ^ = ίfeL^dμ): [fgdμ = 0 for all geSf\. If we
show that ^€ = {0}, the theorem is proved. Now ^£ is clearly a
closed subspace of L\dμ) and is J^-invariant. We need the following
lemma which will be proved below.

LEMMA 4. Every closed Jzf-invariant subspace ^ of L\dμ) is
of the form CsL\dμ) for some measurable subset S (where sf is as
in Theorem 2).

Assuming Lemma 4, the main theorem follows at once. For, since
^ T = CsL\dμ), Sf <z.^/£L = CS'L°°(dμ). If μ(S) > 0, then S contains
a compact subset K of positive measure. Since Szf c CsfV

o{dμ)i

Sf\K— {0}, contradicting the density of S*f \ K in L\dμ \ K). Hence
μ{β) = 0, so ^€ = {0}, completing the proof of the theorem.

Proof of Lemma 4. Let ^tκ = Cκ^£', Sfκ = CκSf and μκ —
Cκμ. We shall identify Lv(dμ \ K), Lp(dμκ) and CκL

p(dμ) which are
clearly mutually isometrically isomorphic. Each ^ κ is closed and
J^:-invariant in L\dμκ), so by Lemma 3, ^£κ = Cs{κ)L\dμ^) for some
S(K) c K. If K' -D K, compact, then
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Cs{κ)U{dμ) = CS{κ)U(dμκ) =

so that S(K) = S(UL') Π if (modulo null sets).
Let JίΓ denote the set of all continuous functions with compact

support and let σ be the linear functional on 3ίΓ defined by

(2.4) σ(φ) = \ φdμ
JS(K)

for φ G 3ίΓ where K is any compact subset containing the support of
φ. Then σ is well-defined and is continuous in the ZΛ norm, so can
be uniquely extended to a bounded linear functional on L\dμ), which
we again denote by σ. Let σ be realized by the L°°-ΐunction g so
that

(2.5) σ(f) =

for all feL\dμ). From (2.4) and (2.5) it is easy to see t h a t g\K =

CS(κ) a.e. for every compact subset K; so we may assume g = Cs for

some measurable S with S Γi K = S(K) (modulo null sets). Now

CκCsL\dμ) - Cs(λκL\dμ) = Cs{κ)L\dμ) = ^ = C^^T

for all compact K. Since for any feL\dμ), Cκf—>f in L\dμ), it
follows from the above that CsL\dμ) =

REMARK. The assumption that J ^ is an algebra is crucial in
both Theorems 1 and 2; the conclusion would be false if Ssf were
merely a linear subspace satisfying the rest of the assumptions. The
following example shows that, in the locally compact case for instance,
a conjugate-closed linear subspace of L°°(dμ) may be weakly* dense
on every compact subset but not on the whole space.

Let X b e a locally compact space and μ a non-finite Radon measure

on X. Let feU(dμ) be real and have a support of infinite /^-measure.

Then the support is non-compact. Let Ssf =<g eL°°(dμ): \gfdμ = ok

Then S*f is clearly not weakly* dense in L°°(dμ). But if g is any

continuous function with compact support which is "orthogonal" to

J ^ , then g must be in the linear span of / in L\dμ). It follows

from our assumption on / that g is the zero function. Hence Sx? is

weakly* dense on every compact subset.

3. Dunford-Pettis theorem* Let X denote a locally compact
Hausdorff space and μ a positive Radon measure on X. Let E be a
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separable Banach space and 5?ΓE denote the space of continuous func-
tions from X into E with compact support. For 1 ̂  p < oo, let
be the space of all functions / from X into E with

where I denotes the upper integral. J?"^ is then a locally convex
space with respect to the seminorm Np. Let SfE denote the closure
of J3ΓE in j^i and let LE = S^il^ί^i where ^E

v is the set of all
functions fz£fE

v with Np(f) = 0. Then L\ is a Banach space with
the norm induced by Np in the obvious way.

Denote by *2fE? the space of all weakly* measurable functions /
on X to the dual E* of E such that \\f(x) || ̂  A < oo l.a.e. (\\f(x) || ̂  A
a.e. on every compact subset). For fe^f^ let

A/ | / * \ • QΊΊ1Λ (Λςiςj QΠYΊ f (Wl •

where ϋΓ ranges over all compact subsets of X. Then N*> is a semi-
norm which makes ^fET a locally convex space. Let Lj* be the
quotient of £fE~ by the space of all functions in SfE7 which vanish
l.a.e. Then LE* is a Banach space.

The following theorem is well-known (cf. for instance [1; p. 46,
Corollaire 2]):

THEOREM (Dunford-Pettis). Let F be a separable Banach space.
For f e Lp* and g e L\dμ), let

wΛg) = \ gfdμ .
Jx

Then wf(g)eF* and the mapping f—+wf induces an isometric iso-
morphism from Lp* onto £f{Lλ, F*), the space of bounded linear
maps from Lλ(dμ) to F*.

We need the following variant of the Dunford-Pettis theorem:

THEOREM 3. Let E, F be separable Banach spaces. For any
bounded linear map u of LE into F* there exists a function Φ from
X into Jzf(E, F*) such that

( i ) ζΦ(x)s, ty is measurable for every seE, teF,
(ii) N^Φ) < oo, and

(iii) u(f) — \ Φ{x)f{x)dμ{x) for every feLE with \\u\\ = N^Φ).
JX

Conversely, any function Φ satisfying (i) and (ii) defines a bounded
linear map u satisfying (iii).
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Proof. Only the direct part needs a proof. First we note that
(E, F*) can be regarded as the strong dual of the protective tensor

product E(g)F. Indeed, the strong dual of E0F is canonically
identified with the space B(E, F) of bounded bilinear forms on ExF
and £f{E,F*) is canonically isomorphic with B{E,F). Since E, F
are separable, so is E§§F and therefore Jzf(E9 i*7*) can be regarded
as the strong dual of a separable Banach space.

Let u be a bounded linear map of L\ into F*. Then u induces
a bounded bilinear form u on L1 x E into F* by u(f, s) = w(/® s)
for feL1, seE. For any fixed feL1, s—>#(/, s) is a bounded linear
map of E into F* which we shall denote by uf. Then ux: f-+uf is
a bounded linear map from L1 into jSf(E, F*) with H^H = ||%||. By
the Dunford-Pettis theorem, there exists a function Φ: X-^ £f{E, F*)
such that

( i ) (Φ(x)s, ty is measurable for each seE, teF
(ii) 2^(0) = | K ||, and

(iii) uλ(f) = uf=\ f(x)Φ(x)dμ(x).

Hence

u{f®s) = «(/, β) = %(s) = \/Φsdμ

Because of the continuity of u, the theorem follows.

4. Doubly invariant subspaces* In this section we prove Wiener's
theorem in the general setup. Let as usual X denote a locally com-
pact Hausdorff space, μ a positive Radon measure on X, ^f a sepa-
rable Hubert space and 3tΓ^ the space of continuous functions from
X into ^f with compact support. Let A be a subalgebra of the alge-
bra of bounded continuous functions on X and S^f denote the algebra
generated by A U A and the constants. A subspace ^€ of L^, is
clearly invariant under multiplication by functions is A U A if and
only if it is J^-invariant. We recall that ^£ is doubly invariant if

(i) ^/ί is closed in Lp^ if 1 ̂  p < co and weakly* closed if p = oo,
(ii) ^£ is .^-invariant.

Then we have

THEOREM 4. // S^ \ K is dense in L\dμ \ K) for every compact
subset K, then every doubly invariant subspace ̂ Jt of Lp^ (1 fg p g oo)
is of the form PLP^ for some measurable range function P; ^f
determines P uniquely.

Proof. We divide the proof into three parts; in the first and the
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second we assume μ(X) < oo and the proof is an imitation of that of
the scalar case in [4]. In the last part we treat the case of arbitrary
measure spaces and an indication of the proof in this case was given
in the proof of Theorem 2.

( i) μ(X) < CΌ , 1 ^ p ^ 2. By Theorem 2, sf is weakly* dense
in L°°(dμ) and in this case the theorem has been proved in [4] for
p = 2. Let 1 ^ p < 2 and ^Ϋ" = Λ€ [\ U%. Then ^ is a doubly
invariant subspace of U% and so <sK = PL2^ for some measurable
range function P. We wish to show that Λ' — PLP%.

For any / e ^ let /;(*) = ||/(αθ ir(p/2) and A(x) = MxyVix) (of
course /a(α?) = 0 if /;(&) - 0). Then /x 6 Ls(dμ) where (1/β) + (1/2) = (1/p)
and /a 6 L2^. Let ^^J be the doubly invariant subspace of L2% gener-
ated by /a. Then Λ^ = -P*^# for a measurable range function P2.
Here we may assume that P2(x) = 0 for those x for which fx{x) = 0.
For any φ e

On the other hand, since s > 2,

as /iGL s, P 2 ^ is bounded and μ(-X") < 00. Hence

This means that PP2/i<P = PJ& for all φe^έ^. So, P2(x) ̂  P(x)
l.a.e. Thus we have ^ ς = P2^L c PLL, Hence

/ - /1/2 ̂ Λ ^ ί cΛPL 2^ c ^

the last inclusion resulting from the fact that fx e Ls where
(1/β) + (1/2) = (IIp). This shows that ^ ^ c PLV%.

Since ^-Ώ Λr == PL2^, W e have ^ =) P J ^ . But 5^% is dense
in L^ and P is I/p-continuous. So ^ 3 PL^ and we have ^ =

P& *
(ii) ^(X) < 00, 2 < p ^ co. Let ^£f = { / e L ^ : / l ^ } where

(1/g) + (1/p) = 1. Then 1 ^ g < 2 and ^ ' is doubly invariant in Lq^.
Hence by (i) ^€f = PfLq% for some measurable range function P' .
Then it is easy to see that ^€ = PL^ where P(x) = J - P'(a ), i
denoting the identity operator on ^

(iii) /^(X) not necessarily finite, 1 ^ p ^ 00. Consider any com-
pact subset ϋΓ of X. Let ^ ^ = Cκ^£', J&ί = C^J^ and μ* — C^^.
We shall identify Lp%(dμ\K), Lp^(dμκ) and CκL

v^{dμ) which are
obviously mutually isometrically isomorphic and denote any of them
by LP^(K). Now ^fκ is a doubly invariant subspace of Lv

w(dμκ)
(with J^i; replacing Ssf) and J ^ is dense in L*(dμκ). Hence by (i)
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and (ii) above, Λκ = PκL
v

m(K). We extend Pκ to the whole of X
by defining Pκ(x) = 0 outside of K.

For any two compact subsets Kl9 K2 with Kx ZD K2 we have

Hence PK2 = PKlCK2 a.e. It follows from this that the map σ:
S^f given by

σ(φ) = I Pκ{x)φ{x)dμ(x) ,

where K is any compact subset containing the support of φ, is well-
defined, σ is clearly continuous with respect to the L^-norm and so
can be uniquely extended to the whole of L1^ to be continuous. We
shall denote the extended map by σ. By Theorem 3 there exists a
weakly measurable bounded operator-valued function Φ: X~
such that

σ(f) = \ Φ(x)f(x)dμ(x)

for all / e L 1 . Then, since σ entends σ, it is obvious that

Φ\K=PK a.e.

for every compact set K; so there exists a measurable range function
P such that Φ = P l.a.e.

We assert that ^e = PLP^. This follows from the fact that
Cκ^f = CKPLP^ for every compact set K and every/ e ^f is the
LMimit (or the weak* limit if p = oo) of Cκf. This completes the
proof.

The uniqueness of P (for a given ^ ) follows from the uniqueness
established in [4] for finite measure spaces.

5 Decomposable operators* Let X, μ, A and S$f be as in § 4
and let T be an operator in Lp% bounded if 1 ^ p < oo and in addition
weakly* continuous if p = oo. Clearly T commutes with multiplication
by functions in A U A if and only if it commutes with functions in
Szf, and any operator T which operates pointwise (l.a.e.), meaning

(Tf)(x) = T(x)f(x) l.a.e.

for an operator-valued function T(x), clearly has this property. We
wish to prove the following converse.

THEOREM 5. If T is a bounded (and weakly* continuous, if
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p = co) linear map from L7^ into Lp^ (1 ^ p ^ oo) which commutes
with multiplication by functions in jzf, then there exists an operator-
valued function T(x) defined a.e. with T(x) e &{§(?7, Sίf) which is
weakly measurable and uniformly bounded such that

(Tf)(x) = T(x)f(x) a.e. ((Tf)(x) = T(x)f(x) l.a.e. if p = co)

This theorem is usually stated for L2^ [2; p. 162, Theoreme 1]
and as far as we are aware, the existing proofs require L2^ to be
separable. We use the variant of Dunford-Pettis theorem established
by us in § 3 to get around the difficulties that may be caused by non-
separability (we of course assume that the Hubert space Sίf is separable).

Proof of Theorem 5. We first consider the case 1 ^ p < co, for
convenience we assume that T is bounded by 1. Let feL7^. Then

J

\\(Tf)(x)\\*dμ(x)^ ( \\f(x)\\'dμ(x).
x Jx

Since T commutes with multiplication by functions in S^, this yields

a(x) |* || (Tf)(x) ||* dμ(x) ^ j J a(x) \* \\f(x) ||» dμ(x)

for all a e έ%f. From the weak* density of S/ in L°°, it follows that
\\(Tf)(x)\\^\\f{x)\\ a.e.

If LP2p is separable, we can obtain T(x) by an explicit construc-
tion. In the general case we argue as follows:

Define a map u: ^L —> Sίf by setting

U{φ) =

Then u is continuous with respect to the 1/̂ ,-norm on 3^ because

(Tφ)(x)dμ{x) | U ( || (Tφ)(x) || dμ(x)
II J x

<\j\φ(x)\\dμ(x).

Since 3%^ is dense in L^, u can be extended by continuity to the
whole L1^ without increasing its norm. We denote the extended map
also by u. By Theorem 3 there exists a function Φ(x) from X into
J5f(J%f, ^f) such that Φ is weakly measurable, uniformly bounded
with 11 Φ(x) 11 5g 11 u \ | ^ 1 and

u(f) = ( Φ(x)f(x)dμ(x)
Jx
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for every fe LL. Thus for any φe 3tL

\ (Tφ)(x)dμ(x) = U(φ) = \ Φ(x)φ(x)dμ(x) .
JX JX

Since T commutes with multiplication by functions in Sf and every
a e Szf is continuous, we get

1 a{x)Φ{x)φ{x)dμ(x) = \ Φ(x)a(x)φ(x)dμ(x)
Jx Jx

= ( (Taφ)(x)dμ(x) = \ a(x)(Tφ)(x)dμ(x) .
JX JX

By the weak* density of <S$f in L°°, this implies

(Tφ)(x) = Φ(x)φ(x) a.e.

for all φe 3ίΓ^. If Φ denotes the operator in L* defined by

(Φf)(x) = Φ(x)f{x) a.e.,

then we have Tφ = Φφ for all φe 3^. Since both T and Φ are
bounded in L^ and <5Γ% is dense in L^,, it follows that T = Φ. Now
we have only to put Φ(x) = T(x) in order to get the theorem.

If p = co and T is bounded and weakly* continuous, then the
transposed map Γ* of T maps L^ into L^. Since Γ* commutes
with multiplication by functions in j ^ , ϊ7* is expressed by an operator-
valued function which is weakly measurable and uniformly bounded.
Therefore T is also a uniformly bounded and weakly measurable
operator-valued function T(x). In this case, we clearly have

(Tf)(x) = T(x)f(x) l.a.e.

for all /eLj.
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FIELDS DEFINED BY POLYNOMIALS

LOWELL A. HINRICHS, IVAN NIVEN AND C. L. VANDEN EYNDEN

l Introduction^ First we consider the following question, where
F is any field. For what pairs P and Q of polynomials in two vari-
ables with coefficients in F do the definitions

(I) α φ 6 = P(α,6), aQb = Q(a,b),

for all a and b in F yield a field (F, 0 , 0)? It turns out that the
answer is different for infinite fields than for finite fields, as shown
in §§2 and 3.

Next let R be the field of real numbers. For what quadruples
Pu Pz> Qu Qz of real polynomials in four variables is (R x R, 0 , 0 ) a
field, when we set

(α, 6) 0 (c, d) - (Pτ(a9 b, c, d), P2(a, b, c, d)) ,

(α, b) 0 (c, d) = (Q^α, 6, c, d), Q2(α, 6, c, d)) ,

where (x, y) denotes an ordered pair of real numbers? This question
is partially answered in §§ 4 and 5, and in § 6 it is shown that the
polynomials may be of arbitrarily high degree. In §7 it is proved
that if definitions (II) do give a field, it must be isomorphic to the
field of complex numbers.

2 The one*dimetision.al case

THEOREM 1. Let F be an infinite field. The system (F, 0 , 0 )
in (I) is a field if and only if

P(a, 6 ) - α 0 δ - α + 6 + 7

Q(a, b) = a Ob = yσ(a + b) + σab + Ύ2σ - Ύ ,

where ye F, σe F and σ Φ 0. When these conditions are satisfied
the field (F, 0 , 0 ) is isomorphic to F, thus (F, 0 , 0 ) = (F, +, •)•

Proof. We first assume that (F, 0 , 0 ) is a field and show that
the polynomials P and Q have the prescribed form. By associativity
we have P(P(a, 6), c) = P(a, P(b, c)) identically in a, b, c. Now if P
is of degree n in a, the degrees of the left and right sides of this
identity in a are n2 and n respectively. Since F is infinite it follows
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that n2 = n and hence n = 1. We conclude that P(a, b) is linear in
a and b, and the same holds for Q(a, 6).

Using this linearity and also the commutative properties, we can
write

a 0 b = a(a + b) + βab + λ ,

a 0 b = p(a + b) + σαδ + τ .

Now /3 = 0, for if β Φ 0 we would have

(-α//3)06= -α2//3 + λ,

and the right member is independent of b.
Suppose first that the additive and multiplicative identities are 0

and 1. Then the equations

show that a — 1 and λ = 0, that p = 0 and τ = 0, and that σ = 1.
Thus we have

α φ 6 — α + 6, α © 6 = α 6 ,

so that 0 and 0 are simply the ordinary operations.
But now suppose that z and u denote the additive and multiplicative

identities of the field (F, 0 , 0 ) . Then the mapping

a —>/(α) — (u — z)a + z

gives /(0) = z and /(I) = u. Since / is a one-to-one mapping of F
onto -F, the operations 0 ' and 0 ' defined by

χ®fy=f

χQ'v=f

yield a field (F, 0 ' , 0 ') which is isomorphic under / to (F, 0 , 0 ) .
But it is easily checked that 0 ' and 0 ' are again polynomial operations
in the sense of (I). Furthermore note that

and so by the argument of the preceding paragraph we conclude that
0 ' and 0 ' are just + and . Now if we substitute x = f~\a) and
y = /-1(6) into equations (2) and apply / to both sides we get

a®b / ( / ( α ) +f-\b)) = a + b-z,
aQb= f{f~\a) -f-\b)) = (α - z)(b - z)(u - z)-1 + z .

Writing 7 for — z and σ for (u — z)~ι we see that equations (3) are
the same as (1).
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Conversely, given any elements 7 and σ Φ 0 of F we see that
the operations defined by equations (1) give a field isomorphic to
(F, + , •)> because the mapping f~x is an isomorphism:

3. Finite fields* The restriction of Theorem 1 to infinite fields
was necessary because in the proof use was made of the fact that
polynomials agreeing on infinite sets must be identical. Now for a
finite field F of order q = pn we see that a system (F, 0 , 0 ) in (I)
is a field with

P(α, 6) = a 0 b = aq + bq , Q(a, b) = aQb = agbq .

But these are artificial definitions since aq — a identically in a in the
finite field. However, Theorem 1 fails in a genuine sense for all cases
except q = 2, 3, 4, as can be seen as follows.

Let g be any permutation on F leaving 0 and 1 invariant. Now
g is a polynomial function because we can construct a polynomial to
agree with g over the q elements of the field. Similarly the operations
0 and 0 defined by

a θ b = g-\g{a) + g(b)) ,

aQb = g-1(g(a)-g(b))9

are polynomial functions. If Theorem 1 were true for the finite field
F then equations (4) would be of the form (1) for some 7 and σ.
But from (4) we see that a 0 0 = a and a 0 1 = a, so that 0 and 1
are the additive and multiplicative identities of {F, 0 , 0 ) . Hence in
(1) we see that 7 = 0 and a = 1. Thus 0 and 0 would be the ordinary
operations and (4) would be

a + 6 = g-\g(a) + g{b)) ,

It follows that g is an automorphism of (F, 0 , 0 ) . But there exist
exactly n automorphisms of a field with pn elements [4, §38], Since
there are (pn — 2)! permutations g of F leaving 0 and 1 invariant,
and since (pn — 2)! > n if pn ^ 5, it follows that Theorem 1 fails for
finite fields of order q = pn ^ 5.

On the other hand suppose that F is a finite field of order q =
pn = 2, 3, or 4. Suppose further that there are polynomials P and Q
for which the operations a 0 b = P(a, b) and aQb — Q(a, b) yield a
field (F, 0 , 0 ) . Using the mapping f(a) = (u — z)a + z, we apply f'1

.as in equations (2). Thus we move from (F, 0 , 0 ) to {F, 0 ' , 0 ')
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having 0 and 1 as additive and multiplicative identities. Now simple
examination of the addition and multiplication tables for finite fields
with 2, 3 or 4 elements shows that the operations 0 ' and 0 ' must
be the ordinary operations of addition and multiplication. Thus we
can get equations (3) and the rest of the proof follows as in Theorem
1. We have proved the following result.

THEOREM 2. Theorem 1 holds for only those finite fields with
2, 3 or 4 elements.

4. The complex case: a simplification^ The definition (II) allows-
considerably more latitude for the operations 0 and 0 than exists in
the one-dimensional case, and the problem appears to be correspondingly
more difficult. To simplify things we show first that there is no great
loss in generality in presuming that the additive ard multiplicative
identities of the field (R x R, 0 , 0 ) are (0, 0) and (1, 0). For let the
zero and unity of the field be denoted by (p, q) and (r, s). We define

( 5 ) [a, b] = (ar — ap — bs + bq + p, as — aq + br — bp + q) ,

and note that

[0, 0] - (p, q), [1, 0] = (r, s) .

The right member of (5) is simply

(a, b)(r - P,s - q) + {p, q) ,

where the multiplication and addition are as in the field of complex:
numbers. Since (p, q) φ (r, s) we see that (r — p, s — q) Φ (0, 0) and
so (5) is a one-to-one mapping of R x R onto Rx R. If we extend the
multiplications 0 and 0 to the pairs [α, b] by the use of (5) we see
that

[0, 0] 0 [α, b] = [1, 0] 0 [α, 6] = [α, b] .

Furthermore, [α, b] = (x, y) implies not only that x and y are poly-
nomials in a and b by (5), but also that a and b are polynomials in
x and y. Hence any system of pairs {a, b) with 0 and 0 defined by
(II) can be transformed into an isomorphic system of pairs [α, b] with
0 and 0 defined by (5) and (II). Thus all fields of the required sort
can be generated in a simple way as in § 2 from those having (0, 0)
and (1, 0) as zero and unit.

5* The complex case with linearity*

THEOREM 3. Let the operations 0 and 0 be defined as in (II),
and assume that each of Pu P2, Qu Q2 is linear in each argument
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separately. Then (R x R, 0 , 0 ) is a field with (0, 0) and (1, 0) as
zero and unity if and only if

(a, b) 0 (c, d) = (a + c, b + d) and

(α, b) 0 (c, d) = (ac + ibd, ad + be + δbd)

for some y e R and δ e R with δ2 + Art < 0. When these conditions
are satisfied, (R x R, 0 , 0 ) is isomorphic to the field of complex
numbers, that is, (R x R, 0 , 0 ) = (C, +, •)•

Proof. First we assume that (i? x R, 0 , 0 ) is a field. By the
commutative property Px{a, b, c, d) is symmetric in a and c and also
in 6 and d; likewise for P2, Qλ and Q2. Thus we can write

Px{a, b, c, d) = ao + ax{a + c) + a2(b + d) + au(ab + cd)

+ a13ac + aMbd + au(ad + be) + a12Z{abc + acd)

+ a12i(abd + bed) + a12Mabcd .

We represent P2, Qx and ζ)2 by similar expressions with the a's replaced
by /5's, τ's and S's respectively. From the relation (a, b) 0 (0, 0) =
(α, 6) we deduce

P1(a9 b, 0, 0) = a , P2(a, b, 0, 0) - b ,

from which it follows that

«! = β2 = 1 and a0 = /30 = α2 = ft = α ia - /S12 = 0 .

Now define (h, k) by the relation (1, 0) 0 (1, 0) = (h, k). Then the
distributive property implies that

(a, b) 0 (h, k) = (a, b) 0 (a, b)

and so we obtain

Px{a, b, a, b) = Qx{a, b, h, k)

= 2α + α1 3α2 + α2 4δ
2 + 2α14α6 + 2α123α

2δ

+ 2a124ab2 + a12Ua2b2 .

But Qi(α, 6, Λ, fc) is linear in a and 6, and hence

^13 ~ ^24 ~ ^14 r = : ^123 = : ^124 = = ^1234 : = : 0

The relation P2(&, δ, α, 6) = Q2(a, b, h, k) yields an analogous result for
the /3's, and so we get

(a, b) 0 (c, d) = (α + c, b + d) .
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Next, from the relation (α, 6) 0 (0, 0) = (0, 0) we see that

Qx(a, 6, 0, 0) = Q2(α, 6, 0, 0) = 0 ,

and so

7 0 = 7 i = 7 2 = 7i2 = So = #i = δ 2 = <512 = 0 .

From Qx(α, 6,1, 0) = α and Q2(α, 6,1, 0) = 6 we obtain

7i3 = O14 — 1 , O13 — 7 H = 7 i 2 3 = O 1 2 3 = 0 •

Thus we have

Qx{a, b, c, d) = αc + 7246cί + Ύ12i(bcd + αδd) + ΊUZ4abcd ,

Q2(α, 6, c, d) = αd + 6c + δ24bd + δUi(bcd + α6d) + δmiabcd .

Also the equations

(α, 6) 0 (1,1) - (α, 6) 0 (1, 0) 0 (α, 6) 0 (0, 1)

- (α, δ) 0 (α, 6) 0 (0,1)

imply that

Q1(af 6,1,1) = α + ^ ( α , 6, 0,1), Q2(α, 6,1,1) - & + Q2(α, 6, 0, 1) .

This yields

7χ
2
4 — 7χ

2
34

 =
 O

1 2 4
 = O

1 2 3 4
 = U ,

and so we have, removing subscripts,

(α, b) 0 (c, d) = (αc + 7δd, αd + be + δbd) .

Finally, if (α, 6) =£ (0, 0), there must exist real numbers x and y
such that (α, 6) 0 (x, y) = (1, 0). This gives a pair of linear equations
with determinant α2 + δab — 7&2. This must not vanish except for
a = 0 and 6 — 0, and so we conclude that

δ2 + 47 < 0 .

Conversely, to prove that the operations 0 and 0 in the statement
of the theorem do give a field isomorphic to the field of complex
numbers, define a and β by

2

Since β Φ 0 the mapping

Φ: (a, b) — (α + αδ, βb)
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is one-to-one from C onto itself. As in Theorem 1 we point out that
by a not difficult calculation

(a, b) 0 (c, d) = φ-\Φ(a, b) + 0(c, <Z))

and

(a, 6) Θ (c, rf) - r m &) Φ(c, d)) .

Thus the mapping φ is an isomorphism from (R x iϋ, 0 , 0 ) to (C, + , •)•
As a variation on Theorem 3 we prove the following; see [2, p.

251] for a related result.

THEOREM 4. In Theorem 3 replace the hypothesis that Pu P2, Qi
and Q2 are linear by the assumption

( 6 ) (a, 6) 0 (c, 0) - (αc, be)

for all a, 6, c in R. Then the conclusion of Theorem 3 holds.

Proof. If first we assume the definitions of 0 and 0 as in the
equations of Theorem 3, then we have a field, and we note that (6)
follows. Conversely, suppose that (R x R, 0 , 0 ) is a field with the
usual zero and unity and such that (6) holds. Then we note that

(aP^x, y, z, w), aP2(x, y, z, w))

= (α, 0) 0 (Pi(α, y, z, w), P2(x, y, z, w))

- (a, 0) 0 {(x, y) 0 (z, w))

= (ax, ay) 0 (az, aw)

- (Px(ax, ay, az, aw), P2(ax, ay, az, aw)) .

Thus Px and P2 are homogeneous and linear.
Turning to the operation 0 we note that

(aQτ(x, y, z, w), aQ2(x, y, z, w))

- (a, 0) 0 ((x, y) 0 (z, w))

= (ax, ay) 0 (z, w)

= (Qx(ax, ay, z, w), Q2(ax, ay, z, w)) .

Applying the commutative property we get

(a2Qx(x, y, z, w), a2Q2(x, y, z, w))

= (Qχ(ax, ay, az, aw), Q2(ax, ay, az, aw))

and hence Q2 and Q2 are homogeneous of degree 2. Now the relations

Qι(a, b, 0, 0) - Q2(a, b, 0, 0) - 0
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show that Qχ(α, 6, c, d) and Q2(α, 6, c, d) have no α2 or b2 terms. From
the commutative property it follows that Q1 and Q2 have no c2 or d2

terms. Thus Qx and Q2 are linear in each argument separately, as
also are Px and P2, and so we can apply Theorem 3 to complete the
proof.

6Φ Linearity not necessary* Here we show that (R X R, 0 , 0 )
with operations defined by (II) may be a field with the usual zero and
unity even though Plf P2, Qx and Q2 are not linear in the separate
arguments. For let T be any polynomial in one variable with real
coefficients and set S(x) — x(x — l)T{x). Define the mapping Φ by

Then φ is a one-to-one mapping of C onto itself which leaves (0, 0)
and (1, 0) invariant. Thus if we define

(α, b) 0 (c, d) = φ-\φ(a, b) + φ(c, d)),

(a, b) 0 (c, d) = φ~\φ(a, b), φ{c, d))9

we get (Rx R, 0 , 0 ) isomorphic to (C, +, •)> the two field represen-
tations having common zero and unity. It is clear that the polynomials
P\9 P*, Q\ and Q2 may be given arbitrarily high degrees by the proper
choice of T.

7. A general theorem* A question left unanswered in the pre-
ceding three sections is whether any field satisfying (II) must be iso-
morphic to the complex numbers. That the answer is yes is a special
case of the following result.

THEOREM 5. Let f and g be continuous mappings from Rn x Rn

into Rn, and suppose that the binary operations 0 and 0 defined
on Rn by

xφy = f(χ, y), x 0 y = g(χ, y)

make (Rn, 0 , 0 ) a field. Then n = 1 or 2 and the field is the real
field or the field of complex numbers accordingly.

Proof. Let Q x and x* denote the inverses of x under 0 and
0 respectively. We will show that the maps

x —• θ # and x —• #*

are continuous and thus (Rn, 0 , 0 ) is a topological field. Then the
known result that any locally compact connected topological field
satisfying the first axiom of countability is either the real or the
complex numbers will yield the theorem; cf. [3, p. 173].
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Consider the map T: R2n -> R2n defined by T: (x, y) ->{x,x@ y),
where x and y belong to Rn. It is easily seen that T is continuous,
one-to-one and onto. It is claimed that T is a homeomorphism. For
suppose that A is an open subset of R2n and ae A. Let K be a compact
neighborhood of a contained in A. Then T is a homeomorphism of K
onto T[K] and so by Brouwer's theorem [1, p. 100] on the invariance
of domains the interior of K maps onto an open set. Thus T(ά) is
an interior point of T[A]; we see that T takes open sets onto open
sets.

Now Γ"1 is the mapping (x, s) —>(x,sQx), and so, letting s be
the additive identity of (Rn, φ , 0 ) , we see that the map x —> Qx is
continuous. The verification that x —> x* is a continuous map runs
along the same lines. Thus with the usual topology (Rn, 0 , 0 ) is
either the reals or the complexes. Since Rm homeomorphic to Rn

implies m = n, the theorem follows.
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DECOMPOSITION OF SETS OF GROUP ELEMENTS

W. B. LAFFER AND H. B. MANN

In this paper small letters will denote group elements or integers.
Large letters will denote sets of these. The cardinal of a set S will
be denoted by (S).

l Sets in. Abelian. Groups* The problem of decomposition of sets
of elements of a finite additive Abelian group, G, of order v, is the
following. Given a set of group elements, C, when do there exist
sets of group elements, A and B, with Min (A), (B) ^ 2 and C =
A + B = {a + b\ae A, be B}Ί If there are such sets, A and B, then
we say that A and B are components of C, and that C is decom-
posable. We are also concerned with the following question, given a
set C and a set A, when is A a component of C? The problems of
decomposition are stated analogously when C, A, and B are sets of
nonnegative integers. The results for sets of group elements are
analagous to the results for sets of nonnegative integers. We include
the proofs for both cases because although the techniques used in
handling additive problems in finite Abelian groups are analogous to
the techniques used in handling additive problems for sets of non-
negative integers (see Mann [5], [6], [7]; Dyson [1]; and Kneser [4]),
they are not identical.

In Theorems 1-5 all sets shall be sets of elements from a finite
Abelian group, G, of order v.

THEOREM 1. Let C be sets of elements from the finite Abelian
group, G. Let C = {clf cu , cr) be the complement of C in G. Let
D = {cr — C} — {cr — Cj | j = 1, , r}. Then A is a component of C,
if and only if, for every k£D we have A + k ς£ A + D.

Proof. Put B = Πί=i {βi — -4}. Then A is a component of C if
and only if A + B =- C.

Suppose for every k g D we have A + k qL A + D. Then, for every
k$D there is an ae A such that a + k = a{ + d{ for every i — 1, , r
where d{ = cr — Ci and ά̂  e A. Hence for every i = 1, , r we have
cr — k = a — cii + ci = a + c< — α { = a + b where be B. For every
ce C put k = cr — c. Hence c = a + b which implies that A + B = C
Thus A is a component of C.

Suppose A + B = C. If there is a & g JD such that A + fc c A + Z),

Received July 1, 1963. The first author was supported in part by an NSF coopera-
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then for every aeA there is an i such t h a t a + k = a{ + diΛ There-
f o r e , cr — k = a + Ct — a,i = a + b w h e r e beB = [JUΛCi — A}. S i n c e
k Φ cr — cj9 we must have k = σr — c for some c 6 C. Hence for
every α e i we have c — a = beB. Therefore, cίA + B. This is a
contradiction and hence the theorem is t r u e .

COROLLARY 1.1. Let C = {c}. Then A is a component of C if
and only if A is not a coset of some subgroup of G.

COROLLARY 1.2. // G is cyclic of prime order and C — {c}, then
A is a component of C if and only if 1 < (A) < (C).

DEFINITION. We say that A is an m component of C if and only
if A is a component of C and (A) = m.

COROLLARY 1.3. If C = {clf , cr}, then {0, a} is a 2 component
of C if and only if 2α = c< — cy implies a = c< — c w /or some m.

Proof. Suppose {0, α} is a 2 component of C Let 2α = cέ — c i #

By Theorem 1 if k ί D then {fc, α + Λ} ςί {0, α} + D. Put fc - α + <*<.
Then {fc, α + k} = {α + d,, 2α + d,} = {α + dif dj}c.{0f a) + D. If fc ί D,
then {0, α} is not a 2 component of C. Hence keD. Thus k —
a + d{ = dm which implies a = Ci — cm.

Suppose that 2a = c< — c, implies α = c.\ — cm for some m. If
{0, a} is not a 2 component of C, then by Theorem 1 there is a k £ D
such that {k, a + fc} c {0, α} + Zλ This implies that k = a + du for
some w = 1, , r, and α + fc = 2a + c£w = ds. Thus 2α = cw — cs and
by assumption this implies a = cu — ct. Therefore, k = a + du = dt e D.
This is a contradiction, and hence {0, a} is a 2 component of C.

In Corollaries 1.4-1.9 we shall assume that C is a difference set
with parameters v — (G), r = (C), and λ = the number of representa-
tions which each nonzero element of G has in the form c{ — cά.

COROLLARY 1.4. Let (C) = r < v. If 2a = 0 /or α ^ 0, ί/^e^

{0, a} is not a 2 component of C.

Proof. If {0, a} is a 2 component of C then 2α = c< — C; for
every i = 1, , r, and by Corollary 1.3 we have r — v.

COROLLARY 1.5. / / (λ, v) = 1, ί/^e^ ίA,βrβ does not exist an a Φ 0
Λαί {0, α} is a 2 component of C.

Proof. Suppose there is an a Φ 0 such that {0, a} is a 2 com-
ponent of C. Because of Corollary 1.4 we may assume 2a Φ 0. Since
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C is a difference set we have
( i ) 2 α = ch - ch = ch - c J 2 = = c ί λ - cjχ.

By Corollary 1.3 we must have
( i i ) a = ciiL- cmi = ch - cm2 =

Subtracting a from 2a we get
(iii) a = c m i - ch = cm2 - ch =

If there is an index ms in (iii) that does not appear as a first index
it in (ii), then a has at least λ + 1 distinct representations as an ele-
ment of {C — C}. This contradicts the choice of a Φ 0. Hence we
must have that every first index in (iii) appears as a first index in (ii).

Thus from (ii) we obtain Xa = Σ£=i cije — cmjc — 0. Since (λ, v) =
1, it follows that a = 0. This contradicts our choice of a, hence
Corollary 1.5 is true.

COROLLARY 1.6. // G is cyclic of order n2 + n + 1, and if G
has no simple difference set of order n + 1, then every set of n2

elements has a 2 component.

COROLLARY 1.7. Let G be cyclic of order n2 + n + 1, and let
n ίg 1600. If n is not a prime power, then every set of n2 elements
has a 2 component.

Proof. This follows from Corollary 1.6 and the paper of Evans
and Mann [2],

COROLLARY 1.8. Let λ > 2. Suppose there is a cyclic subgroup
H of G such that (H) — λ. Suppose H + gcC for some g eG. Let
ae H such that a has order λ. Then {0, a} is a 2 component of C.

Proof. If C is a difference set, then so is C — g. Hence without
loss of generality we may assume that HczC.

If a e H and a has order λ, then ja e H for 0 ^ j ^ λ — 1. Since
2a Φ 0, we have that 2a = ja — (j — 2)a for 0 ^ j ^ λ — 1 are the
λ distinct representations of 2a as an element of {C — C}. Clearly,
a — ja — (j — l)a for 0 ^ j ^ λ — 1 are the λ distinct representations
of a as an element of {C — C}. By Corollary 1.3 {0, α} is a 2 com-
ponent of C.

An example of a case where this situation actually occurs is the
following. Let G be the residues modulo 15. Let C = {0,1, 2, 4, 5, 8,10}.
Here λ = 3, a = 5, and # = 0. This and other examples can be found
in [3].

An immediate generalization of Corollary 1.8 is the following.

COROLLARY 1.9. Let (λ, v) = d > 2. Suppose H is a cyclic sub-
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group of G of order d. Suppose there are exactly X/d cosets of H
contained in C. If ae H such that a is of order d, then {0, a) is a
2 component of C.

An example of a case where this situation occurs is again from
[3]. It is the geometry modulo 63. We have C = {0,1, 2, 3, 4, 6, 7, 8,
9, 12, 13, 14,16, 18,19, 24, 26, 27, 28, 32, 33, 35, 36, 38, 41, 45, 48, 49, 52,
54, 56}. Here λ = 15, d = 3, and a - 21. We have H = {0, 21, 42};
and the 5 cosets are: {3, 24, 45}; {6, 27, 48}; {7, 28, 49}; {12, 33, 54}; and
{14, 35, 56}.

DEFINITION. We say that C is indecomposable, if there do not
exist sets, A and B, such that Min (A), (B) ^ 2 and A + B = C.

THEOREM 2. Let C be such that (C) = 3. If the elements of C
are not in progression, then C is indecomposable.

THEOREM 3. Let C = {0, clf c2, , cs}. Let s ^ 3 and let C* =

{0, clf c2, , cs_J. If cs £ {C* - C*} U {C* + C*}, then C is indecom-
posable.

Proof. Suppose there are sets, A and B, with Min (A),
and such that A + B = C. Since 0 e C we must have 0 = a0 + b0

where α0 e A and δ0 € 2?. Let A' = A — a0 and Bf — B — b0. Since
60 = — α0 we must have A' + B' = A + B—C. Thus we may assume
without loss of generality that O e i f l ΰ . Hence A{J BczC.

If cseA + B, then cβ = ĉ  + cy. If i Φ s and j Φ s, then
cs e {C* + C*} contrary to hypothesis. Thus c 8 e 4 U 5 . Suppose
cs e A. Since (JB) ^ 2, we have a ceB such that c ^ 0. We must have
c8 + c = CiβC. Hence cs = c< — c e {C* — C*} which is contrary to
hypothesis. Thus C is indecomposable.

The fact that (C) ̂  4 is necessary is illustrated by the follow-
ing example. Let C = {0, 2c, c}. Put C* = {0, 2c}. We have
{C* - C*}U{C* + C*} = {0,2c, -2c, 4c}, and c£ {C* - C*}U{C* + C*}
for any choice of c such that 3c Φ 0. Yet C = {0, c} + {0, c}.

COROLLARY 3.1. Let s ^ 3. If (G) = v > [Zs(s - l)/2] + 1,

crisis α seί C c G s^cΛ ίfeαί (C) = s + 1 and C is indecom-
posable.

Proof. Let C* = {0, c2, c2, , cs_x} be any set of s — 1 nonzero
elements of G and zero.

We have ({C* + C*}) ̂  [ φ - l)/2] + s and ({C* - C*) £ s(s - 1) + 1.
Since C* a{C* + C*}Π{C* - C*}, we have ({C* + C*}Π{C* - C*}) ̂  s.
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Hence ({C* + C*} U {C* - C*}) ^ [3s(s - l)/2] + 1.
Since v > [3s(s — l)/2] + 1, we must have an element c8 e G such

that cs${C* + C*} U {C* - C*}. By Theorem 3 C* U {c.} is indecom-
posable.

Theorem 2 and Corollary 3.1 give us the following.

THEOREM 4. For any positive integer s ^ 2 £Λere always exists
an Abelian group G and a subset C of G such that (C) = s + 1 ami
C is indecomposable.

THEOREM 5. Let {ely , β j = {C — C}. Lei s(x, y) be the number
of solutions, of the group equation xg — y where x is an integer.
Suppose m + 1 g v - (C). If v > Σ?=i Σ S 1 s(x, et) = δ, ίfceπ ίfcβrβ
e^isί seίs 4̂ απd B such that 0 e A, (A) = m + 1, A is in progression
and A + B = C.

Proof. There are at most δ solutions of the equations xg = et

where 2 ^ x ^ m + 1 and 1 ^ t ^ u. Hence if v > δ, there exists an
element a e G such that xa Φ c{ — cά for all ci9 cά e C and x = 2, ,
Trt + 1. We distinguish two cases:

I m = 0(2);
II m Ξ 1(2);

I. m Ξ 0(2). Put A = {0, a, —a, , ma/2, —ma/2}. For
k $ D suppose that A + k c A + D. Then k = ha + d{. Choose | h \
minimal.

If h > 0, then fc + [((m + 2)/2) - fe]α = [(m + 2)/2]α + di = ja + dt.
From our choice of α, in follows that j = m/2. Hence a + d{ = dt,
and so fc = (h — l)α + dt, contradicting our choice of h.

If h < 0, then ft + [(-(m + 2)/2) - Λ]α = - [ ( m + 2)/2]α + d« =
ja + dίβ From our choice of α it follows that j = —m/2. Hence
di = α + dt, and so ft = (/̂  + l)α + dt contradicting our choice of h.

Thus by Theorem 1.1 A is a component of C.

Case II. m = 1(2). Put A = {0, α, - α , •••, [(m - l)/2]α,
— [(m — l)/2]α, [(m + l)/2]α}. The argument is the same as above
replacing m + 2 with m + 3 and j will be either (m + l)/2 or
- ( m

COROLLARY 5.1. Let v > δ. Then there exist an A{ and a B{

for every i such that 2 ^ i ^ m + 1 s r f ίΛαί 0 e Aif (A{) = i, A{ is
m progression, and A{ + B{ = C.
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COROLLARY 5.2. If v is a prime, then v > mu implies that for
every i for which 2 ^ i ^ m + 1 there exist an A{ and a B{ such
that 0 e Aif (A{) = i, A{ is in progression, and A{ + B{ = C.

We note by an example that a set C may have an i + 1 com-
ponent and not have an i component. Let G be the integers modulo
13. Let C = {1, 2, 4,10}. By Corollary 1.5 C does not have a 2 com-
ponent, since C is a simple difference set. But {0, 9,12} + {0, 7, 9,12} =
{0, 3, 5, 6, 7, 8, 9,11,12} = C.

Sets of integers* From now on our sets shall be sets of nonnega-
tive integers. In particular the complement of a set S, which shall
be denoted by S, shall mean the set of all nonnegative integers which
are not in S.

DEFINITION. An n section is a set of nonnegative integers which
contain all integers greater than n but does not contain n.

In Theorems 6 and 7 we shall assume that the sets A and C are
cr sections.

THEOREM 6. Let C = {ci < c2 < < cr}. Let D = {di = cr — ci9

i = 1, , r). Then A is a component of C if and only if for every
kφΌ, k ^ cr we have A + kςtA + D.

Proof. Put B = ΓlLi {^ - A}. If A + Bx = C, then B1 c J5 and
also A + 5 = C Hence, A is a component of C if and only if
A + B = C.

Suppose for every fc g D, fc ^ cr we have A + fc £ A + 2λ Then,
for every k £ D, k ^ cr there is an a e A such that a + k = α̂  + dt

for every i = 1, , r where dt = cr — ci and a{ e A. Hence, cr — k =
α — α̂  + Ci for every i = 1, , r. Hence, c.r — k = α + 6 where 6 e 5 .
Put & = άr — c where ceC. Then fee/) and k ^ cr. Thus c = a + 6.
Hence A + B = C, and A is a component of C.

Now suppose A is a component of C. Hence A + 5 = C. If
there is a & £ Z), & ̂  cr such that A + i c i + I), then for every ae A
there is an i such that a + k = ĉ  + c?̂ . Hence, cr — & = α + c< — a{ =
a + b, where b eB. Since k Φ cr — cά for any j = 1, , r, we must
have fc = σr — c for some ce C. Hence for every α e i we have
c — a — b eB. Therefore, C&A + B. This is a contradiction, and
hence our theorem is true.

DEFINITION. For m a positive integer we say that A is an m set,,
if and only if, for all aeA we have a + meA.

COROLLARY 6.1. Let A be an n section such that OeA. Then.
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A is a component of {n}, if and only if, A is not an m set for
m g n.

COROLLARY 6.2. Let A be an m set for some m such that m < n.
Let A = {nλ < n2 < < nr = n}. Then there is an n{ < nr such
that

/ j ) A(nr) > A(Πi)

nr + 1 " % + 1

where A(x) denotes the usual counting function of all aeA such that

a ^ x.

Proof. At the end of Lemma 1 on page 911 of [7] it was shown
that if the construction defined there fails at a gap ns < nr = n, then

C(n) > A(ns) + B(ns) - 1 (nfl ., C(n)d

Now let C = A and B = {0}. Then we have

> A(n.) (A{d _ 1 } __ A(n)ds

If we assume that A(n^l(ni + 1) > A(n)/(n + 1) for alH = 1, ,r — 1
then it follows that for all aeA we have A(a)/(a + 1) > A(n)(n + 1).
Hence the remainder term, [A(ds — 1) — {A(n)dJ(n + 1)}]1/(%S + 1) is
positive, and we have A(n)/(n + 1) > A(ns)/(ns + 1). This contradicts
the assumption that A(n^l(ni + 1) > A(n)/(n + 1) for all i — 1, ,
r - 1.

If the construction does not fail, then all gaps in C are filled
except n = wr._Since in our case C — A, we would have that A is a
component of {n}. But A is an m set for some m < n, and by Corol-
lary 6.1 this is impossible.

An example of a case where we have equality in (i) is A = {0, 2, 4}.
We have A(l)/2 = Λ(3)/4 = A(5)/6 = 1/2.

DEFINITION. The cr section C has an m component if and only
if there exist sets, A and B such that A(cr) = m and A + B = C.

COROLLARY 6.3. Let C = {cΊ < c2} and let OeC. Then C has a
2 component, if and only if, C is not one of the following three
sets: {1, 2}; {2, 4}; {3, 5}.

COROLLARY 6.4. If cr is such that cr — cα > cr-l9 then C has a
2 component.
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Proof. One can easily verify that {0, cr — c3} is a 2 component
by Theorem 6.

THEOREM 7. For a given r and m there exist at most a finite
number of sets with r gaps which do not have an m + 1 component.

That is to say if C = {cΊ < c2 < < cr}, then there are sets A
and B such that A(cr) = m + 1, 0 € A, and A + B — C except for at
most a finite number of sets C. One can even impose the additional
condition that A be in progression.

Proof. We first prove a lemma.

LEMMA. / / there exists an aeC such that

( 1 ) xa Φ Ci — Cj for 1 ^ j < i < r and x = 1, , m + 1

and

( 2 ) either cό < a < (m + l)a < cj+1 for some j such that

l ^ j ^ r - 1 or 0 < a < (m + l)a < cλ

then A = {0, a, 2a, , ma) is an m + 1 component of C.

Proof. By Theorem 6 A is a component of C, if and only if,
for all k £ D, k ^ cr, we have A + kφA + D. If for some k$D,
k ^ cr we have A + kcA + D, then k = sa + di for some s and i
such that 0 < s ^ m and 1 ^ i g r . Under the assumption that a
satisfies (1) and (2), we shall show that k + (m — s + l)α g A + D, and
hence A + k φ A + D contrary to the assumption that A + kaA + D.
Hence A will be an m + 1 component of C.

We have k + (m — s + l)α = sα + d{ + (m — s + l)α = (m + l)α + c^
for some i. If & + (m — s + l ) α e i + D then either

( 3) (m + l)α + di = ta + cίy for some £ = 0, , m and

j = 1, , r and 5 Φi\

or

( 4 ) (m + l)α + cί; > cr > sα + d{ .

Now (3) implies (m + 1 — £)α = c{ — c, contrary to (1), and (4)
implies (m + l)a > c{ > sa ^ a > 0 contrary to (2). Hence A is an
m + 1 component of C This completes the proof of the lemma.

Let d = ({Ci- Cjll^j <i ^ r}). Then 1 ^ δ ^ (r2 - r)/2. If
there are at least (m + 1)<5 + 1 choices for a between cό + 1 and
[cj+1/(m + 1)] — 1 inclusive or between 1 and [cί/(ra + 1)] — 1 inclusive,
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then we can choose an a so that conditions (1) and (2) of the lemma
are satisfied. Thus conditions (1) and (2) of the lemma are satisfied
if either

( 5 ) cj+1 ^ (m + l)(δ(m + 1) + c, + 2) for 1 ^ j £ r - 1

or

( 6) cx ^ (m + l)(δ(m + 1) + 2) .

Let δ(m + 1) + 2 = n. If (5) and (6) both fail, then we must
have c < (m + l)n

c2 < (m + l)(n + ci) < n((m + 1) + (m + I)2)

c, < (m + l)(w + Ci-i) < w Σ (m + l)q

cr<(m + l)(n + c^) < n
9 = 1

Hence \ί cr^n Σϊ=i (w + l) g then either condition (5) or condition
(6) is satisfied and a can be chosen so that conditions (1) and (2) of
the lemma are both satisfied.

Thus if cr ^ (δ(m + 1) + 2) Σί=i ( m + l) g . then there is an aeC
such that {0, α, 2α, , ma} is an m + 1 component of C. Since for
a fixed r, <? is bounded, it follows that the number of sets C, with r
gaps which do not have an m + 1 component is finite.

In Theorems 8-11, we shall make no restriction on the number
of gaps that a set C may have.

DEFINITION. A set C is said to be strictly decomposable if there
are sets, A and B, such that Min (A), (B) ^ 2 and A + B = C.

DEFINITION. A set C is said to be asymptotically decomposable
if there are sets, A and B, such that Min (A), (B) ^ 2 and A + B =
= C* where (C* Γ\ C)< co and (C Π C * ) < α>. We write A + B - C.

THEOREM 8. Let C be given. Let {n%) be a monotonically increas-
ing sequence of nonnegative integers. Let Ck = C Π [0, k]. Then a
necessary and sufficient condition that C be strictly decomposable is
that for each n{ in the sequence there exist a pair of sets, A%i and
Bni, such that {AH + B%ί} Π [0, n{] = CH; and there exists a positive
integer N such that whenever ni^ N we have Min AH(N), Bn.(N) ^ 2.

Proof. If C is strictly decomposable, then we have a pair of sets,
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A and B, such that Min (A), (B) ^ 2 and A + B= C. Put A%i = A Π [0, <J
andjBWi = J5 ΓΊ [0, < | . If for some w< we have {A%. + £„.} Π [0, nt] =£
C Π [0, wj, then {A + B) Π [0, w J ^ C Π [0, wj which is a contradiction.
Since Min (A), (I?) ^ 2 we must have a positive integer N such that
Min A(N), B(N) ^ 2. This clearly implies that for n{ Ξ> ΛΓ we have
Min Ani(N), Bnt(N) ^ 2. Hence our condition is necessary.

Now let {m ĴLo be any monotonically increasing sequence of non-
negative integers. Put AmQ, i = A%i Π [0, m0] and J3Wo, i = #„. Ω [0, m0].
Since there are only a finite number, 22w°+2, of choices for each pair
of sets, Amo, i and BmQ, i, there must be at least one pair, AmQ and
J5Wo, which is repeated for an infinite number of indices ί.

Let {n{i]} be the subsequence of {n%) for which AmQ — A^(l)n [0, m0];
and Bmo = Bnί(l) f] [0, m0]. Now Amo + BmQczC, since in the original
construction of AmQ and i?m() the n{ may be chosen arbitrarily large..
Also we have {AmQ + BmQ} n [0, m0] = CmQ.

We repeat this process using mx and the sequence {n^}. Put
Ami, i = AH(1) n [0, m j and Bmi, i = Bn.(l) Π [0, m j . Again we must
have at least one pair of sets, Amχ and Bmi, that repeats an infinite
number of times. This pair, Amχ and Bmχ, determines a subsequence
{n?} c {n?}. We must have Ami + Bmχ c C and {Ami + Bmi}[] [0, m j =

Continuing in this way, we have for each mό a pair of sets,,
Amj and Bmj9 and a subsequence {̂  i+1)} c {nίj)} such that AWj =
AH(j + 1) n [0, m,] and Bmj - 5n<0" + 1) Π [0, m y]. For each m, we
also have Am j + Bmj c C and {Amj + Bmj} n [0, m j - CW j.

Put A = UΓ=oΆ*j and B = UΓ^-Bw .̂ Since in each subsequence,,
{ l̂y)}, there exists an n^ such that n\ύ) ^ JV, we have that Min Amj(N),
Bmj(N) ^ 2, and hence Min (A), (B) ^ 2. If A + £ ^ C, then there
is a section of C, say CΛ, for which the decomposition fails. Let
wij > k. Then for the subsequence, {n{ij+1)}, we have

{AH(j + 1) + 5,4(i + 1)} n Cmj Φ Cmj = CH(j + 1) n [0, my] .

This contradicts the original hypothesis. Hence A + B = C is a, strict,
decomposition of C, and our condition is sufficient. This completes
the proof of Theorem 8.

If C has a finite number of gaps, C is a section. If C has infi-
nitely many gaps then Theorem 8 shows that the problem of strict
decomposability reduces to the problem of decomposability of sections
because we can choose for {%} a sequence of gaps of C.

COROLLARY 8.1. Let {n%) be an infinite sequence of elements of
C. Then C is strictly decomposable, if and only if, every section
{C Π [0, Πi)} U [nι + 1, oo) is decomposable.
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THEOREM 9. Let C be given. Let A be such that A J C and
(A) ^ 2. Let f(a) be the number of representations of a in the form
a* + <ϊj — am. // for every aeA, such that a ^ 0, and such that
άeA + C — A we have f(a) < A(a), then there exists a set B such
that A + B = C is a strict decomposition of C.

Proof. P u t B = Γ)*~=i fa- A}. N o w B Φ Φ s i n c e OeB a n d c l e a r l y
A + BdC.

Let a e A such that a eC. If a £ A + B, then it must be true
that for every aeA such that a < a, we must have a — a e B =
UΓ=i {Ci — A). Hence for every aeA such that a < a we must
have that there exists a ck e C and an αf eA such that α =
& + Cj. — α' G A + C — A. There exist at least A(α) such representations
of α, since there are A(α)α's in A such that α < α. Hence /(α) ^
A.(ά) contrary to hypothesis. Hence there is an αeA such that
ΰ — α e B. Hence A + B = C. Since A Φ C, 4 C C , we must have
(B) ^ 2, and thus this decomposition of C is strict.

THEOREM 10. Let C be an infinite set. If C is asymptotically
decomposable, then there is an integer k such that for all positive
integers m there are infinitely many pairs of elements clf c2eC such
that m < cx < c2 <cx + k.

Proof. Since C is asymptotically decomposable, there is a C*
such that C* ~ C and C* is strictly decomposable. And if C* satis-
fies the conclusions of Theorem 10, then so does C. Hence without
loss of generality we may assume that C is strictly decomposable.

Since C is an infinite set, and since C is strictly decomposable,
at least one of the two components is infinite. Suppose without loss
of generality that (B) = oo. Let a19 a2eA where 0 ^ aλ < a2 < k.
Let m be any positive integer. Then there are an infinite number
of elements b e B such that ax + b = c± > m and a2 + b = c2. Now
c2 — ex = α2 — αx < fc, and we have m < cγ < c2 < cx + k.

COROLLARY 10.1. Let C be an infinite set. Let f(n) = cn — cn-x

for n ^ 2 where cn-x and cn are consecutive elements of C. If there
exists an integer m such that for n ^ m, f(n) is increasing, then
C is asymptotically decomposable if and only if f(n) is bounded.

THEOREM 11. Let g(y) = ί ί m ^ [C(x + y) — C(x)]. If g(y) is
bounded for all y, then C is not asymptotically decomposable as the
sum of two infinite sets.

Proof. Suppose C ~ A + B = C* where (A) = (B) = oo. Clearly
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-.oo [C*(x + y)- C*(x)] = ϊ m β _ j C ( a j + y) - C(x)] = g(y). Let B =

{b0 < bx < b2 < - . . } . Then g(y) ^ I S ^ [£*(&, + y) - C *(&,-)] ^ A(y).
Since for all α ^ y and α e i w e must have bά ^kbά + a tί bό + y. Hence
for all bjeB and y we must have C*(6, + y) - C *(&,-) ^ A(i/). But
if #0/) is bounded, then A(y) is bounded and A is not an infinite set.

Let P be the set of all primes. It is easy to show that P is not
strictly decomposable.

THEOREM 12. If A + B ~ P, the set of all primes, then (A) =
(B)= <*>.

Proof. Suppose A = {ax < a2 < <αΛ} and A + B ~ P. Then
A — aλ + B + ax ~ P. Thus we may without loss of generality assume
ax = 0. Let N = max {p eA + B, pgA + B}. Then whenever beB
and b > N9 we must have â  + b e P for i = 1, , n9 and in particular
be P.

Choose n primes pl9 , pn such that (a{, p^ = 1 = (3^, py) for
i ^ i and i = 2, , n and (^, α<) = 1 = (pl9 Pi) for i = 2, •••,%.
Consider the solutions to the simultaneous congruences. # = α<(ί>ί) for
i = 2, " ,n and a; = — α2(ί>i) The set of solutions forms an arithe-
metic progression {x + k Π?=i Pi}Γ=0 with (a?, Π?=IJP») = 1. β y the
Dirichelet theorem there exist an infinite number of primes of the
form x + k Π?=i Pi- Let g be such a prime, and let q > N + an.
Then <j G A + B.

lί q = a{ + b for some i = 2, , w and 6 e J5, then b > N and
6 e P. But g = α» + & implies that 6 = o{p%) which is impossible for
sufficiently large q. If q = b e B9 then q + a2e P. But q + a2 = O(pj)
which is also impossible for sufficiently large q.

Hence (A) = (B) = oo.
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ALGEBRAIC EXTENSIONS OF COMMUTATIVE
BANACH ALGEBRAS

JOHN A. LINDBERG, JR.

l Introduction* Let A denote a commutative normed algebra
with multiplicative unit and norm || ||. In [2], Arens and Hoffman
showed that it is possible to norm A[x]l(a(x)), where a(x) = Σ?=o aiχi

is a monic polynomial over A, in such a way that the canonical mapping
of A into A[x]l(a(x)) is an isometry as well as an isomorphism; in fact,
they give a family of norms on A[x]/(aQ), all of which are equiva-
lent. Specifically, let ί be a positive number which satisfies tn ^
|| a01| + || ax \\t + + || αw_χ || tn~\ Let Σ S 1 ap* + (a(x)) be any coset
in A[x]l(a(x)). As is well known, Σi=o uft1 is the unique representative
of this coset of lowest degree. Thus, || Σ?^1 aiχί + («(&)) II = Σ S 1 II α* II ί*
is well defined and makes A[x]/(a(x)) into a normed algebra. Clearly,
a —> a +. (α(aj)), αeA, is an isometry of A into A[x]/(a(x)). (Unless
otherwise stated, we assume without loss of generality that t = 1.)
From the form of the norm we see that A[x]l(a(x)) is a Banach algebra
under this norm precisely when A is a Banach algebra under 11 11 I n

the present paper, we deal mainly with the case where A is a Banach
algebra. In section nine we deal with, at some length, more general
algebras.

In this paper we are mainly interested in the algebraic aspects of
the extension B = A[x]/(a(x)). However, we also present results which
are Banach algebraic in nature. For example in section three we give
a complete description of the Silov boundary of B. Section four is
devoted to the study of the inheritance by B of the Banach algebra
properties of regularity and self-adjointness. In particular, we show
that if A is regular then B is also regular. Self-adjointness is not
always inherited as Example 4.3 shows. A sufficient condition (which
is satisfied, for example, when the discriminant of a(x) is invertible)
is given under which this property is inherited. (This condition states
that the set S(a(x), A) of singular points of a(x) is empty. This means
that the natural mapping of the carrier space of B onto the carrier
space of A is a local homeomorphism with respect to the weak* topologies.
See section two for a complete discussion of this concept.)

In section five we once again make use of the condition that a{x)
has no singular points. Theorem 5.2 states that if A is semi-simple
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and if S(oc(x), A) = φ, then B decomposes into the direct sum of a closed
subalgebra of the form A[b], with a(b) = 0, and the radical of B.

The next section is motivated by a well-known result in classical field
theory. If A is a field and a(x) an irreducible polynomial, then any root
be B oΐ a(x) — 0 gives rise to an automorphism (Σϊ=o aiχi + (a(χ)) —*
ΣS^ofliδ*) °f B which leaves invariant each element of A. In the
present context this is no longer generally true. However, we are
able to give two sets of conditions which assure us of this conclusion.
Theorem 6.1 states that if A[b] is dense in B, then Σϊ=o aiχί + (a(χ)) —*
Σi"=o aif)ί is a n automorphism. Theorem 6.2 requires that the discriminant
d of a(x) satisfy the condition that da e Rad(A) imply a e Rad(A) (Rad(A)
denotes the radical of A) and that the Gelfand transform of b satisfy
a certain separation property. Also in section six we give conditions
under which the automorphisms of B which leave each element of A
invariant are periodic. The period is shown to be a factor of n\,
n = degree of a{x) over A. Examples can be given which show that
in the absence of any restrictions some of the automorphisms of B
leaving invariant each element of A have infinite order.

In the next two sections we deal exclusively with polynomials over
A which have invertible discriminants in A. Section seven is concerned
with the problem of extending a ring isomorphism of Ax onto A2 to
an isomorphism of A^x\j{ax{x)) onto A2[x]/(a2(x)). A necessary and
sufficient condition is given under which such an extension exists. The
extension is not necessarily unique. Prior to establishing this theorem
we characterize those elements be B such that B = A[b] (= algebra of
polynomials in b with coefficients in A). Attention is given to extending
involutions on A to involutions of B.

In section eight we show that repeated extensions are again simple
algebraic extensions (algebraically and topologically) of the type under
discussion in this paper.

In the last section we give a complete description of the radical
of B. The major results are stated for algebras over fields of character-
istic zero. The main theorem (9.2) states that if A is semi-simple,
then the radical of B is a nilpotent ideal. The degree of nilpotency
is also specified. As a corollary, we have that if B is semi-simple,
then A is semi-simple and the discriminant of a(x) is not a zero divisor
in A, or zero. Applying this to the case of a tractable normed algebra
(intersection of the closed maximal ideals is (0)), we show that the
radical of B and the intersection of the closed maximal ideals of B
coincide.

We now proceed to section two which contains some preliminaries
gathered from other sources.

2 Preliminaries. If A is a Banach algebra (always assumed to
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be commutative and to possess a multiplicative unit e), then ΦA (called
the carrier space of A, [12]) is to denote the space of (non-trivial)
multiplicative linear functionals on A to C ( = complex numbers). If
(h, λ) e ΦA x C, then {h, λ) can be considered as a multiplicative linear
functional on A[x], its action on elements Σa^ e A[x] being defined by
(h, X)Σaix

i = Σh(ai)X\ In [2] it is shown that ΦB9 B = A[x]/(a(x))
(throughout this paper, B will be used to denote A[x]/(a(x)), a(x) monic),
is (identifiable with) the set {(h, λ ) e ^ x C: (h, \)a(x) = 0}. It should
be noted that if (h, λ) e ΦBf then | λ | <£ 1 (recall that we are assuming
Σ?=o II <*i II ^ 1 so that || x + (a(x)) || = 1). The coset a + (a(x)) will be
denoted by a for aeA and x + (cc(x)) will be denoted by [x].

x will be considered as an indeterminant over A ( = Gelfand rep-
resentation of A) and C as well as an indeterminant over A. If β(x) =
Σβ^e A[x], then β(x) is to denote the polynomial ΣβiX1 over A and
βh{x) is to denote the polynomial Σβi{h)xι over C. If β(x) e A[x] and
Λ(λ) = 0, λ e C, but /SΛ(a?) not the zero polynomial, then we denote the
multiplicity of λ as a root of βh(x) — 0 by Mβ(h, λ). We call Mβ the
multiplicity function of β(x).

We include for the convenience of the reader several results that
we will need from other sources.

2.1. 7Γ defined by π(h, λ) = h, (h, λ)e ΦB, is an open continuous
mapping of ΦB onto ΦA.

2.2. For each heΦΛ there are disjoint neighborhoods Vlf •••, Vm

in ΦΛ of the points in π-\h) = {(h, \), , (h, λm)} such that π{Vr) =
π( V4)f i = 2, , m, and T Γ " 1 ^ Vi)) = UΓ-i V*.

2.3. Λfrt is locally constant at (h, λ) e ΦB if and only if π is a local
homeomorphism at (h, λ).

2.4. (Arens and Calderόn) If β(x) e A[x] (not necessarily monic)
and if fe C(ΦA) such that β(f) = 0 but $'(/) never vanishes on ΦA

(β'(x) is the formal derivative of β(x)), then a unique element be A
exists such that β(b) = 0 and 6 = / . (Arens and Calderόn did not assert
the uniqueness of b. However, it is easily established. Write β(x) —
(x - b)Q(x), Q(x) e A[x] and suppose V e A, β(b') = 0 and bf = 6. Then
{V - δ)Q(δ') = 0. Since f(h) is a simple root of βh(x) = 0, Q(&Γ(Λ) ^ 0
for every h e ΦA, so that Q(b) is invertible in A. Hence b = 6'.)

Related to the above is

2.5. If α:(#)eA[£] is a monic polynomial, if feC(ΦA) such that
a(f) = 0 and if ΛfΛ(•,/(•)) is locally constant on ΦΛ, then / e A. (A
stronger conclusion similar to the above can not be drawn here.)
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2.1, 2.2, 2.3 and 2.5 are proved in [10] while 2.4 is proved in [1],

Let a(x) € A[x] be monic. If h e ΦA is such that each point of π~\h)
possesses a neighborhood on which MΛ is constant, or what is equivalent
(in view of 2.3), π is a local homeomorphism at each point of π~x{h)y

then we call h an ordinary point of a(x). If h e ΦA is not an ordinary-
point of a(x), we say that it is a singular point of a(x) and the set
of such points will be denoted by S(a(x), A). It is clear that if heΦA

is an ordinary point of a{x)y then each h' sufficiently close to h is also
an ordinary point of a(x) so that S{a(x), A) must be a closed subset
of ΦA. S(ct(x), A) is a subset of the set D where d vanishes, where
d is the discriminant of a(x) (cf. [2] and page 93, [14]). (Note that
d(h) is the discriminant of ock(x).) S(a(x), A) can be null even if D is
not null. On the other hand, S{a(x), A) can be all of D. Because the
cardinality of the sets π~\h) is uniformly bounded by n (— degree of
ct(x)), S(a(x), A) is easily shown to be nowhere dense in ΦA.

3. The Silov Boundary of A[x]/(a(x)). Let A' be a Banach algebra
extension of the Banach algebra A, let 9A, dAf denote respectively the
Silov boundaries of A and Ar, and π the natural mapping of ΦA, into
ΦA defined by h = π(h') = hf\A,hfeΦA. Then it is well known that
π(dAr) Z)dA. If A' is the extension B = A[x]/(a(x)), then this result
can be sharpened; indeed, we have that dB = π~\dA). In the proof
of this assertion, we need (Theorem 5, Appendix IV, [5]): A necessary
and sufficient condition that h0 e dA is that for each neighborhood V
in ΦA of h0 there is a function feA whose absolute value | / | attains
its maximum (which we may assume is 1) on V and is less than that
on ΦA ~ V.

THEOREM 3.1. dB = π-\dA).

Proof. We first show that π~\dA) c dB. Let h0 e ΘA, let Wo be
a neighborhood in ΦB of (h0, λj1}), and let g e I T such that g(h0, λ

(1)) = 1
and zero at the other points (h09 λ^) of the fiber π~\hQ). Let Wλ c Wo

be an open neighborhood in ΦB of (fc0, X^) such that | g(h, λ) [ > 1/2 if
(h, λ) G Wi and W{ an open neighborhood in ΦB of (h09 λ^}), %Φl9 such
that | g(h, λ) | < 1/2 if (h, λ) e W{. Since π is an open mapping, Vo =
Πi ^(T7i) is an open neighborhood in ΦA of fc0. Let ^ = WiΓ\ π~\V0).
Now, by the theorem quoted above, there is a function feA such
that | | / |U = 1, \f{hx) \ = 1, ^ e Fo, and |/(Λ) | < 1 if h e ΦA ~ Vo. Since
®A ~ Vo is closed, it is compact and hence there is a positive integer
N so large that

\f(h) r S - p - — for he ΦΛ ~ F o .
1̂1 ^ ll
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Then, if h £ Vo and (h, λ) e ΦB, we have t h a t

1 - M 1
9 2\\g\U g 2 '

and if (h, λ) $ V
x
 but h e V

o
, we have that

563

But for (K λ) e Vu

I (fNg) (K = | g(hu λ) I > i - .
Δί

Thus, \fNg\ assumes its maximum value on Vlf and hence, on W, and
is less than that outside Vx or outside of W. By the above quoted
theorem, (hQ, λj1}) e dB, and π~ι(dA) c dB. We next show the reverse
inclusion.

Let (h0, λ0) e 95, and let F be any neighborhood in ΦA of hQ. Let
W be an open neighborhood in ΦB of (h0, λ0) such that π( W) c F and
no (/&o, λj) ^ (fe0, λ0) lies in W. Let g e B be a function such that || flf IU
is assumed by \g\ on W and |gr| < H^IU outside of W. As in the
above paragraph, we may assume that | g(h, λ) | < l/2n if (h, λ ) e ^ -
W. Let / be the function defined by

where the λ f̂e) denote all the roots (each distinct root repeated according
to its multiplicity) of ah{x) = 0. Then feA. Now, for h£π(W)

\f(h)\ =

There exists (hu λx) e
Then

Σ g(K λ,) < Σ I 9(K λ,) | < ± .

such that | ̂ ( ^ , λx), = \\g\ (Assume that

> i, \) I - Σ > 1 -
2

and π(dB) c 9A. Using the fact that π~\dA) c dB, we
Z) 9B. This completes the proof of the theorem.

Thus, Ao e
have that

4» Inheritance of the properties of regularity and self *adjointness
The properties of regularity and self-adjointness are possessed by many
important and interesting Banach algebras and hence it is of interest
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to know whether these properties are inherited by the extension B.
G. A. Heuer in [6] has shown that if A is regular and self-ad joint
and if in addition the discriminant of the monic polynomial a(x) is
invertible in Ay then B is both regular and self-adjoint. In this section,
we show that regularity is always inherited (without the assumption
of self-adjointness). As a corollary we show that if A is dense in
C(ΦΛ)f then B is dense in C(ΦB). (For a discussion of the inheritance
by B of the sup norm completeness of A, the reader is referred to
[7].) Example 4.3 shows that the self-adjointness of A is not always
inherited by B. We finally show that if S(a(x)9 A) = φ, then self-
adjointness is inherited.

THEOREM 4.1. Let A be a regular Banach algebra and let a(x)
be a monic polynomial over A. Then B is regular.

Proof. It suffices to show that if given (h0, λ0) e ΦB and a neighbor-
hood Win ΦB of (ho,Xo), then there exists a function beB such that
$(h0, λ0) = 1 and b(h, λ) = 0 if (h, X)eΦB~ W. From 2.2, it follows
that there is a neighborhood V in ΦA of h0 so small that Vaπ(W)
and π~\V) = \JT=ι V{ where the F< are disjoint neighborhoods of the
points in π~\hQ) with WZD Vλ. We assume (without loss of generality)
that the sets Vu •••, Vm are closed. Since A is regular the set V is
hull-kernel closed in ΦΛ, from which it follows that π~\ V) is hull-kernel
closed in ΦB. Now, let I denote the ideal in B of elements whose
transforms in B vanish on π~\V). Since / is a closed ideal, B/I is a
Banach algebra with carrier space (identifiable with) π~x{V) (cf. [11]).
By [13], there is an idempotent / in B/I such that f(h, λ) = 1 if and
only if (h,X)e Vλ. But / = / 0 | π - 1 ( F ) for some foeB. Since A is
regular there is an element ae A such that d(h0) = 1 and a vanishes
outside of V. Then b = af0 is an element of B such that b(h0, λ0) = 1
and b(h, λ) = 0 outside of Vx c W. This completes the proof of the
theorem.

The corollary below extends the following result of Heuer [6]: If
A is dense in C(ΦΛ) and if for each singular point h, π~\h) consists of
exactly one point, then B is dense in C(ΦB). The proof given below
is essentially due to Heuer.

COROLLARY 4.2. If A is a Banach algebra and if A is dense in
C(ΦΛ), then B is dense in C(ΦB).

Proof. Since A is dense in C(ΦΛ), it is easily shown that B =
(A[x]/(ά(x))Γ is dense in Bo = (C(ΦΛ)[x]/(ά(x))Γ, with both algebras
being viewed as subalgebras of C(ΦB). Thus, it suffices to show that
BQ is dense in C(ΦB). (It need not be the case that Bo is all of C(ΦB)
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as Example 4.3 of this section shows.) Let heΦA be arbitrarily given.
By the theorem, Bo is regular so that if Vu •••, Vm are disjoint
neighborhoods of the points in π~\h), then there exists a function
feB0 which takes the value i on Vif i = 1, 2, , m. Let g be a
real-valued function in C(ΦA) such that g(h) = 1 and g vanishes outside
of ΠΓ=i π(Vi). Then {gf)~ is a real-valued function in Bo which separates
the points of π~~\h). Since C{ΦA) is (isomorphic to) a subalgebra of Bo,
any two points {h, λ), (ft/, λ')e ΦB, with fe ^ /?<', can be separated by a
real-valued function in Bo. Hence any two points in ΦB can be separated
by a real-valued function in Bo. The conclusion of the corollary now
follows from the Stone-Weierstrass Theorem.

We now turn our attention to the question of inheritance of the
property of self-adjointness, and first give an example which shows
that this property is not always inherited by the extension.

EXAMPLE 4.3. Let A = C(Δ), Δ = {z e C: \ z | ^ 1} and a(x) = x2 - f0,

fo(z) ΞΞ z. Then A[x]/(a(x)) is not self-adjoint. For if it were, then
([a;]Λ)" = ô + ^i[xT f ° r some choice of α0, aλ e A. But this means that
aλ(z) = exp( —arg^), z Φ 0. This is a contradiction since exp(—arg#)
is not extendable to a continuous function on Δ.

THEOREM 4.4. Let Abe a self-adjoint Banach algebra and a(x) =
Σ?=o aίχί be a monίc polynomial over A. If S{a{x), A) — φ, then
A[x]/(a(x)) is self-adjoint.

Proof. Let f(h, λ) = λ for (A, \)eΦB. Then / e C(ΦB) and β(f) =
0, where β(x) - Σ?=o βiX\ & = («<)", i = 0,1, , n - 1, and βn = e.
Since the multiplicity function Ma of a(x) is locally constant on ΦB, it
follows that Mβ(•,/(•)) is locally constant on 0Λ, where Mβ is the
multiplicity function of β(x) when viewed as a polynomial over 5 . By
2.5, it follows that / e B so that JS is self-ad joint since ( Σ «<([»]")*)" =

5* On the Wedderburn. decomposition of JB, In this section we
discuss the Wedderburn decomposition of the extension J?, that is, the
decomposition of B into the direct sum of a closed subalgebra Bo of
B and the radical Rad(5) of B (B = Bo © Rad(B)). As is well known,
such a decomposition in general does not hold for Banach algebras,
even in the weaker sense where one does not require that the subalgebra
be closed. We will give an example which supports this statement.
Bade and Curtis have given an example in [3]. Feldman, in [4], gave
an example where the stronger Wedderburn decomposition failed to hold.
For this example, the weaker decomposition holds.



566 JOHN A. LINDBERG, JR.

The condition that S(a(x), A) = Φ (A semi-simple) is sufficient for
such a decomposition of B to hold. When this condition holds, a{x)
is forced to factor; precisely, there exist mutually orthogonal idem-
potents el9 , em, positive integers kijf and polynomials ai3 {x) e A[x], j =
1, , Si9, i = 1, , m, such that efici5{x) is monic over e{At the
discriminant of Π;iiβΛ;0*0 is invertible in e^, and

5.1 a(x) = Σ e< Π aiά{x)^ .
l j l

Furthermore, the radical of A[x]/(<x(#)) is a principal ideal generated
by β([x])> where β(x) = ΣΓ=i e< Π ii <*<;(&) (cf. Theorem 2.3, [10]).

THEOREM 5.2. Let A be a semi-simple Banach algebra and a{x)
a monic polynomial over A. If S{oc{x), A) = φ, then there exists an
element be B such that a(b) = 0, A[b] is closed in B and B ~ A[b] φ
Rad(.B).

Proof. To simplify the proof, we first assume that m = 1 in the
above paragraph. Thus, a(x) is of the form Πf=i a%(χ)ki> where each
aCi(x) is monic over A and β(x) = Πί=i ai(χ) has an invertible discriminant
in A.

Since β{[xY) = 0 and since β(x) has an invertible discriminant in
A, and hence in B, there exists an element be B such that β(b) = 0
and 6 = [#]". Thus, α(δ) = 0 also. Since b — [#P, there is an element
R e Rad(i?) such that [x] — b + R so that Σ S <&<[&]* = ΣK? afi* +
(polynomial in R, with zero constant term) (n = degree of a(x)). Hence,
B is the sum of A[b] and Rad(5). We next show that the sum is a
direct sum. Let t be the degree of β(x) over A. Then Σ S άft can
be expressed in the form Σ t o α ^ for some choice of α0, , α^x in
A. Suppose now that Σ ^ ϊ 0 ^ e Rad(J?). Then Σ ί Ξ ί α ^ is a multiple
of β(x) (this follows since the radical of B is a principal ideal generated
by β([%])) Thus, the α/s must all be 0. Thus, the sum is direct.
(Note also that Σ * = i α ^ = 0 if and only if α< = 0, i = 0,1, , t - 1.)

In order to show that A[b] is closed, we introduce a mapping ^
of i? onto A[y]/(β(y)) as follows: ^(2fαi[a?]<)-= Σa^yY. Φ is well defined
and a homomorphism since ^([^/]) = 0. Furthermore, Φ is continuous
since

I

where K = max {1, || [T/] ||, , || [y] W71'1}. Since Rad(5) is generated by
β([x]), φ(Rsid(B)) = 0. But [a] - δe Rad(5) so that Φ(b) = φ{[x\) = [y].
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Thus, if Σί-ollAHΛ;* g ¥, where β(y) = ΣUA&S then

Σ a K

where K' = if max {1, || & ||, , || & IP"1}. Since A is complete, the norm
on B restricted to A[b] is complete or equivalently, A[b] is closed in
B. This completes the proof of the theorem if we assume that m = 1.

The general situation follows immediately from what was proved
above and the following observations. Let el9 e2, — ,em be the idem-
potents which appear in the factorization of a(x) which was displayed
in 5.1. Then A = e,A 0 0 emA and B = e,B 0 0 emB, the direct
sums being topological. Since the natural isomorphism φ{ of e{B onto
B{ = (βiA)[x]/(eia(x)) is &i-continuous and since Rad(^) = Φi{e{ Rad(J5)),
it follows from the above that there exists bi e e{B such that e{a{b^) —
0, ifiiA) [ί>ί] is closed in e{B and e{B = (e^) [6;] 0 e^Rad 5). If we set
b = ΣΓ=i δ<, then α(6) = 0, A[b] is closed in ΰ and B = A[6] 0 Rad(5).
This completes the proof of the theorem.

We now present an example that shows if we drop the condition
that S(a(x), A) = φ, then the conclusion of Theorem 5.2 is not assured.

EXAMPLE 5.3. Take A to be the algebra of functions / which are
continuous on the disc Δ = {z e C: | z \ ̂  1}, analytic in the interior of
Δ and /'(0) = 0. For a(x), take (x - fQf (x + 2/0) where fo(z) = z,
zeΔ. Then a(x) e A[x] and S(a(x), A) = {0}. (ΦA is identifiable with
Δ.) Now, there is no subalgebra Bo of B isomorphic to B~. (If B =
£ 0 0 Rad (£), then Bo = B = 5/Rad (JB).) For if this were the case,
then Bo would coincide with A[b] for some be B and δ would have to
satisfy fo(b — /0) (b + 2/0) = 0. This is easily shown to be impossible.
It follows from Theorem 9.2 that the degree of nilpotency of Rad (B)
is two.

6, Automorphisms and conjugate roots* If g: A[x]/(a(x)) —>
A[x]/(a(x)) is an automorphism such that g(a) = a for all a e A, then
g{[x\) is obviously a root of a(x) — 0 and A[#(|X|)] = A[x]/(a(x)).
Conversely, if a(b) = 0,be A[x]/(a(x)), need the homomorphism g: la^xf—>
2^6* be an automorphism of J5? The answer is no in general (recall
Theorem 5.2). However, there are various conditions (see 6.1 and 6.3)
under which such homomorphisms g are automorphisms. In 6.4 we
give conditions under which automorphisms of the above type are periodic.
We begin with

THEOREM 6.1. Let a(x) be a monic polynomial over the Banach
algebra A. If be B such that A[b] is dense in B and a(b) = 0, then
g: Σ t o 1 ai[χY —* Σ S 1 aft ^ an automorphism.
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Proof. What we actually prove is this: if T is a linear transfor-
mation of An — Ax xA onto a dense subset of An such that
a T(au , an) = T(aau , aan), then T is one-to-one and onto. For
a norm in An we take || (au , an) \\ = Σ?=i IIα* ll (Clearly the homo-
morphism # has these properties; note that as a Banach space B = An.)

Let heΦA and let Th denote the mapping Th\(h(a^)9 , h(an)) —>
(A(αί), , M O ) where « • • • , < ) - Γ(αx, . . , αn). Clearly, 7\ is a
linear transformation of C% into itself since C = A/fr-XO). (For a norm
in Cw, we take | (λx, . . , λ j | = Σ?=i1 λ< |.) Now, 2\(Cπ) must be dense
in C*. For if (λlf , λw), (μlf , μn) e Cn, then there are elements
ai9 biβA such that h(ai) = λ4 and /&(&;) = ^ , i = 1, , n. If (αί, , a'n) —
Γ(αi, •••,<), then

It follows from the above that Th(Cn) is dense in Cn. But this means
that Th is one-to-one and hence onto.

Now, consider ^-linear equations in a{ (considered to be unknowns)
represented by

(*) Σ aiT(ei) = (bu , bn) ,

where e€ is the vector in An with e in the ith place and zero elsewhere.
If D is the determinant of the matrix of the coefficients of system (*),
then h(D) is precisely the determinant of the matrix associated with
the linear transformation Th. Since Th is onto, h(D) Φ 0.

Since h e ΦA in the above argument is quite arbitrary, h(D) Φ 0
for all he ΦA so that D is invertible in A. But this means that (*)
has a unique solution (au a2, —-,an)e A for each (bu , bn) e An. Hence
T is both one-to-one and onto.

Let G(B: A) denote the group of automorphisms of B which leave
invariant each element of A. If g e G(B: A), let g* denote the homeo-
morphism of ΦB onto itself which satisfies g(b)~ (h, λ) = b(g*(h, λ)) for
all b e B and all {h, λ) e ΦB (cf. [11]). E(ΦB : ΦA) is to denote the group
of homeomorphisms Φ of ΦB onto itself such that π o φ = π.

LEMMA 6.2. // 0 e G(ΰ : A), then g*{h, λ) = (Λ, g([x]T(h, λ)) /or
fe,λ) e ί>£ α^cί consequently g* e E{ΦB : (PJ. Aiso, (g*)n} = identity

homeomorphism (n — degree of a(x)).

Proof. B y t h e d e f i n i t i o n of # * , w e k n o w t h a t f o r aeA a n d
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(h, λ) e ΦB, a(h) = d(h, λ) = g(aY(h, λ) = a(g*(h, λ)) = α(ft'), where (hr, λ') =
#*(&, λ). Since A is a separating algebra of functions on ΦA, it follows
that h = /&'. Thus, #*(/&, λ) = (h, λ') or equivalently, π o #* = π. The
last assertion of the lemma follows from the fact that if Φ e ϋ ^ : ΦΛ),
then ^ | TΓ" 1^) is a permutation of TΓ" 1^) SO that Φnl must be the identity
homeomorphism on ΦB.

THEOREM 6.3. Let a(x) be a monic polynomial over the Banach
algebra A. If the discriminant d of a(x) has the property that
dae Rad (A) implies that ae Ead (A) and if be B, a(b) = 0 and b
separates the points of π~\h) for each h e ΦA, then g: Σ S &*[#? —>
Σ?^)1 <&*&*' is an automorphism.

Proof. Corresponding to the homomorphism g: Σ?^? ai[x]i-+'Σii=o α»&\
let Φ denote the mapping Φ(h, λ) = (h, g([x\T(h, λ)). Since 6 = g{[x\T
separates the points of each fiber π~~\h), Φ is one-to-one and onto. Hence,
Φ e E{ΦB: ΦA). For each i, it is easily shown that Φ\hy λ) =
(h, (*/*([&]))"(/&, λ)) for each (h, λ) e ΦB. Thus, we have that Φnl is the
identity homeomorphism on ΦB. It now follows that gn]([x])~ = [x]~ or
equivalently, ^%!([ίr]) — [x] e Rad (B).

Let T - gn]. Then Γ([a;]) - [x] e Rad (£). It further follows that
for each i = 0, , n - 1, T([xY) - [a?]* e Rad (B). Since dα e Rad (A)
implies that a e Rad (A), where c£ is the discriminant of a(x), d is not a
zero divisor in A and Rad(JS) = (Rad(A» [[&]] (cf. [2]). Thus, there
exist elements ri3 e Rad(A), i9j = 0f , n — 1, such that Tfla?]*) =
[χY + Σi=o ^ϋM^' When T is viewed as a linear transformation on
A%, the determinant associated with T is invertible in A so that T is
one-to-one and onto. But then g must also be one-to-one and onto.
This completes the proof of the theorem.

COROLLARY 6.4. Maintain the hypothesis (on d) of the theorem.
If either

(i) Rad(A) is a nίlpotent ideal and d is not a zero divisor in
Ay or

(ii) there exists μ > 0 such that \\dr\\ ̂  μ\\ r \\ for all r e Rad(A),
obtains, then each g e G(B: A) is periodic; in fact, if (g*)p is the
identity homeomorphism, then gp is the identity automorphism of B.

Proof. From the theorem we know that ^([α?]) — [x] = R e Rad(β)
if (g*)p is the identity homeomorphism. We will show that if either
(i) or (ii) obtains, then R = 0 so that ^p([^]) = [x]. If case (i) obtains,
then Rad(2?) is a nilpotent ideal (by Corollary 9.4). If we write a(y) =
(V - W)Q{v), Q(V) e B[y], then R-Q([x] + R) = 0. Now there are elements
bi e B, i = 1, , n - 1, such that Q([x] + R) = a'([x]) + Σ?=ί ^B*
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(by direct computation). If Rm Φ 0 but Rm+1 = 0, then Rm a'([%\) = 0. If
we write a(y)s(y) + a'(y)t(y) = d, s{y), t{y) e A[y] (cf. formula 4, page
96, [14]), then α'([x])έ([cc]) = d. Thus, Rm-d = 0; hence i2m = 0. This
is a contradiction so that R = 0.

Suppose next that case (ii) obtains. We first show that d is not
a zero divisor in A. For if da = 0, then we know that α e Rad(A).
But 0 = || dα || ^ μ | | α | | and hence a = 0. Now, as in the above, we
have that R-Q([x] + R) = 0 or i2 «'([«]) = Σ?=ί M2 ί + 1 f o r some choice
ofδ<,i = l, . . , w - l , i n B . Thus, Λ.α'([a?])ί([αj]) = Λ d = *([»]) Σ?«ί Λ*+\
«([&]) as above. If JS d = 0, then # = 0. Suppose therefore that R Φ 0.
Then it follows that Rk Φ 0 for all fc. For if Rk = 0, then JS*-1^ = 0
and hence Rk~x — 0. Now

where K = \\ t([x])>ΣK1 M?*"1 II Φ 0. For each integer k, we have that
|| (Rd)k \\llk ^ μ\\ R" \\x'\ For if Rk = Σ?=» r{*» [a?]*, r\k) e Rad(A) (recall
that Rad(B) = (Rad(A)) [[x]]t then

^ [μ 2 J II
 r ί II ) — μ\\n w

» = 0

Combining the above inequalities, we have

μ\\Rk\\lih^K\\Rk\\*Ik .

Since Rk Φ 0 for all fc, we have that μ^K\\Rk ψk. But i2e Rad(β)
so that lim^oo || Rk \\llk — 0. Thus a contradiction and so R must have
been zero.

Condition (ii) of the above corollary is satisfied when d is not a
topological divisor of zero in A but may still be satisfied if d is a
topological divisor of zero in A.

The case where the discriminant d of a(x) is invertible in A deserves
special attention. In this case, if fe C(ΦB) and ά(f) = 0, then there
exists a b e B such that a(b) = 0 and b = / (cf. 2.4 or [1]). Now, if
Φ e E(ΦB : Φ J , then define f(h, X) = μ where (fe, μ) = (̂fe, λ ) It is easily
shown that / is a continuous function on ΦB. Since α(/) = 0, there
exists a 6 e 5 with the above properties. Since Φ is one-to-one, b
{— f) separates the points of π-\h) for each fee ΦA. Hence, it follows
from Theorem 6.3 that g: Σ?^ 1 &%[%]* —* Σ S 1 <&<&* is an automorphism
of B. (Note that ^* = Φ.) If we write (*) for the mapping g—*g*,
g e G(B : A), then we have

COROLLARY 6.5. // d is invertible in A, then (*): G(B: A) —>
(P )̂ is one-to-one and once.

In closing, we remark that if g e G(B: A), then # is continuous and
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hence δί-continuous.

7* Extensions of ring isomorphisms* If A is a Banach algebra
with an involution (*), then we ask: when can (*) be extended to an
involution on A[x]/(a(x))? Or more generally, if Φ:A1—*A2 is a ring
isomorphism (need not commute with scalars), Aλ and A2 Banach algebras,
when can φ be extended to a ring isomorphism of A\xy{aλ(x)) onto
A2[y]/(ct2(y)) (degree ax(x) = degree 0L2(y))t Simple examples show that
(*) and φ can not always be extended. However, under the added
assumption that the discriminants of ax(x) and a2(y) are invertible in
A1 and A2, respectively, then there is a necessary and sufficient condition
that φ exist. The condition is stated in terms of a topological mapping.
The case of extending (*) is less simple. In the proofs of our results
on extending (*) and Φ, we must consider elements b e A[x]/(a(x)) such
that b separates the points of the fibers π~\h), h e ΦΛ. We will show
that if the discriminant of a(x) is invertible, then such elements generate
all of B over A. Before we prove this, we state a lemma which says
that repeated extensions are algebraic in the strict sense of the word.
The lemma is more general than needed here but will be used in the
next section.

LEMMA 7.1. Let A be a commutative ring (with unit) and let
Bi = B^x^Ka^x^), BQ = A, i = 1, 2, , m, where «<(»<) is monic over
JVi for each i. If be Bm, then there exists a monic polynomial a(x)
over A of degree n = J\T=ini(ni = deg «*(&*)) such that a(b) = 0.

A proof of this lemma is to be found in [15] (page 255).

THEOREM 7.2. Let A be a Banach algebra and let a(x) e A[x] be
a monic polynomial with an invertible discriminant in A. Then
be B has the property that A[b] = B if and only if b separates the
points of π~~\h) for each h e ΦA.

Proof. Suppose that A[b] = B. Then there are elements a{ e A
such that [x] = Σaft. If b(h, λ) = b(h, λ') where (h, λ) and (h, λ') are
points in ΦB, then [x]^ (h, λ) must be equal to [x]~ (h, λ') so that λ = λ'
since [x]~ separates points of π~~λ(h). Hence, b separates the points
of π-\h) for each h e ΦΛ.

Suppose now that 6 separates the points of π~\h) for each h e ΦΛ.
By Lemma 7.1, we know that b satisfies a monic polynomial β(x) of
degree n(= dega(x)). Since for each heΦA,b takes on n distinct
values on π~\h), the discriminant of β(x) must be invertible in A. Let
Bo denote the extension A[y]/(β(y)). Then ΦBQ = {(h, β)eΦΛ x
C: (h, μ) β(y) = 0}, and θ: (h, λ) —> (h, b{h, λ)) is a continuous one-to-one
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mapping to ΦB onto ΦBQ and hence a homeomorphism. Therefore,
[x]~ o θ~x is a function continuous on ΦBQ and <$([#P o θ~λ) = 0. Hence
by the Arens-Calderόn theorem (see 2.4 or [1]) there is an element
b0 e Bo such that a(b0) = 0 and b0 = [α?P o θ'1. If 0 denotes the homo-
morphism

i = 0

and if

then

Σ ^[1/]')" (A, λ) = ( Σ *iVΪ(h, λ) - Σ 6«(Λ) (S(Λ, λ))*
ΐ=0 / \t=0 / t=0

= Σ δ<W (MΓWA, λ)))1 = ί.(<?(Λf λ)) = [x]Λ(fc, λ)

for all (h, λ) e ΦB. Hence, Φ(boy = [a?]Λ and since α(^(δ0)) = 0, we have
that Φ(b0) = [a?] by 2.4. Thus, ^ is onto and A[b] = 5.

COROLLARY 7.3. Maintain the hypotheses on A and a(x). If
feC(ΦB) β(y)eB[y] such that

( i ) £(/) = 0,
(ii) / separates the points of π~\h) for each h e (?4, αtiώ
(iii) Mβ((h, λ), /(&, λ)) (Mβ = multiplicity function of β(y)) is

locally constant on ΦB, then there exist be B such that A[b] = B and
b=f.

The corollary follows immediately from 2.5 and the theorem.

COROLLARY 7.4. Maintain the hypotheses on A and a(x). If b
separates the points of π^(h) for each h and β{y) e A[y] is a monic
polynomial {of degree equal to the degree of a(x)) satisfied by 6, then
φ: Σa^yY —> Σa^1 is an isomorphism of A[y]/(β(y)) onto A[x]/(a(x)).

Proof. (We use the notation of the theorem.) By the theorem
we know that A[b0] = A[y]/(β(y)) so that if (̂Σ?=o «*[»]*) = Φ(Σ*i~}a'M) =
0, then Σ?^? a'i[χY — 0. But this means that a\ — 0 for each i and Φ
is an isomorphism.

Note that the above Φ is continuous and hence 6ΐ-continuous.
Before we state and prove the next result, we require the following

comments. Let g: A1—> A2 be a ring isomorphism (onto). Define
9*m ΦA1—*ΦA2

 a s follows: for heΦAl, let g*(h) be the linear functional



ALGEBRAIC EXTENSIONS OF COMMUTATIVE BANACH ALGEBRAS 573

associated with the maximal ideal g(h~\0)) in A2. Since g is one-to-one
and onto, so is g* one-to-one and onto. We now prove

LEMMA 7.5. Let Ax and A2 be Banach algebras. If g: A1 —> A2 is
a ring isomorphism {onto), then g*: ΦAl—> ΦA<λ is a homeomorphism
(with respect to the weak* topologies on ΦAχ and ΦA2).

Proof. We can assume that Aλ and A2 are semi-simple since g
induces an isomorphism of A ^ R a d ^ ) onto A2/Ra,d(A2). Now, by a
theorem of Kaplansky [9], Aλ = Σ? = 1 Θ

 eiAx where the e{ are mutually
orthogonal idempotents in A19 e^ = C for i — 3, 4, , p, and g \ eλAx

is linear while g \ e2Aλ is conjugate linear. Thus, ΦAχ — Uι=1 ΦeiAλ and the
^e^ are disjoint open subsets of ΦAχ. Since each ΦHAχ consists of exactly
one point if 3 S i S P, g* I Uip=3 ΦeiAχ is continuous. That g* \ ΦeχAι is con-
tinuous follows from a now classical result (cf. Theorem 242?, [11]). To
show shat g* \ Φe2Ax is continuous, we take a e e2Ax and let λ = h(a),h e Φβ2Al.
Then (a — λβ2) e h^iO). Since g | e2Aλ is conjugate linear, g(a — λe2) =
g(a) — Xg(e2) e g*{h)-\Q), and hence g(a)~{g*{h)) = (a(h))~. From this it
follows immediately that g* \ Φβ2Al is a continuous mapping.

THEOREM 7.6. Let Aλ and A2 be Banach algebras, a^x^ e A\x^\
and cc2(x2) e A2[x2] be monic polynomials with invertible discriminants
in Ax and A29 respectively, and Bi — A^x^Kμ^x^)), i = 1, 2. If g is
a ring isomorphism of Ax onto A2, then there exists an isomorphism
g of Bx onto B2 which extends g if and only if there exists a homeomor-
phism 7 of ΦB± onto ΦB2 such that π2 o y = g* o πu where π* is the
usual mapping of ΦBi onto ΦA.. If g1 and g2 are any two such extensions
of g, then g± o g2

λe G(B2: A2).
(Note that if 7 exists, then oc^x^ and a2(x2) must have the same

degree since for h e ΦAl, πτ\h) and ^{g^Qi)) have the same number
of points.)

Proof. If g extends g, then we take 7 = g*. By the above lemma,
7 is a homeomorphism. 7 is onto since g is onto. Now, if M is a
maximal ideal in Bl9 then

g(M Π A,) = g(M n A,) = g(M) n g(AJ = g(M) Π A2 .

But this means that the restriction of g*(h, λ) to A2 is g*(h) if
(h, λ)~1(0) = M. Thus, τra o £* = 0* o πx.

Suppose, now, that 7: ΦBl —> ΦB% has the prescribed properties. Let
β{%i) = Σ?=o (dΛ^i)) %ί = 0, where a2(x2) = Σ?=o a2tixi. We will show
that there is a function / in B^ which separates the points of πΐ\h)
for each h in ΦAχ and β(f) — 0. Let elf ---,ep be the mutually orthogonal
idempotents discussed in the proof of the above lemma. We define /
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as follows. If (h, X) e π^(ΦeιΛ)f let f(h, X) = [x2Γ(7(h, λ)) and if
(h, X) G π?(Φ.^9 let f(h, X) - ([x2Γ(v(h, λ)))-. For λ e t/?β 80M l, let
ft(ft), •••, μw(fc) denote the w distinct roots of Σ?=o (ίΓ^α^ΓWίcί = 0
and let (h, λ<(Λ)) be the w points in πϊ\h). For (Λ, λ<(fc)), let f(h, X^h)) =
l*i(h). As defined, / is a continuous function on ΦBι and satisfies
β(Xχ) = 0. Since / separates the points of πϊ\h) for each h e ΦΛi, and
since β(x) has an invertible discriminant in A19 the Arens-Calderόn theorem
tells us that there exists beBx such that 8 = / and Σ?=o ff"1(«a,i)δί = 0,
It follows from Corollary 7.4 that AJ6] — JBj and Bx is isomorphic to
BQ — A^yyiΣg-^a^y1). But 2?0 is, of course, isomorphic to JB2 =
A2[#2]/(α2(ίE2)) so that Bx and J?2 are isomorphic.

Suppose, now, that g1 and g2 are any two extensions of g. Then
0i ° Qϊ1 is clearly an automorphism of B2 onto itself. Since gx = ^2 on
-Aif ^i ° ^Γ1 leaves A2 invariant elementwise, that is, g1 o grf1 e G ( 5 2 : Aa).

The above theorem has the following interesting consequence if A
is the group algebra L\G), G = integers. Let a(x) e A[x] be an irreducible
monic polynomial with an invertible discriminant. The irreducibility
of a(x) together with the fact that the discriminant is invertible imply
th&t ΦB is connected (cf. Theorem 2.4, [10]). Then the above theorem
implies that A[x]/(a(x)) and A[x]/(#% — α0) are isomorphic, where n =
degree a(x) and aoe A is the unique element such that do(z) = z,
ze{μeC:\μ\ = l} = ΦΛ. If ae A, let φ(a) = b where b(z) = ΣΓ=— δ^ *
and α(«) - Σ ^ — 6 ^ . Then 0: Σ?-o c φ ] * -* Σ?=o ^(^i)^α is clearly an
isomorphism of A[cc]/(xu — a) onto A so that A[x]/(a(x)) is isomorphic
to A - L^G).

Another interesting consequence is that if a(x) e A[x] is a monic
polynomial with an invertible discriminant, then A[x]/(a(x)) is isomorphic
to A[x]/(a(x) + R(x)) where R(x)e (Rad A)[x] and degi2(cc) < dega(x).

We now turn our attention to the case where g: A —> A is a periodic
automorphism and, in particular, an involution of a certain type. The
following example shows that not every such automorphism is extendable.
Let A = C({zeC: \z + 11 = 1 or \z - 11 = 1} and a{x) = x2-f,f(z) =
£ + 1 if | s + 11 = 1 and /(«) = 1 if | z - 11 = 1. For an involution,
we take f*(z) = (/(—«))"". g has no extension to B since this would
imply that there exists a homeomorphism 7 of Φ* onto ΦB such that
7(«, λ) = ( — z, [x]~(y(z, λ)). But it is impossible for such a homeomorphism
to exist. Hence, g has no extension.

However, if g: A —> A is a periodic automorphism which has an
extension g to B (we are assuming that a(x) has an invertible discrimi-
nant), then g is periodic and its period divides nip, p = period of g.
For if gp = identity automorphism, then g*p(h,X) = (g*p(h), [xT(g*p(h,X))) =
{h, [xΓ(g*p(h, λ)) so that g*> e E{ΦB : ΦA). Hence {g*p)nl = identity
homomorphism. Thus, g* is periodic. By Corollary 6.4, gpnl is the
identity automorphism. Simple examples show that the period of g
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may be p-nl We now restrict our attention to the case where g is
a symmetric involution, that is, (α*)̂ (/&) = (ά(h))~.

THEOREM 7.6. Let A be a Banach algebra and a(x) e A[x] a monic
polynomial with an invertible discriminant in A. If (*): A—>A is
a symmetric involution, then there exists a unique symmetric involution
('): B—+B which extends (*). If (") is any involution extending (*),
then (") = (') o g for some g e G(B : A) which is of period two.

Proof. Let a*(x) = Σ?=o «?»* where a(x) = Σ?=o &&. Then ά*(f) =
0 where /(/&, λ) = λ. By the Arens-Calderόn theorem, there is an
element bQe B such that α*(60) = 0 and b0 = /. Let (') denote the
mapping defined by (Σ?=o ai[χ]Ύ = Σ?=o ^6; . Clearly (') is a homomor-
phism and aφΌ) = 0. But

(6ίΓ(Λ, λ) = ( Σ α?6j)>, λ ) = ( Σ (
\ΐ=0 / \ΐ=0

where 60 = Σf̂ Ό1 »<[»]% and (λ, λ) is any point of ΦB. Thus, (6J)~ =
[a?]Λ, and it follows that b'o = [a?]. Thus, (') is an involution. That (')
is symmetric follows from the fact that {{Σa^xYYT = ^((α^)")/*, / =

(M Λ )-.
If (") is any symmetric involution on 5 which extends (*), then

α*([α]") - 0. But ([a?]")" = b0 so that [»]" = δ0. Thus (') is a unique
symmetric involution extending (*).

If (") is any involution (not necessarily symmetric), then C)"1 ° (") =
g belongs to G(B : A). To show g is of period two, consider the following.
Since the involution defined on B~ by conjugation commutes with
every involution, g2(b)~ is equal to 6 for every b e B; hence, in particular,
g\[x\T = M". But a{g\[x\)) = 0 so that g\[x\) = [x] and g is of period
two.

8 Primitive elements in repeated extensions^ As seen in § 6, there
is some analogy between the present study and the classical case of
field extensions. We carry this analogy one step further by proving a
theorem about the existence of primitive elements in repeated extensions.
It will follow from our theorem, that if a(x) is a monic polynomial
with an invertible discriminant, then there exists an extension of the
form A[x]/(β(x)) over which a(x) factors into linear factors.

THEOREM 8.1. Let A be a Banach algebra. If BQ = A and B{ =
Bi-^XilftctiiXi)), i = 1, 2, , m, where x{ is an indeterminate over B^
and oίi(x^ e B^\x^ is a monic polynomial with an invertible discrimi-
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nant in Bi-U then there exists a monic polynomial a(x) e A[x] with
an invertible discriminant and an element be Bm such that a(b) = 0
and A[b] = Bm = A[x]/(a(x)) (algebraically and topologically).

Proof. The proof is by induction. We shall prove the case m = 2.
Consider [#iP(/&, λ) + c\x2Y(h, λ, μ) = λ + cμ, where c is a complex
number, and (h, λ, μ) e ΦB2. We will show that we can choose c > 0
such that λ | c ^ λ ' + cμ' if (h, λ, μ) Φ (h, λ', μr). If

= min {| λ - λ'| : (h, λ), (fe, V) e ΦBι and λ =£ λ'} for each k ^ ,

then F is a continuous function on ΦA since tfife) has no singular points
in ΦA. Since ΦA is compact and since F(h) > 0 for each h e ΦΛ, there
exists s > 0 such that -F(fr) > s on 0^. Choose c > 0 so that s >
2 c || IXΓ llco. For this choice of c, let b = [a?J + c[x2]. Now, if (ft, λ, μ) Φ
(h, λ, μ'), then &(fe, λ, j«) Φ b(h, λ, ^') and if (h, λ) ^ (fe, λ'), then

| b(h, λ, μ) - b(h, λ', /£') | ^ | λ - λ'| - c | /̂  - μ'\

^s- c\μ~ μf\> s- 2 c ||[»2ΓI|oo > 0 .

From this it follows that if a(x) is the monic polynomial (constructed
in Lemma 7.1) of degree n = nλn2 satisfied by 6, then its discriminant
is invertible since corresponding to each h, ah(x) = 0 has nxn2 distinct
roots.

Let B = A[x]/(a(x)). Then ΦB is (identifiable with) {(h, X)eΦΛx C:
(h, \)a(x) = 0}. Hence 7: (h, λ, μ) —> (fe, b(h, λ, /̂ )) is a homeomorphism
of ΦB2 onto (?5. Thus, |XΓ o 7-1 is continuous on ΦB and ^ i (M" © 7"1) =
0. By the Arens-Calderόn theorem, there exists bte B such that ^ =
[xT ° 7-1 and α̂ ftx) = 0. Now, if g: Σ& 1 ^[x]1 -> Σ S 1 «»&!, then g is
a homomorphism of B onto A[6]. By an argument in the proof of
Theorem 7.2, we have that #(δi)^ = [a^P. But ^i(δi) = 0 so that
0 from which it follows that g(b^ = [x^\ since the discriminant of
is invertible. Thus, A[b] contains [x^\ and hence [x2] eA[b], i.e., A[b] =
B2. It remains to show that g is one-to-one and 6i-continuous. Clearly,
g I A\b^\ is one-to-one so that there is an element b2 e B which satisfies
ΣΓio (g I A[bά)-\<xP)b\ = 0 and b2 = [x2Γ o y~\ where a2(x) - ΣΓ=o ̂ I 2 ) ^
As before, a2(g2)) = 0 and #(&2Γ = [̂ 2]" so that g(b2) = [x2]. Hence,
r̂ I A[&! + c&2] is a one-to-one mapping. But (6χ + cb2)~ = [α?]" so that

A[δi + c&2] = A[x\l(a(x)). Thus, ^ is one-to-one. (Note that this means
that &! + cb2 = [x].) The continuity of g follows as in Theorem 7.2.
The δί-continuity follows from the closed graph theorem.

COROLLARY 8.2. // a(x) e A[x] is a monic polynomial with an
invertible discriminant in A, then there exists an extension of the
form A[x]/(β(x)) over which a(x) factors into linear factors, where
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ζβ(x) is a monic polynomial with an invertible discriminant.

In view of the theorem, the proof of the corollary follows from
the fact that if a(x) = (x — bλ), •••,(& — bt)Q(x) over A[x]/(a(x)), then
Q(x) must have an invertible discriminant over A[x]/(a(x)).

9. On. the radical of B. Let A be a normed algebra and let K{A)
denote the intersection of the closed maximal ideals of A. If K(A) =
(0), we say that A is tractable. In [2] it is shown that if A is tractable
and if the discriminant of a(x) is not a zero divisor in A, or zero,
then B is also tractable. It is further shown that if A is tractable
and if a{x) = xn — α, then B is tractable if and only if a is not a zero
divisor in A, or zero. Actually, these results are true for a wider
class of algebras, namely, commutative algebras (with unit) over fields
of characteristic zero, with "tractable" replaced by "semi-simple."

In this section, we will show that the converse of the above theorem
is also valid; indeed, we formulate our theorems and corollaries in the
general context of algebras over fields of characteristic zero. To do
so requires no extra effort, except that of characterizing the maximal
ideals of B in terms of those of A. It will follow from the general
results presented that when A is tractable, then the radical of B and
the intersection of the closed maximal ideals of B coincide, a result
that is generally not valid for normed algebras. (An example of a
semi-simple normed algebra which is not tractable is given at the end
of this section.) Thus, until further notice, we assume that A is a
commutative algebra (with unit) over a field F of characteristic zero.
Let MA denote the maximal ideal space of A. We first identify MB

in terms of MΛ. If m0 is a maximal ideal in B, then B/m0 is a field
which contains an isomorphic copy of F and hence is also of characteristic
zero. Let Φ denote the canonical homomorphism of B onto B/m0. Then
Φ(A) is a subfield of B/m0 since the latter is a simple algebraic extension
of Φ(A) (cf. page 259, [15]). Thus we see that m0 Π A is a maximal
ideal of A. On the other hand, if m is a maximal ideal in A, then
we can extend m to (at most n = degree of a(x)) a maximal ideal of
B. We proceed to show this assertion and at the same time give a
description of the extensions.

If I is an ideal in A, then let βj(x) denote Σ{βi + I)x* where
β(x) = Σβtf.

Let m e MA and y(x) denote a monic polynomial over A such that
Ύm(x) is an irreducible factor of am(x). Let (m, y(x)) denote the set

( Σ a>i[
\i=0

It is clear that (m, y{x)) is an ideal in B. If we define θ by

Σ ™>ilxY :aieA,miem\ .
i=0 )
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i=0 / ί=0

then θ is a homomorphism of B onto (A/m)[a;]/(γm(α;)). Clearly (m,

tf-'ίO). Now if Σ?=» (α4 + m) (x + (7.(a;)))4 - 0, then

Σ («< + ™)^ = ym(χ)Qm(χ) ,
i=0

where Q(x) e A[x] or equivalently,

n—1

Σ <&#'

Thus, Σ?=o ΛiM* e(m, 7(a?)). Hence, θ"\0) = (m, 7(05)) and so (m,
is a maximal ideal of J5.

From the above, it is clear that if y^x) — y2(x) em[x], then
(m, 7i(x)) = (m, 7j(α)). We now show the converse. Suppose (ra, 7i(a?)) =
(m, 7a(a?)). There exists p(x) e A[x] and m(x) e m[cc] such that 72(#) =
7!(a?)3>(ί») + m(a?). Now, y2m(x) = ylm(x)pjx). Since both ylm{x) and 72m(α;)
are irreducible, and monic, pm(x) — e + m. The degrees of 7i(αs), 72(»)f

7i»(a?) and Ύ2m(%) are all equal so that p(x) = β. Thus, 7a(») — 7i(») e m[α;].
So far we have shown that each maximal ideal of A extends to

at least one maximal ideal of B. Furthermore, each maximal ideal of
B extends a unique maximal ideal of A. We shall now show that each
maximal ideal m0 of B is of the form given above, with m = m0 Π A.
From earlier comments we know that B/m0 is a simple algebraic ex-
tension of the field Φ(A), where φ: JB—• B/m0 is the canonical homomor-
phism. Since Φ([x]) is a root of ccm(x) = 0, Φ([x]) must satisfy one of its
irreducible factors, say βm(x). Hence B/m0 must be isomorphic to
φ(A)[x]/(βm(x)). Thus, if 0(Σ?-oα*[α]*) = O, then Σ?=ί (a* + m)«* =
Qw(α;)/9m(x). Thus, m0 - (m, ^(^)).

In summary, we have that MB may be viewed as the set of ordered
pairs (m, β{x)), m e MΛ, β(x) monic and βm(x) an irreducible factor of
ocm(x). Of course, we identify any two such pairs (m, β(x)) and (m', 7(0?))
if and only if m = m' and /3(cc) — y(x)em[x]. As before, we let π
denote the (onto) mapping (m, β(x)) —• m.

In what follows, let α(ra) denote the coset a + m, a e A, m e MA.
In order to avoid interrupting the proof of the main theorem, we

will next state and prove a lemma about the existence of a common
factor of aa(x) and ba'(x) for suitable elements a and b in A. In
general, a and b will not be invertible elements (consider the a(x) in
Example 5.3). We will need the following result [15]: Let f(x) and
g(x) be polynomials over A of respective degrees m and n, let k =
max (m — w + 1, 0) and let α be the leading coefficient of g(x). Then
there exist polynomials Q(x) and R{x) over A such that
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akf{x) = Q(x)g(x) + R(x)

and R(x) is either of degree less than n or is the zero polynomial.

LEMMA 9.1. Let A be semi-simple. If the discriminant d of a(x)
is a zero divisor in A (say dc = 0, c Φ 0) or ifd = 0, then there are
nonzero elements a and b in A and polynomials y(x), δ(x) and R(x)
over A such that

( i ) aa(x) — rr(x)R(x)
(ii) ba\x) = δ(x)R(x)
(iii) for m e MA, a(m) = 0 if and only if b(m) = 0, and if c(m) =

0, then a(m) = 0, and
(iv) if βm(x) (w& e MA) is a factor of am(x) and a'm(x), then βm(x)

is a factor of Rm(x).

. Proof. We first prove the lemma for the case d — 0. Let R-λ(x)
and R0(x) denote a(x) and a'(x), respectively. In view of the above
quoted result, we assume that we have found polynomials Qj+1(x),
Rj+1(x), 0 ^ j ^ i, over A such that

and R0>jRj+1(x) Φ 0 for 0 g j ^ i, where RQ,3 denotes the leading coefficient
of Roj^Rjix) and kt = max {deg (Rj-^x)) - (deg R^^Rjix)) + 1, 0}. The
polynomial RQfjR3 +1(x) is never a non-trivial constant polynomial. This
follows from the fact that if meMΛ, then am(x) and oc'm(x) have at
least one irreducible factor in common since d(m) — 0 (recall that A/m
is a field of characteristic zero). For each m, let βm(x) be one such
factor. Thus, it follows that if ROtj(m) Φ 0, then βm{x) is a factor of
ROtj(m) (Rj+1)m(x). Thus, if R0>jRj+1(x) were a constant, say c, then
c(m) — 0 for all m e MΛ. Since A is semi-simple, c = 0. From this
fact and the fact that degree Rj+1(x) < degree 120,i.β0fi_1(ίB), we can
conclude that there is a first integer, say i0, such that (*) holds with
j = i0 and RQ>ioRiQ+1(x) = 0. Since the coefficients of iίio+1(aj) belong to
the same maximal ideals that Ro>ίo belongs to, we have that RiQ+1(x)
is the zero polynomial. Hence

Let 12(05) = R^β^R^x), a - Πi°=o R$ and b = Πj°=i ^ 7 Then α
and b are nonzero and belong to the same maximal ideals to which
R0>j belongs. Now, by repeated substitutions, we find polynomials Ύ(X)
and δ(x) over A such that aa(x) = Ύ(X)R(X) and δα'(a?) = δ(x)R(x). From
the above it is clear that if βm(x) is a factor of αw(ίc) and ar

m(x), then
it is a factor of Λ»(ίc).

If dc = 0(d Φ Q, c Φ 0), then let Z> denote the set of maximal ideals
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of A to which c doesn't belong, and I denote the intersection of the
maximal ideals in D. By the first part of the proof, there are elements
α', 6' e A (α', 6' ί I) and polynomials y(x), δ(x) and R(x) over A such that
for the cosets α' + / and V + I and the polynomials ΎΣ(x), δz(x) and
R^x), the four conditions of the lemma are fulfilled over A/1. It then
follows that the same four conditions are fulfilled over A if we take
a = cV, b = c2δ', 7(x) = cy(x), 8(x) = c3(α) and i2(a) = cJB(a?). (Note that
a and 6 are not zero since if so we would have that a! and V belong
to /.) This completes the proof of the lemma.

It is necessary to introduce the following notation at this point.
Let A be semi-simple and a(x) a monic polynomial over A. MΛ(m, βm{x))
is to denote the power to which βm{x) appears in the factorization of
am(x) into irreducible factors. Let dk denote the resultant of a(x) and
a[k)(x) (= the formal fcth derivative of cc(x))9 l g f c ^ ^ - 1 (cf. page
96, [14]) and let k(a) denote the smallest integer h, if it exists, such
that dk is not a zero divisor in A, or zero, and n if all the dk are zero
divisors in A, or zero. From the definition it follows that if k > k(a),
then dk is not a zero divisor in A or zero.

By a nil ideal in A we mean an ideal all of whose elements are
nilpotent. If / is an ideal in A for which there exists an integer k
such that aτ a% ak — 0 whenever a{ e I, i = 1, 2, , k, then we
say that / is nilpotent (and write P = (0)) and if k is the smallest
such integer, then we call k the degree of nilpotency of /.

THEOREM 9.2. Suppose that A is semi-simple and that a{x) is a
monic polynomial over A for which k(a) ^ 2. Then the radical of
B is nontrivial consisting precisely of the nilpotent elements of B.
Furthermore, Rad B is nilpotent and its degree of nilpotency is k(a).

Proof. It is well known that the radical of an algebra contains
all the nilpotent elements of the algebra. We show that Rad(S) consists
of precisely nilpotent elements by showing the last assertion of the
theorem, from which it follows that Rad(I?) is nontrivial.

Suppose that &([&]), ••,&(,,([&]) e Rad(B) and set β(x) = UΪLf &(&).
Then there are polynomials Q(x) and R(x) over A such that β(x) =
a(x)Q{x) + R{x), with degree R(x) < degree a(x). We will show that
β([x]) = 0 by showing that R(x) is the zero polynomial. Suppose first
that meMΛ has the property that Mω(m, Ύm(x)) ^ k(a) for every irreducible
factor ΊJX) of am(x). Since &([&]) e Rad(i?), we know that Ύm(x) must
divide (βi)m(x), and hence Ύm(x)j, j = MJ^m, Ίm{x)) divides βjx). Further-
more Ύm(x)d divides am(x) (by definition of j) so that Ύm(x)j also divides
Rm(x). But Ίm{x) is an arbitrary irreducible factor so it follows that
am(x) divides βm(x) and consequently also divides Rm(x). Since degree
•R»(β) < degree ccm(x), Rm{x) is the zero polynomial over A/m, or equiva-
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lently, the coefficients of R(x) lie in m. If there i s a m e M A such that
Ma(m, Ύm(x)) > k(a) for some y(x), then dk{a) e m. Thus, the coefficients
of dk{a)R(x) lie in every maximal ideal in A and hence are all zero.
But dM) is neither a zero divisor in A or zero, so that R(x) is the
zero polynomial over A. Thus, β(x) — a(x)Q(x), or equivalently, β([x]) =

Πίi? βi([χ]) = o.
To show that RadCB)**00-1 Φ (0) (recall that k(a) is assumed to be

greater than one), it suffices to show that there is an element fe Rad(l?)
such that/* ' 0 0 " 1 Φ 0. We will show t h a t / = ατ(|X|) is a suitable choice,
where a and Ύ(X) are supplied to us by Lemma 9.1. (We may assume
that c in the lemma has the property that cdUcll)-x — 0, c Φ 0.) Let us
first note that αγ([#]) Φ 0. For if not, then a/r(x) = Q(x)a(x) for some
Q(x) e A[x]. But aa(x) = y(x)R(x) so that a2a(x) — Q{x)R{x)a(x) or a2 =
Q(x)R(x). If c(m) = 0, then a{m) = 0. If c(m) Φ 0, then d(m) = 0 so
that «»(#) and 0̂ (05) have a common factor which is also a factor of
Rm{%) by (iv) of the lemma. Thus, α(m) = 0 for all m e ikf̂  and hence
a = 0, which is a contradiction. We show next that ατ([#]) e Rad(U).

Let m be a maximal ideal such that a(m) Φ 0 and βm{x) an irreducible
factor of ocjx). If /3m(^) is not a factor of 6(m)α^(α?), then βm(x) is
not a factor of Rm(x) (cf. lemma). Hence βm(x) must be a factor of
Ύm(x). If, on the other hand, βm(x) is a factor of 6(m)α^(x), then βm{x)
is a factor of <x'm(x) (b(m) Φ 0 since a(m) Φ 0). Thus, from the lemma,
we can conclude that βm(x)k, Jc — Ma(m, βm{x)) — 1, is also a factor of
ct'm(x)f hence a factor of Jϊm(aj) since βm(x)k+1 is a factor of ccm(x). Thus,
/9m(x) must be a simple factor of 7m(ί»). We can now conclude that
ατ([#]) belongs to every maximal ideal of B.

We now show that (αTfla?]))**"'-1 Φ 0 or equivalently, ayix)^'1 Φ
Q(x)a(x) for every Q(x)eA[x]. Since &(α) ^ 2, we know that there is
at least one irreducible factor βm(x) of ocm(x) for some m e MA such
βm{x) is also a factor of a'Jx) and βm{x)k[oί>) is a factor of αm(α;) (take
any meMΛ such that dΛ(βo-i € m). From what we showed above, we
have that βjx) is a simple factor of Ύm(x). If (αTίίc))^^5-1 = Q{x)a(x)
for some Q(x) e A[x], then /5m(^)ft(Q>) would be a factor of (α(m)τm(a;))Λ(Λ)-1

or else a(m) = 0. Since adk{a>)^ = 0 (recall our assumption that cdk{Λ)^ = 0),
we may assume that a(m) Φ 0. Hence a contradiction since βm(x) is only
a simple factor of 7W(^) Thus, (aidx]))*™-1 Φ 0.

COROLLARY 9.3. If B is semi-simple, then A is semi-simple and
the discriminant d of a(x) is not a zero divisor in A, or zero.

The proof follows immediately from the theorem. To use the
theorem, we need to know that A is semi-simple. But this is true
since each maximal ideal of A extends to at least one of B. This
situation is special. (There are examples of semi-simple algebras with.
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non-semi-simple subalgebras.)

COROLLARY 9.4. Let Abe a commutative algebra with non-trivial
radical R = Rad(A). Then Rad(£) = {beB:bke R[[x]]}, k = k{aR). If
R is a nil ideal, then so is Rad(2?). // R is nilpotent, say Rp — (0),
then so is Rad(J?) and Rad(£)p* = (0).

Proof. Since Rad(£) =D R, it is clear that Rad(JB) a {b e JB : 6fe e
Now, consider the homomorphism Φ oΐ B onto (A/i2)[a?]/(αΛ(a;)) defined
by ^ c φ ] * ) = Ha, + R)xι + (aB(x)). Then ^(Rad(B)) £ Rad((A/R)[x]/(aR(x)))
(cf. page 10, [8]). The kernel of Φ is R[[x]\. Thus, if 6 e Rad(B), then
^(6*) = (0(6))* = 0 by the theorem. It follows that bk e ^ (O) so that
Rad(5) Q{beB:bke R[[x]]}. Thus equality holds and the first assertion
of the corollary is established.

Suppose now that R is a nil ideal. Let 6 e Rad(B). Then by the
above, bk{"R) e R[[x]\. Let δ*(α>β) = %?-} blx]1, b{ e R. Since A is com-

mutative, the elements b0, , bn-λ generate a nilpotent ideal in A (cf.
page 193, [8]). If p is the degree of nilpotency of this ideal, then
(&*<*s>)p = o. Thus, Rad(β) is a nil ideal.

The last assertion follows immediately from what we just proved.
If the degree of nilpotency of Rad(A) is p, it may well be the

case that the degree of nilpotency of Rad(jB) is less than pk(aB). For
example, take an algebra for which p = 2 and let a(x) = xs. Then
Rad(ί?)4 = {0}. (It is easy to modify this example so that a(x) = 0 has
no solution in A.) On the other hand, the degree of nilpotency of
Rad(J5) may be equal to k{aR)p.

We now turn our attention to the case where A is a commutative
normed algebra. For such an algebra, K{A) denotes the intersection
of its closed maximal ideals.

THEOREM 9.5. Let A be a tractable normed algebra. Then K{B)
coincides with the radical of B. Hence if B is tractable, then A is
tractable and d is not a divisor of zero in A, or zero.

In order to prove the theorem we only have to establish that the
elements of K(B) are nilpotent. To do this, we must know which
maximal ideals of B are closed. Of course, each closed maximal ideal
of B extends a maximal ideal of A so that ΦB ( = space of closed maximal
ideals of B) is a subset of D = {(h,X)eΦΛxC: ah(X) = 0}. Actually,
ΦB = D. To see this, observe that

\ah(\)\ ^ | λ | - Hα^H IM*"1 \\ax || |λ | - \\a01| .

If | λ | > 1, then the right hand side is greater than zero so that
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| ah(\) | > 0 for all h e ΦΛ. Thus, if (h, λ) e D, then | λ | g 1 and hence
(h, λ) defines a continuous multiplicative linear functional (recall that
we are assuming that || a0 || + || ax \\ + + || αn-i || S 1).

Now, using the fact that ΦB = D, we use the method of proof of
the first assertion of Theorem 9.2 to establish that K(B) is nilpotent.
Hence K{B) C Rad(S). On the other hand, Rad(J5) S #(#) SO that
iΓ(β) = Rad(S).

The second assertion now follows from Corollary 9.3.
As we have pointed out earlier, there are normed algebras which

are semisimple but not tractable. A simple example illustrating this
is as follows: Let A be any normed algebra with no nonzero nil ideals
but possessing a nontrivial radical. A[x] is a normed algebra under
WΣdiX* || = 2Ί|α< ||. Clearly, A[x] is not tractable. However A[x] is
semi-simple (cf. Theorem 4, page 12, [8]).
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ON THE DIOPHANTINE EQUATION Cx2 + D = yn

W. LJUNGGREN

1. Introduction* Let C, D and n denote odd positive integers,
D > 1 and CD without any squared factor > 1. Let K = Q{V-CD),
where Q is the field of rational numbers. Let further h denote the
number of classes of ideals in K and put D + (-1){D+I)i2 = 2m A,
(A> 2) = 1. In two previous papers [4] and [5] I have proved the
following three theorems concerning the diophantine equation Cx2 + D —

I. The diophantine equation

(1) Cx2 + D = y* , n>l

is impossible in rational integers x and y if h ί 0 (mod ri), m is odd
and either CD ~ 1 (mod 4) or CD = 3 (mod 8) with n ^ 0 (mod 3).

II. The diophantine equation

( 2 ) Cx2 + D = y* , q > 3

where q denote an odd prime and CD ^ 7 (mod 8), is impossible in
rational integers x and y if h Ξ£ 0 (mod g), m is even and <? ί CA
(mod 8).

III. If D Ξ 1 (mod 4), CD ^ 7 (mod 8) and m is even, then the equa-
tion (2) has only a finite number of solutions in natural numbers x, y
and primes q if CA = 5 (mod 8) or if C = 1 with A = 3 (mod 8) for
given C and D. The possible values of y and an upper limit for the
number of primes q may always be determined after a finite number
of arithmetical operations.

From the proofs it immediately follows that these theorems also
hold good if CD = 7 (mod 8), provided y is an odd integer. This
gives a far-reaching extension of results obtained by D. J. Lewis in
his paper [2], Putting ( 7 = 1 , D = 7 we find, from 1:

The diophantine equation x2 + 7 = yz, z > 1, is impossible in
rational integers x, y and z if y is an odd integer.

Equations of the type (1) have also been studied by T. Nagell
[6], [8], [9] and B. Stolt [11].

Received July 2, 1963.
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2* The equation Cx2 + AD = y*, y odd.

THEOREM 1. Let n be the power of a prime q > 3, and suppose
that fcΐO (mod n). Then the diophantine equation

(3) Cx2 + AD = #» , n>l , y odd

has no solutions in rational integers x,y if q Ξ£ 3C( —1)(C7~1)/2 (mod 8).
Likewise, ifD = 0 (mod q), equation (3) has no integral solution.

Proof. We put n = q*. The principal ideals

[Cx + 2V~:^CD] and [Cx

have the greatest common ideal divisor [C, V—CD], because [C] =
[C, "l/—CD]2, # is an odd integer and (x, y) = 1. From (3) it then
follows

where i denotes an ideal of the field Q(V — CD). Further we get

(4 ) [Cx + 2V^CΣ>Y = [C] .«*& - i2) .

If the class number h is divisible by qβ (0 ^ β < a) and not by
qβ+1, there exist two rational integers / and g such that

fq* -gh = qβ .

Then by (4) we get the following equivalence

if ~ {{«« ~ i .

Hence we obtain the ideal equation

(5) [Cx + 2V=CDΎ = [C] Γ—(u + ^τ/^OD)Ί? Λ-β

L ZL J

where u and v are rational integers, u = v (mod 2). Since g > 3 all
the units in the field Q{V—CD) are qth powers. Then it follows
from (5)

( 6 ) (Cx + 2V-CD)2 = C^-jiu, + vy=CD)y , u1 = v1 (mod 2) .

By means of (6) we derive

(ayc+ by^D))2, aτ = bx (mod 2)

Inserting this expression in (6) we get
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(aye( 7 ) xVC + 2V-D = {±-(a2VC + b2V-D)\ , a2 = δ2 (mod 2) .

Equating the coefficients of "l/ —Z) we obtain the relation

( 7') 2«+1 = Σ ( 2 r +

whence δ2 = ±2% 0 g s ^ q + 1.
Equation (7') gives modulo g

or

Ξ 4(mod q) , i.e.

δ2

 Ξ ± 4 (modg) .

For g > 5 b2 and α2 must be even numbers, so that we have

( 8 ) xVC + 2V-D = (aVC + bλ/-D)q .

If q = 5 and b2 = ± 1 it follows from (7') that

£>2 ± 8 = δ(—(Cα2 -

which is impossible mod 8. Equation (8) is then valid if q > 3. Cor-
responding to (7') we get

< 8') 2 = " Σ " ( 2 r + 1)(Caγ

Equation (8') is impossible if q divides D. If (D, q) — 1 it follows
from (8')

•whence

Inserting this expression for b in (8') we obtain

9) (^) = 9Σ/(

At first we want to prove that (9) is impossible ifq = l (mod 4).
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Treating (9) as a congruence mod 4 we find

Suppose now that q — 1 is divisible by 2*, but not by 2δ+1, δ ^ 2.
Equation (9) may be written

(10) l - q + q(l- (Cα»)( -"") = ' | Γ ( 2 r + 1 ) ( C α y ' - 1 » 2 ϊ - ( - 4 D ) ' .

The general term in the right-hand side in (10) we then prefer
to give the following shape

(11)
2r(2r

Here the numerator is divisible by 2δ+2r. The denominator is-
divisible by a power of 2 which is ^ 2. Since for all r ^ 1 22r > 2r,
we conclude that the integer (11) is divisible at least by 2δ+1. Hence^
equation (10) is impossible, because (Cα2)(g~1)/2 — 1 is divisible at least
by 2δ+1, while q - 1 is divisible by 2δ but not by 2δ+1.

It remains to consider the case q = 3 (mod 4). From (9) it then,
follows

) Ξ ( ? C (mod 4 ) ,

whence

r " = - 1 for C = 1 (mod 4) ,
Q

χ = + 1 for C= 3 (mod4).

Treating (9) as a congruence mod 8, we get

(13) ( ^ λ =qC + 4 (mod 8)

V q 1

Combining (12) and (13) we find

q = 3C(-1Y°-1)J2 (mod 8)

which was to be proved.

REMARK. Theorem 1 remains true if q = 3, provided CD 3= S
(mod 8): All units in Q{V—CD) are still qth powers, such that equa-
tion (7) also holds good for q = 3. Since b2 =Ξ ± 4 (modg), we have
in addition to consider the cases b2 = ± 1 and δ2 = ± 2 . If δ2 = ± 1
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we deduce from (7) that D= 3Ca2

2+16, which implies CD = 3 (mod 8),
a contradiction. If b2 — ±2, a2 must be even. Putting a2 = 2α3 we
find D = 3Cαs+2 and y = 4Cα3 + 2. But we assumed 7/ to be an odd
integer, and then our assertion is proved.

We now proceed to prove two lemmas.

LEMMA 1. Putting

(15) S l = Σ ( 4 / + 1 ) and S 2 = Σ

we have ifn^S (mod 8)

(16) Sλ = 0 (mod 3) , S2 Ξ 1 (mod 3) ,

and ifn = 7 (mod 8)

(17) & == 1 (mod 3) , S 2 Ξ 0 (mod 3) .

Proof. Inserting x = 1 and cc = i in the identity

we get

2- 1 = S1 + Si9

and

2(-i)/>.(-i)(*-3)/4 = g i _ S2 9 n = 3 ( m o d 4) ̂

from which (16) and (17) easily follow.

LEMMA 2. Equation (9) is impossible for q > 3 if

(18) D s ί - l ) ^ 1 " * (mod 3),

ami besides one of the three following conditions is satisfied:

1° C ΞΞ 0 (mod 3)

(19) 2° C Ξ + 1 (mod 8)

3° C Ξ + 3 (mod 8) and C = ( - l ) ^ ' 2 (mod 3) .

Proo/. If a = 0 (mod 3) or if C = 0 (mod 3) it follows from (9)
and (12) that

(_l)(σ+D/2 Ξ _(4£>)«7-i>/2 = _jr) ( m o d 3) , because D2 = 1 (mod 3) .

But this contradicts condition (18).
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If a2 == 1 (mod 3), C Ξ£ 0 (mod 3) we find

or

(20) (_i)«7+D/» = ^ - D S 2 (mod 3) .

The congruence C = ±1 (mod 8) may be written C Ξ ( - 1 ) I W " 1

(mod 8). By Theorem 1 we then conclude ? = 3C(-1)(C7-1)/2 = 3 (mod 8).
According to Lemma 1 it follows from (20)

a contradiction.
The congruence C = ±3 (mod8) is equivalent to C Ξ 3(-l) ( c r + 1 ) / 2

(mod 8). By means of Theorem 1 we conclude

q = 3C(-1YO~1)I2 = Ί ( m o d 8 ) ,

and Lemma 1 then gives

(_l)<*+i>/ι = C (mod 3 ) ,

which contradicts the second part of the condition 3°.
Our lemma is proved.

THEOREM 2. Let C, D, n and h be defined as before, h ^ 0
(modn). If D = ( — l ) ^ 1 ^ 2 (mod 3) and if further one of the condi-
tions (19) is satisfied, then the diophantine equation

(21) Cx2 + AD = yn , n > 1, y odd

has no solutions in rational integers x and yf provided n ^ 0 (mod 3)
in case CD = 3 (mod 8).

Proof. Suppose that (21) is solvable in integers x, y, where y is
odd. There must exist a prime factor q of n with the following
property: q* is a factor of n but not of the class number h. We
put m — q*, n = mr and z = yr. Then the equation

(22) Cx2 + AD = zm

should be solvable in integers x and z. But this is impossible on
account of Lemma 2 and the remark to Theorem 1.

EXAMPLE. The equation 3x2 + 28 = yn, n ^ 3, has no solutions
in rational integers x, y with y odd.
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Here is C = 3, ΰ = 7 Ξ 1 (mod 3) and CD = 5 (mod 8). Putting
# = 2a?i, # = 2yx we get 3x? + 7 = 2ίl~2τ/Γ, which implies n = 3, because
3aή + 7 = 2 (mod 4). Equation 3a?ϊ + 7 = 2i/ϊ has at least the solutions
a?i = ± 9 , ^ = 5.

3 The equation #2 + AD = i/Λ, 2/ odd* In this section we restrict
ourselves to the simple case C = 1. According to Theorem 1 and the
remark attached to this it will be sufficient to deal with the case
q = 3 (mod 8), q = 3 included. Putting

χ = a + 2λ/-D and λ' = a - 2λ/~D

it follows from (8), with b = 2(-D/q) = 2(-l) ( < 7 + 1 ) / 2 - - 2 :

)ϊ "x *q
(23) - £ L - = - 1 .

λ - λ'

The following identity is easily verified:

Λ (g-D/2 N Γ(q-l)J2

(24)
λ-λ' λ ' v 7 λ-λ'

Since q — 8t + 3, (24) may be written

(25) χU+1 ~~ λ ^ + 1 (λ4ί+2 + λ'4ί+2) = - ( α 2 + AD)it+1 - 1 .

The second factor on the left-hand side of (25) is divisible by
(λ2 + λ'2)/2 = a2 - AD. Suppose now a2 - AD > 0. Since a2 - AD = 5
(mod 8), this number contains at least one prime factor p = 7 (mod 8)
or p = 5 (mod 8). By means of (25) we derive that the Legendre
symbol ( ( - α 2 - AD)/p) = - 1 , which implies (-2/p) = 1, i.e. p = 8t + 1
or 8ί + 3, contrary to the assumption. We therefore conclude
α2 - AD < 0, or

(26) a2 < AD .

These considerations yield the following theorem:

THEOREM 3. Let D > 1 denote an odd positive integer without
any squared factor > 1. If the class number of Q{V — D) is indi-
visible by the odd prime q, then the diophantine equation

(27) x2 + AD = yQ, y odd

has no solutions in rational integers ifq^S (mod 8). / / q = 3
(mod 8), then (27) has only a finite number of solutions in rational
integers x and y and primes q for given D. The possible values
of y and an upper limit for the number of primes q may always
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be determined after a finite number of arithmetical operations.

That an upper limit for the number of primes may be determined,
follows as a consequence of a theorem due to Th. Skolem [10]. How-
ever, in special cases it will be more convenient to use other methods.

Example 1. x2 + 28 = yq. We have h = 1 and must examine the
case q = 3 (mod 8). The inequality (26) gives the possibilities:

a2 = 1, a2 = 9 and a2 — 25. The corresponding values of yq are
29, 37 and 53 respectively.

We make now use of the formula

(x + y)q - xq - yq = ?&#(& + τ/)(x2 + &# + y2)r Q(u, v) ,

where g > 3 and

u = (x2 + xy + i/2)3, v

r = 2 f or q Ξ= 1 (mod 3)

and r = 1 for g = 2 (mod 3), and Q(w, Ί;) is a polynomial in u and v
with integral coefficients [1]. Putting x = λ, 2/ = — λ', we obtain

(λ - λ')9"1 - λ * "" X[Q = -qXXr(X2 - XX' + Xn)r-Q(u, v) ,
X — λ,

or

(28) {l&D)qf = 1 (mod q-(a2 + 4Z>) (α2 - 122))) , q' = —(q - 1) .

If α2 = l we get 1129' = 1 (mod 29), or 2*"1 = - 1 (mod 29). Since
214 = - 1 (mod 29) and 2s Φ - 1 (mod 14) for 0 ^ s < 14, we must have
q = 1 (mod 14), which implies (g/7) = 1. From (28) we further find
112*' == 1 (mod q), i.e.

a contradiction.
If a2 = 9 we get 1129' = 1 (mod 5), or 2qt = 1 (mod 5), which is

impossible for q = 8ί + 3.
If α2 = 25 we obtain 1129' Ξ 1 (mod 53), or 69' = 1 (mod 53). Now

6 belongs to the exponent 26 mod 53, which is impossible since qf is
an odd number.

It then remains q = 3, where

^ = (α -

whence 2 = 56 — 6α2, i.e. a2 = 9, cc = 225 and
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2252 + 28 - 373 .

We have then proved:

The diophantine equation x2 + 28 = yz; z > 3 and odd, has no
solutions in integers x, y and z if y is an odd integer. Ifn = 3
there are exactly two solutions, namely x = ±225 and y = 37.

This is a comprehensive generalization of a result obtained by
D. J. Lewis [2].

Example 2. x2 + 12 = ?Λ Here is h = 1, and (26) gives α2 = 1
or α2 = 9. The last possibility must be excluded, giving y == 0 (mod 3),
If g > 3 it follows from (27)

48*' = 1 (mod 13) ,

or

2*"1 = - 1 (mod 13)

implying q = 1 (mod 6), or (g/3) = 1. But according to (12) ( — 3/g) =
— 1, or (g/3) = 1, a contradiction. It is further known that x2 + 12 = #3

has no integral solution. This may be shown in the following manner:
1° y odd. We write our equation in the form

x2 + 4 - (y - 2)(y2 + 2y + 4)

Since (x, 2) = 1, all prime factors of x2 + 4 must be of the
form it + 1. Consequently, # = 3 (mod 4). But this implies that
y2 + 2y + 4 = 3 (mod 4), which clearly is impossible.

2° 2/ even. Then x must be even, and putting x = 2^, 2/ = 2 ^ we
get

x\ + 3 = 2*-22/?

which is impossible modulo 8, because q Φ 4.
Then we have proved:

diophantine equation x2 + 12 — yn, n > 1 cmd ocίcί, feαs πo
solutions in rational integers x and y.

4. The equation Cx2 + DM2 = τ/w, 7/ odd, (x, y) = 1Φ Let M de-
note any positive integer, such that (C, M) — 1. In order to find
criteria for the solvability of the equation

(29) Cx2 + DM2 - y* , n>l, y odd and (a?, ») = 1 ,

similar to those obtained in the previous sections, we are again led to
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deal with an expression of the type

(30) xVC + MV~=D = (—(aye + by=
\ Δ

q denoting an odd prime. From (29) it follows

(g-l)/2 / rt \

(31) 2« M = Σ (2r + l Γ i 6 ! r + l i C ' H I / l | ( " i ) ) f

It is easily seen that

(32) b2\M.

If (Db, q) = 1, we find, treating (31) as a congruence

, α2 = δ2 (mod 2) ,

2M = (mod «) ,

from which we conclude

(33) q | 2M ± b2 .

According to (32) and (33) there are only a finite number of pos-
sibilities for 62 and for the primes q if b2 Φ 2M( — D/q). It then only
remains to consider the case

= 2M

where (30) can be written

(34) xVC + V -DM1 = (aVU + bV-DM2)9 ,

and

6 -

But now we can utilize the results obtained for M = 1.

x2 + 63 = yn , 1/ odd, n > 1.

If (#, ̂ /) = 1 we solve

Here we have y = (a\ + 76i)/4, i.e. α2 and 62 are even integers
because y is odd. This gives
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(35) x + ZV^ = (a + bl/^ϊ)9

with 6 = ± 1 or b = ± 3 . It is obvious that g Φ 7, such that 3 = b(-7/q)
(mod g) This implies b2 = 1. For g = 3 equation (35) is impossible
mod 9. Then we must have b = 3( — 7/q). Since 7/ is odd, a must be
even, and from (34) we conclude ( — 7/q) = 1 and

(36) 1 - (J)α*-1 ~ (|)^-3.7 32 + +

Since g = 1 (mod 3) and a2 = 1 (mod 3), it can be shown that (36)
is impossible, exactly in the same way as we earlier proved the im-
possiblity of (10), exchanging only the prime 2 by the prime 3. Our
equation is then impossible if (x, y) = 1. If (x, y) = 3 we get, putting
x = 3a?!, y = 3̂ /i

x\ + 7 = 3*~ V = 0 (mod 3) ,

which is impossible. Then we have proved:

The diophantίne equation x2 + 63 = yn is impossible in integers
%,y if V is odd and n > 1 is an odd number.

5. Remark on earlier results* The diophantine equation

(37) ax2 + bx + c = dyn ,

where the left-hand side is an irreducible polynomial of the second
degree, having integral coefficients and d is an integer Φ 0, has only
a finite number of solutions in rational integers x, y when n ^ 3.
This was first shown by A. Thue and later on by Laundau and
Ostrowski. See for instance [7]. However, no general method is known
for determining all integral solutions x and y for a given equation of
the form (37).

Equation (1) was solved completely by T. Nagell in case y odd,
C arbitrary and D = 1, 2 or 4 [9]. Nagell has also examined equation
1 when C = 1 and D a square-free integer congruent to 1 or 2 modulo
4, but the results obtained are far from being complete [6]. He has
further found interesting theorems concerning the equation x2 + 8D =
yn, (D, 2) = 1 [8]. The first complete solution of the equation x2 + 2 =
yn was given by Ljunggren [3]. An upper bound for the number of
solutions of (1), in terms of D and n, was derived by Stolt [11]. It
must be emphasized that we in this note have deduced bounds which
are independent of n. For other equations of the type (1) see [9].

If y is odd, but the classnumber h is divisible by n, we have to
deal with irreducible binary forms of degree n ^ 3. This occurs also
if y is even. The problem of representation of rational integers by
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such forms is not solved. For the determination of an upper bound
for the number of solutions of our equations in these cases compare
[2], p. 1075.
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ATOMIC ORTHOCOMPLEMENTED LATTICES

M. DONALD MACLAREN

Introduction* The lattice of all closed subspaces of a separable
Hubert space has the following properties. It is complete, atomic,
irreducible, semi-modular, and orthocomplemented. The primary
purpose of this paper is to investigate lattices with these properties.

If L is such a lattice, there is a representation theorem for L.
The elements in L of finite dimension or finite deficiency form an
orthocomplemented modular lattice. It follows that if the dimension
of L is high enough, then there is a dual pair of vector spaces U and
W such that L is isomorphic to the lattice of W closed subspaces of
U. Because L is orthocomplemented the spaces U and W are iso-
morphic. This isomorphism establishes a "semi-inner product" on U,
and L may be described as being the lattice of closed subspaces of a
semi-inner product space.

The contents of the paper are as follows. Section 1 contains some
definitions and establishes notation. Section 2 is concerned with the
completion of an orthocomplemented lattice and § 3 with the center of
such a lattice. With the exception of Theorem 3.2 the techniques
used in §§2 and 3 are standard, and many of the results are widely
known. To the best of the author's knowledge, however, the theorems
have not previously appeared in print. Therefore we state and prove
them in some detail. The representation theorem and other results
centering about the semi-modularity condition are proved in §4. With
the other conditions holding for L, semi-modularity is equivalent tσ
certain covering conditions. Because this is not true for arbitrary
complete atomic lattices, the results seem to be of some interest*
Finally, in § 5, semi-inner product spaces are discussed. A theorem
is given relating the existence of a semi-inner product on U to the
existence of an orthocomplemented lattice of subspaces of U. This is
an easy generalization of a theorem of Birkhoff and von Neumann [4]
(Appendix). In two other theorems we investigate the exact relation
between the semi-inner product on U and the orthocomplemented
lattice L.

1. Definitions and some elementary lemmas* Let S be a partially-
ordered set. If a and b are elements of S, we denote the least upper
bound or join of a and b by a V b, provided that the join exists. We
denote the greatest lower bound or meet of a and b by ab, provided

Received June 7, 1963. The results of this paper have been drawn from the author's,
doctoral thesis, Harvard 1962.
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that the meet exists. If A is a subset of S which has a least upper
bound, we denote the least upper bound by V A. H the elements of
A are indexed by a set J, we may also write A = Vi^y If A has
a greatest lower bound, it is denoted by A A or λsaj

The symbols U and Π will be used to denote set union and set
intersection respectively.

If a and b are elements of a partially ordered set S with a ^ b,
we will denote the set of all xe S such that a ^ x ^ b by [a,b].

A partially-ordered set S is said to be orthocomplemented if it
contains at least element 0 and a greatest element 1, 1^0, and if
there exists a map a—+ a' of S onto itself which satisfies

(1.1) α g ί ) implies af Ξ> 6',
(1.2) α" = a,
(1.3) α' is a complement of α, i.e., aar = 0 and α V af = 1.

The mapping a—* a' is called an orthocomplementation, and af is called
the orthocomplement of a.

Two elements a and 6 of S are said to be orthogonal if α ^ 6'.
In this case we write a _L b. The relation of being orthogonal is
obviously symmetric.

We will use the following simple lemmas throughout this paper.

LEMMA 1.1. Let S be an orthocomplemented partially-ordered set,
and let {α̂ } be a subset of S such that V; aj exists. Then Ai #'• exists,
and (Vi^ )' = Λ,α' .

LEMMA 1.2. Let Abe a subset of an orthocomplemented partially-
ordered set S, and suppose that V A exists. Then if b 1_ a for all
aeA,b± y A.

An isomorphism of a partially-ordered set S onto a partially-
ordered set R is a one-to-one mapping θ from S onto i?, such that
θ(x) ^ #(#) if and only if x ^ y. An isomorphism preserves any meets
and joins which exist. When S and R are orthocomplemented we will
say an isomorphism θ is an ortho-isomorphism if θ{xr) = #(#)' for all
as in S.

LEMMA 1.3. Let S and R be orthocomplemented lattices, and let
θ be a one-to-one map of S onto R. Then θ is an ortho-isomorphism
if and only if (1) θ{xf) = θ{x)' for all x in S and (2) β(xy) = θ{x)θ(y)
for all x and y in S or θ(x Vj/) = θ{x) V θ(y) for all x and y in S.

Let a and b be elements in a partially-ordered set S. a is said
to cover b if a > b, and there does not exist c in S with a > c > b.
If S has a least element 0, an atom is an element of S which covers
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0. A lattice S is atomic if every element of S is the join of some
set of atoms.

2* Completion of an orthocomplemented partiallyordered set. A
partially-ordered set S is said to be complete if A A and V A exist
for all subsets A of S. If S has both a least element and a greatest
element, then V A exists for all subsets A of S if and only if A A
exists for all subsets A of S. The standard method for embedding a
partially-ordered set S in a complete lattice is to use the completion
of S by cuts.1 If S is orthocomplemented, the completion can be
constructed in another way by using the orthogonality relation. This
is just the construction used in the standard proof that the completion
of a Boolean algebra is a Boolean algebra.

In Theorems 2.1 and 2.2 we show that the partial ordering in an
orthocomplemented partially-ordered set can be found if one knows
only which elements are orthogonal. This fact suggests that we define
an abstract notion of an orthogonality relation.

Let S be any set. We will say that the binary relation J_ is an
orthogonality relation if it has the following properties.

(1) a _L b implies b _L a.
(2) a J_ a implies a _L b f or all b in S.
(3) (c J_ a if and only if c J_ b) implies a = b.

THEOREM 2.1. If S is a set with an orthogonality relation (_L),
then a partial ordering (^) may be defined on S: a ^ b if and only
if d l_b implies d J_ a.

Proof. If a ^ b and b ̂  α, then d J_ a if and only if d J_ b.
Therefore a = 6, by the definition of an orthogonality relation. If
α ^ b and 6 ̂  c, a ^ c by the definition of ^ in S.

THEOREM 2.2. // S is an orthocomplemented partially-ordered
set, then the relation _L, where a J_ b if and only if a ^ 6', is an
orthogonality relation. Further the partial ordering induced by this
orthogonality relation coincides with the original partial ordering.

Proof. The relation _]_ is symmetric, because a ^ b' if and only

if b ^ α'. If a J_ α, a ^ α'. Hence α ^ αα' = 0, and O l a ; for all x

in S. Finally suppose t h a t a and b are elements of S such t h a t c l α

implies c J_ b. Then α' J_ 6, i.e., b ^ a. Thus the relation _L induces

the original partial ordering in S. F u r t h e r if a and b are such t h a t

d JL α if and only if c£ !_ 6, we have 6 ^ a and α ^ 6, i.e., α = 6.

1 See Birkhoff [3], Ch. 4, sec. 7.
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We will now assume that S is a set with an orthogonality relation
(_L), and that the partial ordering of Theorem 2.1 has been defined
on S. S may be an orthocomplemented partially-ordered set, but it
does not have to be. For any subset A of S let AL be the set of all
x in S such that x _L a for all a in A. Let A~ = A11, and call a
subset closed if A = A~.

We will use the following simple lemma throughout this paper.
Its proof uses only familiar arguments.

LEMMA 2.1. Let S be a set with an orthogonality relation. Let
A and B be subsets of S. Then the following relations hold.

(1) // A S B . B ' S A 1

(2) A± = AL±±

( 3 ) A^A~
(4) A- = A~
(5) // AgJ5, 4 - g 5 -
( 6 ) (A U J5)1 = A± n S 1 .
An orthogonality relation is just a special type of polarity as

defined by Birkhoίf.2 Thus in the following theorem the assertion that
the closed subsets of S form a complete orthocomplemented lattice
follows from Theorem 9 and Corollary Ch. 4, of [3]. Since the rest
of the proof is quite standard, we omit it.

THEOREM 2.3. Let S be a set with an orthogonality relation and
with the partial ordering induced by the orthogonality relation. Then
the closed subsets of S, partially ordered by inclusion, form a complete
lattice L(S). If {Aj} is a family of closed subsets, AjA3 , the meet
of the Aj in L(S), is just f}3 A3 . The mapping A —•> A1 is an ortho-
complementation in L(S). Further there exists a one-to-one mapping
of S into L(S) which preserves orthogonality, order, and all existing
meets in S. If S is orthocomplemented this map also preserves
orthocomplements and all joins existing in S.

From now on we will always use L(S) to denote the lattice of
closed subsets of S. The following theorem justifies our calling L(S)
the completion of S.

THEOREM 2.4. If S is an orthocomplemented partially-ordered
set, L(S) is the completion of S by cuts.

Proof. If A is a subset of S, let A* = {x e S \ x ^ a for all a in
A} and let A° = {x e S | x ^ a for all a in A}. The completion by cuts

2 [3], Ch. 4, sec. 5.
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of S is the lattice of all subsets A of S such that A*° = A3. We need
only show that A±± = A*° for all subsets A of S. Let ye A*. Then
2/ ̂  α for all a in A, and hence yr ^ α' for all α in A. This means
y' is in AL. Therefore if x e A11-, x _L y'', i.e., x S y. Thus if cc e A1 1,
a? S 3/ all y in A*, i.e., xeA*°. This proves that A1-LSA*°. Now
if yeAL,yr>1a for all a in A, i.e., y'eA*. Thus #eA*° implies
& ̂  V' all 2/ G Ax, i.e., x e A 1 1 . Therefore A*° g A-11; A*° = A 1 1 .

We will say that a subset /of a partially-ordered set S is iom
dβwse if every element of S is the join, perhaps infinite, or elements
in /. The advantage of using the orthogonality relation to construct
the completion of S is that only a join-dense subset of S is actually
needed for the construction.

THEOREM 2.5. Let S be an orthocomplemented partially-ordered
set, and let I be a join-dense subset of S. Let _|_ be the orthogonality
relation in S. Then restricted to /, _J_ is an orthogonality relation.
Further the partial ordering induced in I by the orthogonality
relation J_ coincides with the partial ordering inherited from S.
Finally L(S) and L(I) are ortho-isomorphic.

Proof. (2.1) and (2.2) in the definition of an orthogonality re-
lation are obviously satisfied, because _L is an orthogonality relation
in S. Let a and b be elements of I such that for ce I, c _L a, if and
only if c J_ 6. Let d be an element of S such that d \_a. Since /
is join-dense in S, there exist c3- in / such that d — V i^ For each
Cj, Cj _L a. Hence c5 _L b. Therefore in S d J_ b. Similarly d J_ b
implies d J_ α. Therefore a — b. This proves that (2.3) is satisfied by
the relation restricted to / and thus proves that it is an orthogonality
relation on /. Now let ^ be the partial ordering in S, and let •< be
the partial ordering induced in / by the orthogonality relation. If
x, y, z are all in I with x ^ y and z _L y, then z J_ x. Thus if x and
y are in / with x ig y we have x < y. Now suppose that x < y. Since
I is join-dense y' = V;£; with zάe I. Clearly z5 1 y for each j , and
hence zs 1 x. Therefore x _L V Z; = #'> i e. a? ̂  ί/. This proves that
the two partial order ings ^ and -< are the same. To complete the
proof of the theorem we must prove that L(S) and L(I) are ortho-
isomorphic. We first show that if A is a closed subset of S, Af] I is
closed in /. Note that if B is any set closed in S, and if x _1_ y for
all yeBnl, then x j_ y for all yeB, because I is join dense. In
other words, if Be L(S), (B n I)L = BL. Now the closure of A n I in
/ is ((A n I)L Π I ) 1 Π /. If A e L(S), we have ((A n I)1 Π I)1 Π I =
(A1 n I)1 n I = Aλ± n / = A n /, i.e. A n I is closed in 7. Now for

3 See [3], Ch. 4., Sec. 7.
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any subset B of S, let B~ denote the closure of B in S. We next
show that if B is closed in /, B~ n / = B. Suppose that xe B~ f] I.
Then x l_y for all yeB1. In particular x±y for all yeB^Πl.
Therefore xe B, because B is closed in /. Clearly J5e B~ Π /, so we
have B = B~ Π /. Now define a map 0 from L(S) to L(/) by 0(A) =
A n / . We have shown above that if A e L(S), A Π / is in L(/). If
Be L(I), Θ(B~) = B~ n / = B, so θ is onto. If A e L(S), (A n / ) " = A,
because I is join dense in S. Therefore θ is one-to-one. Clearly
Θ~\B) = J5", and therefore Θ(A) ^ 0(B) if and only if A ^ B. Thus
θ is an isomorphism. Finally note that the orthocomplementation in
L(I) is A — A1 n I. But Θ(A±) = A1 n / = (An I ) 1 Π /. Therefore

n /. Thus θ preserves orthocomplements.

3 Center of an orthocomplemeuted lattice* Let Sj(j e J) be a
family of lattices. Let P be the Cartesian product of the Sj9 i.e., P
is the set of all functions / from J to U; S, s u c h that f(j) e Sj for
all j in J. P has a natural partial ordering: / g # in P if and only
if f(j) ^ θ(ά) for all i in J. It is easy to verify that this ordering
makes P into a lattice. Meets and joins are: (fg)(j) = f(3)9(3) and
(/ V g)(j) = /O') V 0(i). P is sometimes called the cardinal product
of the Sj, but we will follow von Neumann and call P the direct sum
of the Sj. We will write P = Σ 0 Sj. We will denote the direct sum
of Sx and S2 by S± 0 S2. S,Q)S2 may be regarded as the set of all
ordered pairs (xl9 x2) with x1 e Si and x2 e S2. The following Theorem
is obvious.

THEOREM 3.1. Let S3- be a family of lattices. Then P= Σ φ Sd

is orthocomplemented if and only if each Sj is orthocomplemented.
P is complete if and only if each Sj is complete.

Now suppose that P is ortho-isomorphic to the direct sum of two
orthocomplemented lattices, P = Sx 0 S2. Let a be the element of P
corresponding to (1, 0). Then ar corresponds to (0,1), Sx is ortho-iso-
morphic to [0, α], and S2 is ortho-isomorphic to [0, a']. In this case
it will be convenient to write P = [0, a] 0 [0, a']. The center of Pis
the set of all elements a such that P = [0, a] 0 [0, a']. The elements
0 and 1 are always in the center. If the center of P contains only
0 and 1, will say that Pis irreducible. The next theorem is suggested
by a similar result of von Neumann on the center of a continuous
geometry.

THEOREM 3.2. Let P be an orthocomplemented lattice. Then for
an element a of P the following three conditions are equivalent.

(1) x — xa V xaf for all x in P.
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( 2 ) (x V a)y = xy V ay for all x and y in P.
( 3 ) a is in the center of P.

Proof. That (1) and (2) hold for central elements is well known.
Suppose that a has property (1). Let x g a and y ^ α'. Then xf ^ α'
and yr ^ α, so #yα/ = τ/'α' and #Vα = x'a. Thus # V = x'τ/'α V x'y'af —
x'a V y'af. Taking orthocomplements, we get that for x ^ a and
y <; α/, (as V y) = (x V α')(τ/ V α). Now define a map # from P to
[0, a] 0 [0, α'] by 0(a) = (a α, a?α'). If #0*0 = 0(2/), xa = j/α and αα' =
2/α'. Hence by (1) x = xa V xa' = ya V yar = #. Thus 5 is one-to-one.
Let (x, y) be an element of [0, a] 0 [0, α']. Then a; ^ α and # ^ α\
xf v α' = αj'α V xV V α ' = aj'α V α'. Taking orthocomplements, we get
xa = (x V α')α. As was shown above, (a? V y) = (a? V α')(i/ V α). Thus
(a; V y)a = (cc V α')(2/ V α)α =(a; V α')α = xa*. Similarly (a; V y)af = y,
i.e., θ(x V y) = (a;, ^/). It is now clear that ^((a;, ?/)) = a? V j / , and
that θ(x) ^ ^(T/) if and only if x ^ y. Thus 5 is an isomorphism, and
obviously it is an ortho-isomorphism. P = [0, a] 0 [0, α'], i.e., α is in
the center. Now if a has property (2), (a V α')a? = ax V α'x for all £
in P. Thus a has property (1); α is in the center.

THEOREM 3.3. If P is a complete, atomic orthocomplemented
lattice, the center of P is a complete, atomic Boolean algebra.

Proof. To prove that the center is a complete Boolean algebra,
we need only show that for any subset A of the center V A is in the
center. Let b = V A, and let p be an atom such that pb = 0. Then
pa = 0 for all a in ^4. Therefore pr ^ a for all α in A, because p =
pa V pa' for all a in A. Thus p' ^ δ, i.e., p ^ 6'. If p6 =£ 0, p ^ 6,
because p is an atom. Thus for every atom p, p ^ b or p ^ 6'. Be-
cause P i s atomic this means x = xb V $6' for all a? in P, i.e., 6 is in
the center. To show that the center is atomic, let p be any atom in
P, let A be the set of all central elements a such that p ^ a, and
let b = A Ά Then 6 is in the center, and 6 ^ 0 . Further b must be
an atom of the center, for if not there exists c in the center such
that 0 < c < b. Then p = pb — pbc V pbcr, so either p tί c or p g c'δ.
Thus either c e i o r c ' δ e A, so either 6 ^ c or 6 ^ c'6. This contradicts
the assumption that 0 < c < b.

LEMMA. Let L be a complete orthocomplemented lattice, and let

a be in the center of L. Then for any family {xά} of elements in

L, α(Vi»y)= Vifaαy).

Proof. α(Vi xs) = α(Vy ( ^ V &,<*')) = α(Vi (*,<*) V V;

= α(V i foα)) V α(Vi (*fl!)) = V
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THEOREM 3.4. Let L be a complete, atomic, orthocomplemented
lattice. Then L is ortho-isomorphic to the direct sum of irreducible,
atomic, orthocomplemented lattices.

Proof. Let {a3} be the set of all atoms of the center. Let Sj =
[0, aj]. Define a mapping θ from L to Σ 0 Sj by θ(x)(j) = xa3 . Let
y be in Σ ® S3, and let x=yjy(j). Then θ(x)(k) = W 3y{j))ak =
Vj(y(J)ak) = V(k). Thus 0(αs) = y\ θ is onto. Let p be an atom, and
a3 be an atom of the center. Then p = pa3, or p i a3. Since
yjdj = 1, P = yj(po,j). Since L is atomic it follows that x =
Vj(xa3) = y3θ{x){j). Therefore θ is one-to-one. Clearly θ{x) ̂  θ{y)
if and only \ί x ^y, so θ is an isomorphism. Further θ{x)\j) =
(xα '̂α,,- = αj'αy = θ(x')(j). Thus 0(cc') = #(#)'. To complete the proof
we need only show that each Sj is irreducible. Suppose that 0 gΞ
b ίg a3, and that b is in the center of Sj. Then for x ^ α̂  , x =
xb V xδ'α^. Hence for all x in L,

x = xa3b V ccαy&' V xa'3 = xb V {a3b
f V a'3)x = xb V x6' .

Thus 6 is in the center of L. Since a3- is an atom of the center, this,
means that b — 0 or b = a3. This proves that [0, a3] is irreducible.

4» Sem.i*modular, atomic, orthocomplemented lattices* Let S be
an atomic lattice. Let x0 < xx < < xn be a finite chain of elements
in S. We will call the integer n the length of chain. The chain is.
a covering chain if a?<+1 covers ^ for i = 0, 1, . We define a function
cί on the set of ordered pairs (x, y) of elements in S with x ^ y as.
follows. If there exists a finite covering chain connecting x and 2/,
d(#, y) is the length of the shortest such covering chain. If no such
covering chain exists, d(x,y) — oo.

We will call an element x e S finite if x is the join of a finite,
number of atoms. Clearly if d(0, x) is finite, then x is finite. We
will let F(S) denote the set of x e S such that x is finite or xf is,
finite.

THEOREM 4.1. Let S be an atomic lattice such that if a and b
are finite elements of S which both cover ab, then a V b covers a and
b. Then the set of all finite elements of S is an ideal. For any
finite elements a ^b, d(a, b) is finite, and all covering chains con-
necting a and b have the same length.

Proof. We first show that if p is an atom, d(0, a) is finite, and
pa = 0, then p V a covers a. We will prove this by induction on
d(0, a). If d(0, a) — 1, a and p both cover ap = 0. Therefore α V ί >
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covers a and p. Suppose the statement is true for d(0, a) ^ n. Let
d(0, a) = n + 1, and let p be an atom with pa = 0. We need only
prove that p V α covers α. Because c£(0, a) = n + 1, there exists 6
such that a covers δ, and d(0, b) — n. Now p V δ covers δ, and
(p V δ)α = δ. Therefore (p V δ) V a covers α, i.e., p V α covers α.
Next we show that if a is finite d(0, α) is finite. For finite a let
N(a) be the smallest number N such that α is the join of N atoms.
We will prove this lemma by induction on N(a). Clearly if N(a) = 1,
d(0, a) = 1. Suppose the statement is true for N(a) ^ n, and let a
be a finite element with N(a) = n + 1. There exists atoms px, , pn+1

such that α = px V V pn+1. Let δ = px V V pn. Then δ < α,
and ΛΓ(δ) = n. Therefore c£(0, δ) is finite, and a = p Λ + 1 V δ covers δ.
Therefore d(0, α) ^ d(0, δ) + 1, i.e., d(0, a) is finite. Now it follows
from the above that d(a, b) is finite if a and δ are finite with a ^ δ.
To complete the proof of the theorem we need only prove the state-
ment, "if d(a, δ) = n, then all chains connecting a to δ have length at
most n." That the finite elements form an ideal follows immediately
from this. We will prove the statement by induction on n. If
d(a, δ) = 1, δ covers a and the statement is clearly true. Suppose the
statement is true for d{a, b) ^ n. Let d(a, b) = n + 1. Then there
exists a covering chain a < xx < < xn < δ. Note that d(^i, δ) = n.
Let α < y1 < < ym < b be any chain connecting α to δ. We need
only prove that m ^ n. If ^ does not cover α, there exists an atom
p such that pα — 0 and p ^ ylm Then p V a covers α. Replacing y1

by p V α we get another chain of length m. Thus we may assume
that y± covers a. If y1 = xlf we have d(yu δ) = d(xu δ) = n. There-
fore by the inductive hypothesis m ^ n. If ^ ^ 05x, y1 and ^ both
cover yλxλ = a. Therefore y1 V xλ covers y1 and xlm Now let
^ V xx < wx < < wk — b be any chain joining yx V xx to δ. Then
ίcx < yx V ίUi < wx < < ĵfc joins xλ to δ. Since c?(α?x, δ) = n, k + 1 ^
^, i.e., fc ^ w — 1. It follows that d(y± V xub) ^ n — 1. Since y1 V α?x

covers yl9 this means that c ί^, δ) ^ w. But m ^ d ^ , δ), so m ^ % .

LEMMA 4.1. Let S be an atomic orthocomplemented lattice. Then
the following covering conditions on S are equivalent.

( * ) If a and δ are in F(S), and both cover αδ, then a V δ covers
both a and δ.

(**) If a and δ are in F(S), and a V δ covers both α and δ, then
a and δ both cover αδ.

Proof. Suppose that (*) holds in S, that a and δ are in F(S),
and that α V δ covers a and δ. Then α' and V are in -P(S), and both
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cover α'δ'. Therefore by (*), a' V b' covers α' and bf. Hence a and b
cover ab. Thus (*) implies (**). A dual argument shows that (**)
implies (*).

LEMMA 4.2. Let S be an atomic orthocomplemented lattice in
which the covering condition (*) holds. Then the finite elements of
S form an atomic modular lattice.

Proof. This follows immediately from Theorem 4.1, Lemma 4.1,
and Theorem 3, Ch. 5 of Birkhoff [3].

Two elements (δ, c) in a lattice are said to form a modular pair
if for all a ^ c, (a V b)c = a V be. A lattice S is semi-modular if the
relation of being a modular pair is symmetric in S. Two elements
(α, b) form a d-modular pair if for all c *z a, (a V b)c = a V be. S is
dual semi-modular if the relation of being a cί-modular pair is symmetric.

In general semi-modularity is stronger than the covering condition
(*). We want to show that with one additional condition (*) implies
semi-modularity. Our proof is suggested by the proofs of Theorems
ΠI-1 and III—6 of Mackey [5]. We introduce the following notation.
If x is in the atomic orthocomplemented lattice S, S/(x) is the set of
all atoms p such that p ^ x. Sf(x) + J^{y) is the set of all atoms
p such that for some q e s/(x) and r e j^(y), p ^ q V r. If X is a set
of atoms, XL is the set of all atoms p such that p±q for all q in X.
It is easy to verify the rules j&(x') — S%f(xY, Sf(xy) = S/(x) Π

{ L L n Y

LEMMA 4.3. Let S be an atomic orthocomplemented lattice in
which the covering condition (*) holds. Assume further that if a
and b are atoms in S with a Φb, a'(a V b) Φ 0. Then if p is an
atom in S, Sf(p V x) = S^(x) + S$f(p) for all x in S.

Proof. We need only show that s^{x V |?)S J&(x) + Sf(p). Let
p be an atom with px = 0. First note that if q and r are atoms with
q Φ r, then p'(<j V r) ^ 0. This is immediate iί p ^ q V r. If p ^
<7 V r, let c = p V <? V r. Let ίx = j>'(p V q), and ta = p\p V r). Then
[0, c] is a modular lattice of length 3, d(0, ίx V ίa) = 2, and d(0, g V r) =
2. Hence (ίj. V £2)(tf V r) Φ 0, which means p'(tf V r) =£ 0. Now let s
be any atom, y any element such that y > 2/s', and r any atom in
J&(y) but not in J^(7/s'). If q e J^(ί/), and q Φ r, then x = s'(g V r)
is in J&(y8'), and g ^ f V ^ , Thus J^(y) = J^(ysr) + s/(χ). Apply-
ing this to xr and p, we have s/(x') — Jzf{x'p') + J*f{r) for some r.
Now j*r(x) = j^(x')-1 = J ^ ί ^ y ) ^ Π J ^ ( r ) 1 - j^((a? V p)) Π J^(r ') =

V p)r'). But J^((α: V p)) = J^((a? V p)r') + J^(j>), so j^(α; V p) =
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THEOREM 4.2. Let S be an atomic orthocomplemented lattice
satisfying the covering condition (*). Assume further that, if a and
b are atoms in S, a Φ b, then α/(α V b) Φ 0.4 Then if a is finite
(a, x) is a d-modular pair for all x in S.

Proof. We need only show that for c ̂  a, (a V x)c ̂  a V xc. It
follows from Lemma 4.3 that jy(x Vo) = S>/(x) + S/{a). Let a S o,
and let pe J^((a V x)c). Then pe S/((a V #))» and hence p ^Lq\j r
where q e J^(α) and r e j^(cc). If p = q or p = r, p e j y (xc) + j ^ ( α ) .
If p is different from g and r, then r ^ p V g ^ c. Thus re Ss?(xc),
which means pe J*f(a) + jy(ίcc). This proves that (a V x)c ̂  a V xc.

THEOREM 4.3. Let S satisfy the hypotheses of Theorem 4.2. Then
F(S) is an atomic, orthocomplemented, modular lattice.

Proof. We need only show that F(S) is modular. Let a, b, c be
in F(S) with a ^ c. If a is finite, (a V b)c = α V δc by the preceding
theorem. Otherwise α' is finite, which means & is finite. Then we
have [(a V b)c\' = (c' V &'K = c' V 6V. Thus (α V b)c = α V 6c.

Let F be a left vector space over a division ring R. Let F* be
the space of all linear functions from F to R. If W is a total sub-
space of F*, i.e., /(&) = 0 for all fe W implies x = 0, then we say
that V, W is a dual pair. If X is a subspace of F, let Xf = {/ e T7:
/(#) = 0 for all & e X}. Similarly define Yf for F a subspace of W.
Then we say that a subspace X of F is PF-closed if X = X".

McLaughlin [6] has given a representation theorem for the com-
pletion by cuts of a complemented modular point lattice. Since a
complete atomic orthocomplemented lattice S is the completion by cuts
of F(S) we can apply the theorem to obtain:

THEOREM 4.4. Let S be a complete, irreducible, atomic, ortho-
complemented lattice in which the covering condition (*) holds. As-
sume further that the d(0, 1) ̂  4, and that if p and q are atoms with
p Φ q, p'(p V q) Φ 0. Then there exist a pair of dual vector spaces
U, W over a division ring D such that S is isomorphic to the lattice
of W-closed subspaces of U.

COROLLARY. Let S be a complete, irreducible, atomic, orthocom-
plemented lattice. Then the following three statements about S are
equivalent.

(1) S is semi-modular
(2) If p is an atom in S and pa = 0 then p V a covers a.

4 Note that this condition holds if L is weakly modular, i.e., if (a, ar) is a d-modular
pair for all a in L.
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( 3 ) Covering condition (*) holds in S; and if p and q are atoms
with p Φ q, then p\p V q) Φ 0.

Proof. It is well known that (1) implies (2) and (2) implies (*).
Suppose (2) holds and that p and q are atoms with p Φ q. Then
p V p'q' covers p'q'. But q < p V q, so p'q' < q\ which shows that 1
does not cover p'q'. Therefore, p V p'q' Φ 1, i.e. p\p V q) Φ 0. This
proves that (2) implies (3). Now suppose that (3) holds. If d(0,1) is
finite, S is actually modular (Theorem 4.3). If d(0, 1) is infinite, we
can apply the theorem above. Mackey ([5], Theorem ΠI-6) has shown
that in such a lattice of closed subspaces the relation of being a d-
modular pair is symmetric. Since S is orthocomplemented, this means
that the relation of being a modular pair is also symmetric.

THEOREM 4.5. The completion of a semi-modular atomic ortho-
complemented lattice is semi-modular.

Proof. If S is semi-modular the covering condition (*) holds in
F(S). Also if p is an atom and px = 0, p V x covers x. If p and q
are atoms, p Φ q, pf covers p'q'. Hence p V p'q' < 1, which gives
p'(p V q) Φ 0. Let L(S) = Σ 0 Rj be the direct sum decomposition of
the completion L(S) into irreducible components. Since F(L(S)) and
F(S) are ortho-isomorphic, the covering condition (*) and the condition
Pr{P V q) Φ 0 hold in each Rj. If the dimension of R3 is finite, Rj is
actually modular. If the dimension of Rj is infinite, Rj satisfies the
hypotheses of Theorem 4.4, so Rj is semi-modular. Thus L(S) is the
direct sum of semi-modular lattices; L(S) is semi-modular.

5 SemMπner Product Spaces, Let V be a left vector space over
a division ring R. A semi-bilinear functional B on V is a map
(x, y) —> B(x, y) of F x F into i? such t h a t

( 1 ) for all x19 x2, y19 and y2 in F and a in 72, β ( α ^ + x2f yλ + 2/2) =

aB(xlf yx) + aB(xu y2) + B(x2, yx) + B{x2, y2), and
( 2 ) There exists an anti-automorphism θ of R such that for all

x and 7/ in F and a in iϋ, J3(£, ay) = J?(cc, y)θ(a). We will say that
a semi-bilinear functional ΰ is a semi-inner product if it satisfies the
following conditions.

( 1 ) The anti-automorphism θ associated with B is involutory.
( 2 ) B(x, y) = 0(J%/, a?)) for all x and ?/.
( 3) B(x, x) = 0 implies x = 0.
( 4) For some a? 5(cc, x) = 1.

A left vector space together with a semi-inner product will be called
a semi-inner product space.

If V is a semi-inner product space, define an orthogonality relation
in V by x _L y if and only if 5(x, #) = 0. If X is a subset of V define
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XL just as in §2. It is easy to verify that X 1 is always a subspace.
The orthocomplemented lattice of all closed subspaces of V will be
denoted by L(V).

THEOREM 5.1. Let V be a left vector space over a division ring
R. Then V is a semi-inner product space if and only if there exists
a dual space W such that V, W is a dual pair and the lattice, S, of
all W-closed subspaces of V is orthocomplemented.

Proof. Suppose that W exists and that S is orthocomplemented.
Let R* be the ring which is identical with R as an additive group and
in which multiplication (o) is aoβ = βa. Then W is a left vector
space over i?*. If λ e R*,fe W, (λ/)(α) = f(x)X. For xeV, let [x]
denote the one-dimensional subspace spanned by x. Let [x\* be the
one-dimensional subspace of W spanned by those linear functionals
whose nullspaces is [x]L. In an obvious way one verifies that [x] —> [x]*
is a one-to-one map of the one-dimensional subspaces of V onto those
of W which preserve linear dependence and independence. Hence there
exists a semi-linear transformation T from Fonto ΫFsuch that [x]* =
[T(x)]. Clearly [x] ± [y] if and only if T(y)(x) = 0. Thus if x0 Φ 0,
T(xo)(xo) Φ 0.

Let φ be the isomorphism from R to R * associated with T. Then
φ may also be regarded as an anti-automorphism of R. Let θ be the
inner automorphism of R: β —* {Tix^ix^βiTix^ix^y1. Let B{x,y) =
(T(y){x)){T(X^XQ))'1 . It is a matter of routine to verify that B is a
semi-inner product with anti-automorphism σ = 0 o φ. If A is any
finite-dimensional subspace of V containing x0, B defines an ortho-
complementation in the lattice of all subspaces of A, and B(x0, x0) — 1.
Hence by proposition 1, page 110 of Baer [1], the anti-automorphism
σ associated with B is involutory and σ(B(x, y)) = B(y, x), for all x
and y in A. Thus B is a semi-inner product. Now suppose that B
is a semi-inner product on V. For x in V let fx be the member of
V*:fx(y) = B(y, x). It is clear that the set Wof all such/, is a total
subspace of F* and that L(V) is identical with the lattice of PF-closed
subspaces of V.

Suppose B and Bf are two semi-inner products on V which de-
termine the same orthogonality relation. Then there exists a in R
such that B(x, y) = B'(x, y)a for all x and y in V\ It is quite possible,
however, to have two semi-inner products on V, which are not equiva-
lent in this way, but whose associated lattices are ortho-isomorphic.
Our last two theorems explore this possibility.

THEOREM 5.2. Let V1 be a semi-inner product space over a division

Baer [4], page 105, Proposition 3.
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ring R. Let Bλ be the semi-inner product in Vlf let Θ be the anti-
automorphism associated with B19 let σ be an automorphism of R,
and let τ be an inner automorphism of R. Then there exists a
semi-inner product space V2 over R whose semi-inner product B2 has
anti-automorphism φ — τ o σ o # oσ'1 such that L{Vt) and L(V2) are
orthoisomorphic.

Proof. Let x, (j e J, where J is some indexing set) be a maximal
set of nonzero mutually orthogonal vectors in Vλ. For y e Vx, let T(y)
be the function from J to R such that T(y)(j) = σiB^y, xd)). Let V%

be the set of all such functions T(y). It is clear that V2 is a left
vector space over R, and that T is a semi-linear transformation with
automorphism a from Vx onto V2. Further T is one-to-one. For if
T{y) — 0, then y J_ xs all j e J; and this means y = 0, because {xά} was
a maximal orthogonal set. Let the inner automorphism r be τ(β) =
crxβa. For/and g in B2, let B2(f, g) - σiB^T'f, T~xg))a. It is easy
to verify that B2 is a semi-inner product. We include only the proof
that B2(f, βg) = B2(ff g)φ(β). We have

W, βg) = σ(Bx(T~y, T~\βg)))a = σiB^T-f, σ~\β)(T^g)))a

, T-'g)θ{σ-\β)))a

= B2(ff g)a-'σ(θ(σ-\β)))a - B2{f, g)φ(β) .

Since B2(f, g) = 0 if and only if B1(T~1f, T~xg) = 0, it is clear that
T induces an ortho-isomorphism between the LiVJ and L(V2).

THEOREM 5.3. Let V{ and V2 be semi-inner product spaces of
dimension greater than two, over division rings Rλ and R2 respec-
tively, such that L(Fi) and L(V2) are ortho-isomorphic. Let Bλ and
B2 be the semi-inner products in V1 and V2 respectively, and let θ
and φ be the associated anti-automorphisms. Then there exists an
isomorphism σ from Rx onto R2 and a semi-linear transformation T
from Vx to V2 with isomorphism σ such that T induces the lattice
isomorphism. Further there exists an inner automorphism τ of R2

such that ψ = ro<7o#o0—\

Proof. Since LiV^ and L(V2) are isomorphic, the lattice of all
finite-dimensional subspaces of V1 is isomorphic to the lattice of all
finite dimensional subspaces of V2. It follows from this that the
lattice of all subspaces of Vt is isomorphic to the lattice of all sub-
spaces of V2. Therefore the isomorphism σ and the semi-linear trans-
formation T exists. To prove the final assertion, let x be a vector in
Vi such that B^x, x) — 1. Let y be a nonzero vector in V1 with y J_ x.
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Let xf = T(x), and yf = T(y). Since T induces the lattice ortho-iso-
morphism, x' _]_ y'. Now for any λ e R with λ Φ 0,

x + Xy 1 x - θix-^Bάy, y)~ιy .

Therefore T(x + λ») 1 T(a - θiX^B^y, y)-χy), i.e.,

a?' + σ ( \ y 1 x' - σ(θ(\-1))σ(B1(yf y)'1)

Therefore B2(xf + σ(X)y', xr - σ(θ{χ-1))σ(B1{yJ 2/)-1)?/') - 0 for all λ ^ 0
in Rx. Since x' _L ?/', this gives

B2(x', x') + σ(X)B2(y', y')φ{σ{Bλ(y, yY'))φ(σ{β(X^))) - 0

for all λ Φ 0 in Rx. Now let a = B2(x\ xf). Taking λ = 1, we get
a - Bly\ y')φ{p(px(y, y)'1)) = 0. Thus a - σ(X)aφ(σ(θ(χ-1))) = 0 for
all λ Φ 0 in Rt. Let τ be the inner automorphism of R2: τ(β) = a~λβa
for all β in R2. Then taking λ' 1 = σ~\β), we get /5 = (Γ" 1 O ζp o θ o CJ-'X/S)

for all /5 ^ 0 in i?2, i.e., τ~ΎoφoGoQoo~Ύ is the identity automorphism
of 2?2. Since σoθoσ'1 is an involutory anti-automorphism of i?2, this
gives φ =

COROLLARY. Lei n be an integer greater than 2. Then there
exist semi-inner product spaces Vλ and V2 of dimension n over the
complex numbers such that L(V^) and L(V2) are not ortho-isomorphic.

Proof. There exists a real closed subfield K of the complex
numbers C such that K{i) = C, and K is not isomorphic to the real
numbers.6 Let φ be the involutory automorphism of C which has K
as its field of fixed points. Let θ be the usual conjugacy automorphism.
Let V1 be an ^-dimensional Hubert space over the complex numbers.
Let V2 be the set of all ordered ^-tuples of complex numbers. Let
B((aly , an), (A, , βn)) = Σa&φi). It is easy to verify that B is
a semi-inner product with anti-automorphism φ. If L{V^) and L(V2)
were ortho-isomorphic, we would have φ — d o ^ o r 1 for some auto-
morphism σ of C But this would mean that K was isomorphic to the
field of fixed points of θ, i.e., the field of real numbers. This contra-
diction proves the corollary.

This corollary points up the fact that lattices L( VΊ) and L( V2) may
be isomorphic without being ortho-isomorphic.
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TRANSFORMATIONS OF DOMAINS IN THE PLANE AND
APPLICATIONS IN THE THEORY OF FUNCTIONS

MOSHE MARCUS

In this paper we shall consider a family of transformations Sn

(n = 1, 2, •) operating on open or closed sets in the complex plane s
Sn is defined relatively to a fixed point called the center of transfor-
mation, and it transforms an open set into a starlike domain which,
for n > 1, is also %-fold symmetric with respect to this point. There-
fore, for n > 1, Sn may be classified as a method of symmetrization.
This method of symmetrization was already defined by Szego [4] for
domains which are starlike with respect to the center of transformation.

The definition of Sn will be extended (in the way usually used
for symmetrizations) so that Sn will operate also on a certain class of
functions and a family of condensers, in the plane. It will be proved
that Sn diminishes the capacity of a condenser and this result will be
used in order to obtain certain theorems in the theory of functions.

1. Definitions and notations. The transformations Sn are defined
as follows.

DEFINITION 1. Let Ω be an open set in the plane z, which does
not contain the point at infinity, and let z0 be a point of Ω. If
I z — so| < p, (0 < p), is a circle contained in Ω, we define:

p(φ) = \2 ^ ) = ' d ΐ

r

where \z — zo\ = r and

E = {z\zeΩ,\z - s01 > />, arg (s - s0) = ^}

( 2 ) ^ P % ) ( ^ ) = — ΣsLlφ +
n fc=o \ ^

Evidently, R{n)(φ) does not depend on p.
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Now, the set obtained from Ω by the transformation Sn = Sn(z0),
with center z0 is defined as follows:

( 4) SnΩ = {z | z - z0 = reiφ

y 0 ^ r < R{n)(φ), 0 ^ φ < 2π} .

If instead of Ω we have a compact set H, which has an interior
point z0, we define:

(4') SnH ={z\z-zo = reiφ, 0 ^ r ^ R{n\φ), 0 :S Ψ < 2π} .

It is easily verified that SnΩ is a simply-connected domain and
that SnH is a connected compact set. Both sets are starlike with
respect to z0.

We shall extend the definition of Sn over a family of functions
& which will now be defined. A non-constant real function g(z)
belongs to ^ if it is continuous over the extended plane z, if it takes
its maximum value at infinity and if its minimum is assumed on a
set of points, the interior of which is not empty. Let g(z) be a
function of *& and let m and M be its minimum and maximum values,
respectively. We define the following sets:

(Gc = {z | g(z) < c} , for m < c ^ M .

Gc (for m < c < M) is an open bounded set while Gm is a compact
set. Let z0 be an interior point of Gm and suppose that the circle
| z — zQ | g p, (0 < p), is contained in Gm. Denote by Lp(c, φ), L{

p

n)(c, φ),
R{n){c,φ) the functions defined by (1), (2), (3) with Gc replacing Ω.
Clearly, for a fixed φ, Lp(c, φ) is strictly monotonic increasing, for
m ^ c gΞ M. We also have:

Km Lp(c, φ) = Lp(d, φ), for m < d ^ M
( 6 )

lim Lp(c, 9) = Lp(m, p) .
c—>m

Let S« = Sn(z0). From these properties of Lp(c, φ), it follows that:

( 7 )

( 8 )

( 9 )

Since Gc S

(10)

l\c<d<M '

SnGc

SnGm

τd w e

sβc

= J J ίb̂ Grrf ,

— 1 1 O.>,VJΓΛ

also have:

, s n snGd,
c<d<M

for m tί c < d

for m < c

<M.

DEFINITION 2. Let g(z)e^. Using the notations introduced
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above, we define the function g{n\z) obtained from g(z) by the trans-
formation Sn = Sn(z0), as follows:

(11) Sj, = g«(z) = \ i D t {

[M, otherwise .

From (8) and (9) we now conclude:

SnGc = {z | g{n\z) < c} , for m < c ^ M ,
(12)

2. A lemma concerning the function g{n)(z).

LEMMA 1. The function g{n)(z) is continuous over the extended
plane z. If moreover g(z) is Lip on every compact subset of GM

λ then
g{n)(z) is Lip on every compact subset of SnGM.

Proof. We begin by proving the continuity of g{n)(z). If z* e SJ2m

and g{n)(z*) = d>m then by (10) and (12), the set SnG%+s - SnGU
(where m < d* — ε < c £ * + ε < M ) i s an open neighbourhood of z* in
which | g{n)(z) - g{n)(z*) | ^ ε. If z* belongs to SnGm or z* belongs to
the complement of SnGM, then the set SnGm+s(m < m + ε < M), and
the complement of SnGM-s(m < M — ε < M) respectively, are open
neighbourhoods of z* in which | g[n\z) — g{n)(z*) | ^ ε.

In order to prove the second assertion of the lemma it is sufficient
to show that g{n)(z) is Lip on every set SnGc(m < c < M). Without
loss of generality we may suppose that z0 = 0 and that p = 1. (And
in this case we shall write L{n)(c, φ) instead of L[n){c, φ).) We now
map the z plane, cut along the positive real axis from zero to infinity,
by a branch of w = log z, (w = u+iv), onto the strip 0 < v < 2π. (The
points of the positive real axis will be mapped both on v = 0 and
v = 2π). We denote by He and H? the images of Ge and SnGc by this
mapping, and we put h(w) = g(ew) and h{n)(w) = g{n)(ew).

Let c be a fixed number in the open interval (m, M). Since g(z) is
Lip on Ge, the function h(w) is Lip on Hc, and if it is shown that
h{n)(w) is Lip on ίZ?, the required result follows.

Since h(w) is Lip on Hc, there exists a number p > 0 such that:
I h(wύ — h(w2) | ^ p | wx — w21, for any wl9 w2 e Hc.

We need the following assertion:
If δ is a positive number and vlf v2y clf c2 are real numbers such that:

(13) | vλ — v21 < δ, m < cλ < c2 — pδ < c — pδ ,

1 A function g(z) is Lip on a set E if there exists a constant p, such that for any
t w o p o i n t s zi, ziG E, w e h a v e | g(zί) — g(zz) \ ^kp\zχ — Zι\.
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then

(14) L™(c2, v2) 2: L™(cu vj + [δ2 - (vx - O 2 ] 1 / 2 .

Because of the definition of L{n)(c, v), it is enough to prove (14) for
n = 1. Without loss of generality we may suppose that 0 ^ vk < 2π,
(fc - 1, 2).

Denote by Jk the intersection of the half line Imw = vk, Rew^O,
with the set HCk, for k = l,2. The Lebesgue measure of Jk is L{ck,vk).
Using (5) and (13) the following is easily verified:

Let wxe Jλ. If w2 — u2 + iv2, u2 ^ 0 and \w1 — w2\ ^ <?, then
^ 2 e J 2 From this and the fact that Jλ is bounded on the right, (14)
follows for n = 1.

It will now be shown that

| h{n){w') - h{n){w") | g p | w' - w/f | , for any w', w" e fl? .

Suppose that there are two points w19 w2 in ίίc

w for which this ine-
quality does not hold, and let δ be a number such that:

(15) | h™(wj - h{n)(w2) | > pδ > p \ wλ - w2 \ .

Let h[n){w~) < h{n)(w2). Then we can find numbers c19 c2 such t h a t :

(16) m S h^iwj < cx < c2 - pδ < h{n)(w2) - pδ < c - pδ .

Now the numbers cl9 c2, vx = /mtϋi, ^2 = / m ^ satisfy (13), and therefore
inequality (14) holds. Since, for m < c < M,

Hc

n = {w | 0 S Imw ^ 2ττ, fc(w)(^) < c} = {w \ 0 ^ v ^ 2ττ, w < L(w)(c, v)} ,

it follows (by (16)) that wλ e H^ and w2 ί JEί*; hence u^
and ^ 2 = Rew2^ L{n)(c2, v2). These inequalities together with (14) yield
| w1 — w21 > δ, which is in contradiction to (15). This completes the
proof of the lemma.

REMARK. The following is a consequence of the second part of the
lemma: If g(z) is Lip on every compact subset of GM — Gm, then g{n\z)
is Lip on every compact subset of SnGM — SnGm.

3* On a class of functions (C, so) Let C = (D, Eo, E±) be a con-
denser in the complex plane z, i.e. a system consisting of a domain
D and two disjoint closed sets Eo and £Ί, such that D does not contain
the point at infinity, Eo is bounded, Eλ is unbounded and the union
of EQ and Eλ is equal to the complement of D.

Suppose that Eo contains an interior point z0, let z — z0 = rβ^ and
denote by Sφ the ray arg (z — z0) = φ. Then a subclass (C, s0) of ^ is
defined as follows.
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A real function g(z), continuous over the extended plane z, belongs
to (C, zQ) if:

( i ) Q(z) possesses continuous first partial derivatives, in D.
(ii) g(z) Ξ 0 in Eo, g(z) = 1 in JSί and 0 < g(z) < 1 in D.
(iii) The set of points on the ray Sφ, at which g(z) assumes a

given value c (0 < c < 1), is finite.
(iv) Any compact set of points on Sφ, which is contained in D,

contains only a finite number of points (possibly zero) at which
9g(r9 φ)\dr = 0.

Suppose that the Dirichlet problem of the equation Δu = 0, with
continuous boundary values, always has a solution in D. Then there
exists a real function ω(z), continuous over the extended plane z, which
is harmonic in D, vanishes on Eo and assumes the value 1 on Ex. This
function is the potential functions of C. Evidently, it belongs to

( C , So).

Let g(z) e (C, z0). Using property (iii) we find that (6) may be
replaced by

(17) lim Lp(c, φ) = Lβ(c0, ψ\ for 0 ^ c0 ^ 1 .
c-*c0

Therefore in this case, the function g{n)(z) = Sn(z0)g may be defined in
the following way:

|Ό, for r ^ JB(Λ)(0,9>),

(18) g{n)(z) = g{n)(r, <p) = \c, f o r r = R{n)(c, <p),0<c<l,

( l , for r ^ R{n)(l,φ) .

Since, for a fixed φ, g{n){τ, φ) is a strictly monotonic increasing function
of r in the interval i?(w)(0, φ) < r < R{n)(l, φ) and since g{n)(r, φ) is
continuous over the entire plane, it follows that R{n)(c, φ) is continuous
in both variables for 0 < c < 1, 0 ^ φ < 2π.

The following definition extends the transformation Sn over a
family of condensers {C}.

DEFINITION 3. Let C = {D, EQ, Ex) be a condenser in the complex
plane z, such that Eo contains an interior point z0. Put Gx = D U Eo

and suppose that SA (with Sn = Sn(zQ)) does not contain the entire
open plane. Then, the condenser C{n) obtained from C by the trans-
formation Sn -== Sn(z0) is defined as follows:

where D(n) = SA - SnE0, Ejn) = SnE0 and Eln) = the complement of
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4«. A theorem, concerning the Dirichlet integral of functions be*
longing to (C, z0).

THEOREM 1. Let C = {D, Eo, E^ be a condenser in the complex
plane z, such that Eo contains an interior point z0. Suppose that
g(z) belongs to (C, z0) and that its Dirichlet integral over D is finite.
If Sn = Sn(z0), (n = 1, 2, 3, •), 9{n)(z) = Sng, and D{n) is the domain
mentioned in Definition 3, then:

(19) ( [ (Fg{n))2dxdy ^\\ (Fgfdxdy .

REMARK. This theorem was proved by Szego [4], for n = 2, 3, ,
in the special case where, D is a doubly-connected domain bounded by
two smooth curves which are starlike with respect to zo; Eo and Eλ

are connected sets; and the function g(z) is the potential function of
the condenser C.

Proof. By property (i) of g(z) and by the remark at the end of
Lemma 1 it follows that g{n)(z) is Lip on every compact subset of D{n).
Therefore the first partial derivatives of g{n)(x, y) exist almost every-
where in D{n) and are bounded in every compact subset of D{n).

Without loss of generality we may suppose that z0 = 0 and that
the circle | z | ^ p — 1 is contained in Eo. Again we shall write L{n)(c, φ)
instead of L{

p

n)(c, φ). We also introduce the following notations:

D(a, b) = {z\a< g(z) < b} ,

D{n)(a, b) = {z\a < g{n)(z) < b} , for 0 < a < b < 1 .

The sets D(a, b) and D{n)(a, b) will be mapped by w = log z
on two sets which we denote by H(a, b) and H{n)(a, b), respectively.
Finally we define: h(w) = g(ew), h{n){w) = g{n)(ew) and

7C = {w | 0 < Imw < 2π, h(w) = c} , for 0 < c < 1 .

The proof of the theorem rests on the following inequality:

(20) (( [1 + ε\Fh{n))ψ2dudv ^ (( [1 + ε\Fh)ψ"dudv ,
J Jff(*) (a,b) J jH(a,b)

where w = u + iv, 0 < a < b < 1 and ε > 0.
Inequality (19) is derived from (20) by a standard argument which

we shall briefly describe.
The closures of the sets D(a, b) and D{n){a, b) are compact sets

contained in D and D{n\ respectively. Therefore the first partial
derivatives of h{u, v) (h{n)(u, v)) are bounded in H(a, b) (H{n)(a, 6)). It
is evident from the definitions that the area of H(a, b) equals that
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of H{n)(a, b). Taking into account these facts and using the binomial
expansion of the integrands in (20), (for ε small enough), we obtain:

— (( (Fh{n)γdudv + O(ε4) ^ — (( {Vhfdudv + O(ε4) .
2 JJE'nHa,b) 2 JJH(a,b)

Dividing by ε2 and letting ε tend to zero we find that

[( (Fh{n)γdudv ^ [( {Fhfdudv .

Since the Dirichlet integral is invariant under a simple conformal
mapping, it follows that

(( (Fg{n))2dxdy ^ (( {Fgfdxdy .
JjD^nUa,b) JJD(a,b)

Hence, letting a tend to zero and b tend to one, we obtain the required
inequality.

In the proof of (20) we may suppose that ε = 1.
The first step is the following assertion. Suppose that w* =

u* + iv* e H{n)(a, b) and 0 < v* < (2π/n). Put h{n)(u*, v*) = c*. If
dh/du Φ 0 at all the points of intersection of the set τc* and the lines
Im w — v* + (2πm/n) (m = 0, , n — 1), then there exists a neighbour-
hood of w* in which h{n)(u, v) e C1.

In order to prove this assertion we shall show first that L(c, v) eC1

in a neighbourhood of (c*, v*). By property (iii) the set 7C* intersects
the line Imw = v* in a finite number of points, which we denote by
Wi, , wp, where Rew1<Rew2< < Rewp. By hypothesis, dh/duΦ 0
at these points. Let q be a positive number such that the circles
Kj: | w — Wj | <£ q9 (j = 1, , p), are contained in H(a, b) and dh/du Φ 0
in them. Then the following is easily verified:

There exists a rectangle

P = {(c, v)\\c-c*\^δ,\v-v*\^δ},

(where α < c * - δ < c * + <5<δ, 0 < v* - δ < v* + δ < (2π/n)), such
that:

(a) If (c,v)eP then τ c intersects the line Imw — v in exactly p
points, one point in each circles K3.

(b) The set H(c* - δ, c* + δ) intersects the strip v* - δ < Imw <v* + δ
in exactly p domains Qjf where Q3c:Kjf (j = 1, •••, p).
Solving c = h(u, v) for u in Q3 we obtain a function u = Uj(c, v). This
function belongs to C1 in the rectangle P where

^L = (JILY1 ^L = -f.^^ X / ^ V1

dc \ du / ' dv \ dv J \ du J '
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Since by definition:

(22) ±
3 = 1

it follows that L(c, v) e C^P], We observe that in
(-l)i+1 x \dh/du\ so that

(23) ΘL
dc dc

j we have dh/du =

in P .

Evidently, similar results hold for any of the points c — c*, v =
v* + (2πmln), for m = 0, , n — 1. Therefore it is possible to find
a positive number r]{η ^ 8) such that L{n](c, v) e C1 and (0L{n)ldc) > 0

in the rectangle | c — c* | < η, \ v v* < rj. By (18), for any fixed
v,c = h{n)(u, v) is the inverse function of u = LU)(c, v) in the interval
0 < c < 1. Hence it follows that in a certain neighbourhood of (u*, v*)p

h{n\u, v) e C1 and

(24)
du dc dv \ dv V dc

Denote by A(v) and -Aw(̂ ) the intersections of the line Im w — v
with the sets ϋ ( α , b) and H{n)(a, b) respectively. Let w e A(v) and
h(w) = c, (0 < v < 2π). If at one of the points of intersection of 7C

with the line Imw = v, dh/du vanishes then we shall say that w is a
critical point of A(v). Let w e An(v) and h{n)(w) = c. If the intersection
of 7C with one of the sets A(v + 2πmln), (m = 0, , w — 1), contains,
a crititical point of that set, we shall say that w is a critical point
of An(v). By properties (iii) and (iv) the set of critical points of A(v)
is finite, and consequently, the set of critical points of An(v) is finite..

We shall prove now that

(25) ( [1 + (Fh{1))2]ll2du ^ ( [1 + {Vh)ψ2du ,

for 0 < v < 2π. Inequality (20) for n = 1, follows from (25).
Let vQ be a fixed point in the interval (0, 2π) and let {c19 , ck-^

be the set of values (possibly void) taken by h(w) at the critical points,
of A(v0). We assume that these values are ordered as follows:

a = c0 < cλ < < ck-λ < ck = b .

Denote by Bι that subset of A(v0) which consists of open segments,
free from critical points, such that at the endpoints of each segment.
h(w) assumes the values cL and cι+1. Evidently, for any I (I = 0, , k — 1)
the set Bt is not void and A(v0) = \Jϊlo Bt.

Now let m be a fixed integer, 0 ^ m ^ fc — 1, and denote by al9 , αp,
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the segments contained in Bm, which were described above. We shall
assume that ad is at the left of aj+1, (j = 1, •••, p — 1). In some
neighbourhood of a3- it is possible to solve c = h(u, v) for u and thereby
obtain a function u = u3 (c, v). By (21) we obtain:

(26) ( [1 + (Fh(uf v

for j = 1, ••., p.
Denote: u) = L(c3, v0) and w) = ^ ' + iv0l ( i = 0, , k). Then wf

0

and wj; are the endpoints of Aλ{v^) while ^J, •• ,w'k-1 are the critical
points of Aλ{vQ). Denote by B'm the open segment with endpoints w'mί

w'm+1. By (22) and (24) (with n = 1) we get:

• [i + (FL(C, vo)γγ

(27) JBm JCm

= " h + k Σ (-l)ί+X (c, v0) \\ do .

By (26), (27) and the well known inequality

(/ P \2 / p \2 /p \ 2̂ | 1/2 p

(28) \ Σ *y) + ( Σ 2/i) + ( Σ ίj) ^ ^ Σ (*; + iί} + ί?)1-

(xu y,; tj being real numbers) we finally obtain:

ί [1 + (Phw(u, vo)yγ'2du ^ ί [1 + (Ph(u, vo))ψ'du
(29) J β ; ι Um

v̂
Σ
j = l Jcύj

Since (29) holds for any m, (m = 0, •••,& — 1) inequality (25) follows.
It remains to prove inequality (20) for n = 2, 3, . Since this

inequality is proved for n = 1, it is enough to show that

(30) n x [ [1 + (Fh{n)(u, vo))ψ2du ^ Σ ( [1 +

where 0 < v0 < (2τr/%) and vd = v0 + (2πj/n).
Let {(??, •• ,c?_1} be the set of values (possibly void) assumed by

h{n){w) at the critical points of An(v0), these values being ordered as
follows:

a = c0* < cf < < c*-! < cr* = 6 .

Put < = L(w)(c^, v0) and w*fi = L(c*, vs). By (24) we get:
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+ I[l/+ (Fh{n)(u, vo))ψ2du =

(31) = -i- Π n* + (Σ Flfo ^

i[l + (Fhw(u, v^ψ'du = Γm+1[l + (FL(c, v

for m = 0, , r — 1 and i = 0, , n — 1. From (31) and (28), ine-
quality (30) follows. This completes the proof of the theorem.

5* The transformation Sn diminishes the capacity of a condenser*
Let C = (D, Eo, Ej) be a condenser in the complex plane z, satisfying
the conditions of Definition 3. It will be assumed that the Dirichlet
problem for Fu = 0, with continuous boundary values, always has a
solution in D. (Sufficient conditions for the validity of this assumption
are given, for example, in Hayman [2], Th. 4.2, pp. 63-64. Following
Hayman's terminology we shall say that a domain is admissible if it
satisfies these conditions.) The capacity of the condenser C is defined
as the Dirichlet integral over D, of the potential function ω(z) of Cf

(see §3).
Let CU ) - SnC - (D^\ £ T , E^), (where Sn - Sn(z0)). The domain

DM is admissible so that the capacity of C{n) is defined. We now
prove the following:

THEOREM 2. Let C and C{n) be the condensers mentioned above
and denote their capacities by I and In respectively. Then we have

Proof. Let ω{n)(z) = Snω{*), (Sn = Sn(z0)). Since ω(z) e (C, z0), by
Theorem 1 we have

(32) ( (Fω{n)fdxdy ^ ( {Fωfdxdy - / .

The function ω{n)(z) is continuous over the extended plane z and Lip
in every compact subset of D{n); it vanishes on Eo and assumes the
value 1 on Eλ. Hence, by the Dirichlet minimum principle (see,
Hayman [2], Th. 4.3, pp. 65-67) we have

(33) In SL [ (Fύ){n)fdxdy .

The required result follows from (32) and (33).

We shall apply Theorem 2 in order to obtain a result about the
inner radius. Let D be a domain in the complex plane z, zQ a point
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of D, and r{D, z0) the inner radius of D at z0. (We refer here to the
definition given, for example, in Hayman [2] pp. 78-80, where the
inner radius is defined without any assumptions on D.) The domain
D can be approximated from within by a series of bounded analytic
domains {Dn}, which contain the point z0, such that limΛ_«> r(Dn, z0) =
r(D, z0). (An analytic domain is a domain bounded by a finite number
of disjoint, simple closed, analytic curves.) By a well known method
of Pόlya and Szego (see Pόlya-Szego [3] pp. 44-45; also Hayman [2]
pp. 81-84) the following theorem is obtained as a consequence of
Theorem 2.

THEOREM 3. Let D be a domain in the complex plane z and let
z0 e D. If Sn = Sn(z0), then

(34) r(D, *o) £ r(SnD, z0) .

6 Applications in the theory of functions* In this section we
denote by w = f(z) a function which is regular in | z | < 1 and by D
the domain of all values w assumed by this function at least once in
\z\ < 1. It is known that

(35) | / ' ( 0 ) | g r ( A / ( 0 ) ) ,

equality holding if and only if f(z) is a (1,1) mapping, (see Hayman
[2], Th. 4.5, p. 80).

As a consequence of Theorem 3 we obtain the following:

THEOREM 4. Let Sn — Sn(f(0)) and suppose that SnD does not
contain the entire open plane. Let w = F(z) be a (1,1) conformal
mapping of \ z \ < 1 onto SnD, such that F(0) = /(0). Then we have

Proof. By (35) we get: | /'(0) | ^ r(D, /(0)) and | F'(0) \ -
r(SnD, F(0)). From these relations together with (34), the required
inequality follows.

The following results are based on Theorem 4,

THEOREM 5. Let f(z) = aλz + a2z
2+ •••. Define R[n\φ) as in

Definition 1, for the domain D and the point w — 0. Then,

(36) | a, | ^ $/~jR™{φ) , (0 ^ φ < 2π)

and equality holds for the function

w = ψn(z) = tei{φ+θ)zl(l + einθzn)2ln , (t and θ real numbers) .
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Proof. Let φ0 be a fixed real number and suppose that R{n)(φ0) =
d < co. Denote by Do the domain containing the entire w plane, with
the exception of n rays: arg w = φ0 + (2πk/n), d ̂  | w\, (k = 0, ,π—1).
The domain SnD(Sn = Sn(0)) is contained in Z>0. The function w =
^ΊΓdei<P0/w(s) where

(37) fn(z) = 2/(1 +

maps | z | < 1 conformally, (1,1) onto Do. Therefore, by the principle
of subordination and Theorem 4 it follows that \aλ\ ^ {V £d, and
inequality (36) is proved. The assertion concerning the function w =
ψn(z) is evident.

The following theorem may be proved by the same method.

THEOREM 6. Let f{z) = aλz + a2z
2 + . Suppose that R{n)(φ) ^

M < oo for 0 ^ φ < 2π and that R{n)(φ0) = βM(0 < β S 1). Then

(38) | a, |

equality holds for the function

W =

fn(z) is defined by (37), 0 ^ ^ < 2ττ

We now prove

THEOREM 7. Lei /(s) = aλz + α2a;2 +

(39) Eo = exp

+

define:

27Γ Jo L2
= exp Γ-i- f log

L27Γ Jo

Then \a1\ ̂  RQ, and equality holds for w = aλz.2

Proof. First suppose that w = f(z) is regular in | z \ ̂ 1 and that
f'(z) ψ 0 on
we have

(40) Km

= 1. Then

= lim exp

is a continuous function of 9?, and

P- Σ log
L n =̂0

- Ro ,

for any real φ. Therefore, if a positive ε is given and n is sufficiently
large, the domain SnD (where Sn = Sn(0)) is contained in the circle
I z I < Ro + ε. Hence, by Theorem 4 and the principle of subordi-

_ I C2π
2 The author obtained this result in a weaker form, with rn — — I BίnXφ)dφ instead

ZπJ0

of Ro. (By the geometric-arithmetic mean theorem RQ ̂  rn for every n). The stronger
form written above was suggested by the referee, to whom our thanks are due.
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nation, we get | aλ | g Ro + ε. In order to prove the theorem in the
general case, we approximate the function w=f(z) by functions w =
f(ρz), with 0<p<l.

Let Ω be an open set in the plane z and let zoe Ω. Denote by
m(φ) the linear (Lebesgue) measure of the set E(φ) = {z\aτg(z — z0) =
φ,ze Ω}, and define

(41) m{n)(φ) = — Σ ™{φ +
n k=o \

We shall show that Theorems 5, 6, 7, remain true if R(φ) is replaced
by m(φ), and R{n)(φ) by m{n)(φ). This is a consequence of the follow-
ing inequalities:

(42) R(φ) ^ m(ζP) ,

(42') i?U)(φ) ^ m(%)(^) , for 0 ̂  ^ < 2ττ .

If R(φ) is finite, equality holds in (42) if and only if the set E(φ) is
contained in a segment E* such that E* — E(φ) is a set of measure
zero. (We shall refer to this condition as the MR condition.) Ine-
quality (42') follows from (42) by the geometric-arithmetic mean theo-
rem. Hence, if R{n){φ) is finite, equality holds in (42') if and only if

R{φ) = R(φ + J*fc\ = m{φ) = m(φ + ̂ - ) , (k = 1, , U - 1) .

From this it follows that when we replace R{φ) by m(φ) and R{n){φ)
by m{n)(φ), the functions mentioned at the end of Theorems 5, 6, 7,
are in each case, the only functions for which equality holds.

In order to prove (42) we may suppose that m(φ) is finite. In
this case, for any ε > 0 we can find a subset F of E{φ), consisting
of a finite number of segments, such that the linear measure of
E{φ) — F is smaller than ε. Therefore it is enough to prove (42) in
the case that E(φ) consists of a finite number of segments. Suppose
that these segments are not adjacent. Then, by shifting them toward
zQ (SO that they do not overlap), we increase R{φ), while m(φ) is
invariant. But if the segments are adjacent we have R{φ) = m(φ).
Therefore (42) is proved.

Evidently, the MR condition for E(φ) is sufficient in order that
R(φ) = m(φ). Suppose now that R(φ) is finite and that E(φ) does
not satisfy the MR condition. Then it is possible to find a subset Ft

of E(φ) and a subset F2 of the complement of E(φ) on the ray
arg (z — zQ) = φ, such that the two subsets have equal, positive measures
and F2 separates F1 from zQ. Replacing F± by F2 we increase R(φ),
but not m{φ). Therefore we must have R(φ) < m{φ).
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B* ALGEBRA UNIT BALL EXTREMAL POINTS

PHILIP MILES

Results of Kadison [3] and Jacobson [2] are combined to show
that the points described by the title are unitaries, left shifts, right
shifts, or sums of these. The extremality property is preserved by
homomorphisms; conversely, when range and domain are AW* algebras,
every extremal point of the range has an extremal point in its pre-
image. Exact formulations of these results and of a few simple
consequences are given in section one; proofs follow in section two.

In what follows, A will be a self-ad joint subalgebra of some B*
algebra; "x is extremal (A)" will mean that x is an extremal point
of the unit ball of A with respect to the B* norm indicated by the
context; "weak topology" will mean the weak operator topology with
respect to the representation of A by bounded operators on a Hubert
space which is indicated by the context.

1. Theorems. Our starting point is a formula due to Kadison
([3], Theorem 1). In a mildly generalized form, his result is:

THEOREM 1. Let A be a self-adjoint subalgebra of some B*
algebra B. Then x is extremal (A) if and only if

(1 - x*x)A(l - xx*) = {0} .

Here " 1 " stands for the identity of A if there is one; otherwise
the meaning of the equation is to be found by performing the indi-
cated multiplications for each y e A. It turns out (Theorem 2) that
the existence of any element extremal (A) implies that A has an
identity.1

An obvious consequence of this formula is the perseverance of
extremality. Calling "reasonable" any linear topology making involu-
tion continuous, and multiplication continuous in each variable
separately, we have:

COROLLARY ( i ) // A is the closure of A in B with respect to
a reasonable topology, and if x is in A, then x is extremal (A) if
and only if x is extremal (A).

(ii) If φ is a *-homomorphism of A into a B* algebra Blf then
x extremal (A) implies that φx is extremal (ΦA).

Using the methods of [2], one can draw substantial information
about the form of an individual extremal element from Theorem 1.

Received February 14, 1963. Supported by NSF Grants G-14362 and G 19050.
1 This has already been proved by Sakai [5, p. 1.3]
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THEOREM 2. Let A be a self-adjoint subalgebra of the algebra
&(H) of all bounded operators on the Hilbert space H. Let x be
extremal (A). Then

( i ) A has an identity1, which we now take to be the identity
operator on H—thus possibly changing the meaning of H.

(ii) x satisfies one of the following
(a) x is unitary
(b) x is semi-unitary—i.e., exactly one of xx*, x*x is the

identity
(c) There is a projection p such that px and (1 — p)x are

semi-unitary on pH and (1 — p)H respectively. Further,
p can be taken from the center of the weak closure of A
or, if A is AW*, from the center of A.

(iii) If x is a semi-unitary with xx* = 1, then
(a) H = 2o° Θ Hi where x is an isometry of Ho onto HQ and

of Hi+1 onto Hi (i ^ 1), and maps Hx onto zero.
(b) Let X be the left shift on unilateral l2. The map taking

a polynomial in x and x* into the same polynomial in
X and X* induces a *-isomorphism from the uniformly
closed subalgebra of ^(H) generated by x and x* onto
the uniformly closed subalgebra of &(l2) generated by X
and X*.

(c) The weakly closed subalgebra W of &(H) generated by
x and x* is naturally *-isomorphic to &(l2) © Z, where
Z is the weakly closed subalgebra of ^?(H) generated by
x and x* restricted to Ho. Z + 1 is the center of W.

Clearly there is a restatement of (iii) applying to semi-unitary
operators with x*x = 1; in it X is the right shift on l2, and x maps
Hi onto Hi+1 for all i ^ 1. It is also clear that (iii) can be applied
separately to the components px and (1 — p)x of an element satisfying
(iic). For example, the uniformly closed algebra generated by such
an element is *-isomorphic with the uniformly closed subalgebra of
&(l* Θ h) generated by ux + u*, where ux is the left shift on the
first l2, zero on the second, and u2 is zero on the first l2, the left
shift on the second.

Part (iii) gives us three ways of looking at a semi-unitary
element. With regard to the uniformly closed, self-adjoint subalgebras
they generate, all semi-unitaries are the same. From the standpoint
of weakly closed algebras, semi-unitaries differ only in their unitary
parts. Viewed spatially—i.e., as representing a similarity class—a
semi-unitary is determined by its unitary part and the dimension of
its (or its adjoint's) null space. In the light of (iiia), Putnam's
result that similar normal operators are unitarily equivalent is easily
seen to imply that similar semi-unitary operators are unitarily equiva-
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lent. Another method of classifying extremal elements is considered
in [3].

Calling a projection p infinite (A) if there is a partial isometry u
in A with uu* = p9 u*u φ p, u*u g, V, we see that each projection p
which is infinite (A) gives rise to at least one semi-unitary, viz.
u + (1 — p). Conversely, the existence of a semi-unitary implies the
existence of a projection infinite (A), viz 1. Elements of type (iic)
are similarly related to projections p in the weak closure of A having
the property that p and 1 — p are both infinite (weak closure A).

Clearly the study of extremal points will be most rewarding
when they exist in substantial number. We have seen that when an
identity is lacking, there are no extremal elements. It is well known
that iΐ A is a B* algebra with identity, there are enough unitaries
so that every element of A is a linear combination of four of them.
But much more can be asked—namely, that the unit ball be the
(somehow) closed convex hull of its extremal points. This fails to
happen for the general B*-algebra. An exercise in Bourbaki shows
that if A is a weakly closed subalgebra of 3?{H), then A is the
weakly closed convex hull of its extremal points; the proof may be
written "Alaoglu: Krein-Milman."

The weakly-closed, or similar, situation has another useful fea-
ture; restating an argument of Calkin ([1], proofs of Theorems 2.4
and 2.5) we obtain:

THEOREM 3. // A is an AW* algebra, Φ a*-homomorphίsm of A
into a B* algebra, and y a point extremal (ΦA), then there exists
an x extremal (A) with φx = y.

As an application of this theorem, we consider how the type (in
the sense of [4]) of an AW* algebra determines the type of an A"FF*
homomorphic image.

THEOREM 4. Let A, B be AW* algebras, with B the image of
A under some non-trivial *-homomorphism. Then

( i ) A of type In implies B of type In

(ii) A of type Πx implies B of type IIX

(iii) A of type 11^ implies B of type 11^ or III
(iv) A of type III implies B of type III
(v) A of type 1^ implies B of type .L, 1/ ,̂ or III.
It is likely that another attack would produce a substantially

improved theorem in this direction.

2. Proofs*

Proof of Theorem !• The proof of [3] may be modified to apply
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in the case where A is not closed, nor known to have identity. In
fact, let x be extremal (A). Letting h = x*x, we observe that
0 ^ σ(h) ^ 1, where σ(h) is the spectrum of h in the closure of A.
Let C be the intersection with A of the uniformly closed subalgebra
generated by h. Then C is isometrically*-isomorphic with an algebra
of continuous, complex valued functions on σ(h). Further, C contains
8 = h(l - h)\

We desire to show the inequality

In view of the identification of C with a function algebra, this reduces
to showing that for real t between zero and one,

o ^ «[i + ί(i - tyγ ^ i .

This is obvious when the ambiguous sign is minus; when it is plus,
the expression in t may be expanded as a convex combination of
points obviously in [0,1],

We thus have || x(l ± s) || ^ 1. Writing x = (l/2)[(cc + xs) + (x- xs)]
and using the extremality of x, we have xs — 0 and so sx*xs = 0—
i.e., h\l — hy = 0. Again viewing C as a function algebra, we con-
clude from the last equation that the function h assumes only the
values zero and one, so h is a projection and x a partial isometry.

Thus if y e (1 — x*x)A(l — xx*), then y = (1 — x*x)y(l — xx*)
and so xy — yx — 0. It follows that || x ± y* ||2 = || x*x + yy* \\ =
max (|| x*x\\, \\yy* | | ) . Assuming that \\y\\ ^ 1, we have || x ± y* \\ = 1
and so, by the extremality of x, y* = 0.

The converse, that an x giving (1 — x*x)A(l — xx*) = 0 is extremal
(A), is proved in [3]; it also follows from Theorem 2, which is based
entirely on the equation (1 — x*x)A(l — xx*) = 0.

Proof of Theorem 2. Suppose x satisfies

( 1 ) (1 - x*x)A(l - xx*) - 0

then, since A is self-adjoint, x also satisfies

( 2 ) (1 - xx*)A(l - x*x) = 0 .

For each y in A we have, by (1),

(1 - x*x)(l - xx*)yy*(l - xx*)(l - x*x) = 0 ,

and so (1 — x*x)(l — xx*)y = 0. Performing the indicated multiplica-
tions, we obtain

(x*x + xx* — x*x2x*)y — y .
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The same argument may be made with x permuted with x* and y
permuted with y*; the result is that x*x + xx* — x*x2x* is also a
right identity for A. As previously agreed, we consider this element
to be the identity operator on H, and denote it by " 1 " .

We must now show that (1) implies part (ii) of the theorem.
Observe first that (1) implies

0 — (1 — x*x)x*(l — xx*)x = (x* — x*xx*)(x — xx*x) ,

and so, that x is a partial isometry.
We next show:

xkχ*m(l - χ*x) = x*m-k(l - x*x)
( 3 ) 0 < k < m .
V ' x*kχm(l - xx*) = x™~k(l - xx*) - -

The first line of (3) may be rewritten as

(1 - xkx*k)x*n(l - x*x) = 0 k^O, n^O

and this equation established by induction on k. It clearly holds for k = 0
and, by (2) for k = l. Writing l-xk+1x*k+1 as (1 - xkx*k) + xk(l - xx*)x*k,
we see that the induction hypothesis reduces the previous equation
to:

xk(l - xx*)x*k+n(l - x*x) = 0

but this is already true by (2). The second line of (3) is proved in
the same way, using (1) in place of (2).

That x is a partial isometry, together with (3), gives

< 4) xkx*m(l - x*x) = x*kxm(l - xx*) = 0 0 ̂  m ̂  k .

We can now copy the argument of [2]. Define ei9fi by

ei - α?**-1^"1 - x^x*

fi = x^x**-1 - xW* i ^ 1 .

It follows that, for all i, j ^ 1,

e^i = δifis i fifj = δijfj

βi = 0 if and only if βx = 0 , /* = 0 if and only if / x = 0
βifj = 0 .

These relations are immediate consequences of (2), (3), (4), and the
fact that x is a partial isometry. We suppose for a moment that A
is an AW* algebra. Let

? = V Γβ4 , r = V Γ/4 ,
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the supremum being that given by the AW* character of A. Then
for any y in A, ye{ = 0 for all i implies yq = 0, and similarly for yfi

and yp. For any i and j ,

fiAβj = x^O- - xx^x^^Ax*3'-1^ - x*x)xj~1 = 0

by (2). From what we have just said, this implies rAq = 0.
Now consider the left annihilator of Aq. Since A is AW*, the

annihilator can be written as Ap for some projection p in A. It is
easily shown that, since Aq is a left ideal, p is central in A. We
thus have

(1 - p)q = q(l - p) = q

and, since rAq = 0, r is in Ap—i.e.,

pr = rp = r .

By definition, r/x = f,r = Λ; thus, pΛ = 2>(r/x) = (pr)/! = flf and

so,

p( l — xx*) = 1 — a%e* = (1 — ##*)p .

Rearranging terms,

xx*(1 — p) = (1 — p)a%c* = 1 — p .

On the other hand, βi = qeu so (1 — p)e1 = (1 — j>)?βi = βlf and

(1 — p)x*x = (1 — p) — βx .

Thus (1 — p)x is semi-unitary in (1 — p)A, and unitary just in case

eλ = 0.

In the same way, we show

x*xp = pα?*α; = p

p - ra*p = fτ,

so p^ is semi-unitary in pA, unitary just in case fλ = 0.
This proves (ii) when A is AW*; the statements about the case

where A is a self-adjoint subalgebra of &(H) follow on observing
that the weak closure of A is A IF*.

To obtain (iii), observe that if x is semi-unitary with xx* = 1,
then x satisfies (1), and we may define elements et in terms of x as
above (the /; are of course all zero in this case). Define the spaces
B* of (a) by

ί(l - q)H ί = 0
1
 UH ί > o .
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We observe from (3) t h a t xeτ = 0, xe{ = e^x for i > 1—so

x*xe{ = e{ for i > 1. Consequently for any ξ,ηe H, i > 1

Since H= xx*HS-xH, x{e,U) = e^
Further,

= (eg, efl) .

- q)ξ, x(l - g)i?) - ((1 - ei)(l - ί)f, (1 - q)η) = ((1 - q)ξ, (1 -

and

(x(l - q)ξ, e{η) - (x*(l - q)ξ, ety) = 0 ,

so x and x* take iίo into itself—and so, since x* is never zero, x
takes Ho onto itself. Part (a) is now established.

To show (δ), identify l2 with a subspace of if by picking
some ξ in ίζ. with \\ξ\\ = 1 and identifying the sequence {̂ } in Z2

with ΣΎjiX*^. The restriction map is now clearly a*-isomorphism,
from the algebra of polynomials in x and x* onto the algebra of
polynomials in X and X*; it remains only to prove that this map is an
isometry. We know from [7] §2, that certain algebras with involution
have a unique .B* norm: a sufficient condition is that the algebra
have a faithful *-representation on some Hubert space, and that for
each z in the algebra there is a real k such that f(z*z) ^ kf(l) for
each functional / on the algebra which is positive on all y*y.

The algebra of polynomials in X and X* has been defined as
being represented on l2, and so satisfies the first part of this condition.
Further, X*kXk - χ**+ijp+i is a projection for each k ^ 0. Thus
if / is any positive functional,

/(I) ^ f(X*X) ^ /(X*2X2) ^ .

It is readily shown that any Y*Y in the polynomial algebra can be
written as ΣakX*kXk—so

f(Y* Y) = Σakf(X*kXk) ^(Σ\ak |)/(1)

for any positive functional /, and the second part of the condition is
also satisfied. Thus there is only one B* norm on the algebra
generated by X and X*, and the norm this algebra inherits from
^?(l2) is the same it gets from ^?(H) via the restriction map.

The isomorphism between the polynomial algebras can be obtained
without considering x to be represented on any space; this is done in
[2]. The isomorphism can be shown isometric by showing that a
polynomial in X and X* has the same norm as the same polynomial
in U and Ϊ7*, U being the (unitary) left shift on bi-lateral l2.
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To prove (c), let {ξl} be an ortho-normal basis for Hlf and let
ξI = χ*kξl; then {ξa} is an ortho-normal basis for Hk. Let pa be the
projection on the closed linear span of {£*: k = 1, 2, 3, •••}, and τα,β

the isometry of pωH onto p β i ϊ which, for each k takes f* onto ξk

β.
Observe that p* and τa>β commute with x and x*. Consequently, if
w e W, then w commutes with all τΛ,β. It follows that there exist
scalars vitj such that, for any a,

Suppose z commutes with x and x*. The equations

(zξi, H) = (^*i"1ft, x*3'-1^) = (^i-1»*<-1fi, ft) = (*S, ^-^^'^ft)

show that

0 i Φ j

a,ft) * = 3.

In other words, there exist scalars XΛtβ such that for each i,

( 6 ) zξi = Σβk^ξl .

Further, if p0 is the projection on Ho, then z commutes with p0.

Now, given any w commuting with p0 and satisfying (5), it
follows from (6) and the fact that the ξi span Ht that (1 — po)w
commutes with every z which commutes with x and x*. Since every
element of W commutes with p0, we have (1 — p0) W isomorphic to
&(l2) under the correspondence obtained naturally via (5). Clearly
p0W is isomorphic to Z, and the proof of (c) complete.

Proof of Theorem 3. The first step is to show that, under the
conditions of the hypothesis, the pre-image of a partial isometry
contains a partial isometry. The proof follows an argument of
Calkin [1, Theorems 2.4 and 2.5].

Let y be a partial isometry of B, and let v be any element of
Φ~~\y) Since A is AW*, v has a polar decomposition in A—i.e.,
there are elements u and h in A such that

u is a partial isometry

h = (v*v)112 = u*uh = hu*u

v = uh

(see [6], Lemma 2.1).
Since Φ(h2) is a projection, zero and one are in the spectrum of

Φ(h2). Since Φ is a homomorphism, the spectrum of Φ(h2) is contained
in the spectrum of h2. Since h ^ 0, this implies that zero and one
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are in the spectrum of h. Let pλ be the resolution of the identity
for h given by the spectral theorem, let 0 < a < 1, and let q = 1 — pΛ.
Then 0 Φ q Φ 1.

Let C be some maximal commutative, self-adjoint subalgebra of
A containing 1 and h—and so q as well. Let x —» x be the Gelfand
representation of C on C{Ω), the algebra of all continuous, complex-
valued functions on Ω, the (compact, Hausdorff) maximal ideal space
of C. By definition,

q(ω) = 0 implies (1 — h)(co) ̂  1 — a

q(ω) — 1 implies (1 — h){ω) ^ 1 — a .

We now assert that there exist self-adjoint r, s, and ί in C such
that

q , /&(1 + /φg = q

(1 - /*2)£(1 - q) = 1 - q .

Since the Gelfand representation is a *-isomorphism, this is equivalent
to asserting that there are real valued functions r, s, and t in C(Ω)
such that

f (ω) = h~ι(ω) when ^(ω) Φ 0 ,

s(ω) = [h(l + Λ;)]-1 when g(ω) Φ 0 ,

?(α>) - [1 - h2Y\ω) when (1 - q)(ω) Φ 0 .

But h~x and [A(l + h)\~λ are bounded and continuous on the
closed set {ω : h(ω) ^ α}, which contains the set (ω : q(ω) Φ 0}, and
[1 — fe2]"1 is bounded and continuous on {ω : (1 — h)(ω) ^ 1 — a}, which
contains the set {ω : (1 — q){ω) Φ 0}. The existence of f, s, and t is
therefore guaranteed by the Tietze extension theorem.

qu*uq = qrhu*uhrq = qrh2rq = g ,

so t̂ g is a partial isometry. Since ^v is a partial isometry, %/& — uh?

is in kernel Φ. Therefore

uh(l - g) = w(l - ft)Λ(l + Λ)ί(l - q)

= u(h - hηt(l - q) ,

which is in kernel φ. Also,

- h)q = ^(1 - h)h(l + h)sq

which is in kernel Φ. Therefore uh — uq = uh(l — q) — u(l — h)q is
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in kernel Φ, which gives the desired result.
We can now show that if y is extremal (B), then Φ"\y) contains

an element extremal (A). For let v be any partial isometry in Φ~\y).
The fundamental comparability theorem for AW* algebras—e.g., [4],
Theorem 5.6—says that there exist central projections el9 e2 in A
such that

ex(l — v*v) ^ e-SX — vv*)

e2(l — v*v) ^ e2(l — vv*)

eλ + e2 = 1 .

In other words, there are partial isometries w and z in A such that

w*w = eλ(l — v*v) , ww* ^ βx(l — vv*)

z*z = e2(l — vv*) , zz* ^ e2(l — v*v) .

The first equation implies 0 = vw*w, and so vw* — wv* = 0; it also
gives w*w(l — eλ) = 0, and so we1 = eλw — w. The first inequality
gives 0 = e±v*(l — vv*)ww* = v*ww*, and so v*w — w*v = 0. Similarly,.

vz = zv — 0 and e2z — ze2 — z. Define uλ and u2 by

ux — exv + w , u2 = e2v + z* .

We have at once from the preceding equations that

u*ux — eλ , u-βγ = e1n1 — e1

iλj2ιΛι2 — XJ2 , fΛ/2C>2 — \J2IΛJ2 — \J2 .

Since Φ(v) is extremal (Φ(A)), (1 — v*v)A(l ~ vv*) is contained in
kernel Φ; in particular, (1 — v*v)w(l — vv*) is in kernel Φ, but
(1 — v*v)w(l — vv*) — w = uλ — βLv. Thus uλ ~ eλv is in kernel Φ.

Similarly u2 — e2v is in kernel Φ. Consequently (uλ + u2) — v is in
kernel Φ. We have already seen that ux + u2 is an extremal point
of A.

Proof of Theorem 4. All algebras mentioned are assumed to be
AW*. The terminology is taken from [4],

The case where A is of type In follows at once from the defini-
tions—i.e., A is of type In if and only if it has matrix units eijf

1 ^ if j ^ n, with all eu being Abelian projections. But the properties
of being a set of matrix units, or an Abelian projection are both
preserved by homomorphisms.

Note that if p is a projection infinite (A), and φ a, * homomorphism
of A into a B* algebra, then φ(p) is either zero or infinite φ{A).
For if p — p1 + p2 with p ^ pλ — p2 and φ(p) Φ 0, we have one of
<P(Pi)f <P{ί>ύ Φ 0; say φ(pλ). Then φ(p2) < <p(p), φ(p2) - <p(p), and so



B* ALGEBRA UNIT BALL EXTREMAL POINTS 637

φ(p) is infinite. (We thank the referee for supplying this argument
to replace one which was somewhat grandiose.) In consequence, the
homomorphic image of an algebra of infinite type is again of infinite
type or else zero. An easy consequence of the first part of the proof
of Theorem 3 is that each projection in the image algebra comes
from a projection in the pre-image. This, with the previous remark,
shows that the image of an algebra of Type III is again of Type III.

Conversely, the image of an algebra of finite type is again of
finite type; for an AW* algebra is of finite type if and only if all
its extremal elements are unitary. By Theorem 3, the latter property
must be inherited by any homomorphic image.

LEMMA. If q is an abelian projection of B, there is an abelian
projection p of A with Φp = q.

Proof. As we have noted, the proof of Theorem 3 can be used
to find a projection p0 of A with ΦpQ — q. Consider the AW* algebra
p0Ap0. We know from [4], that any AW* algebra can be written as
a direct sum of two ideals, the first of which is a 2 x 2 matrix
algebra, and the second of which is commutative. Thus we have

p0Ap0 =- AX®A2

Λ a 2 x 2 matrix algebra, A2 commutative. Thus p0 = pλ + p2, p{ e Aim

Since p2Ap2 is contained in A2f it is commutative—i.e., p2 is an
abelian projection.

We observe that a homomorphism of a n x n matrix algebra
(n ^ 2) into a commutative ring must be zero; for if eiά are matrix
units, φβa = Φeiiβifiji = φe^φe^φe^ — 0. Since Φ is a homomorphism
from p0Ap0 to qBq, this means that Φp0 — Φp2t as desired.

With these observations, the implications of Theorem 4 may be
read on at once.
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ON THE DIFFERENCE AND SUM OF A BASIC
SET OF POLYNOMIALS

W. F. NEWNS

l Introduction* For any basic set (pn) of polynomials, the
differenced set (un) and the sum (vn) have been defined and studied
by Mikhail & Nassif [1, 2], who obtained the best possible bound for
the orders of (un) and (vn) when (pn) has a given order ω. Their
method was to estimate directly the expressions for the orders of (un)
and (vn).

The object of the present note is to indicate how these results
can be obtained by an alternative line of reasoning which the author
believes may throw more light on them. He observes also that either
approach can be used to go a little further and determine not only
the order but the type of the sets. In fact:

THEOREM 1. // (pn) is of increase (ω, 7), then (un) has increase
at most max {(ω, 7), (1, l/2π)}.

THEOREM 2. Let (pn) have increase (ω, 7). Then
(i) // lim sup DJn = a < 00, (vn) has increase at most {ω + a, 00),
(ii) If D£nln = 0(na) and 7 < 00 (so that ω > 0), the increase of

(vn) is at most (ω + α, 0).
Case (ii) applies in particular (with a = 1) to simple sets.

2. Spaces of integral functions* Let / be an integral function,
p its order. If 0 < p < 00 9 the rate of increase of / is (p, σ) where
o is the type of /. If p — 0 we put σ = 00, and if p = 00 we put
σ = 0 and again define the rate of increase of / as (p, σ). We use
lexicographic order, so that (pu σ^ ^ (p2, σ2) means that either pλ < p2

or ft = p2 and σx ^ σ2.
The set I(p, σ) of all integral functions of increase not exceeding

(p, σ) is a vector space under the usual operations. The space /(co, 0)
of all integral functions is an ,^-space under the topology of uniform
convergence on compact sets (the compact-open topology). If p < 00,
I(p, σ) is an ,^-space under a (unique) topology J7~{p, o) finer than
that induced on it by the topology ^"(00, 0) of I(oo, 0), (c.f. [3] §5,
p. 438). These may be defined as follows. Put

Received July 1, 1963.
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for f(z) = Σ α Λ z \ T h e n -̂ "(i°» 0) i s defined by the semi-norms |/|p, r

for all finite r, ^~(/>, oo) by |/|P l, r for ρx> p and all finite r, and
JΠitf, σ) for 0 < σ < co by |/|P, r for r < 0-1/p.

We denote by I0(p, o) the set of those functions of I(p, σ) which
vanish at the origin: I0(ρ, σ) = {g e I(p, σ): g(0) = 0}. I0(ρ, σ), being a
closed subspace of I(ρ, σ), is an ^^-space under the induced structure.

3* Rate of increase of a basic set As with functions, we define
the rate of increase of a basic set to be the pair (ω, 7) where 0) is
the order, 7 the type if 0 < ω < co and similar conventions where
00 = 0 or 00. We again use lexicographic order and recall the following
result [6]:

THEOREM 3. A basic set (pn) is of increase not exceeding (ω, 7)
if and only if it is effective for I(p,σ) in ^"(00,0) for all
(p, σ) < (Uω, 1/7).

4. The diίFereαce operator* For any integral function g we put
Δg = f, where

f(z) = g(z + 1) - g(z) .

THEOREM 4. The difference operator Δ is a continuous linear
mapping of I(p, σ) onto itself.

A proof that Δ is a linear mapping of I(p, σ) onto itself will be
found in [5] (pp. 21-24) and [4]1 (Theorem I). Continuity of Δ for
the compact-open topology (induced by ^"(«>,0)) is easily checked.
Continuity for ^~{p, o) now follows from the closed graph theorem.

Clearly Δ is not a bijection: its kernel contains not only constants
but any function of period 1. Since the only functions of period 1
and increase less than (1, 2τr) are constants, we have:

THEOREM 5. // (p, σ) < (1, 2π), then Δ is an isomorphism be-
tween the ^-spaces IQ(p, σ) and I(p, σ).

Under the hypotheses of Theorem 5, Δ: I0(p, σ) —• I(p, σ) has a
continuous inverse S?\ I(p, σ) —> I0(p, σ). If / = Δg we have g = Sff
and call g the sum of /.

5. The differenced set In defining the differenced set (un) of a
given basic set (pn), there is no loss of generality in taking pQ(z) = 1.

1 For this reference, which he had failed to trace, the author is indebted to Dr. J. M.
Whittaker.
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Then

un = 4pn+1

and the set (un) is basic with respect to the representation

s" = Σ Πk+1(φn+1)uk(z) ,
o

where

To prove Theorem 1, let the increase of (pn) be (ω, 7). If ω is
infinite there is nothing to prove, so we suppose α> < 00. Let
{p, σ) < min {(l/α>, 1/τ), (1, 2ττ)}, σ < co and let fe I(ρ, σ). Then g =

I{ρ, σ) and (Theorem 3)

Since J is continuous in y ( o o , 0),

1 0

showing that / is represented in ^"(00, 0) by a series of the required
form. To prove that this is the basic series of /, it is obvious that
f—>Πk+1(g) is continuous (being composed of the continuous functions
S^ and Πk+1) and hence the series is basic under the inverse matrix

) = Πk+1(φn+1) .

Theorem 1 now follows from Theorem 3.

REMARK. Nothing in this argument depends on the pn(z) being
polynomials. They may be integral functions of any order.

6. The sum of a basic set. Given a basic set (pn) of polynomials,2

the sum (vn) is defined by

This set is basic with respect to the representation

*" = Σ
1

where #n-i(s) = Δzn.
2 In the definition of (vn) we could allow the (pn) to be integral functions of in-

crease <(1, 2π). However, Theorem 2 applies only to sets of polynomials.



642 W. F. NEWNS

Proceeding heuristically, let / be given (with /(0) = 0) and put
g = Δf. Then

(1) 9 = Σ Πk(g)pk
0

and we obtain

( 2 ) / = &>g = Σ Πk(g)^pk = Σ /7,(</K+1
0 0

a series with continuous coefficients (composed of Δ and Πk-^) which
is therefore basic under

This argument is valid for all / e I0(pQ, σ0) only if (ft, σ0) satisfies
certain requirements. For equation (1) to hold in (say) y ( c o , 0) we need
(ft, ô) < 0-M 1/̂ ). For ̂  to be well-defined, we need (ft, σ*) < (1, 2π).
But to apply £f to (1) to obtain (2), we need (1) to hold in a topology
^~(Pu σi) i n which Sf is continuous, i.e. one for which (ft, σx) < (1, 2ττ).
The problem arises as to which (p0, σ0) will satisfy these requirements
and the answer is given by:

THEOREM 6. Suppose that (pn) is effective for I(p, σ) in ̂ ~{co, 0),
(O</0<oo,O<<7<co), and that D^ln = 0(nβ). Given ft(0 < ft < 00)
put (I/ft) = (1/p) + (/9/ft). Then (pn) is effective for /(ft, σQ) in
^~(Pu 0) for all finite σ0.

We first complete the proof of Theorem 2. For case (i), let
ft < (1/co + a) and choose β > a such that ft < (1/ω + β). Put (I/ft) =
(lip) + β so that p < (1/ω). The hypotheses of Theorem 6 hold with
ft = 1 and so the heuristic argument above holds for (ft, σ0) for any
finite σ0. This being true for any ft < (ll<*> + a), case (i) follows from
Theorem 3.

For case (ii), we put p — (1/ω), β = a and choose σ < (1/τ). We
conclude similarly that (vn) is effective for /(ft, σ0) in J7~(cof 0) when
(I/ft) = o) + a and σ0 is finite. By Theorem 3, this is equivalent to
the stated result.

We now prove Theorem 6. Put

lswp{β-DJn} (βft^l)

(inf {β - DJn} (eft < 1) .

Since Dn^ n and lim sup DJn ^ β, 7 is finite. Also we are dealing
with a Cannon set so that effectiveness is equivalent to absolute ef-
fectiveness. Let 0 < σ0 < co. We have to prove ([3], §§ 7, 8): given
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1Ί < °° 9 there exist M and r 0 < 0"<Γ1/P° such t h a t

lr \klPi

Σ I * I Σ ( ) I
ι

Σ I **ι I Σ
k

Σ I I Σ (
ι k \ep1

P u t 8 = pΛJpφ~llPpϊβlpicll?1(epύ lP*σ-llPσllP° where c is chosen large enough
for s ^ 1 and jD,fw/Λ g cwΛ The left-hand member of the inequality
to be proved may be written

ep1

The largest value of k appearing in this is Dn. Since the sequence
{klep^klp^s~k increases to co from some point on, we have (klepLylPls~k g
A{DJep^)DnlP's~'I}n for some A and all n. Also

Σ π x I Σ I Pn I (^8)* ^ ^ Σ I *« I ^ ( Λ ) - Bωn{R)

for i2 > rλs, and since (pn) is effective for I(p, σ) in y ( o o , 0), there
exist C and r < (J~1/p such that

.„<*) £ c(JL)"V .

Finally, since Dn^ n and s ^ 1 we have s~Dn ^ s~w. Thus the left-
hand member of the inequality to be proved does not exceed

epx) \ep I

ί Ύ) \βnIPl ί Ύl \nIP / Ύl \

^ ABCcnH — ) {epύ{βn~Dn)lPis-n[ — ) rn ^ Ml — γ^rl ,

where r 0 = ρlίp^cllp^ρτβlPι{ePi) ^s^p-^r < OΌ"1/Po, as required.

7. Examples. Let (v j be a sequence of even nonnegative inte-
gers, (yn) a sequence of real numbers and o) a nonnegative real number.
Consider the set

EXAMPLE ( i ) . vn — 2n, Ύn = log (2w + 1). It will be found that
(pn) has increase (ω, co) and (/yw) has increase (ω + 1, co).

EXAMPLE (ii). i^=2w, τΛ = (I/log (2w + 1)) (n > 0), ω > 0. Here
(j>w) is of increase (ω, 0) and (vn) of increase (co + 1,0).

EXAMPLE (iii). Choose vn so that ι>J2n-+a ^ 1, but ((vj)ll2nl(2n)«)-+
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co. Put 7n = V((2n)"l(vn\)112"), ω > 0. Here lim sup DJn = a and (pn)
is of increase (ω, 0), but (vn) is of increase (ω + a, co).
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RINGS ALL OF WHOSE FINITELY GENERATED
MODULES ARE INJECTIVE

B. L. OSOFSKY

The main purpose of this paper is to prove that a ring all of whose
finitely generated modules are injective must be semi-simple Artin.1

We begin with the following information about the class of rings
under consideration:

LEMMA 1. Let R be a ring with identity, and assume each cyclic
right R-module is injective. Then R is regular in the sense of von
Neumann and R is right self injective.

Proof. For any ring R with identity, it is easy to see that a
right ideal /of R is generated by an idempotent if and only if / is a
direct summand of the right iϋ-module RR. If I is an injective right
ideal of R, then / is a direct summand of RR, and therefore is generated
by an idempotent. Thus if every cyclic right ί?-module is injective,
each principal right ideal aR generated by a e R is generated by an
idempotent, that is aR = eR for some e = β2 e R. Then there exist
x,y e R such that e -= ax, and a = ey. It follows that ea = e(ey) =
ey — a and a — ea — αxα. Thus R is a regular ring, and since RR is
generated by the identity, RR is injective.

Let MR denote a right module over a ring R. If P, N are submodules
of M, let P ' 2 N signify that P is an essential extension of N. (See
Eckmann and Schopf [2].) Then N is an essential submodule of P.

For each xeM, let xR = {r e R \ xr = 0}. The singular submodule
Z(M) is defined by:

Z{M) = {xeM\RR

f^xR}

Z(RR) is actually a two sided ideal of R.
If e = e2 e R, and if x e eR Π eR, then x = ex = 0 and so eE Π eR = 0.

Thus Z(RR) contains no idempotents Φ 0. In particular, if R is a

Received July 18, 1963. This result forms part of the author's doctoral dissertation
written at Rutgers University under the direction of Professor Carl Faith. The author
gratefully acknowledges partial support from the National Science Foundation under
grant G-19863.

1 After the author obtained this characterization of rings whose cyclic modules are
injective, a translation of a recent paper [5] by L. A. Skornjakov was published and
brought to the author's attention. Although Skornjakov states the major portion of the
author's main theorem, his proof is incorrect. In the proof of his Lemma 9, which is
crucial to his proof of the theorem, Skornjakov assumes that the injective hull of a
submodule in an injective module must be a unique submodule, whereas in general it is
unique only up to isomorphism.

Added in proof April 13, 1964. This lemma is actually false. See the author's dis-
sertation for a counter-example.
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regular ring, Z(RR) = 0. (Cf. R. E. Johnson [4]).
We need the following important (and known [3]) lemma:

LEMMA 2. Let MR be a module such that Z(M) — 0. Then each
submodule JVof M has a unique maximal essential extension JV* in M.

Proof. Let {Mi \ie 1} be the set of all submodules of M such that
Mi'SN. Set JV* = Σ ί e J M^ Then if JV* ' a JV, JV* must be the unique
maximal essential extension of JV in M since it contains every essential
extension of JV in M.

For each y e l , let

(JV: i/) = {r e JB | yr e JV} .

If M^Q'^N, then RR'^(N:y) for all i/eQ. (This follows,
since any non-zero right ideal / of R which satisfies I Π (JV: y) = 0,
also satisfies ylφ 0 and yl C) N = 0, a contradiction.)

Now let 0 ̂  a? = a;̂  + + a?ίfl, 0 ̂  a?<̂  e M"̂ , i = 1, , n, be any
element of N*. Then

Now Mi. ' a N, so JSΛ

 ; 3 (JV: »^), and therefore i2Λ ' a Π?=i(N:'a?^), hence
RR'Ώ, (JV: ίc). Since Z(ikί) = 0, α?(JV: aj) ̂  0, and so x(N: x) is a nonzero
submodule of xR Π JV. This proves JV* ' a JV as asserted.

We next consider certain properties of idempotents in a right self
injective regular ring. Let JV — A denote the set theoretic complement
of a set A in a set JV.

LEMMA 3. Let {en\ne JV} be a set of orthogonal idempotents in
a right self injective regular ring. Then for every subset A of JV,
there exists an idempotent EΛe R such that

EAen = en for all neA

en,EA = EΛen, = 0 for all n' e N ~ A

Proof. Since R is regular, Z(RR) — 0. Then, by Lemma 2, each
right ideal I of R has a unique maximal essential extension I* in R.
Since iϋ^ is injective, by [2] I has an injective hull in RR which is a
maximal essential extension of I in RR. Thus each right ideal I has
a unique injective hull /* in ϋ^. Then as remarked in the proof of
Lemma 1, there exists e = e2 e R such that /* = eR.

Hence for any subset A of JV, there exists an idempotent eΛe R
such that
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Since {en\ne N} are orthogonal,

Σ en.
n'eN~A

Then eΛR Π eN~A R=0 (for x Φ 0 e e J ? Π β^^JJ implies ^i2 Π Σ«e^ βwi2 Π
Σ,'ejf~4 en>R Φ 0, a contradiction.) Thus the sum β̂ -4. + eN^AR is direct,
and since each summand is injective, eΛR 0 eN»AR is injective. Since
injective hulls of right ideals of R are unique,

so

Σ eΛR) 2 Σ en,R

3 eAR®e^AR 2 Σ . e ^ T ? . Then it follows ( Σ e ^ -B)* =
Set EN = eN, where ê JS = (Σ^e^ βwi2)*. Let EA (re-

spectively EN^A) be the projection of the idempotent EN on β̂ 72
(respectively βlV~ î2). We note that EA + EN»A = EN by definition, and
EA is simply the projection of the identity element of R on eAR with
respect to the direct decomposition R = (1 — 1^)72 © e îϋ © eN»AR.
Thus £^ and £7^^^ are orthogonal. Furthermore

EAen = en

EAen, = E

Since e,AR'^±
R. But

VneA

n, = 0 vra' e iV - A .

R - EA) is an essential right ideal of

enB) = 0 Vn'eN~A.

Thus en.EA e Z{RR) = 0, and we conclude en,EA = OVn' eN ~ A.

LEMMA 4. Let R be a right self injective regular ring which
contains an infinite set of orthogonal idempotents {en\neN}. Let
/ = Σ Θ enR- For i g N, let EA be defined as in Lemma 3. Then
a set S% = {EA | A e §ί}, where each A is infinite, is independent modulo
I, that is, Σχes# (EAR + I) is direct in R — 7, if and only if for any
finite set {A{ \ i = 1, , n} c 2ί, At Π \J3^i Aά is a finite subset of

Proof. Assume S% is independent modulo 7, and let {Aι \ i —
1, , n) C Si. Set C = C^ = A< Π Aiβ For all i and j Φ i, EAiR 3
Σnec enR and ^ Λ a Σ eAfi. Thus ^ 7 2 2 ( Σ eΛJB)* = JŜ Λ and
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EAJR 3 (Σnec enK)* = ECR. Since 0 = EG - Eo = ^ ^ - ^ .#*, ^ e I.
Then for all but a finite number of n e C, enE0 = 0. Since this implies
en = enEcen = 0 which is true for no w, C must be finite. Then
Ai Π UίVί Aj is a finite union of finite sets, and thus finite.

Now assume A{ Π U ^ * Aj is finite, and let Σ?=i ^ / V e ^ If m £ ̂ ;>
^ E ^ r , = 0 by Lemma 3. If m e A{ ~ ( J ^ Λ> «« Σ?=i ^ / i = ^E^r^
Since Σ?=i ^ / J G ^ there are at most a finite number of m e Ai — \J^i Aά

such that emEAiTi Φ 0. Since A{ (Ί UJVΪ -̂ -J is also finite, the set

must be finite.
Now for all n' eN~ B,

0 - e^E^r, - en

Assume EN^BEAiTi Φ 0. Then, since EN^BR
rΏ, Σ^'e^-^ eΛ'-β> there is an

seR such that EN»BEAiriS Φ Oe Σn'€Λr ĵB βn/i2, so for some n' e N ~ B,
en,EN^BEAiTiS Φ 0, a contradiction.

Then'

^ r 4 - ([1 - ^ ] + EN^B + ^ ί ^ r , = EJΞ^r, .

Since a finite direct sum of injective modules is injective, Σ^e^ eίR =
(ΣneB βiR)* = ^ i ? and ^ i 2 S /. It follows that E^r, e I.

LEMMA 5. Let R be a right self injective regular ring which
contains an infinite set of orthogonal idempotents {en\ne N}. If
I ~ ΈineN enR, then R — I is not an injective R-module.

Proof. Let {A{ \ i = 1, 2, •} be a countable family of subsets
At C N such that {EA. \ i = 1, 2, •} are independent in R — I. For
example, the A{ may be disjoint countable subsets of N.

Let & denote the family of sets S% = {EBob \BΛ g iV, ae$l} where
§1 is some index set, such that S^ a {J^t | i = 1, 2, •} and S^ is
independent modulo /. Partially order & by inclusion. Since inde-
pendence modulo I depends only on finite sets of idempotents, & is
inductive. By Zorn's lemma, select a maximal element Se^.

Let J == ΣiEBes EBR. Define <p:J->R- I by

= £^f + I vi = 1, 2, •
- 0 + I vEBeS~{EAi}

- Σ Ψ{EBk)rk EBk eS,rkeR.Σ

Σ*=i - ^ / ^ ~ 0 implies ^BfcrΛ e /since the idempotents of S are independent



RINGS ALL OF WHOSE FINITELY GENERATED MODULES ARE INJECTIVE 649

modulo /. Hence φ(EBj)rk = 0 + 7, and φ(Σ*l=i EBjcrk) = 0 + 1. Thus
ψ is a map which is clearly an R homomorphism.

Assume φ is induced by left multiplication by m + / in R — I,
meR. Then

(1) mEAi -EΛ.eI vΐ = 1, 2, . .

and

(2) mEBel vEBeS~ {EΛί} .

From (1) we conclude that for all but a finite number of n e Ai9

en(mEAi — EAi) = 0 and enmEAien = enEA.en. Thus enmen = en by Lemma 3.
From (2) we conclude that for all but a finite number of n' e B>

en,mEB = 0, and en,mEBen, = en,men, = 0.
Let ii 6 Ax, e^me^ = e^. Select j n + 1 e An+1 such that

and

j n + 1 &Ak for all k < n + 1 „

This is possible since {j e An+1 \ e^me^ = βy} is infinite and Lemma 4

implies AΛ+1 (Ί Uϊ=i -̂-Λ ίs finite.
Since S is maximal in ^ , by Lemma 4 { i j w ^ 1,2, •••} thus

defined must have an infinite number of elements in common with some
B C JV such that EBeS. B Φ A{ i = 1, 2, since j Λ ? A4 for all n> i.
Therefore φ(EB) = 0, and βy/ = e5,mer = 0 for all but a finite number
of / e B Π {iΛ |w = 1, 2, •}. This contradicts the assumption that
B Π {jn I ^ = 1. 2, •} is an infinite set. Thus 9? is not induced by left
multiplication by m + I in J? — I. Hence R — Us not injective. (See
[1], P 8.)

THEOREM. Let Rbe a ring with 1. Then the following conditions
are equivalent:

(a) R is semi-simple Artin.
(b) Every finitely generated right R-module is injective.
(c) Every cyclic right R-module is injective.

Proof, (a) =» (6). By ([1], p. 11, Theorem 4.2), every right module
over a semi-simple Artin ring R is injective, and so every finitely
generated right i2-module is injective.

(b) ==* (c). Since every cyclic iϋ-module is finitely generated by
one element, (c) is a special case of (b).

(c) ==> (a). If every cyclic i£~module is injective, by Lemma 1, R
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is right self injective and regular. By Lemma 5, R cannot contain an
infinite set of orthogonal idempotents. It is well known that this
condition in any regular ring R implies that R satisfies the minimum
condition and hence is semi-simple Artin.

COROLLARY. Let R be a right self injective, hereditary ring
with identity. Then R is semi-simple Artin.

Proof. R hereditary is equivalent to the condition that every
quotient of an injective iϋ-module is injective. (See [1], p. 14.) Since
every cyclic module is isomorphic to a quotient of the injective module
RRJ every cyclic i?-module is injective. Therefore by the theorem R is
semi-simple Artin.
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TOEPLITZ MATRICES AND INVERTIBILITY OF
HANKEL MATRICES

C. R. PUTNAM

1. Introduction* Let {cn}, for n = 0, ± 1 , ± 2 , , be a sequence

of real numbers satisfying c0 = 0, C-n =cn and 0 < ΣJC%

2 < co, and

let f(θ) ( ί 0) be the even function of class L\—π, π) defined by

(1) f(θ)~ Σ cne
ίnθ = 2Σ

n — — °o n—1

Define the Toeplitz matrix T and the Hankel matrices H and K by

( 2 ) Γ = ( c w ) , H = (c<+y_,) and iΓ = (c i + ί), where i, i = 1, 2, .

Then

( 3) T = F+K, where .F = [ f(θ)dE0(θ) ,
JO

and {Ĵ o(̂ )} is the resolution of the identity of the matrix belonging
to the quadratic form 2^nZ1xnxn+1. (See [12], p. 837.)

A self-adjoint operator A on a Hubert space, with the spectral

resolution A = VλdE(X), will be called absolutely continuous if || E(X)x ||2

is an absolutely continuous function of λ for every element x of the
Hubert space. If the function f(θ) of (1) is (essentially) bounded
then T must be bounded (Toeplitz). Since F must also be bounded,
so also are H and K. It was shown in [12], p. 840, using methods
involving commutators of operators, that if the function g(θ) defined
by

( 4 ) g(θ) ~ jticj"

is bounded (hence f{θ) is also bounded) then T must be absolutely
continuous if either

( 5 ) 0 is not in the point spectrum of H (that is, if"1 exists) ,

or

{ 6) F is absolutely continuous .

Rosenblum [17] has shown, using results of Aronszajn and Donoghue
[1], that in fact T is always (with no restrictions) absolutely continuous.

Received February 8, 1963. This research was supported by the National Science
Foundation research grant NSF-G18915.
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In addition, it was shown in Putnam [12], using a theorem of Rosenblum
[16], and generalized by Rosenblum in [17] using results of Kato [7], that
if Σ » = i n I on+11 < co or, equivalents, if

( 7 ) Σ n \c J < oo ,

and if (6) holds, then T and F are unitarily equivalent, so that

(8) T = UFU* , U unitary .

The absolute continuity of F is equivalent to the requirement,
that

( 9 ) meas { θ : f(θ) eZ} = 0 whenever meas Z = 0 .

In the present paper a sufficient condition, involving the negation of
(5), for (6), that is, for the validity of (9), will be obtained.

Before stating the theorem it will be convenient to define the
operators Fk(k = 0,1, 2, •) by

(10) Fk = \ fk(θ)dE0(θ) , where fk(θ) ~ Σ W* cos nθ .
JO n = l

(In particular, Fo = F.)
There will be proved the following

THEOREM 1, Suppose that

(11) 0 is in the point spectrum of H.

Then,
(a) the point spectrum of F is empty, and
(b) each of the operators F2, F3, is absolutely continuous.
(c) If, in addition to (11), it is assumed that Σ™=ilc™l < °°r

then F1 is absolutely continuous.
(d) If, in addition to (11), relation (7) is assumed, then (6)

holds.
From part (d) of the theorem and the results mentioned earlier

there follows the

COROLLARY. Relations (7) and (11) imply (8).
It will remain undecided whether (11) alone, without the addi-

tional assumption (7), is sufficient to imply not only the assertion of
(a) but also (6). It is interesting to observe though that, if the im-
plication (11) —* (6) is valid, then either (5) or (6) must hold, and, at
least if g(θ) is bounded, the absolute continuity of T (cf. [17]) can
be deduced from the commutator methods of [12] (cf. also [11]) as.
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noted above.
It is to be noted that the function f(θ) determines explicitly the

operator F and its spectrum. On the other hand, the structure of
T as determined by f{θ) is not so clear. It is known however that
the spectrum of T, in case T is self-adjoint, is the interval [m, M],
where m and M denote the essential lower and upper bounds of f(θ)
(Hartman and Wintner [6], pp. 868, 878). Although necessary and
sufficient conditions involving /(#), or rather g(θ), for the boundedness
of H (Nehari [10]) and the complete continuity of H (Hartman [4])
are known, apparently no similar results are known relating the spect-
rum of H to the function f(θ). Concerning the spectrum of H in
certain specific cases, see, e.g., Hartman and Wintner [6], p. 366,
Magnus [8].

2 Proof of (a) of Theorem 1Φ Let {xn} and {dn}, for n = 1, 2, ,
be two sequences of complex numbers satisfying Σ~=i I χn I2 < °° and
ΣΓ=i I dn Γ < «, let x(θ) ~ ΣΓ=i χ

ne
inθ and h(θ) ~ Σ A dne

inB. Then it
is easily verified that

(12) (2ττ)-1Γ x(θ)(g*(θ) + h(θ))eίjθdθ = Σ,cn+jxn

J — π n — \

holds for j = 0, 1, 2, , where the asterisk denotes complex conjuga-
tion. If dn=cn then g*(θ) + h(θ) = f(θ) and so 0 is in the point
spectrum of H if and only if

(13) Γ x(θ)f(θ)eijθdθ = 0 , where j = 0, 1, 2, ,

holds for some x(θ) ΐ θ as defined above. Relation (13) implies that
the function x(θ)f(θ), of class L{—π, π), has a Fourier series of the
form

(14) x{θ)f(θ) ~ ±ane™ .

For a fixed constant p, 0 < p < co, consider the class Hp (after
Hardy; see, e.g., Zygmund [19], p. 158) of functions A(z) analytic in

S π

| A(reίθ) \pdθ remains bounded for
0 ^ r < 1. If p ^ 1, the class Lp+ of functions B(θ)εLp(-π, π) with
Fourier series of the form

(15) B(θ) ~ Σ Keinθ (K = (27Γ)"1 \* B(θ)e-ίnθdθ) ,
n—0 J —it

coincides with the class of boundary functions B{θ) = A(eiθ); see
Rogosinski and Shapiro [15], p. 293. Furthermore, it is known that
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if p > 0 and if A(z) is of class Hp and if A{z) & const., then A(eiθ) =
α, for an arbitrary constant α, can hold at most on a set of measure
zero. For p = 2, this result is due to F. and M. Riesz ([14]); for
p Φ 2, see F. Riesz [13].

Returning to (14), since x(θ)f(θ)εL1+, it follows that f(θ) Φ 0
almost everywhere. A similar argument with x{θ)f(θ) replaced by
χ(θ) (f(θ) — a)y for any constant a, shows that f{θ) Φ a almost every-
where, that is,

(16) meas {θ:f(θ) = α} = 0 .

But (16) holds if and only if the operator F has no point spectrum
and the proof (a) is complete.

3 Proof of (b) of Theorem 1. In order to show that F2 is
absolutely continuous, it must be shown that the set S2 = {θ : f2(θ) e Z}
is a zero set whenever Z is a zero set. Since Σ~=i i onn"1 I < ^y
f2{θ) is continuous and the set {θ :f2(θ) Φ 0} is open. If its canonical
decomposition is the finite or infinite union of open intervals In (n =
1,2, •••), then f2(θ) is strictly monotone on each In. Also, on In,
both / 2 and its inverse gn are absolutely continuous. Since In Π S2 is
the image under gn of a subset of Z, it follows (cf., e.g., Natanson
[9], p. 249) that

(17) In Π S2 has measure 0 .

If it is shown that fj(θ) φ 0 almost everywhere, it will follow from
(17) that meas S2 = 0, as was to be proved.

In order to prove that f2'(θ) φ 0 almost everywhere, note that
//(#) is absolutely continuous and that f2"(θ) = ( — l/2)/(0) almost
everywhere. Hence, if /2'(0) = 0 on a set of positive measure, then
also f{θ) — 0 on a set of positive measure, a contradiction. Hence
JP2 is absolutely continuous.

Next, it will be shown that FΆ is absolutely continuous. In the
definition of h(θ), choose dn = - cn, so that in (12), k(θ) = g*(θ) + h(θ) =
2>i Σn=i cn sin w^. The argument of § 2 shows that x(θ)k(θ) is of class
L1+ and hence k(θ) Φ 0 almost everywhere. Since fz'(θ) is continuous,
and since fz"{θ) = (l/2i)fc(β), an argument similar to that used above
shows that Fs is absolutely continuous.

In like manner, it follows that FA9 F5, are absolutely continu-
ous and the proof of (b) is complete.

4. Proof of (c) of Theorem 1. In order to prove the absolute
continuity of Fl9 it must be shown that the set Sx = {θ : fλ{θ) e Z} is
a zero set whenever Z is a zero set. The hypothesis of (c) implies
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that fί(θ) = (— l/2i)fc(0) is continuous. Since k(θ) Φ 0 almost every-
where, a relation similar to (17) implies that meas SΊ = 0, and the
proof of (c) is complete.

5. Proof of (d) of Theorem l Since (7) implies that f'(θ) is
continuous, then x\θ)fr(θ) is of class L{ — π, π). It will be shown
that x\θ)f'(θ) is also of class L1+, so that

(18) aW(*)~ ΣM'"',

and hence (cf. the above reference to [15]) the F. and M. Riesz theorem
can be applied to yield f'(θ) Φ 0 almost everywhere. Once this has
been shown, the absolute continuity of F follows by an argument
similar to that used above.

There remains then to prove (18). Since f(θ) is now bounded, it
follows from the definition of x(θ) and (14) that both x(θ) and x(θ)f(θ)
belong to L2+. Let u(z) and v{z) denote the functions analytic in
| z | < 1 and possessing the respective boundary functions x(θ) and
x{θ)f(θ). Let 17(0) - u(eiθ) and V(θ) = v(eiθ), so that x\θ)f\θ) =
U\θ){V{θ)jU{θ))r.

A heuristic argument leading to (18) is the following. Let U'
and V be defined by the formal trigonometrical series obtained by
term by term differentiation of the corresponding series for U and
V, and suppose that U\V\U)' = UV - U'V is meaningful. Since
the trigonometrical series for U, V, Ur and V are of the type
Σ ~ = o / ^ θ then so also are the products UV and U'V as well as
their difference.

A rigorous proof of (18) can be given as follows. Let the Fourier
series of U(θ) and V(θ) be given by

(19) U(θ) ~ £ ane™ , V(θ) ~ Σ bne
inϋ .

Since V(θ) = U(θ)f(θ), where U(θ) and f(θ) each belongs to class
L\~π, π), then Σ"=o a>ιfi«-k = K for n = 0,1, 2, , and

(20) Σ ahcn-.h = 0 for n = - 1 , - 2 , -

cf. Zygmund [19], p. 90. Note that the convergence of the series
defining the bn is assured by the Schwarz inequality. Similarly, the
Fourier series of U\θ) is given by

(21) U\θ) ~ Σ Ane™ , An = Σ an-kak .

Since, by (7),
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(22) f'{θ) ~ Σ incne
inβ ,

n ——oo

and, since x\θ) = U\θ) is of class L(—π, π) and f'(θ) is bounded, the
Fourier series of x\θ)fr(θ) is given by

cf. Zygmund [19], p. 90.
Since U\θ)εL{-~π, π) then, by the Riemann-Lebesgue lemma,

Aw —> 0 as w —* oo 9 and the absolute convergence of each of the series
defining the Bn is assured by (7). Also the same assertion holds for
the series corresponding to the above Bn but where U(θ) is replaced
by the function with the Fourier series Σ~=o I CLn I e

ίnθ Since Bn =
iΣm=o Am(n — m)cn-m, this implies that each of the iterated series

oo oo

m=0 k=0

is absolutely convergent. Consequently, an interchange of the order
of summation leads to

Γ oo η

\CiO) ±Jn — 0 J_ι LVk\ \fV t\j) ^U LLpiyn—jc—p 2-X P^p^n—k—p I
fc=0 L P=0 P=0 J

On reversing the order of summation in the second iterated sum,
it follows from (20) that Bn = 0 for n = 0, - 1 , - 2 , , so that (18)
follows from (23). This completes the proof of Theorem 1.

6. Some dual results* A theorem similar to Theorem 1 but with
the cosines replaced by sines is valid. In particular, whereas (a) of
Theorem 1 states that (11) implies (16) while (d) states that (11) and
(7) imply (9), the duals of these assertions become the following

THEOREM 2. Let j(θ) be defined by

(26) j(θ) - 2 Σ cn sin nθ ,
71 = 1

and suppose that (11) holds. Then, for every constant a,

(27) meas {θ : j(θ) = α} = 0 .

If, in addition to (11), relation (7) is assumed, then

(28) meas {θ : i{θ)εZ] = 0 whenever meas Z = 0 .

The proof follows from the observation that the function k(θ) =
ij(θ) considered in the beginning of § 3 plays a role similar to that
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Of f(θ).

7. Remarks. If A(z)εHp, then B(θ) = A(eίθ) satisfies, for every
constant oc, not only

(29) meas {θ : B{θ) = a} = 0, unless B{θ) = a ,

but even

(30) [ \log\B(θ) -a\\dθ < « .
J — π

This result was proved by Szego [18] for p = 2. Its validity for
arbitrary p > 0 was pointed out by F. Riesz ([13], pp. 91-92) to be
a consequence of his factorization theorem for functions of class Hp.
Thus, for every constant a, relations (16) and (27), and even

(31) \π \\og\f(θ)-a\\dθ < «> and Γ [ log \j(θ) - a \\ dθ < co ,
J —x J—π

are seen to be necessary conditions in order that 0 be in the point
spectrum of H, or, what is the same thing, in order that the trans-
lated sequences (clf c2, •••), (ca, c3, •••), ••• fail to form a fundamental
set for the Hubert space I2 of vectors x = (xl9 x2j •) with Σn=i I χn I2 < °°.
(In connection with this latter form of (11), it is interesting to com-
pare the present situation relating to the completeness of shifted
sequences, with a similar, but different one considered in the papers of
Beurling [2] and Halmos [3].) That the condition (31) is not sufficient
for 0 to be in the point spectrum of H can be seen for the case cn =
1/n (n = 1, 2, •). Then f(θ) of (1) becomes - 2 log (2 | sin (0/2) | and
j(θ) of (26) becomes the odd function on (—π, π) defined on (0, π) by
j(θ) = π — θ, and so (31) holds for every constant a. However, 0 is
not in the point spectrum of H = ((ί + j — I)"1); in fact, the spectrum
of H is known to be purely continuous (Magnus [8]).

Since (7) holds if, say, /"(0) is continuous, it follows from the
Theorems 1 and 2 that for such functions /, in order that (11) hold,
not only (16) and (27), but even the more restrictive conditions (9)
and (28) must be satisfied. It is to be noted that even if, say, /"(0)
is continuous, (16) does not imply (9). In order to see this, let C
denote a closed, nowhere dense (Cantor) set of positive measure on
[0, TΓ], and define a function q(θ) so as to have a continuous deriva-
tive on [0, π] and satisfy q(θ) = 0 on C and q(θ) > 0 on [0, π] — C.

S Θ

q(u)du is a strictly increasing
function on [0, TΓ]; hence, if f(-θ) = / ( 0 ) for 0 ^θ ^ τr,/(0) is of
the form (1), has a continuous second derivative, and satisfies (16).
If T denotes the image under / of the set C, then T is measurable
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and meas T =[ \df\ = [ q(θ)dθ = 0, so that (9) fails to hold with
Jc Jc

T=Z.
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WEAKLY COMPACT OPERATORS
ON OPERATOR ALGEBRAS

SHOICHIRO SAKAI

Let K be a compact space and C(K) be the commutative B*-
algebra of all complex valued continuous functions on K, then
Grothendieck [3] (also we can see other proofs in [2]) proved the fol-
lowing remarkable properties:

(I) An arbitrary bounded operator of C{K) into a weakly
sequentially complete Banach space is weakly compact.

(II) If T is a weakly compact operator of C(K) into a Banach
space, then T maps weakly fundamental sequences into strongly con-
vergent sequences.

On the other hand, let M be a ΫP*-algebra and M* be the asso-
ciated space of M (namely, the dual of M* is M (cf. [8])) then the
author [7] noticed that the Banach space M* is weakly sequentially
complete. Therefore, the above Grothendieck's theorems are applicable
in the theory of operator algebras.

In this note, we shall show some applications, and state some
related problems.

PROPOSITION 1. Let A be a 5*-algebra, E an abstract L-space,
T be a bounded operator of A into E, then T is weakly compact.

Proof. Let Γ* be the dual of T, then Γ* is a bounded operator
on the dual E* of E to the dual A* of A; E* is a Banach space of
type C(K) (cf. [5]) and the second dual A** of A is a W*-algebra
(cf. [9]), so that A* is the associated space of a T7*-algebra; hence
A* is weakly sequentially complete; therefore Γ* is weakly compact,
so that by the well-known theorem, T is weakly compact. This com-
pletes the proof.

Now we shall show some applications.

1. Let G be a locally compact group, L\G) be the Banach space
of all complex valued integrable functions on G with respect to a left,
invariant Haar measure μ and L\G) be the Banach space of all com-
plex valued square integrable functions on G with respect to μ. Under
the convolutions (denoted by "*"), L\G) is a Banach algebra.

On the other hand, for feL\G) and geL2(G), put Lfg=f*g,

Received March 18, 1963. This research was partially supported by the National
Science Foundation Grant 19041.
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then Lf is a bounded operator on L\G); we shall denote the uniform
norm of Lf by \\Lf ||.

Now, let T be an operator on L\G). T is said to be spectrally
continuous, if it satisfies || Th ||i ^ r \\ Lh \\ for all h e L\G), where
J ] -1 la. is the ZZ-norm and r is a fixed number.

Using the generalized PlanchreΓs theorem and the structure theo-
rem of connected locally compact groups, Helgason [4] proved the
following: Let G be a separable unimodular locally compact, non-
compact, connected group, then a spectrally continuous operator on
L1(G) commuting with all right translations is identically 0.

In his review for the Helgason's paper, Mautner [6] asked whether
these restrictions on the group G can be dropped.

Now we shall show

THEOREM 1. Let G be a locally compact, non-compact group, then
a spectrally continuous operator T on L\G) commuting with all right
translations is identically zero.

Proof. Let R(G) be the uniform closure of the set {Lf \ f e L\G)}
in the B*-algebra B of all bounded operators on L\G), then R{G) is
a J5*-algebra; since T is spectrally continuous, it can be uniquely
extended to a bounded operator T of R(G) into L\G); by Proposition 1,
f is weakly compact; let S be the unit sphere of R(G); since \\Lf\\ ^
Il/Hx for feL\G), L\G)[]S contains the unit sphere of L\G)\ there-
fore the set {Th\he L\G), ||fc||i ^ 1} is relatively weakly compact in
L\G)', this implies that T is weakly compact as an operator on L\G).

Since T commutes with all right translations, by the theorem of
Wendel [10], there is a bounded Radon measure v such that Th —
v*h for heL1(G); let / be an element of L\G), then the mapping
h __> (y*y)** (/*!;)*/& on L\G) is weakly compact, where (/*y)*(#) =
p(x)f^v(x~1), and dμ(x~1) = p(x)dβ{x) for xeG; hence the mapping
^-^{(/*i;)>iί*(/*i;)}*{(/>iίί;)ϊiί*(/*i;)}*^ is strongly compact (cf. Cor 3.7
in [2]).

Put flr = {(/*v)**(/*y)}*{(/*^)**(/*i;)}, then g belongs to L\G).
Let Si be the unit sphere of L1(G), then g*Sλ is relatively strongly
compact in L\G), so that the set {(#*/)* — / * * # * \fe SJ is also so;
hence Sτ*g* is relatively strongly compact; let {va}aeπ be a fundamental
family of compact neighborhoods at a point s of G and let {fallen be
a family of continuous positive functions on G such that the support

of fa is contained in va and I foύ{x)dx = 1, then the directed set {fa*g*}
converges to sg* in the ZZ-norm, where sg*(x) = gl¥(s~1x)\ therefore the
set {sg* | s e G} is relatively strongly compact.

Now suppose that H^Hi^O, then it is enough to assume that
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110*11! = ! . There is a finite set fag*, s2g*, , sng*} where s{eG

(i = 1, 2, , n) such t h a t inf \\sg* - 8$* ||χ < 1/2 for all s e G.

On the other hand, let C be a compact subset of G such t h a t

f \g*(χ)\dμ(x)<-±- and [ \g*(s^x)\dμ(x)< ±-
JG-o 10 JG-σ 10

for i = 1, 2, , w, and s be an element of G such that s g CC"1, then
s^C Π C = (0); therefore

= ί I (sg* - si9)(x) | d/φ) + ( | (sg* - 8ig*)(x) \ dμ(x)
JO JG-0

^ \ | (Sig*)(x) | dμ(x) - \ |

+ f | (s
JG-0

- ( | (sig*)(x) | dμ(x)
JG-0

) + ( l - - i - ) - J - ^ A for all i .
10 / 10 V 10 / 10 5

This is a contradiction; hence g* — 0, so that g — f*v = 0; since / is
an arbitrary element of L\G), v = 0, so that T = 0. This completes
the proof.

2. At first we shall show

PROPOSITION 2. Let A be a weakly sequentially complete B*-
algebra, then A is finite dimensional.

Proof. It is enough to assume that A has unit. Let C be a
maximal abelian *-subalgebra of A, then C is a Banach space of type
C(K) and weakly sequentially complete; by the Grothendieck's theorem,
the identity mapping T on C is weakly compact, so that Γ2 = T is
strongly compact on C (cf. Cor 3.7 in [2]); hence C is finite-dimensional.
Therefore there is a finite family of mutually orthogonal projections
(eu e2, *-,en) by which C is linearly spanned; by the maximality of
C, βiAβi (ί = 1, 2, , n) is one-dimensional.

For any x, y e A, there is a complex number λ̂ cc, 2/) such that
eiy*xeί = X^x, y)βϊ, clearly X^x, x) ̂  0, and if X^x, x) = 0, xe{ = 0;
moreover || xe{ || = || e^xβi ||1/2 = λ^x, x)1/2; therefore a Banach subspace
Aβi of A is a hilbert space; since A = Σ?=i^-e;> -̂  is reflexive, so that
A is a reflexive W* -algebra; since all irreducible *-representations of
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A are ^-continuous, A is of type I; since the center of A is finite-
dimensional, A is a direct sum of a finite family of type /-factors
(Alf A2, , Am); since A3 can be considered the algebra of all bounded
operators on a hilbert space ί)j for j = 1, 2, , m, the reflexivity of
Aj implies the finite-dimensionality of ί)5 and so the finite-dimension-
ality of Aj] hence A is finite-dimensional. This completes the proof.

COROLLARY 1. Let A be an infinite dimensional B*-algebra and
E be a Banach space of type Lp (1 <g V < + °°) or the associated space
of a W*-algebra, then the Banach space A is not topologically iso-
morphic to E.

Since f>*-algebras are Banach spaces which have many analogous
properties with C(K); therefore it is very natural to ask whether the
theorems of Grothendieck are positive in j?*-algebras.

We have no solution for the property (I); here we shall show that
the property (II) is negative, and show an application.

A negative example. Let B(i}) be the 5*-algebra of all bounded
operators on an infinite dimensional hilbert space ϊj, and e be an one-
dimensional projection on ί), then the Banach subspace B(ί))e of B(fy

T

is isometric to ΐ) [cf. [7]]; therefore the mapping x > xe of I?(ΐ)) into
B(ί))e is weakly compact; the unit sphere S of B(t))e is weakly compact
in B(ΐ)); therefore if J5(E)) satisfies the property (II), TS = S is strongly
compact, so that B(fye is finite-dimensional, a contradiction.

Concerning the property (I), we can notice that many operators
satisfy the property (I).

For instance, let A be a ί?*-algebra, A* the dual of A. For x,
aeA and feA*9 put (Laf)(x)=f(ax) and (Raf)(x) = f(xa); we can

T S
consider bounded operators a ^Raf, a > Laf of A into A*, then
T and £> are weakly compact (cf. [8]).

Finally we shall show an application.

THEOREM 2. Let A be a B*-algebra having an infinite dimen-
sional irreducible *-representation, and E be a Banach space of type
Lp (1 ^ p ί§ +oo) or type C{Ω), where Ω is a locally compact space
and C(Ω) is the Banach space of all continuous functions vanishing
at infinity, or the associated space of a W*-algebra, then the Banach
space A is not topologically isomorphic to E.

Proof. It is enough to show that A is not topologically isomor-
phic to C(Ω). Suppose that A is topologically isomorphic to C(Ω), then
there is an isomorphism T of A onto C(Ω). Take the second dual
T** of T, the T** gives an isomorphism of A** onto C(J2)**; A** is
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a W* -algebra and C(β)** is a Banach space of type C(K); since a
^representation of A can be uniquely extended to a ^-continuous
*-representation of A** (cf. [8]), A** has an infinite dimensional irre-
ducible W*-representation; hence there is a central projection z of
A** such that A**z is a factor of type /«,; from the above negative
example, A**z has not the property (II); on the other hand, since
A** = A**zξBA**(l-z), where 1 is the unit of A**, C(β)** -
T**(A**z) + T**(A**(1 - s)); since T**(A**z) has the closed comple-
ment subspace in C(Ω)**, T**(A**z) has the property (II), so that
A**z has the property (II). This is a contradiction, and completes
the proof.

COROLLARY 2. Let F be the associated space of a W*-algebra
without a type In part (n < +«>), and E be a Banach space of type
Lp or C(Ω) then F is not topologically isomorphic to E.

Proof. Suppose that F is topologically isomorphic to E, then F*
is topologically isomorphic to E*. This is a contradiction.

REMARK. Theorem 2 and Corollary 2 imply that the above men-
tioned jB*-algebras or associated spaces (for instance, the i?*-algebra
^ of all compact operators on an infinite dimensional hilbert space,
the i?*-algebra B(fy) of all bounded operators on an infinite dimensional
hilbert space ί), the JS*-algebra R(G) corresponding to all non-almost
periodic locally compact groups, and all TΓ*-factor with an exception
of type In(n < +co) and their associated spaces) are not topologi-
cally contained in the classes of the so-called classical Banach spaces

m)Λm)ΛC)Λc)ΛC{*\vΛLp)i*Pz+-Λlp)i*PS+-) mentioned by Banach
(cf. [1]); therefore it is very meaningful to examine whether many
unsolved problems concerning Banach spaces are positive in these
examples.
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NILPOTENCY AND SPECTRAL OPERATORS

JAMES E. SIMPSON

l Introduction* The present paper is concerned with conditions
under which the quasi-nilpotent part of a spectral operator is actually
nilpotent of some order k. As might be expected, the case of a
spectral operator on a Hubert space has been settled longest. (See
[4].) The case of a Banach space has been treated quite thoroughly
by C. A. McCarthy [7] who showed that with a certain rate of growth
condition on Q, the nilpotent part of the spectral operator T = S + Qr

satisfies Qm+2 — 0, where the m is a positive integer involved in the
rate of growth condition. He alsσ discusses more special cases in
which Qm+1 = 0 and provides examples to show that these exponents
are the lowest possible in each case. The question of extending these
results to general locally convex spaces could not even be formulated
until a theory of spectral operators in these spaces had been devised
The work of C. Ionescu Tulcea [5] having laid the foundations in
this area, we may now attempt to solve the problem of generalizing
McCarthy's results. It is shown below that his theorems, and indeed
some part of the proofs, may be carried over to the locally convex
case, with a suitable reformulation of some of the conditions and
reworking of some of the supporting theory.

The basic assumptions are as follows. E denotes a locally convex
linear topological space over the field, C, of complex numbers. More-
over, E is assumed to be separated, barrelled and quasi-complete.
The strong dual of E is denoted by E'. The space of continuous
linear mappings of E into itself is jSf(E, E), which we shall always
assume to be given the topology j?~h of uniform convergence on the
bounded subsets of E. We denote the adjoint of T by ίΓ, for each
Te^?(E, E). The resolvent set of T, res Γ, is a certain subset of
C, the one-point compactification of C. Specifically, λ e res T provided
there is a neighborhood Vλ of λ in C and a function Rτ with domain
Vλ Π C and range in £f(E, E) such that

(a ) the set {Rτ(z)x: 2 e FλΓΊ C} is a bounded subset of E for each
x e E, and

(b) Rτ(z)(zl- T) = (zl- T)Rτ(z) = I for all zeVλf]C. The
complement of res T, in C, is the spectrum of Γ, denoted sp T. If
co g sp T, then sp T is compact in C and we say T is regular. We

Received June 6, 1963. Most of the work appearing in this paper was done while
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denote by J3°°(C) the algebra of bounded complex-valued Baire func-
tions on C, with norm | / | M = sup,€(7 \f(z) |, and by S(C) the Baire sets,
i.e., those subsets, A, of C whose characteristic function, φΛ9 is in
B°°(C). We denote by M1 the set of bounded Radon measures on C,

with norm | μ | = sup j \fdμ\:feB°°(C), l / | w = l | . By sup μ we
mean the support of the measure μ. Further information about locally
convex spaces and Radon measures may be found in the well-known
Bourbaki books [1] and [2]. Concerning the resolvent and spectrum
of T, see L. Waelbroeck [10] and [11].

Turning now to spectral operators, we review some of the defini-
tions and theorems to be found in the above mentioned work of
Ionescu Tulcea [5]. See also F. Maeda [6] and H. Schaeffer [8]. The
latter paper contains a monumental quantity of information about
spectral measures and extensions and proofs of many of the observations
listed in this paragraph. With E as above, let άΓ = {μXtχf: x e E, %' e E'}
be a set of bounded Radon measures on C, indexed as indicated by
E x E'. We say that ^ is a spectral family of measures if there
is a continuous algebraic representation of B°°(C) in J&f(E, E)1 denoted
by /—> U$tf (or Uf, if no confusion will ensue) such that Ut = I, and
<Ufx, O = ( fdμx,x, for all xeE,x'e E\ and fe B°°{C). The function
I is defined by l(z) — 1 for all z e C. By sup j^~ we mean

U xeE sup//^/. We say that Te J>f(E, E) commutes with a spectral
x'βE'

family j r ; provided TUf = UfT for all feB°°(C). Denote by P ^
the £f(E, £;)-valued function defined on S(C) by P^(σ) = Uφ<r. Then
P^f has the following properties:

( i ) Psf(Φ) = O.
(ii) P^iσ Γiδ) = P^(σ)P^(δ) for all σ, δ e S(C).
(iii) The set function mXf defined on S(C) with values in E by

mx(σ) — Pg{σ)x, is countably additive for each x e E.
(iv) P^(C) = I.

We shall call P$ the spectral measure associated with ^ . It is quite

common to write \ fdPg for Uf. For each σ e S(C), let Eσ = Psf(σ)E.
If Te£f(E, E) commutes with j ^ , then Tσ : Eσ-^Eσ may be defined
by Tσx = Tx for all x e Eσ. An element T of Sf(E, E) is said to be
a spectral operator if there is a spectral family ^ ~ ( = ̂ "τ, if neces-
sary) on C such that T commutes with J^ and sp Tσ c σ for every
compact subset σ of C. An element Q of Sf{E, E) is said to be
quasi-nilpotent if limits | <Q% x*> \1/n = 0 for all x e E, xf e E'. An
element S of ^^(£7, £/) is said to be scalar relative to a spectral
family ^ if the function/:/(2) = z is μx,^-measurable for all μx,x> e J^
and <S^, xfS> =\ fdμX)X, for all xeE, xr eEf. Finally we mention con-
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dition P^ 7 ), which is described in [5] and [6]. The central decom-
position theorem of spectral theory then is that if T is a spectral
operator whose associated spectral family j^~τ satisfies condition Pcέ?),
there is a unique decomposition T = S + Q where S is scalar relative
to ^ T and Q is quasi-nilpotent.

One last tool will be needed below, namely an "operational cal-
culus" for regular operators. Suppose T is regular. Let &(T) be
the class of all complex-valued functions /, analytic on an open set
D(f) which contains sp T. Let D be any Cauchy domain satisfying
s p Γ c ΰ c ΰ c ΰ ( / ) . Then for each fe Sf(Γ), define /(Γ) =
l/2πi\ f(z)Rτ(z)dz, where Γ is the boundary of D. We then have the
following theorem.

THEOREM 1. For any fe&(T), f(T) is a well-defined element
of Sf{E, E) independent of the choice of D (provided it satisfies the
above conditions). Moreover, if f and g are both in &(T), then
(f + g) (T) = f(T) + g(T) and (fg)(T) = f(T)g(T). If Γ is a
circle of sufficiently large radius to contain sp T in its interior,

then T = l/2πi\ zRτ(z)dz and I = l\2πi\ Rτ(z)dz. Finally,

x, x'\ =

for every xeE, x'eE', and fe%?(T), ΓczD(f).

The definition of Cauchy domain is to be found in Taylor's paper
[9], which also contains a proof of a theorem very similar to the above
which may easily be adjusted to fit the present situation. The theo-
rem might also be considered a special case of some of the work of
H. Cartan [3]. With this background we are prepared to discuss con-
ditions under which Qk = 0 for some positive integer k.

2+ The general case* Let E be a separated, locally convex space
which is barrelled and quasi-complete. Let T be a spectral operator
on E whose spectral family ^ satisfies condition Pcέ?) so that we
may write T = S + Q. We now state our rate of growth condition:

DEFINITION. With E and T as described, we say that Rτ satisfies
an mth-order rate of growth condition (m being a positive integer) if
t h e s e t {d(z, σ)mRTσ{z)P^(σ): z£σ,σ compact} is b o u n d e d in (-£f(E, E),
^ 6 ) . Here d(z, σ) is the distance from z to σ.

For the rest of this section we assume that Rτ satisfies an mth-
order rate of growth of condition.
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LEMMA 1. Let n be a fixed positive integer, σ a compact subset
of C, V a neighborhood of zero in £f(E, E). Then there is a finite
partition of σ by Borel sets {σj:j = lf29 •••,&} with the property
that if {λ/. j = 1,2, , k} is any choice of k complex numbers with
each Xj e σjf then

( 1 ) QnP#(σ) ~ Σy (Γ - ^YP^σj) 6 V .

Proof. Denoting by f{ the function f^z) — zψ^z), for i — 1, 2, ,,
n, we observe that for every ε > 0 there is a partition {σd: j —
1, 2, •••, k} of σ such that IΣiMSV, —/<|« < ε for all i = 1, 2, , ^,.
where the λ, are arbitrary in σό. Next, since the mapping f—*Uf ia
continuous, it follows that S{P^(σ) = Ufί may be approximated in the
topology of J2f(E, E) by operators of the form Σ i ̂ P$(σj)> uniformly
for i = 1, 2, •••,%, and for λy e σi# The theorem may now be proved
by considering

Given V, choose U, an equilibrated neighborhood of zero in ^f(E, E)r

such that Σi=o\l)Ucz V. For each i = 0, 1, , n, choose a neighbor-

hood Wi of zero in j£?(E,E) such that Ae W{ implies Tn~ιAe U.
Finally, choose {σά} so that Σ i ̂ P^s) — SίP^(σ)e f] iW{. Then,

But the first term in this last expression is just Σ i ( ^ ~ ^ό)nP&(σό)'
so that (1) is proved.

LEMMA 2. .For every bounded subset B of E, every equicontinuous
subset B' of E', and every positive integer n, there is a positive real
number M = M(B, Bf, n) such that

for all x e B, xf e Bf, provided 0 < ε <* 1 and σ is a Borel set of dia-
meter ^ ε.

Proof. If σ is empty there is no problem. Next consider the
case where σ is a nonvoid compact subset of C, and fix η > 0. By
Lemma 1 there is a partition {σd} of σ such that

(3 ) | <Q"P^(σ)x, x'> - <Σy (Γ - XiTPgfiσ^x, x'>\<V

for all xeB, xfeBf. Using any point in # as center, construct a
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circle, Γ, of radius 2ε. Then | z — λ | ^ e for all ze Γ, Xeσ. Then,
for all xeB, x' e 5',

1
2ττ

2εsup
zer

ί < Σ J
J Γ

sup

, x

Let gz(X) = Y,j{z — Xj)nφσ (X) be the integrand function in the spectral
integral in this last expression. Then the above computation implies

Since sup, e r |#*L ^ (3ε)Λ and the set {£/}:!/1* g 1} is equicontinuous,

corresponding to Bf we may find a neighborhood W of zero in E

such that

< 5 ) \<Ugzy,x'>\ ^ (3e)

for all yeW, and x'eB'. It is apparent that W is independent of
ε, of σ, of the choice of {0̂ }, and of z e Γ. But B and W determine
a neighborhood of zero in Sf{E, E). Consequently, from the rate of
growth condition, there is a > 0 such that

( 6 ) d(z, W

for all xeB, a being dependent only on B and B' (by way of
Substituting (6) in (5) gives, for all ze Γ,

(7) \<UgzRTσ{z)P^{σ)x, O I ^ α(3ε) d(s, ί7)-w ^ α3wεTC— .

Letting M = 2 3wα and substituting (7) in (4) and (3) we have

^ Mεn-m+1 + η

for all xeB, xf e B', with ikf dependent only on B, Br, and n. Since
^ is arbitrary, the theorem is proved under the additional assumption
that σ be compact. However, the general case may be readily deduced
from this one.

THEOREM 2. Let σ be a Borel set in C whose Hausdorff p-mea-
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sure is zero for some p. Then, for all k ̂  p + m — 1, QkP^(σ) = 0.

Proof. The hypothesis asserts that for every ε > 0 there is a
partition {σά} of σ by finitely or countably many Borel sets of dia-
meters βj respectivly such that εy ̂  1 for all j and Σ ; ε ; < ε Let
k = p + m — 1. Then

where Λf depends on x, xf, and &. Since ε, x, and OJ' are arbitrary, we
are done.

THEOREM 3. Qm+2 = 0.

Proof. Let p = 3, σ = sup ̂ , and fc = 3 + m — l = m + 2 in
the previous theorem.

3. Variations on the theme* In the case where £ is a Banach
space, McCarthy has pointed out a number of variations on Theorem 3.
The simplest of these, equally valid in our locally convex setting,
flow directly from Theorem 2 when the p-measure of sp T or of
sup ̂  is 0 for p = 1 or 2. An entirely different type of variation
(also considered in [7]) may be discovered by observing that certain
well-known Banach spaces may be embedded in E or E'. As in part
2 we assume that T = S + Q is a spectral operator whose resolvent
satisfies an mth-order rate of growth condition.

THEOREM 4. For every x e E, and x' e E', the measure f£Qm+ix,x,
has base Lebesgue planar measure, λ. In fact, for every bounded
set B in E, and equicontinuous set Br in Ef, there is N = N(B, Bf)
such that for all Borel sets σ, all xe B, and all x' e B', we have

/V+i«.,'(tf) ^ N\(σ) .

Proof. Actually we prove this for μ2f Hausdorff 2-measure in
the plane, but this is equivalent to proving it for λ. Let (J be a
Borel set in the plane of finite μ2 measure, and ε > 0. Partition σ
by Borel sets {σj such that the diameter of σ̂  is less than ε̂ , with
0 < 6i ̂  1, and Σ< ε? < /^(tf) + e. Letting n = m + 1 in Lemma 2,
we find that for each B, Bf as described in the Theorem, there is
M > 0 such that | ̂ Qm+1P^{σ%)x, x'> | ^ Mel for all x e B, xf e B', and i.
Consequently, | <^Qm+1P^{σ)x, xfy \ ̂  Σ i Mε\ ̂  M(μ2(σ) + ε) for all xeBt

and x'eB'. Since ε is arbitrary, we are done.
We now denote by gXyX> the Radon-Nikodym derivative of μQm+ix,xr

with respect to λ. I f / a n d g are two elements of B°°(C) which agree
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λ-almost everywhere, then for all x e E, x' e E\ we have

- g)gXfXdx = 0 .

Hence UfQ
m+1 = UgQ

m+1. Moreover, if {fn} is a sequence of simple
functions which converges to / in Li(C), then UfnQ

m+1 is a sequence
which converges in J2f(E, E) to an operator which we denote by

UfQ
m+1. In this case <UfQ

m+1x, xf> = \ fdμQm+ix>x,.
JO

We have already seen that Qm+2 = 0. If we now assume Qm+1 Φ 0,
by letting σ = supj^, we see that for some x, x', μQm+iX)X>(σ) Φ 0.
Consequently there is a set τ, compact if necessary, with nonvoid
interior and a number a > 0, such that λ(r) Φ 0 and | gx>x>(z) I > a for
all zeτ.

These two constructions are the basis for the embedding proce-
dures mentioned above. The basic idea is to assume E has some
property which is inherited by all of its closed linear subspaces. Then,
if Qm+1 Φ 0, we may embed a suitable space (perhaps an L^-space) in
E or Er which does not have the property, thus obtaining a contra-
diction. In a written communication, McCarthy has suggested that
C(τ) would be better than the L^τ) used in his paper for the case
where E is assumed weakly complete. As an indication of some
of the details involved in such a construction, we prove here the
following:

THEOREM 5. // E is semi-reflexive, then Qm+1 = 0.

Proof. As indicated, we assume Qm+1 Φ 0 and construct τ and a
corresponding to some xOf x'o. Define Φ: L^τ) —> E by the formula

Φ(f) = U,φτQ~+1x0 .

Fix ε > 0 and let B' be an arbitrary equicontinuous subset of E'.
Then for any x'eB',

where N is chosen according to Theorem 4 with B — {x0}. Thus
\<Φ(f)fx

fy\<ε for all x'e B' whenever | / | Z l < ε/N. Since B' is
arbitrary, Φ is continuous. To see that Φ is one-to-one, first define
/* for each / in L%τ) by

)' when f{z) ψ ° '
when f(z) = 0 .
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Then /* is in JB°°(C) SO that we may define y' = *([ j
Then <Φ(f), y'y = J ff*d\ = J Jf\ dx = | / | I l ( r ) . Thus the kerne/ of
0 is zero. To show that Φ~x is continuous on the range of Φ it is
sufficient to find, for each ε > 0, an equicontinuous set B' in Ef such
that | / | X l < ε whenever \<Φ(f),x*y\ ̂  ε for all x'eB'. The set

is an equicontinuous subset of j£f(E9 E). Consequently the set B'
{1AXQ : Ae B} is equicontinuous in Ef. Finally,

(r, = j

S sup | <Φ(f), <Axo> | = sup
A€B %'GB'

Consequently, ΦiL^τ)) is a closed linear subspace of E which is iso-
morphic in both algebraic and topological sense to L^τ). This contra-
dicts the assumption that E is semi-reflexive, hence the Theorem is
proved.
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ON THE ELEMENTARY RENEWAL THEOREM FOR
NON-IDENTICALLY DISTRIBUTED VARIABLES

WALTER L. SMITH

1. Introduction* Let {Xn} be a sequence of independent, iden-
tically distributed random variables with 0 < EXn < co; write Sw =
Xλ + X2 + + Xn; let Nz be the number of partial sums Sn < x;
write H(x) = ENX. The Elementary Renewal Theorem states that
under certain conditions H(x)jx —»• { EXn y1 as x —> co.

Kawata (1956) has proved a result which, as we shall see below,
is equivalent to a generalization of the Elementary Renewal Theorem
to the case in which the { Xn} are non-identically distributed. Unfor-
tunately, he found it necessary to impose quite heavy restrictions
upon the distribution functions involved. In this note we shall also
be concerned with the proof of the Elementary Renewal Theorem for
non-identically distributed random variables, but under substantially
weaker conditions than Kawata's. This renewal theorem, essentially,
provides an asymptotic estimate to the sum Σ*=ι P{Sn ^ x}; actually,
we shall discuss in this paper the asymptotic behavior of more gene-
ral sums Σ»=i anP{ Sn ^ x}, for certain general classes of positive
coefficient-sequences {an}. Such more general sums have also been
considered by Hatori (1959), (1960), who followed Kawata's general
line of attack, however, and was consequently led to assume unduly
restrictive conditions.

It is well if we point out that there is another line of inquiry
which could be pursued in the present context, one with which the
present investigation must not be confused. Instead of considering
Nx, one could define a random variable Mx as the least m for which
Sm > x, and then study the asymptotic behavior of EMxlx. The latter
problem (also for non-identically distributed {Xn}) has been tackled
in recent work announced by Robbins and Chow (1962)*. However, as
might be expected, the problem we consider and the problem consi-
dered by Robbins and Chow differ in important respects, in general.
Indeed, a reference to Theorem A, which we quote below, will show
that one can construct a sequence of independent and identically
distributed random variables with a finite first moment, for which
EMX is finite but ENX is infinite. Evidently conditions which are

Received June 7, 1962, and in revised form March 7, 1963.
This research was supported by the Office of Naval Research under contract No.

Ncnr-855 (09) for research in probability and statistics at the University of North Caro-
lina, Chapel Hill, N. C. Reproduction in whole or in part is permitted for any purpose
of the United States Government.

* Footnote added in proof:—The details of this work have now appeared in Ann.
Math. Statist., 34 (1963), 390-395.
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adequate for a study of Mx may prove inadequate for a similar study
of Nx. However, when all the {Xn} are nonnegative we have an
exceptional case; for then Mx = Nx + 1, and the distinction between
the two lines of inquiry disappears. Our main result, Theorem 1
announced below, is more general than the one announced by Robbins
and Chow, for the case of nonnegative random variables.

Let us write Fn(x) = P{ Xn S x} and Gn(x) = P{Sn Sx}; we shall
also need the unit function U(x) = P{ 0 ^ x}.

The function L{x), defined for all sufficiently large x, is said to
be a function of slow growth if, for every c > 0

(1.1) ^ 1 , a s x ,
L(x)

It follows from the work of Karamata (1930), that a nonnegative
function of slow growth can always be represented thus:

(1.2)
U

where a(x) is a function which tends to unity as x tends to infinity.
An easy consequence of this representation (1.2) is that the conver-
gence (1.1) takes place uniformly with respect to c in any interval
not containing the origin.

As a final preliminary we must say a word about the non-nega-
tive coefficient-sequences { an } which we consider. For such a sequence
we shall suppose there exist numbers a > 0, 7 ^ 0 , and some non-
negative function of slow growth L(x), such that

(1.3) ±anx«~ a ^Lί-^—), as * - > l - 0 .
»=i (1 — x)y \ 1 — x J

By an appeal to a Tauberian theorem due to Karamata (Hardy, 1949,
p. 166) it is possible to deduce from (1.3) that

S-~
although we shall omit details of this deduction. Conversely, if one
starts from (1.4) then an appropriate Abelian theorem will show that
(1.3) follows. Thus (1.3) and (1.4) are equivalent assumptions on the
nonnegative { an }. We also note, as an easy deduction from (1.4), that

(1.5) an = o(nyL(n)) , as n—> co .

In connection with these sequences {an} we need to define an
index:
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D E F I N I T I O N . An index k of the sequence {an} is any number k

such that an = O(nk).

If we write k* for the greatest lower bound of the indexes of
the sequence {an} then fc* may or may not be an index itself. From
(1.5) it is clear that k* ^ 7. On the other hand, we can infer from
(1.4) that fc* ^ 7 — 1 and that 7 — 1 can only be an index if L(n) is
a bounded function. We have, therefore,

LEMMA 1. If k* is the greatest lower bound of the indexes of
{an} then 7 — 1 ^ &* ^ 7; the number 7 — 1 cannot be an index
unless L(n) is a bounded function.

The main result of this paper can now be stated.

THEOREM 1. Suppose the following conditions hold.
(Tl) {Xn} is a sequence of independent random variables with

distribution functions {Fn(x)} and finite expectations μn = EXn,
such that

(1.6) f*i + f**+-- +ί*n_+μf as ^ — 0 0 ,
n

where μ finite and strictly positive.
(T2) For every ε > 0

(1.7) Γ - Σ {1 - K(x) }dx-*0, as
J«ε n r=i

n —+ co .

(T3) For some a > 0, 7 ^ 0 , and some nonnegative function
of slow growth L(x), the sequence of nonnegative constants {an}
satisfies either of the equivalent asymptotic relations (1.3) or (1.4).

(T4) Σn=i«» diverges.
Then, if we write Gn{x) = P{ Xx + X2 + + Xn ^ x}, in order

that

(1.8) i;«A W~

it is sufficient that one of the following two sets of conditions, (T5)
or (T6), hold.

(T5) The Xn are nonnegative, in which case it will be proved
that there necessarily exists some unbounded non-decreasing function
l(n) such that

1 n ΓrlUr)

(1.9) lim i Σ \ {1-Fr
n^oo γi r = l JO
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(T6) (a) If k is an index of {an}, then there is a distribution
function K(x) of a negative-valued random variable with a finite
moment of order (k + 2), such that K(x) ^ Fn(x) for all n and all
x; (b) If —fc is the first moment of K(x), then for some v > K and
every ε > 0,

ί
sn/logn 1 n

— Σ {U(x) - Fr(x)}dx > 2l/(/c + ϊ)vε .
— oo ηfi r = l

In condition (T4) above we have required that Σ»=i an shall diverge;
it will be appreciated that this assumption is made only to avoid
triviality. A consequence of the divergence of Σ w an is that the
index k ^ — 1; therefore the distribution function K(x) which appears
in condition (T6)(a) will always have a finite mean; this justifies the
introduction of — K in condition (T6)(b).

The special case of Theorem 1 in which the {Xn} are nonnegative
can be given the following form.

THEOREM 2. Suppose that (i) {Xn} is a sequence of nonnegative
random variables such that (Tl) and (T2) of Theorem 1 hold; (ii)
A(n) is a non-decreasing function of n for which constants a > 0,
7 ^ 0 , and a nonnegative function of slow growth L(n), can be
found such that

(1.11) A(n) ~ anyL(n) , as n—> <χ> .

Then it follows that

(1.12) EA(NX) - a(—\ΊL{x) , x -> oo .

We note that by letting A(n) — n in Theorem 2 we obtain a
version of the Elementary Renewal Theorem for independent, non-
identically distributed, nonnegative random variables. Alternatively,
by taking an — 1 for all n in Theorem 1, we obtain the following
version for the case when the random variables may assume negative
values.

THEOREM 3. If conditions (Tl) and (T2) of Theorem 1 hold; and
if both parts of (T6) hold for k = 0, then

(1.13) _ # M _ J L , a s x - c o ,
x μ

where H(x) = Σn=i Gn(x) is the expected number of partial sums
Sn rg X.
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From (1.13) we can infer that, for any fixed h >

1 Cι+h h
(1.14) — H(x)dx -> — , as £ — co

t h μ

Therefore

— \\H(x + h) - H{x)}dx — — , as t -> co
t Jo μ

or, in other words,

(1.15) lim — (*

This last limit (1.15) is the form taken by Kawata's result (1956);
we see that it is implied by the simpler statement (1.13). On the
other hand it is not difficult to deduce (1.13) from (1.15), so that
(1.15) seems an unduly complicated form for the result. For (1.15)
is equivalent to (1.14); and from (1.14) and the monotone character
of H(x) we can infer that lim sup H(t)/t ^ μ"1 and lim inf
H(t + h)/t ^ μ~\

We close this introduction with some remarks about the conditions
of Theorem 1. The easiest proofs of the Elementary Renewal Theorem
for the case of identically distributed random variables make use of
the weak law of large numbers to show that SJn —• μ in probability,
as n —> co. The present investigation will also depend on establishing
such weak convergence of SJn, and conditions (Tl) and (T2), aided
by (T6)(a) when the random variables can take negative values, are
concerned with this task.

To understand the raison d'etre of condition (T6)(b) it is neces-
sary to inquire a little into our mode of proof. We shall, as just
noted, begin by establishing that SJn —> μ in probability. If only
Sn would not fluctuate too violently about its expected value nμ our
theorems would then be an easy consequence of this weak law of
large numbers. Unfortunately, considerable deviation of Sn from nμ
is possible; the main obstacle we have to overcome is presented by
sequences {Sn} which tend to decrease steadily over long stretches of
n and then indulge in a rare, but very large, increase in value. This
kind of awkward behavior is exemplified by sequences {Fn(x)} which
assign nearly all the probability to the negative values of x and
reserve only a very small probability for positive values of x, neces-
sarily located at very high positive values in order to make the ex-
pectations come right. Condition (T6)(b) is concerned with controlling
this kind of awkwardness.
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Condition (T6)(a), which is unnecessary when the random variables
are nonnegative, is introduced to ensure the finiteness of the quanti-
ties with which we deal; it will be understood better in relation to
the following theorem, which we shall use later in this paper but
prove elsewhere (Smith (1964)).

THEOREM A.* If {Xn} is a sequence of independent and identi-
cally distributed random variables with 0 < EXn < oo, and if k ^ 1 ,
then a necessary and sufficient condition for the convergence of the
series

(1.16) Σ nkP{X1 + X2 + + Xn ^ x}, - oo < x < + co ,

is that E{\ min (0, Xn) \k+2} < oo. Furthermore, when this condition
is met, if Xo is any other random variable, independent of the {Xn},
such that E{\min(0, X0)i"+2} < °°, then

(1.17) Σ nkP{XQ + Xλ + + Xn ^ x), - oo < x < + cc ,
Λ = l

is also convergent.

Thus we see that (T6)(a) must be satisfied when the {Xn} are
identically distributed, and it therefore seems reasonable to require
the satisfaction of some condition like (T6)(a) even in the general
case, if we are to ensure the finiteness of the left-hand side of (1.8).

2. Some preliminary lemmas* We begin by showing that the
conditions of Theorem 1 are sufficient to ensure that SJn —> μ in
probability as n —> co. This could be done by appeal to classical
results; however, it is not difficult to proceed from first principles,
and our proof conveniently introduces an argument of a sort which
we shall use several times in the course of this paper.

LEMMA 2. // conditions (Tl) and (T2) hold, then a sufficient
condition for ensuring that SJn —> μ in probability as n—>co is
either: (a) the random variables {Xn} are nonnegative; or (b) condi-
tion (T6)(a) holds with k = — 1.

Proof. Consider first the case of a sequence of independent, non-
negative, random variables {Xn} whose distribution functions satisfy (T2)
and whose mean values satisfy the condition that μ1 + μ2~\ \-μn = 0(n),
a condition less restrictive than (1.6). Write mn = n~~1(μ1 + μ2-{ \-μn)

* Footnote: This theorem is also a fairly easy deduction from the recently publi-
shed results of M. L. Katz (1963).
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and let rj be a small strictly positive number. Then, in virtue of a
familiar inequality, for every fixed ί ^ O we have

P{Sn ^ n(mn - η)} ^ en{mn-η)tE{e-t8"} .

Furthermore, if we make use of the Laplace-Stieltjes transforms

Φό{t) = ί Y ^ (x) ,
J o -

we may rewrite this last inequality thus:

P{Sn ^ n(mn - η)} ^ e

%km^)% Π Φs(t) .

But, as may easily be verified,

Φj(t) ^ eφt{t)-1

and so we have that

(2.1) P{Sn ^ n(mn - rj)} £ e ^ ,

where, after some integrations by parts, we see that

(2.2) Wn(t) = n{mn - i ? ) ί - ί Σ β- {l - F£x)}dx .
3=1 JO

Choose a small ε > 0 and set

by (T2), δw(ε)->0 as n-> &>. From (2.2) we then deduce that

(2.3) Wn(t) ^ w(mn - 57)ί - nte-nts[δn(0) - δ%(ε)] .

If we observe that δn(0) = mn and put t = (nVe)-1 in (2.3), we find
that

= ^ 7 ^ {mjl - exp ( - i/T)] + exp ( -

Eecall that mn is positive and bounded; thus mn[l — exp(— VΎ)] can
be made arbitrarily small for all n, by choosing ε sufficiently small.
Hence the expression in braces in the last inequality can be made
< — 57/2, for all sufficiently large n, by choice of ε. Therefore,
from (2.1), we see that
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P{Sn ^ n(mn - η)} ^ exp j -

for all sufficiently large n. Since ε can be chosen arbitrarily small
we are led to the conclusion that

(2.5) P{Sn g n(mn — 17)} —> 0 as n -> 00

for every η > 0.
Let p > 0 be arbitrarily small. Since ESn = wmw we have that

^ w(mn + p)P{Sn ^

+ n(mn - η)P{n(mn - η)< Sn < n(mn + p)} ,

and from this inequality it follows that

(2.6) (p + η)P{Sn ^ n(mn + p)} <η

If we choose rj arbitrarily small, and observe once again that mn is
bounded, we can infer from (2.5) and (2.6) that

(2.7) P{Sn ^ n (mn + p)} -> 0 as n -> ™

for every p > 0. The coupling of (2.5) and (2.7) produce the desired
conclusion that for every η > 0

(2.8) PJ I 0 as

We remark that (2.8) proves the lemma for the case when the
{Xn} are nonnegative (see the Corollary 2 quoted on page 141 of
Gnedenko and Kolmogorov (1954)). We turn now to the general case,
and begin by defining

X+ = Xn, if Xn^ 0 ,

= 0 , otherwise ,

and Xn = Xn — Xn- Thus both X^ and Xζ are nonnegative random
variables and we shall write μi = EX+, μ~ = EX~, m + = rr\μt +
μt + ••• +μi)f m» = n-\μτ + μτ + ••• +j«n), and, of course, raw =
w-'ίΛ + ft + + Λ).

Since (T6)(a) holds for k = — 1, the mean of K(x) is finite; if
we call this mean — K then it also follows from (T6)(a) that μ~ ^ tc
for all n, and hence m~ g Λ:. Moreover, the fact that K(x) ^ Fn{x),
for all w and all x, ensures that (1.7) will hold when the {Fn(x)} in
that condition are replaced by the corresponding distribution functions
of the variables {Xn}. We can now infer from the result established
for nonnegative random variables at the start of this proof that, if
we write S~ = Xf + X2~ + + X~,
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(2.9) — m :
n

as n

for every η > 0.
Let us turn now to a consideration of Sn = Xλ

+ + X2

+ + + X+.
We note first that, since μi — μ~ — μnj we have mi = m~ + mΛ.
But we have just shown that m~ is bounded by κ; and we may now
suppose mn—>μ as n—> oo, by (1.6). Thus m i is a bounded function
of the integer n, and we can appeal to our preliminary result to
deduce that

(2.10) pj|J|L_m+ 0 n

for every η > 0. The lemma follows from (2.9) and (2.10).

LEMMA 3. Under the conditions of Lemma 2,

(2.11) Γ{1 - Gn(nx)}dx -* 0 as x -> oo .
J μ

Proof. It is easy to verify that

r+oo
— 1 ί / / |/y»\ . (2. (/γι/y»\\/γ/y»

J-oo

= I {1 — Gn{nx)}dx +1 {1 — Gn(nx)}dx
Jμ Jo

S o r-κ

Gn{nx)dx — \ Gn{nx)dx ,
—K J—oo

(2.12) = Am + 5M - C. - -Dκ , say .

By Lemma 2, Gw(^ίc) —> 0 as n—* oo, for all sc < j«. Thus Bn—>μ
and Cw—>0 as n—>co, by bounded convergence. But mn—>μ, by
(1.6). Thus we can see from (2.12) that in order to establish the
required result, An —• 0, we need only prove that Dn —> 0. In the
case when the {Xn} are nonnegative there is, of course, no need for
further argument.

Write Kn(x) for the familiar %-fold Stieltjes convolution of K{x)
with itself. Then plainly, since K(x) Ξ> -Fw(aj) for all n and all x,
Kn{x) ^ Gw(ίc) for all n and all #. Thus it will be enough if we can
prove that

(2.13) I K Kn(nx)dx -> 0 as n -> oo .
J-oo

However,
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S o
Kn{nx)dx = K , for all n ,

—oo

so that (2.13) would follow if we proved that

(2.14) I Kn(nx)dx —> K as n —> oo .

To prove (2.14) we need only remark that, by the weak law of large
numbers for identically distributed random variables, Kn(nx) —> 1 as
n—*co for all x > — fc; thus (2.14) follows from the theorem on
bounded convergence. This proves the lemma.

LEMMA 4. If the nonnegative constants {an} satisfy (1.3) then,
as s —> 0 +,

Proo/. Plainly, e"^8 - > l - 0 a s s - > 0 + . Therefore, as s -> 0 +,

μysy

But, as we have remarked in our introduction, L{rx)\L{x) —> 1 as
x —> co uniformly for r in any interval not containing 0. Thus it
transpires that

1 _ β -

as s—>0 +, since 1 — e~μs ~ μs for small s. Thus the lemma is proved.

LEMMA 5. Under the same conditions as Lemma 4, as s—»0 +,

Proof. Choose )?, 0 < η < 1. Then

( 1 -

Thus

Σ
Σ nane~^s < ^i
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and so

It follows therefore, from Lemma 4, that

(2.15) lim sup ^ + 1 Σ «ajr*» < - ^ { ^ " 1 }
L ί -

If we let rj —> 1 — 0 in (2.15) we obtain

(2.16) lim sup - ^ — Σ nane~μsn ^ — .

Similarly, by taking ^ > 1 and using the fact that

p— μsίi p—μ.8nr)

we can show

(2.17) lim inf μ ^ Σ wα.β^ > - ^ .
n \ άί ~ μy

The lemma follows from (2.16) and (2.17).

3* Proof of Theorem 1. We shall write β for an upper bound
to the numbers {anln

k}, where k is the index of the nonnegative
coefficient sequence {an}; we shall also write f] > 0 for an arbitrary
small number; it is supposed that f] < μ.

Consider, to begin with,

(3.1) Kn = ( V s * Gn(x)dx ,
Jnη

e~nsxGn(nx)dx .

•η

Evidently,

0 ^ Kn ^ ne-nΊ"[lkGn(nx)dx .

But Gn(nx) —> 0 as n —> co, for all x < μ, by Lemma 2. Hence we
can appeal to bounded convergence and write
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(3.2) Kn =

where δ'n —»0 as n—• oo, uniformly in s ^ 0.
Next consider

= Γ β—{1 - G.(3.3)

In view of Lemma 3 and the assumption that rj < μ we may thus
conclude that

(3.4) Ln =

where δ, —> 0 as n —> c», uniformly in s ^ 0.
Thus, if we write 5Λ = δ'n — δ»,

(3.5)
n=l

Given an arbitrary ε > 0, we can find no(e) such that \δn\ < ε

for all n > n0. Moreover we can assume that
since we suppose Xαw to be divergent. Thus

(3.6) Σ na>nθne <
w = l

Therefore, by Lemma 5,

co as s —-> 0 + ,

(3.7) lim sup
s->0+

u±
But ε is arbitrary, and we can therefore deduce from (3.7) and

(3.5) that, as s-»0 +,

(3.8)

Now consider the function

(3.9) Hv(x) = Σ anGn(x)U(x - nη) .

Evidently Hv(x) is non-decreasing, since each term in the summa-
tion is non-decreasing. We also note that

(3.10) H,(x) = f

- nμ) - Gn{x)}U(x - nη) .
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Let us denote the Laplace transform of a function A(x), say,
thus:-

A°(s) = [°e-sxA(x)dx .
Jo

Then, from (3.10), we have

(3.11) #?(*) = — Σ ane"^ + Σ an(Ln - Kn)

the term-by-term integration being justified by monotone convergence.
From (3.11), (3.8), and Lemma 4, it now appears that

(3.12) J/ffΓl Hoφ _ a μ f a s 8 __ 0 + β

Γ Ί

An appeal to Doetsch (1950, p. 511) then allows the inference

< 3 1 3 > ^ Ύ

But, by (3.9),

(3.14) Σ anGn(x) = H,(x) + ψ,(χ) , say ,

where

(3.15) Ψη(α?) = Σ anGn(x){l - U(x - nη)} .
n=l

If we were to prove that

then the theorem would follow from (3.14) and (3.13). The proof of
(3.16) under fairly weak hypotheses is quite involved, however, and
we therefore present it in the following two separate sections.

4. Completion of proof under (T6). If {Xn} is the renewal sequence
under study let us write X~ — — Xn when Xn < 0, X~ = 0 when
Xn έ 0. When (T6) holds we can introduce the distribution function
K(x) which, as has already been explained in § 1, may be assumed
to have a finite first moment —tc. Therefore, if we write vn — EX~,
we have 0 ^ vn ^ K for all n.

Let us also write X+ = Xn + Xϊ, S ί = X? + Xf + + X+,

and S~ = XΓ + X2~+ + Xi.
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LEMMA 6. When (T6) holds we can find η > 0, δ > 0, such that

(4.1)
<n

where k is the index of the coefficient sequence {αj.

Proof. Let us write vn = n~\vx + v2+ + vn). Then, for any
t ^ 0, η > 0, it is plain that

(4.2) = eMη+^]t Π Φf(t) ,

where

Φί(t) =

If we now use the familiar inequality already employed in §2
we can deduce from (4.2) that

(4.3) P{Sί ^ n(vn + V)} £ *w«{t) ,

where, after some integrations by parts, we now have

(4.4) Wn(t) = n{η + Vn)t - t ± f Y"{1 - Fό{x)}dx .
3=1 JO

In this section we are assuming (1.10) to hold, and so, given any
fixed ε > 0, we have for all sufficiently large n that

n Γsnβogn ——————

Σ {U(x) - Fj(x)}dx > 2nV(k + l)vε ,
3=1 J—oo

where v > K is independent of ε.
We can rewrite this last inequality as follows.

(4.5) Σ \ {1 - F3{x)}dx > rivn + 2nV(k + l)vε
3=1 JO

Thus, from (4.4), it is plain that

Wn(t) ^ n{η + vn)t - nte-tsnflosn(vn + 2]/(k + l)vε) .

If, in the latter inequality, we make the substitutions

ε^
/T77I i :

λ =

and if we note incidentally that K ̂  vn for all n, and 1 — e~x < kc
for all x > 0, then we find that

logn
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By taking ε sufficiently small we can make e~λ arbitrarily near
unity and thus make

(k + 1) - 2e~\k + 1)J1- < - (k + 2δ + 1)

for some small δ > 0 (recall that v > it). Next choose rj so small
that Xη < εδ and it follows from (4.6) that

(4.7) Wn(tn) <-(k + δ + l)logn.

Lemma 6 follows from (4.7) and (4.3).
In what follows we denote the familiar Stieltjes convolution of

two distribution functions, say A(x) and B(x), by A*B(x). We denote
A*A(x) by A*\x), and, generally, A*A*n(x) by A*{n+1)(x), for n =
1, 2, 3, . . . .

LEMMA 7. When (T6) holds

Σ nkP{S~ > n{vn + δ)}

is convergent for every δ > 0.

Proof. Define Zn = δ/2 + vΛ - X~ and write Ln(x) = P{Zn ̂  a?}.
If we recall that vw ^ Λ: for all ^, then we easily see that

-1-3 ~/c) ̂  Ln(x) ̂  K(x).

This proves that Zn is a stochastically stable sequence as defined by
Smith (1962), whose Theorem 7 allows us to draw the following con-
clusion.

For every integer p there is a distribution function Kp(x) such
that

(4.8) P{Zn + Zn+1+ ... + Zn+V.λ £ px) S Kp(x)

for all n and all x, where

(4.9) Ip = [° Kp{x)dx
J

is finite for all p, and Ip-*0 as p—>oo.
Thus we can find pQ{δj2) such that IPo < δ/2. If Y is a random

variable with distribution function KPo then it follows from (4.9) that
EY>-δ/2. Moreover, it is clear that E{\ min (0, Γ) \k+2} < ™,
since we can certainly suppose Kp{x) ̂  K*v(px).

Write M(x) for the supremum of P{ZX + Z2+ ... + Zr^ pQx} for
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r — 1, 2, , p0 — 1. Then if Yo is a random variable with distribu-
tion function M(x) it is also apparent that E{\min(0, YO) \k+2} < &>.

Now choose and fix r = 0, or 1, or 2, , or p0 — 1. It follows
from what we have established so far that

fnpn+r

(4.10) P\ Σ Zi S
ί 3=1

Let Yl9 Y2, be a sequence of independent random variables,
identically distributed, with distribution function KPo(x); let Ylf Y2,
be independent of Yo. Then E(Yά + δ/2) > 0, for j = l, 2, 3, ••• and
E{\ min(0, Y} + 1/25) \k+2} < co for i = 0,1, 2, • • . Thus it follows
from Theorem A, quoted in §1, that

£ Λ * P { Γ 0 + Σ (YJ + ^2) s o} < oβ,
w=l L i = l J

that is,

(4.11) Σ n * M * * * r ( - | - n ί ) < oβ .

From (4.10) and (4.11) we conclude that

Σ

whence,

(4.12) Σ Λ^ίiS V r ^ (^o + r)(δ + vΛJ,0+r)} < oo .

The lemma follows from (4.12) by letting r — 0,1, 2, , p0 —
in turn.

LEMMA 8. When (T6) holds we can find rj > 0

Σ nkGn{nη) < cχ> .

Proof. We observe that

P{Sn ^ nfj\ = PJS^ ^ 5̂7 + SίΓ}

^ P{S^ ^ ^ + JS,Γ, iŜ Γ < Ή>(δ + vn)}

+ P{S~ ^ n(δ + Vn)}

for every δ > 0. Hence

?- ^ w(δ + vn)}.



ON THE ELEMENTARY RENEWAL THEOREM 689

The lemma now follows from Lemmas 6 and 7 if we make rj + d
sufficiently small.

The proof of (3.16) is now straightforward. We see from (3.15)
that

ψv(x) ^ Σ <x>nGn(nη) ,

for all x. Therefore, since k is the index of the {αj sequence, it
follows from Lemma 8 that Ψη(x) is bounded above. Since xyL(x)-*oo
as cc—> oo, the truth of (3.16) is established.

5. Completion of proof under (T5) We begin by showing that,
once we have proved (1.9), we can assume, with no loss of generali-
ty, certain convenient properties for the function l(ri). All that
actually matters are the values taken by l(ri) for integer values of
n; but we may clearly assume l(x) to be a continuous function defined
for all x ^ 1. More to the point, we observe that if (1.9) holds for
the function l(x) then it also holds for any function lx(x) <Ξ l(x). In
this connection we prove the following;

LEMMA 9. //, for x ^ 1, l(x) is an unbounded, continuous, and
non-decreasing function of x then we can find another such function
lλ{x) ^ l(x), defined on the same domain, with the additional proper -
ty that lx{x)jx is non-increasing for all sufficiently large x, and
tends to zero as x —• oo.

Proof. For x ^ 1 define

(5.1) h(x) = log x + inf {l(y) - log (y)} .

We shall show that lx(x) has all the requisite properties.
To begin with, since l{y) — log y is a continuous function in [1,

x] it attains its lower bound; we shall write y(x) ^ x for the largest
y-value at which this lower bound is attained. Then

(5.2) k(x) = log x + l(y(x)) - log y(x) .

Evidently y(x) is a non-decreasing function of x. If y{x) —• oo
as x —* oo then the fact that l(x) is unbounded shows, in (5.2), that
lλ{x) is also unbounded; if y(x) tends to a finite limit as x—> oo, then
the fact that logx is unbounded shows, also in (5.2), that lλ{x) is
unbounded. Incidentally, it is an easy deduction from (5.1) that
lλ{x) ^ l(x).

Next choose an arbitrary value of x, xx say. Our argument will
be given in two cases.
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Case y(Xi) < xx. The continuity of l(y) — log y ensures the ex-
istence of some open interval G, containing xl9 within which y(x) =
y(Xί). Hence, in G,

k(x) = log x — log x1 + lx(xλ)

from this equation it is clear that lx(x) is increasing in G and, by
simple differentiation, lx(x)jx is decreasing in G.

Case y(Xi) = xlm In this case, for any h > 0, #(#! + h) ^ â ; thus

ί(l/(^i + h)) ^ (̂̂ 1) = h(Xi) Hence, by (5.2),

(5.3) £i(#i +h) ^ log (a?! + ft) + ϊi(#i) — log (y(xλ + ft)) .

Since xx + h^ y(xx + ft), it follows from (5.3) that I1(x1 + h) ^ ϊi(ί»i),
i.e. Ẑ OJ) is increasing at xlm But, from (5.1),

Zxίa?! + h) — log (a?! + h) S- li(Xi) — log ^

from which we can infer that

7 (fγ _ l _ Zi \ 7 //y \ ZΪ 7 //y» \ fa

(5.4) Xi + h — ^ - Xi(Xi + fe) + Xi(Xi + fe)

The right hand side of (5.4) is negative for all sufficiently large xlf

because lλ{x) is unbounded and non-decreasing. Thus l^jx is non-
decreasing at #i.

Finally, we remark that

k(x) ^ log x + 1(1) ,

from which it is obvious that lλ(x)/x —• 0 as x —• co.
Let us next establish that conditions (Tl) and (T2) of Theorem

1 do indeed imply the existence of some unbounded increasing func-
tion l(n) for which (1.9) holds. We see that since (1.7) is true for
every ε > 0, there must be an unbounded increasing function w(n),
say, such that

— Σ Γ i1 - Fr(x)}dx -> 0 as n -> oo .
γi r=l Jn/win)

Therefore, because of (1.6), it follows that

1 n Cnlw{n)

— Σ {1 - Fr(x)}dx ^μ as n — co .
U r = l JO

Let l(n) be some other unbounded increasing function; we leave
this function somewhat arbitrary for the moment except for the
supposition that it increases very much more slowly than w(ri). Let
t(n) be such that rβ(r) ^ n/w(n) for all r > t(n). Then we can infer
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that, for any positive ε, and all sufficiently large n,

1 tin) Cnjw(n) 1 n Γrll(r)

(μ-ε)<±Σ1\ {1 - Fr(x)}dx + - Σ {1 - Fr(x)}dx
% r = l JO % r=t(n)+l Jo

= Tάn) + T2(n) , say .

But
•I tin) Γnlwin) 1

— Σ {1 - Fr(x)}dx ^ - (μ1 + μ2 + + μt{n)) ,
n r=i Jo n

and so we could conclude from (1.6) that T^n) —* 0 as n —+ oo if only
we could be sure that t(n)ln—>0. It would than follow that
T2(n) > (μ — 2ε) for all large n; the desired conclusion (1.9) would
then be proved, in view of the arbitrariness of ε.

For large n, since w(n) is increasing,

w(n)

and so, if we put s(n) = n(log w(n))lw(n),

s(n) > n
log w(s(n)) ~~ w(n)

It is clear from Lemma 9 that we may assume njw{n) to be increas-
ing for all large n; from this it is easily seen that n/(logw(n)) is
also increasing for all large n. Therefore, if we let l(n) — log w(n)
we have that rβ(r) ̂  n/w(n) for all r ^ s(n). Hence t(n) ^ s(n), and
it is plain that s{n)jn —> 0 as n —> co thus we have a function ϊ(π)
which exhibits the desired behavior, and (1.9) is proved.

We now turn to the proof of (3.16) under the condition (T5) that
the {Xn} are nonnegative; for this proof we may, by the immediately
preceding discussion, assume that xβ{x) is unbounded and non-decreas-
ing. We can then define r* = r*(x) as the greatest integer such that
r*β(r*) S %* We also write s* = 8*(x) = r*((l + e)x); thus s*(x) is
the greatest positive integer such that s*/Z(s*) ^ (1 + e)x.

Choose a large positive C and consider the following three cases,
in all of which x is assumed to be large.

( i ) ex 5Ξ n <£ r*(x). By considerations similar to those in the
proof of Lemma 2 we have

(5.5) Gn{x) ^ ew^] ,

where

(5.6) Wn(t) = ίa - t Σ Γ β" ί Mί1 ~ Fά{n)}du .
3=1 JO
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If we substitute t = 1/(2$) and truncate the integrals at x in
(5.6) then we find

(5.7) Wn(ll(2x)) ^ -ί - ^ - Σ Γ{1 - F3 (u)}du .
2 2x 3=1 Jo

Since (T5) is assumed to hold we can, by (1.9), find 3 > 0 such
that

n Γ'jIUj)

(5.8) Σ {1 - Fά(u)}du > nδ
3=1 JO

for all sufficiently large n. But n <£ r* so that (since x/l(x) is non-
decreasing) i/ZO") ^ a; for i = 1, 2, •••, w. (Actually we have only
shown that xjl(x) is non-decreasing for all sufficiently large x; but
this is adequate for our purpose if we note that xβ(x) —> c*> as α? —> CΌ
and assume ^ large). Hence we can infer from (5.8) that

n Cx
(5.9) Σ \ {1 ~ FAu)}du > nδ

3 = 1 JO

and so, from (5.7), that

WJXI(2x)) £ 1 -
2 2x

If we use this last inequality in (5.5) we deduce that

(5.10) Gn{x) :

(ii) r*(x) <n S s*(x). For this case we modify the kind of
inequality we have been using on Gn(x). Plainly

P{Sn ^x}^ P{Xj ^ x for all j} = f[ Fά{x)
3=1

By forming the geometric mean of this last inequality and (5.5)
we obtain a new inequality:

(5.11) Gn(x) ^ eR*{t) ,

where

(5.12) «-(*) = \ te ~ i * Σ
x 7 2 2 i=i
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If we truncate the integrals in (5.12) at x and substitute t = 1/x
then we can infer

(5.13) RJXJx) £ i- - -fl ± Γ{1 - F3{u)}du
2 2x j=ι Jo

At this point it is convenient to write

S JIKJ)
{1 - Fά{u)}du

0

then (5.9) can be rewritten

(5.14) (\ + λ2 + + λn) > nd , n sufficiently large.

We shall also write

aά(x) = Γ{1 - Fό(u)}du .
Jo

Therefore, for j > r* (and, consequently, j/l(j) > x) we have

S jlKJ)
{1 - Fάufidu = Xj - as(x) .

X

A consequence of the last equation is that

(5.15) ( - 1 - - x)(l - Fj(x)) Ξ> Xj - aj(x) .
v 1(3) J

However, if j g s*(x), then j/l(j) ^ (1 + e)x, and from this ine-
quality it follows that

Thus we have, from (5.15), that

1 - F3{x) ^ Xj ~" a^x), r* < j ^ s .
ex

Using the last inequality we can infer from (5.13) that

2 2ex i 2ex

1

2ex
Σ (λ, - <*,(&))

2 2ex

< JL _ J?^_
2

by (5.8).
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Therefore, from (5.11), we discover that

(5.16) GM < exp f ί ~ - ^ 4 , r* < n ^ s* .
I 2 2exJ

From (5.10) and (5.16) we can conclude that

(5.17) *Σ anGn(x) < β1/2 £ α«exp{—

We quote here a theorem which can be immediately deduced from
some results of Karamata (Hardy (1949), pp. 166-169, especially
Theorems 110, 111).

THEOREM B. Suppose that a(t) is a non-decreasing function of

S oo

e~ytda(t) is convergent for y > 0, and that
0

(5.18) I(y) ~ ^L-L , as y - 0+ ,
Ψ

where 7 Ξ> 0 and L(x) is a function of slow growth. Then, if g(x)
is a continuous function of bounded variation in (0,1), as y—>0 +
we have

(a) in case 7 > 0;

Ψ
Liy-1)

(b) in case 7 — 0:

Let us put, in this theorem,

a(t) = Σan.

Then Lemma 4 shows that a relation like (5.18) holds.
Define

g(x) = 1 , 0 ^ x ^ a ,

= 2 - — , α ^ £ ^ 2 α ,
α

= 0 , 2a^x ^1 .

Clearly this g(x) satisfies the conditions of Theorem B. Thus, when
7 > 0 we can deduce that
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lira sup -f— Σ α.β-»

^—9L—[°
βyΓ(7) ho>g(l/2α)

In this last result, substitute y = δ/(2ex) and log (1/α) = Cd/(2e).
On being given any prescribed ε > 0 we can choose C sufficiently large
for us to deduce, via (5.16), that

(5.19) lim sup — J — *Σ anGn(x) < ε .

When τ = 0 a similar result to (5.19) can also be proved by appeal
to Theorem B.

(iii) s*(x) < n. For this range of values for n we always have
n/l(n) > x. If we define Rn and λw as for case (ii) then by arguments
similar to the ones employed in that case we find

aό(x)Σ λ i

2ex i 2ex
1 Λ f X3 - as(x)
ΊhΓΊ ^

However, when j > s*, j/l(j) > (1 + e)x and one can infer that

(5.20) ( - / - - x) > ex
v 1(3) J

and deduce therefore that

(5.21) Rn(χ-χ) < — -

Write

rp

and

•Aj = \ + λ2 + + λy .
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Then

rp __ Λ J

n „ « + l _ χ
UTI) £(s* + 1)

n-l ( 1

+
n—1
SΓ1

8*+1 - J - - x ^ + 1 - x

We may assume s* to be large, so that, by (5.14), As > j'δ for
all j in the range of consideration. Thus

Tn>

l(s* + 1)

If we use this last inequality in (5.21), and also make use of (5.20),
then we find

2i4(ar1)
s*

1(8*

s*

1(8*

s*

s:

+
+
s

+
+

+:

*δ
1

1)
*δ
1

1)

L

X

X

Ί

- δ t w>

We may therefore conclude, from (5.11), that

/ o* J_ 1 \ d/2)δj(β*+l)
(5.22) Gn{x) < (s + 1 ) e^\ n > s* ,

V n + 1 /

where

2 2/ S* + 1

At this point in our argument we need information about the
order of magnitude of
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77 — V a%

for p > 7 + 2. To this end, define α(ί) = Σn^tanf as before. Then
there is some constant c such that a(t) < cPL{t) for all large ί, by (1.4).

Evidently

UP

if we ignore a negative form. Hence, by an obvious substitution in
the integral, we have

UN < )

But, from (1.2),

L(Nv) __ α ( ^ ) . 1 . e χ Ό ί["a(u) d \

where a(x)—>1, as x—^oo. Therefore, given an arbitrarily small
ε > 0, we can choose iV so large that for all v ^ 1

= (1 + e)v* .

Hence we can appeal to dominated convergence to infer that

t~L(Nv) dv f°° dv
Ji L(N) vp~y+1 ~~* Ji vp~y+1

as N—>c°. It then transpires, from (5.23), that

(5.24) UN =

For all sufficiently large x we shall have (l/2)δl(8* + 1) > 7 + 2,
and hence may infer from (5.22) and (5.24) that

± a%Gn{x) = O((s* + l)γL(s*
n=ά*+l

and hence that
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(5.25) £ anGM
xyL(x) n=» +i

Since

s* + 1 _ / β* + 1
l(s* + 1)

it is clear that for all large x

s* + 1
< (1 + 2e)x .

Therefore, from the definition of ψ(x) which follows (5.22) we infer
that

(5.26) ψ(x) < - i -
Δ

In addition, we can deduce from (1.2) that

L(s* + 1) __ α(s* + 1) / x

L(x) a(x) \s* + 1

and so,

(5.27) I

for any ε > 0.
If we combine (5.26) and (5.27) with (5.25) we discover that

(5.28) —±— Σ a»Gn(x) = O[l * ^ M exp

But (s* + 1) > (1 + β)xl(s* + 1), so that (s* + l)/x -> co as a? •
We can therefore deduce from (5.28) that

- Σ a%Gn(X) "~^ 0 > 3-S X —> OO .

On combining this last result with (5.19) we find that given any
ε > 0 we can choose a sufficiently large C > 0 so that

lim sup Σ αΛGn(a) < ε

xγL(x)
This result establishes (3.16) and completes our proof, since

= Σ a»Gn(x).
nXx/η)
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DOUBLY INVARIANT SUBSPACES

T. P. SRINIVASAN

1Φ Our theme is a theorem on doubly invariant subspaces attributed
to Wiener in the folk lore; our discussion was inspired by that of Helson-
Lowdenslager [2] on simply invariant subspaces and a course of lectures
by Professor Helson on this subject. Let ^ί denote a closed subspace
of U of the circle | z \ — 1, which we shall denote as L\eix). Let λ
denote the function on | z I = 1 defined by X(eίx) = eix. Say that ^£
is doubly invariant if / e ^ C = > λ / , \~xf^^£. An example of such
a subspace is the set of all / e L\eix) which vanish on a fixed measur-
able subset E. Wiener's theorem asserts that every doubly invariant
^£ is of this form. A similar result holds for L2 of the real line
too (which we shall denote as U{dt)). In this case a doubly invariant
subspace is any closed subspace ^£ of L\dt) such that fe^f=>
eiVlifz^€ for all real u, and every such subspace consists precisely
of all functions in L\dt) which vanish on a fixed measurable subset
E of the line. In either case—the circle or the line—^f determines E
uniquely. We shall refer to either of these cases as the scalar case.

Wiener's theorem extends to L2 spaces of vector valued functions
on the circle or the line. Let gίf be any separable Hubert space and
L^ denote the set of all functions on | z \ — 1 with values in £$f which
are weakly measurable and whose norms are square integrable. L\%
is a Hubert space for the inner product

(/, g) = Γ W ) , g(e* ))dσ
J-JΓ

where the inner product on the right is the one in β^ and dσ =
(l/2π)dx. The doubly invariant subspaces of L\e are defined exactly
as before. An example of such a subspace in this case can be given
as follows:

Let J? be a range function meaning a function on | z | = 1 to
the family of closed subspaces of §ίf, defined a.e. Two range functions
which agree a.e. are regarded as the same function. Let P(eίx) be
the self adjoint projection on ^f{eix). Say that that ^ is "measur-
able" if P is weakly measurable. Given ^f measurable, let ^^ be
the set of all functions feL2% for which f(eix) e ^(eίx) a.e. Then
^j? is a doubly invariant subspace of L2^. The version of Wiener's
theorem in this case will be that every doubly invariant subspace of
L^ is obtained as above from a measurable range function ^f and

Received May 10, 1963. This work was done while I held a visiting appointment in
the University of California, Berkeley.
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β determines ^ uniquely. The scalar case corresponds to one
dimensional £ίf in which case ^{eix) can have only one of two values,
either {0} or the whole space, so that specifying ^{eix) is merely
prescribing the set on which all functions in ^€β vanish. Thus the
above indeed generalizes the scalar case for the circle. The general-
ization of the line case to the vector context is now obvious.

In both the scalar and vector cases, the circle or the line and the
associated Lebesgue measure are inessential. Let X be any locally
compact space and m a regular Borel measure on X and let P be
any subspace of L^dm) which is weak* dense. Say that a closed
subspace ^/ί oί. L\dm) or Ll%(dm) is doubly invariant if it is invariant
for multiplication by functions in P. Then the doubly invariant
subspaces of If {dm) or L2^(dm) have precisely the same structure as
in the circle or the line case. The circle corresponds to the situation
'm(X) < oo' and the line to 'm(X) = co'; the subspace P corresponds
in either case to the set of all trignometric polynomials.

In this paper we first give a proof of Wiener's theorem for the
scalar circle case and show that essentially the same proof applies to
the line case too. We then generalize our proof to yield the vector
case. Our proof for the (scalar and vector) circle case applies word
for word (with obvious changes) to the context of finite regular measure
spaces mentioned above; our proof of the line case could be adapted
to the context of infinite measure spaces. By modifying our proof
for the vector case we obtain a theorem (Theorem 5) on range functions
of constant dimension which incidentally gives a characterization of
range functions associated with simply invariant subspaces with no
remote past (Theorem 6). Finally we show that in the scalar case
the L\dm) theorem implies a corresponding Lp(dm) theorem (Theorem
7), 1 g p g co1.

The Wiener L2 theorem is known. In the scalar case, direct proofs
are also known; our proof seems to be simpler. In the vector case
our version of the theorem was suggested by Professors Helson and
Lowdenslager; we have not seen in the literature a direct proof of
the theorem in this case. It could be derived as a corollary from
the following general theorem in the theory of 'rings of operators':

Any bounded operator T: L2^ —> L2^ which commutes with multi-
plication by bounded scalar functions is multiplication by a bounded
operator valued function, [cf: 1, p. 167, Theorem 1; 3, p. 301, Lemma 1]
The proof this way would be more involved. Our Lp theorem and
Theorem 6, we believe, are new.

We may point out in passing that the general theorem on multi-
plication operators quoted above can itself derived from Wiener's

1 The Lp(dm) theorem for pΦ2 is of interest as it exhibits a class of subspaces of
Lp(dm) which admit bounded projections.
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theorem by an application of the spectral theorem for self adjoint
operators. We omit the proof of this.

We have beneίitted considerably by our discussion with Professor
Helson in the course of preparation of this paper and our thanks are
due to him.

2. THEOREM 1. Let ^ be a doubly invariant subspace of L\eix).
Then Λ€ — CEL\eix) for some measurable sebset E (where CE denotes
the characteristic function of E).

Proof. Let ^fL be the orthogonal complement of ^€ in L2(eix)
and let q be the orthogonal projection on ^€ of the constant function
1. Then 1 — q^^£L, and because of double invariance of ^ and
hence of ^/έ1-, Xn(l - q) e ^ L for all n. So \(q - | q \2)e~nixdσ = 0

for all n so that | q |2 — q a.e. Hence q — CE for some measurable
subset E.

Trivially qL\eix) c ^£. This inclusion is in fact an equality. For
if g e ^?OqU(eix) then g _L Xnq for all n, also g 1 Xn(l - q) (which lies
in ^f1), so g _L λ% for all n and hence g = 0 a.e. Thus ^ = qU(eix) =
CEL\eix). We pass now to the line case:

THEOREM 2. Let ^y£ be a doubly invariant subspace of L2(dt),
— oo < t < CΌ . Then Λ€ = CEL\dt) for some measurable subset E
of the line.

Proof. Let U = (1 - it)L\dt) and Λ€ = (1 - it)^. U is a
Hubert space for the inner product

(/, 9) - Γ -dt

and ^ ^ is a closed subspace of L2 invariant under multiplication by
all eiut. Let ^£"'L be the orthogonal complement of ^£ in L2 and let
g be the projection of the constant function 1 (which belongs to U)
on ^ . Now the arguments are the same as in the circle case:

(1 - q)eiut e ^ - 1 for all u and hence q ± (1 - q)eiut for all u.
That is

{°° (Q - \Q I2) e~iutdt = 0 for all u.
J-°° 1 + ί

Hence (q - \ q |2)(1/(1 + t2)) - 0 a.e. Thus | q \2 = q a.e. and q = CE for
some E. Then as in the circle case, ^£ — qL2 == C^L2, i.e. (1 — it)^£ —
(1 — it)CEL2. Hence ^// = C^L2. The uniqueness of E' is trivial in
both the cases.
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3.1. We deal with the vector case for the circle. Let £$f be a
separable Hilbert-space and L\% be defined as in § 1. Then we have

THEOREM 3. For every doubly invariant subspace ^€ of Ll% there
exists a unique measurable range function ^J? such that ^ = ^£^.

Proof. Let {ek} k = 1,2, be an orthonormal basis for 3(f and
let qk be the projection of the constant function ek on ^/ί. Then
qk e L2%* and of course is measurable. Each qk is defined a.e. on the
circle and hence also all qk's together. Let ^(eίx) be the closed
subspace of ^f spanned by {qk(eix)}k. Then ^(eix) is defined a.e. We
shall show that

(a) J^ is measurable
(b) ^£

Proof of (a). Let P(eix) be the orthogonal projection on ^
We have only to show that P(eix)ek is measurable for all k. We shall
actually show that P(eix)ek = qk(eίx) a.e. Let ^ L = Ll% Q ^f. Now
qk£ ^€ and ek — qke^L. Because of double invariance then,
Xnqre^f for all n, and is J_ek — qk for all k. Thus \(ek — qk(eίx),
qr(eίx))e~nixdσ = 0 for all n and hence ek — qk{eix) _L qr(βix) a.e. for every
r so that ek — qk(eίx) _L qr(eix) for all r, a.e. This means ek —
qk(eix) 1 ^(eίx) a.e. Since qk(eix) e ^{eix) it follows that P(eίx)ek =
qk(eίx) a.e.

Proof of (b). Let ^V be the closed span of {Xnqk} in L2

χ, k^l,
n = 0, ± 1 , ± 2 , •••. Then Λ" is doubly invariant and ^V* c:^//. If
^yjr φ ^ let flre^^θ-^ Then, using the invariance, we have

(i) flflλ ίk for all fc, w
(ii) Xng ±ek — qk for all fc, n.

It follows as in the proof of (a) that
( i ) g(eix)±qk(eίx) a.e.

(ii) g(eix) ±ek- qk(eix) a.e.

Hence g{eix) _L ek a.e. for every k so that #(eί&) J. ek for all fc, a.e.
Hence g(eix) = 0 a.e. This shows that ^Jt = ^//*.

If / e ^ ^ then f(eix)e ^(eίx) a.e. Hence ^ T c ^ . Let now
flr e ^^ © ^ C Then g ± Xnqk for all k, n, so sr(βiίC) J_ qk(eix) a.e. for
every fc and hence g(eίx) _L ̂ (eίx) a.e. But g(βί:c) 6 ^(eix) a.e. as
# e ^ ζ ^ . Hence # = 0. Thus ^ = ^ β .

Only the uniqueness part of the theorem remains to be proved.
This we prove independently as a lemma.

LEMMA. If ^f and 3ίΓ are measurable range functions and
then ^ = SΓ a.e.
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Proof. Let as before P(eίx) be the orthogonal projection on ^(eix)
and let qk(eix) = P(eix)ek, k = 1, 2 where {eJ is an o.n. basis for

qk is measurable as ^ is and || qk{eix) ||2 ^ | |βΛ ||
2 — 1 so that

^. Also {?*(£**)}* generate ^(eix) as {ej generate Jg^. Now
G ̂ f^ = ^f% so that ^(β**) e ^T(β ί a ;) a.e. for all k. It follows that

r ί e ^ ) a.e. Interchanging ^ and ^ we conclude that
a.e.

3.2. The functions {gJ defined in § 3.1 provide a measurable basis
pointwise a.e. for ^ . We shall show that we can secure the {qk} to
be orthogonal a.e. The usual orthogonalization process can be applied
at every point but the measurability of the resulting functions needs
to be proved. This can be avoided by a slight modification of our
construction of the qk's which while preserving their other properties
also ensures their pointwise orthogonality. The modification is the
following:

Let QΊ be the orthogonal projection of ex on ^/ί and let ^V[ be
the closed span of {λngχ}Λ. Then <Λ^ is doubly invariant and so is

^ θ >^ί Let now q2 be the projection of e2 on ^/ίγ and let
c ^#1 be the closed span of {Xnq2}. Having obtained qu q2, , qk-λ

and <yVl, ^ ί , ~ ^ - i as above, define qk as the projection of ek on
^Jt θ Σ<=ί - ^ T^16 f̂c's are easily seen to be mutually orthogonal
a.e. If ^{eix) is defined to be the closed span of {qk(βix)}k, the
arguments in §3.1 which trivial modifications will show that ^ = ^ € ^ .
We have thus proved

THEOREM 4. Corresponding to every measurable range function
there exist functions qk e U<%, k — l,2, such that the qk(eίxYs are
mutually orthogonal and span ^(eix) a.e.

The question that arises next is: when does ^f(eix) have a measur-
able o.n. basis a.e.? If {qk(eix)}k is an o.n. basis a.e. for ^{eix) then
the dimension of ^(eix) is a constant a.e., being equal to the cardi-
nality of the indexing fc's (finite or not). Conversely also we have

THEOREM 5. If ^ is a measurable range function of constant
dimension a.e., there exist functions q'k, k = 1, 2, in Lf̂  such that
{qk(eix)} is an o.n. basis for ^(eix) a.e.

Proof. By our construction in the proof of Theorem 4 we can
assume that there exist qk e L^, k = 1, 2, such that || qk(eix) || = 1
or 0 a.e. and {qk(eix)}k is orthogonal and generates ^(eix). For a given
x let q[(eix) = qh{eix) where ix is the smallest index such that q^eix) Φ 0;
having obtained q[{eix), , q'n-ι{eix), let q'n{eix) = qin(eix) where in is the
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smallest index ^ in-x + 1 such that qin{eix) Φ 0.1 If dimension ^(eix) =
co a.e., this construction defines qr

n for every n; if dimension ^{eix) —
N < co a.e., the construction proceeds exactly iV steps and defines
Qu Qf2, , ̂  a.e. The verification that the g'/s satisfy the requirements
of the theorem is not hard.

The above theorem has an interesting corollary. Say that a closed
subspace ^// c L\e is "simply invariant" if \n^f c ^ήf for all n ^ 0
but not for all n < 0. The range function ^ associated with the
smallest doubly invariant subspace containing ^//, we shall call the
"range function of ^/έ". The subspace ^ C = Π^o λ%^€^ we shall
call the "remote past" of ^C If ^ C = {0} (when ^ is said to be
without remote past) it can be shown from the L\e version of a theorem
of Lax [3, p. 300] that the associated range function is of constant
dimension a.e. (meaning finite and equal or infinite a.e.). Conversely,
if ^ is any measurable range function of constant dimension, by
Theorem 5 it has a pointwise o.n. basis {qk(e

ix)}k, q
r
k e L\%. Then {λ>nqk}k,n

is an o.n. set in L\e. If ^V^ is the closed span of {Xmqk}k, the ^Js
are mutually orthogonal in L%> for m = 0, ± 1 , ±2, and the or-
thogonal sum ^f = Σmέo -^m is a simply invariant subspace of L2^
without remote past whose range function is the given ^f. Thus
we have

THEOREM 6. A measurable range function is of constant di-
mension a.e. if and only if it is the range function of a simply
invariant subspace without remote past.

4. The modification employed in § 2 for discussing the line case
in the scalar context carries over without change to the vector situation
and extends Theorems 3-5 to L\% over the line. Theorem 6 remains
true but needs to be discussed anew; we omit the details.

5. Let m be a regular Baire measure on a locally compact space
X and P a subspace of L°°(dm) which is weak* dense. The reasoning
given in § 2-3 shows that the doubly invariant subspaces ^ of L\dm)
are the subspaces of the form CEL2(dm), EaX measurable. Using
this we wish to prove the following

THEOREM 7. Let Λr be a subspace of Lp(dm) which is invariant
under multiplication by functions in P and which is closed if 1 ^
p < co and weak* closed if p = co. Then ^ " = CELp(dm) for some
measurable subset E of X.

1 This construction resulted from a discussion with Professor Ju-kwei Wang.
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Proof.
Case (i) 1 ^ p < 2:

Let ^f = Λ^ Π L\dm). Then ^€" is a doubly invariant subspace
of L2(dm) and so ^€" = CEL2(dm) for some measurable subset E. We
shall show that %Ar = CELp(dm).

Let / e ĉ /̂  and / = ./Ί/a be any factorization for / as a product
of an Lμ function and L2 function where (l/μ) + (l/2) = (l/p), for instance
Λ = \f\Pl2 and Λ - (sgn./) |/Γ~(W2). Let Pα be the subalgebra generated
by P and constants in L°°(dm). The closed subspace [/2-PJ2 generated
by f2Pa in L\dm) is doubly invariant and hence [Λ-PαL = CE2L

2(dm)
for some E2aX. Now

Trivially ΛC^ e Lμ(dm) c L\dm). Hence

/iCΛί e ^ T n L2(ώm) = ^ f - CEL\dm) .

Let ΛC^ = C^ ,̂ ff e L2(dm). Then ff e Lμ(dm). So

/ = /1/2 - fiCE/, g' e L\dm) - CEg ^' e CEL%dm) .

This shows oΛ̂  c CELp(dm). The reverse inclusion is immediate from
the invariance of Λ^. Hence Λ* = CELp(dm) in this case.

Case (ii). 2 < p g c o ;
Let ^ T ' - {/|/e I/\ / ± ^^} where (1/p') + (1/p) - 1. Then

is a doubly invariant subspace of Lp/ and 1 ^ p' < 2. Hence
CE.Lpt for some £" c X. Then ^ T - C^L^ where E = X - E'.
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ON THE EXTENSIONS OF LATTICE-ORDERED GROUPS

J. ROGER TELLER

1. Introduction* Throughout this paper A — 0, α, δ, •••,// = #,
a, βf " and G will be abelian partially ordered groups (p.o. groups). G
is a p.o. extension of A by A if there is an order preserving homomorphism
(o-homomorphisn) π of G onto J with kernel A such that TΓ induces an
o-isomorphism of G/A with A, (i.e. τr(#) > θ implies g + A contains a
positive element). If A and A are lattice ordered groups (1-groups)
then G is an l-extension if G is an 1-group, TΓ is an 1-homomorphism
and π induces an 1-isomorphism between G/A and A. In this case A
is an 1-ideal of G.

If G is a p.o. extension of A by J then for eachaeAchooseτ{a)eG
such that π(r(a)) = α and r(0) = 0. Define

/(α, /3) = -r(a + β) + r(a) + τ(β) for all a, β e A

and

QΛ = {a e A | r(α) + α ̂  0} for α: e A+ = {δ e 41 δ ̂  }̂ .

Then the following conditions are satisfied for all a, β9 7 in A.
(i) f(a,β)=f(β,a)
(ii) f(a9θ)=f(θ,a) = 0
(iii) /(α, β) + /(α + /3, 7) = f(a, β + 7) + /(/S, 7).

Moreover, for a, β eA+ we have
(iv) QωΦΦ
(v) Q* + Qβ+/(tf,/9)SQ*+ β

(vi) Q , - A + .
Conditions (iv)-(vi) are due to L. Fuchs and can be derived from the
results in [5].

Now if G=Ax A and we define (α, a) + (b, β)=(a + b +/(α, β), a + β)
and (α, a) positive if a € A+ and a e Qaj then the mapping (α, α:) —>
r{a) + a is an o-isomorphism of G onto G. In what follows we usually
identify G and G.

Conversely, if we are given A, A,f:Ax A—>A and Q: A+—^{subsets of A}
such that / and Q satisfy (i)-(vi) then G is a p.o. extension of A by
A and the mapping (α, a) —> α is the corresponding o-homomorphism.

Two p.o. extensions G = (A, A, f, Q) and G' = (A, z/, /', Q') are
o-equivalent if there is a function £: z/ —> A such that

Received July 25, 1963. This research was supported in part by grant No. 21447
from the National Science Foundation and represents a portion of the author's disser-
tation. The author wishes to express his appreciation to Professor L. Fuchs, who suggested
the problem, and Professor P. F. Conrad for their help in preparing this paper.
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f'(a, β) = f(a, β) - t(a + β) + t{a) + t(β)

and

Qi = -t{a) + Qa .

This is equivalent to the fact that there exists an o-isomorphism of
G onto G' that induces the identity on A and G/A = Δ.

In Theorem 1 we give necessary and sufficient conditions that a
p.o. extension G = {A, Δ,f, Q) be an 1-extension. If G is an 1-extension
such that for each a e Δ+, Qa is a principal dual ideal, that is, generated
by a single element, then Lemma 2.2 shows G is o-equivalent to the
cardinal sum A EB Δ. We show in Lemma 2.3, if A is a lexicographic
extension of an 1-ideal B (notation: A = <J3» then for each a e Δ+,
Qa = A or Qa is a principal dual ideal. Theorem 2 shows that if G
is an 1-extension of A = <(£Γ> then G contains an 1-ideal H = A EB J,
J S Δ and G is an 1-extension of H by the ordered group (o-group)
Δ/J. In addition if Δ is an o-group then G = </l EB jy.

Theorem 3 gives a method of constructing 1-extensions from an
abelian extension G = (A, Δ, f) that depends only on the cardinal
summands of A.

In § 4 we use the above to investigate those 1-extensions of an
1-group A with a finite basis. We show that to an o-equivalence every
1-extension of such an 1-group A by an 1-group Δ is determined by
a meet-preserving homomorphism of the semigroup Δ+ to the semigroup
of all cardinal summands of A such that f(af β) e Ha+β.

2. Extensions of lrgroups A subset Q of A is a dual ideal if
a e Q and b ^ a implies b e Q.

LEMMA 2.1. // A is an l-group and Q gΞ A is a dual ideal that
satisfies

(*) Q Γί(b + A+) has a smallest element for all be A,
then Q is a sublattice of A. Thus Q is a lattice dual ideal.

Proof. Let a,beQ, then a V beQ since Q is a dual ideal. Also,
α, b e Q n [(α Λ b) + A+] so by (*) there is an element x e Q Π [(a Λ b) + A+]
such that x ^a and a? fg 6. Hence, x g α Λ & s o α Λ δ e ζ ) and Q is
a sublattice of A as desired.

If £ is a subset of A then the dual ideal generated by E (notation:
DI{E)) is {x e A \ x ^ y for some y e E). If a dual ideal is generated
by a single element we say the dual ideal is principal.

THEOREM 1. Suppose A and Δ are l-groups and G = (A, Δ,f, Q)
is a p.o.-extension of A by Δ. Then G is an l-extension if and only if
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( 1 ) if a A β = θ then Qω Π [Qβ + b + f(a - β, β)] has a smallest
element for all be A,

and

( 2 ) Qω + Qβ + f{a, β) = Qa+β for a,βeJ+.

Proof. Let G be an 1-extension. Suppose be A and a, β e Δ+ are
such that a Λ β = θ. Let 7 = a — β. For aeAf the mapping of
(α, α) —> a is an 1-homomorphism so (6, 7) V (0, 0) = (df a) where deA.
Now (d, a) ^ (0, θ) implies d e QΛ and (d, a) ^ (6, 7) implies (0, θ) ^
(d, a) -ψ,Ύ) = [d-b- /(7, /9), β] so d - δ - /(7, /3) e Qβ. Hence,
d e Qa Π [Qβ + 6 + f{a - β, β)]. If c e Qa n [Qβ + 6 + /(α - /S, /9)] then
a similar argument shows (c, α) ̂  (6, 7) and (c, a) ^ (0, 61). Hence,
(c, a) ^ (d, α) and c ^ d. Therefore, d is the smallest element in
Q» Π [Qβ + b + f(a - β, β)] and (1) holds.

To show (2) let a, β e Δ+. If either a = θ or β = θ then (2) is
trivial, so suppose a > θ and β > θ. Since G is a p.o.-extension we
have ζ)α + Qβ + f(a, β) S Q*+β. For the reverse containment, let
x e Q.+β, yeQ«,b = x-y -f(a, β) and (α, /3) = (6, /S) V (0, β). Now
(c, α + /9) ̂  (0, <?) if and only if e e Qa+β; (c, α + /3) ̂  (6, /3) if and only
iίceQa + b + f(a, β). On the other hand, since (α, /3) = (6, /3) V (0, θ),
c e Q^β n [Q« + 6 + /(α, /3)] if and only if ceQΛ + a + f(a, β). Hence
Q«+β Π [QΛ + b + f(a, β)] = Qa + a + f(a, β) and by (1) a is the smallest
element in Qβ n (Qθ + b). Therefore,

[Q* + b + f(a, β)] n Q.+ β

= Q« + /(«, /5) + [Qβ Π (Q« + 6)] g Q , + f(a, β) + Qβ .

By the choice of b,xe[Qa + b+ f(a, β)] Π Qa>+β and Qα + Qβ + f(a, β) =

For the sufficiency assume (1) and (2) hold and suppose (6, β)eG
and that (6, β) is not comparable with (0, θ). Let c be the smallest
element in QβVJ Π [Q-{βA , + 6 + /(/8, -(/3 Λ ^))]. Then (c, βWθ)^ (0, 0)
and (6, β). If (α, α) ̂  (6, /S), (0, 0) then aeQaf] [Q*_β + 6 + / ( α - β, β)].
Condition (1) implies (*) so Qx-φvθ) is a sublattice of A and from (2)
we can derive the equality,

QΛ Π [Q»-β + b+f(a-β, β)] = [QΛ- ( P v β ) + /(α - (β V θ), β V θ)]

+ {Qβv, Π [Q-OΛ*) + 6 + /(/3, ~(/5 Λ

Since c was chosen as the smallest element we have aeQa-{βvθ) +
f(a - (β V θ), β V θ) + c and therefore (α, α) ̂  (c, β V θ). Hence,
(c, /S V θ) = (6, /9) V (0, 0) and G is an 1-extension of A by Δ. It can
be shown that conditions (1) and (2) are equivalent to those given by
L. Fuchs [5]. The entire proof was given so that this paper will be
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more self-contained.
An 1-group G is a cardinal sum of 1-ideals Al9 A2, , An (notation:

G = Ax ffl ffl An) if G is the direct sum (notation: G = Λ φ Λ © © AJ
of the A; and if for ĉ  e A<, αx + + an ^ 0 if and only if α̂  ̂  0
for i = 1, , n. It can be shown that a direct sum of 1-ideals of an
1-group is actually the cardinal sum. G is a lexico-extension of an
1-group A (notation: G = (A}) if A is an 1-ideal of G, G/A is an o-group,
and every positive element in G but not in A exceeds every element
in A. In this case we note that if a + A <b + A in G/A then each
element of b + A exceeds every element of a + A.

LEMMA 2.2. Suppose G is an l-extension of A by Δ.
(a) If Qa = A for all θ Φ a e Δ+ then G = <A>.
(b) If Qa is a principal dual ideal for each aeΔ+ then G is

o-equivalent to the cardinal sum, A EB Δ, of A and Δ.

Proof. Let G be an l-extension of A by Δ.
(a) If Qω = A for all θ Φ a e Δ+, then every positive element of

G\A exceeds every element of A. From (1) it follows that Δ is an
o-group and therefore G = <A>.

(b) If Qa is a principal dual ideal for each a e Δ+, let xΛ be the
generator of QΛ. By (2) we have xΛ + xβ + f(a, β) = xa+β. Let H =
A BB 4, then if = (A, zf, / ' = 0, Q' = A+) is an ^-extension of A by Δ.
Define £': J + —> A as £'(α) = a?Λ. Then V induces a function t: Δ —> A
and it follows that for a, β e Δ

0=f'(a, /3)=f(a, β) - t(a + β) + t(a) + t(β)

and

A+ = QL = -ί(α) + Qc for α e j + .

Hence G and if are o-equivalent 1-extensions*

LEMMA 2.3. Let A = <B>,AΦ B and G = (A, Δ,f,Q) be an
l-extension. Then for a e Δ+ either Qa = A or Q^ is a principal dual
ideal.

Proof. If A is an o-group, aeΔ+ and QaΦ A then there is 6 e A
such that b < a for all a e QΛ. Hence, (&, a) V (0, θ) = (c, a) implies c
is the smallest element in Qa and therefore Qa is a principal dual ideal.

If A is not an o-group then B czA and A/B is an o-group. Suppose
a e Δ+ and Q* Φ A, then there is 0 > b e A\B such that b + B Φ x + B
for all xeQa. For suppose for each 0 > be A\B there is an xeQa

such that b + B = x + B, then b + heQ* for some feeB. Now for
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a n y ceA t h e r e i s 0 > a e A \ B s u c h t h a t a + B<c + Bsoc>a + h
which implies c e Qω. Thus Qa = A, a contradiction.

Now Qω Γ\ (h + QΘ) must have a smallest element so it suffices to
show Qa S b + Qθ. To this end let x e QΛ. If a? + 5 g 6 + B then
either # + B < 6 + 5 which implies x < b and b e QΛ or a? + £ = 6 + B.
Both cases lead to contradictions sox + B>b + B which implies x > b
and a; e b + Qβ. The proof is complete.

COROLLARY 2.1. If A — (By then (1) may be replaced by

(Γ) If a, β e Δ+ and a A β = θ then either Qa and Qβ are principal
dual ideals or Q^ is principal and Qβ = A.

Proof. If G is an 1-extension and a, β e Δ+ such that a A β = θ
then (1) implies Qa Π Qβ must have a smallest element and (1') follows
from Lemma 2.3. Conversely, if x is the smallest element in Qa, y the
smallest in Qβ and be A then x V (y + b + f(a — β, β) is the smallest
in Q*n[Qβ + b+ f(a - β, β)]. If Qβ = A then x is the smallest and
if Qa = A, y + b + f(a — /9, /S) is the smallest.

From the above it follows that if A = <#> and 4 is an o-group
then (1) may be replaced by

(1") For each a e J+, Qa = A or Qω is a principal dual ideal.
From (2) of Theorem 1 we have: The only 1-extensions of A = (By

by an Archimedean o-group Δ are o-isomorphic to the cardinal extension
or the lexico-extension.

THEOREM 2. Let A = <ΊB> and Δ be l-groups and G = (A, A,f, Q)
be an l-extension. Then G contains an l-ideal H which is o-isomorphic
to A EB J, J £ Δ, and G is an l-extension of H by the o-group Δ/J.

Proof. By Lemma 2.3 either Qa = A or Q^ is principal for all
a e Δ+. Let J+ = {a e Δ+ \ Qω Φ A}. Then by (2) of Theorem 1, J+ is
a convex subsemigroup of Δ+. Let J be the l-ideal of Δ generated
by J+ and let H= {A, J, f\ Q') where f'=f\(jχj) and Qi = Qa,ae J+.
Then fl" is an l-ideal of G and Q* is a principal dual ideal for all aeJ+.
Therefore by Lemma 2.2, we have H o-isomorphic to A EB J.

By way of contradiction, if Δ/J is not an o-group then there are
X, Ye(Δ/J)+ such that X Λ Y = J. Let X = a + J, Y= β + J then
X A Y = (a + J) A (β + J) - (a A β) + J = J so a A β e J. Now a =
(α Λ /8) + T, /S = (α Λ β) + δ where 7 Λ δ = 6> and 7, δ e J, hence Qv =
A = Qδ. This contradicts Corollary 2.1. Thus Δ/J is an o-group.

Finally, the natural mappings induce an o-isomorphism of G/H onto
Δ/J. Hence, G is an l-extension of H by the o-group Δ/J.
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We note that if α e Δ+\J+ then Qa = A so if 0 < g e G\H then
g > a for all aeA.

COROLLARY 2.2. // Δ is an o-group and G — (A, Δ,f, Q) is an
l-extension then G = ζA EB jy.

Proof. If Δ is an o-group then Δ = <J>. The corollary follows
from the results of Conrad [3, p 235] since A E3 J contains all the
nonunits of G.

We note that if G is an 1-group with two disjoint elements but
not three then G is an l-extension of an o-group by an o-group and
hence we have the structure theorem of Conrad and Clifford [4] for
the abelian case.

3* l'extensions with each QΛ generated by a coset of an MdeaL
Throughout this section we will consider those 1-extensions G =
{A, Δ, /, Q) where, for each a e Δ+, Qa = DI(xω + HΛ), Ha an 1-ideal of A.

LEMMA 3.1. Suppose G = (A, Δ,f,Q) is an l-extension of the
above type. Then there is an l-extension Gr = {A, Δ,f, Q') o-equivalent
to G with Qf

Λ = DI{Ha) for each aeΔ+.

Proof. If G is an l-extension and QΛ = Dlix^, + Ha) for each
a G Δ+, then there is a mapping t: Δ+ —> A defined as t\a) = xa. Since
each a e Δ has a unique representation a = a+ — or where a+ = a V θ,
or — — (a A θ), we can extend V to a mapping t: Δ—> A by defining
t(a) = t\a+) - t\or).

Let f\a, β) = f(a, β) - t(a + β) + t(a) + t(β) and Q'Λ - -t{a) + QΛ.
It is easily verified that / ' and Q' satisfy conditions (i)-(vi) so Gf =
(A, Δ, / ', Q') is a p.o. extension of A by Δ. From Theorem 1 it follows
that G' is an l-extension. Clearly, Gr is o-equivalent to G and Qr =

For those 1-extensions G of A by z/ with Q̂  as above the question
of o-equivalence leads to an investigation of the 1-ideals of A. To
show this we need the following.

LEMMA 3.2. // A is an l-group, H and K l-ίdeals of A and
DI(y + H) = DI(z + K) then y + H = z + K and H = K.

Proof. Suppose DI(y + H) = DI(z + K) where H and K are 1-ideals
of A. lίx^z-y then DI(H) = DI(x + K). Since H g DI(x + K),
0 e DI(x + K). lί 0$x + K then 0>x + k,keKaox + K contains
a negative element. Since DI(H) is a semigroup, 2(x + k)e DI(x + K)
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so 2x + 2k ̂  x + 1,1 e K. Hence, x + (2k - 1) ̂  0. This is a contra-
diction since x + K can contain no positive elements. Thus 0 e x + K
and x G K. Moreover, we have DI(H) — DI(K) which implies H = K.
For if H Φ K then, without loss of generality, there is 0 > ft G H\K.
But ft G ZλΓ(iίΓ) so h > k £ K. Hence, 0 > ft > fc, and by convexity ft G if,
a contradiction. Thus, H=x + K=z — y + K and 2/ + H = s + if.

Now if G = (A, Δ, /, ζ>) and G' = (A, zf, / ' , Q') are two 1-extensions
with Qa and Qf

a generated by 1-ideals Ha and H'a of A, then G and G'
are o-equivalent if and only if there is a function t:Δ —>A such that

f'(a, β) = f(a, β) - t(a + β) + t(a) + t(β)
Hί - Ha and t(a) e i ^ .

The question at this point is which 1-extensions will have Qω generated
by a coset of an 1-ideal. We give a partial answer to this question
in the next section.

We complete this section by giving a method for the construction
of 1-extensions of 1-groups.

THEOREM 3. Suppose A and Δ are l-groups and G= {A, Δ,f) is
an abelίan extension of A by Δ. For each a e Δ+, let Ha be a cardinal
summand of A such that

(1*) if a A β = θ then HΰύΓ\Hβ = 0
(2*) H« + Hβ=H«+βandf(a,β)eHΛ+β.

If Q<* = DI(H«) then G = {A, Δ, f, Q) is an l-extension of A by Δ.

Proof. Clearly (iv) is satisfied and for any aeΔ+, (2*) implies
Hθ S HΛ. From (1*) it follows that Hθ = 0. Thus Q3 = A+ and (vi) is
satisfied. Moreover, from (2*) we have DI(HΛ + Hβ +f(a, β)) = DI(Ha+β)
so DI{Ha) + DI(Hβ) + f(a, β) = DI(HΛ+β) and (2) of Theorem 1 holds.

If a A β = θ then HΛ Π Hβ = 0 so Ha+β = Haζ&Hβ and since HΛ

and Hβ are 1-ideals we have HΛ+β — H^ ffl Hβ. Since HΛ+β is a cardinal
summand we conclude A — Ha+β ffl D = Ha ES Hβ ffl D where D is an
1-ideal of A. Suppose be A and b + f(a — β, β) — (al9 a2, α3) where
aλ G HΛ, a2 G Hβ and α3 G -D. We show (au 0, α3 V 0) is the smallest
element in

Q» Π (b+f(a -β,β) + Qβ) - DI(Hω) Π DI(b + f(a -β,β) + Hβ) .

Now (alf 0, α3 V0)^(α1, 0, 0) so (alf 0, α3 V0) e DI(HΛ). Also (αx, 0, α3) =
(alf 0, α8) = (αx, α2, α3) - (0, α2, 0) so (au 0, α8) G 6 + /(α - β, β) + Hβ and
(al90,asV0)eDI(b+f(a-β,β) + Hβ). If

(%, v, w) G Z?/(£ΓΛ) Π i)/(6 + f(a -β,β) + Hβ)

then u ^ hae Ha, v ^ 0 and w ^ 0. Also % ̂  αx, v ^ α2 + hβ where
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hβ e Hβ and w *> α3. Hence, (u, v,w) *z (al9 0, α3 V 0) and (alf 0, α3 V 0)
is the smallest element in Qa Π (b + /(α — β, β) + Qβ). Thus G is an
1-extension of A by Δ.

We note that, since any two representations of an 1-group as a
cardinal sum have a common refinement, the cardinal summands of an
1-group form an additive semigroup closed with respect to intersection.
That is, if H = A ffi A! and H = B ffi Br then A = (A Π -B) ffl (A Π B')r

A! = {Ar nΰ)ffl {A' Π £') and B - (A n ^) BB (A' n S). Thus if = A ffl
A' = (A + 2?) E (A' Π 2?')- Hence, A + B is a cardinal summand of G..

4. Extensions of l*grouρs with a finite basis. An element g of
an 1-group G is basic if 0 < g and {xeG\Q < x ^ g} is ordered. A
subset S of G is a basis for G if S is a maximum set of disjoint
elements and each g e S is basic. Conrad [2] has shown that an 1-group
A with a finite basis of n elements is a lexico-sum of n ordered subgroups.
In particular, A is the cardinal sum of two 1-groups each with a basis
of fewer than n elements, or A is a lexico-extension of such an 1-group.
In this section we are concerned with 1-extensions of 1-groups with,
finite bases.

LEMMA 4.1. Suppose A has a finite basis and G = (A, Δ,f, Q) is-
an l-extension of A. Then for a e Δ+, Qa = DKXa, + H^) where H^ is
an l-ideal of A.

Proof. Let A have a basis of n elements. The proof is by induction
on n.

It follows from Lemma 2.3 that we need only consider A = B EB C
and if n = 1 then Ha = A or Ha = 0.

So suppose the theorem is true for all 1-groups with a basis of
fewer than n elements. Let φ: A —> B and f i ^ C b e the projections.
Now B has a basis of fewer than n elements and G' = (S, Δ9 φf, φQ)
is an l-extension of B so by induction φQΛ = DI(x + Λf) where α? e J5
and M is an l-ideal of B. Similarly, fQ^ = J9I(̂ / + iV) where j/ e C
and JV is an l-ideal of C. Since Qa is a sublattice of A, a straight
forward argument shows Qω = DJ((a; + #) + (Λf + iSΓ)) and M + N is
an l-ideal of A. The proof is complete.

The following theorem shows that for an 1-group A with a finite
basis every l-extension G of A by an 1-group Δ is o-equivalent to an
l-extension constructed by the method described in Theorem 3. That
is, to an o-equivalence, every such l-extension is determined by a
meet-preserving homomorphism from the semigroup Δ+ to the semi-
group of all cardinal summands of A such that f(a, β) e Ha+β.

In what follows we may, by Lemmas 3.1 and 4.1, assume for eack
a e Δ+ that Qω = DI(HΛ).
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THEOREM 4. If A has a finite basis and G — (A, Δ> f, Q) is an
l-extension of A by an l-group Δ then, for a, β e Δ+

(a) if a A β = θ then H^nHβ^O
(b) H« + Hβ = Ha+β and f(a, β) e Ha+β

(c) Hω is a cardinal summand of A.

Proof. Let A have a finite basis of n elements and G be an
l-extension. By (1) if a Λ β = θ then Qa Γϊ Qβ must have a smallest
element w. Since 0 e Qa n Qβ, w ^ 0 and therefore w eH^f] Hβ. If
Hω (Ί Hβ Φ 0 then there is heH^Γί Hβ such that h < w and /& e Qα> Π Qβ,
a contradiction. Thus (a) holds.

From (2) we have

DI(Ha) + DI(Hβ) + f(a, β) = DI(Hω+β)

so

DI(HΛ + Hβ+ f(a, β)) = DI(Ha+β) .

Thus by Lemma 2.3, Ha + Hβ = iϊ^+β and f(a, β) e Ha+β and (b) holds.
Now if A = <5> then for each α: G z/+, fζ, = 0 or Ha = A and (c)

follows in a trivial way. So suppose A = i? EB C and (c) is true for
all 1-groups with a basis of fewer then n elements. If φ: A-+B and
ψ: A—> C are the projections then G' = (B, J, φf, φQ) and G" =
{C, Δ, φf, φQ) are 1-extensions where φQa = DI(φHa) and ^Q* =
DI(φHa). Hence, by induction, φiϊ^ is a cardinal summand of B and
φHa is a cardinal summand of C and we have A = B EB C = ^fl"Λ ffl
Jί ffl φHa m N= φHa m φHa mMmN=HamMmN where M is an
1-ideal of B and iV is an 1-ideal of C.

Using the results of Conrad [3, p. 223] we conclude that the minimal
cardinal summands of an l-group A with a finite basis are those 1-ideals
of A that are lexico-extensions and are not bounded in A.

Added in Proof. The results of this paper have been extended
by the author to include central extensions G of an abelian l-group
A by an arbitrary l-group Δ. For central extensions, Theorem 1 (1)
reads: if aΛβ = θ then QaΠ[Qβ + b+ f(β, a - β)\ has a smallest
element for all be A. In Theorem 2, GjH is still o-isomorphic to the
o-group Δ\J but G need not be a central extension of H by ΔjJ. The
remaining results are unchanged for central extensions.
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UNIMODULAR GROUP MATRICES WITH
RATIONAL INTEGERS AS ELEMENTS

R. C. THOMPSON

1* Introduction* Let G be a finite group of order n with elements

9i,92f ••'•,£«. L e t

( 1 ) xOi , 1 <, i <; n

be variables in one-to-one correspondence with the elements of G.
The n x n matrix

(2) X = (XgιgJ%^n

is called the group matrix for G. If numerical values are substituted
for the variables (1) in X, we say X is a group matrix for G. In
this paper we study group matrices which have rational integers as
elements. Let A' denote the transpose of the matrix A. A generalized
permutation matrix is a square matrix with only 0,1, —1 as elements
and having exactly one nonzero element in each row and in each
column. A square matrix A is said to be unimodular if the deter-
minant of A is ± 1 . The result obtained in this paper is the follow-
ing theorem.

THEOREM. Let G be a finite solvable group. Let A be a uni-
modular matrix of rational integers such that B — AAf is a group
matrix for G. Then A — AXT where Ax is a unimodular group
matrix of rational integers for G and T is a generalized permuta-
tion matrix.

This theorem has already been proved for cyclic groups in [1]
and for abelian groups in [2]. The present proof is a modification of
the proof in [2].

2* Proof of the theorem* Let

( 3 ) 1 = HQ c Hx c H2 c c Hm _ x c Hm - G

be an ascending chain of subgroups of G, where each H^ is normal
in Hi with cyclic factor group HJHi^ of order nif 1 ^ i ^ m. We
let n0 = 1, so that Hi has order njfix nim In order to simplify the
proof we take the elements of G in a particular order. This will
not affect the theorem as a reordering of the elements of G changes
the group matrix X to PXPf for P a permutation matrix. Thus let

Received August 20, 1963.

719



720 R. C. THOMPSON

Hi be generated by the elements of H^ and an element α< such that
the coset ajli^ has order nim By induction we define column vectors
Vi of the elements of Hi. We let

( 4 ) Vo = (1)

be the one row column vector whose only element is the identity of
G. Suppose

( 5 )

with

( 6 )

i-x = (hu h2, , ht)
f

t =

has been defined, where hl9h2, ,ht are the ordered elements of
.Hi-!. For any geG let

^ = (gh19 gh2, , #/^)',

Then define F^ to be the column vector

( 7 )

For an arbitrary finite group G with ordered elements glf g2f , gn

we define the left regular representation of G by the matrix equations

In) = (01,02, geG .

Here Pz(</) is a permutation matrix depending on the element geG.
It is straightforward to check that the matrix X of (2) is given by

x = Σ ^ί>%).

The set of all PL(g) for 0 e G is denoted by L(G).

We define the W#fo£ regular representation of G by

O' = P(0)(0i, 0%, G .

The set of all permutation matrices P(g) for ^ e G is denoted by R(G).
The group ring of the left (right) regular representation is the

set of all linear combinations of the PL(g) (P(g)) for geG, and is
denoted by L*(G) (R*(G)). Thus the matrix (2) is the typical member
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of L*((?). The following two known facts are vital for the proof of
our theorem:

(i) any matrix in L*(G) commutes with any matrix in J?*(G);
(ii) any matrix that commutes with all the matrices in R(G) is

a member of L*(G).

NOTATION. We let diag (Xl9 X29 ••-, J5ΓΛ)fc denote the direct sum
of the square matrices Xl9 X2, , Xk:

i, X2,

X, 0 0 ••• 0

0 X2 0 ••• 0

0 0 0 ••• Xh

We set [XJi = Xlm If k > 1 and X19 X29 , Xk are square matrices
of the same size, we set

[Xl9 X2f , Xk]k =

We construct certain of the matrices in R{G), where now the
elements of G are ordered according to (4), (5), (6), (7). Let i be
fixed, 1 ^ i ^ m. Since J S ^ is normal in Hi9 V^^ = 0,^^(0,^ V^
where P^a^ is a t x t permutation matrix (t as in (6)). Then,
since

0

0

0

0

0

0

0

X,

0

0

o ...
o ...

o ...
0 •••

0

0

Xk-1

Q

( 8 ) v e
and because of (7), V ^ = P^di) Vit where Pi(ctf) is permutation
matrix with the structure

( 9 )
n *

In (9), Pi-^cίi) is another t x t permutation matrix.
Because of (7), we also have for any g e H^lf that V{g = P^g) Viy

where the permutation matrix P^g) has the structure

(10) g

In (10), Pi(g) is a block scalar matrix. The diagonal blocks P^g)
have dimensions ί x t . Furthermore, as 0 runs over the elements of
Hi-.u Pi-i(flr) runs over all the matrices of RiH^). Since ίZ^ is
generated by H^ and α<, the matrices Pi(g) for g e H^ and P^αJ
generate R{Hi).
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Because of the ordering of the elements of G, the following
block scalar matrices:

(11) Q(g) = diag (Pt(g), , P,(^)w , g e H^ or g - α, ,

(12) u =

are the matrices in R{G) determined by the g e H^ and by g — ai9

Here Q(g) is n x n.
We now prove our theorem by the following induction argument.

Suppose for a fixed i, 1 S i ^ m, that 5 = AA' and that

(13) AQ(#) = Q(g)A , for any # e H^ .

(In particular this is satisfied if i = 1 since then the only such
is 7W, the n x n identity matrix.) We shall then show that a
generalized permutation matrix T exists such that B = (AT)(AT)r

and such that ATQ(g) = Q(g)AT for any g e H^ and for g = ait and
so, in consequence, for any g e Hi. Thus the induction will eventually
yield a generalized permutation matrix Tx such that B = (AT^){ATJ
and such that AΓiQίflf) — Q(g)AT1 for any #eG. It will now follow
from (ii) that AT1eL*{G), and the proof will be complete.

Hence assume B = AA! where A satisfies (13). Partition

(14) A = (AΛtβ) , H ί r , / 3 ^ ί ; = : ^ ,

into blocks of dimensions t x t. As Q(g) for # e H^ is a block
scalar matrix with the blocks Pi-λ{g) of RiH^) on the main block
diagonal, it follows from (ii) and (13) that each

(15) Aaφ e L*(Hi^) , 1 ^ a, β ^ v .

Since £ e L*{G), BQ(α,) = Q(α,)B so that if

(16) M = A - ^ α ^ A ,

then,

(17) MM' = In .

As A is unimodular the elements of M are integers. Hence (17)
implies that M is a generalized permutation matrix. Partition A, A"1,
Q{a{), and M into t x t blocks. As each block of A lies in L*(i?i_1)
and as A~x is a polynomial in A, each of the t x t blocks of A, of
A~ι, and of Qί^) is a linear combination of a finite number of ί x {
permutation matrices. Therefore each t x t block of M is a linear
combination of a finite number of t x t permutation matrices. A
permutation matrix is doubly stochastic in the sense that the sums
across each row and down each column all have a common value.
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As linear combinations of matrices doubly stochastic in this sense
remain doubly stochastic, each ί x ί block of M is doubly stochastic.
Let Mλ be a typical t x t block in M. Since M is a generalized
permutation matrix, Mτ contains at most one nonzero element in each
of its rows and columns. As M1 is doubly stochastic, it now follows
that M19 if it is not the zero matrix, is either a permutation matrix
or the negative of a permutation matrix. Since M is a generalized
permutation matrix, it follows that, after partitioning into t x t
blocks, M is a "generalized permutation matrix" in that it has exactly
one nonzero block in each of its block rows and in each of its block
columns. Each nonzero block is ± a permutation matrix.

There exists a permutation matrix R consisting of t x t blocks
which are either the t x t zero matrix or It such that R'MR is a
direct sum of cycles. That is, R'MR= disig(ElfE2f •••, Er)r where

(18) Eδ = [E*tl, Eδ,2, , E5te5]eδ , l ^ δ ^ r .

Here each Eδ,ω is ± a t x t permutation matrix.
Note that RQ(g) — Q(g)R for any g e H^x since each such Q(g) is

block scalar when partitioned into t x t blocks. Thus

ARQ(g) = Q(g)AR , for any g e H^ ,

and

= R'MR

is a direct sum of Elf E2, , Er. Thus if we change notation and
replace AR with A and R'MR with M, we have (13), (14), (15), (16),
(18) and

M = diag(Elf E2, . . . , # r ) r .

Our immediate goal is to prove that each eδ is Ui and that r = u.
Because of (8)

Mni = A-'QiaΐήA

= A~1Q(g)A for some g e H^ ,

= Q(g) by (13) .

Hence each cycle Eδ of M has the property that

is block scalar. This is not possible if e8 > n^ Hence each eh^n{.
Counting rows in M we get t(e1 + e2 + + er) = n. If any

0δ < %% we would have
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(19) r > u .

Let Aa = (Aa,l9 Aa,2, , Aa,Ό), 1 ̂  α ̂  v, be the block rows of
A. For each fixed d such that 0 ̂  d < u it follows from (9), (11),
and QiaJA = AΛf that

(20) i V - i f o ) ^ , ^ = Aant+k^M, 2 rg k ^ n{ .

Let wo = 0 and let wδ = ex + e2 + + e8 for 1 ̂  δ ̂  r . Then (20)
implies than for 2 ^ k ^ % and 0 ̂  <5 ̂  r — 1,

~ -Li-liβi) i\Acιni+lfWs+lf , A(ιni+ι,Ws+ι)-k'8 + 1

For each fixed d, δ such that 0 ̂  d < u, 0 ̂  σ < r, let i^,δ be the
submatrix of A containing the blocks Aa,β with cί% + 1 ̂  α ̂  (cZ + 1)%
and wδ + 1 ̂  /3 ̂  w8+1. Since each AΛtβ e L^iH^y each row of a
given Aaφ is a permutation of the first row of this AΛtβ. Since
Pi-^di) and £?δ+1 are generalized permutation matrices, this fact and
(21) imply that each row of Fdt& is a generalized permutation of the
first row of Fdt8. Thus if we add all the columns of Fdt8 after the
first to the first column of Fd>8 we produce a new matrix Fdy5 in
which the integers in the first column of Fd)δ are all equal, modulo 2.
Next add the first row of Fdt5 to all the other rows of Fdt8 to get a
new matrix FdfS. Then all the integers in the first column of Fdtδ

below the top element are zero, modulo 2.
Now partition A = (FdtB) into its blocks Fd,*. For each fixed

δ, 0 <̂  3 < r, add to that column of A that intersects F0,δ at the
extreme left of F0,s, all the other columns of A that intersect Fo,&.
This produces a new matrix A = (Fdt8). For each fixed d, 0 ̂  d < u,
add the topmost row of A that intersects Fdt0 to all the other rows
of A that intersect FdtQ. We get a new matrix Ά = (Fdf5). The r
columns of A that intersect F0>5 at the extreme left of FQ>5, 0 ^ § < r,
may now be regarded as vectors in a u dimensional vector space over
the field of two elements. As r > u, these vectors are dependent
and so Ά (and hence A) is singular, modulo 2. This is a contradic-
tion since the determinant of A is ± 1 .

Consequently each e8 = nif 1 ̂  δ ̂  r, and r = w.
Now let -Ê g = φp>qEp,q where φp>q = ± 1 and 2£p,g is a permuta-

tion matrix. Let δ be fixed, I tί δ ̂  u. Suppose that P^a^ has a
one at position (1, ω) and let Eδ)1 have a one at position (1, μ). Let
Xs,! be the permutation matrix in L(Hi^ with a one at position
(μ, α>). (iίδ,i is the matrix in LiH^) representing hμfaz1', see (2) and
(5).) Then EStl = E8>1Kδ)1 has the same first row as P^a^). Similarly,
by induction, we determine KδtS in Lil!^), 1 < s < nif such that the
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permutation matrices

E8>s = Kf

δ>s^Es>sKδ>s , l<8<nif

each have the same first row as P ^ α * ) . Then let

Sδ = diag It, <P6tlKztl9 φδΛφδ,2Kδ)2j , Π <P*,j

and let S = diag (Slf S2, , Su)u. Then

S'MS = diag (j^, E2J . . . , # w ) w

where

(22) # δ - [# δ ) 1, ^δ,2, , £ 8 , , r l , ± Eitni]nt , l ^ δ ^ u .

In (22) each Eδfj, 1 ^ j < nif 1 ^ δ ^ u, is a permutation matrix
with the same first row as P^a^ and each

is some unknown permutation matrix.
Now SQ(g) = Q(^)S if g e H^ since S is block diagonal with its

blocks in L*(Hi^ whereas Q{g) for g e H^ is block scalar with its
blocks in R{H^. Thus if we change notation again and replace AS
with A and S'MS with M we retain the validity of (13) and (16) and
now

(23) M=dizg(El9EΛ, •--,&„)„.

Since for any g e H^, ai1gai = g e H^lf it follows that for any
g e Hi^ there exists a g e H^ such that Q(g)Q(ai) = QiaJQig). Hence,
using (9), (10), and (11), we find

(24) Pi-ι(g)Pi-i(a>i) - P^aJPUδ) , Q,9 e ^-x .

If we let 0 G ί/ -̂i be such that P^g) has a one at position (1, ω)
then (24) says: row ω of Pi-iίcti) is determined in terms of row one
of PUdi).

Now for g e H^:

Q(g)M = Q(g)A-1Q(ai)A

= A-1Q(g)Q(ai)A by (13) ,

= A^QiaJQijftA since ga{ = a{g ,

= A^Q{aτ)AQ(g) by (13) ,

= MQ(g) .

Hence, for fixed δ and j , 1 ^ δ ^ u, 1 <; j < %, it now follows
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(using (10), (11), (22), and (23)) that

(25) PUg)Eδti = E^-PUS), g,3 e H^ .

As with (24), (25) determines each row of Eδtj in terms of the first
row of Eht5. Consequently

(26) E8,3 - Pi-^ΰ , l^δ ^u, l^j <n{.

We also have (8), hence

M** = A-'QiaΐήA = Q(at)
n*

by (13). Hence, for each δ, 1 ^ δ ^ u ,

(27) £?< = P,(α,)^ .

Each side of (27) is a block diagonal matrix. Equating the topmost
diagonal blocks we get

Hence, by (26),

±Eδ>ni = P^ia,) , 1 ^ 8 ^ u .

We have now proved that M = Q(α<). Hence Q(αi)A = AQ{aι).
As indicated earlier, this is enough to complete the proof.
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LEAST SQUARES AND INTERPOLATION
IN ROOTS OF UNITY

J. L. WALSH AND A. SHARMA

We mention the Erdos-Turan theorem [2] that if F(θ) is a real
continuous function with period 2π, and if tn{θ) is the unique trigo-
nometric polynomial of order n that coincides with F(θ) in 2n + 1
points equally spaced over an interval of length 2ττ, then tn(θ) converges
to F(θ) on that interval in the mean of second order. It is the purpose
of the present note to prove the analogue in the complex domain, and
to discuss some related remarks.

THEOREM 1. Let the function f(z) be analytic in D: | z | < 1,
continuous in D + C (C: | z \ = 1), and let pn{z) be the polynomial of
degree n coinciding with f(z) in the (n + 1) st roots of unity. Then
the sequence pn{z) converges to f(z) on C in the mean of second order.
Consequently we have

(1) lim pn{z) = f(z) uniformly in \ z | g r (< 1) .

If we set

( 2 ) I n = ( \f(z)-p*(z)\*\dz\9
JO

we have

Pn(z) Ξ

ωk(zn+1 -Ak(z) =

(n

and shall show

( 3 ) lim 7n = 0 .
n—>—oo

We introduce the notation
En = max [| Δz |, z on C] ,

where tJz) is the polynomial of degree n of best Tchebycheίf approximation
to f(z) on C, and denote by Pn(z) the polynomial of degree n that
coincides with Δ{z) in the (n + 1) st roots of unity. Then we have
•P»(s) = Pn(z) - tn(z), whence

Received July 24, 1963. Research sponsored (in part) by U.S. Air Force, Office of
Scientific Research. Abstract published in Notices of Amer. Math. Soc, vol. 10 (1963),
p. 491.
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/,= [ \Δ{z)-Pn(z)?\dz\
JO

I Az I2 I clz I 4- 9 \ I P (?} i2 I cl? I -
Jσ

There follow the relations Vn ^

ίί' = 2
0 I k = l

n+1 n+1

^ 2 ^ v
_- J^Λ

! /

dz\

ί
Jo

dz\

However, we have

Λ(z) =

1 A^z)!,-^) | dz | =
Jo

n + 1
2πωk~3'

(zn
α> * ) ,

• (1 + ωk~j + ω2{k-j) + + ωn{k~j))
(n + If

= 2πδjk/(n + 1) ,

where δjk is the Kronecker δ. It is well known [4, Theorem 5, p. 36]
that En~^0 as « —• co, so (3) holds.

Equation (1) follows from (3) by the Cauchy integral formula

(4) [f(z) - vn{z)Y = — f lW^v«(t)γdt

With the hypothesis of Theorem 1, the conclusion (1) is due to
Fejer (1918). Theorem 1 is related to various other results concerning
convergence of polynomials interpolating in roots of unity; for instance
(Runge) if f(z) in Theorem 1 is analytic in | z \ ̂  1, equation (1) holds
uniformly in | z \ ̂  1. Further references to the subject are given by
Curtiss [1].

There exist numerous other results, somewhat similar to Theorem
1, where now a sequence of polynomials Pn(z, 1/z) of respective degrees
n in z and 1/z converges on C in the second-order mean to a given
function f(z) defined merely on C. The function f(z) can be expressed
on C SL&f(z) = f-fa) +f2(z), where fx{z) is of the Hardy-Little wood class
H2 and f2(z) of the analogous class G2 for the region | z \ > 1 (we suppose
/2(oo) = 0; compare e.g. [4, §6. 11]). Any function of class H2 is
orthogonal on C to any function of class G2, so if we set Pn{z, 1/z) =
Pn(z) + QJXIZ)I where pn(z) and qn(l/z) are polynomials of respective
degrees n in their arguments, qn(0) = 0, we have

( 5) limA(*) -
2π% Jo t — z 2τπ, Jo t —

z interior to C,
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( 6) Km *.<!/*) = -±\ψ&- =U*) - -h \ ψ^ '
n-oo 2m JO t — z 2πι Jo t — z

z exterior to C ,

with uniformity of approach for z on an arbitrary compact set in the
respective regions. This remark concerning (5) and (6) applies for
instance in the case of the Erdos-Turan theorem, where we set F(θ) =
f(eiθ) and tn(θ) = pn(eiθ, e~iθ) on C.

A second remark concerning (5) and (6) is as follows. By the
orthogonality relations we have for the second-order norms on C

Consequently the rapidity of convergence in the mean on C of pn to
/x and of qn to f2 is not less than that of Pn to / . If the positive
numbers ε^ ε2, are given and approach zero, there is a corresponding
class K of functions f(z) belonging to L2 on C such that for each f(z)
there exist polynomials Pn(z, 1/z) with

(7) \\f(z) - Pn(z, 1/2)|| - O(en)

here the Pn(z, 1/z) may be taken as the partial sums of the Fourier
or Laurent development of f(z) on C. It follows that every function
f(z) in K can be written f(z) = fλ{z) + fjίz), with fλ and f2 in H2 and
G2 respectively, where the partial sums pn(z) of the Taylor development
of ft(z) satisfy

(8) \\f1(z)-pn(z)\\ = O(en)

and the partial sums qJXJz) of the Laurent development of f2(z) satisfy

(9) \\Mz) - q.(l/z)\\ =

Thus /x and / 2 belong to K on C
As a particular case of this application, we mention the class of

functions L(2, fc, a), o < a < 1, namely the class of functions whose
A th derivatives on C satisfy there a square-integrated Lipschitz condition
of order a; this class was first studied by Hardy and Littlewood,
theorems proved in detail by Quade [3]. An alternative definition of
the class is (7) with εn == l/nk+(*. It follows that every function f(z)
of class L(2, k, a), o < a < 1, can be expressed on C as fτ(z) + f2(z),
where the latter two functions, of respective classes H2 and G2 satisfy
(8) and (9) with the same values of εw; thus fλ{z) and f2(z) likewise
belong to L(2, k, a) on C. The case a = 1 can be similarly treated,
where the integrated Lipschitz conditions are replaced by the condition

(10) P | F(θ + h) + F{θ -h)~ 2F(Θ) |2 dθ - O(h2),
Jo
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and F{θ) = f{k)(z) is continuous on C; this class was introduced by
Zygmund, and is characterized by (7) with ew = l/nk+1. We have as
before f(z)=f1(z)+f^) if f(z) is given, and the corresponding classes
of fx{z) and f2(z) are characterized by (8) and (9) with the same values
of εΛ> and by (10). These classes of analytic functions are studied in [5].

Added in proof. A second proof of Theorem 1, due to G. H.
Curtiss, will appear shortly.
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A JORDAN-HOLDER THEOREM

CHARLES E. WATTS

1. The purpose of this note is to present a certain general
theorem, of the Jordan-Holder type, for finite groups. This theorem,
although a simple and natural extension of the classical theorem, has
we believe passed unnoticed before. The technique of proof is foreign
to the usual methods of finite group theory, but seems well-suited to
the situation.

2 A nonempty class £$ of finite groups will be called a genetic
class provided:

(1) If Gx belongs to & and if G2 is isomorphic to Glf then G2

belongs to £&.
(2) If G belongs to £&, then every normal subgroup and every

quotient group of G also belongs to <&.
The following examples of genetic classes will be used as illus-

trations in the sequel:
The class 2^ of all finite groups.
The class ξf of all one-element groups.
The class S*f of all finite abelian groups.
The class & of all groups of odd order.
The class & n of all groups of order ^ n.
Given any genetic class ϋ?', we shall construct a "Grothendieck

group" in the following way. Let Σ be the (countable) set of all
isomorphism classes of finite groups, and let F be the free abelian
group generated by Σ. If G is any finite group, its isomorphism
class will be denoted by [G], so that elements of F are finite sums

where Z denotes the ring of integers. We let N{&) be the sub-
group of F generated by all elements of the form

[G] - [H] - [GIH]

such that H is a normal subgroup of G and GjH belongs to the
genetic class £&. Finally we set K{&) = FIN(£&) and let k:
F-+K{3ί) be the natural epimorphism. Our object is to determine
the structure of the abelian group

Let 3f be a genetic class and let G be an arbitrary finite

Received April 3, 1963. This work was supported by the National Science Foundation
under grant NSF-G 24155.
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group. We say G is 2&-simple provided that G has more than one
element and that no proper quotient group of G belongs to ϋ% i.e.,
if H is normal in G and if G\H belongs to £^, then H = G or H= 1.
In particular, if G itself belongs to £& and is ^-simple, then it is.
simple because of the second axiom for genetic classes. The following
illustrations are based on the examples given in § 2 above.

G is 2^-simple if and only if it is simple in the classical sense.
Every finite group is g7-simple.
G is Sf -simple if and only if either G is cyclic of prime orderr

or else Φ 1 and equal to its commutator subgroup.
G is ^-simple if and only if G is simple and has odd order, or

else has even order and no proper normal subgroups of odd index.
G is ^-simple if and only if G is simple and has order ^n or

else has order >n and no proper normal subgroups of index ^n.
Having given the definition of ^-simplicity, we can now state

the theorem referred to in § 1:

THEOREM. Given any genetic class &, K(£&) is the free abelian
group freely generated by the elements k [S], where S is ^-simple..

4. In this section we begin to prove the theorem above and
show its relation to the Jordan-Holder theorem.

Let 3f be a genetic class, G any finite group. If G is not 22-
simple and if G Φ 1, we can find a normal subgroup G[ of G such
that 1 Φ G[ Φ G and G/Gί belongs to <3ί% Let Gλ be a maximal
proper normal subgroup containing G[. Then G/G19 being a quotient
of G/Gί, is in £& and is simple (and a fortiori ^-simple). Now if
Gx is not ^-simple and is Φl, we repeat the process to find a normal
subgroup G2 of Gλ such that GJG2 is in £& and is simple. Eventually
we shall get a sequence

(1) G = Go, Glf G2, , Gn ,
where Gi+1 is normal in Gif where GilGi+1 is in sr and is simple
(i = 0,1, , n — 1), and where either Gn is ^-simple and not in &
or else Gn = 1. Since GJGi+1 belongs to <%r, we have

k[G] =

+ k[Gn-JG%] + k[Gn] .

Clearly if Gn — 1, then k[Gn] = 0. Thus we have shown that the
elements k[S], S ^-simple, generate the group K{££r).

We remark at this point that once we have shown the linear
independence (over Z) of these generators, it will follow that the
^-simple groups GJGi+1, Gn are uniquely determined (up to isomor-
phism) by G, and are independent of the sequence 1) used to compute
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them. Thus in the case 3f — &, we get precisely the classical
Jordan-Holder theorem. In the general case, the groups GJGi+1 are
of course among the composition factors of G\ but the group Gn (if
it is not 1) is something new. It is a subnormal subgroup of G
which depends, up to isomorphism, only on G and on 3ί.

Continuing our digression from the proof, let us say that two
finite groups G and G1 are 3ί-equivalent if they represent the same
element of K(&). Thus G and Gf are S^-equivalent if and only if
they have the same composition factors, while to be if -equivalent it
is clear that they must be isomorphic. In general, the smaller the
genetic class &, the sharper is the notion of ^-equivalence.

5 We return to the proof of the theorem; it remains to show
that the generators k[S], S ^-simple, are linearly independent over
Z. We shall show that for each ^-simple group S there exists an
integer-valued function / defined on Σ (and depending on S) such
that:

(1) /[S] = l;
(2) f[T] = 0 if T is any ̂ -simple group not isomorphic to S;
(3) If H is a normal subgroup of G and if G/H is in £^, then

f[G]=f[H]+f[GIH].
Because of (3) such a function induces a homomorphism K(^) —> Z,
vanishing on k[T] if T is as in (2), but equal to 1 on k[S], The
linear independence of the generators is an immediate consequence
of the existence of such homomorphisms.

We construct / inductively. Let Σr be the set of isomorphism
classes of groups of order ^ r . Define / = 0 on Σx. Now suppose
that / has been defined on Σr in such a way that (1), (2), (3) hold
whenever S, T, G have orders ^ r . Next suppose that G has order
r + 1. If G is ^-simple, then the value of f[G] is forced by (1) or
by (2). If G is not ^"-simple, then it has a normal subgroup H
with G/H in 3ί and with H and G/H in Σr. Consequently, the
value of /[(?] must be given by (3), and it remains to show that
f[H] + f[G/H] is independent of the choice of H as long as H has
order ^ r and G/H is in £%r.

Thus let K be another such subgroup. Then G/HK is in ^ ,
since it is a quotient of (?/H, and H/H Π K is in ^ , since it is
isomorphic to HK/H, which is normal in G/H. Hence using the
Noether isomorphisms we get

f[H] +f[G/H] =f[H]+f[GIHK]+f[HKIH]

= f[H] + f[GIHK] + f[KIHΠ K]

= f[HIHΓι K] + f[HΠ K] + f[G/HK] + /[K/HΠ K] .
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This last expression being symmetric in H and K, it follows that
f[H]+f[G/H]=f[K]+f[GIK]. Thus we have shown how to
extend / unambiguously to Σr+1 in such a way that (1), (2), (3) still
hold on this enlarged domain. Therefore / can be defined on all of
Σ so as to have the desired properties, and this completes the proof.

UNIVERSITY OF ROCHESTER



ON SOME FINITE GROUPS AND THEIR COHOMOLOGY

KUNG-WEI YANG

The purposes of this paper are: (I) to characterize the finite
groups whose 2-Sylow subgroups are not isomorphic to a generalized
quaternion group and which have periodic cohomology of period 4,
(II) to show that all possible cohomologies of such a group G can be
realized by direct sums of (?-modules which belong to a specific finite
family of G-modules.

The author wishes to express his deep gratitude to Professor G.
Whaples and Dr. K. Grant for many helpful suggestions and continual
encouragement.

The reader is referred to [1, Ch. XII] for basic notions, definitions
and notations concerning cohomology of finite groups. The only
departure from [1, Ch. XII] is the following: we shall say that a
finite group G has periodic cohomology of period k if k is the least
positive integer such that Hk(G, Z) contains a maximal generator [1,
pp. 260-261]. And to avoid typographical difficulties we will denote
by Z{1) the cyclic group of order I.

PROPOSITION I. Let G be a finite group whose 2-Sylow subgroups
are not isomorphic to a generalized quaternion group. Then G has
periodic cohomology of period 4 if and only if G has a presentation

G = {σ, τ: σs — 1, τ* = 1, τστ"1 = a'1}, with the conditions

(i) 8 is an odd integer >1,
(ii) t is a positive even integer prime to s.

Proof. Let G be a finite group whose 2-Sylow subgroups are not
isomorphic to a generalized quaternion group and which has periodic
cohomology of period 4. It is well-known [1, Theorem 11.6, p. 262]
that if a finite group has periodic cohomology (of finite period) every
Sylow subgroup of the group is either cyclic or is a generalized
quaternion group. Since we assume that the 2-Sylow subgroups of G
are not isomorphic to a generalized quaternion group, every Sylow
subgroup of G is cyclic. It is also well-known [6, Theorem 11, p. 175]
that a finite group G containing only cyclic Sylow subgroups is meta-
cyclic and has a presentation

G = {σ, τ: σs = 1, τ* = 1, τστ"1 = σr}, with the conditions

Received August 21, 1963.

735



736 KUNG-WEI YANG

(1) 0 < s, (st — the order of the group G),
(2) ( ( r - l ) ί , β ) = l
( 3 ) r* Ξ l(mod s), and conversely.
We observe that if s = 1 or ί = 1 or r = 1 the finite group G is cyclic
and G has periodic cohomology of period 2 (or 0). These cases are
therefore excluded. On the other hand, once these exceptional cases
are excluded G is no more a cyclic group and it will have periodic
cohomology of period Ξ>4.

Notice that (1), (2) and (3) imply (i)
Let H be the subgroup of G generated by the element σ. H is

clearly a cyclic normal subgroup of order s. And G/H is cyclic of
order t. By condition (2), s and t are relatively prime to each other.
We can therefore apply the decomposition theorem of Hochschild-Serre
[2, Theorem 1, p. 127] and obtain

( 4 ) Hk(G, K) = Hk(G/H, KH) 0 (Hk(H, KψH ,

for all k > 0 and for all G-module K. (For k > 0, Hk(G9 K) = Hk(G, K)).
In particular, we have

Hk{G, Z) = Hk(G/H, Z) © (Hk(H, Zψ* ,

for & > 0. The G/iJ-operators on ίϊk(H, K) are explicitly described
in [2, p. 117]. In particular, G/iί-operators on ίϊk(H, Z) are induced
by the automorphisms of H which are themselves induced, on H, by
inner automorphisms of G. In the present situation, all such auto-
morphisms of H are generated by the automorphism f(p) — p^—τpτ'1),
where peH. The automorphism f: H—> H induces an automorphism
/ * of Hk(H9 Z) [4, Lemma 3, p.^ 343] such that if g2k e H2k(H, Z),
then f*(g2k) — rkg2k. Therefore H\G, Z) has a maximal generator,
i.e. G has periodic cohomology of period ^ 4 if and only if f*(g) — g
for all g β H\H, Z). This is equivalent to
( 5 ) r2 = l(mod s) .

(We recall that r = 1 we excluded). An elementary,number theoretic
calculation shows that the only solution for r in (2) and (5) is r =
— l(mods). Therefore the number t in (3) is an even positive integer
(if it is negative, we can present G by letting τ' = r"1). This shows
that the finite group G has a presentation as mentioned above.

The converse of the proposition is obvious.
We know that if I is the order of the group G then for any G-

module K all the cohomology groups ίϊk(G9 K) (—oo < k < oo) are of
exponent I—that is, for all g e Hk(G, K), Ig — 0. Let

β = P?1 PίS Pi = {Pi, ••-,?*} and t = g? •••#:% P2 = {qlf ••-,?,}

be decompositions of s and £ into products of prime powers (where
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qx = 2 and vλ ^ 1). It is obvious from (4) that a group with periodic
cohomology of period 4 has P2-period [1, Exercise 11, p. 265] equal to
2. Conversely, we have

PROPOSITION II. Let G be a group having a presentation

G = {σ, τ: σs = 1, τ* = 1, TOT"1 = 0-1} ίi i t t ίfee conditions

(i) s is an odd integer > 1 .
(ii) t is a positive even integer prime to s.

Lei Plf P2 be as defined above. Then there exists a finite family of
G-modules ^ such that given any sequence of abelian groups
Ak( — cx> < k < oo) satisfying

(a) each Ak is of exponent st,
(b) the sequence is periodic of period 4,
(c) the P2-period of the sequence is equal to 2, then there exists

a G-module M which is a direct sum of G-modules of J?" such that
Hk(G, M) = AΛ-oo <k<oo).

First we observe the following

LEMMA. Let G be a finite group and let K be a G-module. Let
S be a set of primes in the ring of integers Z and let Q(S) be the
quotient ring [ 5, p. 46] of Z with respect to the multiplicative system
generated by S. (As usual when Q(S) is considered as a G-module
it is to be understood that G operates trivially on (the additive group
of) Q(S)). Then

Hk(G, K® Q(S)) = Hk(G, K) ® Q(S)(-co < k < oo) ,

where ® = ® z

The proof is immediate.

Proof of Proposition II. Let s, £, Px, P2 be as before. Let

s(i9 μ) = s/ί>f(i — 1, , h, 0 ^ μ ^ ̂ i),

Let JSTXi, /x) = Σ i 4 μ ) ^yi>/A) (direct sum on the symbols xf μ))

t(i v)

K\if v) = 2 ZVJ%>V) (direct sum on the symbols 2/jΐϊV)) .

Define G-operators on K\i, μ) and K\i, v) by

(subscripts are modulo s(i, μ))
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σy{/^ = y{/'v)

{iv (subscripts are modulo t(i, v)) .

Let

M\i, μ) = K\i, μ) (g) Q((PX - {j>4}) U P2),

M\i, v) = K\i, v) ® Q(PX U (P% - {?,})) .

By (4), the above lemma and the fact that (H*k+2(H, K\i, μ))QIH = (0),
one shows

H*k(G, M\i, μ)) - Z{Pt) Hik(G, M\i, v)) =

H^\G, M\i, μ)) = (0) H*k+1(G, M\i, v)) = (0)

^ 4 f c + 2 ( G , MXί, μ)) - (0) H 4 f c + 2(G, M 2 (i, v)) - Z(gv)

H'k+\Gf M\i, μ)) = (0) H*k+\G, M\i, v)) = (0)

The calculation is purely mechanical.

Now, let 0 -> !-> Z[G] -^Z^+O, where ε(Σ, e , ^ ) = Σo ê  ίo , / =
Ker (ε), and let j^~ consist of

Γ ® Af^i, ̂ )(fc = 0,1, 2, 3, i = 1, , h, 0 ̂  ^ ^ %)

/* (g) ikΓ2(i, v)(fc - 0,1, i = 1, , β, 0 ̂  v ̂  v4) ,

where P = I ® <g) /(& times), 1° = ^.

Suppose we are given a sequence of abelian groups Ak(—co <k<co)
satisfying conditions (a), (b), (c). Since by (a) each Ak is of exponent
st, it follows from [3, Theorem 6, p. 17] that Ak is a direct sum of
cyclic groups. Let nA denote the direct sum of n copies of A, where
A is either an abelian group or a G-module and n is a cardinal number.
Then we can write

Σ n{k,i,v)Z{q\),

where m(fc, i, μ) = m(fc + 4, i, /i)(i = 1, , h, 0 ̂  /i ̂  %<), (̂fc, i, v) =
(̂fc + 2, i, v)(i = 1, , β, 0 ̂  v ̂  v<) and m(k, i, μ), n(k, i, v) are cardi-

nal numbers. Take

, i, μ)P (g) Λf*(i, ̂ )

ΘΣΣ Σ

Observe that ίϊk-ι(G, K) = Hk(G, P ® K). Clearly #*((?, M) - Ak

(-co < jfc < co).

REMARK. In a similar but much simpler fashion one can show
that all possible cohomology of a cyclic group G can also be realized
by direct sums of G-modules of a certain finite family of G-modules
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Addendum, to the paper

"On Some Finite Groups And Their Cohornology"

(Received October 11, 1963)

Let group G have a presentation

( * ) G = {σ, τ: σs = 1, τ* = 1, τστ~ι = σr) ,

with the conditions
( i ) 0 < s

(ii) ( ( r - l ) t , 8 ) = l
(iii) r* = l(mod s)
(iv) there exists a positive integer n such that n is the order to

which r belongs to moduli p{ (i = 1, « ,ft) (i.e. w is the smallest
positive integer such that rn = l(mod p^), where s — pΊι pΊh. Let
β, t, Plf P2, be as defined before (here qx is not necessarily = 2). It is
clear from condition (iv) that G has Pi-period equal to 2n and P2-period
equal to 2.

PROPOSITION III. Let G be a group having a presentation (*)
with the conditions (i), (ii), {iii), {iv). Then there exists a finite
family of G-modules ̂ ~ such that given any sequence of abelian
groups Ak(— co < k < co) satisfying the following conditions:

(a) each Ak is of exponent st
(b) the PΎ-period (in the obvious sense) of the sequence is 2n
(c) the P2-period of the sequence is 2,

there exists a G-module M, which is a direct sum of G-modules of
^ such that Hk(G, M) = Ak(-oo < k < co).

Proof. Let s(i, μ), t(i, v), K\if μ), K\i, v), be as defined in Propo-
sition II, Define G-operators on K\i, μ) and K\i, v) by

' ^ ^ \ (subscripts are modulo s(ί, μ))

(subscripts are modulo ί(i, v)) .

By condition (iv) we have

H**k+i(H, K\i, μ)flH - (0)(i = 1, 2, , 2n - 1) .

The rest of the proof is parallel to that of Proposition II. ^ con-
sists of G-modules

P 0 ikP(i, μ)(fc = 0, 1, , 2n - 1; i = 1, , ft; ̂  = 0, 1, , u{)

P 0 ikΓ2(i, v)(fc - 0, 1; i = 1, 2, , e; v = 0, 1, , ̂ ) .
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ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

ADIL YAQUB

Introduction. Boolean rings (B, x , + ) and Boolean logics ( = Boo-
lean algebras) (B, (Ί , *) though historically and conceptionally different,
are equationally interdeίinable in a familiar way [6]. With this
equational interdefinability as motivation, Poster introduced and studied
the theory of ring-logics. In this theory, a ring (or an algebra) R is
studied modulo K, where K is an arbitrary transformation group in
R. The Boolean theory results from the special choice, for K, of the
"Boolean group," generated by #* = 1 — x (order 2, £** = x). More
generally, let (R, x , + ) be a commutative ring with identity 1, and
let K = {plf p2, •••} be a transformation group in R. The K-logic (or
K-logical algebra) of the ring (R, x , + ) is the (operationally closed)
system (R, x, plt ft, •••) whose class R is identical with the class of
ring elements, and whose operations are the ring product " x " of the
ring together with the unary operations p19 p2y of K. The ring
(i?, x , + ) is called a ring-logic, moάK if (1) the " + " of the ring is
equationally definable in terms of its if-logic (R, x ft, ft, •••)» a n<i
(2) the "+" of the ring is fiixed by its iΓ-logic. Of particular inter-
est in the theory of ring-logics is the normal group D which was
shown in [1] to be particularly adaptable to p^-rings. Our present
object is to extend further the class of ring-logics, modulo the normal
group D itself. A by-product of this extension is the following result,
namely, any finite commutative ring with zero radical is a ring-logic,
mod D (see Corollary 8). Furthermore, in Corollary 10, we prove that,
more generally, any (not necessarily finite) ring with unit which
satisfies xn = x(n fixed, ^ 2) is a ring-logic (mod D). Finally, we
compare the normal group with the so-called natural group in regard
to the ring-logic character of a certain important class of rings (see
section 3).

l The finite field case* Let (Fpk, X, + ) be a Galois (finite) field
with exactly pk elements (p prime). Then, as is well known, Fpk
contains a multiplicative generator, ξ;

We now have the following (compare with [1]).

THEOREM 1. Let Fpk be a Galois field, and let ξ be a generator
of Fpk. Then the mapping x —> x^ defined by

Received August 16, 1963.
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(1.1) x* = ξx + (l + ξx + £V + + p*-V*-a)

is a permutation of Fpk, with inverse given by

(1.2) £ w = ξpk~\l + x + x2 + +xpk~2) + p*-2£ .

Furthermore, the permutation ^ is of period pk,

(1.3) x^pk = ( ( a O ^ ) ^ {pk-iterations) = x .

Proof. Since a**"1 = 1, ae Fph, a φ 0, therefore, by (1.1), a O =
ξx + {[(1 - (^)?)&-1]/(l - ξx)} = ξx, if x Φ 0 and fa? ^ 1. Furthermore,
by (1.1), 0 ^ = 1 and ( 1 / | ) ^ = Pfc l - 0. Hence, 0 ^ = 1, 1 ~ = | ,

(1.2), observe that the right-side of (1.2) is equal to

λx + JLf JiZLϊllLl = Λa , if x ^ 1 and x Φ 0 .
I ξ\ 1 - x I |

Moreover, if & ̂  0 and x Φ 1/ξ, then x ^ = ξx and hence ίc^^ = (l/ξ)x.
Since (1.2) clearly holds for x = 0, # = 1/1, and cc = 1, therefore (1.2)
is true for all elements of Fpk, and the theorem is proved.

COROLLARY 2. Under the permutation ^ , Fpu suffers the cyclic
permutation

α.4) «>,i,f,p,r, ...,rft-2).

Following [1], we call a O the normal negation of &, and call the
cyclic group D whose generator is x^ the normal group. By Theorem
1, it is now clear that

D = D{ξ) = {identity, ~ , ^ 2 , ^ 3 , , ^^~1} .

As in [1], we define

(1.5) a x^b = (a^ x δ^) w .

It is readily verified that

(1.6) a x^0 = a = 0 x^α .

COROLLARY 3. The elements of Fpk are equationally definable
in terms of the D-logic.

Proof. By Corollary 2, it is easily seen that
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0 = XX^X^ 'X^"k-i

(1.7)

and the corollary follows.
We recall from [3] the characteristic function δμ(x), defined as

follows: for a given μ e Fpk,

(1 if x = μ

(1.8) *Λ*)=L ..
(0 \i x Φ μ .

In view of Corollory 2, it is easily seen that, for any given μ e Fpk,
there exists an integer r such that μ^r = 0. Then, clearly,

(1.9) δμ,(x) = δo(x^ή w h e r e μ^r = o .

Now, let Σί/e * α ί denote αx x ^ α2 x ^ as , where alf a2, a3,
are the elements of î 7. Then, by (1.6) and (1.8), we have the iden-
tity [3]

(1.10) f(x9 2/, •) = Σ /(<*, β, )(δω(x)δώ/) •) .

In (1.10), α, /3, range over all the elements of Fp* while x,y,
are indeterminates over J^,*. We shall use (1.9) and (1.10) presently.

LEMMA 4. Γfcβ characteristic functions δμ(cc), JW e i'V, are
tionally definable in terms of the D-logic.

Proof. Since x**-1 = 1, cc =£ 0, » G JF7^, therefore, δo(x) =
((xp/b~1)w)pA;~1. Hence do(x) is equationally definable in terms of the
D-logic. Therefore, by (1.9), δμ(as) is also equationally definable in
terms of the D-logic, and the lemma is proved.

We are now in a position to prove the following.

THEOREM 5. The Galois field (Fpk, x , +) is a ring-logic (modi)).

Proof. By (1.10), we have,

x + y= Σ (α + β)(δΛ(x)Sβ(v)) .
cύ β€F kpic

Now, by Corollary 3, a + β is equationally definable in terms of the
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ZMogic. Moreover, by Lemma 4, each of the characteristic functions
da(x) and Sβ(y) is equationally definable in terms of the ZMogic. Hence
the " + " of Fpk is equationally definable in terms of the ZMogic
(Fpk, x , ^ , w ) . Next, we show that (Fk, x , + ) is fixed by its D-
logic. Suppose then that there exists another ring (Fpk, x , +'), with
the same class of elements Fpk and the same " x " as (Fpk9 x , + ) and
which has the same logic as {Fpk, x , + ) . To prove that + ' = + .
Since both (Fpk, x , + ) and (Fpk, x , + ') have the same class of ele-
ments and the same " x " , it readily follows that (Fpk9 x +') is also
a Galois field with exactly pk elements. Since, up to isomorphism,
there is only one Galois field with exactly pk elements, therfore,
+ ' = + , and the theorem is proved.

2» The General Case, In order to extend Theorem 5 to any finite
commutative ring with zero radical, the following concept of inde-
pendence, introduced by Foster [2], is needed.

DEFINITION. Let A = {Alf A2, , An) be a finite set of algebras
of the same species Sp. We say that the algebras Al9 A29 * ,An are
independent if, corresponding to each set {φj of expressions of species
Sp (i = 1, , n) there exists at least one expression ψ such that
ψ = ψi (mod Ai) (i = 1, , n). By an expression we mean some com-
position of one or more indeterminate-symbols ξ, in terms of the
primitive operations of Au A2, , An; ψ = φ (mod A) means that this
is an identity of the algebra A.

We now examine the independence of the D-logics (Fpkif x , ^ , w ) .
Indeed, we have the following (compare with [2]).

THEOREM 6. Let pl9 * 9pt be distinct primes. Then the D-logics
(Fpki9 x , ^ , w ) are independent.

Proof. Let n, = pf*, Fi - F9tkt = {0, 1, λ, λ2, , Xn-2}9 n =

^ t K}, N = nun* niNi = N9 E = ξξ^ξ^ ... |^»-i.
It is easily seen, since the n/s are distinct prime powers, that

Now, to prove the indepedence of the logics (Fi9 x , ^ , w )
(i == 1, . . . , t) let φl9 " 9<pt be any set of t expressions of species
x, ^ , w , i.e., primitive compositions of indeterminate-symbols in terms

of the operations x , ^ , w . Define an expression K(φlf ,φt) as
follows (compare with [2]):

K(φl9 , φt) = fa 1̂ 1)) X _ ( φ 2 1,(1)) X _ X ̂ fa |,(f)) .
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Then it is easily seen that K(φlf , φt) = φt (mod F{) (i = 1, , t),
since a x ^ 0 = 0 x ^ α = α, and the theorem is proved.

We shall now extend the concept of ring-logic to the direct sum
of certain ring-logics. We denote the direct sum of Ax and A2 by
A10 A2. The direct power Am will denote A 0 A 0 0 A (m
summands).

THEOREM 7. Let A be any subdirect sum with identity of (not
necessarily finite) subdirect powers of the Galois fields Fφ^i (i = 1, ,
t). Then A is a ring-logic (mod D).

Proof. Let q19 , qr be the distinct primes in {pu , pt}. Since
the Galois Fields Fp*i and Fpk} are both subfields of FpWj, it is easily
seen that A is a subring of a direct sum of direct powers of Fqhif

(i — 1, , r); i,e., A is a subring of Fqh\ 0 0 Fq\ for some posi-
tive integers klf •••,/&,.. Now, by Theorem 5, each Fq^% is a ring-logic
(modi)), and hence there exists a D-logical expression φ{ such that,
for every xif y{ e Ffy (i ~ 1, , r),

Xi + yi = <Pi{Xi, yύ x , " , w ) .

Since, by Theorem 6, the .D-logics (Fqhh x , ^ , w ) (i = 1, •••, r) are
independent, there exists a -D-logical expression K such that

cpr (mod Fqkr) .

Therefore, for every xi9 y{ e Fqkt (i = 1, , r),

Hence, the I?-logical expression iΓ represents the " + " of each
Fφ. Since the operations are component-wise in the direct sum

Fq}i Θ ' * * ΘJFffJr, therefore, for all x9 y in this direct sum, we have,

x + y = #(&, y; x, ^ , w ) .

Hence, α fortiori, the " + w of the subring A is equationally definable
in terms of the Z)-logic.

Next, we show that A is jftίcecϊ by its D-logic. Suppose there
exists a " + ' " such that (A, x, +') is a ring, with the same class of
elements A and the same " x " as the ring (A, x, +), and which has
the same logic (A, x , Λ , w ) as the ring (A, x, +) . To prove that
+ ' = + . Now, since A is a subdirect sum of subdirect powers of
Fp% therefore, a new " + ' " in A defines and is defined by a new
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" + Γ in F9*i, " + Γ in FP**f • • - , " + , ' " in Fp*t, such that (Fph, x , +ί)
is a ring (i = 1, •••, t). Furthermore, the assumption that {A, x , +')
has the same logic as {A, x , + ) is equivalent to the assumption that
each (Fp*i, x , ' + ί ) has the same logic as (Fph, x , + ) (i = 1, •••, t).
Since, by Theorem 5, (FPρ9 x , + ) is a ring-logic, and hence with its
"+" fixed, it follows that + ί = + (i = 1, •••, t). Hence + ' = + ,
and the theorem is proved.

Now, it is well known (see [4]) that any finite commutative ring
with zero radical and with more than one element is isomorphic to
the complete direct sum of a finite number of finite fields. Hence,
Theorem 7 has the following

COROLLARY 8. Any finite commutative ring with zero radical
is a ring-logic (modD).

It is also well known (see [1; 5]) that every p-ring (p prime) is
isomorphic to a subdirect power of FPf and every paring (p prime) is
isomorphic to a subdirect power of Fpk. Hence, by letting ί = 1 in
Theorem 7, we obtain the following (compare with [1; 7])

COROLLARY 9. Any p-ring with identity, as well as any pk-ring
with identityf is a ring-logic (modD).

Now, let n be a fixed integer, n ^ 2. It is well known that a
ring R which satisfies xn = x for all ώ in R is isomorphic to a sub-
direct sum of (not necessarily finite) subdirect powers of a finite set
of Galois fields. Hence Theorem 7 has the following

COROLLARY 10. Let R be a ring with unit such that xn = x for
all x in R, where n is a fixed integer, n^2. Then R is a ring-
logic (moάD).

3* The natural group and the normal group* Let (R9 X, +) be
a commutative ring with unit 1. We recall (see [1]) that the natural
group N is the group generated by xA = x + 1 (with inverse xv =
x — 1). In [7], it was shown that (Fpk, x, +) is a ring-logic (mod JV),
and hence the " + " of Fpu is equationally definable in terms of the
JV-logic (Fpk, x, Λ). Moreover, by Theorem 5, (Fpk, x, +) is a ring-
logic (modD), and hence the " + " of Fpk is equationally definable in
terms of the D-logic (Fpkf x, ^ ) . Of the two rival logics, (Fp*, x, ^ )
requires only a knowledge of the multiplication table in Fpu since,
by Corollary 2, the effect of ^ on Fpk is the cyclic permutation
(0,1, ξ, ξ2, , ξpk'2). In this sense, the D-logical formula for the " + "
of Fpk is a strictly multiplicative formula, and addition i$ thue
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equationally definable in terms of multiplication whenever the gener-
ator ξ is chosen (compare with [1]). The situation is quite different
in the case of the iV-logieal formula for the " + " of Fpk, since the
generator xA = x + 1 of the natural group N already involves a limited
use of the addition table.
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A NOTE ON PSEUDO-CREATIVE SETS AND CYLINDERS

PAUL R. YOUNG

l Notation, and Definitions. We will use N to denote the set
of all nonnegative integers. Unless specifically mentioned otherwise,
all sets are considered subsets of JV. If A is a set, A' = N — A. Since
we consider only sets of nonnegative integers, we will not use Cartesian
products of sets but will instead work with images of Cartesian products
under some effective mapping. More specifically, if A and B are sets,
let A 0 B = {(α, b) | a e A and b e B}. Let τ be any one-to-one effective
mapping of N(£) N onto N. Then we define A x B to be τ(A ® B), and we
abbreviate τ((a, b)) to <α, by. (This is the notation introduced by Rogers
in [4].) Given integers a and b we can always effectively find the
integer ζa, by, and given the integer <α, by we can always effectively
find a and 6.

In [2], My hill has called a set a cylinder if it is recursively isomorphic
to B x N for some r.e. set B; however we will follow Rogers in calling
a set, A, a cylinder if it is recursively isomorphic to B x N for any
set B. Such a set A is called a cylinder of B.

For definitions of recursive, simple, and creative sets, see [3]. A
noncreative, recursively enumerable (r.e.), set A has been called pseudo-
creative if for every r.e. set Be: A' there is an infinite r.e. set CaA'
such that B f) C = 0. A nonrecursive r.e. set A has been called
pseudo-simple if there is an infinite r.e. set B c A! such that A\J B
is simple. We will denote the class of all recursive sets by ^0» the
class of all simple sets by ^ i , the class of all pseudo-simple sets by
^2, the class of all pseudo-creative sets by <g\, and the class of all
creative sets by ^ 4 . These classes are pairwise disjoint and every r.e.
set falls into one of the classes ([2]).

Let A and B be sets. We write A^B if there is a one-to-one
recursive function such that xeA if and only if f(x)eB, A^mB if
there is some recursive function g such that x e A if and only if
g(x) e ΰ , and A ^btt B if A is reducible to B via bounded truth-tables.
If there is no recursive function g such that x e A if and only if
g(x)eB, we write A SmB. If both A Sm B and B ^ m A, we write

2. Introduction and preliminaries* In [2] it is shown that the
class of pseudo-creative sets is nonempty by proving that the cylinder
of any nonrecursive, noncreative, r.e. set is pseudo-creative. In this

Received June 28, 1963. Supported by National Science Foundation Fellowships. The
results reported here are a portion of the author's doctoral dissertation written at M.I.T.
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note we shall show that there is a pseudo-creative set which is not a
cylinder, and we shall develop some related facts concerning the relation
between pseudo-creative sets and cylinders.

LEMMA 1 (Myhill). Every creative set is a cylinder. Every
recursive set which is infinite and has an infinite complement is a
cylinder. The empty set and N are cylinders. If A is pseudo-creative,
pseudo-simple, or simple, then any cylinder of A is pseudo-creative.
No simple set or pseudo-simple set is a cylinder. If A is r.e., then
A ^ilA x N and A x N ̂ m A.

Proof. The proofs are straightforward and may be found in [2].
The requirement in the last assertion that A be r.e. may be omitted.

LEMMA 2. Let A be a cylinder. Then there exists a one-to-one
recursive function f such that xeA implies that {x, f(x), f\x)y f%x), •}
is an infinite r.e. subset of A, and x e A! implies that {x, f(x), f \ % ) ,
f\x), •••} is an infinite r.e. subset of A!.

Proof. W e m a y a s s u m e A — B x N f o r s o m e s e t B . D e f i n e
f(ζx, n» = <x,n + 1>.

LEMMA 3 (Post-Shoenfield). If B is a r.e. set and if A^bttB
where A is creative, then B is either creative or pseudo-creative.

Proof. In [3] it is shown that B cannot be recursive or simple.
In [5] it is shown that B cannot be pseudo-simple.

LEMMA 4. Let A e ί^, B e ̂  , and A^λB. Then i ^ j .

Proof. The proof follows easily from the definitions and will be
omitted.

LEMMA 5 (Fischer). There is a simple set S such that S x S^LmS.

Proof. See [1].

3, Results* An infinite set which contains no infinite r.e. subset
is called immune ([3]).

LEMMA 6. If A is a nonimmune infinite set, then A x N^XA x A.

Proof. Let B be an infinite r.e. subset of A and let g be a one-
to-one recursive function whose range is B. Define h(ζa, by) = <α, #(&)>.



A NOTE ON PSEUDO-CREATIVE SETS AND CYLINDERS 751

Then h is a one-to-one recursive function and x e A x N if and only
if h(x) eA x A.

COROLLARY 1. Suppose S is simple or pseudo-simple. Then
S x S is pseudo-creative.

Proof. By Lemma 6, S x N^S x S. By Lemma 1 S x N is
pseudo-creative and therefore by Lemma AS x Sis either pseudo-creative
or creative. Since S x S ^btt S, by Lemma 3 S x S cannot be creative.

THEOREM 1. Let A be an infinite nonimmune set. Then AxA^mA
implies that A x A is a cylinder.

Proof. Suppose A x A ^mA via the recursive function g. Define
h(ζa, δ» = <g«α, 6», <α, 6». Then Ax A ^ A x iVvia h. By Lemma 6,
A x N ̂ x A x A. Thus A x A is recursively isomorphic to A x N.

THEOREM 2. Let A be any infinite r.e. set which is not pseudo-
creative. Then A x A ^m A if and only if A x A is a cylinder.

Proof. In view of the preceding theorem, we need only prove
that if A x A is a cylinder then A x A ^mA.

If A is creative or recursive so is A x A, and in this case
A x A ΞΞΞW A and A x A is a cylinder. Therefore we may assume that
A is simple or pseudo-simple. Let Ba A! be a r.e. set such that A\J B
is simple. (If A is simple, B is finite.) Let B0 = AxN{jNxB,
and let Bλ = N x A U B x N. BQ U Bx is simple, for otherwise there
is an infinite r.e. set CaB'onB[, and this implies that either
{χ I (3y)K%, V> G C]} is an infinite r.e. subset of A' Π Br or {y | (3#)[<#, #> e C]}
is an infinite r.e. subset of A! Γ) Bf.

Assume A x A is a cylinder and let / be the recursive function
described in Lemma 2. (So xeAx A implies that {%,f(x),f2(x), •••}
is an infinite r.e. subset of A x A and x e (A x Ay implies that
{x,f{x),f\x)> •••} is an infinite subset of (A x A)f.)

To obtain a many-one reduction of A x A to A: Given x, enumerate
{xJf{x)jf\x)1f\x)j •••}, Bo, and Bx. Since J50 U Bλ is simple, we must
eventually find an integer <c, d> either in {x,f(x),f\x), •• } Π S 0 or
in {x, f(x)9 f\x)j •••} Π Bx. In the former case define g(x) = d; in the
latter case define g(x) = c. Then a? e A x A if and only if g(x) e A.

We next modify Theorem 2 to characterize a class of pseudo-creative
noncy Under s.

COROLLARY 2. Lei A be a r.e. set which is not pseudo-creative.
Then Ax A is a pseudo-creative noncylinder if and only if A x A^mA.
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Proof. If A is recursive, A x A is also recursive and A x A is
many-one equivalent to A. If A is creative, since A ^ i i x J V ^ i A x i ,
A x A is also creative and hence many-one equivalent to A. The
corollary now follows from Theorem 2 and Corollary 1.

COROLLARY 3. There exists a pseudo-creative set which is not a
cylinder and which is bounded-truth-table reducible to a simple set.

Proof. By Lemma 5 there is a simple set S such that S x S SmS.
Since S x S ̂ btt S, S x S is the desired set.

Our next theorem shows that Theorem 2 cannot be strengthened
to include the pseudo-creative sets.

THEOREM 3. There is a pseudo-creative set A such that A x A
is a cylinder but A x A SmA.

Proof. Let S be a simple set such that S x S -$>m S. Then

S=mSx N^Sx SSΛSx S) xNSΛSxN) x (S x N).

Let A = S x N. Then A x A is clearly a cylinder, but A x A Sm A
implies that S x S ̂ =mS, a contradiction. Thus i x i ^ i , and by
either Lemma 1 or Theorem 2, A is pseudo-creative.

Since any set is many-one equivalent to its cylinder and all creative
sets are many-one equivalent, the cylinder of any pseudo-creative set
is still pseudo-creative. Thus, since any set is one-to-one reducible to
its cylinder, we might hope to subclassify the pseudo-creative sets into
cylinders and noncylinders and obtain for the subclassification a result
analogous to Lemma 4. In view of the following theorem, such an
analogue fails.

THEOREM 4. There exist pseudo-creative sets A and B such that
A is a cylinder and ASiB, but B is not a cylinder.

Proof. Let A = S x N and B = S x S where S is a simple set
such that S x S ̂ mS. By Theorem 2, S x S is not a cylinder, and
by Lemma 6, A^ίlB. By Lemma 1 A is pseudo-creative, and by
Corollary 1, B is pseudo-creative.

REMARKS. 1. In another paper we shall show that there is a
pseudo-creative set which is not a cylinder and which, in contrast
to those pseudo-creative noncylinders constructed by using Theorem 2,
is not bounded-truth-table reducible either to a simple set or to a
pseudo-simple set.

2. The author does not know if there is a simple, pseudo-simple,
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or pseudo-creative set A such that A x A^mA. The question of whether
such a set exists is equivalent to the following question: Is it true
that if A is a r.e. set, then A x A ^m A if and only if A is either
recursive or creative?
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