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THE ESSENTIAL SPECTRUM OF A CLASS OF
ORDINARY DIFFERENTIAL OPERATORS

E. BALSLEV AND T. W. GAMELIN

Introduction* The purpose of this paper is to give a method of
determining the essential spectrum of a class of ordinary differential
operators in Lp of an interval with oo as a singular endpoint. The
method relies on the mapping theorem for the essential spectrum,
proved for ordinary differential operators by Rota [9]. A discussion
of this type of theorem is presented in § 1. The essential spectrum
of the constant coefficient operator and the Euler operator is determined
in §4. It is found that the essential spectrum of the Euler operator
is an algebraic curve which varies with the index p, 1 < p < °o.

In §§ 5 and 6 the class of differential operators which are compact
with respect to the constant coefficient operator, or Euler operator, is
determined. By a fundamental theorem of perturbation theory, these
operators may be added to the original operator without altering the
essential spectrum.

The results apply to differential equations of Fuchsian type. This
includes the Riemann differential equation, whose spectral theory was
investigated by Rota [10].

1* Spectral mapping theorems* Let A be a closed, densely-
defined operator in a Banach space X. A is a Fredholm operator if
the null space ^V{A) of A is finite dimensional and the range &(A)
of A is closed and of finite codimension in X. The Fredholm index
of A is the number

tc(A) = dim ^T(A) - codim &(A) .

A complex number λ is in the essential resolvent set of A, denoted
by pe{A), if XI — A is a Fredholm operator. Otherwise λ is in the
essential spectrum of A, denoted by oe{A). p(A) and o{A) will denote
the resolvent set and spectrum of A respectively.

Let i?(X) denote the ring of bounded operators on X, and let ^
denote the ideal of compact operators in ^(X) . S/ = ^(X)/ίf is a
Banach algebra. The coset A + <g* of an element i e ^ ( ϊ ) will be
denoted by Ά, and its spectrum will be denoted by sp(Ά). The in-
vertible elements of Szf are the cosets B = B + <̂% where 5 G ^ ( Ϊ )

is a Fredholm operator (cf [1]). In particular, sp(Ά) = oe{A) for all
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756 E. BALSLEV AND T. W. GAMELIN

LEMMA 1. Let Ae &(£), and let f be analytic in a neighborhood
of σ(A). Then σe(f(A)) = f(σe(A)). If μe p.(A), then

κ(μl - f{A)) = Σ{fc(\I - A): \ef~\μ)} ,

where λ is counted in the set f~\μ) according to its multiplicity as
a solution of f(z) — μ = 0.

Proof. The first assertion of the lemma is a trivial consequence
of the- spectral mapping theorem for Banach algebras:

σe(f(A)) = sp(f(A)) = sp(f(Ά)) = f(sp(Ά)) = f(σ£A)) .

By replacing / b y μ — f it suffices to establish the formula

= Σ{κ(Xl - A): Xef~\0)} .

We can decompose the spectrum of A into a finite number of
spectral (closed and open) subsets Fif i = I, v , w , such that / is
analytic in an open connected neighborhood of each Ft. Corresponding
to each spectral set Fi9 there is a projection Ei onto a closed invariant
subspace ϊ 4 of X such that / = Σ?=i ^> EJSj = 0, ΐ =̂ i, and α(A 136̂) =
JF, (cf [5], VII. 3).

Since the index K satisfies the appropriate additivity conditions, it
suffices to prove the formula for the restriction operators A \ Hif i.e.
we may assume that / is analytic in a connected open neighborhood
of σ(A).

If / is identically zero, then f(A) = 0 is Fredholm, so X is finite
dimensional, and the result is trivial. If / is not identically zero, it
has a finite number of zeros zl9 , zn e o(A), counted according to
their multiplicity. Let

g is analytic and nonzero in a neighborhood of o(A), so g(A) is in-
vertible and has index zero. Now

f(A) = (zj - A) (zj - A)g(A) ,

where the zj — A are Fredholm. Since the index of a product of
Fredholm operators is the sum of their indices, we have

= Σ{κ(Xl - A): λ e f-\0) n σ(A)}

= Σ{κ(\I- A):\ef-\0)}.

If A and β are unbounded operators with domains &(A) and
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, then their product is defined by

3f(AB) = {x e 2f{β)\ Bx e &(A)}9 (AB)x = A(Bx) .

A and B commute if AB = BA.
If A and B are closed, densely-defined Fredholm operators, then

AB is closed and densely-defined, AB is Fredholm, and tc{AB) = tc(A) +
κ(B) (cf [6]). Conversely, if {A{}i=1 is a commuting set of closed
operators such that A = A1 Ania closed, densely-defined and Fredholm,
then each of the At is densely-defined and Fredholm. For ^i^'(A)'Ώ^ί^(Ai)
and &(A) C &(Ai) for each i. As a special case of these remarks,
we can state a version of Lemma 1 for unbounded operators. For
ordinary differential operators, the spectral mapping theorem is due to
Rota [9].

LEMMA 2. Let A be a closed, densely-defined operator in X, and
let p be a polynomial of degree n.

(a) If p(σe(A)) is not the entire complex plane, then p(A) is
densely defined and closed.

(b) If p(A) is densely defined and closed, then σe(p(A)) = p(σe(A)).
If μe pe(p(A)),

κ(μl - p(A)) = Σ κ(Xj - A) ,

where \, , λw are the solutions of p(z) — μ = 0, counted according
to their multiplicity.

Proof, μl - p(A) = ( λ j - A) (λ n l - A), where the λ,I - A
commute. If μ g 2>(<7e(A)), then each X< is in ρe(A), so μ l — p(A) is
densely-defined and closed. Hence p(A) is densely-defined and closed.

Part (b) of the lemma is a consequence of the preceeding discussion.

2* Some basic facts about linear operators* Let A be a closed
densely-defined linear operator in a Banach space 9c. The domain 3f(A)
of A becomes a Banach space when endowed with the A-topology, or
graph topology, defined by the norm || x \\A — \\ x || + \\Ax | |. A linear
operator B: &(B)->% is said to be A-defined if &(B) 3 3?(A). B
is A-bounded if the restriction of B to &(A) is a bounded operator
from ^ ( A ) , with the graph topology, to ϊ . Its A-norm || J5|[^ is
given by

| | B | U = s u p {\\Bx\\l\\x\\A}
e(A)

B is A-compact if it is compact as an operator from £P(A), with the
graph topology, to X.
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If Ar is a second operator which is closed on
then the A'-topology for Ξf(A) coincides with the A-topology for
The following lemma gives criteria for A' = A + B to be closed on

), and collects certain facts which will be used later.

LEMMA 3. Let A be a closed densely-defined operator in 3c, and
let B be an A-defined (not cecessarily closed) linear operator in H.

(a) / / there exist 0 S ot < 1 and 0 ^ β such that

\\Bx\\ S a\\Ax\\ + β\\x\\ for x

then A + B is closed on ()
(b) If B is A-compact, then A + B is closed on &{A), and

σe(A + B) =

κ(A + B- XI) = κ(A - XI) for X e ρe(A) .

(c) If X£ Pe(A), then there is an ε(λ) > 0 such that \\B\\A< ε(λ)
implies X e pe(A + B).

(d) // B is closed and A-compact, then for every ε > 0, there is
a K(ε) > 0 such that

|| Bx || ^ ε || Ax \\ + K(s) \\x\\ , xe &(A) .

Proof, (a), (b) and (c) are well-known. Suppose that (d) is not
true. Then there is an ε > 0 and a sequence {xn} in £3? (A) such that

\\Bxn\\^ε\\Axn\\ +n\\xn\\.

Since the inequality is homogeneous, we may assume ||a?»|L = 1-
Passing to a subsequence, if necessary, we may assume, that Bxn

converges to y. Since

II Bxn || ^ ε || xn \\A + (n - ε) || xn \\ - ε + (n - ε) \\ xn \\ ,

xn converges to 0. Since B is closed, y = 0. On the other hand,
|| y || = Km || Bxn \\ ̂  ε, a contradiction.

The argument establishing part (d) can be found in [4], p. 39.
There are operators B which are A-compact but for which no inequality
of the form || Bx \\ ^ ε || Ax \\ + ^(ε) || x \\ obtains.

3* Differential operators* Let {a, β) be an interval, where
a = — oo and β = + oo are allowed as endpoints. A formal differential
expression I on the interval (a, β) is an expression of the form

Σ
3=0

where the aά are complex-valued measurable functions on (a,
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The maximal operator L in Lp(a, β), 1 < p < oo, associated with
Z, is defined by

&(L) = {feLp(a, β):fU) exist and are loc. α.c, O ^ i ^ w - 1 ,
l(f)eLp(a,β)} and

Lf=l(f), fe^(L).

The operator LJ is the restriction of L to C°° functions with compact
support contained in (a, β).

If L; is closable, then the minimal operator Lo associated with I
is the closure of L'o. A differential operator associated with I is an
operator Lu such that

and

Luf=l(f), f

Under mild restrictions on the coefficients dj{t)9 for instance, that
aά(t) be locally integrable, 0 ̂  j ^ ^ — 1, and that l/an(t) be locally
integrable, the maximal operator L is densely defined and closed. In
this case, £3?(L0) is of finite codimension in £&(L).

Any finite dimensional extension of a Fredholm operator is again
Fredholm (cf [6]). Hence, under the preceeding restrictions on the
coefficients aί9 pe(LJ = pe(L) for all differential operators Lu determined
by I. This set is called the essential resolvent set of Z, and denoted
by Pe(l) Its complement σe(l) is the essential spectrum of I.

If &(LU) is of codimension k in S&(L), and μepe(l), then
κ(μl — Lu) = fc(μl — L) — k (cf [6]). To determine the Fredholm index
of μl — Lu, it suffices then to find the index of μl — L, or of μl — Lo.

In the following, DQ and D will denote respectively the minimal
and maximal operators in Lv{a, β) determined by the differential ex-
pression (lf)(t) = /'(ί), where (a, β) is the interval under consideration.

4* The basic formulae for the essential spectrum*

THEOREM 1. Let M be the maximal differential operator in
Lp[0, oo) associated with the expression

3=0

constants.
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Let 7Γ be the polynomial

π(z) = Σ ap' .

Then

<re(m) = {π(ir): — oo < γ < 00} .

If λ G |0e(m), the Fredholm index κ(Xl — M) is the number of roots
of π(z) = λ, counted according to their multiplicity, which lie in the
half-plane &+(z) < 0.

Proof. The equation Xg — Dog = / is satisfied by

g(s) = ( λ J - A)-y(s) - - β λ ( fe- λ ί/(ί)dί .
Jo

If ^ ( λ ) < 0, then ( λ / - A)" 1 / = &*/, where &G Z ^ - O O , CO). SO

( λ / — D Q ) - 1 is bounded, and Xep(DQ). In particular, Λ;(λJ — J90) = 0
for ^ ( λ ) < 0.

If <^(λ) > 0, the adjoint differential equation of Xf = Dof has
the solution e~KteLq[0, 00), which must be orthogonal to the range
of XI - Do. If fe &(\I - A),

(XI - Do)

This is again a convolution operator with an LMεernel, and so (XI — DJjr1

is bounded on &(Xl — Do). It follows that &(Xl — Do) is the subspace
of Lp[0, oo) orthogonal to £~λί, and so is closed and of codimension 1
in LP[Q, oo). Hence Xeρe(D0) and ιc(Xl - Do) = - 1 for ^ ( λ ) > 0.

Since the Fredholm index is constant on each component of pe(DQ),
the line <^(λ) = 0 must be the essential spectrum of Do. Since D is
an extension of Do by one dimension, /c(Xl — D) — 1 if ^*(λ) < 0 and
κ(Xl - D) = 0 if ^E(λ) > 0.

This establishes the theorem for the special case of the operator
D. It suffices now to prove that M = π(D);1 then the general result
follows from Lemma 2. From the inequality of Lemma 5 we derive
the inequality

|| JD /II S K{\\Mf\\ + 11/11} , fe C0~(0, oo) .

Thus, the M-norm and Dw-norm on C0°°(0, oo) are equivalent, and it
follows, that

Since M is an extension of π(D), and since dim £&(π(D))J&(π(D0)) ^ n,
it suffices to show, that dim &(M)/£&(M0) = n.

1 Professor S. Goldberg pointed out, that a proof was missing here.
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Since 2$(M) — 3ί(M — XI), we may assume, by altering the
constant term of TΓ, that M is Fredholm. Then

dim &(M)/£&(M0) = dim ^V(M) + codim έ

— dim ^ί^(M) + dim,

where L is the maximal differential operator associated with the adjoint
expression (cf. [9]).

We may also assume, that the roots λ l f , λΛ of π(z) = 0 have
distinct real parts. Then ^>V(M) is spanned by the exponentials eKit,
and ^4^(L) is spanned by the exponentials e~λit. From this it is easy
to conclude that dim^K(M) + dim^K(L)-= n.

THEOREM 2. Let the Euler differential expression I on the interval
[1, oo) be defined by

n

k=0

where the bk are constants. Let L be the associated maximal operator
in Lp[l, oo), l < p < oo. Let d be the polynomial

d(z) = bo+±bk Π ( * - ( ! - + j
*=i i=o V \p

Then σe(l) = {d(ir): — oo < r < oo}. For Xe pe(l), the Fredholm index
κ(Xl — L) is the number of roots of d(z) — λ = 0, counted according
to their multiplicity, which lie in the half-plane &&(z) < 0.

Proof. For feLp[l, oo), we define

(πf)(s) = eslPf(e8), 0 ^ s < co .

It is easily verified, that τ is an isometric isomorphism of Lp[l, oo)
and Lp[0f oo). Its inverse is given by

f(t) = (τ-1g)(ί) = ί~1/pg(log ί), 1 ^ K oo .

We have

p

ds p

By induction on k, the following formula obtains

dtk

x



762 E. BALSLEV AND T. W. GAMELIN

Therefore

ds p

Let lk be the differential expression

(hf)(t) = ("/'"(ί), 1 =S ί < oo ,

and let Lk be the corresponding maximal operator in Lp[l, °°). Then

Consequently,

L = τ-\bol + Σ &*Π (D - (l + i)Y|τ .

Since the essential spectrum and Fredholm index remain invariant
under isometric isomorphisms, the result follows from Theorem 1.

REMARK. The essential spectrum of L could also be computed by
writing L as a polynomial in the operator x(d/dx), which has the
essential spectrum { — (1/p) + ir, — oo < r < oo}. The Euler operator
was originally represented as a polynomial by George Boole.

5* Perturbation of the constant coefficient operator* The
inequalities, on which the results of this section are based, are es-
sentially special cases of similar estimates for elliptic partial defferential
operators (cf [4]). Similar results for perturbation of partial differential
operators are obtained in [3]. For p = 2 theorems of this type for
elliptic operators, including Lemma 7, are proved by Birman (cf. [11]).

LEMMA 4. Given ε > 0, there exists a constant K, depending only
on p and ε, such that

tt ^ { sup \S+I\b(t)\*dt\\e[°\f'(t)\*dt + κ\~\f(t)\>dt\

for all N^O, all functions b locally in Lp[0, °o), and all functions
f in the domain of the maximal operator D in Lp[0, oo).

Proof. Let r be a small positive number Let a be a continuously
differentiate function on [0, r] such that

0 ^ a ^ 1, α(0) = 1 and a(r) = 0 .

If fe ^r(D), then
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= -[a(s)f'(t + s)ds - [a'(s)f(t + s)ds
Jo Jo

[\f'(t + s) \ds + K0[\f(t + s)\ds
Jo Jo

}llp (Cr Λl/p

S ) | P

where (1/p) + (1/ρ) - 1.
If r is chosen so that εllP = r1 / gcp, then

^ ε[\f(t + s) |'ώ» + K[\f(t + s) I
Jo Jo

\~\b(t)f(t)\*dt

- \l S Γ ' δ ( ί ) |!> {ε'f/(s) lP+K{ /(s) γ]dsdt

= Γ (S I 6(ί) I' {ε |/'(β) I"
JiV Jmax(β-r,JV)

sup Γ+" I b(t) \pdt\\ε\" |/'(β) |
V ŝ<oo J s J I JiV

LEMMA 5. Given ε > 0, £/&ere exists K(ε) > 0

|| J 0 * / | | ^ e || D / H + K(ε) \\f\\, fe & φ * \ 0 £ k < n ,

where the norms are taken in Lp[0, °o).

Proof. Let [0, r] be a finite interval. Replacing / by / ' and
proceeding as in the proof of Lemma 4, we arrive at the inequality

\f'(t) I ̂  Cpr^ \f"(t + s) Yds + K0(r)^ \ f'(t + s) \

Suppose {/„} is a J92-bounded sequence in Lp[0, r\. It is easy to
see that the derivatives fl are uniformly bounded and equicontinuous
on the interval [0, r ] . Hence the operator D in Lp[0, r] is compact
with respect to the operator D2 in Z/[0, r ] .

By Lemma 3(d), there exists a Kx{r) > 0 such that

K0(r)[\f'(t + s) \pds ̂  [ \f"(t + s) Yds + Kλ{r)
Jo Jo

If r is chosen so that 0 < r < 1 and ε1/2> = 2Cpr
llg, then the above

inequalities yield the pointwise estimate
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'(t)|* £ s[\f"(t + 8)\*d8 + K(ε)[\f(t + 8)\>d8 .
Jo Jo

Integrating from 0 to ^ and exchanging the order of integration,
we arrive at the following inequality

This is equivalent to an inequality of the form

l|i>/ll^e||Dy||

Inequalities of the form

follow easily by induction on k. Since Dk+1 is JD*-bounded, we finally
obtain an inequality of the desired form

Let b be a measurable function on the interval [0, <*>), and define
the linear operator B in Lp[0, oo) by

= {/G L'[0, oo): 6/e L [̂0, oo)} ,

J5 is closed and densely-defined.
In the following, LfQC[a, oo) will denote the space of measurable

functions on [a, oo) which are locally in Lp[a, oo).

LEMMA 6. B is D-defined if and only if 6eLfoc[0, oo) and

If B is D -defined, then for every ε > 0, there exists a K{έ) > 0
such that

In particular, D + B is closed on

Proof. Suppose that B is D-defined. Since B is closed, B is D-
bounded. Let / be a C°°-function on (—°°, °°) such that

f(s) = 1, 0 ̂  s ^
f(s) = 0,-oo<s
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Let fs(t) = f(t — s), and let gs be the restriction of /, to the
interval [0, oo).

If s ^ 0, then

Ί b(t)ga(t) \*dt = J ] + 1 | δ ( ί ) I'eZί ^ || bgs \\* £ \\B\\i \\ g8 \\p

Hence 6eLfoc[0, oo), and

limsup \S+I\b(t)\pdt <
S-+CQ J S

Conversely, suppose 6eLfoc[0, oo) and

Then

lim sup \8+1\b(t)\pdt < °° .

sup \'+1\b(t)\pdt < oo .

It follows from Lemma 4, with N = 0, that B is Z)-bounded and

By Lemma 3(a), D + B is closed.

LEMMA 7. I? is Ό-compact if and only if 6eLfoc[0, oo) and

2i = 0 .

Proof. Suppose that B is J9-compact. By Lemma 6, be Lfoc[0, <*>)•
Suppose that there exists a sequence sn —* oo and a K > 0 such that

U^K, n = 1, 2, .

Let {<7SJ be the functions defined in the proof of Lemma 6; since {gSn\
is a D-bounded sequence, and B is D-compact, we can assume that

passing to a subsequence if necessary. On the other hand,

S s+1

I b(t) \p dt = 0.
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Conversely, suppose that 6eLp

oc[0, oo) and that

lim(β + 1 |&(t)|*(it = 0 .
S-»oo Js

Let χN denote the characteristic function of [0, ΛΓ], and define

By Lemma 4, there is a constant K > 0 such that

\\{B- BN)f\\* =\~\b{t)f{t)\*dt

g κ{ sup ( i w i ' d t k l A f l l ' +

Hence || B — BN \\D —> 0 as N—>°°, so it suffices to show that each BN

is D-compact.
For this purpose, let {fk\ be a D-bounded sequence in

Since

I Ms) - Λ(ί) I = I j Vί(r)dr^ 11 - 8 I1"!£ | /'(r) |

the Λ are equicontinuous on [0, N]. If {fkj}T=i is a subsequence which
converges uniformly on [0, N] then {BNfkj}J=1 converges in Lp[0, oo).
Hence BN is D-compact.

THEOREM 3. Let Mbe the maximal operator in Lp[0, oo), l<p< oo,
corresponding to the differential expression

(mf)(t) = 2 ajf{j)(t), aj constants, an Φ 0 .

Lei J5 6e ί/te maximal operator in Lp[0, oo) corresponding to the
differential expression

3=0

where the bj are measurable.
(a) B is M-bounded if and only if b5 e Lfoc[0, oo) and

lim sup [S+1\ bj(t) \pdt < oo, 0 ^ j ^ n - 1 .
S—*oo J g

(b) B is M-compact if and only if 6yeLfoc[0, oo) and

lim (8 + 1 | δ/ί) \'dt = 0, 0 ^ j ^ w - 1 .
S->oo J 8
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(c) If B is M-bounded, then for every ε > 0 there exists K{ε) > 0
such that

In particular, M + B is closed on

Proof. Suppose that B is M-bounded. If the functions gs are
constructed as in the proof of Lemma 6, we have

sup ίS+11 bo(t) \p dt = sup Γ+11 Bgs(t) \p dt
s^O Js Js

Hence b0eL?oc[0, <*>) and

Γs+1

limsup 1 \bQ(t)\pdt < ©o.
S->oo J s

Let 1 ^ k ^ n — 1 and assume t h a t b3e Lfoc[0, ©o) and

lim sup (S+11 bj(t) \pdt<oo90^j^k-l

The functions gs can be altered so that

gik)(t) = l , β ^ t ^ 8 + l .

The same type of estimate as used in the preceding paragraph
yields the results

bkeL?oc[0, oo)

and

S s+l
bk(t)\pdt

s

By induction, this holds for all k,0^k^n — l.
Conversely, assume b3(t) e Lfoc[0, oo) and

limsup \8+1\bj(t)\pdt < oo, 0 ^ i g w - 1 .

Let Bj be the maximal operator corresponding to the expression

By Lemma 6,

|| BJ\\ £ ey || D ^ / | | + JΓoίfiy) II Djf\\,
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From Lemma 5 we can deduce an inequality of the form

\\BJ\\ g ε , | | D V | | + JSΓ(ey) 11/11,/€^(D ) .

Summing over j we arrive at an inequality of the form

Since M i s a polynomial in D of order n, &(M) — ^(Dn)9 and the
ikf-topology is equivalent with the DMopology for 3ί(M). Hence we
get an inequality of the desired form,

JB:(6) 11/11.

By Lemma 3(a), M + B is closed on S>{M). This completes the proof
of parts (a) and (c) of the theorem.

If

lim Γ+1 | bάt) \'dt = 0, 0 ^ j ^ n - 1 ,
8-»oo J s

then each B3 is Dy+1-compact, by Lemma 7. And so B3 is D%-compact,
therefore ikf-compact. Hence B is ikf-compact.

Conversely, if B is ikf-compact, then the relations

lim 1 \bk(t)\pdt = 0
S-»oo J 8

can be proved by induction on k as in the proof of part (a) and of
Lemma 7.

THEOREM 4. Let M and L be the maximal operators in Lp[0, oo),
1 < P < °°, corresponding to the differential expressions

(mf)(t) = Σ ajf{j)(t) , α, constants, an Φ 0,

( ) Σ
3=0

Suppose bn is continuous and satisfies

bn{t) Φ -a%, 0 g ί

lim bn(t) = 0 .

Suppose bjeLfo^Oy oo) αt̂ cί satisfies

lim Γ + 1 | &,-(«) | p dέ = 0 , 0 S 3 S n - 1 .
J

Then &{L) = &(M), and σe(l) = σe(m). If \epe(m), κ{\I-M) =
κ{\I - L).
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Proof. Let Bn be the maximal operator corresponding to the
expression bn(t)f{n)(t).2 In view of Theorem 8 and Lemma 3 it suffices
to prove the theorem in the case

(lf)(t) = (m/)(ί) + bn{t)f{n\t) .

So we assume b3(t) = 0, 0 ^ j ^ n — 1. Since the essential spectrum
and the Fredholm index are localizable to the endpoint °o, and since
the graph topologies of ϋ^(L) and 2$(M) are equivalent on compact
subsets of [0, oo), we may assume, by passing to an interval of the
form [N, oo), that | bn(t) | ^ ε , 0 g ί < ^ .

We have

If ε is sufficiently small, Lemma 3(a) applies, and
Also, by Lemma 3(c) and suitable choice of ε, we must have σe(l) =
σe(m).

Now suppose | bn(t) | < | α w | , 0 ^ t < o o , so that the hypotheses of
the theorem are satisfied for

(lβf)(t) = (m/)(ί) + βbn{t)fn)(t) ,

where 0 ^ / 3 ^ 1 . We have shown that σe(lβ) — σe(m), so that the
function β —* κ(Xl — Lβ) is well-defined, Xeρe(m). This function is
continuous and integervalued, hence a constant. In particular,
Λ;(λJ - M) = κ(Xl - L).

6* Perturbation of the Euler operator*

THEOREM 5. Let L be the maximal operator inLp[l, oo
corresponding to the Euler differential expression

(lf)(t) = Σ bjP'f^it) , bj constants, bn Φ 0.
3=0

Let C be the maximal operator in Lp[l, ©o) corresponding to the
expression

n—1

Σ (

where the c3- are measurable.
(a) C is L-bounded if and only if CjeLfoc[lf oo) and

S as I
— I Cj(t) \pdt < oo for some a > I, 0 ^j ^

s t

2 Professor S. Goldberg pointed out, that the proof was incomplete. The remaining
part can be found at the end of the paper.
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(b) C is L-compact if and only if Cj eLfoJl, oo) and

lim ["'— I cό{t) \p dt = 0 for some a > l , 0 ^ j < n —[

(c) / / C is L-bounded, then for every ε > 0 ίΛ^rβ 0#is£s K(ε) > 0

In particular, L + C is closed on

Proof. Let M be the maximal operator in Lp[0, oo) corresponding
to the differential expression

(m/)(t) = 6, + Σ h Π (-^- - ( - + k
j=ι fc=o \ as \p

and let 5 be the maximal operator in Lp[0, oo) corresponding to the
expression

Φ°) + Σ cλe°) ff (-§- -(-
3=1 h=o \ ds \ p

Let τ be the isometry of Lp[l, oo) and Lp[0, oo) introduced in the proof
of Theorem 2. Then

L - r

and

C - τ-

Also,

Combining Theorem 3 and a downward induction argument on the
coefficients cy, we arrive at parts (a) and (b) of Theorem 5. Part (c)
also follows from Theorem 3.

THEOREM 6. Let L and M be the maximal operators in Lp[l, oo)^
1 < p < oo, corresponding to the differential expressions

(?/)(*) = Σ bjP'f^it), bj constants, bn Φ 0 .

±
i0
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Suppose cn is continuous and satisfies

cn(t) Φ -K, 1 ^ t < oo

lim cn(t) = 0 .
ί-*oo

Suppose c3eLfoc[0, oo) and satisfies

lim ("' — I cό(t) \pdt = O for some a > l , 0 ^ j ^ n - l .

), and σe(l) = σe(m). If Xe pe(m),
/r(λJ-L).

Proof. A straightforward verification, as in the proof of Theorem
5, shows that the transform of Theorem 6 under τ is Theorem 4.

7* Some special cases* The perturbation criterion of Theorem 5
includes all functions c(t) such that t~llPc(t) e Lp[l, oo). It includes all
bounded measurable functions with limit zero at oo. The criterion
shows, for instance, that if a < j < n, then t*fU) is compact with
respect to the Euler operator of degree n. If a < n, Theorem 6 shows,
that t"fXn) has no effect on the essential spectrum of I. In particular,
if

(mf)(t) - Σ aMΓ»(t)

is a Fuchsian differential expression, where an(t) = 0(tn), then m can
be written in the form of Theorem 6, and the essential spectrum of
m can be determined from the coefficients as in Theorem 2.

For instance, consider the Riemann differential expression

(m/)(ί) = t(t + l)/»(t) + (at + b)f'(t) + ct2 + d t + e f{t) .
t\t + L)

Except for the change of variable t—> —t this is the equation^investi-
gated by Rota [10]. By Theorem 6, σe(m) = σe(l), where

«"/"(«) + αί/'(ί) + cf(t) .

By Theorem 2,

σe(l) = {d(ir): - oo < r < oo} ,

where
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Hence

σe(m) = \-r2 + irίa — 1 — A ) + J L + ( i _ <χ) JL + c: —<*> < r <
I \ p / p2 p

This is equivalent to the expression obtained by Rota.

8* Remarks*

(a) The Euler operator in Lp(0, 1].
The mapping τ defined as in the proof of Theorem 2 by

τf(s) = es'pf(es)

also establishes an isometric isomorphism of Lp(0, 1] and Lp( — oo, 0].
The Euler operator

in Lp(0,1] is isometric isomorphic via τ to the constant coefficient
operator

M = a0 + Σ a* Π (Z> - (— + fc))

in L p (-oo,0]
The operator D in Lp(— oo, 0] is isometric isomorphic to the operator

(-D) in Lp[0, oo); therefore Z) in Lp(~oo9 o] has the essential spectrum
{it: — oo < f < oo}, and the Fredholm index of λJ — D is 0 for ^ ϋ λ < 0
and 1 for &Λ, > 0.

It follows, that I on the interval (0,1] has the same essential
spectrum as I on the interval [1, °°) and the Fredholm index of XI — L
is the number of roots of the polynomial d(z) — λ of Theorem 2, counted
with multiplicity, which lie in the half-plane &Lz > 0.

The perturbation results also carry over to the interval (0,1]. The

Theorems of § 6 are true for the operator L in LP(Q, 1], when 1 is

substituted for 0 and 0 for oo f in particular we now take the limes and

Urn sup of I (Ifu) \c(u) \pdu as s —> 0.

The Euler operator L in Lp(0, oo) is isometric isomorphic via τ to
the constant coefficient operator considered above in L*(— oo, oo), and
the essential spectrum is given by the same formula. The Fredholm
index is 0, oe{L) — o(L) and Lo = L.

(b) The condition

— I b(t) \pdt < co for some a > 1
s t
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is equivalent to the condition

Also, the condition

lim \"'λ.\b(f) \pdt = O for some a > 1
S-̂ oo Js t

is equivalent to the condition

V ί = 0.

This second set of conditions could just as well have been used
in Theorem 5 and 6.

The proof of these assertions follows from the inequalities

sup \"'—\ b(t) \p dt ^ sup as\"S\\b{t) |* dt
s^N Js t s^N Js t

^ α s u p s Γ — \b(t)\*dt,
s^N Js t

and

sup sΓ-i-1 b(t) V dt = sup s Σ Γ" 1 S 4r I δ^) I"dt

s^N Js ^ s^N «=0 Jαί»s ί^

α — l

(c) A basis of solutions /i(λ, t), , /n(λ, ί) of a differential
equation l(f) — λ/ of order n is said to be a norm-analytic basis at
λ0 if there is a neighborhood N of λ0 such that (i) the functions f{

are analytic in λ for Xe N and (ii) there is an integer k such that
for each Xe N, {/JLi span the set of solutions of l(f) = λ/ which
lie in ZΛ In [10], Rota proved the following criterion:

LEMMA. // at λ either the differential operator I in Lp or its
adjoint I* in Lq, (1/p) + (1/g) = 1 (cf [9], for definition of adjoint),
does not have a norm-analytic basis of solutions, then λ belongs to
the essential spectrum of I.

l(v)
If I is the Euler differential expression of Theorem 2, the equation
= Xy has solutions φ,(t) = t**, where α, is a root of the algebraic
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equation

bnz(z - 1) (z - n + 1) + +b1z +

Now ft eLp[l, oo) if and only if ^ ( α , ) < -(1/p).
Hence I will not have a norm-analytic basis at any point of the

curve

X = bjir - — )(ir - — - l ) (ir - — - n + l)
V pl\ p I V p I

+ + bλir — — ) + &o > — o o < r < o o ^
\ pi

This curve is identical to {d(ir):—°° <r< oo}, where d(z) is the
polynomial defined in Theorem 2.

If λ is not on this curve, then it can be shown that the resolvent
operator (XI — l)~x is a sum of integral operators whose kernels are of
the Hardy-Littlewood-Polya type (cf [7], or [5] pp. 531-532). This
yields another proof of Theorem 2, but the details are more complicated.

This method also shows that the essential spectrum of the Euler
operator is precisely the set of points at which I or £* does not have
a norm-analytic basis of solutions. That this is not true in general
is shown by the following example.

Define

(lf)(t) = f'(t) + (sin t + t cos t)jf(t), 0 ^ t < oo .

The equation If = Xf has the solution

φk(t) = exp [t(X - sin t)] ,

while the adjoint equation l*g ~\g has the solution

Now φkeLp[0, oo) if ^ ( λ ) < - 1 and φλ$Lp[0, oo) if ^ ( λ ) > - 1 ,
so I does not have a norm-analytic basis on the line ^&(λ) = — 1.

Similarly, I* does not have a norm-analytic basis on the line
^E(λ) = 1. I and Z* have norm-analytic bases if ^ii(λ) ^ ± 1 .

Since 0 is a regular endpoint for the differential expression I, a
necessary condition that a point λ be in ρe(l) is that either φλe Lp[0, oo)
or ψλeLq[0, oo)f(l/p) + (l/q) = i (cf [9]). Hence the entire strip
{—1 ^ £&(X) 5̂  1} is contained in the essential spectrum of I. It is
easy to see that σe(l) actually coincides with this vertical strip.

It seems possible that the boundary of the essential spectrum of
an arbitrary differential expression consists of points λ at which either
If — xf or l*g = Xg does not have a norm-analytic basis of solutions.
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(d) The fact that the isomorphism (τf)(έ) = eslPf(es) converts a
resolvent operator of Hardy-Littlewood-Polya type into a resolvent
operator of convolution type is a special case of the following situation.

Let K be a measurable function on [0, °°), and let

(Tf)(x) = ±[κ(l-
X Jo \ X

The mapping τ may be regarded as an isometric isomorphism of
Lp[0, <*>) and Lp(-co9 oo).

The operator S = τTτ~λ in Lp( — oo, oo) is given by

(Sff)(ω) = Γ ίί(^-ω)e((1/ί))

J-eo

£ is a convolution operator with kernel

J(r) = X

Conversely, a convolution operator in Lp(—cof oo) with kernel J de-
termines a Hardy-Littlewood-Polya operator in Lp[0, oo) with kernel

ίΓ(8) = 8(1^-1J(-l0g8) .

The norm of S is at most the ZZ-norm of J. Hence if

Γ I J(r) I dr = Γ | ΛΓ(β) | s"1" ds < co ,
J-oo Jo

then Γ is bounded, and

| | T | | ^ [°\K{s)\s-ιlpds .
Jo

This last statement is just the Hardy-Littlewood-Polya inequality
(cf [7]).

Added in Proof. Professor S. Goldberg has pointed out that the
proof that D(L) = D(M) in Theorem 4 is incomplete, i.e., it must be
shown that feLp and lfeLp imply mfeLp. This follows easily
with the aid of a more general form of theorem 3(c), namely, that
inequalities of the form

l | B / l l ^ e | | m / | | + K\\f\\

obtain, where the norm is taken in Lp[0, N) for 1 ̂  N^ oo, and K
depends on e and p but not on N. These inequalities result from
modifying and sharpening the proofs of § 5.
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BOUNDS FOR DERIVATIVES IN ELLIPTIC
BOUNDARY VALUE PROBLEMS

J. H. BRAMBLE AND L. E. PAYNE

!• Introduction* In a recent paper [7], Payne and Weinberger
gave pointwise bounds for solutions of second order uniformly elliptic
partial differential equations. The bounds for the function and its
gradiant involved derivatives of the boundary data. Later [2] the
present authors gave a method for obtaining bounds in which no de-
rivatives of the boundary data appeared. Pointwise bounds for de-
rivatives were not dealt with. In [4] the authors gave a method for
bounding derivatives for Poisson's equation. The method was, however,
restricted to the Laplace operator (or the constant coefficient case) and
was not generally applicable.

In this paper we consider the operator

(1.1) Lu = (aίjufί)j

where u is a sufficiently smooth function defined in some region R (with
boundary C) of Euclidean N dimensional space. Here the notation uΛ

denotes the partial derivative of u with respect to the cartesian coordi-
nate x\ In (1.1) the summation convention is used, i.e. (aiju}i)}j =
Σ f j=i (aίju>i),j* The coefficient matrix aίj may be a function of position
and is assumed to be uniformly positive definite and bounded above»
That is there exist positive constant α0 and aλ such that

(1.2) αoΣfî c^ ^ Σ S
ί=l ί = l

for any real vector ξ = (ξl9 •••,!>). We shall give a method involving
the use of a parametrix, for obtaining bounds on any derivative of a
function u at an arbitrary interior point P of R. These bounds are
in terms of Lu and maxδ ( P ) | u | , where S(P) is a sphere containing P.
Estimates of this type for very general elliptic operators are described
by John [6], His method does not involve the parametrix and hence
the expressions which could be derived would turn out to be quite
different. Thus the problem is reduced to that of bounding max#(P) | u
in terms of quantities which are data of some boundary value problem.
We assume throughout that Lu and the coefficients aij are sufficiently
smooth so that all subsequent indicated operations are valid.

In this paper we concern ourselves only with the derivation of
appropriate a priori inequalities. The manner of applying such ine-

Received September 18, 1963. This research was supported in part by the National
Science Foundation under grant-NSF GP-3.
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qualitites to obtain bounds has been thoroughly discussed in previous
papers (see e.g. [2, 4, 7]).

II* Mean value expressions* To obtain the desired bounds we
shall first need a certain expression which is in a sense analogous to
the solid mean value theorem for harmonic function. One such ex-
pression was given in [2]; however, it is quite complicated. We derive
now a simpler expression.

Since a fundamental solution corresponding to the operator L is
not in general known we make use of a Levi function (or parametrix)
(c.f. Miranda [6]).

Let P and Q be two points in R. One possible definition of a
parametrix is

Γ(P, Q) = -(2π)->[a(Q)a(P)Γlogp , N=2
{ ' } Γ(P, Q) = 2WN-2)[(N - 2)ωIr]-1[a(Q)a(Pψ*p-{N~2) , N ̂  3

where ωN denotes the surface of the unit sphere in N dimensions,

P2 = CMQ) + aiό{P)]{xP - a$)(a£ - x*Q) ,

and a(Q) denotes the determinant of the matrix aiά(Q), the inverse of
aij(Q). If the aij are twice continuously differentiable in the neighbor-
hood of P, this function Γ has the property that

(2.2) LQΓ = O(r^^)frPQ^0

where rPQ is the distance from P to Q. An alternate form for a
parametrix is

Γ(P, Q) = (2π)-i[a(P)Γ log p

' Γ(P, Q) - [(N -

Here p2 = α<y(P)(α£ - xβixp - x3

Q). The function Γ(P, Q) is such that
if the aij are continuously differentiable in the neighborhood of P, then

(2.4) LQΓ =

Comparing (2.2) and (2.4) we see that Γ is a better approximation
to the fundamental solution than is Γ near Q = P.

Now let Sa(P) be the interior of a sphere of radius a with center
at P, and such that Sa(P) c R. We define the function fn(P, Q) as
follows (for P fixed)

ίl O = P
(a) MP.Q) = L ^

(0, rPQ ^ a

(2.5) (b) /«J(P, P) = 0, * = 1, 2, , N - 1
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(continuous derivatives up to and including those of order n — 1 at
each point of Euclidean JV-space.) One such function, for example, is
the polynomial with values

IT ρn-\a2 - pγ^d

Another possible choice is the function

} , rPQ ̂  a

which satisfies (2.5) for all n. Clearly

(2.6) Γn{P,Q)^fn{P,Q)Γ(P,Q)

also satisfies (2.2). But Γn(P, Q) has all derivatives up to and including
those of order n — 1 vanishing on rPQ — a. Using (2.1) and (2.2) we
find from Green's identity that

(2.7) u(P) = \ u(Q)LQΓn(P, Q)d VQ - \ Γn{P, Q)Lu(Q)d VQ ,

provided n Ξ> 2. This expression is analogous to (5.8) of [2]. In addition
to being simpler it possesses the advantage that the integration is taken
over spheres, rather than ellipsoids which vary from point to point.
We could as well have defined

(2.8) Γn{P,Q)=UP,Q)Γ{P,Q)

and obtained

(2.9) u(P) = \ u(Q)LQΓn(P, Q)dVQ - ( Γn(P, Q)Lu(Q)dVQ,
JSa(P) JSa(P)

with n ^ 2.

Ill* Pointwise bounds* Either (2.7) or (2.9) can be used to obtain
bounds in the Dirichlet problem. Using the Schwarz inequality we
have

(3.1) Γ f u(Q)LQΓn(P, Q)d VQ1 £ Γ ( v?r-p\d vlϊ \ rPQ(LΓnyd VQ1 .

Equation (2.9) together with (3.1) and the bounds given by Theorem
I and II of [2], yield pointwise bounds for n in terms of Lu in R and
the values of u on C.

In order to bound the first derivatives of u we can use (2.7), with
n ^ 3, to obtain
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du(P)

(3.2) dχip

n{P,Q)Lu{Q)dvΛ.
J

Hence we have

(3.3)

θu(P)
θxp

£ max \u(Q)\\
dXP

Γn(P, Q)Lu(Q)dVQ~]\

Now if a is so chosen that we can obtain a bound for maxρ6^α(P) | u(Q) \
then (3.3) provides a bound for \du(P)/dxP\. If, for example, the least
distance from P to the boundary C is r0, then we could choose a —
(l/2)r0. Thus the closure Sa(P) of Sa(P) is a compact subset of R
and hence only interior bounds for u are required. Note that we could
not replace (3.2) by a similar expression involving Γn since the integrals
on the right would not exist.

We note from (3.2) that

(3.4)
JSalP)

Thus if n ^ 4 we have the representation

(3.5)
m- = \ MQ)

dXPdx'P

- ζ — Γί Γn{P,Q)Lu{Q)dvΛ
VpdXp LjSa(P) J

since

(3.6) - u(py\LQ.

for VpQ-^0. From (3.5) we see that

d'u(P)
S max

u(Q) - u(P)
r PQ

(3.7)

Now

(3.8) max

dxldxi

u(Q) - u(P)

I,
(P,

TpQ
ι(PΊ

L ^2

Q

Q)Lu(Q)dV^

dx

Ί
(P,
Pdx

•

Q) dV0

r PQ

^ max I grad u(Q) \ .
Qesa(P)
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Clearly we can use (3.3) with a smaller value of a to bound the right
hand side of (3.8). Thus we can bound an arbitrary second derivative
of u in terms of Lu in R and the maximum of \u\ over a compact
subset of R. In order to treat an arbitrary third derivative we note
from (3.5) that

(3.9) ( (a* - x%)LQ

d2ΓjP>Q)d VQ = f \\ Γn{P, Q)Lx%d v
Jsα(P) dxPdXP dXPdxP LJsa(p)

for a, i, j = 1, , N. Combining (3.9) and (3.5) we have

MQ) _ U{P) _ {x% _ Xp)uη^9i

(8 10) - ^ ς

dXpdx'p Usa(P)

where we have summed over a from 1 to N. It follows from (8.10)
that if n ^ 5

( [u(Q) - u(P) - {x% - x%)u,x(P)]LQ

 d"r^P' Q) d F e

(P)1 κ*" Q p> ""y n Q dxdxdx Q

(3.11) - y

 t Γ( ΓTC(P

- u>«(pK <Γia , \\
θxPdxPdxP LJs«,(

The first integral on the right may be bounded as

(3.12)
I \ [u(Q) - u(P) - (x% - xP)u,a{P)]LQ

 d ^ P ' Q )

k d V,
I J«α(P) ΘXpdxlθXp

< max I u, dVn.

Now (3.11) and (3.12) can be used to reduce the problem of bounding
third derivatives to that of bounding second derivatives. It is clear
how to proceed to higher derivatives. In each of the preceding bounds
certain differentiability assumptions must be made. These conditions
become more and more stringent the more derivatives of u that we
wish to bound. Some conditions of this nature are of course required
since in general u cannot be expected to be smooth.

Thus for an arbitrary derivative at P the method described above
yields a bound in terms of Lu in R and the maximum of | u \ on a
compact subset (for example Sa(P) for some a) of R. These bounds,
together with bounds for | u \ in Sa(P) in terms of data in various
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boundary value problems, yield pointwise bounds for derivatives at
interior points in terms of the respective data. For such bounds see
[1, 2, 3, 4, 5, 7, 8].

The techniques which we have used here to bound derivatives of
solutions to boundary value problems at interior points in terms of
the operator and bounds for the solution itself, will carry over quite
naturally to higher order equations and to equations of other than
elliptic type.
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INTEGRAL INEQUALITIES FOR FUNCTIONS WITH
NONDECREASING INCREMENTS

H. D. BRUNK

1. Introduction. One of the fundamental inequalities of analysis
is Jensen's inequality,

(1.1)

for convex /, with G a probability distribution function. However, G
need not be a probability distribution function in order that (1.1) hold
for all convex / . Let X{t) be nondecreasing for a ̂  t S β. It was
shown in [1] that under mild regularity conditions on G, if G{a) = 0,
necessary and sufficient conditions for

(1.2) J/[*(«)] dG(t) ^ f(\[x(t) dG(t

for all convex / are

(1.3) G(β) = 1 ,

and

(1.4) Γ G ( u ) d X ( u ) ^ 0 , Γ [ l - G(u)] dX(%) ̂ 0 ί o v a ^ t ^ β .
Jcύ J ί

This result was applied to show that:
(i) sufficient conditions in order that (1.2) hold for convex / are

X(a) = 0,/(0) ^ 0, and 0 ̂  G(t) ^ 1 for a ̂  t ^ β; and
(ii) if / is convex on [0, b] with /(0) ^ 0, if 0 g a± ̂  ^ am ̂

b, if 0 ̂  hλ ̂  ^ hm ̂  1, then

m Γ~ m "1

(1.5) Σ (-iy-^/(α3) ^ / Σ i-iy-'hflj .
3=1 Lj=l J

The latter, (ii), was proved independently by Olkin [5]. Ciesielski [2]
obtained results (under unnecessarily stringent hypotheses) related to
(i) through change of variable, and obtained also analogous two-dimen-
sional results. These provided part of the motivation for the present
study of fe-dimensional analogues of (1.2).

In the present paper, X( ) denotes a map from the real interval
[a, β) into an interval I in fc-dimensional Euclidean space Rk such that
each component of X is nondecreasing. The function / is a map from

Received November 29, 1963. This research was supported by the United States.
Air Force Office of Scientific Research.
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Rk into the reals. The property of / critical for inequality (1.2) in
this context is that of having nondecreasing increments, rather than
convexity; for k = 1 it coincides with convexity. Functions with
nondecreasing increments are discussed briefly in § 2. In § 3, conditions
(1.3) and (1.4) are shown to be necessary and sufficient for (1.2) (k ^ 1),
and fc-dimensional analogues are given of (i) and (ii), above. Section
4 is devoted to the ^-dimensional analogue of a related theorem of
Levin and Steckin [4], giving conditions on H necessary and sufficient

f[X(t)] dH(t) ^ 0 for all/with nondecreasing increments.

2 Functions with nondecreasing increments • Let Rk denote the
ά-dimensional vector lattice of points x = (x19 , xk), x{ real for i =
1,2, , fc, with the partial ordering x — (xu , xk) ^ y = (ylf , yk)
if and only if xζ ^ y< for i — 1, 2, , fc.

DEFINITION 2.1. A real-valued function / on an interval IcRk

will be said to have nondecreasing increments if

(2.1) f(a + h)- f(a) £ f(b + h) - /(&)

whenever αe /, 6 + he I, 0 g he Rk,a ^ 6 . Even in the one-dimensional
case, k = 1, this does not imply continuity. Indeed, every solution of
Cauchy's equation, f(x + y) = f(x) + f(y), has equal increments. (Note
that if fl9 /2, •••,/* are functions of a single real variable satisfying
Cauchy's equation, then f(x) = Σ^i/ίί35*) ίs a function on Rk satisfying
Cauchy's equation.) However, our interest in this paper is solely in
continuous functions with nondecreasing increments.

It is of interest to note that such a function is convex along
positively oriented lines, i.e., lines whose direction cosines are nonnegative,
with equations of the form x = at + b where (0, , 0) ^ a e Rk, b e Rk.
If f(x) is continuous with nondecreasing increments for b ^ x 5g a + 6,
set φ(t) = f(at + 6), 0 ^ t ^ 1. In order to prove φ convex, it suffices
[3, Theorem 86, page 72] to show that [φ(r) + φ(s)]/2 ̂  φ[(r + s)/2]
for O ^ r ^ s ^ l . Set c = (s - r)/2. Then φ(s) - φ[(r + s)/2] =
φ(r + 2c) — φ(r + c) =f(ar + b + 2ca) —f(ar + b + ca) ̂ f(ar + b + ca) —
f(ar + b) = 9>(r + c) — φ(r) = φ[(r + s)/2] — ̂ (r). Thus φ is convex.

It is immediate from the definition that if the partial derivatives
/.(#) = df/dXi (xlf *• , Xjc) exist for x e /, then/ has nondecreasing incre-
ments if and only if each of these partial derivatives is nondecreasing
in each argument; in other words, if and only if the gradient, Vf =
(fi(χ)> '' f fk(%)) is nondecreasing on /. The second partials, if they
exist, are then nonnegative. If / is continuous and has nondecreasing
increments on /, it may be approximated uniformly on I by polynomials
having nondecreasing increments and therefore nonnegative second



INTEGRAL INEQUALITIES FOR FUNCTIONS 785

partial derivatives. To see this, let us set, for convenience, I =
{x:xeRk,(0, , 0) ^ a ^ (1, , 1)}. It is known that the Bernstein
polynomials

Σ Σ Σ /(iiM, iJn*, , ik/nk) Π (ψ) x)*l - XsY^

converge uniformly to / on I as ni —> co, . . . , nk —* co, if / is continuous.
Further, if / has nondecreasing increments these polynomials have
nonnegative second partial derivatives, as may be shown by repeated
application of the formula

(d/dx) Σ (f) α^(l - a)- 4 = rc Σ (" 7 X) (ai+ι - a,) x\l - a?)-1-* .

3 A line integral inequality of Jensen's type Perhaps the most
direct analogue of Jensen's inequality for / defined on an interval
IaRk would involve the integral of / over I with respect to a normed
measure. The inequality we treat here, however, deals with a line
integral over a positively oriented curve. By the term "positively
oriented curve" we understand a nondecreasing map X — (Xu , Xk)
of a real interval [a, β) into an interval Icz Rk: a ^ t' ^ t" < β implies
X(t')^X(t"), i.e., Xtf) £ Xάt") for i = 1, 2, , k. Theorem 3.1,
below, relates such a map X and a real valued function G of bounded

variation on [a, β). The integrals \ X dG and 1 GdX appearing
Jίo>,β) Jίcύ.β)

in the statement of Theorem 3.1 are related through the formula for
integration by parts: \ XdG + \ GdX = I d(XG) for every interval

/ r Jj JJ JJ )c Γ \
/ c [a, β) by \ XdG we understand the vector \ Xx dG, , I XkdG),

and similarly for \Gdx,\ d(XG)J. In order for this to hold and also

to avoid minor difficulties in the determination of G at common points
of discontinuity of X and G, we shall assume henceforth without further
reference that X is nondecreasing and continuous from the right (i.e.,
Xi is nondecreasing and continuous from the right for i = 1, , k)
and G is continuous from the left. For simplicity of notation, we
write X(β) for X(β~) and G(β) for G(β~). Some further bits of notation
will be required: the symbol [a, t} will refer to either of the left
intervals [a, t) or [a, t); and {ί, β) to either of the right intervals [t, β)
or (ί, β). Also, if a = (a19 , ak) e Rk, then a+ = (αί, , αί), where
at = max (α̂ , 0), i = 1, 2, , k. Further, we set ξt = I X{ dG, i =

S J[α>,β)
XdG.

Cα»,β)

THEOREM 3.1. IfG(a) = 0, ί/ιe^ necessary and sufficient conditions
in order that
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(3.1) ί f[X(t)]dG(t)^f\\ X(t)dG(t)]

for every continuous function f on I with nondecreasing increments
are

(3.2) G(β) = 1

and

G dX ^ 0 for every left interval [α, t} c [α, β) and

I [1 — G] dX ^ 0 for every right interval {t, β) c [a, β) .

The case k = 1 of Theorem 3.1 appears in [1]. We note that for k = 1
the class of continuous functions with nondecreasing increments is
identical with that of continuous convex functions. If k > 1, (3.2)

(3.3) do not imply (3.1) for all continuous convex / . For example, set

X(t) = (0, 2b) for 0 ^ t ^ 1/2, X(t) = (2b - 1,1) for 1/2 ^ ί ^ 2, G(0) -

0, G(2) = 1, and let G have saltus 1 at t = 0, saltus - 1 at t = 1/2, and

saltus 1 at ί = 1, being constant on each of the intervening intervals.

Set f(x) = (#! — #2)
2, where as = (xl9 x2); then / is convex, but does not

have nondecreasing increments. We have I f[X(t)]dG(t) = — 1, while

f\\ X{x)dG{t)\ = 1, so that (3.1) fails, although (3.2) and (3.3) are
LJ[0,2) J

satisfied: indeed, 0 ^ G ^ 1 (cf. Lemma 3.1).
Before proceeding to the proof of Theorem 3.1, we examine relations

among the following properties of G, for given X:

(3.4) 0 ^ G(t) ^ 1 for t e [a, β)

G dX ^ 0 for every left interval [a, t] c [a, β) , and

[1 - G] dX ^ 0 for every right interval {ί, β] c [a, β)

(3.3)

s,
(3.5)

ί[ G dX ^ [X(t+) - ξ]+ for ί e [a, β) ,
) J[«M]J[«M]

1 G dX ^ [X(t~) - ξ]+ for ί 6 [a, β)
J[α,ί)

'(

(3.6) J
'( [1 -σ\dX^[ξ- X(t-)]+ for t e [α, /8) ,

J

f

ct'β)

([1 - G] dX ^ [ | - X(ί+)]+ for t e [a, β) .
β

LEMMA 3.1. We have (3.4) =» (3.3). lZso, i/ G(α) = 0 αwd G(β) =
1, ίΛβΛ (3.3) <=» (3.5) *=> (3.6).
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Proof. That (3.4) implies (3.3) is obvious. Also, if G(a) = 0,
G(β) = 1, then

ξ = ( Xdg = X(a) + ( (1 - G) dX ,

so that

[ (1 - G) dX = g - X(α) - ( (1 - G) dX ,
J{ί,β) J[θ5,ί}

where [a, t) U {ί, /S) is a disjoint partition of [a, β); or,

f( (l-G)dX = |-X(«-)+ ( GdX,
(3.7) JJt*.β) W)

(1 - G) dX = f - X(t+) + \ GdX .
U(ί,β) J[Λ.ί]

Thus (3.3) implies that

ί GdX^X{t-)-ξ, \ GdX^X(t+)-ξ.
J[»,t) Jl»,ί]

With the first inequality in (3.3), this implies (3.5). Thus (3.3) => (3.5).
Also, it is clear from (3.7) that (3.5) and (3.6) are equivalent. Finally,
(3.5) and (3.6) clearly imply (3.3), and the proof of Lemma 3.1 is complete.

Lemma 3.2 will be used in the proof of the sufficiency of the
conditions in Theorem 3.1.

LEMMA 3.2. Under the hypotheses of Theorem 3.1, and conditions
(3.2) and (3.3),

ί F/[X(t)].d[X(t) - | ] + <£ f[X(β)] - f(ξ) .
J[Λ,β)

Proof. We observe first that X(a) ̂  f ^ X(/S). This follows from
the inequalities

0 ^ ( G(%) dX(u) = X(β) - ( X(u) dG{u) =
J[α5,β) J [ β )

and

0 ^ ( [1 - G(u)] dX(u) = -
J[β»,β)

Since X is nondecreasing, there is, for i = 1, 2, , fc, a unique smallest
real number r< such that Xi(τ,~) ^ & ̂  X»(^ί"). Suppose rx ̂  τ2 ̂
• ^ τk; the proof is similar for other orderings. We have
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\ Ff[X(t)] d[X(t) -

&) + ί Σ

(
Jttiitj)

+ ••• +
"Since /«(«) = /<(«!, , **) is nondecreasing in each argument, i
1, 2, , A;, we have, for 1 ^ i < j ^ &, and for T ^ ^ ί < τs,

I t follows that

^ t 2/«[-XΊ(*), ,
J[tj_1,τj) t=l

^ ί ) , •• , X 3 - 1 ( t ) , ξJt" >,ξk]

τ7),. fX ί_1(τ7),f J f ...,|J

(rr.!), , Xi-fa-d, ξ3; , |J, i = 2, , k

Therefore

[ Ff[X(t)] d[X(t) - f]+ ^
β)

i 2

This completes the proof of Lemma 3.2.

Proof of Theorem 3.1; necessity. Equation (3.2) follows from (3.1)
with / = 1 and / ΞΞ - 1 . For 1 ^ i ^ k, and a ^ t < β, set /(a?) =
f(xl9 , xk) = [^ - Xi(ί-)]+. For this function /, (3.1) yields
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f [XM - X{(t-)]+ dG(u) Ξg [f« - *,(*")]+ .

But

ί [Xiiu) - Xi(t~)]+ dG(u) = ( [X. fa) - Xi(t-)] dG(u)
Jl<χ,β) Jίt,β)

( [

> so that

( [1 - G(μ)] dX^u) S [& - Xάt-ψ , i = 1, 2, , fc ,

j verifying the first part of (3.6). The verification of the second part
is similar. With Lemma 3.1, this completes the proof of the necessity
of (3.2) and (3.3).

Sufficiency. Set Q(t) - (Q1(t)9 , Qk{t)) - j ^ G(u) dX(u) for a ^
t<β. Then by (3.5) we have Q(^) ̂  [ X ^ ) -*§]+ for α ^ t < /3.
Since / can be approximated uniformly in / by polynomials with
nondecreasing increments, there is no loss in generality in assuming that
the partial derivatives /<(&), i = 1, 2, , k, exist and are nondecreasing
in each argument. We then have, for i = 1, 2, •••,&,

ί

- \
J

since

Q08) - [X(β) - I] - [XC8) -

by (3.7). Therefore

/[*(*)] dG(t) = f[X(β)] - ( G(t) Pf[X(t)] dX(t)
,β) hc*>β~))

= F[X(β)] - \ Ff[X(t)] dQ(t)

^ f[X(β)] ~ \ Ff[X(t)]-d[X(t) - ξ]+ ^ f(ξ)

ΐ y Lemma 3.2. This completes the proof of the theorem.
In each of the following corollaries, Corollary 3.1 and Corollary

3.2, it is assumed that X is a nondecreasing map, continuous from the
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right, from [a, β) into a fc-dimensional interval / containing the origin
0 = (0, •••, 0); that / is a continuous function from I into the reals,
which has nondecreasing increments; that G is a real-valued function of
bounded variation on [a, β), continuous from the left, and that G(β) = 1.

COROLLARY 8.1. If X(a) = o = (0, , 0), ΐ/ /(0) ̂  0, if G(a) ^

0, and if (3.3) holds, then

(3.1) ( f[X(t)]dG(t)^f\\ X(t)dG(t)].
JΓα.β) LJ[«,/3) J

The case k = 1 of this corollary appears in [1].

Proof. Set G&) = G(t) for t > a, Gλ(a) = 0. Then by Theorem 8.1,

( f[X(t)] dG.it) ̂  f\ \ X(t) dGAt)] .

But

( Xit) dG1(t) = ( X(t) dG(t)
Jla,β) Jίoύ,β)

since X(a) = 0. Also

f[X(t)] dG.it) = f(0)G(a) + ί f[X(t)] dG(t) ,
φ) J[05,β)

and (3.1) follows.

COROLLARY 3.2. // either
( i ) G(a) = 0 or
(ii) X(a) ̂  0,/(0) ^ 0, and if
(ii i) 0 ̂  G(t) g 1 for a^t < β ,
then

(3.1) ί f[X(t)]dG(t)^fϊ\ X(t)dG(t)\.

Proof. By Lemma 3.1, (iii) implies (3.3) so that under hypotheses
(i) and (iii), (3.1) is immediate from Theorem 3.1. If (ii) and (iii) hold,
choose a* < a, set X*(a*) = 0, X*(t) = X(t) for a ^ t < β, and let
X* be linear for α* ̂  ί ^ α. Set G*(a*) = 0, G*(t) = G{a) for α* ̂
ί ^ α, G*(ί) = G(t) for α ̂  t < β. Then G*(/3) = 1, G*(a*) = 0, and
0 ^ G* ̂  1. From Lemma 3.1 and Theorem 3.1 it follows that

( f[X*(t)] dG(t) ̂  f\\ X*(t)dG*(t)\ .

But
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[ X*(t) dG*(t) = \ X(t) dG{t),

and

f f[X*(t)] dG*(t) = fWHμ) + \ f[X(t)] dCKt) ,
J[«*.β) J[α,β)

Since /(0) ^ 0 and G(α) ̂  0, conclusion (3.1) follows.

REMARKS ON COROLLARY 3.2. The case k = 1 of Corollary 3.2
appears in [1] with the hypothesis X(α) = 0. With a change of variable
in Corollary 3.2 we obtain the following theorem.

Let Y be a nonincreasing map, continuous from the left, from
<0,1] into I<zRk, with Y(l) ̂  0. Let Hbe continuous from the right
and of bounded variation on (0, 1], and suppose H(0) — 0, H(t) ^ 0 on
(0,1], I I dH(t) I > 0. If f is continuous with nondecreasing incre-

J (0,1]

ments on I, and if /(0) gL 0, then

\ f{Y)dHl\ \dH\^f(\ YdHl\ \dH\).
J(0,l] / J(0,l] \J(0,l] / J (0,1] /

It suffices to set X{t) = Y(l - t), G(t) = 1 - Γ#(l - t)l[ dH(t)l on
L / J(0,l] J

[0,1) in Corollary 3.2. Cases k = 1 and k = 2 of this latter theorem,
for discrete and for continuous H, appear in [2], with additional
hypotheses: for k = 1, that / ' is convex; and for k = 2, that the first
partial derivatives are convex along positively oriented lines.

Ciesielski points out (in the two-dimensional case) that setting
f(xlf x2) — xxx2 yields a generalization of an inequality of Chebyshev
[3, page 43]: if Ylf Y2 are nonincreasing, nonnegative and continuous
from the left on (0,1], if H is continuous from the right and of
bounded variation on (0,1], and if H(0) = 0, H(t) ̂  0 on (0,1], then

\ Y.Y.dHl \dH\^\ Y^Hl Y2dH.
J (0,1] J (0,1] J (0,11 J (0,1]

COROLLARY 3.3. Let f be a continuous map from a k-dimensional
interval I containing the origin into the reals, with nondecreasing
increments, such that /(0) ^ 0. Let m be a positive integer, and
let 1 :> hx ̂  h3 ̂  ^ hm ^ 0. Let a^ e I, j = 1, 2, , m, with
(1, , 1) > a, ̂  a2 ̂  ^ am ^ (0, . . , 0). Then

<3.8) Σ (-ly^Σ

For inequality (3.1) becomes (3.8) if a = 0, β = 1, if G has saltus
{-ly-fy. at 1 - i/m, (j = 1, 2, ., m) with <?(!)•= 1, and if X(l-j/m) =
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djU = 1,2, - . . , m ) .

The one-dimensional case appears in [1], and was proved independently
by Olkin [5]. For references to earlier special cases by Szegii,.
Weinberger, and Bellman, cf. [5].

4 An inequality of Levin and Steckin

THEOREM 4.1. Let I denote an interval in Rk; let X be a
nondecreasing map from \a, β) into I, continuous from the right*
Let H be continuous from the left and of bounded variation on [a, β),
with H{a) = 0. Then,

(4.1) ( f[X(t)]dH(t)^0
Jl>,β)

for every continuous function f from I into R with nondecreasing
increments, if and only if

(4.2) H(β) - 0 ,

(4.3) ( H(u) dX(u) - 0 ,
h<*>β)

and

(4.4) ( H(u) dX(u) ^ 0 for [a, t] c [a, β) .
Jl<*,t]

Proof of necessity. The validity of (4.1) for/ = 1 and for/ = —1

implies (4.2). Further, (4.1) for f(x) = xh where x = (x19 , xk), and

for f(x) = -Xj (j = 1, 2, , k), implies \ Xj(u) dH(u) = 0, j =

S J[Λ.β)
H(u) dX(u) = 0, which is (4.3).

[Cύ,β)

Inequality (4.4) results from (4.1) after integration by parts, on setting,,
for fixed j ( i = 1, 2, , k) and fixed t,a^t< βff(x) - [XAt+) - ^ ] +

or

Proof of sufficiency. Since, as remarked in § 2, / may be approx-
imated uniformly on I by functions with continuous nonnegative second
partial derivatives, we may assume that the second partials fiS exist
and are continuous and nonnegative. We then have

f[X(t)] dH(t) -= - \ H(t) Ff[X(t)] dX(t)

= - Σ Ϊ fAX(t)]H(t)dX3(t)
j=i J[»,β)

= Σ Σ ( Mm) dxm \ H(u) dxtu),
i = l i=l Jlcόφ) J[0,ί)
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by (4.2) and (4.3). But by (4.4) each term in the last sum is nonnegative,.
so that (4.1) is verified.

The one-dimensional (k = 1) version of Theorem 4.1 appears as.
Theorem D.I in [4], and indeed the proof of Theorem 4.1 is the natural
extension of the proof given in [4].

Sufficiency in the one-dimensional (k = 1) version of Theorem 3.1
was proved in [1] as a consequence of Theorem 249 in [3]; it is exhibited
below for continuous X as a consequence also of Levin and Steckin's
Theorem D.I (Theorem 4.1 above, with k = 1). Choose τ so that
X(τ) = f = ( X(t) dG(t). Set H(t) = G(ί) for a ^ t < τ, H(t) = G(t) - L
for τ ^ t < β.'β) Then H(a) - 0, H(β) = 0. Also

H(u) dX(u) = G(u) dX(u) - dX(u)
)ίa,β) J[α>,/3) hτφ)

= X(β) - ξ _ [X(β) _ χ(τ)] = o

and

ί f fl"(w) dX(u) = \ ^ G(u) dX(u) ^ ]0

if a S t < τ, while

H(u) dX(u) = \ G{u) dX(u) — 1 dX(u)
,t} J[o5,ί} J[r,ί}= ί

JO,*}

for τ ^ ί < β. From (4.1) it then follows that

ί f[X(t)] dH(t) = [ /[X(t)] Λ?(t) - f(ξ) ^ 0 ,

which is (3.1).
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A RESULT CONCERNING INTEGRAL BINARY
QUADRATIC FORMS

WILLIAM EDWARD CHRISTILLES

This paper contains an extension of an earlier work by Dickson
([1], p. 95), in which the following theorem was proven:

THEOREM 1. (Dickson's Theorem). If a number is represented
properly by a form [α, ί>, c] of discriminant D = 4αc — b2, then any
divisor of that number is represented by some form of the same
discriminant D.

DEFINITION. ([1], p. 68). A positive form [α, b, c] is called reduced
if — a < b ^ α, c ^ α, with b ̂  0 if c = α.

As a consequence of the above definition it follows that 4α2 ̂  4αc —
D + b2 ̂  D + a\ 3α2 ̂  A and finally a ^ α/(l/3) D

THEOREM 2. Lei ikf be properly represented by the integral positve
definite quadratic form aa2 + bay + cy2 of discriminant D = 4αc — δ2.
IfMS 3D/16 α îcί (D, M) = 1, ίfee^ m ê  eri/ factorization of M one
of the factors is ai9 one of the minimal values of a primitive quadratic
form of discriminant D. In other words, M = MXM2 where Mx is a
unit or a prime and M2 is the product of no more than two a{.

Proof. According to the remark following the definition α4 S
where equality for a primitive reduced form is possible only if ai —
b{ = d = l and hence D = 3 so that the inequality 0 < M ^ 3D/16
cannot be satisfied. Thus a{ < T/.D/3.

Now assume M = rτr2. Then according to Theorm 1 it follows that

rλ = a{a\ + 6^7* + ca\ , r2 = aόa) + 6 iα i7 J + cfΐ)

where the two quadratic forms are primitive reduced forms of discriminant
D. Hence

(4α<r1) (4α,ra) - [(2aiai + 6,7,)2 + Dy2] [(2ajai + δ ^ )2 + Dy2]

- {β\ + Dy2)(β2 + Dy2) = lβa^M

< 16(Dβ)M ^ (16D/3) (3U/16) = J92 ,

where βt = (2αία:i + 6^) and /3, = (2αjα:i + bfί5). This implies that
"Iff3 — 0, say 7« = 0, and therefore rx = a{.

To prove the final statement of the theorem, assume M Φ ai and

Received November 21, 1963. The author is indebted to the referee for the suggested
revision of both the statement and the proof of Theorem 2.
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let r2 be a minimal factor of M so that r2 Φ aά. If Mx is any prime
factor of r2, then M = MXM2 where M2 = (M/r2) (r2/M1) = α ^ .
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REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS
OF ALGEBRAIC SYSTEMS

PETER CRA.WLEY AND BJARNI JONSSON

Introduction. An operator group with a principal series can
obviously be written as a direct product of finitely many directly
indecomposable admissible subgroups, and the classical Wedderburn-
Remak-Krull-Schmidt Theorem asserts that this representation i&
unique up to isomorphism. Numerous generalizations of this theorem
are known in the literature.1 Thus it follows from results in Baer
[1, 2] that if the admissible center of an operator group G satisfies-
the minimal and the local maximal conditions, then any two direct
decompositions of G (with arbitrarily many factors) have isomorphic
refinements. In a different direction, it is shown in Crawley [4] that
if an operator group G has a direct decomposition each factor of which
has a principal series, then any two direct decompositions of G have-
isomorphic refinements.

The results of this paper yield sufficient conditions for a group-
(with or without operators) to have the isomorphic refinement property*
For operator groups a common generalization of the theorems mentioned
above is obtained: If an operator group G has a direct decomposition
such that the admissible center of each factor satisfies the minimal
and local maximal conditions, then any two direct decompositions of
G have centrally isomorphic refinements. For groups without operators
we obtain the following result which eliminates any assumption of
chain conditions: If a group G (without operators) has a direct de-
composition such that the center of each factor is countable and the
reduced part of the center of each factor is a torsion group with
primary components of bounded order, then any two direct decom-
positions of G have centrally isomorphic refinements.

Actually our results hold for a much wider class of algebraic
structures, namely for algebras in the sense of Jonsson-Tarski [6], and
it is in this more general framework that the theory is developed*
The terminology from general algebra used in this preliminary discussioa
will be explained in §1.

Our techniques are based on an exchange property defined as*
follows: An algebra B is said to have the exchange property if, for

Received August 27, 1963. This work was supported in part by NSF Grants G-17957
and G-19673. A summary of the results presented here has appeared in Bull. Amer.
Math. Soc 69 (1963), 541-547.

1 For a fairly complete list of references see Baer [1, 2] or Specht [8], p. 449.
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any algebras A, C and A (i e /), the condition

A = δ x C = Π A
iei

implies that there exist subalgebras Έ{ ̂ D{(ie I) such that

A = B x Π Eι .
iei

The principal result relating this notion to the isomorphic refinement
problem is Theorem 7.1, which asserts that if an algebra A is a direct
product of subalgebras each of which has the exchange property and
has a countable generated center, then any two direct decompositions
of A have centrally isomorphic refinements. Two related results are
obtained where no cardinality conditions are imposed on the centers,
but the decompositions involved are of a more special nature. First
(4.2), if A = Bo x BL x B2 x = Co x Cx x C2 , with countably
many factors, and if all the subalgebras B{ and Cj have the exchange
property, then these two direct decompositions have centrally isomorphic
refinements. Second (5.3), if A is a direct product of subalgebras each
having the exchange property, then any two direct decompositions of
A into indecomposable factors are centrally isomorphic.

In §§8-11 sufficient conditions are given in order for an algebra
B to have the exchange property. In § 8 it is shown that if the center
Bc of B has the exchange property, then so does B. There it is also
shown that in proving the exchange property for an algebra B we may
assume that the factors D{ are isomorphic to subalgebras of B. In § 9
we prove that if Bc satisfies the minimal and local maximal conditions,
then B has the exchange property and Bc is countably generated.
Sections 10 and 11 are devoted to the study of binary algebras (algebras
with just one operation, the binary operation +) . The main result
here (11.5) asserts that if the reduced part of the abelian group Bc is
a torsion group all of whose primary components are torsion-complete,
then B has the exchange property. In the twelfth and final section
some counterexamples and open problems are discussed.

l Fundamental concepts* Our terminology is largely the same
as that in Jόnsson-Tarski [6], and it will therefore be described very
briefly. By an algebra we shall mean a system consisting of a set A,
a binary operation + called addition, a distinguished element 0 called
the zero element of the algebra, and operations Ft(teT) each of which
is of some finite2 rank p(t), subject only to the following conditions:

2 In Jόnsson-Tarski [6] the operations are not required to be of finite rank. The
main reason for this restriction is that it insures that the center of an algebra is a central
subalgebra.
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( i) A is closed under the operation + and the operations Ft (t e T);
(ii) for all x eA, x + 0 = 0 + x = x;
(iii) Ft(0, 0, , 0) = 0 for all t e T.

The set T and the function p are assumed to be the same for all the
algebras under consideration. We shall identify the algebras with the
sets of all their elements, and shall in general use the same symbols,
+ , Ft and 0, to denote the operations and the zero elements of all the
algebras. If no auxiliary operations Ft are present, i.e. if T— 0 ,
then we refer to A as a binary algebra.

An obvious example of an algebra is an operator group, i.e. an
algebra for which addition is associative, each element has an additive
inverse, and each Ft (t e T) is a unary operation which distributes with
respect to + . Similarly, an ordinary group without operators is a
binary algebra.

If A is an algebra, then the sum of finitely many elements
#o> χι> '' •> χk, e A is defined recursively by

Σ χk = 0 Σ a* = Σ «* + &• (n = 0,1, •).
k<0 k<n+ί k<n

It is convenient to define also the (un-ordered) sum of certain special
systems of elements x{eA(ieI). This sum is defined if and only if
there exist finitely many distinct elements i09 i19 , in-x e I such that
Xι — 0 whenever i e I — {i0, ilf , in^} and such that

Σ Xk = 2-i Xiφ{k)
k<n k<n ΨK '

for every permutation φ of the integers 0,1, , n — 1. Under these
conditions we let

Σ__ ^i — 2-1 'bik
iβl k<n

For brevity, a system of elements Xι e A (ί e I) will be said to be finitely
nonzero if there are only finitely.many indices ie I such that x{ Φ 0.

The notions of subalgebra, homomorphism, isomorphism, and con-
gruence relation are assumed to be known. If θ is a congruence
relation over an algebra A, then for x e A we let x/θ be the congruence
class to which x belongs, and for l £ i we let X/θ = {x/θ \x e X}.
In particular, A/θ is the quotient algebra of A modulo θ. Observe
also that if B is a subalgebra of A, then B/θ is a subalgebra of A/θ.
It should be noted that if θ' is the restriction of θ to B, then B/θ
and B/θ' are in general distinct algebras although they are isomorphic.

A subalgebra B of an algebra A is called a subtractive subalgebra
of A if it satisfies the following condition: If a e A and b e B, and if
either a + beB or b + aeB, then aeB.

By a central subalgebra of A we mean a subalgebra C of A
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satisfying the following conditions:

( i ) for each ceC there exists ceC such t h a t c + c = 0;

(ii) if c e C and x,yeA, then x + (y + c) = (x + c)+y =
(iii) if ceC,teT,k < p(ί), and α?0, α?lf , α?p(t)-i e A, then

——. TP (iγ Ύ '7* / y » / y » • • • / ¥ * \

— r t\X0, Xlf , Xfc-u Xk, Xk+i, ' * Ί %p(t)-i)

+ Ft(0, 0, -- ,0,c,0, ---,0) .

fcth

It is easy to see that the family of all central subalgebras of an algebra
A is a complete sublattice of the lattice of all subalgebras of A. In
particular, the union of all the central subalgebras of A is a central
subalgebra of A. This largest central subalgebra of A is called the
venter of A, and is denoted by Ac. It is clear that if A is an operator
group, then Ac is the usual group-theoretic admissible center of A.3

For a binary algebra A we can alternatively define the center of A
as the set of all those elements of A that have an additive inverse
and that commute and associate with all the elements of A. If an
algebra A is such that Ac = A, then we say that A is abelian.

Given two subalgebras B and C of an algebra A, a function / is
called a central isomorphism of B onto C,—in symbols f:B~c C,—if
/ is an isomorphism of B onto C and for each xeB there exists ceAc

such that/O) = x + c. We say that B and C are centrally isomorphic,
—in symbols B ~c C,—if there exists a central isomorphism of B
onto C.

By the outer direct product4 of a system of algebras A< (i e I),—
in symbols

Π A<,

—we mean the algebra consisting of all functions x such that the
domain of x is /, x(i) e A{ for all i e I, and x(i) = 0 for all but finitely
many ie I. The operations in this algebra are defined componentwise,

and

Ft(xOf xu , xp{t)-i)(i) = Ft(x0(i), xx(i), , xP(ί)

and its zero element is the function that associates with each index

3 C.f., Specht [8], p. 118; here it is called the β-center.
4 Sometimes the outer direct products are referred to as weak outer direct products,

and the Cartesian products (which are used only incidentally in this paper) are called
strong outer direct products. In other cases, especially in the theory of abelian groups,
outer direct products are called direct sums and Cartesian products are called direct
products.
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the zero element of the corresponding algebra A{.
The concept of an algebra is designed to make it possible to

introduce the notion of an inner direct product of subalgebras of an
algebra A, and to reduce the study of (isomorphic) representations of
subalgebras B of A as outer direct products to considerations involving
this new concept. Since the notions of outer and inner direct products
are often confused in the literature, and in other cases the connection
between the two concepts is not clearly stated, it is perhaps worthwhile
to formulate this relationship in some detail. The basic idea is, of
course, that given a representation

f f [ i 9
ίei

we can associate with each index i e / a subalgebra Bt of B that is
isomorphic to C{. By definition, this subalgebra consists of all those
elements xeB such that f(x)(j) = 0 for all j el — {i}. If a system
of subalgebras B{(i el) of B corresponds in this manner to a represen-
tation of B as an outer direct product, then we say that B is an inner
direct product of the subalgebras jB<(i el). To complete the transition
from outer direct products to inner direct products we must find out
to what extent the subalgebras determine the representation, and we
must formulate intrinsic necessary and sufficient conditions for B to
be an inner direct product of a given system of subalgebras.

The solution of the first problem is easy: two representations,

/: B ~ C = Π C< and / ' : B ~ C" - Π C[
iei iei

yield the same system of subalgebras B{ (i e I) if and only if there
exist isomorphisms g{\ d = C , for all iei, such that / ' = gf where
the isomorphism g: C = C is induced by the isomorphisms g{ (i e I) in
t h e s e n s e t h a t g(x)(i) = gί(x(i)) f o r a l l xeC a n d iei.

Regarding the second problem, we first observe that B is an inner
direct product of subalgebras B{(iel) oί A if and only if, for every
element x of the algebra

B = flB,
iei

the sum Σ ej #(Ό exists, and the mapping x —* Σuez #(Ό is &n iso-
morphism of B onto B.

Consider now a system of subalgebras B{ (i e I) of A, and define B
as above. In order for the indicated map to be everywhere defined
and to be an isomorphism of B into A it is obviously necessary and
ŝufficient that the following four conditions be satisfied:
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( I ) For any finitely nonzero system of elements a{ eBi(ieI), the sum
^Σiiei ai exists.

(II) For any two finitely nonzero systems of elements α;, 6; e B{ (iei),
if Σiiei <*>i = Σaei K then di = bi for all iei.

(III) For any two finitely nonzero systems of elements aif bi eBi(ίe I),

iei iei iei

(IV) For any teT, and for any finitely nonzero systems of elements
akyi e B{ (i e I), k - 0,1, . , p(t) - 1,

a0,i, ' *> Σ 0p(ί)-l,i) — Σ ^i(^o,i, *, αP(t)-l,i)
i iei / iei

Consequently, in order that there exists a subalgebra B of A such that
B is an inner direct product of the algebras Bi (iei), it is necessary
and sufficient that (I)-(IV) hold. Furthermore, if such an algebra B
exists, then it is unique and can be characterized by either one of the
following conditions:

(V) B is the set of all elements be A such that b = Σ*e/ a% ί ° r some
finitely nonzero system of elements a{ eBi(ieI).

(V) B is the subalgebra of A generated by the union of all the
algebras B{(iei).

The conditions (I)-(V) or (I)-(IV) and (V;) are often taken as the
definition of the phrase "the subalgebra B of A is the inner direct
product of the subalgebra B{ (i e I) of A."

Since we shall henceforth be concerned exclusively with inner
direct products we will refer to these simply as direct products. The
direct product of a system of subalgebras Bi (i e I) of an algebra Λ
will be denoted by

TίBi9
iei

and the direct product of finitely many subalgebras Bo, Bu , Bn^x

will also be written

Box B1x x £„_! .

In the finite case our notion obviously coincides with the direct product
in Jόiisson-Tarski [6], where this notion is defined recursively in terms
of the binary operation x .

A subalgebra C of an algebra B is called a factor of B if B = C x D
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for some algebra D. B is said to be indecomposable if it has at least
two elements and the only factors of B are B and {0}. By a direct
decomposition or, briefly, a decomposition of B we mean a represen-
tation of B as a direct product of subalgebras. The direct decompositions,
of B,

are said to be (centrally) isomorphic if there exists a one-to-one
mapping / of I onto J such that, for each iei, d and D / ( i ) are
(centrally) isomorphic. Finally, the second decomposition is said to be
a refinement of the first if for each je J there exists iei such that

2. Elementary properties of direct products. In this section several
simple properties of direct products are listed. Since many of these
results are already known from the literature (c.f. Jόnsson-Tarski [6]),
and the derivations of the remaining ones offer no difficulty, all proofs-
will be omitted.

We assume throughout this section that A is an algebra.

LEMMA 2.1. // B and C are subalgebras of A such that B x C
exists, then for all b,b' eB and ceC,

b + c = c + b and (b + 6') + c = b + (V + e) = (6 + c) + 6' .

LEMMA 2.2. Every factor of A is a subtractive subalgebra of A..

LEMMA 2.3. (The modular law) Suppose B and C are sub-
algebras of A such that B x C exists, and suppose D is a subtractive
subalgebra of A. If BQD, then (B x C) Π D = B x (C Π D). In-
particular, if B^D^B x C, then D - B x (C Π D).

LEMMA 2.4. If, for each iei, B{ and B[ are subalgebras of A
such that B'iSBif and if the direct product

exists, then

( i) the direct product

B' - Π B\
iei

exists and is a subalgebra of B.
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(ii) Bf = B if and only if B\ = B{ for all iel.

(iii) Bf is a subtractive subalgebra of B if and only if, for each
iel, B\ is a subtractive subalgebra of B{.

<iv) Bf is a central subalgebra of A if and only if, for each iel,
B\ is a central subalgebra of B{.

LEMMA 2.5. Suppose B{ (i e I) are subalgebras of A. Then

iei

if and only if there exist homomorphisms /4 of A onto Bu for all
•i e I, such that for each aeA

a = Σ/i( α ) 9 and fifj(a) — 0 whenever i, jel and i Φ j .
ίίei

These homomorphisms fi9 if they exist, are unique and have the
^property that fji — fi for all iel.

DEFINITION 2.6. Assuming that

the homomorphisms fi characterized by the conditions in Lemma 2.5
are called the projections of A onto the algebras B{ induced by the
given decomposition of A.

LEMMA 2.7. Suppose Bi (i e I) are subalgebras of A. Then the
direct product

exists if and only if for each finite subset J of I the direct product

exists.

LEMMA 2.8. Suppose that Bi (i e I) are subalgebras of A, that
I~ UkeκJk9 and that the sets Jk{keK) are pairwise disjoint. If
either the direct product

B=UBi
iei

exists, or if the direct products

Ck= Π BiikeK) and B' = Π Ck
iej keε

exists, then all these direct products exist, and B = B\
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LEMMA 2.9. Given two direct decompositions of A,

A — J[ B{ and A = Y[ Cj ,

the second decomposition of A is a refinement of the first if and
only if for each iei there exists a subset Ji of J such that

JLJi JLĴ  \J j

LEMMA 2.10. If B^iel) are subalgebras of A, if the direct
product

iei

exists, and if J and K are subsets of I, then

iej J \ieκ J

LEMMA 2.11. Suppose Bi(iel) are subalgebras of A, and for
each ie I let Bi be the subalgebra of A that is generated by the union
of all the algebras Bό with j el and ί Φ j . Then the direct product

exists if and only if B{ x B{ exists for all iei.

LEMMA 2.12. If C is a central subalgebra of Ay then for all

a, α/ G A and ceC,

a + c = c + a , and a + c = af + c implies a = a1 .

LEMMA 2.13. If C is a central subalgebra of A, then C is a
subtractive subalgebra of A, and C is an abelian group under the
operation + .

LEMMA 2.14. If B is a subtractive subalgebra of A, and if C is
a central subalgebra of A, then

( i ) B n C is a central subalgebra of A.

(ii) B x C exists if and only if B f) C = {0}.

LEMMA 2.15. Suppose Co, Cl9 •••, Cw_i are central subalgebras of
A, and for k = 1,2, , n — 1 let Ck be the subalgebra of A that is
generated by the union of the algebras Co, CΊ, , C -̂i- Then the
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direct product

τιck
k<n

exists if and only if Ck Γ) Ck = {0} for k — 1, 2, , n — 1.

LEMMA 2.16. / /

Ά. — yy ίS^ ,

then

Ac = ]JBί.
iei

LEMMA 2.17. Suppose

A^JlB^nCj,

and for i e i and je J let / έ and g^ be the projections of A onto Bi
and onto C3- that are induced by these two decompositions. If i, if β Ir

j eJ9 and i Φ i', then fig3fi, maps A into the center of B{.

LEMMA 2.18. If

then

BC x c = Π ((Bc x C)n A).iex

LEMMA 2.19. / / B, C and D are subalgebras of A such that
B x C exists, then the conditions

B x C = B x D and Bc x C = Bc x D

are equivalent.

LEMMA 2.20. Suppose A~BxC = BxD, and let f and g be
the projections of A onto C and onto D induced by these two decom-
positions. Then the restriction gf of g to C is a central isomorphism
of C onto D, and the inverse of gr is equal to the restriction of f
to D.

3. Exchange properties. The central concept of this paper, the
exchange property, was mentioned in the introduction. We now formu-
late this notion more precisely.
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DEFINITION 3.1. Given a cardinal m, an algebra B is said to
have the m-exchange property if for any algebra A containing B as
a subalgebra, and for any subalgebras C and Ό{ (i e I) of A, where
the cardinal of I does not exceed m, the condition

implies that there exist subalgebras E{ £ Z^ (i e I) such that

A = B xUEi .
iei

We say that B has the exchange property if it has the m-exchange
property for every cardinal m. We say that B has the finite ex-
change property if it has the m-exchange property for every finite
cardinal m.

It would be of some interest to know whether, for two given
cardinals m and n with 1 < m < n, the m-exchange property implies
the ^-exchange property. It will be shown later in this section that
this is the case whenever n is finite, whence it follows that the 2-ex-
change property implies the finite exchange property. In all other
cases the answer is unknown. However, since every algebra that is
known to have the 2-exchange property is also known to have the
exchange property, this question is not crucial at the present.

This section will be devoted to a series of lemmas involving or
relating to the exchange properties that will be used in the subsequent
sections

DEFINITION 3.2. A congruence relation Θ over an algebra A is
said to be consistent with a decomposition

of A if, for all x,yeA and iei,

xθy implies f

where f{ is the projection of A onto Bt induced by the given de-
composition.

If A is a group, then the congruence relation θ that corresponds
to a normal subgroup N of A is consistent with the above decomposition
of A if and only if
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For an arbitrary algebra A, a congruence relation Θ over A is easily
seen to be consistent with a given decomposition of A if and only if
θ is generated (in an obvious sense that need not be made more precise
here) by its restrictions to the factors in the decomposition.

LEMMA 3.3. Suppose the congruence relation θ over the algebra
A is consistent with the decomposition

of A. Then

A/θ = Π (BJΘ) .
%ei

More generally, for any system of subalgebras J5 £Ξ B{ (ie I),

Π Bi) θ - Π (B'JΘ) .
iei / / iei

Proof. For each i e I let f{ be the projection of A onto Bi induced
by the given decomposition of A. The consistency of θ is equivalent
to the assertion that for each iei there exists a map gι of A/θ onto
BJΘ such that g^x/θ) = fi(x)fθ for all xeA. It is obvious that g{ is-
a homomorphism. For each x e A,

and therefore

Φ - Σ (A(χ)/θ) = Σ 9i(Φ)
i iiei

Finally, if i and j are distinct members of /, then for all x e Ar

g^jix/β) = fifj(x)/θ = 0/0. Hence the first part of the conclusion
follows by 2.5. The second part of conclusion follows from the first
part together with the observation that the algebra

Π Bl
iei

consists of all elements

( Σ ) / Σ ( ^ ) ,
\iei / / iei

associated with finitely non-zero systems ^ e 5 t

: ( ie/) .

LEMMA 3.4. Suppose the congruence relation θ over the algebra.
A is consistent with the decompositions
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A = BxC=t[Di
iei

of A, and suppose the restriction of θ to B is the identity relation*
If, for each iei, Et is a subalgebra of DJΘ, and if

A/θ = B/θ xJlEi,

then there exist subalgebras E{ ^D{(ie I) such that E{ = EJΘ for all
iei and

iei

Proof. For each i e I let ft be the projection of A onto Dt induced
by the second of the two given decompositions of A. Letting

(1) A' = Bc x C ,

we infer from 2.18 that

( 2) A' - Π Dl where D[ = A! n D,(ie I) .
iei

Obviously (B/Θ)c = Bc/Θ, since the restriction of θ to B is the identity
relation. It therefore follows by (1), (2), 3.3 and 2.19 that

(3) A'/θ = BG/Θ x C/θ = Π (Dl/Θ) = (BG/Θ) xΐlEi.
iei iei

Next observe that

(4) Dl/Θ - (A'/θ) Π (DJΘ) .

To prove this we use the fact that

A/θ = (B/θ) x (C/θ) = U(DJΘ)

and that

A'/θ = (Be/Θ) x (C/θ) ,

and we infer by 2.18 that

(5) A'/θ = Π ((A'/θ) Π (DJΘ)) .
iei

Since in (4) the left hand side is obviously included in the right hand
side, the equality follows from (3) and (5) with the aid of 2.4 (ii).

It follows from (3) and (4), together with the hypothesis E{ S DJΘf

that

( 6 ) EiS Dl/Θ .
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Letting

E, = {x I x e A' and α/0 e .£?<} ,

we see that E{ is a subalgebra of Dl, and we infer from (6) that

<7) E^

From the fact that Dl is a subtractive subalgebra of A! and that JŜ
is a subtractive subalgebra of A'jθ it readily follows that E{ is a sub-
tractive subalgebra of A'. Consequently,

is also a subtractive subalgebra of A!. Furthermore, if beBc ft E,
then

b/θ e (Bc/Θ) n (E/θ) = {0/0} ,

and therefore 6 = 0. Thus Bc f) E = {0}, and we infer by 2.14 (ii) that
the direct product Bc x E exists, and is a subalgebra of Ar.

To complete the proof it suffices to show that Dr

k^BG x E for
every kel. Consider an element xeD!

k. By (3) and (7) there exist
an element be Bc and a finitely nonzero system of elements e{ e Eι
such that

xθb + Σ β<

'There exists an element beBG such that 6 + 6 = 0. Hence

6 + α?0 Σ e«

^Consequently /Λ(6) + xθek and /^δ) = /<(& + x)θei whenever k Φ iel.
Inasmuch as

iei

we infer that fk(b) + x eEk and that f^b) eEt whenever k Φ iel.
Thus

and hence

as was to be shown.

LEMMA 3.5. If B is a factor of an algebra A, then there exists
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a unique congruence relation Θ over A with the property that if C
is any subalgebra of A with A = B x C, and if g is the projection
of A onto C induced by this decomposition, then for all x,yeA the
•conditions xθy and g(x) = g{y) are equivalent.

Proof. Since the projection g of A onto C induced by the de-
composition A — B x C is a homomorphism of A onto C, the condition

xθy if and only if g(x) — g(y)

defines a congruence relation θ over A. To complete the proof it
therefore suffices to show that for any other decomposition A = B x C,
and the induced projection gf of A onto C, the conditions g(x) = g(y)
and g'{x) = #'(τ/) are equivalent. To see that this is true we simply
observe that for all xeA, g\x) = gfg(x) and g(x) = ##'(#). In fact,
there exists δ e B such that a? = b + #(x); hence

g'(x) = fjr'(δ) + flWa?) = g'g(x) .

The second formula is proved similarly

DEFINITION 3.6. If B is a factor of an algebra A, then the
congruence relation θ characterized by the conditions in Lemma 3.5
is called the congruence relation over A induced by B.

COROLLARY 3.7. Suppose B and C are subalgebras of an algebra
A such that

( i ) A = Bx C ,

and suppose θ is the congruence relation over A induced by B. Then
•0/0 = B, and the restriction of θ to C is the identity relation over
C. Furthermore, θ is consistent with any decomposition of A that
is a refinement of the decomposition (i).

LEMMA 3.8. // B, C, D{ (i e I) and E are subalgebras of an algebra
A such that

and if θ is the congruence relation over A induced by E, then for
any subalgebras F i g f l ^ i e l ) the condition

(ϋ) A/θ = (B/θ)x]I(FJΘ)
iei

implies that
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(iii) A = Bx]JFixE.

Proof. Since E/θ is the one-element algebra {0/θ}, we have

A/θ = (B/θ) x Π (FJΘ) x (E/θ) .
iei

Inasmuch as the restriction of θ to B is the identity relation over
B, we infer by 3.4 that there exist subalgebras F( QD{(ie I) and
Er S E such that

A = 5 x Π Fi x £"

and such that 2̂ /0 = 2*7/0 for all iei. Since the restriction of 0 to
2?< is the identity relation over Di9 this last condition implies that
Fl = 2^, and by the modular law we have

E=E'xE" where E" = EΪ\(B X ΐ[ Ft) .
\ iei J

If x e E", then a? = y + z for some y e B and z e Π e/ J^ Hence
y/θ + z/θ = x/θ = 0/6>, and it follows by (ii) that y/θ = z/θ = 0/ .̂ Re-
calling that the restrictions of θ to B and to ILei Ft are the identity
relations over these algebras we infer that y = z = 0, hence x = 0.
Thus J0" = {0}, £7' - £7, and (iii) holds.

COROLLARY 3.9. // B, C, D{ (i e I) and E are subalgebras of an
algebra A with

iei

and if B has the m-exchange property, where m is the cardinal of
I, then there exist subalgebras F{ QDi(ie I) such that

A = B x Π Fi x E .
iei

LEMMA 3.10. Suppose m is a cardinal and n is a positive
integer, and suppose Bo, Bly •••,!?« are subalgebras of an algebra B
with B = Bo x Bλ x x Bn. Then B has the m-exchange property
if and only if each of the algebras Bk(k = 0, 1, , n) has the m-ex-
change property.

Proof. It suffices to consider the case n = 1. First suppose Bo

and J5X have the m-exchange property. If A is an algebra that contains
B as a subalgebra, if C and Ό{ (i e I) are subalgebras of A with

(1) A = BoxB1xC=τiDi,
iei
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and if the cardinal of I does not exceed m, then there exist subalgebras
EiSDi(ίeI) such that

From this and the first decomposition in (1) it follows by 3.9 that
there exist subalgebras F{ ^E{(ie I) such that

A = B o x B 1 x U F i .
iei

Thus B has the m-exchange property.
Now suppose B has the m-exchange property. Consider an algebra

A containing Bo as a subalgebra, and subalgebras C, D{ (i e I) with

and assume that the cardinal of I does not exceed m. Replacing the
given algebras, if necessary, by isomorphic copies, we may assume
that there exists an algebra A! such that both A and Bx are sub-
algebras of A', and such that A' = A x Blm Then

If m is infinite, then we can apply the m-exchange property to these
two decompositions, but in order to accommodate also the finite cases
we choose an element feel, and let Γ = I — {k} and E = Bx x Dk.
Then

iei'

Hence there exist subalgebras EfΊΞ=E and Dl SDt(ie /') such that

(2 ) Af = B x E' x Π Dl .
iei'

Since B x E' is a factor of A', and hence a subtractive subalgebra of
A\ and since BξΞ=B x E'ξ^B x Dk, it follows from the modular law
that B x E' = B x Dί where D'k = (B x £") n A Substituting this
into (2) we obtain

Af = B xJlDl .
iei

Inasmuch as

Af = Bxx A = B1x (Box]Ji

and
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we conclude by 2.4 that

A - ΰ o x Π A ; .
iei

Thus Bo has the ra-exchange property.

LEMMA 3.11. // an algebra B has the 2-exchange property, then
B has the finite exchange property.

Proof. It suffices to show, for an arbitrary integer m > 1, that
if B has the m-exchange property, then B has the (m + l)-exchange
property. Assuming that

A = BxC = DoxD1x ••• x Dm ,

let E = A x A x x jDm_1# Then A = 5 x C - # x Dn, and since
I? has the 2-exchange property, there exist algebras E'ξ=E and D4 S A»
.such that A = B x E' x DL Letting

E" = E(\(BxDL) and D^ = Dmf)(B x E') ,

we infer by the modular law that E = E' x E" and Dm = Dix D^.
From the decompositions

A = Bx(s 'xz) ; ) = (E" x D::) X (E* X DD

we see by 2.19 that E" is isomorphic to a factor of -B. Consequently
E" has the m-exchange property by 3.10. Since

E = Ef x E" = Do x A x . . . x A»-i,

it therefore follows that there exist subalgebras D/S A> i = 0,1, ,
m — 1, such that

E = E" x Dl x Dl x . . . x A U .

Inasmuch as E"QB x A ^ # " X (£" x ί>m), and application of the
modular law yields

B x DL = E" x Em where E'" = (B x D'm) f] {Ef x Dm) ,

and we conclude that

A - E' x E" x E"f = E x Em = A' x A' x x Z?i-i x £"' X £""

= B x Di x D! x ••• x A!* .

Thus JB has the (m + l)-exchange property, as was to be shown.
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LEMMA 3.12. Suppose m is a cardinal greater than 1, and
suppose B is an algebra whose center is generated by a set whose
cardinal does not exceed m. If B has the m-exchange property, then
B has the exchange property.

Proof. Assuming that

A=SxC=ΠA,
iei

write

Dj = Π A for J S J .
iej

Then there exists as set Jfii" such that B°^DJf and such that J is.
finite if m is finite, and the cardinal of J is at most m if m is infinite.
By hypothesis (and by 3.11 in case m is finite), there exist subalgebra&
EiS A for all ieJ and a subalgebra F of A - J such that

Letting E{ -- Fn A for iei — J, we shall show that

ί 1) i*7 = TT 77

whence it follows that

Given a e F, there exists a finitely non-zero system of elements
dieDi(ieI — J) such t h a t

a = Σ ^i •

Considering a fixed index kel — J, we can find elements 6 e 5 , e{e E{

(ie J) and feF such t h a t

( 2 ) dk = b + ^ei+f.

By 2.17, beBc, hence beDj. Consequently the element

(3) x = b +

belongs to A But the elements d*. and / belong to the subtract!ve
subalgebra A - J of A, and it follows by (2) and (3) that x e A - J -
Thus x = 0, cί/c = /, and dkeF Γ\Dk = •#*• Since this last formula holdŝ
for all ke I — J, we conclude that

ae Π #< .
iei-J
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From this (1) easily follows.

4» Direct decompositions with countably many factors. The next
theorem and its simple proof are included primarily in order to show
why a similar argument fails to apply when we drop the assumption
that the set / be finite.

THEOREM 4.1. / / the algebra A has the m-exchange property
(where m is some cardinal), and if

where the set I is finite and the cardinal of J does not exceed m,
then these two direct decompositions of A have centrally isomorphic
refinements.

Proof. For notational convenience we assume that I consists of
the integers 0,1, , n. By 3.10, BOf Bly , Bn have the m-exchange
property, and by successive applications of 3.9 we obtain, for each
j e J, a sequence of subalgebras

such that

A = Bo x . x Bi x Π C i (i = 0,1, , n) .

Since all the subalgebras C[,j are factors of A, it follows by the
modular law that subalgebras Ci,j(i = 0, , n, j e J) exist such that
for each j e J,

Cj = Co',, x C0,y , and C _ w = C'itj x Citj (i = 1, , n) .

Consequently

Cj^nC^j (jeJ)

and

A=]JBiX Π TlCij (p = 0,1, ...,w + 1) .

comparing the two decompositions obtained from this last formula by
taking two successive values of p, p — k and p = k + 1, we infer by
2.20 that
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and we conclude that Bk has a decomposition

Bk = U Bk)j with Bktj ^c Ckt, all je J .

Attempting to extend the above argument to the case when both
I and J are infinite, one encounters difficulty in connection with the
"passage through limits." For instance, in the simplest case, where /
is the set of all natural numbers, the above process yields subalgebras
Ci,, ,C'i,j(i = 0,l •• , i e J ) with

Cj = C;,< x Π Ckfj and Bk =c Π Ck,, ,
ί^k jej

but it may happen that the direct product

π ci9i
i<oo

is a proper subalgebra of C3 . It is not known how this difficulty can
be overcome in general, but we will show how it can be avoided in
certain situations. For the case when I and J are denumerable, this
is done below by a simple argument involving a diagonal process.

Observe that in the proof of 4.1 we did not make direct use of
the fact that A has the m-exchange property, but applied this property
to the factors B{. Because of the finiteness of I this distinction is
immaterial here, but in later results a significant generalization is
obtained by assuming the exchange properties for the factors in some
decomposition (or decompositions) rather than for the whole algebra.
Incidentally, 4.1 could actually be generalized by observing that no
use is made of the fact that Bn has the m-exchange property.

THEOREM 4.2. // an algebra A has two direct decompositions
with countably many factors,

{i) A = Bo x Bλ x B2 x = Co x d x C2 x ,

where all the factors B{ and Cό have the ^-exchange property, then
these two direct decompositions have centrally isomorphic refinements.

Proof. Since Bo has the ^-exchange property, there exist sub-
algebras CO,;, Co',; with Cj = CQJ x Co,; for j = 0,1, 2, such that

( 1 ) A. = JDQ X Go,o X Oo,i X Co,2 X ,

and from this it follows by 2.20 that

( 2 ) BO=CCO,O x Co* x C0)2 x . . . .

The factor Cf

OtO of Co has the ^-exchange property by 3.10. Applying
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3.9 to (1) and the first decomposition in (i) we obtain subalgebras.
Bi.o, B'ί}0 with Bi = Bi)0 x B'itϋ for i = 0,1, 2, such that

( 3 ) A = Box do x B[Λ x BJ.0 x B[Λ x ,

and it follows, again by 2.20, that

Go,o = -^>l,0 X -^2,0 ^ -^3,0 X * ' *

Now, using the fact that B'lt0 has the ̂ -exchange property, we apply
3.9 to (3) and (1). This yields subalgebras Cltj9 C[tS with C'Oti =
Cltj x Cί,y for i = 1, 2, 3, such that

( 4 ) A = Bo x CO'* x Sί,o x Cίtl x Cί,2 x Cί,3 x ,

JB;,0 = C Cifl x clti x Ci,s x .

Next, from (4) and (3) we obtain subalgebras BiΛ, B\Λ with B\Λ =
jBίa x J5-,! for i = 2, 3, such that

A = £ 0 x C5,o x B'1>0 x CJfl x B'2fl x Bίa X JB4',I x ,

CίΛ=
cB2Λ x 5 3 ) 1 x B 4 > 1 x ••• .

Continuing in this manner we obtain subalgebras Biih B'itύ for i > j
and C<fy for ί ^ j such that the following four conditions hold for
i = 1, 2, 3, and i = 0,1, 2, :

( 5 ) £, = BiΛ x £ ί a x x Bi,^ x 5 ^ - ! ,

( 6 ) Cj = C0>j x C l f i x x Cu x C} f i ,

( 7 ) 5 ^ ^ c C i f ί x Citi+1 x C,,ί+2 x ,

( 8 ) C j , y =cBj+1)j x - B y + 2 , j x - ί? i+3, i x ••• .

From (2), (7) and (8) we infer that there exist algebras Bifj for i ^ §
and d,j for i > j such that

( 9 ) Bitj~
cCid for i , i = 0,1,2, . . . ,

(10) Bo = BQ>0 x 50,! x B0t2 x ,

(11) BJ,^ = Biti x B ί ) ί + 1 x B ΐ > ί + 2 x . . . for ΐ = 1, 2, 3, ,

(12) C'3ij - Cj+1>j x C i + 2 > i x C i+3,, x . . . for j = 0,1, 2 .

Together with (5) and (6) the last three formulas yield

Bi = B ί f 0 x J5 ί a x β i ) 2 x ,

KSJ z=: y^o,j X Oi,j X O 2,j X

Thus the two original decompositions oΐ A have the refinements
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A = Π Π Biti = Π Π C(,j ,
i<°° j<oo i<oo j<oo

and according to (9) these are centrally isomorphic.

5 Decompositions into indecomposable factors* In order to prove
the existence of centrally isomorphic refinements for two decompositions
with countably many factors we had to assume that all the factors
involved had the fc^-exchange property. In proving that two decom-
positions with indecomposable factors are centrally isomorphic we can
get by with a much weaker assumption. This is due to the next two
lemmas.

LEMMA 5.1. // an indecomposable algebra B has the 2-exchange
property, then B has the exchange property.

Proof. Suppose

iei

Since each element of A is contained in the product of finitely many
factors Di9 there exists a finite subset J of I such that

( l ) 5 n Π A * { 0 } .
iβJ

Letting

we have

= Π A ,
ίei—J

Π
iβJ

By 3.11 B has the finite exchange property, and there therefore exist
subalgebras D ^Di(ίe J) and E'ξ^E such that

By the modular law we can find subalgebras D" with A = A' x A"
for ieJ, and E" with E = E' x E". By 2.20,

B ~ Π A" x E" .

But as B is indecomposable, only one of the factors in this last product
can be different from {0}. This cannot be the factor E", for then we
would have Ό[ — A for all ί e j , and the product in (2) could not exist
because of (1). Thus E" = {0}, Ef = E, and letting D{ = A for all
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iei — J we have

A = B x Π Dί .
iei

LEMMA 5.2. // an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then every indecomposable
factor of A has the exchange property.

Proof. Suppose

iei

where B is indecomposable and the algebras Ό{ have the 2-exchange
property. By 5.1 it suffices to show that B has the 2-exchange prop-
erty. As in the preceding proof, we choose a finite subset J of I
with

( 1 )

By 3.10 the algebra

B nπ
ίeJ

E =

A Φ {0}.

ΠA
ί€J

has the 2-exchange property, and there therefore exist subalgebras
Bf S B and C'QC such that

A - E x B' x C .

By the modular law, Bf is a factor of B, and because Bf n E — {0} Φ
Bf)E, we have Bf Φ B. Therefore B' = {0}. Thus A - B x C -
i£ x C". Again by the modular law, C = C ' x ( C ί l !£')> a n d using
2.20 we infer that E = B x (C f\ Ef). Thus £ is isomorphic to a factor
of E, and therefore has the 2-exchange property by 3.10.

THEOREM 5.3. // an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then any two direct de-
compositions of A into indecomposable factors are centrally isomorphic.

Proof. Suppose

where all the factors B{ and C, are indecomposable and therefore, by
5.2, have the exchange property. For 7 ' g l and J' ^J let

B(Γ) =IlBi and C{J') - Π Cy ,
iei' ieJ'



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 821

and recall that, by 3.10, B(Γ) and C(J') have the exchange property
whenever the sets Γ and J' are finite. In particular, it follows from
this and the indecomposability of the factors C3- that if Γ is any finite
subset of /, then A = B{Γ) x C(J — J') for some subset J' of J. More-
over, since B(Γ) ~c C(J'), we see with the aid of 4.1 that Jf must
also be finite and that, in fact, there must exist a one-to-one map φ
of / ' onto J' such that Bt =G Cφ{i) for all ieΓ. Similarly, for each
finite subset Jf of J there exists a one-to-one map ψ of J ' into I such
that Cj ~GBψ{j) whenever j eJ'.

F o r kel l e t

Ik = {i I i e I and B{ ~c Bk} , Jk = {j | j e J and C3 = c Bk} .

From the above considerations we see that each member of J must
belong to at least one set Jk, and that if Jk is finite, then Ik must
have at least as many elements as Jk. To complete the proof it suffices
to show that this last statement also holds when Jk is infinite. To
prove this we consider, for each iel, the set Nζ of all elements j eJ
such that A = J3; x C(J — {j})9 and show that

(1) Ni is finite for each i e l ,

( 2 ) UN^Jk.

From this our assertion follows, for since Jk is assumed to be infinite,
(1) and (2) show that the number of elements in Jk cannot exceed the
number of distinct sets JV̂  with ielk, and hence cannot be larger than
the number of elements in Ik.

Considering a fixed element iel, choose a finite subset Jf of J
such that Bi Π C(Jf) Φ {0}. Then the direct product Bi x C(J - {j})
fails to exist whenever j eJ — J', and Ni must therefore be a subset
of J ' . Thus Ni is finite.

Considering a fixed element j e Jfc, choose a finite subset / ' of /
such that Cj (Ί B(Γ) Φ {0}. Then there exists a finite subset J ' of J
such that A - 5(Γ) x C(J - Jf). Observing that j e J ' , let J " =
J ' — {i) and apply 3.9 to the direct decompositions

A - C{J") x Cj x C(J - J') - Π -B< x C(J - J') .
%eif

T h i s y i e l d s a n d e l e m e n t ieΓ s u c h t h a t

A - C(J") x B,x C(J - J1) = BtX C(J - {j}) ,

and therefore j e Ni% Since j e Jk and Cj =c Bit we have ί e /^. Thus

(2) holds, and the proof is complete.
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6* Factors with countably generated centers: Preliminary lemmas*
As a result of Lemma 6.3 below the isomorphic refinement problem for
algebras

A = Π A ,
iei

where the factors B{ have countably generated centers, reduces to the
special case where I is countable, and A itself therefore has a countably
generated center.

LEMMA 6.1. If B, C and Di(iel) are subalgebras of an algebra
A such that

A^BxC^UDi and BG = Π (BG Π A) ,
iei iei

then there exist subalgebras Et(ieI) such that B c n A ^ ^ = A and

A - C x Π Et .
iei

Proof. By 2.16,

Ac = Bc x Cc = U Dt ,
iei

and since each B° n A is a factor of Ac and a subalgebra of A% it
follows from the modular law that there exist subalgebras D[ with
Ac = (Bc ΓΊ A) x A' for all iei. Thus

and it follows from 2.19 and 2.18 that

BxCc = BxΐlDΪ = ΐ[ A"
iei iei

where A" ~ (B x Cc) Π A for all iei. Again using the modular law
we infer that, for each iei, D" = D[ x Ei where

Consequently

( 1 )

Observing that

Bc x Cc

B x

= B° x

A"

\%ei

n(J

= Π

«)

A'xΠ

C = ( Π i
\iei / Vie/
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and that

( )
iei iei \iei

we see with the aid of 2.4 that

\iei

Consequently

\iei

According to 2.14 this implies that the direct product

Π
iei

exists. Furthermore, A' contains B° x Cc, and therefore contains all
the algebras Ό[. Hence it follows by (1) and (2) that B x C c g i ' .
The opposite inclusion also holds, since all the algebras E{ are contained
in B x Cc. Thus A' = B x CG. Together with (2) and 2.19 this yields
the desired conclusion,

LEMMA 6.2. Suppose Bt(ie I), Cj(j eJ) and D are subalgebras
of an algebra A such that

( i ) A = UB{ xD=πC3 xD,
iei jej

and suppose B\ is countably generated for each iei. If kel, then
there exist a countable set KξΞ=I with ke K and subalgebras F3 S Cj
(jeJ) such that

(ϋ) A = Π BtXUFjXD,
iei-κ jej

(iii) Π Bi x D° = Π Fs' x D' .
%eκ jeJ

Proof. Since Bc

k is countably generated there exist countably
generated subalgebras E^^QiJ eJ) such that Ejt0 = {0} for all but
countably many j e J and such that

BiSUESf0 x Dc .
jej

Since the algebra
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777 T T 777

*o = 1 1 J^jfo

is countably generated, there exists a countable subset Ix of J such
that fce/i and

777 f~ I I ~DC \y ~Γ\ C

Again, since the algebra

l = 11 i>t

is countable generated, there exist countably generated subalgebras
EjΛ £ C; (i e J) such that JE7y,0 £ Ejtl £ C, for all j e J, EjΛ = {0} for all
but countably many j e /, and

Continuing in this manner we obtain an ascending sequence of
countable sets Jo = {&} £ ii £ /a S £ / and, for each j e J, an ascend-
ing sequence of subalgebras Eίt0 £ Ejtl £ 2£ i)2£ g C such that

Π ί ί g Π #i,» x -DCS Π Bl x D c

for n = 0,1, 2, . Letting K = /0U/iU and £?y = ^ . O U ^ M U *

for all j eJ Tfre therefore have

(1) n Bl x Dc = ΐ[ Ej x Dc .

Letting θ be the congruence relation over A induced by D we
have

=(C π_, *')A)x (Ca B)IΘ)=

by 3.3 and 3.7. Letting

we see by (1) that

A = Π (̂ /<?) ,

and it readily follows that JS?^ = i n (C,/^) for all je J. We there-
fore infer by 6.1 that there exist subalgebras Fj(jeJ) with 2£, £
2̂ - £ Cj such that

- (( π ^
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and we conclude by 3.8 that (ii) holds. Finally, Es £ F for all j e J,
so that by (1)

Π ΰ x ΰ c S Π Ff x D°

Since, by (i) and (ii),

Ac = Π Bl x Π Bl x f l c = Π 5 ί x Π ί ί X ΰ f i ,
iei-κ %eκ iei-κ jβJ

we conclude with the aid of 2.4 that (iii) holds.

LEMMA 6.3. If B^iel) and Cj(jeJ) are subalgebras of an
algebra A such that

A = Π Bζ - Π Cj ,
iei jβJ

and if Bl is countably generated for each iei, then there exist a
(possibly transfinite) sequence of countable pairwise disjoint subsets
I* (oc < λ) of I and subalgebras CjyCύ £ Cj (j eJ,ac<X) of A such that
I = U<χ<λ la &ndy for all β <Ξ λ,

A = Π Π S i X Π Π CJtΛ .
β^cύ<λieia jeJa<β

Proof. Letting Uβ = \Ja<β Iω> we can write this last formula in
the form

(1) A= Π B{x Π ΠC,>.
iei-Uβ jej a<β

Since this condition involves only sets Ia and algebras CjtCύ with a < /3,
it can be used as an induction hypothesis. To secure the convergence
of our construction process we impose as a second induction hypothesis
the condition

(2) Π BtQU Π C Λ β .
ieUβ jeJa><β

First observe that this last condition does in fact permit the
passage through the limit ordinals. More precisely, suppose η is a
limit ordinal, and suppose the sets /* and algebras CjtCύ have been
chosen for all a < η in such a way that (1) and (2) hold for all β < rj.
We wish to show that in this case (1) and (2) also hold for β = f].
From the fact that the condition (2) holds for β < rj it follows that
this condition also holds for β — Ύ]. Furthermore, since the direct
product

Π Bi x Π Π CitΛ
iei-uv jeJcύ<β

exists for all β < V, we readily see that the direct product

A' = Π B<x Π ΠC;,«
ίei—u-η j&j ω<v
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also exists. In order to prove that A! = A, and hence that (1) holds
for β = 7)9 it suffices to show that BhgA! whenever he Uv. For each
such index h there exists an ordinal 7 < V with ft, e Uy. Using (1)
with β = 7, (2) with /9 = 97, and 2.19 we conclude that

Bhs π s? x π 54 = π Bixnπ. cjtΛ
iei-Uy ieVy iEI-Uy JβJ Oύ<y

S Π Blx Π Π C Λ . S A ' .
iei—ZΓη jej a<v

Now consider an arbitrary ordinal 7] and suppose the sets Ia and
algebras C/,α £ C, (i e J) have been defined for all a < 37 in such a way
that (1) and (2) hold whenever /9 ̂  η. If Uv = I, then we take λ == 37.
Assuming that Uv Φ I, let

A = II A.,

For each j e J, DjtV is a factor of A and a subalgebra of C,, hence
Cy = I>if, x Cj, η for some subalgebra C) v. It follows that

A - π Bi x A = π σ; Ί x A .
iei-Uγj jeJ

Choosing kel — Uv we infer by 6.2 that there exist a countable set
Z, with keIηSl — Uv and subalgebras Cj,vS=C'jV(jeJ) such that

( 3) A = Π Bi x Π C M x A = Π 5 4 x Π Π Cj,a ,

(4) Π B? x A' = Π C?., x A

Here, in accordance with our earlier notation,

uv+1 = u L= uvuiv.

By (3), (1) holds for β = η + 1, and from (4) and the fact that (2)
holds for β = η we infer that (2) holds for β = 97 + 1.

Since all the sets I* are nonempty, there must exist an ordinal λ
such that £7λ = 7, and the corresponding sets I* and algebras Cjtω

(a < λ, j e J) clearly have the properties required by the lemma.

7Φ Factors with countably generated centers: Fundamental theo-
rem , We are now ready to prove the fundamental theorem relating
the exchange property to the isomorphic refinement property.

THEOREM 7.1. If an algebra A is a direct product of subalgebras
each of which has the exchange property and has a countably gener-
ated center, then any two direct decompositions of A have centrally
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isomorphic refinements.

Proof. Suppose

where, for each iel, B{ has the exchange property and B? is countably
generated. Since every factor of B{ (and hence every algebra isomorphic
to such a factor) has the exchange property and has a countably gen-
erated center, it is enough to show that the decomposition (1) and any
other decomposition

(2) A = Π Cj
jeJ

have centrally isomorphic refinements.

Consider first the case when I is countable. For convenience
suppose I consists of the integers 0,1, 2, •••. In this case the center
of A is generated by a countable set

Z= {a0falfa2f ...} .

We shall construct an increasing sequence of finite subsets I09 Ilf I2,
of I and, for each j e J, two sequences of subalgebras Djt0, Djtl, Dj>2,
and JD/O = Cj, D'fl, D't2, such that the following conditions hold for
fc = 0,1,2, . . . :

( 3 ) kelk.

(4 ) D;,k = Dj>k x D; k+1 for all jeJ.

( 5 ) A= IJBiX Π A *κ.

( 6) ak e Π Π DjΛ .

By (2) there exists a finitely nonzero system of elements c' >0 e Cj
(j eJ) such that

ao — Σ ci,o >
jeJ

and by (1) there exists a finite subset Io of / such that 0 e Io and such
that all the elements c) 0 belong to the algebra

iei0

Since B[ has the exchange property, there exist subalgebras D Λ S Cj
(jeJ) such that (5) holds for k = 0, and letting
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Π

for all j e J, we see that (4) and (6) also hold for k = 0. In the case
of (6) this is true because c)Λ e Cd f] Bf

Q £ A,o for all j e J.

Now consider an integer n > 0, and assume that the finite sub-

sets 70 £ 72 £ £ 7W_! of 7 and the subalgebras A,o» AM> *" * > A,n-i>

Djt0 = Cί9Djtlf •••fDjtn(jeJ) have been so chosen that (3)~(6) hold

for & = 0,1, , w — 1. For each j eJ we have have

7 — I X 7* fe ^ ^ ΐ n 9

and there exist finitely non-zero systems of elements

(7) cy.. e Π A.* and Cj,neD;,n (jeJ)
k<n

such that

Thero exists a finite subset In of 7 such that 7W_X £ 7% and ne In, and
such that all the elements cj ,n belong to the algebra

Since B'n has the exchange property, and since

there exist subalgebras Dj>n+1 £ D'jt% (j e J) such that (5) holds with
k ~ n, and letting

π
for all i e J, we see that (4) and (6) also hold for Jc = n. In the case
of (6) this is true because of the first formula in (7) and because of
the fact that c'j>n e A\» Π B'n £ A,» f° r all j e J. Thus we see that the
sets Ik and algebras A,* a n ( i A*,* c a n be so chosen that (3)-(6) hold
for fc = 0, 1,2, •••.

It follows from (4) that the direct products

C ? = Π A . * ( i e J ) and A ^ Π Q

exist, and from (6) we infer that AC£A*. Moreover, for any natural
number w,

A = Π Π A.* x Π A'. i



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 829

and using this together with (3) and (5) we see by 2.19 that

5.S Π B< x (Π A'..T - Π Π A'.* x (Π A'..V S A* .
iβln \j€J / 3βJ k^n \j€J /

Consequently A* = A, and we infer by 2.4 that C* = Cj for all j e J.
From (4) and (5) we see that

A = Π B{ x Π A . , x Π Dj,n+ι

= Π B{x Π Bί x Π DL+i ,

whence it follows that

Π B< =ΰ Π A .

Consequently, by 4.1, there exist subalgebras Bifj and Citj9 (ί e In — In-19

j e J) such that

Bi - Π BitS for all i e l n - In^ ,
jej

A,.= Π Cίfi forallieJ,

Bitj ^ c C i f i for all ίeln — Jw_! and i e J .

Inasmuch as this holds for every natural number n (with I-τ = 0 ) ,
we conclude that

A - Π Π £ ί f i = Π Π C i f i ,
ieijej iei jej

and that these two decompositions of A are centrally isomorphic and
are refinements of the decompositions (1) and (2), respectively.

We now drop the assumption that I is denumerable. By 6.3 there
exist a sequence of countable, pairwise disjoint subsets Ia (a < λ) of 7,
and for each j e J a sequence of subalgebras DjtΛ (a < λ) of Cs such
that I — U*<λ la and

(8) A = Π ILB* x Π Π A,-

for all /9 ̂  λ. For /3 = λ this yields

A = Π Π A,- ,

and using 2.4 we infer that

Cs = Π A,* for all i e J .
Cύ<λ

Taking in (8) two successive values for β, say β = 7 and /5 = 7 + 1,
and comparing the resulting formulas, we see that
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(9) Π£ ( s ΠA.*.
ieiy jβJ

Since Iy is countable, it follows from the first part of the proof that
the two decompositions in (9) have centrally isomorphic refinements,
and inasmuch as this holds for every 7 < λ, we conclude that the de-
compositions (1) and (2) have centrally isomorphic refinements.

The preceding theorem can also be stated in the following,
apparently more general, form.

THEOREM 7.2. // an algebra A has two direct decompositions,

such that each of the factors B{ (i e I) has a countably generated center
and each of the factors Cj(j eJ) has the ̂ 0-exchange property, then
any two direct decompositions of A have centrally isomorphic re-
finements.

Proof. Choosing the ordinal λ, subsets I* (a < λ) of /, and sub-
algebras CjfCύ (j e J, a < λ) according to 6.3, we have

(1) Ci = Π CStU for each jeJ,

( 2 ) Π Bi =c Π Cj>a for each a < λ .

Since, by hypothesis, each of the sets Ia is countable, the first direct
product in (2) has a countably generated center, and hence so does the
second product. Consequently each of the factors Cjta has a countably
generated center. Furthermore, by (1) and 3.10, each of the algebras
Cj,Λ has the ̂ -exchange property. Hence, by 3.12, all the algebras
Cj,# have the exchange property. Since

A = Π Π Cj>a ,

the conclusion now follows from 7.1.

8. Sufficient conditions for an algebra to have the m-exchange
property. So far we have been primarily concerned with consequences
of the exchange property, but in the remainder of this paper we shall
investigate conditions that imply that a given algebra has the exchange
property. In the present section it will be shown that this problem
reduces to considerations that involve only abelian algebras.

THEOREM 8.1. For any cardinal m, if the center of an algebra
B has the m-exchange property, then B has the m-ewchange property.
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Proof. Suppose

A = BxC=nDit
iei

where the cardinal of / is at most m. Then by 2.18,

Bc x C = Π A'
iei

where D[ = (BG x C) Π A for each iei. Hence there exist subalgebras
Ei S A' (i e I) such that

Bc x C = BG x Π Ei ,

and we conclude by 2.19 that

A - £ x Π Ei .
tei

THEOREM 8.2. For any cardinal m, in order for an algebra B
to have the m-exchange property it is sufficient (and obviously neces-
sary) that the following condition be satisfied: For any algebra A
containing B as a factor, and for any subalgebras C and D{ (i e I)
of A, if

A-ΰxC-ΠA,
iei

if the cardinal of I does not exceed m, and if each of the algebras
Di (i e I) is isomorphic to a subalgebra of B, then there exist sub-
algebras E{ ξΞ:Di(ie I) such that

A^Bx Π A .
iei

Proof. Assume that the above condition is satisfied. Suppose

( i ) A = BxC=UDi9

iei

where the cardinal of / does not exceed m. Let / and g be the
projections of A onto B and C induced by the first decomposition of
A, and for i e I let hi be the projection of A onto A induced by the
second decomposition.

Let Θ be the congruence relation over A defined by the condition
that, for all x, y e A,

xθy if a n d only if fh{(x) = fh{(y) w h e n e v e r i e i .

We shall show that

(1) θ is consistent with the decompositions (i) of A .
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(2) The restriction of Θ to B is the identity relation over B .

Suppose x, y e A and xθy. Then

Σ
iei

In particular f{x)θf(y). Moreover, this shows t h a t for x,y eB the
condition α?0y implies t h a t x — f(x) = / ( # ) — 2/, so t h a t (2) holds.
Again assuming t h a t xθy, if k e I then

f h i h k ( x ) = 0 = f h i h k ( y ) w h e n e v e r k Φ i e l ,

fhkhk(x) - /%*(&) - /^(y) - M ( ϊ ) ,

so that hk(x)θhk(y). From the equations

/Λ*/(«) + fhkg(x) = fhk(f(x) + g(x)) - fhk(x) - /Λ4(tf)

= fh(f(y) + 0(y)) = fhkf(y) + fh

we infer that

( 3 ) hfhjix) + hfhgix) - KfhJiy) + h{fhkg{y)

for all i, ke I. Since /(cc) — /(#), we have

hifhkf(x) - h

for all i, ke I, and \t i Φ k, then this element belongs to Ac. There-
fore, by (3),

( 4 ) hifhkg(x) = hifhkg(y) w h e n e v e r i,kel a n d i Φ k .

Considering now a fixed index ίel, observe that

Σ hJhMx) - hj(Σ hkg(x)) = hjg(x) - ^(0) = 0 ,
kei \kei /

with the corresponding formula holding with x replaced by y. Hence,
in particular,

Σ hfhkg(x) =

Furthermore, all the summands in these two sums belong to Ac because
fhkg(x) and fhkg(y) always belong to A\ Since, by (4),

Σ hfhkg(x) = Σ hfhMy) ,
1

this implies that
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Thus in (4) we can omit the condition that i Φ k, and we conclude
that, for all k e 7,

fhkg(x) = Σ hfhkg(x) = Σ hfhkg(y) - fhkg(y) ,
iei iei

so that g(x)θg(y). This completes the proof of (1).
From (1) it follows that

A/θ = (B/θ) x (C/θ) = Π (A/*)
iei

Notice that if k e I and x,y e Dk, then the conditions xθy and f(x) =
f(y) are equivalent, and therefore the mapping

x/θ-+f(x) (xeDk)

is an isomorphism of DJΘ into B. Since B = Bjθ, it follows that there
exist subalgebras E^ DJΘ (iei) such that

A/θ = (B/θ) x Π l ,
iei

Consequently, by 3.4 there exist subalgebras Eiξ^D^ίel) such that

Because of 8.1, we may apply the criterion in 8.2 to BG in place
of B, and thus consider decompositions

ΠA
iei

where the algebras A &re isomorphic to subalgebras of Bc. However,
the algebras A need not be central subalgebras of A, and A there-
fore is not necessarily abelian. We shall now show that it is actually
sufficient to consider the case when A is abelian, in which case the
factors C and A (̂  e I) oί A are of course also abelian.

THEOREM 8.3. For any cardinal m, in order for an algebra B
to have the m-exchange property it is sufficient that the following
condition be satisfied: For any abelian algebra A containing BG as
a factor, and for any subalgebras C and Di (i e I) of A, if

( i ) A = I ? c x C = Π A ,
iei

if the cardinal of I does not exceed m, and if each of the algebras
Di (i e I) is isomorphic to a subalgebra of BG, then there exist sub-
algebras Ei ^D{(ie I) such that
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(ϋ) A = Bc xUEi -
iei

Proof. By 8.1 it suffices to show that Bc has the m-exchange
property, and by 8.2 it is therefore enough to show that the condition
in our theorem implies the property obtained from it by deleting the
word "abelian." Assume therefore that (i) holds, that the cardinal of
I does not exceed m, and that each of the algebras D{ (ί e I) is iso-
morphic to a subalgebra of Bc. Under the operation + each of the
algebras Ό{ is therefore a commutative cancellation semigroup, and
hence so is A. Consequently A can be embedded in an Abelian group
A in such a way that each element of A is the difference of two
elements of A. This extension of A is unique up to isomorphism.
Furthermore, there is a unique way of extending the operations
Ft(teT) to A in such a way that the resulting algebra is abelian:
If ak == a'k — a" with akf a" eA for k = 0,1, , ρ{t) — 1, then we let

Ft(a0, al9 , a**)-!) = Ft(a'o, α{, , ar

p{t)^) - Ft(a'Q', a[', , α ^ ) .

That this definition is unambiguous and actually does yield an abelian
algebra is an easy consequence of the fact that the equation

Ft(x0 + y0, xx + yl9 , xp{t)^ + yPit)+i)

= Ft(x0, xlf , xP{t)-J + Ft(yQ, yu , ypW-i)

holds whenever the elements xk, yk(k = 0, 1, , p(t) — 1) belong to A.
For any subalgebra X of A let X be the smallest abelian subalgebra

of A that contains X. Then X consists of all elements of the form
x — %' with x, x' e X. It is easy to check the condition

implies that

In particular, since BG = B\

A = Bc x C =r Π A .
iei

For each i e /, A is isomorphic to a subalgebra of Bc, and the same
is therefore true of A Hence, by hypothesis, there exist subalgebras
Fi ξΞ:Di(ie I) such that

A = β c x Π Ft .
iei

Given an element α e i , there exist an element beBc and a finitely



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 835

nonzero system of elements f{ eFt(ie I) such that

Since — be A, the element

belongs to A, and there exists a finitely nonzero system of elements
diβDiiiel) such that

a — b = Σ »̂

Inasmuch as d^/i e A for all i e /, we infer that d{ = f{ e D{ f] F{ for
all iei, and therefore

α - 6 + Σ ^i e J5C x Π (A Π ̂ )
16/ *6/

It is now easy to show that (ii) holds with Ei = D{ n i^ for all iei.

9* Factors with central chain conditions* In this section we will
show that algebras satisfying certain central chain conditions have the
exchange property and have countably generated centers, and these
results will be applied to obtain the principal isomorphic refinement
theorem for general algebras. The chain conditions involved are made
precise in the following two definitions.

DEFINITION 9.1. An algebra A is said to satisfy the minimal
condition if every nonempty family of subtractive subalgebras of A
has a minimal member. Similarly, A satisfies the maximal condition
if every nonempty family of subtractive subalgebras has a maximal
member.

DEFINITION 9.2. An algebra A is said to satisfy the local maximal
condition if every finitely generated subtractive subalgebra of A
satisfies the maximal condition.

It should be noted that the minimal and (local) maximal conditions
as defined above involve only subtractive subalgebras of an algebra A.
In particular, since the subtractive subalgebras of an operator group
are precisely its admissible subgroups, for groups the minimal and
maximal conditions as defined in 9.1 and 9.2 are just the usual group-
theoretic chain conditions.

The first theorem of this section makes use of the following lemma
which is a consequence of the results of Baer [1].
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LEMMA 9.3. ([1]; Theorem D p. 96 and Theorem 3 p. 93)5 Let G
be an operator group which satisfies the minimal and local maximal
conditions. IfG = BxC = DxE where B is indecomposable, then
there exist factors D'QD and Ef^E such that G = B x D' x Ef.

Suppose now that A is an abelian algebra with auxiliary operations
Ft(teT). For each teT and each k < p(t) define the unary operation
Fk.t by

Fktt(a) = Ft(0, . . . , 0, α, 0, , 0) for all a e A .

fcth

Since A is abelian, it follows t h a t for each teT and elements

a0, •• , α p ( ί , _ 1 e A we have

Ft(a0, •• , α p U M ) = Σ Fkft(ak) .
k<P(t)

Consequently the (subtractive) subalgebras of A and the direct decom-
positions of A remain unchanged if we replace the operations Ft (t e T)
by the operations Fk,t (k < p(t), t e T). Moreover, this new system so
obtained is obviously an abelian operator group. Hence the following
lemma is immediate by 9.3.

LEMMA 9.4. If A is an abelian algebra which satisfies the
minimal condition and the local maximal condition, and if A =
B x C = D x E where B is indecomposable, then there exist factors

and E'<^E such that A = B x D' x E'.

THEOREM 9.5. If the center Bc of an algebra B satisfies the
minimal condition and the local maximal condition, then B has the
exchange property.

Proof. By 8.1 we may assume that B = Bc. Since B satisfies
the minimal condition, it is a direct product of finitely many inde-
composable subalgebras, and therefore by 3.10 and 5.1 it is sufficient
to show that B has the 2-exchange property.

Consider an abelian algebra A containing B as a subalgebra, and
algebras C, Do and A such that Do and A are isomorphic to subalgebras
of B and such that A = B x C = Do x A Then both Do and A
satisfy the minimal and local maximal conditions, and it readily follows
that the same is true of A. Therefore by 9.4 there exist subalgebras
Eo £ A and Eλ £ A such that A = B x Eo x Elf and we conclude by
8.3 that B has the exchange property.

5 See also Specht [8], pp. 250, 259 and 260.
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In order to apply the preceding theorem in conjunction with 7.1,
we must further show that under the given hypothesis Bc is countably
generated. This observation is based on the following lattice-theoretic
lemma. The terminology and simple facts from lattice theory used
below can be found in Birkhoff [3].

LEMMA 9.6. // L is an upper continuous modular lattice, if
every decreasing sequence of elements of L is countable, and if every
element of L is a join of finite dimensional elements, then every
element of L is a join of countably many finite dimensional elements.

Proof. First consider an element a e L that is a join of atoms.
Then there exists an independence sequence pQ, pu , pζ, (ξ < λ)
of atoms of L such that

α = <§ P* "
Since the elements

Σ Pi (v < λ)

form a strictly decreasing sequence, λ must be countable, and there-
fore a is the join of countably many atoms.

Now consider an arbitrary element a e L. For each n — 1,2,
let Pn be the set of all the elements x e L with x ^ a whose dimension
does not exceed n, and let an = Σ Pn Then

a = Σ an
n<oo

By the first part of the proof there is a countable set Qλ S Pi such
that aλ = Σ βi Suppose n > 1 and x e Pn. Then either x <£ an^x or
x + αw_! covers an^u since each member of Pn — Pn^ covers at least
one member of Pn-λ. Consequently an is the join of atoms in the
quotient sublattice a\an^Ύ. Since the hypothesis of the lemma is
satisfied with L replaced by this sublattice, we again use the first
part of the proof to infer that

an = αw_! + Σ Qn

where Qn is a countable subset of Pn — Pw_-1# It follows that each an

is a join of countably many finite dimensional elements, and therefore
a is also a join of countably many such element.

COROLLARY 9.7. // B is an abelian algebra that satisfies the
minimal condition and the local maximal condition, then B is counta-
bly generated.
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Proof. The lattice L of all subtractive subalgebras of B is modular
and upper continuous, and, by hypothesis, every decreasing sequence
of elements of L is finite. Also, if C is a finitely generated subtractive
subalgebra of B, then the lattice L(C) of all subtractive subalgebras
of C satisfies the double chain condition. Consequently L(C) is finite
dimensional, i.e., C is a finite dimensional element of L. Since every
subtractive subalgebra of B is the lattice join of finitely generated
subtractive subalgebras, L satisfies the hypothesis of 9.6. Hence B is
the lattice join of countably many finite dimensional elements of L;
equivalently, B is generated by the set-union of countably many sub-
tractive subalgebras C such that L(C) is finite dimensional. But if
L(C) is finite dimensional, then C is clearly finitely generated. Thus
it follows that B is countably generated.

Combining 9.5, 9.7 and 7.1 we obtain our principal isomorphic
refinement theorem for algebras with auxiliary operations.

THEOREM 9.8. // an algebra A has a direct decomposition

such that, for each ie I, B\ satisfies the minimal condition and the
local maximal condition, then any two direct decompositions of A
have centrally isomorphic refinements.

10. Lemmas on abelian groups* When applied to algebras with-
out auxiliary operations Ft, Theorem 9.8 can be stated in the following
equivalent form: If a binary algebra A is a direct product of sub-
algebras Bi (i G /) such that, for each iel, B\ is a direct product of
finitely many primary cyclic and quasi-cyclic groups, then any two
direct decompositions of A have centrally isomorphic refinements.
For every abelian group satisfied the local maximal condition, and the
condition imposed on the abelian groups Bi above is equivalent to the
assertion that they satisfy the minimal condition. In the next section
we shall obtain a result that is considerably more general than the
one stated above. Here we list a number of known results and prove
five lemmas concerning abelian groups that will be used in the proof
of this more general theorem.

If G is an abelian group and n is an integer, then the subgroups
nG and G[n] are defined by

nG — {nx I x e G} ,

G[n] = {x I x e G and nx = 0} .

As usual, we say that an abelian group G is divisible if nG = G for
every integer n Φ 0, and we say that G is of bounded order if there
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exists an integer n φ 0 such that nG = {0}. An abelian group is said
to be reduced if it has no nonzero divisible subgroup, and by the
reduced part of an abelian group G we mean the quotient group G/D
where D is the maximal divisible subgroup of G. If X is a subset
of a group G, then [X] denotes the subgroup of G generated by X;
in particular, if x e G, then the cyclic subgroup of G generated by x
is denoted by [x].

Let G be an abelian p-group (p some prime). By the height of
an element x e G we mean the largest integer r such that x e prG, if
a largest such integer r exists, otherwise the height of x is co. Thus
height x — co if x e pnG for n = 1, 2, , and height x = r < co if
a? e prG but x £ pr+1G. Obviously the zero element of G has infinite
height; if this is the only element in G of infinite height, then we
say that G has no elements of infinite height. Thus G has no ele-
ments of infinite height if and only if ΓL<oo PnG = {0}.

If G is an abelian p-group with no elements of infinite height,
then a topology can be introduced in G by taking as a neighborhood
basis for 0 the subgroup pnG(n = 1, 2, •••). This topology is called
the p-adic topology of G. G can be completed in its p-adic topology,
and the torsion subgroup G of the topological completion of G is also
an abelian p-group without elements of infinite height.6

An abelian p-group G is said to be torsion-complete if G has no
elements of infinite height, and G is equal to the torsion subgroup of
the topological completion of G, G = G. Alternatively, G is torsion-
complete if and only if G has no elements of infinite height, and every
Cauchy sequence {#*}*<«» of G, for which the orders of the elements
xk are bounded, converges to a limit in G.7 For convenience we will
call a Cauchy sequence {xk}k<oo9 for which the orders of the xk are
bounded, a bounded Cauchy sequence.

An explicit representation of torsion-complete abelian p-groups can
be given as follows. Let Ul9 U2, C/3, be a sequence of p-groups
such that Un is a direct product of cyclic groups of order pn for each
n — 1, 2, •••. Let Γ be the Cartesian product of the groups £7i, ϊ/2,
UZ1 , that is, JH is the set of all functions / defined on the positive
integers such that f(n) e Unj with addition defined component-wise.
Then the torsion subgroup of Γ is torsion-complete. Conversely, if G
is a torsion-complete abelian p-group, then there exists a sequence of

6 This is essentially given by Kaplansky [7], p. 50.
7 Fuchs [5], p. 114, calls these groups closed. However, we have adopted the

terminology of Kaplansky [7], p. 54, in order to remain consistent with topological
terminology. Fuchs' definition of Cauchy sequence also differs somewhat from ours in
that he requires a Cauchy sequence to be bounded and converge at a specified rate.
Again we have followed Kaplansky [7] in using the usual topological concept of Cauchy
Sequence,
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groups Ulf Z72, ?73, , where Un is a direct product of cyclic groups
of order pn for each n = 1, 2, •••, such that G is isomorphic to the
torsion subgroup of the Cartesian product of U19 Z72, U3, ,8 In par-
ticular, every primary abelian group of bounded order is torsion-
complete, and every countable torsion-complete primary abelian group
is necessarily of bounded order.

By a pure subgroup of an abelian p-group G we mean a subgroup
S of G such that S Π PnG = pnS for all n = 1, 2, . It is easily
seen that the p-adic topology of a pure subgroup of an abelian p-group
G with no elements of infinite height is the same as the topology
induced by the p-adic topology of G. A subgroup U of a p-group G
is called a basic subgroup if U has the following properties:

( i ) U is a direct product of cyclic groups;
(ii) U is a pure subgroup of G;
(iii) the quotient group G/U is divisible. A subset XQG is

independent if the subgroup [X] generated by X is the direct product
of the cyclic subgroups [x] generated by the elements x e X. If in
addition, [X] is a pure subgroup of G, then X is called a pttrβ ΐmϊe-
pendent subset.

The following ten lemmas are well known; proofs and references
to the original sources can be found in Fuchs [5] as indicated in each
case.

LEMMA 10.1. ([5], p. 62) / / a subgroup S of an abelian group
G is divisible, then S is a factor of G.

LEMMA 10.2. ([5], p. 64) A divisible abelian group is a direct
product of subgroups each of which is isomorphic to either the additive
group of rationals or a primary quasi-cyclic group.

LEMMA 10.3. ([5], p. 78) If S is a subgroup of an abelian p-
group G, and if every element of S[p] has the same height in S as
it does in G, i.e., if S[p] Π PnG = S[p] Π PnS(n = 1, 2, •), then S is
a pure subgroup of G.

LEMMA 10.4. ([5], p. 78) IfSisa pure subgroup of an abelian
p-group G9 and if S[p] = G[p], then S = G.

LEMMA 10.5. ([5], p. 97) A subgroup U of a primary abelian
group G is a basic subgroup if and only if U is generated by a
maximal pure independent subset of G.

LEMMA 10.6. ([5], pp. 98 and 104) A primary abelian group G

8 Fuchs [5], p. 114.
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has at least one basic subgroup, and all the basic subgroups of G are
isomorphic.

LEMMA 10.7. ([5], p. 104) // a primary abelian group G is of
bounded order, then the only basic subgroup of G is G itself.

LEMMA 10.8. ([5], pp. 98-99) Let G be an abelian p-group, and
suppose that a subgroup U is a direct product U = U1 x U2 x Uz x ,
where Un is a direct product of cyclic groups of order pn for each
n = 1, 2, . Then the following conditions are equivalent:

( i ) U is a basic subgroup of G;
(ii) G = Ux x x Un x [pnGV \Jk>n Uk] for each n = 1, 2, •;
(iii) Ux x x Un is a maximal factor of G of bounded order

pn for each n = 1, 2, .

LEMMA 10.9. ([5], p. 112) If G is a primary abelian group
with no elements of infinite height, then there exists a torsion-complete
primary abelian group containing G as a pure subgroup.

LEMMA 10.10. ([5], p. 117) If S is a pure subgroup of a primary
abelian group G, and if S itself is torsion-complete, then S is a
factor of G.

LEMMA 10.11. If U = V x W is a basic subgroup of an abelian
p-group G, and if V is of bounded order, then there is a subgroup
H of G such that G = V x H and W^ H.

Proof. Since U is a direct product of cyclic p-groups, there is
an integer m such that

V=Vλx . . . χVm and W = W1 x x Wm x W'm ,

where Vk and Wk are direct products of cyclic groups of order pk (k —
1, , m), and W'm is a direct product of cyclic groups of orders greater
than pm. Then

U=(V1xWd x ••• x(Vmx WJx WL,

and hence by 10.8,

G = VxW1x ••• xWmx [pmG U WL] .

Consequently the subgroup H = [pmG U W) has the required properties.

LEMMA 10.12. If X is a maximal pure independent subset of an
abelian p-group G, and if Y is a pure independent subset of G, then
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there exists a maximal pure independent subset Z of G such that

Proof. By Zorn's Lemma there exists a pure independent subset
Z of G which is maximal with respect to the property YξΞ:ZQX{jY.
Suppose Z is not a maximal pure independent subset of G. Then there
exists a maximal pure independent subset Zf such that Z<cZ'. Choose
any deZ' - Z. If the order of d is pn, let

Xn = {x I x e X and pnx = 0} .

By 10.5 and 10.11 there exist subgroups Ho and Hλ of G such that
ZQHQ and

G = [d] x Ho = fζ x Π [a] .
χexw

Then there exist an element e e Hx and a finite subset {xQ, , a?w_i} S
Xn such that

d G [e] x [£0] x x [ a ^ J .

Observe that if u e G is an element of order at most pn such that
pn~xu $ Ho, then u has order exactly pn, and [u] Π -Ho = {0}; therefore,
as JHΓ0 has index pn in (?, we must have G = [u] x Ho. Consequently,
since Hx contains no factor of order pn by 10.8 (iii), it follows that
pn-λe e £T0. On the other hand, since pn~λd <£ Ho, there exists k < m
such that pn~λxk € Ho. But then G = [xk] x Ho, and this implies that
ZU{xk} is a pure subset of G with Y^ZczZ\J{xk}^Xl]Y. Since
this contradicts the choice of Z, it follows that Z is a maximal pure
independent subset of (?.

Consider now a torsion-complete primary abelian group G and a
pure subgroup S of (?. Define S to be the subgroup consisting of all
those elements xeG which are limits in G of bounded Cauchy sequences
of S. It is easy to see, and is implicit in the proof of the next lemma,
that S is just the topological closure of S in G. Moreover, if T is a
pure torsion-complete subgroup of G containing S, then J Γ 3 S ; in
particular if S itself is torsion-complete, then S = S.

LEMMA 10.13. If S is a pure subgroup of a torsion-complete
abelian p-group G, then S is a pure torsion-complete subgroup of G.

Proof. First observe that if {sk}k<oo is a Cauchy sequence of S
converging to an element x, and if pmx — 0, then there is a bounded
Cauchy sequence {tk}k<oo of S which converges to x such that pmtk = 0
for all k. By picking an appropriate subsequence, if necessary, we
may assume that
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x - skepkG (fc = 1, 2, •••)

Since pmx = 0, we have pmsk e pk+mG. Thus, since S is pure, there is
an element s[e S such that pmsk = pk+ms'k for each k = 1, 2, . Let
tk = sk - pks'k (fc = 1, 2, •). Then clearly pmtk = 0, and

x - tk = (x - sk) + pksf

k e pkG (fc = 1, 2, •) ,

i.e., {ίj/c<oo is a bounded Cauchy sequence of S, bounded by pm, which
converges to x.

Let {xk}k<co be a bounded Cauchy sequence of S. Since G is
torsion-complete, there is an element xeG which is the limit of {#*}*,<• <»
in G. By picking an appropriate subsequence, if necessary, we may
assume that

x-xkepkG (fc = l , 2 , •••)•

Since {xk}k<oo is bounded, there is an integer m such that pmxk = 0
(fc = 1, 2, •). Moreover, since each xk e S, there are Cauchy sequences
{β*,»}n<~ such that {sk,n}n<oo converges to xk for each k = 1, 2, . And,
as observed above, we can choose the sk,n such that

Pmsk,n = 0 and xk — skyn e pnG

for all n, k — 1, 2, . Let ίΛ — sfcfΛ. Then

x - tk = {x - xk) + {xk - sk>k) e pkG ,

and hence {tk}k<oo is a bounded Cauchy sequence of S which converges
to x. Therefore xeS, and S is torsion-complete.

To see that S is pure, let x e S, and suppose that x e prG. Then
there is a bounded Cauchy sequence {sk}k<oo of S such that

x — ske pkG

and hence that

sk+1 - sk e pkG

for all k = 1, 2, . Consequently s r + 1 e ^ G , and therefore, since S is
pure, there exist elements txeS and sk e S (k — 1, 2, •) such that

# % = sr+1 , and sfc+1 — sk = p^s^ for all fc = 1, 2, .

Define elements ίfc e S(fc = 1, 2, •) recursively by ίΛ+1 = ίfc + pks'r+k.
Then clearly {ίJfc}fc<βo is a bounded Cauchy sequence of S which converges
to a limit teS. Moreover, if prtk = sr+A;, then

hence j>rίΛ = sr+k for all fc = 1, 2, . I t follows that prt = OJ, whence
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x e prS. Thus S is a pure subgroup of G.

COROLLARY 10.14. If U is a basic subgroup of a torsion-complete
primary abelian group G, then Ό = G.

Proof. By 10.10, 10.8 and 10.13.

LEMMA 10.15. IfR = SxTisa pure subgroup of a torsion-
complete abelian p-group G, then R = S x T.

Proof. Suppose xeS ΠT and x Φ 0. Then there are bounded
Cauchy sequences {«*.}* <~ and {tk}k<oo of S and T, respectively, such
that

x — sk, x — tk e pkG (k = 1, 2, •) .

Since x Φ 0, x has height r for some integer r. It follows that sk and
tk must also have height r for each k > r . And, as sk eS,tke T, and
R = S x T is a pure subgroup of G, it readily follows that sk — tfc

has height r for each k > r. But this is a contradiction since

sk-tk = (x- tk) - (x - sΛ) e pfeG (fc > r) .

Consequently S Π T — {0}. On the other hand, if {̂ fc}fe<oo is a bounded
Cauchy sequence of R converging to a limit xeR, then {/(&*)}*<«, and
{̂ (̂ &)}fc<«> are bounded Cauchy sequences of S and Γ, respectively, where
/ is the projection of R onto S, and # is the projection of R onto T.
Hence there are elements ueS and v ef which are the limits of
{/0&*)}*<~ a n d M )̂}/fc«x>, respectively. Since

£* = /(&*) + ff(»*) for each fc = 1, 2, ,

it follows that x = u + v, and we conclude that R = S x f.

11 • Exchange and isomorphic refinement theorems for binary
algebras* In the present section conditions are found in order for a
binary algebra B to have the exchange property, and these conditions
are combined with the results of preceeding sections to obtain unique-
ness and isomorphic refinement theorems for binary algebras.

The center Bc of a binary algebra B can be written as a direct
product

B° = P x Q x R

where P is a divisible torsion-free abelian group, Q is a divisible torsion
abelian group, and R is a reduced abelian group. The groups Q and
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P x Q are unique, and P x Q is the maximal divisible subgroup of
BG. Therefore R is isomorphic to the reduced part of Bc. By 3.10,
Bc has the exchange property if and only if each of the factors P, Q
and R has this property. In the case of P the exchange property
readily follows from 8.3 and some elementary properties of vector
spaces. Since a torsion abelian group is uniquely a direct product of
its primary components, it is clear that a torsion abelian group has
the exchange property if and only if each of its primary components
has the exchange property. In the case of divisible primary groups,
and hence for ζ), the exchange property again follows essentially from
vector space properties. As for reduced groups, the main lemma of
this section asserts that a torsion-complete primary abelian group has
the exchange property. Consequently every torsion abelian group with
torsion-complete primary components has the exchange property.

LEMMA 11.1. Every torsion-free divisible abelian group G has
the exchange property.

Proof. Using the criterion of 8.3, suppose

where each of the factors A (i e I) is isomorphic to a subgroup of G.
If A', C and Dl (i e I) are the maximal divisible subgroups of A, C
and A (i e I), respectively, then

A' = G x Cf = Π A '

Furthermore, for each ie I there is a subgroup A ' such that A =
Dl x Dl', and thus

A - A' x Π A" .
iei

Regarding A as a vector space over the field of rational numbers, we
can choose a basis X for G and extend it to a basis Y for A' in such
a way that every element of Y — X belongs to one of the factors A'.
Letting El be the vector space spanned by Dl Γl (Y — X), we conclude
that

A' = Gx]JEl .
iei

Therefore

A = G x Π E{
iei

where E{ = El x Dl' (i e /), and hence G has the exchange property.
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LEMMA 11.2. Every primary abelian group G of bounded order
has the exchange property.

Proof. Suppose

A = GxC=TlDi
iei

where each of the factors A is isomorphic to a subgroup of G. Then
A is a primary abelian group of bounded order. Let Y be a maximal
pure independent subset of Gf and for each i e I let X{ be a maximal
pure independent subset of A Then X = \Jiei X{ is a maximal pure
independent subset of A, and it follows by 10.12 that there exists a
maximal pure independent subset Z of A such that Γ g Z i l U Γ .
By 10.5 and 10.7, A is generated by Z, and G is generated by Y.
Consequently, if E{ is the subgroup generated by the set A Π (Y ~ X)
for each ie I, it follows that

A - G x Π Ei .
iei

Thus G has the exchange property.

LEMMA 11.3. Every divisible abelian p-group G has the exchange
property.

Proof. Suppose

where each A is isomorphic to a subgroup of G. If A', C" and Ώ[ (i e I)
are the maximal divisible subgroups of A, C and A (i € / ) , respectively,
then

A! - G x C x Π A' .

Furthermore, if A" is such that A = A' x A" for each i 6 I, then

A - A' x Π A"
i6/

Clearly

A'b] = G[p] x C'fo] = Π DM ,

and since G[p] is of bounded order p, there exist subgroups Z7<S
(ΐ 6 /) such that

(1) Λ'bl = G[p] x II ϋi
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For each iel there exists a divisible subgroup E of D/ such that
El[p] = Uiy and it follows from (1) that the direct product

iei

exists. Moreover, since A" is divisible, it is a pure subgroup of A',
and using the fact that Ar[p\ S A" we infer by 10.4 that A' = A".
Thus

A = G x Π #»

where I?* = 2?/ x D '9 and G has the exchange property.

LEMMA 11.4. Every torsion-complete abelian p-group G has the
exchange property.

Proof. We first prove that G has the 2-exchange property and
hence the finite exchange property. Thus suppose

A = G x C = A x A

where A and A are isomorphic to subgroups of G. Then A is an
abelian p-group without elements of infinite height, and hence by 10.9
there is a torsion-complete abelian p-group A' containing A as a pure
subgroup. By 10.13 we may assume that A' is the closure of A, A! — A,
and in this case it follows by 10.15 that

Choose maximal pure independent subsets Xo, Xλ and Y of Do, D1 and
G respectively. Then X = XQ U Xx is a maximal pure independent
subset of A, and by 10.12 there is a maximal pure independent subset
Z of A such that Y^ZQXljY. Since every subset of Z generates
a factor of [Z], the subgroups generated by Dof] Z and A Π Z are
pure in A. Let Eo and £Ί be the closures of the subgroups generated
by A Π £ and A n #, respectively. Then by 10.14 and 10.15,

A = GxEoxElm

Since Eo x (G x JSί) 2 A x A S G x #i, we infer from the modular
law that

A x A = (̂ Ό Π (A x A)) x G x E1 = G x (DonEQ) x Eλ.

Therefore E, x (G x (A Π -EΌ)) 2 A x A 3 G x (A Π -EΌ), and a second
application of the modular law yields
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A = A x A = (Et n (A x A)) x G x (A n #0)
= G x ( A n #o) x (A n EX) .

Consequently G has the 2-exchange property.
Now suppose

( 1 ) A = G x C = Π A

where each of the factors A is isomorphic to a subgroup of G. A is
therefore an abelian p-group with no elements of infinite height. For
each i e I let / { be the project of A onto A induced by the second
decomposition in (1). We begin by proving the following statement:

(S) There exist a finite set JξΞ=I and subgroups Go and Gx such
that G — Go x Gl9 Go is of bounded order, and

( 2 )
iβJ

Assume that (S) is false. Then for every finite subset J S l a n d every
decomposition G = Go x Gx where Go is of bounded order, there is an
element x e G^p] and an index ie I — J such that fι{x) Φ 0. Using
this we shall construct a sequence of elements x0, xl9 x2, « e G[p] and
a sequence of indices i19 i2, i3, e I such that the following conditions
hold for every positive integer n:

( 3) height xn > height fi(xn-i) whenever ie I and fi(xn-i) Φ 0

( 4 ) fin(x0) = fin(xd - . . . - fin(xn-d = 0 ^ fin(xn) .

Pick any element x0 e G[p], Suppose the elements x19 • • • ,««€ G[p] and
the indices ilf , im e I have been so chosen that (3) and (4) hold for
n = 1, , m. Then the set

Jm = {i I i € / and fi(xn) Φ 0 for some n ^ m}

is finite, and we can choose a positive integer r such that

r Ξ> height fi(xn) whenever i e Jm, n ^ m and fi(xn) Φ 0

By 10.8, G has a decomposition G = Go x G1 such that pr+1<?0 = {0} and
such that Gλ has no factor of order less that p r + 2 . Therefore there
exists and element xm+1 eGλ[p] and an index im+1 el — Jm such that
fim+1(xm+i) Φ 0. Since the height of xm+1 is necessarily larger than r,
we infer from the choice of r that (3) holds for n = m + 1. Also,
since im + 1 g J m , it follows that (4) also holds with ^ = m + 1. Thus
the existence of the sequences of elements xn e G[p] and of indices
ine I satisfying (3) and (4) follows by induction.

For each m = 0,1, 2, let
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Vm = #0 + * * ' + #m

If m > n, then it follows from (4) that

AJ3/J = fφn) + + fin(xj .

From (8) we infer that the height of fin(xn) is less than the height of
fίn(xk) for fc = w + 1, , m. Consequently

( 5) height fin(ym) = height fin(xn) whenever m > n .

Notice that (3) also implies that the height of xm is at least m.
Therefore

2/m+l - 2/m = #m+l G P™G (m = 0, 1, 2, •) ,

and since each ym has order p, the sequence {2/m}m<oo is a bounded
Cauchy sequence of G which must converge to a limit y eG. Further-
more, for each ίel, the sequence {fi(ym)}m<oo is a bounded Cauchy
sequence of D{ which converges to fi(y). Now fi(y) ~ 0 for all but
finitely many i e I, and therefore there is a positive integer n such
that fin(y) = 0. But the sequence {fin(ym)}m<oo cannot converge to 0,
since according to (5) the heights of the elements fin(y0),fin(yi),
fijy2)9 * a r e bounded. Thus we have a contradiction, and hence (S)
must be true.

Choose J, Go and Gx according to (S). Considering the decom-
position

A = π A x Π A ,
iβJ iei—J

let / be the projection of A onto the factor ILej A, and let G* be
the image of Gx under /. It follows from (2) that / maps Gx iso-
morphically onto G*, and that

(6) G*[p] = Gib]

In particular, G* is torsion-complete. Furthermore, if xeG*[p], then
x = f(χ)> and the height of x in G* is at least as large as the height
of x in Gj. Since G± is a pure subgroup of A, it follows by 10.3 that
G* is a pure subgroup of A. Thus, by 10.10, G* is a factor of A,
and consequently

Π A = G* x i ϊ
<i€J

for some subgroup ϋΓ. By the first part of the proof, G* has the
finite exchange property, and thus there exist subgroups E{gΰ^ie J)
such that
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Therefore

where E{ — A if ie I — J. From (6) and this last decomposition we
see that the direct product

A! = Gλ x Π E< ,
iei

exists. Moreover, if y eG* then there is an element x e G1 such that
y = /(#). Hence x = y + z for some element z e ILe/-j A = ILew •#*,
and we conclude that y = x — zeA'. This shows that G*ξ^A', and
therefore A' = A. Finally, Go is of bounded order and thus has the ex-
change property by 11.2. According to 3.9 we can therefore find
subalgebras F{ QE{(ie I) such that

A = Go x G± x Π Ft = G x Π Fi .
iei iei

Hence G has the exchange property, and the proof of 11.4 is complete.

THEOREM 11.5. If B is a binary algebra such that the reduced
part of Bc is a torsion group each primary component of which is
torsion-complete, then B has the exchange property.

Proof. This is an immediate consequence of 8.1, 11.1, 11.3 and
11.4, together with the introductory remarks of this section.

Combining 11.5 with 4.2, 5.3 and 7.1, respectively, we obtain the
following principal uniqueness and isomorphic refinement theorems for
binary algebras.

THEOREM 11.6. If a binary algebra A has two direct decompo-
sitions with countably many factors,

A = B0xBιxB2x = Co x d x C2 x

where the reduced parts of all the groups B\ and C] are torsion
groups with torsion-complete primary components, then these two
direct decompositions of A have centrally isomorphic refinements.

COROLLARY 11.7. If A is a binary algebra such that the reduced
part of Ac is a torsion group with torsion-complete primary com-
ponents, then any two countable direct decompositions of A have
centrally isomorphic refinements.
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THEOREM 11.8. // a binary algebra A has a direct decomposition

where, for each iel, the reduced part of B\ is a torsion group with
torsion-complete primary components, then any two direct decom-
positions of A into indecomposable factors are centrally isomorphic.

THEOREM 11.9. // a binary algebra A has a direct decomposition

where, for each iel, B\ is countable and the reduced part of B\ is
a torsion group each primary component of which is of bounded order,
then any two direct decompositions of A have centrally isomorphic
refinements.

A final theorem describes a class of binary algebras with uncountable
centers having the isomorphic refinement property.

THEOREM 11.10. If A is a binary algebra such that the maximal
divisible subgroup of Ac is countable and the reduced part of Ac is
a torsion group each primary component of which is a torsion-com-
plete group with countable basic subgroups, then any two direct
decompositions of A have centrally isomorphic refinements.

Proof. Suppose

(1) A^p^ΠC,.

Since the maximal divisible subgroup of AG is countable and the basic
subgroups of each primary component of the reduced part of A° are
countable, it follows that there exists a countable subset /' of I such
that B\ = {0} for each iel — Γ. The factor ILe/-/' &i has the exchange
property, and hence there are subalgebras D3, D (j e J) such that
Cj = Dj x Dj and

Λ. — 11 Ei X 11 JJj .
iei-v jej

Consequently

( O \ T l D '—' c TT Ί~ίf

*) 1 1 i>» = 1 1 i Λ $
iei-i' jej

and, as ILe/-i' Bl = {0}, we infer by 2.19 that

(3) Π£, = Π A .
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Repeating the argument above for the factor Πί6jA» there is a
countable subset J ' of J such that Ό] = {0} for each j eJ — J', and
there are subalgebras Eif E- (i e Γ) such that B{ = Et x J?/ and

(4) Π Dj~cUE!f
jej-J' ίei'

(5) ΠA - Π ^
jej' iei'

The pairs of decompositions (2) and (4) each have centrally isomorphic
refinements by 11.9, and the decompositions (5) have centrally isomorphic
refinements by 11.7. Therefore the original decompositions (1) have
centrally isomorphic refinements, and the proof is complete.

12, Counterexamples and open problems* This final section con-
tains two examples that yield negative answers to some questions
related to the results in this paper. A number of unsolved problems
suggested by our investigations are also mentioned.

In 3.10 it was shown that if an algebra B is a direct product of
finitely many subalgebras each of which has the exchange property,
then B has the exchange property. The first example shows that this
result cannot be extended to products of infinitely many subalgebras.
In fact, the example shows that if B is an abelian p-group such that

B = B,x B2x B3x . . .
3

where, for k = 1, 2, 3 «, Bk is a cyclic group of order pk, then B
does not have the 2-exchange property. Thus the simplest unbounded
abelian p-group fails to have the exchange property.

Let

A = Π [uk] x Π [vk]
k=-l k = l

where, for k = 1, 2, 3, - - , [uk] and [vk] are cyclic groups of order p*.
Also, let

B - Π [uk + pvk+1] , C = Π [vk] ,
k=l / c = l

A = Π [vk + puk+1], A = Π [%]
k=l A-i

It is easy to check that

A = B x C = A x A ,

and in order to prove that B does not have the 2-exchange property
it is sufficient to show that the assumption that
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(1) A = BxE1xE2f S ^ A , # 2 S A

leads to a contradiction.
Assume that (1) holds. Since A is a direct product of finite groups,

it and all its direct factors have the unique factorization property.
Inasmuch as C = E± x E2, this implies that for each positive integer
k only one of the groups E1 and E2 has a cyclic factor of order pk.
Observing that

B x E2 S B x A = B x pC ,

we have vA = 6 + pc + e where b e B, ceC, b + pceB x E2f and β e Elm

Using the fact that B x C exists we see that, for r = 1, 2, 3, , k — 1,
the element pr(^/c — 6) = p r f lc + pre has height r, and hence the height
of pre is also r. Since pke = 0, this shows that [β] is a pure subgroup
of Elt and hence a factor of J5Ί, of order pk. Consequently E2 cannot
have a direct factor of order pk, and since this is true for every
positive integer k, we infer that E2 = {0}, and hence 4 = ΰ x £ 1 5 J 8 x A .
But it is easy to see that neither ux nor vλ belongs to B x D19 and
we have thus arrived at a contradiction.

In 8.1 it was shown that if the center of an algebra B has the
exchange property, then B has the exchange property. Our second
example shows that the converse of this result is false. For this
purpose we construct a group B such that

( i ) BG is an infinite cyclic group.

(ii) The commutator subgroup of B equals B, [B, B\ ~ B.

First observe that this does in fact imply that B has the required
properties. In fact, suppose Bc — [u] and let A — BG x C where C = [v]
is also an infinite cyclic group. Also let D1 — [2u + Sv] and D2 = [3u + 5v].
Then A = A xD2. Since Bc x A = -Bc x [3^]^A and Bc x D2 = BG x[5V]ΦA,
we see that Bc does not have the 2-exchange property. On the other
hand, suppose A is any algebra containing B as a subalgebra, and
suppose C and A (ΐ € I) are subalgebras of A such that

Let g and Λi be the projections of A onto C and A induced by these
two direct decompositions of A. Then gh{ maps 5 homomorphically
into the center of C, whence it follows by (ii) that, for each b e B,
ghi(b) = 0 or, equivalently, h{(b) e B. Thus, for each ie I, hi maps B
into B n A, and we infer that

B = Jl(BΓίDi).
iei
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It follows by the modular law that for each iel there exists a sub-
algebra Et S A such that A = (B f] A ) x A , and we conclude that

4 = 5x11^.
iei

Hence B has the exchange property.
In order to construct a group having the properties (i) and (ii)

we proceed as follows. For n — 2, 3, 4, let Hn be the group of all
n by n matrices of determinant 1 over a field of characteristic 0 that
contains a primitive nth root of unity. Then the center of Hn contains
a cyclic group of order n, and the commutator subgroup of Hn equals
Hn. The Cartesian product H of H2, H3, H4, therefore has the
properties that its center contains an infinite cyclic group and that the
commutator subgroup of H is equal to H. We now take for B a free
amalgamated product of two isomorphic copies B1 and B2 of H, with
amalgamated subgroup Z = B1ΓiB2 an infinite cyclic group contained
in the centers of both Bλ and B2. It is known that Bc = B\ Π B\, so
that J5C is in this case the infinite cyclic group Z. Thus (i) holds,
and it is obvious that (ii) is also satisfied.

The most interesting unsolved problem suggested by the results
in this paper is whether in Theorem 7.1 the assumption of countably
generated centers is needed. Specifically, is it true that if an algebra
A is a direct product of subalgebras each of which has the exchange
property, then any two direct decompositions of A have isomorphic
refinements! Even if the answer is negative, one might hope for an
affirmative answer in special cases, such as for groups whose centers
are of bounded order. Of course, if the answer should turn out to
be affirmative, then this would include Theorems 4.2, 5.3 and 7.1 as
special cases.

Another problem concerns the relation of the finite exchange prop-
erty and the exchange property: Is the exchange property always
implied by the finite exchange property! In connection with Theorem
7.1 it would be particularly interesting to know whether for an algebra
B with a countable generated center the finite exchange property
implies the ^0-exchange property (and therefore the exchange property).
It is not hard to show that for such an algebra B the condition

implies that

A = B x Eo x Exx E2x

where each of the factors Ek is a subalgebra of the finite product
Do x A x x Dk, but we do not know whether the factors Ek can
be replaced by subalgebras of the factors Dk.
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Theorem 8.3 raises the problem of determining those abelian
operator groups that have the exchange property. In this regard the
following question seems particularly relevant: Is it true that if an
abelian operator group satisfies the minimal condition, then it has
the exchange property 1 For ordinary reduced abelian groups the
results in § 11 apply only to groups with no elements of infinite height.
It would be of interest to know whether the class of all reduced
primary abelian groups having the exchange property contains any
groups with (nonzero) elements of infinite height.
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ON CONTINUOUS MATRIX-VALUED FUNCTIONS
ON A STONIAN SPACE

DON DECKARD AND CARL PEARCY

1Φ Introduction* In this paper the authors continue the study
(begun in [9] and carried on in [3] and [10]) of matrices with entries
from the algebra C(ϊ) of all continuous complex-valued functions on
an extremely disconnected, compact Hausdorff space 36. (Such spaces
are sometimes called Stonian after M. H. Stone, who considered them
in [14].) One of the authors has shown ([10], Theorem 3) that if A
and B are n x n matrices over C(X) such that A(x) is unitarily equivalent
to B(x) for each x e 3c, then A and B are unitarily equivalent in the
algebra Mn(£) of all n x n matrices over C(X). It is thus natural to
ask whether the similarity of A(x) and B(x) for each x e I is sufficient
to guarantee the similarity of A and B in Mn(£). We show by example
in §2 that the answer is no; however, we also show that if the
hypothesis is strengthened by the addition of a uniform boundedness
requirement, then the similarity of A and B in MJJSL) does indeed follow.
As a by-product of the technique introduced to give this result, we
obtain a new short proof of Theorem 3 of [10].

In § 3 we show that a certain class of entire functions maps Mn(£)
onto itself; this is a generalization (with a different proof) of a result
of Kurepa [8] for n x n matrices, and adds to the information obtained
by Brown [1] on the question of which entire functions map which
Banach algebras onto themselves. As a corollary, we learn that every
invertible element of MJjί) has a logarithm. Section 4 is devoted to
proving that an element of Mn(£) has an identically vanishing trace if
and only if it is a commutator in Mn(£). (See Remark 2, §4, for a
paraphrase of this result cast in the terminology of operator theory
on Hubert space.) Finally, in § 5 the authors give two examples which
indicate that it is probably fruitless to pursue the structure theory of
matrices over C(X) where 3£ is a more general topological space than a
Stonian space.

2* Similarity in MJ$). The most convenient definition of Mn{H)
is as follows. Let Mn denote the full ring of n x n complex matrices
under the operator norm, and let £ be any Stonian space. Denote by
Mn(£) the *-algebra of continuous functions from X to Mn, where the
algebraic operations in Λfn(ϊ) are defined pointwise. Under the norm
|| A || = supx6ϊ | |A(α)||,Mn(X) is a C*-algebra identifiable with the C*-
algebra of all n x n matrices over C(3£). Moreover, Mn(£) is an
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ATF*-algebra [7], and this fact is used briefly in this section.
We first show that pointwise similarity of A(x) and B(x) on X is

not sufficient to ensure that A and B be similar in Mn(£). For this
purpose, let £f be the Stone-Czech compactification of the natural
numbers Λ'. Then ^ is a Stonian space. (See, for example, the
discussion on page 295 of [12].) Consider elements A and B of
defined by:

o )• B W (o o

for each natural number x e ^K Then A(x) = J5(#) = 0 for x
and it is obvious that A(x) and B(x) are similar for each x e £f. Suppose
that S~(Sij) is an invertible element in M2(S^) satisfying SA = BS.
Calculation yields s21(x) = 0 for x e Λr so that s21 = 0. Furthermore,
sn(x) = xs22(x) for x e ^Y\ and the invertibility of S guarantees that
s22 never vanishes. Thus sn is unbounded, contradicting sn e C(S^)9

and it follows that A and B are not similar in M2{^).
The following theorem gives necessary and sufficient conditions

for A and B to be similar in Mn{H).

THEOREM 1. Let H be any Stonian space, and let A, BeMn(£).
Suppose that there is a dense subset ^ c ΐ and a positive number M
such that for x e ^ there is an invertible matrix S(x) satisfying
S(x)A(x)S-\x) = B(x), || S(x) \\ < M, and \\ S~\x) \\ < M. Then there
is an invertible element TeMn(di) satisfying TAT'1 = B, \\T\\ g ikf,
and || I 7 " 1 ! ! ^ M.

Proof. We consider collections {^} of nonempty, disjoint, compact
open sets ^ c ϊ with the property that if ^ e {^}, then there is
an invertible element T^MJ&i) satisfying Ti{x)A(x)Tr\x) = B(x),
|| T,{x) | | < M, and || Tf\χ) || < Af for each x e ^ . Let {^}<6/ be a
maximal such collection, and denote ^ = Uiei^i Then ^ is compact
open, and it follows from Lemma 2.1 of [3] that the function f defined
on Uΐei^ΐ so as to extend each of the T{ can be extended to an
element TeMn(^). Similarly, there is a function ZeMn(%f) which
extends each of the T%~\ It is clear from continuity considerations
that Z = T~λ, and that T has all the desired properties on ^ , so that
it suffices to prove W = X. Suppose, to the contrary, that X — "?/ Φ φ.
To obtain a contradiction, it suffices to find a compact open set

W and an invertible element Ve ΛfΛ(3θ such that for a e 3*7
- B(x)V(x)9 \\V(x)\\< M, and || V~\x) \\<M. To do this,

we regard the equation VA = BV as a system of linear equations
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CiΛ + c12v2 + + clmvm = 0

(L)

C^i + Cm2V2 + + CmmVm = 0

where

(1) the unknown functions vi are the entries, in some prescribed
order, of the matrix V

(2) the coefficients ci3- e C(ΐ — <?/) are the appropriate combinations
of the entries of the matrices A and B

(3) m = n\

For x e X — ^ , consider the corresponding system (L(x)) of linear
equations, and let x0 e 36 — <?/ be a point such that the rank r(x) of
the system (L(x)) assumes its maximum r0 at x0. (The case r0 = 0
leads trivially to a contradiction of 3£ — ̂ / Φ ψ, and we ignore it. The
case r0 = m cannot occur.) Then there is some r0 x r0 minor N of the
coefficient determinant of the system (L(x0)) which is nonzero, and by
continuity there exists a compact open neighborhood 5̂ ί c X — W of x0

such that for x e % the same minor N remains a nonzero minor of
maximum size. According to the hypothesis, there is a point xλ e 5^\and
an invertible matrix SixJ such that S(x1)A(x1) = BixJSfa), WSζxJW < M,
and 11 S^fa) \\<M. Let the corresponding nontrivial solution of the system
(L(Xi)) be denoted by (μ19 μ2, •• ,/i») (i.e., the μ{ are the entries of
the matrix S(a?i)). We wish to define an m-tuple {vλ{x)9 v2{x), , vm(x))
at each point of Ψl in such a way that

(1) the m-tuple is a solution of (L(x)) for each x e %
(2) Vi e C( %) f or 1 ̂  i ^ m, and
(3) î(ί»i) = μi for 1 ̂  i ^ m. This is accomplished as follows.

Since for x e % AT is a nonzero minor of maximum size, it suffices
to solve (continuously on Ψl) the r0 equations affiliated with JV. Thus
for the appropriate m ~ r0 values of i (the values not affiliated with
N)j define vt(x) = μt on % then for xe ^ the other r0 numbers
v{(x) are determined by Cramer?s rule, and since the functions ci3 are
continuous it follows that (1), (2), and (3) above are satisfied. Next
place the resulting functions v{ e C( ψ[) in their appropriate positions
in the matrix V, and shrink the neighborhood Ψl of xλ to a compact
open neighborhood 7^ c ^Γ of ĉ  such that f or x e 5 "̂ the matrix
V(x) is invertible and the inequalities 11 V(x) \\ < Mand 11 V~\x) \\ < M
remain valid. The existence of the compact open set 5^ contradicts
the maximality of the collection {^}ί€7, and thus the proof is complete.

We can prove Theorem 3 of [10] in a similar fashion,
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THEOREM 2. // X is Stonian and A, Be Mn(T) are such that A(x)
and B(x) are unitarily equivalent at each point of a dense subset of
X, then A and B are unitarily equivalent in Mn(£).

Proof. We consider collections {^} of nonempty, disjoint, compact
open subsets ^ c ϊ with the property that if ^ e { ^ } , then there
is a unitary element ^ e l ^ ) satisfying Ui(x)A(x)U?(x) = B(x) for
each x e *%si% As before, we choose a maximal collection {^}ίe/> and
define <%s — \Jiei ^ ί Again it suffices to prove ^/ — 3£. The argument
then proceeds exactly as above, except that the system of linear equations
to be considered is the system equivalent to the pair of equations
VA = BV and FA* = J3* V. (Thus the system consists of 2n2 equations
in n2 unknowns, but it is clear that this has no effect on the argument.)
Then, proceeding essentially as above, we obtain a compact open subset
5*"" c 3t — 'g/and an invertible (not necessarily unitary) element Ve Mn{7^)
such that for xe ^ V(x)A(x) = B(x)V(x) and V(x)A*(x) = B*(x)V(x).
One knows from ([14], Lemma 2.1) that we can write V in polar form
V— UP where U is a unitary element of Λfn(3^). A standard calculation
shows that for x e 5*7 U(x)A(x) U*(x) = B(x); thus the existence of 5^ con-
tradicts the maximality of the collection {^}ί6i> and the proof is complete.

REMARK. One would naturally like to have a collections of global
objects to attach to an element A e Λfw(X) which would serve as a
complete set of similarity invariants for A. In this connection, it is
easy to see that one cannot always obtain an element JeMn(£) such
that A is similar to J in MJJ&) and such that J(x) is in Jordan form
for each xe%.

3 Entire functions on Mn(£). We say that an entire function
/ has property (K) if, for every complex number ζ, there is a complex
number z satisfying f(z) = ζ and f\z) φ 0. In [8] Kurepa showed that
an entire function / maps Mn onto itself if and only if / has property
(K). The study was then taken up by Brown [1] who characterized
the class of entire functions / which map the algebra £f(£tf) of all
bounded operators on an infinite dimensional Hubert space έ%f onto
itself. Brown showed that such an / maps every Banach algebra onto
itself, and we say that such an / has property (B). Since certain
W* -algebras of operators on Hubert space have faithful C*-represen-
tations as an Mn{Έ) (see [9]), one has, in a sense, Sf(£ίf) ZD Mn{ϋ) z> Mn.
Thus it is of interest to discover which entire functions map Mn(£)
onto itself, and the answer is given by

THEOREM 3. // / is an entire function and H is a Stonian space,
then f maps Λfn(ϊ) onto itself if and only if f has property (K).
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Proof. Since for each x e 9c, [p(A)](#) = p(A(x)) for every polynomial
p(z), and since / is the uniform limit of polynomials on compact sets
of the z-plane, [f(A)](x) = f(A(x)) for each x e ϊ . Thus, if / maps
Mn(£) onto itself, then / must map Mn onto itself, so that by Kurepa's
theorem [8], / has property (K). Now suppose that / has property
(K), and let AeMn(X). We look for BeMn(X) such that f(B) A.
Let x0 be an arbitrary point of X and let ζlf , ζp be the distinct
eigenvalues of A(xQ). Choose zlf *—,zp to be complex numbers with
the properties that /(^) = ζ< and /'fa) Φ 0. For i = 1, , p, let Sf{

be a (non-degenerate) closed disc about zt such that / is Schlicht on
^ , and arrange it so that the sets /(ϋ%) are mutually disjoint. Let
g denote the inverse of the restriction of / to U?=i ®ί Then g is
defined and continuous on *%r = UlU/C^) a n d is analytic at each
interior point of 3ίm It follows from Lemma 2.2 of [3] that there
exists a compact open neighborhood ΛΊ ~ .yf/'ixo) of x0 such that for
xeΛ^, the spectrum of A(ίc) (denoted hereafter Λ[A(x)]) is a subset
of the interior of S&. If Ao denotes the restriction of A to Λ^9 then
Ao is an element of the C*-algebra M^x^)* and it is clear that the
spectrum of Ao is U^e^0^[A(α;)]. As usual, following Dunford [5],
g(AQ) e Mn(Λ^) can be defined as the sum of the p integrals
l/2πi \ g(X)(A0 - Xl^dX, where A is the boundary of the s e t / ( ^ )

If we denote BQ = ^(A)? it follows from Theorem 2.10 of [5] that
f(B0) = AQ. Since this construction was carried out about an arbitrary
point x0 e 3£, we can apply the compactness of X to obtain points
xly , xr e X and compact open neighborhoods ^Vl of the x{ such that
Ul=i Λi = X and such that the above construction has been carried
out to yield a corresponding B{ on each ^V[. Furthermore, we can
assume that the ,Ari are pairwise disjoint. The element B e Mn(£)
defined by B(x) = Bt(x) for x e Λl is such that f(B) = A, and the proof
is complete.

COROLLARY 3.1. IfTίisa totally disconnected, compact Hausdorff
space, then each invertίble element of ikTΛ(3£) has a logarithm in Mn(£),
and thus has roots of all orders in Λfn(ϊ).

Proof. Observe first that the proof of Theorem 3 above goes
through word for word in the case that 9£ is only compact Hausdorff
and totally disconnected. Then observe that if Ae Mn(£) and an entire
function / are given, in order to carry out the construction in the
above proof to obtain a B such that f(B) = A, it suffices to know that
for each ζ in the spectrum of A, there is a complex number z such that
f(z) — ζ and f'{z) Φ 0. These observations complete the proof.

It results easily from Theorem 3 that if
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91 — V £P> M C$ \

is any finite C*-sum of algebras MnJJίk) where the Hk are Stonian spaces,
then the entire functions which map §t onto itself are exactly those
with property (K). However, if one considers algebras

® = g iΘMn(ϊJ k)

which are C*-sums of infinitely many Mnjβίk) where nk—>co and the
Xfc are only assumed to be compact Hausdorff spaces, then the situation
is different, as is demonstrated by the following theorem.

THEOREM 4. If S3 is any algebra of the form

S)ft V £P> M ί ΐ Ί
k = \ K

where nk —> oo and each Tίk is a compact Hausdorff space, then the
entire functions which map S3 onto itself are exactly those with
property (B)

The proof of this theorem is patterned after an argument of
Brown [1], and depends on the following lemma.

LEMMA 3.2. Let f be any entire function, let g(z) be the polynomial

«—1

g(z) = Σ aiZ< ,
»=0

and let AeMn be the "analytic Toeplitz" matrix

'a0

_ α2 ax a0

Then f(A) is an "analytic Toeplitz" matrix

f(A) =
b0

h bB
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and the entire function h(z) = f(g(z)) has a power series expansion

h(z) =

where βt = 64 for 0 ^ ί ^ n — 1.

i = 0

Proof. If / is any positive integral power of 2, or more generally
any polynomial, an inductive computation shows that the result is
valid. For an arbitrary entire function /, let pn(z) be a sequence of
polynomials which converges uniformly to / on every compact subset
of the 2-plane. Then, since pn(g(z)) converges uniformly to h(z) on
compact subsets of the plane, the coefficients in the power series
expansions of the pn(g(z)) must converge to the corresponding coefficients
in the power series expansion of h(z). (See, for example, ([2], § 211))
Furthermore, since pn(A) converges to f{A) in the norm topology of
Mn, the entries of pn(A) must converge to the corresponding entires
of f(A), and the result follows.

Proof of Theorem 4. For convenience we take nk — n.
be clear that this does not affect the argument. Let

be defined by setting

It will

0

1 0

1 0

1 0

for each positive integer n. Let / be an entire function which maps
onto 33, and suppose that

satisfies f(A) = rB where r is some fixed positive real number. Since
for any central projection E e 35, f(EA) = Ef(A)f it is clear that for
each positive integer n, f(An) = rBn. Now choose an arbitrary xn e Hn

for each integer n. The fact that f[An(xn)] = rBn(xn) follows just as
in the proof of Theorem 3. Since An{xn) commutes with Bn(xn) =
l/rf[An(xn)] and Bn is identically constant on 9£w, a matrix calculation
shows that for each positive integer n, the matrix An(xn) has the form
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of

2 Hi a0

where the αj are of course complex numbers. Define the sequence
gjz) of polynomials by

- Σ

and let ftn(z) = f(gn(z)). Since /[Aw(an)] = rBn(xn), it follows from
Lemma 3.2 that for each positive integer n, hn(z) is an entire function
having a power series expansion

hn(z) = rz+ Σ «z fc

Since A = Σ Θ 4 is a bounded operator, it follows that there exists

a positive number M such that

Σ I α? I1 < Λί
ΐ=0

for each w. Let £%r denote the disc & = {̂ : | ίe | ^ 1/2} and observe
that it follows from the above inequality that the sequence gn(z) is
uniformly bounded on & by the number 2l/M. It follows from
MonteΓs theorem ([2], §416) that one can extract a subsequence g%k{z)
which converges uniformly on 3f to a function 0(3) which is analytic
on £2f. It follows that h%k(z) — f(gnjc(z)) converges uniformly to f(g(z))
on ^ , and by virtue of the form of the power series expansion of
each hnk(z), we must have f(g(z)) — rz on £2f. It is now clear that
g(z) is a Schlicht mapping of the interior &° of £%f onto some bounded
domain g(&°) and that / is a Schlicht mapping of g(&°) onto the
open disc {z:\z\ < r/2}. Since r was arbitrary, it follows from ([1],
Theorem 2) that / has property (JS), and the proof is complete.

4. Commutators in MJJSL). We introduce the notation σ(B) for
the trace in the usual sense of an n x n complex matrix B. In this
section, we generalize another result known for MnJ and thereby set
forth a class of operators on Hubert space which are commutators.
(See Remark 2 at the end of this section.) More precisely, we establish

THEOREM 5. If X is a Stonίan space and A e Mn(£), then A
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satisfies σ[A(x)] = 0 if and only if there are elements B and C in
Mnβ) such that A^BC - CB.

One half of the theorem is trivial; to prove the other half we use
an idea suggested by Halmos in [6]. The crucial lemma is the following.

LEMMA 4.1. / / £ is any Stonian space and AeMn(£) is such
that σ[A(x)] = 0, then there is an invertible S e MJJί) such that
SAS-1 = D = (dij) satisfies dn = 0.

Proof. We consider collections {^} of disjoint, nonempty, compact
open sets f/^eX with the property that if ^ e {^}, then there is an
invertible S { e Λfn(^<) such that || Si ||, || Sr1 || g 6 and such that for
each X G % the matrix SiASι~

1(x) has a zero in the upper left hand
corner. Let {^} ί6i be a maximal such collection, and define '?/ —
Uiei *&%• It follows from Lemma 2.1 of [3] that to complete the proof,
it suffices to establish ^ = 3c. Thus, suppose to the contrary that
% — %S Φ φ. According to Theorem 1 of [3] there exist functions
\f '' * 9 ^n £ C(3£ — <%s) such that for xelί— Ήf, the numbers λ^cc), , λn(cc)
are exactly the eigenvalues of A(x). Furthermore, there must be at
least one point x 0 G Ϊ - f / such that some Xi(x0) Φ 0. (Otherwise, we
could apply Theorem 2 of [3] to obtain a unitary UeMn{H — ̂ /) such
that UAU*(x) is in upper triangular form for each xeH—^. Then the
diagonal entries of UAU*(x) would be identically zero, and the maximality
of the collection {^} ί6i would be contradicted.) Since we know from
the hypothesis that

there must be at least two distinct i such that \(x0) Φ 0. In fact, a
little thought convinces one that there exist λ, and Xk (j Φ k) such that

0 < I λ ^ ) I ̂  I \k(x0) I < I Xk(x0) - \3ix0) I .

It follows from the circle of ideas connected with the proof of Theorem
2 of [3] that there is a unitary element UeMn(H) — <%/) such that
UAU*(x) = (dij(x)) is in upper triangular form for each x e X — ̂ / and
such that α n = Xk and α22 = X, on X — ^ . Thus 0 < | a22(x0) \ <Z
I o,n(x0) I < I an(x0) — a22(x0) |, and by clever choice of U (i.e., by applying
an additional rotation, and then changing notation) one can arrange
things so t h a t | an(x0) — a22(x0) \ < \ a12(x0) — [an(x0) — a22(x0)] |. I t follows

that for some δ, 0 < δ < 1, there is a compact open neighborhood
y c ϊ - ^/ of x0 such that f or x e 3*7 0 < | α22(^) | ^ (1 + δ) | αu(aj) | <
\dn(x) — [an(x) — α22(x)] |. The argument now splits into two cases.
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Case I. For every x e 5̂ 7 | a12(x) | ^ | an(x) |. In this case we define
an invertible S = (s{j) e Λfn(3*~) to be the direct sum of the 2 x 2
matrix (si3 : i, i ^ 2) and the identity element of Λfn_2(3θ, where for
xe ^sn(x) = s22(#) = 1, s12(x) = 0, and sal(aj) = αu(ίc)/αia(aj). An easy
calculation shows that | | S | | , || S"1!! ^ 4, and another calculation shows
that for xe ^ the matrix SUAU*S~1(x) has a zero in the upper left
hand corner. The existence of 7" thus contradicts the maximality of
the collection { 5^ΐ}ί€ί> and we proceed to

Case II. There is a compact open subset V/^" c ^ such that for
x e Ύ/^, \au(x) \ < \au(x) |. As before we define an invertible S =
(si3) e Mn( Ύ/^) to be the direct sum of the 2 x 2 matrix (si3: i, j ^ 2)
and the identity element of AfΛ_2(

 <5^). This time for x e W~ we take
Sn(x) = su(x) = s21(x) = [αn(x)/{α12(x) - [an(x) - α22(x)]}]1/2 and s22(x) =
su(x) [{a12(x) + ^22(^)}Mn(^)], where the exponent 1/2 denotes any square
root taken in such a way that sn e C( Ύ/^). (Theorem 1 of [3] enables
us to take continuous square roots.) As a result of the inequalities
which are valid on 5^7 one has | su(x) \ < 1 and | s22(x) \ ̂  2 + δ for

each x e ^ furthermore, sus22 — s12s21 = 1 on <^7 ^ n d it follows that
II SII, US"1 II ^ 6. Calculation shows that for xe W~, SUAU*S-\x)
has a zero for its upper left hand entry, and thus the proof is complete.

The following corollary follows easily by induction on n, and we
omit its proof.

COROLLARY 4.2. If Ae MJT) is such that σ[A(x)] = 0, then there
is an invertible S e MJ$) such that SAS"1 = {aiά) satisfies au = 0 for

Proof of Theorem 5. We are given that tf[A(x)] = 0. Choose
S e Mn(&) according to Corollary 4.2 so that SAS"1 = (ai5) satisfies au = 0
f o r 1 g i ^ n . D e f i n e B ± = {bi5) e M n β ) b y δ « = i f o r l ^ i ^ n a n d
bi3 = 0 for iφ j . Also define d = (co ) e Mnβ) by ciά Ξ a^/iba — b3j)
for iΦ j and ci3- = 0 f or i = i . If 5 and C are defined by JB = iS-'CxS,
then it is easy to see that B1C1 — CλBλ — SAS"1, or, what is the same
thing, BC - CB = A.

REMARKS.

(1) A stronger version of Lemma 4.1, obtained from the present
version by requiring S to be unitary, actually holds. The proof, however,
uses a completely different idea and is much longer than the above
proof.

(2) A bounded operator B on Hubert space is called ^-normal [9]
if the W*-algebra which B generates satisfies a polynomial identity
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of the form

where the sum is taken over all permutations π on 2n objects. It is
known that such a T7*-algebra is a finite direct sum of algebras each
of which has a faithful C* -representation as some Mk(Jik) with XΛ Stonian
and k^n. Furthermore such a TF*-algebra has a well-behaved center-
valued trace function, so that Theorem 5 can be paraphrased: Any
^-normal operator with trace zero is the commutator of a pair of
^-normal operators.

(3) There are at least two classes of operators on Hubert space
which possess well-behaved numerical traces. These are operators in
the trace-class [13], and operators in W*-algebras which are factors
of type Hi. Is it true that every operator with trace zero in one of
these classes is a commutator?

5. Two examples* In this section we set forth two examples
which show that Theorem 2 of [3] and Theorems 1 and 2 of the present
paper cannot be extended to the setting in which X is assumed only
to be a compact Hausdorff, totally disconnected space. In these examples
we take ^ to be the compact Hausdorff, totally disconnected space
consisting of the set {al9 α2, , αw, , 0} with the relative topology,
where the real sequence {an} is strictly decreasing to zero and satisfies
cos (l/αn) = sin (l/αn) = \\V 2 for n odd and cos (l/αn) = 1, sin (1/αJ = 0
for n even.

EXAMPLE 1. (This example is essentially due to Rellich [11].)
Define A e M2( J Π by

/I - αTC cos (2/αJ - α n sin (2/αnV
{CCJ ~ ' -α, sin (2/α,) 1 + αM cos (2/α.)/ '

Then, even though A is Hermitian, ίfcere exists no unitary
such that UAU*(t) is in upper triangular form for each

Proof. Assume that such a U= (ui:}) exists, and let UAU*(t) =
{biά{t)). Then the biS e C(^~), and the vector (Ujt), ΰjt)) = V(t) has
length one at each t e J7~ and has entries which are elements of
C(^~). Futhermore, it is easy to see that [A(ί) - bn(t)I]V(t) = 0. In
other words, the vector V(t) is a continuous eigenvector for A(t) cor-
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responding to the eigenvalue bn(t). An easy calculation shows that
the eigenvalues of A(an) are 1 — an and 1 + anj so that for each n,
bn{an) = 1 — an or bn(an) = 1 + an. Furthermore, it is easy to see that
the vector (cos (l/αΛ), sin (l/αΛ)) is an eigenvector for A(an) corresponding
to the eigenvalue 1 — an, and the vector (sin(l/αj, — cos(l/αj) is an
eigenvector for A(an) corresponding to the eigenvalue 1 + an. It
follows that for n odd, we must have | ΰn(an) | = 1/τ/ 2, and for n
even, we must have | ΰn(an) | = 0 or 1. This contradicts un e
and completes the proof.

EXAMPLE 2. Define A, Be M2(^~) by A(0) = B(0) = 0 and

[ o
Then A(t) is unitarily equivalent to B(t) for each te^~, but there
exists no invertible S e M%(^~) such that SAS"1 = B.

Proof. Suppose such an invertible S = (s^ ) £ M2(j7~) does exist
Then SA = JBS, and calculation shows that s21 = 0. Furthermore,
βn(cϋ — ( —l)%s22(α%) for each n, and since S is invertible and s21 = 0,
sn and s22 are bounded away from zero. It follows that su and s22

cannot both be continuous at zero, a contradiction.

REMARK. While the theory of elements A e Mn(%) is not very
satisfactory for 3£ only totally disconnected, it is nevertheless true that
A has continuous eigenvalues [4].
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ANOTHER CHARACTERIZATION OF THE n-SPHERE
AND RELATED RESULTS

R. F. DICKMAN, L. R. RUBIN AND P. M. SWINGLE

In [5] we defined an irreducible -B(J)-cartesian membrane and an
excluded middle membrane property EM, and used these to characterize
the ^-sphere. There the class B(J) was of (n — l)-spheres contained
in a compact metric space S. Since part of the proof does not depend
upon the fact that elements of B(J) are (n — l)-spheres, we consider
the possibility of other entries in the class B(J). Recent developments
in this direction have been made by Bing in [2] and by Andrews and
Curtis in [1]. In [3] and [4] Bing constructed a space B not homeo-
morphic with E\ which has been called the dogbone space. By Theorem
6 of [2], the sum of two cones over the one point compactification B
of B is homeomorphic with S\ This sum of two cones over a common
base X is called the suspension of X.

In [1] Andrews and Curtis showed that if oc is a wild arc in Sn

that the decomposition space Sn/a is not homeomorphic with Sn. They
proved, however, that the suspension of Sn/a is always homeomorphic
with Sn+1 for any arc aczSn. The reader will easily see that a class
B or of Sn/a as described will satisfy the conditions for a class B(J)
for which an ^-sphere will have property EM.

The results below were obtained in considering such spaces, and
Theorem 1 below is a weaker characterization of the ^-sphere than is
Theorem 2 of [5]. We find it difficult to determine the properties
JeB(J) must have for S to have Property EM, as is shown by our
Theorem 4 below.

I* Definition and basic properties* Let S always be a compact
metric space and let B(J) be a class of mutually homeomorphic
subcontinua of S. We put conditions on this general class B(J) in
our theorems below.

We define a J?(J)-cartesian membrane as we did in [5] and [6].
Let F be a compact subset of S containing JeB(J). Let M be a
subcontinuum of F,beM and C be homeomorphic to J. Denote by
(C x M, b) the decomposition space [10: pp 273-274] of the upper semi-
continuous decomposition of the cartesian product C x M, where the
only nondegenerate element is taken to be C x b (intuitively the
decomposition space is a sort of generalized cone with vertex at the
point C x b). With this notation we give:

Received September 18, 1963. This work was done under National Science Foundation
Grant G 19672.
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DEFINITION 1. We say that F is a B(J)-cartesian membrane from
b to J (or for brevity with base J) if and only if there is a homeo-
morphism h from (C x M, b) onto F for some M such that:

( i ) for some a e M — b, J = fe(C x α),
(ii) for all qeM-b, h(C x g) e £ ( / ) , and
(iii) Λ(C xb) = b.

If Af is irreducible from a to δ, then we prefix the above definition
by irreducible. Whenever F is a β(J)-cartesian membrane and F =
fe(C x m, 6), /& is assumed to be a homeomorphism from (C x M, b)
onto i*7 with properties (i), (ii) and (iii). We say b is the vertex of F
and J is the base of JF7.

The definition of -B(/)-cartesian membrane is rather general; for
example, a point or any continuum can be taken as a I?(J)-cartesian
membrane. We shall place restrictions on the space S to limit possi-
bilities such as these when the need arises. The excluded middle
membrane property of Theorem 2 in [5] is the following:

Property EM. We say that the space S has Property EM with
respect to the class B(J) if the following hold:

( 1 ) The class B(J) is not empty;
( 2 ) For each JeB(J), S = Fλ + F2 where Fx and F2 are irreduci-

ble 2?(J)-cartesian membranes with base J, such that Fτςt.F2 and
F2ςtF1 and whenever S is such a union and F3 is any other B(J)
cartesian membrane containing J, then Fz contains Fτ or F2 but not
both; and

( 3 ) If Je B(J) and pe S — J, then there exists a B(J)-cartesian
membrane from p to / .

Below F, Fr, Fx and F2 are always irreducible i?(J)-cartesian
membranes.

We proved in [5] that when B{J) is a class of (n — l)-spheres
and n > 1 that:

(A) A necessary and sufficient condition that S be an w-sphere
is that S have Property EM.

We observed in our proof of (A) that if S had Property EM with
respect to a class of mutually homeomorphic continua, we were able
to prove:

(B) That whenever S = Fx + F2 where Fx and F2 have base
J, ί\ F2 — J;

(C) If F = h(C x M, b) was an irreducible I?(J)-cartesian membrane,
then M was always a simple continuous arc with b as endpoint; and

(D) If S = i*7! + F2 where J?\ and F 2 have base J and JP8 is any
other irreducible i?(J)-cartesian membrane with base J, then Fλ — F^
or F2 - FΛ.
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In the first paragraph of the proof of Theorem 2 of [5], (D)
appeared easily as result (Rι); then by a long proof we showed that
Fx Π F2 = J, which is (B) above, and we note this long proof only
depends upon J being a continuum, not on J being an (n — l)-sphere
Finally, the following argument show that (C) holds. Let S = Fx + F2,
where Fx and F2 are irreducible I?(J)-cartesian membranes with base
J. By (B) F1*F2 = J, and so every element of B{J) separates S.
Then if F1 = h(C x M, b) where M is irreducible from a to 6, and if
ze M — a — b, h(C x z)e B(J) by (ii) of Definition 1 above. Hence
h(C x z) separates Sf and therefore separates Fλ. This implies z
separates M, and so M is a simple continuous arc, as desired in (C).

I L Characterization of the ^-sphere, for n > 1* We give now
several lemmas that will enable us to characterize the ^-sphere.

NOTATION. For a subset K of S, we will use cl{K) to denote the
closure of K in S, and for an open subset U of S, we will use Fr( U)
to denote the set cl(U) — U.

LEMMA 1. If S has Property EM, then S is homogeneous.

Proof. Let x9y e S, x Φ y, and let J be an element of B(J) such
that J c S — x — y. By (8) of Property EM there exists an irreducible
i?(J)-cartesian membrane F = h(C x M, x) from x to J and by (D)
and (2) of Property EM, S = F + Fr, where F' has base J. Now
by (B) each J' eB(J) separates S, hence by (ii) of Definition 1, some
Jo = h(C x q) separates x from y. Then by (2) of Property EM, S=
F1 + F2 where Fτ and F2 have base Jo From (D) and (3) of Property
EM there exists hλ and h2 such that JF\ = hλ(C x il^, a;) and F2 =
fe2(C x Λf2,7/). From (C) Λfj and M2 are simple continuous arcs and x
y are endpoints of Mx and M2 respectively. Hence from (B) there
exists a homeomorphism from S onto S that carries α? onto y; therefore
S is homogeneous [10: p 378].

A topological space X is invertible [7] if for each nonempty open
set U in X there is a homeomorphism A of I onto itself such that
h(X - U) lies in £7.

LEMMA 2. //* <S Λαs Property EM then S is invertible.

Proof. For any open set U in S and any point x e U, some
JeB(J) separates x from Fr(U); then if S = i^ + F2 where ί\ and
F2 have base J, we can find a homeomorphism as in Lemma 1, that
maps S onto S such that Fx maps onto 2^ and F2 maps onto ί\, hence
(S - U) into ί7.



874 R. F. DICKMAN, L. R. RUBIN AND P. M. SWINGLE

THEOREM 1. Let n > 1 and let each element of B(J) contain a
point at which it is locally euclidean of dimension (n — 1). Then S
is an n-sphere if and only if S has Property EM.

Proof of the sufficiency. Let JeB(J) and let x be an element
of J at which / is locally euclidean of dimension (n — 1). Let U be
an open (n — l)-cell neighborhood of x in J. Let F = h(C x M, b)
have base J. By (C), M is an arc, and if V is an open subinterval
of M containing a point y, h(U x V) is an open n-cell neighborhood
of h(x, y) in F. Since h(U x V) misses J, h(U x V) is open in F — J,
and hence in S. By Lemma 1, S is homogeneous; hence every element
of S has an open n-cell neighborhood, and so S is ^-manifold. Doyle
and Hocking in Theorem 1 of [7], have shown that if S is an invertible,
^-manifold, then S is an n-sphere; hence by Lemma 2, S is an n-sphere.

The proof of the necessity is identical to that of Theorem 2 in [5].
Because 0-spheres are not connected the above proof does riot hold

for n — 1. We refer the reader to Theorem 1 of [5] for a character-
ization of the 1-sphere by an excluded middle membrane principle.

Ill* Related results*

LEMMA 3. If S has Property EM then S is locally connected.

Proof. We note that if F is an irreducible i?(J)-cartesian
membrane with base J, then F — J is an open connected set in S,
and proceed as in the proof of Lemma 2.

LEMMA 4. If S has Property EM and Je B(J) then J is locally
connected.

Proof. Let S = F1 + F where Fx and F have base J and F =
h(C x M, 6), where M is an arc from a to b; and h(C x a) = J as in
(1) of Definition 1. Since S is locally connected, the open set
F — J — b is locally connected. We define f(h(cf m)) = h(c, a), where
h(c, m) is a point in F — J — b; then / is a projection onto J and can
easily be proved to be continuous and open. Since F — J — b is
locally connected and local connectedness is preserved under open,
continuous mappings, J is locally connected.

THEOREM 2. If S has Property EM and Je B(J), then J contains
a 1-sphere.

Proof. Let J e B(J), and F = h(CxM, b) have vertex b = h(Cxb)
and base J. Since J is locally connected, C must contain an arc /;
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and by (C), M is an arc. Then the set E' = h(I x M, b) is a closed
2-cell contained in F. Let E be any subset of Er that is homeomorphic
to euclidean 2-space E2.

Let bi (i — 1, 2, •••) be a sequence converging to b in If. Then
the half open intervals Mt = 66̂  — 6; form a basis of open sets in M
at b, and the sets Ui{b) = /&(C x Mif 6) form a basis of open sets in
F at b. These open sets have the property that Fr(Ui(b)) is homeo-
morphic to J.

Choose xeE, then as g /. By the homogeneity of S there exists
a basis of open sets Ut(x) which have the property that their boundaries
are homeomorphic to J. Now fix i such that U = Ui(x) !£ has a
compact closure in E. Let F be the component of U that contains x.
Since # is locally connected, V is open in E. Also 2<V(F) cFV(E7i(aj));
therefore without loss of generality we can think of Fr(V) as being
a subset of J. Let V be a component of E — cl(V). Then V is an
open connected subset of E and ίy(F ; ) czFr(V). Since JPV(F') is
closed and Fr(V) compact, Fr(Vr) is compact. By Theorem 25 of
[10: p 176], Fr{V) is a continuum. Then by Theorem 28 of [10: p
178], JFV(F') is not disconnected by the omission of any point.

Let r, se Fr(V'), and let Y be an arc from r to s in J. Let
qeY — r — s; now g does not separate r from s in Fr{V); hence g
does not separate r from s in J; then there exists an arc Yf from r
to 8 in J that does not contain q, and F + Yf must contain a 1-sphere.

REMARK. Since J is locally connected, J is arcwise connected and
as such cannot be an indecomposable continuum; by Theorem 2, J
cannot be hereditarily unicoherent. A simple proof using the Brouwer
Invariance of Domain Theorem [9: p. 95] will show that J cannot be
a closed w-cell

LEMMA 5. Let S be an n-sphere having Property EM with respect
to some B(J). (1) If G is an (n — 2)-sphere in JeB(J), then J — G
is not connected; (2) if E is a closed (n — 2)-cell in J, then J — E
is connected.

Proof. (1) Suppose J — G is connected. Let S = Fx + F2 where
Fλ and F2 have base J; by (B) and (C) we can find hλ and h2 such that
F1 = hλ{J x Λfi, &!>, F2 = &2(J x Ma, 6a) and ^ | (J x α) = h2 \ (J x α) where
Mx and M2 are arcs from a to &i and a to 62 respectively. Then K =
^ ( ( J - G) x (Mi - 60) + Wί T" -G)x (Ma - 6a)) is connected. But
S — K = hλ{G x Mi, 6J + ΛaίG x Ma, b2) is an (n — l)-sphere is S and
must disconnect S by the Jordan Separation Theorem [9: p. 101].

The proof of (2) is similar to that of (1).
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THEOREM 3. A necessary and sufficient condition that S be a
3-sphere is that S have Property EM if and only if B(J) is a
collection of 2-spheres.

Proof. The sufficiency follows from Theorem 2 of [5].
By Theorem 2, every JeB(J) contains a 1-sphere, and by (1) of

Lemma 5 every 1-sphere in J separates /. By (2) of Lemma 5 no proper
subcontinuum of a 1-sphere in J separates J; and by Lemma 4, J is
locally connected; therefore by Zippin's Characterization in [11: p. 88]
J is a 2-sphere. The rest follows from Theorem 2 of [5].

We need Hypothesis:

(H 1) If Fc, Fb and F" are irreducible J5(J0)-cartesian membranes
with base Jo then Fc + Fb + F" is contained in some E3;

(H2) If Sx = Fz + F" is a 2-sphere in E\ x is vertex of B(J0)-
cartesian membrane Fx and t'a = hc(ca x M", x) {cω e C) is a projecting
arc from x to J through a point y e int (Sx, E*), (the interior of Sx in
EB), then ζ - x c int (Sx, #

3); if g e int (S.f £J3) J - J', then β e cl (J - J')

THEOREM 4. Let S /wive Property EM, let (H 1) and (H 2) Aoid
ami let there exist a region Rin S such that J R contains a 1-sphere

Jo and R* J is embedded in the euclidean E2; let there exist qeJ — R.

Then J contains a closed 2-cell with JQ as boundary.

Proof. By (2) of Property EM there exist irreducible B( J)-cartesian
membranes such that S = h(CxM, b) + h'(CxM', V) where h | (Cxa) =
h'\ (C x α) and Λί, Λf' are arcs from a to δ and α to b' respectively;
since J D JO, there exists C o c C homeomorphic to e/0; let ^(Co x M, b) =
F δ and fe'(C0 x M', 6') = 2^", where then F 6 and F" are irreducible
β(J0)-cartesian membranes from Jo to 6 and bf respectively. Let Sb =
JP6 + F' f ; by Theorem 2 of [5], Sδ is a 2-sphere.

By hypothesis there exists qeJ~R; thus g ί Sb, and so by (H 2)
the projecting arc from b to q does not contain a point of int(S6,1?8);
let c be an element of this projecting arc. By (8) of Property EM,
there exists an irreducible B(J0)-cartesian membrane Fc = hc(C0 x Mc,c)
with base Jo, a subset of an irreducible 2?(J)-cartesian membrane
hc{C x Mc, c) from c to J; by the choice of c, feβ(C.x Λfc, c) = λ(C x Λf, 6)
and thus Sc = Fc + F" is a 2-sphere

Since c ί int (Sb9 E
d), there exists a region R' about c such that

cl{Rr) Sb = Φ; then by Lemma 3 of [6] there exists an irreducible
£(J>cartesian membrane FQΰ = hc(C x Af/,c), for M'caMc, such that

.P C . i e ' z) F O C .
Let {tac\ be the class of all projecting subarcs from c to J which
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are contained in (Sc - (FOc - J/)) + int (Sc, E*) - (FOc - //), where
Jo is the base of FOe; that is tΛ0 is an arc from J to FOc in and on Sc.

Let Z' = U ί*c and let Z = Zf - J. Suppose Zf = Z/ + Za' separate
[11: p. 8], Since each tae is connected, each is contained wholly in
Z[ or in Z[\ this is also true of Jo and so of Fc — FOc; so let Z/ ^ Fc —
FOc ID C/Q.

By Theorem 5.37 of [11: p. 66] Sc is arcwise accessible from the
embedding Es; hence there exists an arc cbr such that cbf — c —
b' c int(S c, E

z). But cV contains a point of int(S 6, Es) and a point c
of S — int (Sb, E3) — S6; hence cV contains some v e Sb, because by
the Jordan-Brouwer Separation Theorem [11: Theorem 5.23, p. 63] Sb

separates E* into two domains. Hence by (2) of Property EM there
exists a projecting arc from c to J through v, and so some t^ ID V and
Zf Z) tac. Let Zi — Zl- Z(i = 1, 2), where by agreement Zx Z) Jo. By
hypothesis J 72 is contained in some euclidean E2, and so let E be
the 2-cell bounded by Jo in this E\ Thus Jo + Ez) Z, and because
of v above E-Z Φ φ. If jeJ-E, by (H2) the projecting arc cy is
such that cj — c c int (Sβ, S'3). Thus i e Z, and so Z = Jo + J- E =
Zλ + Z2 separate. Hence J = {Zι + (J — E)) + Z2 separate, which is a
contradiction, since / i s a continuum. Therefore Z and Zf are connected.
By Lemma 4 J" is locally connected, and so by (H2) Z is also.

Since Z is closed, Z contains all of its boundary points in the space
J. By the Torhorst Theorem [10: p. 191, Theorem 42], the boundary
of any complementary domain of Z in E must be a 1-sphere Jo'. Using
Jo' in place of Jo, one obtains a 2-sphere Sj with poles c and 6' and
with Jό as a base in Sc\ Thus an arc 6c' above exists such that
cV — c — br c int (£/, 2?3) and there exists a point ve Sb- cb'; also there
exists tac as above, now contained in the int(S«f, E3); hence an endpoint
of tωc is an element of int (Jo, ^ 2 ) ; thus a point of Z is in the comple-
mentary domain above of Z in E, which is a contradiction. Therefore
Z = E, and so J contains a closed 2-cell.

If (H 1) and (H 2) hold, J cannot be a plane universal curve.
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A NOTE ON REFLEXIVE MODULES

E. E. ENOCHS

For any ring A and left (resp. right) .̂-module E we let E* denote
the right (resp, left) A-module HomA{E, A8) (resp. Hom^ (E, Ad)) where
A8 (resp. Ad) denotes A considered as a left (resp. right) ^.-module.
Then the mapping E—>2?** such that xzE is mapped onto the map-
ping φ—>φ(x) is linear.

Specker [3] has shown that if E is a free ϋΓ-module with a denu-
merable base (where Z denotes the ring of integers) then E is reflexive,
i.e. the canonical homomorphism E—+E** is a bisection. In this paper
it is shown that a free module E with a denumerable base over a dis-
crete valuation ring A is reflexive if and only if A is not complete
and if and only if E is complete when given the topology having finite
intersections of the kernels of the linear forms as a fundamental system
of neighborhoods of 0. Specker's result can be deduced from these re~
suits. We note that this topology has been used and studied by Nunke
[2] and Chase [1].

THEOREM 1. Let A be a discrete valuation ring with prime Π
and let E be a free A-module with a denumerable base. Then E is
reflexive if and only if A is not complete.

Proof. Let {ai)ieN (N the set of natural numbers) be a base of
E and let Ej = {φ \ φ e E*, φ(at) = 0, i = 0,1, 2, , j - 1. Let
a) 6 E* be such that a'j{a5) = 1, ar

ά{ak) = 0 if j Φ k. Then clearly αj,
a[, aj_! generate a supplement of Eά in E*. For each xe Ethe can-
onical image of x in £J** annihilates some Ej and conversely if ψ e !£**
annihilates Ed then ψ is the canonical image of Σi=o,i, . , i - i f ( Φ ^
Hence £/—>£'** is a surjection if and only if each ψeE** annihilates
some Ej. If E—+E** is not a surjection let ψeE** be such that
nfr(Ej) Φ 0 for each j e N and let φά e JE, be such that ψ(φs) Φ 0. We
can suppose that φά e /P'iϊ^ and that ψ(φά) e /7?Λ but ^(^i) 0 /7^'+1A
where m i+1 > m* for all i e JV. To show A complete it suffices to show
that every series Σie^ βjΠm\ βj e A converges. We can find a scalar
multiple of φ5 say φ'ά such that φ(φ'j) = ^77?. Then let φ e F be
such that φ(x) = Σie^ ̂ W for all a; e E. This sum is defined since
for a fixed a? e £7 and If sufficiently large positive integer we have
φM+i(x) = 0 for all ie N. Furthermore, since φ) e 7 7 ^ it is clear that
the series YJP) converges to φ when Έ* is given the topology having

Received December 6, 1963.
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the submodules ΠnE*, ne iVas a fundamental system of neighborhoods
of 0. Under this topology α/r: E* —> A is continuous. Hence

Σ iK?>;) = Σ βjΠ™j
jeN jeir

converges to ψ{φ). Thus A is complete.
Conversely if A is complete let (αj)ίejy as defined above be a sub-

family of the family {a!^)ieNι, Nx Z) N where (α{ + ΠE*)ieNl is a base
of the A/Π A module E*/Π E*. Then if # ' is the submodule of E*
generated by the family {a\)ieNι it is easy to see that Er is free with
base (af^ieNl and that Er is a dense pure submodule of E*, i.e. E*\Er

is divisible and torsion free. Then, since A is complete the map !£**—•
E'* which maps an element of i?** onto its restriction to Έ' is a
bisection. But this clearly implies the existence of a f G £ * * such
that f{a'i) Φ 0 for all ΐeiVΊ and hence for all ΐeiV. Thus E-+E**
is not a surjection.

COROLLARY. // A is an integral domain with a prime Π such
that the discrete valuation ring Aπ is not complete then free A-modules
with denumerable bases are reflexive.

Proof. There exist canonical injections of E, E* and ϋ/** in Eπ,
E%, and E** and furthermore if for xeE, φeE*f and ψeE** we
let x, φ, and ψ denote the image of x, φ, and ψ in Eπ9 E*f and E**
then φ(x) = ̂ (») and ψ(φ) = ^(^). Then if ( α j ^ is a base of E,
(di)ieN is a base of Ex and if (αί)i6ivr is defined as above we get α{(£{) = 1,
αj(δi) = 0 if i Φ j . Then if <feE** is such that f(E0) = 0 for each
i then -f is not in the image Eπ under the canonical homomorphism
since ψ({Eπ)ό) φ 0 where Es and (Ex), are defined as above.

THEOREM 2. If A is a left Noethrian hereditary ring9 then a
left A module E is reflexive if and only if E is complete when
endowed with the topology having the finite intersections of the kernels
of the linear forms as a fundamental system neighborhoods of 0.

Proof. Clearly E is separated with the topology described in the
theorem if and only if the map E—+E** is an injection hence we
suppose that E is separated. For each finite subset X of E* consider
the subset X° of E** consisting of all feJF** such that ψ(X) = 0.
Let 2?** be endowed with the topology having the submodules X° as
a fundamental system of neighborhoods of 0 where X ranges through
all finite subsets of E*. Then it is immediate that i?** is complete
with this topology. If we can establish that the canonical map E—>
E** maps E isomorphically onto a dense subset of E** then it will
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follow immediately that E is complete if and only if E is reflexive.
Let X be a finite subset of E*. Then clearly the intersection of

the kernels of the elements in X is mapped onto the intersection of
1 ° with the canonical image of E in i?** hence E is mapped isomor-
phically onto a subset of .£?**. Thus it only remains to prove that
the image of E in # * * is dense in # * * . life E** and X = {φly φ2y <pn}
is a finite set of elements of E* consider the map E-^J\_i=lf...inAi

such that 8—»(9>i(aO)i=i,...,w where A{ = Aa. Since A is left hereditary
the kernel of this map E1 — f^i=u...tnφτ1(0) is a direct summand of
E so let E — Eλ-\- E2 (direct). Then since A is left Noetherian E2 is
a finitely generated projective module so it is relfexive. Now E* —
E? + E2° (direct) and E** = E?0 + E2°° (direct). Clearly E2°° is
isomorphic to i?2** and the restriction of the canonical homomorphism
^_^jς r ** maps 2?a isomorphically onto E2°°. If ψ — fiΛ- ψ2 where
fλ e E?° let xeE2 be such that a? — f 2 under the map E->E**. Then
,since ψ- ψ2e E?° and since X = {φ19 φ2, , <pj c E? we get
τ/r — ψ2eX°. This completes the proof.
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ON THE REFLECTION OF HARMONIC FUNCTIONS
AND OF SOLUTIONS OF THE WAVE EQUATION

VLADIMIR FILIPPENKO

Introduction* While the analytic extension of a harmonic function
across analytic differential boundary conditions is always possible for
the case of two independent variables [3], no comparable global theorem
exists for harmonic functions in N > 2 variables.

This work is concerned with the problem of global extension of a
harmonic function U(x, y, z) across a plane on which U satisfies a
linear differential boundary condition of the form

B(U) ^-ψ- + Pn(x, V)U=O on σ(z = 0) ,
dz

where Pn(x, y) is a polynomial of degree n. It is assumed here that
the given function U is C1 in the closure of a cylindrical domain
R:{x2 + y2<p\ -l<z<0}.

The possibility of harmonic reflection is obvious for n = 0, Pn =
const, as B{U) itself is harmonic. Since it vanishes on z = 0, it can
be extended harmonically, and the harmonic extension of U can then
be found by integrating with respect to z. But such procedure is no
longer available in our case. We shall show, how our problem can be
reduced to that of solving an initial value problem of a certain hyper-
bolic differential equation (1.22) of order 2n with distinct characteristic
surfaces (of normal type).

Classical considerations yield the analyticity of U on a and, there-
fore, its harmonic extensibility across σ into a neighborhood of σ. Our
result asserts that this neighborhood is the whole of the mirror image
of R, denoted by R.

Our method consists of constructing a new function V(x, y, z)
from U and a differential expression in V (see (1.6) and (1.18)), which
is harmonic in R and vanishes on z = 0. Thus, this expression in V
can be first extended into R U σ U R as a harmonic function φ(x, y, z).
The solution of the differential equation thus obtained for V in R is
impeded by its degeneracy. To remove this degeneracy we add to the
differential equation the Laplacian of V and its higher derivatives in
such a way as to obtain a normal hyperbolic problem (1.22), whose
solution is guaranteed by a result of I. G. Petrovsky. This modifica-
tion of the differential equation can be done in infinitely many ways,
in particular, so as to make the characteristic surfaces close down on

Received February 20, 1964. This work was supported by the Office of Naval Re-
search, #222 (62)
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parallels to the z-axis. Local extensibility of U, together with the
solution of the modified equation, then yields the global extension of
U. We note, that this method works equally well for N > 3 independ-

ent variables.
The above described method, however, seems to fail in the case

of the wave equation when σ is part of the tilmelike plane z = 0, and
the boundary condition on it is as simple as Uz + x U = 0.

On the other hand, the oblique derivative problem for the wave
equation Uxx + Uyy — Utt = 0, whose solution satisfies the boundary
condition

B\U) = Ux + aUy + {Ay + B)U = 0 on x = 0 ,

yields to a similarly motivated, yet formally different attack. The
domain of extension in this case depends on a Φ 0.

I would like to take this opportunity to express my gratitude to
professor H. Lewy who suggested this problem and offered advice
during its investigation.

1* Analytic extension of harmonic functions* We consider an
open cylindrical domain R: {x2 + y2 < p2, — l<z<0} and the plane
region σ : {x2 + y2 < p2, z = 0}. Denote by R the mirror image of R
with respect to the z — 0 plane.

Let there be given a real function U(x, y, z)f Ue C1 in the closure
of R, such that:

(1.1) Uxx + Uyy + Uzz = ΔU = 0 in R

(1.2)

where Pn(x, y) is a polynomial in x, y of degree n, given in the form

(1.3) Pn(x, y) = Σ Σ Akm xk~mym ,
/c=0m=0

the coefficients Akm being real.

LEMMA 1. / / U(x,y,z) is harmonic in R, UeC1 in R[JdR,
<ιnd satisfies condition (1.2) on σ, then U can be harmonically extended
into R'\J σ U G, where G is the portion z > 0 of some neighborhood
of σ.

Proof. Since U is C1 in R U OR, we have by Green's formula

n \X—τ\
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where X = (x, y, z), τ = {ξ, η, ζ), n is the outer normal, and integra-
tion is over the surface of the cylinder ξ2 + η2 — p2, ζ = — I, ζ = 0.
By (1.2) this becomes

= MX) - \\ + ιw
- T \ OQ X —

where A(X) stands for the integral in (1.4) taken over the lateral
surface and the lower base of the cylinder. By passage to the limit
as X tends to Xf e σ, one obtains in a manner familiar in potential
theory,

2πU{X') = A{X') - \\
I JL — T

where A(Xf) is an analytic function on σ. This integral equation is
an especially simple case of E. Hopf's equation (6.1) ([2], page 220),
and his method yields immediately the result, that U(x, y, 0) is analytic
on the open disc o.

Since, due to condition (1.2), Uβ(x, y, 0) is also analytic, we obtain
from the Cauchy-Kowalewski theorem, that there exists an analytic
solution U of Cauchy's problem with U = U, Uz = Uz on σ for ΔU =
0 in some neighborhood G of σ.

If we continue U, given in R U σ, as U in G — R — σ, this new
function is, according to well known arguments, harmonic in RUσljG.

We now introduce the symbolic notation

(1.5) D-'fix, y, z) = \f{x, y, Qdζ ,
Jo

and define an analytic function V(x, y, z) for (x, y, z) e R U σ:

(1.6) V(x, y, z) = Dr**-" U(X, y, z) + Y-^F.ix, y) ,

where the functions Fk(x, y) (0 ^ k ^ 2n — 2) are solutions of the
following equations on σ:

(1.7) ^ - Ϊ + T T F ^ + σ",(«, y,o) = o

(1 8) i h + w)F— + U(x' y>0) = °
( 1 9 ) (h + W)K + F^ = ° (0^r^2n- 4)

with, say, boundary values zero on x2 + y2 = p2.
The choice of these functions is motivated by the requirements
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(1.10) ΔV = 0 in R

(1.11) Vz2n + Pn{x, y) Vz2n~i = 0 on σ ,

which are easily verified.

Let s stand for either x or for y, and denote

77 — Q d _ ? ® Z7m —. (JJ \m\

02 ds

We then have the identities:

(1.12) HS+' = g J ^ ' - ^ J ^ , <m = 0 , 1 , 2, • •) f

(1.13, US = Σ g ^ - ' ^ i - (-=1,2,...)

where the coefficients afk and 6*Λ are real numbers, and a™m — b™m = 1»1

Proof. Introducing new variables £ = s + i«, τ = s — iz, we majr
write, with θ/dt - l/2[(0/ββ) - i(θ/θ«)] and 0/0τ - l/2[(d/ds) + i(θ/θz)]

Hence,

(1.14) flϊ. = ί.έ(-l

Now, for any variable | (real or complex)

where the coefficients Bζ are nonnegative integers. Since dτ/dt = dt/dτ —
0, and for z = 0 we have t = τ = s, each term in (1.14) is, but for a
constant coefficient, of the form

t"τβ.
dt«dτβ

Since P/mθτ = l/4[(02/β>s2) + (β*/β^], each term in (1.14) is, but for a con-
stant coefficient, either of the form

or of the form
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Now, for any positive integer q, [(O/ds) ± i(d/dz)]q has terms with
imaginary coefficients only of the form 0λ+μ/0sλ^μ, where μ is odd,
and terms with real coefficients only of the form 0λ+μ/0sλ^μ, where μ
is even (λ + μ = q). Consequently, as H?o must have real coefficients,
it will consist of terms sλ+μ(dλ+μj/dsλdzμ')f where μ is odd when n is odd,
.and μ is even when n is even, which implies identities (1.12) and (1.13).

LEMMA 2. There exist differential operators

where Cirh are real constants, such that

^ έ - χ for z = 0

Proof. Starting from the definition of H?o we see, that the above
statement holds f or p = 1 and p = 2, with A0 = 1, PI = δ/βs and D} =
0/02. Assuming, that the statement holds for p ^ 2n, we prove by
induction, that it also holds for p = 2n + 1 and p — 2n + 2.

Since, by assumption, the lemma holds for p rg 2%, we have for
any nonnegative integers a and β, and any positive integer q S 2n

C\2q-l+06+β q

K } d

But identity (1.12) yields

— Σ (

—j+1

We now observe, that all terms on the right hand side of the above
expression are of the form (1.16), where q = 2n — j + 1 (1 ̂  j " ̂  n,
i.e. g ^ 2tι), a = j , /S = 0, for terms contained in the simple sum, and
# = 2k - j + 1 (0 g i g fc, 0 ^ k ^ w - 1, i.e. q^2n -1), a = j ,
β — 2n — 2k, for terms contained in the double sum. Hence, the above
lemma holds for p = 2n + 1.

A similar argument, which utilizes identity (1.13) instead of (1.12),
shows that this lemma holds also for p = 2n + 2, and thus completes
the proof.

We now introduce the differential operator of order 2p — 1

<1.17) QϊtZ = Σ Hi^DΓ1 (P ^ 1)
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where the DΓ1 are those of (1.15). Note that, for z = 0, Q% =

Define an analytic function <p(x, y, z) for (x, y, z)eR\J σ:

(1.18) φ(x, y, z) = VMx, V, z) + NV(x, y, z) .

Here V{x, y, z) is the function defined in (1.6), and N = N(x, y, z) is
a differential operator of order 2n — 1 defined by:

N(x, y, z) =

where the coefficients Afcw are the coefficients of the polynomial Pn(x, y)
defined in (1.3).

LEMMA 3. Δφ = 0 in R, and <p(x, y, 0) = 0.

Proof. Note, that ΔHXiZ = JBΓ,,̂  and ΔHyyZ = iϊ^.z/. Thus, by
(1.17) and (1.19), the operators Δ and iV commute. Therefore, opera-
ting on both sides of (1.18) by Δ, and making use of (1.10), we obtain

Δφ = (JFL + N)ΔV = 0 in 12.

Making use of (1.17) and (1.15) we may write, for z = 0,

N(x,y,z)V(x,y,z)\Λ=0

A

Z = 0

which becomes

(1.20) N(x, y, z) V(x, y, z) U = ± Σ A^*-"^" 1 V.*-i(a;f ?/, 0) .
fe=0m=0

Thus, setting z = 0 in (1.18) and making use of (1.20) and (1.11) we
obtain φ (x, y, 0) = 0.

Hence, if we set for {x, y,z)eRU σ

(1.21) φ(x, y, z) = -φ(x, y, -z) = - Γ - ^ - + lV(a?, y, ζ)]v(x,y,ζ)

then φ is harmonic in R[J σ \J R.
Since <£>(#, 2/, —s) is known for (x, y, z) e R U σ, we shall seek a

function V(x, y, z) for (α?, y, z) e R U σ, which satisfies the following
overdetermined system (S) for F on z > 0:
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M%, V, z) + N(x, y, z)V(x, y, z) = -φ(x9 y, -z)

υZ

_
= Fr(x, y) 0^r^2n-2 VM*»-i(x, y, 0) = U(x, y, 0)

where the functions Fr(x9 y) are defined by the equations (1.7), (1.8)
and (1.9).

Since, by Lemma 1, U can be continued into R (J σ (J G as an

analytic function, the formula (1.6) can be used to define a function

V*(x9 y, z) as an analytic function in R U σ U G', where G' consists of

all those points of G, which can be joined in G to points of σ by

parallels to the 2-axis. This, so defined function F * is harmonic in

R U σ U Gr, satisfies the initial conditions of (S), and

^ + N(x,y,Q\V*{x,y,Q\ζ^z

= -<P(v, y, -z) in Gf .

Thus, a solution V*(x, y, z) of system (S) exists ίor (x, y, z)eG' \Jσ.
To investigate the size of the domain into which V(x, y, z) can be

continued, consider the solution of the following Cauchy problem:

(1.22) MV(x, y, z) s g [^ - a{^ + JU)J V + βN(x, y, z) V

= -βφ(x9 y, -z)

drV\
(1.23)

dzr = Fr{x,.y) (Q^r^2n-2), V,*-i(x, y, 0) = U(x, y, 0)

where <x{(i = 1, 2, ••-,%) are distinct positive real numbers, and β =

UU (1 + «i).
Now, for distinct positive au M i s a normal hyperbolic operator

with the distinct characteristic sheets through a point (x°, y", z°) of the
form (a; - x'f + (y ~ tf = at(z - z")\ It is a result of I. G. Petrovsky
(see [1]), that the Cauchy problem (1.22), (1.23) has the unique C~
solution V(x, y, z) in that part R* (a = (arlf α l f ., aj) of the domain
of influence of the initial surface σ for the equation MV(x, y, z) =
—βφ(x, y, —z), which lies in R, so that φ(x, y, —z) is defined.

In view of the identity

where P is a polynomial in θ/dx9 d/dy, d/dz the function V*(x9 y, z),
which solves system (S) in G' satisfies the above Cauchy problem (1.22),
(1.23) in the neighborhood of the initial surface σ, and by uniqueness,
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the solution V(x, y, z) e R£ must coincide with V*(x, y, z) in that
neighborhood. Consequently, ΔV and all its derivatives vanish on σ.

Since the operators M and Δ commute, operating on equation (1.22)
by Δ we obtain M(ΔV) — 0. Therefore, by uniqueness of the solution
of Cauchy's problem for M(ΔV) — 0 with homogeneous initial condi-
tions, we conclude that V(x, y, z), which solves (1.22), (1.23), is har-
monic in R* and solves system (S) in this domain.

Putting U(x, y, z) = (d^/dz2*-1) V(x, y, z) for (x, y, z) e R* we have
•constructed the harmonic extension of U into R\Jσ\}R£. We now
observe, that as a{ —• 0 (i — 1, 2, , n) the characteristic surfaces of
M close down on parallels to the 2-axis. It follows, that every point
of R is in some R£ for a{ sufficiently small. In view of the simple
connectedness of R U o U R, the harmonic extension of U at any point
of R cannot depend on α, and it follows that U can be harmonically
extended into all of R U σ (J R. Thus,

THEOREM 1. / / U{x,y,z) is harmonic in R, UeC1 in R{JdR,
and satisfies condition (1.2) on σ, then U can be harmonically ex-
tended into R U σ U R.

REMARK The construction of the extension of U depended on the
solution of a hyperbolic problem whose order is twice the degree of
the polynomial Pn(x, y), the coefficient in the first order boundary con-
dition. This illustrates the difficulty of extending our result to the
case of, say, a coefficient f(x, y), which is an entire function.

2* Extension of solutions of the wave equation* We consider an
open domain D: {—m < x < 0, —l<y<l, —l<t<l} and the plane
region σ: {x = 0, —l<y<l, —l<t<l}. Denote, for any domain
3f, the mirror image of £& with respect to the x = 0 plane by ̂ .

Let there be given a real function U(x,y,t), UeC* in the closure
of D, such that:

= Uxx + Uyy- Utt = 0 in D

(2.2) Ux + aUy + (Ay + B)U = 0 on σ

where a, A, B are real constants; a Φ 0.

Define a function V(x, y, t) for (x, y, t) e D U σ:

<2.3) V(x, y, t) Ξ , Γ U(ξ, y, t)dξ + G(y, t)
Jo

where G(y, t) is the C4 solution of the Cauchy problem:

Gn-Gtt+U.{0,.y,t) =

* " G(y, 0) = Gt(y, 0) = 0
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Let P be the parallelepiped bounded by the planes t ± y = ±1,
x = 0, x = - m . Then, V(x, y, t) e C\VX e C4) is defined in PΓ\D\Jσ,
and we have the relations:

(2.5) LV=0 in PΓ\D\Jσ,

(2.6) 7M + αV., + (Ay + 5)V. = 0 on Pf)σ,

which are easily verified.
We now define for (x,y,t)eP f\ D\J σ the function:

<2.7) φ(x, y, t) ̂ Vxx + aVxy + A(y£- - x±) V + BVX .
\ dx 0y/

Since the operators L and {y(d/dx) — x(d/dy)} commute, operating
on both sides of (2.7) by L, and making use of (2.5), we obtain:

= {-IT + a

I to2
dxdy dx dy

Setting x = 0 in (2.7), and making use of (2.6) we have φ(0, y, t) = 0.
If we now set for (x,y,t)ePΓ\D\Jσ

φ(x,y,t) = -φ(-x,y,t)

it follows, that L<? = 0 in P f Ί - D U σ U P n A and ̂  e C3.
Since φ(—a?, y, t) is known for (x, y,t)e P Γ\ DU β, we now seek

a function F(#, #, ί) for {x,y,t)eP Γ\ D\J σ, which solves the follow-
ing Cauchy problem:

(2.8) MV(x, y, t) = Vxx + aVxy + (Ay + B)VX - AsF, - -?>(-»,», t)

(2.9) F(0, y, ί) - G(y, t) , 7.(0, y, t) - C/(0, y, t) on P n ̂  .

It is well known, that the function V(x, y, t) e C\ which satisfies (2.8),
(2.9), exists in a domain Q. Here Q is that domain, each of whose
sections by a plane t — K(—l<K<l) is a right triangle bounded by
x = 0, # = Z — I JGL| and 2/ — α# = | J5Γ| — ϊ if a > 0, or by x = 0, 7/ =
I iΠ — Z and y — α:x = I — | ίΓ | if a < 0. Note that Q does not depend
on U, and is a subdomain of P Π D U ^.

LEMMA 4. If V{x, y, t) e C 4 in Q is the solution of the Cauchy
problem (2.8), (2.9), then LV = 0 m Q.

Proof. We operate on both sides of (2.8) by L. Since the operators
L and {y(d/dx) — x(d/dy)} commute, and Lφ( — x, y, t) = 0, we obtain:
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setting x = 0 in (2.8) we have,

Vxx(0, y, t) = -aVxy(0, y, t) - (Ay + B)Vβ(0, y, t)

and hence, making use of (2.9) and (2.2), we obtain:

(2.10) Vxx(0, y, t) = 0.(0, y, t) .

Thus, due to equations (2.9) and (2.4)

From (2.3) and (2.7) we have:

φ(-x, y, t) = φ(ξ, y, t) |e=_, = Ut(ξ, y, t) |e=_. + aUy(-x, y, t)

+ {Ay + B)U(-x, y, t) + AxGv(y, t) + Ax \~"u^ξ, y, t)dξ
Jo

and therefore,

, O 1 1 , -^-Ψ( - x, y, t) U = - U..(0, y,t)-a UJp, y, t)
\ΔmΔ.\.) OX

-{Ay + B)Um(0,y,t) + AGy{y,t) .

Differentiating (2.8) with respect to x, and setting x = 0 we obtain

Vm + aVxxy + (Ay + B)VXX - AVy = -JLp(-x, y, t) \x=0 o n ^ O
to

which after substituting (2.9), (2.10) and (2.11) becomes:

Vm(0, y, t) = Uxx(0, y, t) .

Hence, by (2.9) and (2.1),

J
dx

Consequently, by uniqueness of the solution of Cauchy's problem
for M(LV) = 0 with homogeneous initial conditions, we have that
LV=0 in Q.

We thus have:

THEOREM 2. // U(x, y91) e C4 in the closure of D solves the wave
equation (2.1) and satisfies the boundary condition (2.2) on σ, then
there exists a function U = VxeC* in the subdomain Q of D, which
extends U across σ as C3 solution of the wave equation.
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MAPPINGS OF BOUNDED CHARACTERISTIC INTO
ARBITRARY RIEMANN SURFACES

D. J. H. FULLER

Introduction* Throughout this paper we consider analytic mappings
f(z) of an arbitrary open Riemann surface R into an arbitrary Riemann
surface S. Heins [3] introduced the class of Lindelδfian maps when R
is hyperbolic, and defined them in terms of Green's functions; further
contributions have been made by Rao [4], [5]. In the case of planar
regions these maps are the classical functions of bounded characteristic.

Sario [6], [7], has utilized principal functions [1] on the range
surface to obtain generalizations of the main theorems for mappings
of R into S. In this paper a different first main theorem is obtained
in which the proximity function is a generalization of Nevanlinna's
proximity function by means of the substitution of a principal function
for the logarithmic function. It is shown that the resulting class of
functions of bounded characteristic are the Lindelofϊan maps, and that
an extremal decomposition characterization of these functions can be
obtained as in the classical case.

1* An auxiliary family of functions* Analytic mappings from
an arbitrary open surface R into an arbitrary surface S can be considered
in terms of families ^~ of LH functions, i.e., harmonic functions,
with isolated logarithmic singularities having integral coefficients. For
the purposes of this paper we slightly generalize the term, parametric
disk: Δ — (Q, μ) is a parametric disk if Q is a classical parametric disk,
and there is defined on it a metric μ that is a real scalar multiple of
the induced metric.

We let ζ be the local variable on S, and ήx σ e S and a parametric
disk at σ. If S is closed we define £(ζ, σ, a) for a e S\σ (set difference)
as the LH function on S which has singularities log | ζ — a | and
— log I ζ — σ I and is normalised by

lim (t(ζ, σ,a) + log\ζ-σ\) = 0

in terms of the fixed parametric disk. At a a parametric disk is
fixed such that

lim (ί(ζ, σ, a) - log | ζ - a |) - 0

Received September 19, 1963. This paper represents part of a thesis submitted to
the faculty of the University of California, Los Angeles, in partial fulfillment of the
requirements for the Ph. D. degree. The author is indebted to Professor L. Sario for
his guidance and to Dr. K. V. R. Rao for his advice and help.
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in terms of it. We define successively

ί(ζ, a, σ) = -ί(ζ, σ, a) , α e S\σ ,

ί(ζ, a, δ) = t(ζ, α, <7) + ί(ζ, σ, δ) , α, δ e S\σ .

These functions form the family
If S is open, more than one family can usually be formed. We

consider an exhaustion of S by regular regions Ω that contain σ and
a, and define on Ω the function ίfl(ζ, σ, a) which satisfies the above
conditions for t(ζ, σ, a) as well as one of the following:

(a) the normal derivative of tΩ(ζ, oy a) vanishes on the boundary
dΩ of Ω,

(b) a consistent partition of the boundaries of the regions Ω is
given, and tΩ(ζ, σ, a) has constant value and vanishing flux over each
part of dΩ ([1] pp. 87-90).
By the theory of normal operators ([1] pp. 152 ff.) i(ζ, σ, a) is defined
as the directed limit of to(ζ, σ, a) as S is exhausted by the regions
Ω. ί(ζ, a, σ) and t(ζ, α, S) are then defined as in the case of closed
surfaces S. Each condition in (a) and (b) determines a family j^T It
will be represented by J71 if (a) is satisfied and by ^T(P) if (b) is
satisfied for a partition P; if P is the identity partition I, we write

Since each function ί is a principal function ([1] p. 169), a family
will be called a principal family. We note that a change in the

fixed parametric disk at σ changes every function ί(ζ, σ, a) by the same
constant but leaves t(ζ, α, δ) unaltered. Further, in view of our
definition of parametric disk, for any given J7~ and constant k there
exists a family ^"' such that for all m,

{ζ|ί(ζ, σ, α) = m} = {ζ|ί'(ζ, σ, α) = m + A?}, ί e ^ f e

We consider functions belonging to any principal family. If
a, δ e S\σ, these functions have the following four obvious properties.

ί(ζ, a, a) - 0 ,

t(ζ, a, δ) + t(ζ, δ,a) = 0,
( 1 ) lim (t(ζ, δ, α) + log I ζ - δ \ = t(δ, σ, a) „

t(σ, a, δ) = 0 .

LEMMA 1.1. t(α, 7, δ) + 4(7, δ, α) + ί(δ, α, 7) = 0 /̂̂ ew a, 7, δ are

distinct points in S.

Proof. If S is open we let Ω S S be a regular region containing
α, 7, and δ, and consider functions tΩ defined on Ω. We remove small
closed disks in Ω that contain a, 7, δ and apply Green's formula to
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to(ζf a> y) and to(ζ, d, 7) over the remaining region. On letting the
disks shrink to points we obtain

-tΩ(a, δ, 7) + tΩ(δ, a, 7) + R(Ύ) - 0

where

R(y) = lim (ίfl(ζ, δ, 7) - UZ, a, 7) = to(y, δ, a))

and the lemma follows by letting Ω —* S.
If S is closed the same method is applied to S instead of to Ω.

COROLLARY 1.2. t(a, δ, σ) = t(δ, a, σ), a,8e S\σ.

Proof. This is obvious when a and δ are identical; if they are
distinct it follows from replacing 7 by σ in the lemma and applying (1).

COROLLARY 1.3. If a is distinct from σ and 7, then t(a, ζ, 7) is
of class LH on S\σ with singularities at a and σ.

Proof. If 7 = a this is implied by Corollary 1.2. Otherwise

t(a, ζ, 7) + ί(ζ, σ, a) = t(a, σ, 7) ,

which is constant.

LEMMA 1.4. ψ: S\σ x S\σ —> [— 00, 00] | ψ(y, a) = t(δ, 7, a) is con-

tinuous for every fixed δ.

Proof. If δ — σ then ψ is identically zero; if not,

, a) = ί(δ, 7, C7) + t(δ, σ, a)

and each term is continuous by Corollary 1.2.
Sario [8] proves that if E C S\σ is compact and Q is an open set

containing E and σ, then t(τ, α, o) e ̂  is uniformly bounded for
aeE9ye S\Q. The same proof holds for t(τ, a, σ) e ^l(P). From the
harmonicity of t(τ, ̂ , 01) in 7 and in α, and from its uniform boundedness,
it follows by a lemma of Heins ([2] p. 445) that

LEMMA 1.5. If Sf = S x S\((σ, <τ) u {(σ, ζ)} U {(ζ, σ)} U {(ζ, ζ)}), then
φ: S' —> (— co, co) I 0(7, α) — t(τ, α, a) is continuous.

LEMMA 1.6. If S' = S x S\(σ, σ) ί^e^ ^ : S' -> [- co, 00] | ^(7, α) =

ί(7, a, σ) is continuous.

Proof. It suffices to consider the continuity at points (70, ocQ), 70 =
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a0 Φ σ, and (σ, a), a0 Φ σ. For the first we let Δ be a parametric
disk at a0 such that σg Δ, and J?7 be a closed connected neighborhood
of a0 that does not intersect dΔ. For every (7, α) e F x i*7 there exists.
27 G 0J such that t(7, a, σ) > t(rj, a9 σ), which is bounded by Sario's lemma
for all ηedΔ,aeF. No generality is lost by taking t{η, a, σ) > 0 for
all ηedΔ,aeF.

Let ψ be a homeomorphism of Δ onto a closed disk in the plane*
and g the Green's function on this disk. By its extremal property

t(ζ, a, σ) - g(ψ(ζ), ψ(a)) ^ 0

for ζ, ae F. Since for any n, there exists a neighborhood En of the
origin of the disk such that g(z, a)^n for z,ae En, we have ί(τ, #, σ) > n
for γ , α e t~\En) (Ί i77, and ̂  is continuous at (τ0, α0).

For the second case we let fl/f be the boundary of a parametric
disk at a0, and F and G be compact connected neighborhoods of σ and
a0 that do not intersect dΔ. For ζe F, aeG, there exists ^ e 0J such
that

which, by Sario's lemma, is bounded above, say by M. Hence

t(ζ,a,σ)<M+t(ζ,ao,σ),

and the lemma follows, since for any n, t{ζ, a0, σ) < n in some neigh-
borhood of σ.

We conclude this section by noting that the limits of t(ζ, 7, σ)r

t(ζ, σ, 7) and t(ζ, 7, 7) as Ύ-^σ are 00, — 00 and 0 respectively, and
that t(ζ, σ, a) is not defined.

2* Jensen^s formula* The main tool used in this paper is Jensen's1

formula generalized for Riemann surfaces. We let Ω be a regularly
imbedded relatively compact region on the surface R and let v(z) be
an LH function on Ω. The positive singularities of v(z) in Ω will be
designated by aiy i = 1, , m, and the negative singularities by
bjf j = 1, , w; their multiplicities will be given by μt and ŷ  respectively^

We obtain the formula from the following proposition:

LEMMA 2.1. // r is not a singularity of v(z), then

( 2) v(r) = - L \ v(z)d*p(z, r) + Σ Λfffo, r) - Σ f̂f(δy, r)

where p(z, r) and g{z, r) are the capacity and Green*s functions defined
on Ω with singularities at the point r, and dΩ is oriented counter-
clockwise about r.
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Proof. We first take the case when v(z) has no singularities on
Ω. Let Δ £Ξ Ω be a small closed disk that contains r . On applying
Green's formula to p(z, r) and v(z) over Ω\Δ, and letting z/ shrink to
r we obtain

vir) = —
2π

We next take the case when v(z) has a singularity v log |2 — a\,
a e dΩ, but has none in Ω. Let p(z, r) have the value k on 042; there exists
an ε > 0 such that the boundary components of 42ε = {z \ p(z, r) < k — ε},
have a natural one-to-one mapping on those of dΩ.

Let the components of dΩ be {7J, i = 1, , w, with α G 7i, and
the corresponding components of dΩz be {7ίε}. For i Φ 1, we apply
Green's formula to v(z) and p(^, r) over each component of Ω\ΩS and
obtain

I v(z)d*p(z, r) = e\ d*v(z) .

For i = 1, we let Ω be the double of Ω\ΩS. If q is the total flux
of p(z, r) along yl9 the function

= exp — (p(z, r) — k + ip*(z, r)
L q A

maps the first component of Ω conformally onto an annulus, such that
7i is mapped onto the unit circle Bx and Ίλz onto Bls — {w \ \ w | =
exp [ — (2ττ/g)ε]}. We may assume that the point a is mapped on w = 1.
Consequently do1 = 2π/qd*p(z, r).

Since Γ* log | eiθ - 11 = 0, it follows that
Jo

( v{z)d*p{z, r) = JL \ {v-h-\reiθ) - v log | re ί θ - 11) dθ .

By applying Green's formula to the last integrand and to log | reίθ \
over the annulus between the circles, we find

I v(z)d*p(z, r) = ε\ d*v(z) .
hi-yiε his

Summing over all the components of dΩ we obtain

( 3) -±-\ v{z)d*p{z, r) = -A- f v(z)d*p((z, r) = v(r) .

For the general case we note that

Σ
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is a harmonic function on Ω. The application of (3) to this function
jξyields (2). We immediately obtain

COROLLARY 2.2. (Generalized Jensen's formula). // / is an
analytic mapping of R into a Riemann surface S on which is defined
a function t(ζ, a, δ) belonging to a principal family, and if f(r), a
and δ are distinct, then,

•(4) t(Λf),α,»)=f( t(f(z),a,δ)d*p(z,r)

+ Σ Λ
i

where {a{} and {b3) are the inverse images in Ω of a and δ respectively,
and μi9 v5 are their multiplicities.

If f(r) is a singularity of ί(ζ, a, δ) the following proposition holds:

LEMMA 2.3. If f(r) = a, and if the Laurent expansion of f(z) in
the neighborhood of r is f(z) = 2 ^ cizι with respect to the parametric
disks at r and a fixed by p(z, r) and t(ζ, σ, a) respectively, then

{ 5) Km (Np(z, r) + t(f(z), σ, a)) = log - L
cN

If f(z) = δ, then, with the above expansion,

(6) lim (-Np(z, r) + t(f(z)9 σ, a)) - log

Proof. We shall use the same symbol z for an arbitrary point on
the surface and for its image under the mapping associated with the
parametric disk under consideration. t(f(z)) and p(z) will represent
t(f(z), σ, a) and p(z, r), and lif etc., constant coefficients. We set

this is single-valued in a neighborhood of r.
If f(r) — σ, the expansion in that neighborhood is

CN JV+i

Similarly, there is a neighborhood of r in which

r(z) = exp [p(z) + ip*(z)]

can be expanded as
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r(z) = z + Σ ^

Hence

which yields the first conclusion. The second is proved in the same
way. This concludes the proof.

If we let λ equal N or — N according as f(r) is σ or a, then the
function

t(f{z)) + Xp(z) - Σ ' i"ίff(β4, z) + Σ ' vdg(ai9 z)
i 3

is harmonic on Ω, when the summations are over the inverse images
in Ω\r. On applying Jensen's formula (4) and substituting from (5)
or (6) we obtain the alternative expression

log si> r) — Σ ' Vj9(ai, r)

We shall need the following property of subharmonic functions:

LEMMA 2.4. Let u be an u.s.c. function on a region W.
(i) If u is subharmonic on W, then for every regular Ω whose

closure is in W, and every z e Ω,

u(z) ^ ~ \ u(w)d*pΩ(w, z) .
2π J9^2π

(ii) If for every ze W, there is a regular Ω such that

u(z) ^ — \ u(w)d*pΩ(w, z)
2π JθA

every level line dh of pΩ(w, z), then u is subharmonic on W.

Proof. To prove (i) we take an arbitrary Ω and zeΩ, and let
{vn} be a descending sequence of continuous functions on dΩ tending
to u. For any wedΩ, we have by (2)

i r

lim u(z) ^ lim — 1 vn(w)d*p(w, z)

for all vn. By applying the monotone convergence theorem and the
maximum principle we obtain the desired result.

For (ii) we let z0 be an arbitrary point in the region, and choose
â parametric disk about z0. In terms of the associated unit disk the
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hypothesis yields

u(z0) ^ —
2π Jo

for 0 < r ^ 1. The subharmonicity of w follows from the theory of
functions on the plane.

We immediately obtain

C O R O L L A R Y 2 . 5 . If u(z) is subharmonic on Ω2 and zeΩλ^ Ω2y

then

( 8 ) 1 u{w)d"p1{w, z) ^ I u(w)d*p2(w, z) ,
jdo1 Ja/?2

where Pi(w, z), i — 1, 2, is £fce capacity function on Ω{.

3* Argument principle* Using the same notation as before we
let Ω be a relatively compact regularly imbedded open set in the surface
R, and n(Ω, a), n(Ω, δ) the number of inverse images (with multiplicities)
in Ω of points a and δ in S that are not on the image of ΘΩ. We
have

(9) - M d*t(f(z), a, δ) = n(Ω, δ) - n(Ω, a)
2π ho

where ΘΩ is oriented counter-clockwise, and t belongs to any principal
family.

This statement follows from removing small disks at each of the
inverse images of a and δ, applying Green's formula to t(f(z), a, δ)
over the remainder of Ω, and taking the limit as the disks shrink to
points.

We choose reΩ. If p(z, r) is the capacity function on Ω, and k
is its value on ΘΩ, we let Ωh = {z e Ω \ p(z, r) < h) and θh be the
boundary of Ωh.

THEOREM 3.1. If a and δ are not in the image of θh, and if
a, δ and f(r) are distinct, then

2π dh h

where n(h, δ) and n(h, a) are the number of inverse images (with
multiplicities) of δ and a in Ωh, and t belongs to any principal family.

Proof. We let t(f(z)) and p(z) represent t(f(z), a, δ) and p(z, r),
{α{} and {d3} be the finite number of inverse images of a and δ in Ωh+
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There is a finite hf such that Ωh, does not contain any of these inverse
images. We remove small disks about the α s and djs and apply Green's
formula to t(f(z)) and p(z) over the remainder of Ωh\Ωh,. After evaluating
and letting the disks shrink to points we obtain

oh—oh

= h\ d*t(f{z)) - h'\ d*t(f(z)),

since p(z) is the capacity function on both Ωh and Ωh,. In this relation-
ship μt and v$ are the multiplicities of the corresponding inverse images.
The differentiation of this equation yields

-fr\ t(f(z))d*p(z) = A-\h\ d*t(f(z))]
dh jzti dh L JQΛ. J

= lίm -1 Γεί d*t(f(z)) -(h-e)\ d*t(f(z))] .

Since the last term vanishes for sufficiently small ε, we substitute
from (9) and obtain the required relationship.

We note that (10) is an invariant property of principal families.

4* Logarithmic capacities* A logarithmic capacity of a compact
set E properly contained in an arbitrary surface S can be defined in
relation to any principal family J7~ if a e S\E. We let μ be a regular
positive unit mass distribution on E. Since £(ζ, η, σ) is l.s.c. on E, we
•define the logarithmic potential of μ relative to j?~ as

PM = \ *<C, V, σ) dμ(O

on S\σ. The following proposition carries over from the plane:

LEMMA 4.1. The logarithmic potential Pμ.(rj) is harmonic on
S\(E U σ) and superharmonic on S\σ. In the neighborhood of
0, ViλV) — log 17] — o I is bounded.

Proof. We let

* (C, Vf σ) = m i n K *(C, ̂  ^)l ,

and

By Lemmas 1.5 and 1.6, ίn(ζ, 17, σ) is continuous in (ζ, η),ζeE,ηe S\σ,
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and as E is compact there is for any arbitrary point y0 e S\σ and ε > 0,.
a neighborhood Δ of y0 such that

I tn(ζ, y, σ) - tn(ζ, yo,σ)\<ε,ζeE,yeΔ,

It follows that pμn(V) is continuous and ί>μ(^) l.s.c. on S\σ.
Let Γ be a disk about yQ such that ΘΓ is a level line of t(ζ, y0, σ).

We orient dΓ clockwise about y0. Since ί(ζ, 27, σ) is bounded below for
all ζeE,yedΓ, and — t(ζ,yo,σ) is the capacity function on Γ, we
have by Corollary 1.2 and (2),

t.(C, 7, *) dMC) - ( *:(C, %, *) dμ(ζ)

where for each ζ, ί£(ζ, 17, σ) is the harmonic function in Ύ] on ,Γ with-
boundary values tn(ζ, 17, α). Further, by superharmonicity, t'n(ζ, %, o) S
t(ζ, V01 σ) for each ζ and for all n. We substitute in the above equation
and apply the monotonic convergence theorem as n —> 00. We obtain

±- \ d*t(y, y0, σ) \ t(ζ, 37, σ) dμ(ζ) g> \ ί(ζ, %,
2TΓ J9/1 JE JE

and pμ(57) is superharmonic by (7).
If % £ E U σ, Γ can be chosen such that Γ £ S\(£r U o ). Since ί(ζ, 57, <7>

is harmonic on Γ, the same method establishes the harmonicity of
pμ(yj) on S\(E U ί7) by (2) and the maximum principle.

To establish the final part of the lemma we need only note that
by Lemmas 1.5 and 1.6 there is a neighborhood Δ of σ such that

ί(ζ, y, σ) - t{η, ζ, σ) = log \η - σ\ + Λft, ζ), ζ e E, ye Δ\σ ,

where h(y, ζ) is bounded.
We deduce the following proposition:

COROLLARY 4.2. If μ is as above and f: R—> S is analytic, then,,
for a regular Ω cR,

(11) ( dμ(ζ) \ t(f(z), ζ, σ) d*p(z, r) - [ d*p(z, r) \ t(f(z), ζ, σ) dμ(ζ) .
JE jdΩ JdΩ JE

where t belongs to any principal family ^ and p ir the capacity-
function on Ω. The iterated integral is either finite or +00.

Proof. There exists a closed disk D £ S about σ such that
(a) DΓ\E is void,
(b) t(a, ζ, σ)< 0, a e D, ζ e E by 1.6,
(c) the intersection of D and the image of ΘΩ consists of a finite

number (possibly zero) of Jordan arcs βi9 i = 1, , w, each of which.
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passes through σ.
We divide dΩ into the inverse images yi9 i = 1, , n, of βi9 and

the remainder 7.
On 7 the function t(f(z), ζ, σ) is uniformly bounded below for ζe Eί

and we may apply Fubini's theorem to

ί dμ(ζ)\t(f(z),ζ,σ)d*p(z>r).

The integral is either finite or +co.
For each i, we exhaust β\σ by a sequence of compact sets i*V

By (c) the restriction of d*p(z, r) to f~\Fj) Π 7» induces a positive
mass function on F3 £ D\(J. Its logarithmic potential

is harmonic on S\Z) by 4.1. By (b) the functions pμij form a decreasing
sequence; by Harnack's principle its limit

is either - c o , or harmonic on S\D.
We may assume that p(z, r) is zero on dΩ; then exp {p(z, r) + ip*(z, r)}

(choosing any branch of p*) maps 7* onto an arc of the unit circle.
For any ζoe E we have

where c is some finite constant. Since this integral is bounded with
respect to a and β, ί)μi(ζ0) is finite, and pμi(ζ) is bounded on E7.

Consequently, by (b), we may apply Fubini's theorem to

ί dμ(ζ) \ t(f(z), ζ, σ) d*p{z, r)
JE JJi

for each i, and the integral is finite. Summing over 7 and yif we
obtain the required relation.

5* First main theorem* To develop a first main theorem for
analytic mappings f: R—+ S where R and S are arbitrary Riemann
surfaces, we fix a point σ e S and define a principal family S~\ we
then select points τe S and reR such that σ, r and f(r) are distinct.
A parametric disk is selected at r.

"Γ

Let t = max {t, 0}. For a regular region Ω ~ R such that r e £?,
the proximity function m(β, / ) , the counting function N(Ω, f) and the
characteristic function T(Ω, f) of / on Ω are defined as
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MΩ,f) = -£- \ t(f(z), σ, τ) d*p(z, r) ,

N(Ω, /) = £ 9(Si, r) , {βj = f-\σ) n Ω ,

where p and g are the capacity and Green's functions on Ω, and s{ is
repeated in accordance with its multiplicity.

The proximity m{Ω, a) and the counting functions N(Ω, a) at the
point a are defined as m(Ω, f) and N(Ω, f) when a = σ; otherwise we
define

m(Ω, a) = — I t{f{z), a, σ) d*p(z, r) ,

N(Ω, a) = Σ 0(ai9 r) , {a,} = f~\a) n Ω .

where α̂  is repeated in accordance with its multiplicity.
The first main theorem reads:

THEOREM 5.1. For every aeS\f(r),

m{Ω, a) + N{Ω, a) = T(Ω,f) + 0(1) ,

where 0(1) is a bounded function with respect to Ω.

Proof. When a = σ it is trivial; when a Φ σ, Jensen's formula
(4) is

ί(/(r), a,σ) = ^-\ t(f{z), a, σ) d*p(z, r) + Σ flrfo, r)

— -1_ I t(f(z), σ, a) d*p(z, r) — Σ ^(si> ^) >

Λvhich is

(12) m(β, α) + 2V(£?, α) = — f

+ N(Ω,f)

For ζ e S we define

?(ζ) - t(ζ, σ, a) - ί+(ζ, σ, τ) .

There is a neighborhood zί of c in which both ί(ζ, σ, a) and £(ζ, σ̂  r)
are positive. Hence in z/,

- ί(ζ, σ, a) - t(ζ, a, τ) - ί(ζ, τ, α) ,
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which is bounded. Outside Δ, g(ζ) is obviously bounded. It follows
that

t{f{z), σ, a) = t(f(z), σ, τ) + 0(1) .

We conclude the proof by substituting this in (12).
We note that if J7~r and ^ r n are principal families defined with

respect to the same point cr, then the functions £'(ζ, σ, τ) and £"(ζ, σ, τ)
belonging to these families differ by a bounded harmonic function.
Consequently the corresponding characteristic functtions 7\ and T2 are
related by TX{Ω, f) = T2(Ω, f) + 0(1) where 0(1) is bounded with respect
to Ω.

Before defining functions of bounded characteristic we shall develop
an alternative representation of the characteristic function. For this
purpose we prove the following lemma.

LEMMA 5.2. N(Ω, ζ) is continuous on S\f(r).

Proof. Let a be an arbitrary point in S\f(r), and let aly * -,aq

with multiplicities vly , vv be the inverse images of a in Ω.
We can construct open connected neighborhoods Df, D ot a m

S\f{r), and E , E3 of a3- in Ω\r for every j , such that the following
properties hold:

(a) Each neighborhood lies in a parametric disk about its associated
point.

(b) Every inverse image of ζ e D'\a is simple and ζ has v3- inverse
images in E3\

(c) Every zeEs

3\a3 is simple.
(d) EJSE;.

(e) Every ζ e D\a has v3 roots in Ejf and D £j Df.
(Ej\a3 ,f) is a smooth covering surface of S. If 7(ί) is an arc in

D from an arbitrary δeD to a, its path of determination y\t) from
an inverse image of 3 in E3 cannot intersect E'3\E3 and must tend to a3.
Similarly if the inverse image is not in an E , 7'(t) must tend to ΘΩ.
Hence every component of the inverse image of D that intersects Ω
is either a neighborhood of some a3 or intersects dΩ.

Let Do = {ξ 11 ζ — a \ < ρ0} be a disk in D in terms of the local
coordinates. Let F30 be the component of the inverse image of Do that
contains a3, let Gj0, j = 1, •••, n be the components that intersect the
inverse images b3 , j = 1, , n, of a on 9/2, and let ϋΓ, 0> 0 = 1, , m,
be the other components that intersect £?. The number of components
is finite since dΩ and dD0 are analytic curves.

We define a real-valued function h3(z) on Hj0 by /^(z) = |/(z) — a\.
For each £Γ,0 there exists τ3- > 0 such that h3(z) > r y for z e Hj0 Π β,
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and there exists a positive r 0 < rs for all j . Let Dl = {ζ \ | ζ — a \ < r0}.
Let M be a uniform bound of the number of inverse images in Ω

of ζ e S. For ε > 0 and every i, there exist neighborhoods A{bά) S G i α

of δ, such thatδ,

«, r) - g(ajf r) | < J L , z e

and

where #(#, r) is the Green's function on Ω and vanishes outside Ω.
Then 1 iV(β, ζ) — N{Ω, a) \ < ε in the intersection of DJ and the images
of J(aj) and J(&y) for all j . This completes the proof.

LEMMA 5,3. If μ is a regular positive unit measure on a compact

set E S S\σ, and if pμ(η) = I t{r], ζ, σ) dμ(ζ) is the logarithmic potential

with respect to any family J7~, then

(13) ~P,{f{r)) = ~

- ( N(Ω,ζ)dμ(ζ).

Proof. By Lemmas 1.5 and 5.2 we may integrate Jensen's formula
(4) over E and obtain

- - 1 - ί d/M(ζ) ί ί(/(«), <7, ζ) d*^ f r)
Z7C JE Jθβ

) - ( N(Ω,Qdμ(ζ).
JE

We apply (11) and obtain the required result, which is the natural
generalization of Frostman's formula.

The characterization of T(Ω,f) that we need is a consequence of
the next theorem.

For a fixed σ,τeS and r e R such that σ, τ and f(r) are distinct,

we shall write t(ζ) for t(ζ, <?, τ), ίm(ζ) for max {m, t(ζ)} and p(z) for

ί>(«, r ) .

THEOREM 5.4. If Em - {ζ | ί(ζ) = m} ^/^ere m ΐs finite and t
belongs to the principal family ^\(I) with respect to the identity
partition, then
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(14) Uf{r)) = ±

,/ )--M N(Ω,ζ)d*t(ζ).
2π jEm

Proof. We first prove this theorem for the case in which some
extra hypotheses hold, and then remove the restrictions.

We assume that either S is closed or that S is a regular region
containing the image of Ω and that m Φ lim t(ζ) as ζ —> ξ e OS. We
choose a unit mass distribution on the compact set Em (oriented clockwise
about σ) such that dμ — l/2π d*t(ζ). Its logarithmic potential is

(15) Ptι(V) = JL\ t(ζ,η,σ)d*t(ζ)
2π jEm

Em divides S into two components, one containing a and the other
τ; we shall call them the σm- and τm-components. If S is a regular
region one of these components is a neighborhood of the ideal boundary;
we suppose that it is the σm-component.

If m < t(Ύ]) < co, then the flux of ί(ζ, η, σ) is zero over the boundary,,
Em U dS, of the o"m-component and is also zero over the boundary, dS,
of S; since Em f) OS is void, it follows that the flux over Em is zero*.
As t(ζ) is constant on Em, it follows from (15) that

V, °) d*t(ζ) - t(ζ) d*ί(ζ, η, σ)] .

The application of Green's formula to t(ζ, y, σ) and t(ζ) over the
τm-component proves that the right-hand side equals — ί(r, η, σ) = tj7j).

If - co < ί(r?) < m, we write t(ζ, η, σ) - ί(ζ, τ, σ) + ί(ζ, ^, τ) in
(15). The flux of t(ζ, τ, σ) is 2π and the flux of t(ζ, ̂ , τ) is zero over
the boundary, £/w, of the τm-component. The first integral equals — m.
We add a zero term and obtain

-PM = m - J - f [t(ζ,)?, τ) d*ί(ζ) - t(ζ) d*ί(ζ,)?, τ)]
2π JEm

from (15). We apply Green's formula to ί(ζ, ^, r) and ί(ζ) over the
(/^-component, and it follows that — p^η) = m — £(σ, η,τ) = m ~ tjrj)
by (1).

We obtain the same results if we suppose that the τm-component
is a neighborhood of the ideal boundary.

Since the application of Lemma 4.1 to (15) shows that Vjίj]) is
continuous at τ, we conclude that — pμ(r) — tm(τ).

If Ύ] e Em we note that t(ζ, η, σ) is superharmonic in the neighborhood
of Em. We consider the level lines Em-e and Em+ΐ, ε > 0. For sufficiently
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small ε, either t(ζ) is the capacity function on the τm_ε-, τm- and rm+ε-
components or — t(ζ) is the capacity function on the corresponding
^-components. In either case we apply (8) to (15) and obtain

which yields -Pylyj) = tjyj).
We substitute in (18) and obtain (14).
To remove the restrictions we shall denote the intersection of Ek

and the image of Ω by Ek. Then Ek is compact and

ί ,N(Ω,ζ)d*t(ζ) = \ N(Ω,ζ)d*t(ζ).
JEjc JEk

If S is a regular region and m = lim ί(ζ) as ζ-~>ξ e dS, we take
ε0 > 0 sufficiently small that

{ζ I grad ί(ζ) - 0 and m + ε g t(ζ) ^ m} ^ Em .

For ε0 > ε > 0 we map E^+2 into 2?m along the level lines of t*(ζ).
These are well defined as the different branches of ί*(ζ) differ by an
additive constant. The mapping is one-to-one except that onto each of
the finite number of zeros of grad ί(ζ) on Em is mapped a finite number
(one more than the order of the zero) of points on Ef

m+ζ.
On the image of Ω we set the measures dμΞ = 1/2TΓ cϊ*ί(ζ) on

J^i+β, 0 < ε < ε0. By Helly's theorem there exists a limiting measure
that is obviously on E'm. By the continuity of the normal derivative
of ί(ζ) it is, under the above mapping, d*ί(ζ), a.e. Hence, if Nq =
min (JV, g), we obtain

lim ί iV,(β, ζ) d*t(ζ) <£ ί iV(β, ζ) d*ί(C) .

The opposite inequality is obtained by Fatou's lemma. Consequently,

lim ( N(Ω, ζ) d*t(ζ) - ( N(Ω, ζ) d*t(ζ) .
ε->0 jRm+s JEm

We now establish (14) for m by applying it to m + ε, which is permissible,
and letting ε—>0.

If S is arbitrary we consider an exhaustion of S by regular regions
W such that W contains σ, τ and the image of Ω. We denote by
tw(Q = tw(ζ> σ> τ) the function in the ^1(1) family defined with respect
to W, and we set Ewm = {ζe W\tw(ζ) = m}.

Let Wo be a regular region containing the image of Ω. We first
consider m such that Em fl Ŵ  contains no zeros of grad £(ζ), and cover
it with a finite number of parametric disks. We select ε0 > 0, such
that the set
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F = {ζ I ε0 rg t(ζ) ^m + eo}nWo

is contained in these disks and does not contain any zeros of grad t(ζ).
On each disk we use t{ζ) and any branch of ί*(ζ) as local variables.

Since Em and Θ Wo are analytic manifolds, their intersection consists
of a finite number of components. Consequently there exists a compact
Ff £ F such that the intersection of Em and the image of Ω is contained
in the interior of F', and that OF' intersects Em at a finite number
of points, each of which has a neighborhood in which OF' lies on a
level line of ί*(ζ). We set E* =EmΠ F'

Since ^F(ζ) and its normal derivative tend uniformly on compact
sets to t(ζ) and its normal derivative, there is for any ε > 0, a Ws such
that

Ewm S {ζ I m - ε < ί(ζ) < m + ε} n F' ,

and that the maximum angle between E^m and Em is less than π/2,
for TF 2 W2. For sufficiently small ε we can map E£m univalently onto
E* along the level lines of ί*(ζ).

We have set up the set we need for the proof. We apply (14) to
the region W and let W —> S. It is only necessary to examine the
convergence of the last term. On Wo we choose a set of measures
dμw = l/2π d*tw(ζ) on E£m. For sufficiently large W,

N(Ω,ζ)d*tw(ζ) = ^ N(Ω,ζ)<

We apply Helly's theorem as before and obtain the necessary convergence
Consequently, the theorem holds for open S if there is no zero of grad
ί(ζ) on Em.

If grad t(ζ) has a zero on 2£TO, we apply (14) to Em+ζ and take the
limit as ε —> 0. To obtain the convergence of the last term, we choose
the set of measures dμε = l/2τr d*t(ζ) on Ĵ ^+s and apply Helly's theorem.
This completes the proof.

By taking m =• 0 in (14) we immediately obtain a generalization
of Cartan's formula:

COROLLARY 5.5. // the characteristic T(Ω, f) is defined in terms
of a principal family J^KI), then

(16) Γ(J2,/)=4(/(r)) + - L ( N(Ω,ζ)d*t(ζ).

As a side issue we shall strengthen Lemma 5.2.

LEMMA 5.6. If f(dΩ) is the image of dΩ, then N(Ω, ζ) is LP on
S\f(dΩ).
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Proof. Let ae S\(f(dΩ) \Jf(r)). We take σ at a, a parametric
•disk Δ at a, and an arbitrary τ. Let t(ζ) = ί(ζ, σ, τ) G ^1(1). There
exists ra0 such that {ζ | ί(ζ) ^.m0} S A(f(dΩ) U/(r)).

For m i> m0, (14) yields

2TΓ Jtf

which is

)

2ττ

Since — ί(ζ) is the capacity function on the neighborhood of a bounded
by m ^ m09 the function N(Ω, ζ) is harmonic on S\(f(ΘΩ) U/(r).

Let the multiplicity of r be k. By the construction used in Lemma
5.2 there is for any n, a neighborhood of f(r) such that each ζ therein
has k inverse images in

{z I g(z, r)>n} ,

and a uniformly bounded number of other inverse images, for all of
which g(z, r) is uniformly bounded above. Hence N(Ω, ζ) has a loga-
rithmic singularity with coefficient k. This completes the proof.

6* Functions of bounded characteristic* The remark after
Theorem 5.1 shows that if the characteristic function T(Ω,f) is bounded
with respect to Ω when it is defined in terms of one principal family
^~, then it is also bounded when defined in terms of another family.
We shall show that this property is also independent of the points σ, r, r9

provided that σ, τ and f(r) are distinct.
For a fixed family ^7(1) and a fixed τ, we define

x(Ω, 9) = - M *(/(*)> σ> τ) d*P°(z> 9) f
2π ho

V(Ω, q) = Σ 90{*i, Q) 9 {Si} = fΛo) Π Ω ,
i

x'(Ω, Q) = -£J: \J(f(z)> τ> σ) d*Po(z, q) ,

y'(Ω, q) = Σ flTnί*!, 9) , {ίj = / " W Π Ω ,
i

and % = x + /̂, u' = xf + 2/', where Ω is a regular region in R, and β<,
ί̂ are repeated in accordance with their multiplicities.

LEMMA 6.1. If Ω exhausts R, then the limits of y{Ω, q) and
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u(Ω, q) are either LP (harmonic with positive logarithmic singularities)
functions or + co if the limit of u(Ω, q) is LP9 then the limit of
x(Ω, q) is harmonic.

Proof. The classical method is employed. We first prove that

Ωι ϋ Ω2 implies u(Ωl9 q) S u(Ω2, q). hetzeΩ^ We write t{ζ) for ί(ζ, σ, τ).

If t(f(z)) > 0, then t(f(z)) = t(f(z)) = u(Ω29 z) - u\Ω29 z) by Jensen's

formula (14). Hence t(f(z)) ^ u(Ω29 z) for all zeΩlm Consequently,

- L f t{f{z)) d*Pl(z, q)£-^\ \u(Ω29 z) - Σ g1(8i9 z)\ d*p(z, g) ,

which is, by transposition,

u(Ωlf q) ^ u(Ω2, q) .

For any fixed Ωo we exhaust E by 42 a <0O. By the application of
Harnack's principle to u(Ω, q) — u(Ω0, q) over Ωo, we find that the limit
of u(Ω, q) is LP or + co over Ωo and hence over R.

By the maximum principle, y(Ωl9 q) ̂  y{Ω2, q) when Ωt g i22, and
the same proof carries through.

If the limit of u(Ω, q) is LP, so is that of y(Ω, q): further, both
functions have the same singularities. By taking the limit of x(Ω, q) =
u(Ω9 q) — y(Ω, q)y we obtain the harmonicity of the limit of x(Ω, q).
This completes the proof.

THEOREM 6.2. If T{Ω,f) is bounded with respect to Ω9 then it
is bounded for any choice of r, τ, σ if f(r), σ and τ are distinct.

Proof. A subscript indicates functions defined in terms of the new
parameters.

(a) If r is changed to rx such that /(n) Φ σ, then 7\(42, / ) =
u(Ω9 rx) is bounded since the limit of u(Ω9 q) is LP.

(b) If τ is changed to τl9 we have

2π
Uf{z)) - t(f(z)) d*p(z9 r) .

The integrand is bounded since the function q(ζ) in the proof of
Theorem 5.1 is bounded.

(c) If σ is changed to σl9 we may by (b) take σλ as τ in defining
T(Ω9f). From the definitions of the terms

is a constant function. It follows from Theorem 5.1 that T(Ω9f)
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We have established the fact that the following class of functions
is well-defined.

DEFINITION. An analytic function f: R —> S, where R is an
arbitrary open surface and S an arbitrary surface, is of bounded
characteristic, f e MS, if T(Ω, f) is bounded with respect to Ω gΞ R.

It follows from Lemma 6.1 that if fe MB, then the limit of y(Ω, q)
is a positive superharmonic function on R. Consequently R is hyperbolic
and we set

N(R, ζ, r) - lim N(Ω, ζ) = lim Σ ft>(*<, r) , {*<} - f~%) n Ω .
ΩR ΩB iΩ-*B

Since ([3] p. 429) N(R, ζ, r) = Σa θ(*i, r), M - f~\ζ), where g is Green's
function on R, it follows ([3] p. 418) that the class MB is identical
with the Lindelofian maps. We are able to obtain a characterization
in terms of N(R, ζ, q).

THEOREM 6.3. Iff:R—*S is analytic, the following statements
are equivalent:

(a) feMB
(b) there exists seR and open UξΞ= S such that N(R, ζ, s) < co

for ζeU,
(c) N(R, ζ, β)< co, s G R, ζ G S\/(r).

Proof. To prove that (b) implies (a) we select a e U\f(s) and a
parametric disk zf at a such that J g U\f(s).

Set Δn = {ζeln\ N(R, ζ, β) ^ w} then by Lemma 5.2 JV(R, ζ, β) is
lower semi-continuous and Δn is closed. Also Δ = U -4Λ. By Baire's
category theorem there exists ikί such that ΔM has an interior point.

Let Q ^ ΔM be an open region, and τeQ\(σ U/(«)). We define a
family ^7(7) at σ; t(ζ, σ, τ) has a level line 1? in Q. There is a principal
family ^V(J) such that £7 = {ζ | t'(ζ) = 0}, t' e ^Ϊ(I). Substitution in
(16) yields

" Md*t'(ζ) < co
E

for all Ω. Hence fe MB.
(c) implies (b) trivially. To show that (a) implies (c) we note that

by Lemma 6.1, N(Ω, ζ) is bounded above for s e R, ζ e S\f(s), whenever
/ G MB. This completes the proof.

An extremal decomposition characterization of MB functions is
given by the following:

THEOREM 6.4. An analytic f:R—>S is of class MB if and only
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if t(f(z)) is the difference between two LP functions, where t may
be from any principal family

Proof. From the proof of Lemma 6.1,

) = u(Ω9 z) - u'(Ωf z)

for all Ω. If feMB, then the limits of u and u' are LP functions.
This proves the necessity.

For the sufficiency we assume t(f(z)) = v(z) — w(z), v, w e LP.
The singularities of u(Ω, z) are positive singularities of t{f{z)), and

so among the singularities of v(z). Hence v(z) — u(Ω, z) is superharmonic
on Ω and attains its minimum on dΩ.

Let w e dΩ. By (2), x{Ω, z) is the harmonic function on Ω with
boundary values t(f(w)) and

lim x(Ω, z) - t{f{w))
Z-+W

for any approach to w; also y(Ω, 2)—>0 as z—>w, and v(w) ^ t(f(w)).
Consequently v(z) — u(Ω, z) ^ 0 on Ω.

Since v{z) e LP, there exists r e Ω such that v(r) < co. Hence
u(Ω, r) is bounded for all Ω, and feMB. This concludes the proof.

The integrand of the proximity function used by Sario [8] is

β(ζ, a) = t(ζ, α, σ) + log (1 + e^) (1 + e2ί(α)), cc Φ σ

= log (1 + e2t^) , α - σ .

where t e . ^ and ί(ζ) = t(ζ, σ, τ). A comparison of the characteristic
functions, evaluated at σ, shows that the functions of bounded char-
acteristic with respect to Sario's characteristic function are the same
as those treated above.
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CLIFFORD VECTORS

CURTIS M. FULTON

In this paper we present a generalization of parallel vector fields
in a Riemannian space. As it turns out, such fields exist in spaces of
constant positive curvature.

Restricting ourselves to a Riemannian 3-space throughout, we need
the oriented third-order tensor [3, p. 249]

ηijh = [$gn(g)gγι%jh .

whose covariant derivative vanishes [3, pp. 251-252]. The latter fact
is best ascertained by the use of geodesic coordinates. If we write
the determinant of the metric tensor with the aid of permutation
symbols we also find without difficulty

DEFINITION. Let the direction of a vector field at any point be
that of the unit vector V. The field is said to consist of Clifford
vectors if

( 2 ) ' Vifj = L\ihV
h, L ^ O .

THEOREM. If the Riemannian curvature K is constant and equal
to L2, the system of equations (2) is completely integrable. If, at
any point, solutions of (2) exist in all directions, then K — L2 — const.

It is known that integrability conditions for (2) are obtained using
covariant differentiation. Hence, on account of a Ricci identity [3,
p. 83] and (1) we have

( 3 ) L,kr]ijh Vh - L,flikh Vh + L\ghjgik - ghkgij) Vh = Rhίjk Vh .

If the Riemannian curvature is constant [3, p. 112],

( 4 ) Rhijk = K(ghjgik -

and conditions (3) are identically satisfied. This proves the first part
of our theorem.

For proof of the second part we multiply (3) by Wι Vj Wk and get

L\ghjgik - ghkgij) Vh W* Vs Wk - Rhijk Vh W* V* Wk .

Thus L2 is the Riemannian curvature associated with the unit vectors

Received August 29, 1963.
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F, W [3, p. 95]. Assume now that W is a solution of (2) and ikfthe
corresponding scalar factor. Then the above curvature is also equal
to ikP. Continuing this process we conclude from Schur's theorem
[3, p. 112] that the curvature is constant and because of (4) that K — IΛ

To conclude, we demonstrate a geometric property of Clifford
vectors justifying the name chosen for them. Let t be the unit tangent
to a geodesic and U & unit vector which undergoes a parallel displace-
ment along the geodesic. Hence U\άt

j — 0 and U remains in a plane
passing through the geodesic [1, p. 161], On the other hand, because
of (2), VijtΨ — 0 which shows that a Clifford vector, propagaged
along the geodesic, is inclined at a constant angle to it. Letting
cos θ — Ui Vif we see that

- sin θdβ = Lηijh UΨ Vh .

We now make the simplifying assumption that both U and V are
perpendicular to t. In this case the vector r]ijh U

l Vh has the direction
of t and using (1) we find its length to be sin θ. Thus dβ — ± L
and the Clifford vector rotates about the geodesic in either sense through
an angle proportional to the displacement. This property may be used
to define the Clifford parallels or paratactic lines in elliptic 3-space [2,
p. 108].
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MAXIMAL ALGEBRAS AND A THEOREM OF RADO

I. GLICKSBERG

l A theorem of Radό [1, 4, 6, 9] asserts that a function /,
continuous on the closed disc D — {z : \ z | ^ 1}, and analytic at all
points of the interior of D where / doesn't vanish, is analytic on all
the interior. One can of course take this as a statement about the
uniformly closed algebra Ax—the disc algebra—formed by those / in
C(D) analytic on the interior of D, and in fact it is easy to restate
the result in a form which makes sense for any function algebra. For
let T1 = {z: I z \ = 1}, and call / locally approximable at z if / can be
uniformly approximated by elements of Ax on some neighborhood of z.
Then it is clear that the result asserts that any / in C{D), locally
approximable at all z in D\{TX U/'XO)), is in Alm

Now since D can be viewed as the maximal ideal space of Alf and
T1 as the Silov boundary, we can formulate such an assertion for any
uniformly closed algebra of functions—and, needless to say, it will
fail in general.1 But under appropriate maximality conditions the result
does hold; in particular we shall show it holds for any uniformly closed
function algebra A maximal on its Silov boundary, provided the boundary
is not all the maximal ideal space of A, and for intersections of such
algebras.

This result holds as a consequence of two facts: Rossi's local
maximum modulus principle [11], and a quite elementary lemma (2.1)
which allows one to eliminate certain points as candidates for elements
of the Silov boundary of an algebra. In the original setting, where
the elementary local maximum modulus principle for analytic functions
can be used, our proof requires (beyond this lemma) only the fact that
the disc algebra Ax is a maximal subalgebra of C(ΓX) [7, 12]; no doubt
it is no simpler than the proof given in [6] However our arguments
do establish some nontrivial variants of the result in the general setting
(3.5, 3.6, 4.9), and, in particular, for functions analytic on polycylinders
in Cn; deflated to the disc algebra almost all of these follow rather
easily from Radό's result due to the topological simplicity of the one
(complex) dimensional situation and the fact that there Radό's result
can be applied locally.

One consequence of Radό's theorem is the fact that A1 is integrally
closed in C{D), i.e., any / in C(D) satisfying a polynomial equation

Received September 26, 1963. Work supported in part by the National Science
Foundation through Grant GP 1876.

1 For example, for the subalgebra of Aι of those / with /'(0) = 0; f(z) = z is locally
approximable off f~ιφ), but not in the subalgebra.

919



920 I. GLICKSBERG

/» + W " 1 + + a0 = 0

with coefficients in Ax must lie in A1# This extends to our maximal
algebras (§ 5), and, as a consequence, for every uniformly closed sub-
algebra A of C{^/ί)1 where ^ y the maximal ideal space of A, properly
contains the Silov boundary of A, we have a larger subalgebra a
with the same Silov boundary which is integrally closed in

Another consequence of one of our variants of Radό's theorem is
the analogue, for intersections of maximal algebras, of the elementary
removably singularity theorem for analytic functions (§ 6); from this
one also has an analogue of the elementary facts on the behavior of
analytic functions near isolated singularities, valid for functions locally
approximable on ^ less a point.

Finally, the main portion of our argument can be applied to yield
an abstract version of Schwarz's lemma: for any algebra A, if /, g e A
and fig is bounded on ^£\g~\ϋ) then it is bounded by its supremum
over the Silov boundary. Various consequences of this are given in § 4.

The author is indebted to Kenneth Hoffman and John Wermer for
many helpful comments; in particular it was Wermer who observed
that the author's original version of 2.2 could be used to prove Radό's
theorem, and suggested its use to obtain integral closure.

We shall use C for the complex numbers, R for the reals, and F°
for the interior of a set F.

2. In all that follows C{X) will denote the Banach space of all
bounded complex continuous functions on the space X, and A will
denote a closed separating subalgebra of some C{X), containing the
constants. In general we shall view any such algebra A as a closed
subalgebra of C{^f), where ^€\s the maximal ideal space of A; when
there is any necessity we may write ^JtA for ^£. A closed subset X
of ^£ is a boundary for A if every f in A assumes its maximum
modulus over ^// on X; any boundary is just a superset of the Silov
boundary d of A.

Let X be a boundary for A, and let F be a closed non-void subset
of X. An / in A will be said to peak within X on F if f(F) — 1
while I/I < 1 on X\F. As is easily seen a point m of X lies in the
Silov boundary d of A if and only if for every open neighborhood V
of m in X there is an / in A which peaks within X on a nonvoid
subset of V. The following lemma is fundamental to our considerations.

LEMMA 2.1. Let Xcz^f be a boundary for A, and V a {rela-
tively) open subset of X. Suppose geA peaks within X on a nonvoid
subset of V, and let a = sup | g(X\ V) | {which is necessarily <1).
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Then any feA vanishing on V also vanishes on the nonvoid open
subset U = {me^Jt : | g(m) | > a} of

Proof. Suppose | g(m) | > a and f(m) Φ 0. Let μ be a (normalized,
nonnegative, regular Borel) measure on X representing m, so h(m) =

Yhdμ for all h in A [7, p. 181]. Let v be the complex measure (ί/f(m))fμ
(the ordinary product of function and measure), which again represents
m since

\hdv = —λ— \hfdμ = —1— h(m)f(m) , he A.

Now set h = (l/g(m)) g e A; since | g(m) \ > a = sup | g(X\ V) | we have
h(m) = 1 > sup I h(X\ V) |. Replacing fe by a sufficiently high power
of itself we can suppose sup | fc(-3Γ\F) | < l/(2||v||), where | |v | | is the
total variation norm of v, while h(m) is still 1.

Since /(V) = 0 the measure v = (l/f(m))fμ is carried by X\ V, so

1 = Mm) = \hdv = \ hdv <
J )χw 21b I

the desired contradiction.
Our main applications of 2.1 will be made via the following corol-

lary, and usually with the set ^ a singleton.

COROLLARY 2.2. Let I c F c ^ be boundaries for A, V a
relatively open subset of X, and j ^ ~ any subset of A. If V is con-
tained in the topological boundary in Y of Π/e^r/'XO), then V Π 9 = φ.

Suppose V Π d Φ Φ, so some g in A peaks within X on a nonvoid
subset F of F. Then each / in JF must vanish on the open subset
Z7of ^£ given in 2.1, and Fa U, so F lies in the interior of Γ\fe&f~\0)
in Y, not in its boundary.

For a boundary X for A, A is called analytic on X if every / in
A vanishing on a nonvoid relatively open subset of X vanishes identi-
cally (on X, hence on d, hence on all of ^£). In [5] an example was
given of an algebra A analytic on d but not on ^fί\ the original
purpose of 2.1 was to prove

COROLLARY 2.3. // A is analytic on ^£, A is analytic on d.
Indeed it feA vanishes on a relatively open subset V of d then

some g in A must peak within d on a nonvoid subset of F, so that /
vanishes on a nonvoid open subset of ^J? by 2.1. Thus we have the
more general assertion of
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COROLLARY 2.4. For any algebra A, an f in A vanishing on a
nonvoid relatively open subset of d vanishes on a nonvoid open subset
of ^£'.

In particular if f~x(0) is nowhere dense in ^ then f~\0) Π 8 is
nowhere dense in d. Both 2.3 and 2.4 remain valid if ^£ is replaced
by any boundary for A, but neither need hold if d is enlarged to an
arbitrary boundary; for example both fail for the disc algebra Alf

with d replaced by X = T1 U {0}, and {0} the relatively open subset
of X.

As we shall see later (4.2), 2.1 yields some further information
on zero sets of elements of algebras with ^ Φ d.

Some simple variants of 2.1 are of interest, but will not be needed
in what follows. For example

COROLLARY 2.5. Let U and V be as in 2.1. Then any bounded
sequence {fn} in A converging pointwise to zero on V converges
pointwise to zero on U.

For θ > 1 let Uθ = {me^ : | g(m) | ^ θcή. Then any bounded
sequence {fn} in A converging uniformly to zero on V converges
uniformly to zero on Uθ.

Proof. For the first part, suppose fn(m) -/> 0 for some m in U;
replacing {fn} by a subsequence we can assume fn(m) —• c φ 0. Let μ
again represent m, and let / be any weak* cluster point of {fn} in
IΌO(/0 Since a subnet of {fn} converges weak* to / we have

h(m)[fdμ = [hfdμ , h e A ,

while c = lim/n(m) = lim \fndμ = \fdμ. So for h = glg{m) we have,

for all n,

c = h{m)λfdμ - \hnfdμ .

But by dominated convergence, for any / ' in Lλ{μ) vanishing off

V we have [f'fdμ = lim [fuf'dμ = 0, and thus / = 0 a.e. μ on V.

So, since sup | h(X\V) \ < 1,

c = lim [ hnfdμ = 0 ,
)χ\v

our contradiction.
The second assertion is entirely elementary. With me Uθ, and μ

and h as before, we have | h \ ̂  1/| #(m) | g 1/̂ α on X, and ^ α/^α =
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1/0 on X\V. Thus

Jx\v

since θ > 1 the last term will be <ε/2 for some large k, and choosing
n^ N will then force the sum below ε.

We might note that there are trivial variants of this second
assertion which allow {fn} to be unbounded, provided the sequence

approaches zero rapidly enough. For example, if

as is easily verified.

3* Let X be a boundary for A. We shall call a function /,
defined on part of X, locally approximable (within2 X by A) at xe X
if, for some neighborhood U of x in X, f is defined on U and is
uniformly approximable there by elements of A; alternatively3

f\Ue(A\ U)~, the closure in C(U) of A\U. We shall say / is locally
approximable on Y c X if / is locally approximable at each point of
Y; note that by definition the set of points of X at which a given
function is locally approximable is open in X.

We have ^ c l c ^ . Call A relatively maximal in C(X) if
A\Xφ C(X) and no closed proper subalgebra B of C(X) containing
A I X has dB — dA. (Since dA c ΘB necessarily, we are requiring properly
larger subalgebras of C(X) to have properly larger Silov boundaries.)
Note that A is relatively maximal in C(dΛ) if and only if A\ΘΛ is a
maximal closed subalgebra of C(dA); on the other hand if X ψ dA it
follows quite simply from Zorn's lemma that there is a (necessarily
proper) closed subalgebra Bi) A oί C(X) with the same Silov boundary
which is relatively maximal in C(X). (As we shall see later, an example
of an algebra which is relatively maximal in C(^C) but not maximal is
the algebra of functions in C(Dn), analytic on the interior of Dn, the
unit polycylinder in Cn.)

The following simple observation will extend the range of our
results.

LEMMA 3.1. If A is relatively maximal in C(X) and I c Y<z.^£A

then A is relatively maximal in C(Y).
2 We shall omit these terms when the algebra and boundary are clear.
3 / | U is the restriction of / t o Ut A \ U= {g \ U: ge A}. Trivially the uniform

closure (A\ U)~ of A\ U in C(U) is isometrically isomorphic to the closure of A\ U~
in C{U~), and at times we may write (A\ U)~ where (A\ U~)~ might also be used.
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Suppose B is a larger subalgebra of C(Y) with dBcdAf so that
dB = dA c X. Then B \ X is closed in C(X), and since we can assume
X Φ Y, BI X Φ C(X) since each point of Y\X provides a multiplicative
linear functional on B \ X. But A is relatively maximal in C(X), so
A\X = B\X, and each f in B coincides on dB = 9̂  with a # in A;
since Y" can clearly be viewed as a subset of ^€n, and / — g e B must
vanish on all of ^tB since it vanishes on dB, f = g on Y, and B = A.

The following is our direct extension of Radό's theorem.

THEOREM 3.2. Suppose A is relatively maximal in C(^fA) with
^£A φ dAf or, more generally, is an intersection of closed subalgebras
of C{^fA) each having a Silov boundary which is a proper subset of

fA and each relatively maximal in C(^fA).
Then any f in C{^Ά) which is locally approximable on

is in A.

Proof. Consider first the special case in which A is relatively
maximal in C(^?A), and let us write Λ€, d for ^/ίA, dA. Let B be
the closed subalgebra of C{^) generated by A and /.

For each m in U = ^f\(d U /-1(0)) we have an open neighborhood
Um of m contained in U for which f\ Ume(A\ Um)~, so clearly
h\ Um £ (A I Um)~ for any h in B. As a consequence m g dB; for other-
wise some h in B must peak within ^/ί on a subset of the open set
Um, so for some m' in Um

\h(m')\>suv\h(U-\Um)\ .

Since h\ Ume(A\ Um)~ this contradicts Rossi's local maximum modulus
principle [11] (which asserts that θu π)- c U~\U for any open Uc^t\d).

Similarly for any m in /-1(0)°, the interior of /^(O), mid, we
have a neighborhood ?7m c ^ \ 9 on which /1 ?7m = 0 e (A | Ϊ7W)", and
we again conclude that m$dB. $>odBcd{j F, where .F is the. topological
boundary of f~\ϋ) in ^ C

Now F\d is a relatively open subset of the boundary X = F[Jd
for B, and F\0 lies in the topological boundary F of /-1(0) in the
subspace Y = ^ f of ^ ^ so 2.2 applies, showing (FV?) Π dB = ^,
whence dBad. Since d ^ ^/έ, B is proper in C(^#), and since A is
relatively maximal in C(^€), B = A. Thus / e i a s desired.5

For the more general case6 let A = Π A*, where θAa £ ^ , and
each AΛ is relatively maximal in C{^t). Clearly dcdA , and ^ is

4 Actually A | X =£ C(X) is redundant if JΓ Φ dA, as will usually be the case.
5 Radό's theorem for Ai now follows from Wermer's maximality theorem [7, 12].
6 Our discussion here (and in later sections) would be considerably simplified if one

had a positive answer to the following open question, raised some time ago by Kenneth
Hoffman: if AczBczC(^A) and dB = dA, must ^B = *A?
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a subspace of ^Acύ properly containing dAa, so dA Φ ^tA(jύ. Let
pa : ^Aoύ —* ^ be the map dual to the injection of A into AΛf which
we can of course view as a retraction of ^A(Λ onto its subspace Λf\
finally let h—>ίi denote the Gelfand representation of Aa — for h in
A, in particular, h = hopa.

Now trivially foP*€C(^fAJ is locally approximable (by AopΛ,
hence) by A2 on ^1Λ\(Θ U (/ojθΛ)-

χ(0)), so certainly on
^ ^ α V ^ U ί / o ^ ) - 1 ^ ) ) . Since A* is relatively maximal in C ( ^ C J by
3.1, fop^eA* by our special case, whence f = (f°pΛ)\^ is in
A^ I ^ ^ = Aa\ since this holds for every a, fe A, completing the proof
of 3.2.

The argument of the special case of 3.2 is central to all that
follows (and will be needed again). There, in distinction to the more
general case, the only property of ^ that is used is the local maximum
modulus principle; Λ€ could just as well be any boundary X fo which

(3.1) ΘUΊT)- c U~\U, for all relatively open U in X\(θ U F) ,

where F is the boundary of /-1(0) in X. Moreover 3.2 evidently yields
a positive assertion about any algebra A with ^ C Φ d; it will be
worthwhile later to combine these observations in the following corollary
to our proof, in which ^/ί can be taken as X.

COROLLARY 3.3. Let fe C(X), where X is a boundary for A for
which (3.1) holds. Let f be locally approximable (within X) on
X\(d \J f~\ϋj) and let B be the closed subalgebra of C(X) generated
by A and f. Then

(a) dB = θ (so that B — A if A is relatively maximal in C(X))r

and
(b) local maximum modulus applies to B on X, i.e., for an open

UcX\d,

d(B]U)-a U~\U.

If X = d the assertions of 3.3 are of course vacuous, (a) is of
course proved in 3.2, and also follows from (b), whose proof is simply
a modification of that of 3.2. For if x e U is not in F, the boundary
in X of f-\0), then x has a neighborhood Ux with U~ c U\F for
which /1 Um e (A \ Ux)~, so h | Ux e (A \ Ux)~ for any h in (B \ U)-, thus
%£d{BU)- as in 3.2. On the other hand if x is in F then x$d{B-π)-
by 2.2, so (b) follows.

3.3 has the following consequences.

THEOREM 3.4. Let ^fA Φ dΛ. Then there is a closed subalgebra
B of C(^A) containing A, with dB = dA, for which any f in
locally approximable by B on ~^fA\(dA[Jf~1(0)), must lie in B.
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Consider any chain of closed subalgebras B of C{<^fA) which have
the same Silov boundary as A and to which local maximum modulus
applies on ̂ £r

A\dmm-(zTJ"\U, for U open in ^tA\dA. By just the
argument used in 3.2, if J50 denotes the closure of the union of the
elements of the chain then d{BfiW)-CL U~\U for any open U(Z^fA\dA,
so ΘBQ = dA and local maximum modulus applies to Bo on ^ A . By
Zorn's lemma then we have a closed subalgebra B of C(^Ci) maximal
with respect to these properties, with AcB. But now for an / in

which is locally approximable (within ^A) by B on
/^O)) we have by 3.3 precisely the same properties for the

algebra generated by B and /; thus the latter coincided with J5, and
feB.

The following extension of 3.2, which allows us to replace 0 by
a countable subset of C, merely adds a category argument to that of
3.2. In the original setting of Radό's theorem it can be obtained by
a local application of that result (and category).

THEOREM 3.5. Let A be relatively maximal in C(^/t) with
Φ d. Let E be a countable subset of C, and {Fn} a sequence of

nowheYe dense hull-kernel closed7 subsets of ^t. If fe C{^) is
locally approximable on

(3.2) ^\(dϋf-1(E)[J(UFn))

then feA.
If A is only an intersection of relatively maximal subalgebras

of C(^f), each having its Silov boundary proper in ^f, then the
same assertion holds if \JFn is closed, in particular if {Fn} is finite.

Proof. Suppose first that A is relatively maximal, and let B be
the closed subalgebra of C{^€) generated by A and / . Actually / is
locally approximable on an open subset W of ^€\d which contains
{3.2), and also contains the open sets f~\ey\d, eeE, as well; and so
for each me W we have a neighborhood Um of m, Um c ^ \ d , for
which f\Ume(A\ Um)~, whence h\Ume(A\ Um)~ for all h in B. Since
W is open we can conclude from the local maximum modulus principle
that dB Π W = Φ as before.

Suppose medB\d, so medB\(d\jW). Since W contains (3.2) and
each set / " W ^ , such an m must lie in U Fn9 or in /"'(^AUβe^/" 1^) 0,
which is contained in the union of the boundaries of the sets f~\e).
Thus dB\d is contained in a countable union of closed subsets of

and, by category, if θB\θ Φ Φ one of the sets Fn n (9B\d) or

7 Recall that a subset of -^ — # Ά is hull-kernel closed if and only if it is of the

form r\^^g-\ϋ), where
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(boundary f~\ej) Π (dB\d) has nonvoid interior V in the locally compact
space dB\d, hence in dB.

Now if Va (boundary f~\e)) n (9B\d) then e — f is an element of
B which vanishes on the relatively open subset V of dBf while V
lies in the boundary in ̂  of (e —/)~1(0), so that 2.2 implies V ΐ\dB = φ,
our contradiction. Similarly if VcFnΓ[(dB\d), then since Fn is hull-
kernel closed it has just the form of the intersection in 2.2; since FΛ

is nowhere dense in ^ί, V lies in boundary Fn = Fn9 so 2.2 again
yields a contradiction, and we conclude that dB c d, whence B = A
a n d / e A .

For the final assertion of 3.5 we consider ^£ as a subspace of
^Άa as in 3.2, with pa our retraction of ^ d Λ onto ^ ^ Since now
p^Fn need not be nowhere dense in ^Aoϋ, we let Y = ~^tA}\Jp«\Fn)\
and let Ba be the closed subalgebra of C(Y) generated by (the re-
strictions of) A2 and f°pΛ.

Our hypothesis that Fn is nowhere dense implies ^// c Y since
P«\Fn)° Γl^ cFi = φ. And our hypothesis that (J ̂  is closed implies
K = \Jρ~1Fn = p-1 (U •f'J is closed so that

U

is an open subset of ^A}PA contained in the subspace Y of oί

Trivially f°pa is locally approximable by A2 on an open subset of Y
which contains all points of U except (possibly) those lying in the
boundaries of (f°pa)~1(e), eeE. But now any m in U at which fop^.
is locally approximable has an open neighborhood Um in ^Af\pAa with
U~ c U for which h\Ume (AΛ \ Um)~, he B; since Um is open in ^€Aol)r
we know m£dB by just the argument of 3.2.

Thus m e 0B\ΘAa implies m lies in the boundary in Y of some
{f°P<*)Λe), or in K\\JpΛFJ^U{pΛFn)W(FJh i.e., in the boundary
of onp of the sets p«\Fn) (Ί Y in Y; and now the argument of the
special case shows 8 5 c 9 v By 3.1 A2 is relatively maximal in C(Y"),
so BΛ = iCI Y, and since ^ ^ c Y, Ba\ ̂ £ = A2 \ ^ = AΛ, and / e AΛ+
Hence feA, completing the proof of 3.5.

As noted, the only point in the proof of the special case of 3.2
in which ^€ had to be the full maximal ideal space of A, rather than
a subset properly larger than the Silov boundary, was in the application
of local maximum modulus. In some special situations classical local
maximum modulus can be applied, and we can then avoid using all of
the maximal ideal space. For example, for X G I , a boundary for A,
call a non-constant map px of the open disc JD° onto a subset of X
containing x an analytic disc through x if gopx is analytic for each.
a in A. Then
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THEOREM 3.6. Let X Φ d be a boundary for A, and suppose A
is relatively maximal in C(X). Let feC(X) and let F be the
topological boundary of f~\0) in X.

Suppose that for every x in U = X\(d U F) there is an analytic
disc px through x for which f°px is analytic on D°. Then fzA.

As before, define B to be the closed subalgebra of C(X) generated
by A and /; for every disc px in our hypothesis we have hopx analytic
on D° for he B as SL uniform limit of analytic functions.

Now if dB n U is nonvoid then [10, p. 138] the open set U must
contain a strong boundary point x of B, and since px is non-constant
some g in B must peak within px(D°) on a proper subset containing x.
So gopx assumes its maximum modulus at a point of D°, yet is non-
constant and analytic on D°; we conclude that U{\dB is void, and
dB c d U F. Now the remainder of the proof of 3.2 applies.

Other variations of this sort can be obtained. We have pointed
out 3.6 mainly to note an apparently nontrivial variation of Radό's
theorem which it yields for the polycylinder algebra—the algebra An of
all functions continuous on the polycylinder Dn in Cn and analytic on
its interior. Recall that for An, ^ — Dn and d = Tn; moreover if
X is any closed subset of D% containing the topological boundary of
Dn in Cn (and thus a boundary for An) then8 An \ X is relatively maximal
in C(X).

COROLLARY 3.7. Suppose X is a closed subset of Dn containing
the topological boundary of Dn in Cn. Suppose fe C(X), and through
each point of X\Tn where f does not vanish we have an analytic disc
in X on which f is analytic.

Then f is an element of the polycylinder algebra An restricted
to X.

(Note that we of course have analytic discs on which / is analytic
through points of /^(O)0. Here an analytic disc is simply an analytic
map of D° into X, which need not be (1 — 1), let alone bianalytic.)

Finally we should note that something slightly weaker than local
8 This is no doubt well known; the proof for n = 2 is as follows, with A = Ai \ X.

Suppose i c ΰ c C ( I ) , and dB = dΛ = T2. Each disc Do = {(z, wQ):\z\ ^1} with | wo \ = 1
lies in X and is a peak set of A (hence of B), since (z, w) -> (1/2)(1 + ϊΰow) peaks there.
Consequently [8, p. 227] B\D0 is closed in C(D0) and dB\DQc:dBnDo=T2nDo=dA\DQ.
Since A \ Do is the relatively maximal disc algebra and we now have dB\D0 = QA\DQ, we
conclude that A \ Do = B \ Do; thus z -> b(z, wo) is analytic on \z\ < 1 for b6B, \ Wo\ = 1.
Similarly w -> b{zo, ω) is analytic for | r̂o I = 1. But now

= 0

for n or m > 0, so b = ge A on dB = T2, whence b — g must vanish on
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approximability can be used in its stead in 3.2-3.5: rather than insisting
that / be uniformly approximable by elements of A on Um (hence
necessarily on U~) as we have done, we need only insist on uniform
approximation on

(3.3) K = {m} U (U-\Um) = {m} U boundary Um.

For example, in 3.2, f\Ume(A\Um)~ was used only to show
{^/ί\d U/^O))) Π 9B = φ, and since [10, p. 138] strong boundary points
are dense in dB while ^f\(d U f~\0)) is open, it suffices to show
m e ^ / ^ U / " 1 ^ ) ) cannot be a strong boundary point. But if m is
a strong boundary point and / is uniformly approximable on (3.3) then
h I Ke (A I K)~ for all h in B while some h in B must have

(3.4) I Mm) I >sup\h(U~\Um)\

since m is a strong boundary point not in U~\Um. Now some In! in
A satisfies (3.4) (since h \ Ke (A \ K)~), contradicting local maximum
modulus again.

It may be worthwhile to note what this yields for the disc algebra
A,: if fe C{D), and for each z in D\{Tλ U/^O)) there is an rt, 0<rz^
dist (z, T1 \J f~\ϋ)) for which / can be approximated uniformly by
polynomials on {z} U {zr: \ z' — z \ = r j , then feAlm (Deleting f~\0)
everywhere, we have here simply a corollary to Wermer?s maximality
theorem for A± and the density of strong boundary points in d; from
this the more general statement follows by Radό's theorem. Actually
we can limit our z's to a dense countable set in DXiT1 {Jf~\O)) if we
also assume that rz > k dist (z, T1 U/""1^)) for some fixed k > 0.)

4* Schwarz's lemma* Our argument can also be applied to certain
functions defined and continuous only on part of ^ , for any algebra
A. In particular, we have the following generalization of Schwarz's
lemma (for A = A19 take g{z) = z), which has several consequences.

THEOREM 4.1. Let f and g be in A and suppose f/g is bounded
on Λr\g-\ΰ). Then

(4.1) sup = sup
g

(In fact the assertion applies to the Gelfand representatives of any
commutative Banach algebra.)

Proof. For each m in U = ̂ £\{d U sn^O)) let Um be an open
neighborhood of m with compact closure contained in U, chosen so
small that OeC does not lie in the closed convex hull of g(U~). Then
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we have polynomials Pn for which Pn(z) —• z~ι uniformly on g(Um), so
that (Pnog) I Um - (II g) \ Um in C(Um), and thus (Jig) \Ume(A\ Um) \

Letting Bo be the uniformly closed subalgebra of
generated by AQ = A \ {^f\g~\ϋ)) and f/g, we have

(4.2) h\Ume(A\Um)~

for all h in Bo and m in U.
Now let X be the closure of ^\g~~\ϋ) in ^tBo, so that X is a

boundary for the algebra B^ of Gelfand representatives of Bo. Set
B — B^ \X; B of course contains a continuous extension to X of each
ft in Ao, and of //#, and we shall let h* denote the extension of
h I (^\g-\0)), for he A.

g* cannot vanish on ^\g~\0). On the other hand g* must vanish
on X\y£\ for since ^Jt\g~\ϋ) is dense in X, |flr*(a?) | ^ ε > 0 implies
x is in the closure of {me^f: \g(m)\ ^ ε}, which is already compact,
so a e ^ . Consequently ^*~1(0) = X\y#. Again since Λ?\g~\ϋ) is
dense in X, g*"1^) = X\J? must coincide with its boundary in X.

Now ^//\g-\ϋ) = X\fif*~1(0) is open in X; on the other hand the
imbedding of ^ ^ ( O ) into X is a homeomorphism,9 so that the rela-
tively open subset U — ̂ t\(θ U g~\0)) of ^\g~\0) is in fact relatively
open (hence open) in X. Consequently each Um is open in X and (4.2)
suffices to show no m in U is in ΘΛ, as in 3.2. So

, θsczX\Ua ( X W ) U (%-χ(0)) c (JΓ\^r) u i^7,

where F is the closure in X of ^ r ^ O ) , and 0ΛCβr*-1(O) U F.
If the relatively open subset dB\F of 95 were nonvoid, then, since

it lies in flf*"1^), hence in the boundary in X of this set, 2.2 would
imply dB f] (ΘB\F) = ^ = S^F; so dB\F =Φ,dBc:F and trivially (4.1)
follows. (Since the result applies to A~—with 1 adjoined if necessary—
for any commutative Banach algebra A, the final assertion follows,
easily.)

Our first corollary to 4.1 gives some information about zero-sets-
which is quite familiar for the disc algebra: a (non-void) zero set
g~\0) (g e A) disjoint from the Silov boundary has a smallest neighbor-
hood on which elements of A can vanish, while no / in A vanishing
on ^~α(0) can tend to zero faster than every power of g unless / vanishes,
on a neighborhood of flπ^O).

We first observe that (4.1) can be trivially improved to have
^(/"'(O) U fΓ'ίO)) in place of d\g-\0) on the right side of (4.1) (since
f/g vanishes on /

9 Trivially BoC.C(^\g~K^)) implies the map of ^\g"ιΦ) into < B 0 is continuous,
while the map of ^B0 into •* dual to the injection of A into 2?o-restricted to the image
of *\g~ι(ff)- in *<B0-provides a continuous inverse.
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COROLLARY 4.2. Let f and g be in A, with Φ Φ fir^c/^O),
and suppose inf | g(d\f^(O)) | = δ > 0 (which will of course be the case
if g~λ(O) Π 9 = Φ). If fjgn is bounded on ^/?\g~ι($) for every n^l
then f vanishes on

(4.3) g-\D%) ,

where Dδ° is the open disc about 0 of radius δ.
In particular, if g~λ(0) is nonvoid and disjoint from the Silov

boundary, then any f in A vanishing on a neighborhood of g~x(0)
vanishes on (4.3) with δ — inf | g(d) |.

By (4.1), modified as indicated,

g n ^ sup
g n

on ^//\g~\ϋ) so that

= sup

#(m)
δ

- 0

if 0 Φ I g(m) \ < δ. By hypothesis f(m) — 0 if g(m) = 0, so / vanishes
on all of (4.3).

For convenience let us say g eA divides feA if / = gh, he A.

COROLLARY 4.3. Suppose A is analytic on ^// (§ 2), and g eA
has ^-1(0) nonvoid and disjoint from the Silov boundary. Then if
g divides a nonzero element f of A there is a largest integer n for
which gn divides f.

Otherwise f/gn is bounded for every n, and / must vanish on (4.3),
hence on all of u / .

COROLLARY 4.4. Suppose A \ d is an intersection of maximal closed
subalgebras of C(d), f and g are in A, and10 ^/S Φ d {] g~\0). If f/g
is bounded on ^\g~x($$), and on θ has an extension in C(θ), then
f = gh for some h in A.

10 This hypothesis is superfluous if g does not vanish anywhere on d, but in general
is essential to the result. For let ^ be the subset ({0} xD) U {(r, z) : 0 ^ r ^ 1, | z | = 1}
of R X C, and A all functions continuous on ^ and analytic on {0} X D°. Then ^A. =
•Λf, dΛ = ^r\({0} X D°) and setting /(r, z) = rz, g(r, z) - r we have fjg(r, z) = z so f/g 0 A.
(If O£g(d) and ^ y = d{Jg~Kfy t n e n each of the complementary sets d and gr"1^) i s °Pen
and closed; by a result of Silov, or in fact by 3.2, the characteristic function of ^ - 1(0)
is an element of A. Since it vanishes on d we conclude that g~Kty = Φ a n d t n e assertion
of 4.4 is vacuous.)
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We shall only sketch the proof, which is quite similar to that of
4.1. Suppose first that A | d is actually maximal. Let ft0 be an extension
of f/g to Y- θ U C^f\g-\0)) with ho\deC(d); we now let BQ be the
uniformly closed algebra of bounded functions on Y generated by A | Y
and ft0. Of course we have ft \ d and ft \ (^^\g~\0)) continuous for
ft G Bo, and this implies the (1 — 1) map of Y into ^tBo is continuous
when restricted to d or ^\g~\ϋ)\ we can view F as a subset of
c^C0, d as a compact subspace.

As in 4.1 we let X be the closure of Y in . ^ 0 , B — B^\Xy and
ft* the element of B corresponding to heBQ. If #*(#) ̂  0 then for
some ε > 0, x lies in the closure in X of { m e ^ T : |#(m) | ^ ε}, which
is already compact in X as the continuous image of a compact subset
of ^\g~\fy. So X\g*-\ΰ), an open subset of X, is contained in Y;
thus tX'\flr*-1(0))\9 is another subset of Y which is open in X. This
last set is clearly the open subset U = Y\d = ^ \ ( 9 U ̂ (O)) of Y,
and Z7 is open in X.

Now the imbedding of U into X is a homeomorphism (exactly as
before; see footnote 9)), so any subset of U, open in ^£, is open in X.

Consequently if we select, for me U, an open neighborhood Um

o f m i n ^ with U~ c U (as in 4.1) for which ft* | Um - h \ Um e (A | Um)~,
h e JB0, then since Um is in fact open in X the argument of 3.2 and
local maximum modulus show dB Π Um = Φ.

Thus 8 Λ c ί \ ί r = X\(y\θ), so ΘB\ΘcX\Γ. But X\Ycff*" 1 ^), as
we have seen, so X\Γc^*~1(0)\δ>, and ^ c ^ - ! ( 0 ) \ 9 . Since F\9 =
. ^ \ ( 9 U flΠ^O)) is dense in X\δ> while ^* cannot vanish on this set,
we clearly have g^^Oyψ contained in its boundary in X. So 2.2 applies
to show dB\d = φ, whence dBcd and 5 [ ^ is closed in Cφ).

By hypothesis ^\(θ U ̂ ""̂ O)) ^ ^ , s o 9 5 c 9 is proper in ^/fB; thus
AI 0 c I? I d £ C(0), and by maximality A 19 = J51 a. Hence h0 = ft on
9 for some ft in A, whence f — gh on 9, hence on all of ^ ^ .

Now if A\d = Π(A* 19) where each Aa \ d is maximal in C(d), then
the preceding argument applied to Aω (with / and g taken in C(^C α ))
shows ft01 d e A* \ d; thus hQ\d ~ h\d for some ft in A, whence / = gh
on ^ ^ as before.

COROLLARY 4.5. Let A\d be an intersection of maximal closed
subalgebras of C(d), and let g be an element of A with ^>£ Φ d U g^iO).
Then any f in C(^/ί) with fgeA coincides on ^£\g~x{$$) with an
element of A.

For fg/g is bounded on ^\g~\*S) and on d has the extension /1 d
in C(d), so that fg = gh for some ft in A by 4.4.

(If A is analytic on ^£ (see §2), / e A; for then ^(O) is nowhere
dense in
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Bishop [3, § 2, Lemma 3] has recently shown that (for any A) a
point m in ^/f\d is represented by a (not necessarily unique) Jensen
measure on d, i.e., there is a probability measure μ carried by d for
which Jensen's inequality holds:

g | / | d / i , feA.

(Applied to f—e±g,geA, this yields Reg(m)—VRegdμ so that μ

represents m on A.) As a consequence the argument of 4.4 yields

COROLLARY 4.5. Suppose f, g eA and f/g is bounded on ^#\g~\0)
and on d has an extension h0 in C(d). Then for each m in
^/f\(d U flΠ^O) \Jf~L(0)) there is a Jensen measure μ on d representing
m for which

log I g I dμ - log | g(m) | ^ J log \f\dμ - log |/(m)

When (as in 4.4) f/g is actually the restriction of an element h of
A, 4.5 follows trivially from Jensen's inequality for any Jensen measure
μ representing m; for

log |/1 dμ - log I f(m) \ = I log | gh \ dμ - log | gh(m)

g\g\dμ - log I g(m) | J

while the last term is nonnegative. In general we can construct the
algebra B of 4.4, obtaining dB = d as there. Thus m e ^//\{d jj ^-1(0)),
which provides an element of ^^pBί is represented on B by a Jensen
measure μ on dB = d by Bishop's result. So

log <

and

-co < log I g(m) I ̂  (log \g\dμ .

From the last we have d Π g^iO) a /J-null set so

log |/(m) I - log I g{m) \ = log -^-(m) ^ I log -£- dμ
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yielding 4.6.
If A\d is not an intersection of maximal subalgebras of C(d) and

/, g are as in 4.4 one would not in general expect f/g to have an
extension in C(^f)— or even an extension to ^ continuous at all
points of d. However this is the case if A has unique representing
measures.11

COROLLARY 4.7. Suppose each m e ^ is represented by a unique
(probability) measure on d. Let f,geA, with f/g bounded on
^\Q~\^)J

 and suppose that, on d, fig has an extension in C{d).
Finally, suppose ^ Φ d\J g~\$).

Then fig has an extension in C{^£).

Exactly as in 4.4 we form the closed subalgebra B of C(X)\ X
contains (a homeomorph of) d and a continuous (1 — 1) image of
^£\g~~\ϋ) as before. Again we obtain dB c 0, so that each m e ^/ίB

is represented by a probability measure μm on d, which is necessarily
multiplicative on AcB, hence represents an element mr of ^€\ the
map m—*mf is of course nothing but the continuous map on ^£B into
^ f dual to the injection of A into B. But since representing measures
for A are unique m - ^ m ' is 1 - 1 : for if mu m2 both map into m'
then μmi = μm2, whence m1 = m2.

Thus ^€β is homeomorphic to a compact subset of ^// which
necessarily contains {^€\g~\ϋ)) U d, so that h0 (see 4.4) has a continuous
extension to the closure of this set, hence to ^ \

Actually in 4.1, 4.4 and 4.7 various other combinations of / and
Q (e.g., / exp (1/g)) could be used in place of f/g. More generally f/g
could be replaced by any h in C(^€^\^~1(0)) which is locally approximable
on Λ?\(d U ̂ (O)), as is clear from their proofs. Thus

THEOREM 4.8. Let geA and suppose he C(^f\g~\G)) is locally
approximable on ^t\(d U βΠ^O)). Then

sup I h(^\g-\§)) I = sup I h(θ\g-\(ή) \ .

Suppose that ^/ί Φ d U ̂ ( O ) , while h | d has an extension in C(d).
Then

(i) If A\d is an intersection of maximal subalgebras of C(d),

11 More generally we could insist on uniqueness of the Jensen measure for each m
(see [3, §2, Lemma 3]). An example where the assertion of 4.4 fails is the following
which was pointed out by Wermer. Let X = {(z, w)e C2: \z\ = 1 = | w |}, and A the
closed subalgebra of C(X) generated by the coordinate functions z, w, and all the
functions wm/zn with m > n > 0. Then >* = {(z, w) G C 2 : | w \ ̂  | z \ ̂  1}, the coordinate
function g = z vanishes only at (0, 0) in -#, and w/z is bounded on • \̂flf~1(0), but has
no continuous extension to **\
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h is the restriction of an element of A.
(ii) If each m in ^ has a unique representing measure on d

then h has an extension in

With sufficiently strong hypotheses we can also obtain an analogue
of Radό's theorem in which continuity need not be assumed everywhere.

THEOREM 4.9. Suppose A\θ is maximal in C(d), ̂  Φ d. Let
F be a relatively closed subset of ^f\d, E a countable subset of C,
and K a countable union of hull-kernel closed sets (for example,
points) contained in F. Suppose feC(^f\F), f is locally approxi-
mable on ^f\(d (J F), f~\e) is nowhere dense in ^£\F for each e in
E, and for every m in the boundary Fo of F in ^tf, m£K, the cluster
values of f at m lie in E, i.e..

where the intersection is taken over all neighborhoods of m.
Then f is the restriction of an element of A.

Proof. Again for each m in U = ^/f\(d (J F) we choose an open
neighborhood Um with f\ Um e (A | Um)~, and let BQ be the closed
subalgebra of C{^/\F) generated by A \ {Λ\F) and /; thus

(4.4) h\Ume(A\Um)~

for all m in Uand h in Bo. We can again view Y — ̂ \F = 0 U(^£\F)
as a subset of ^tB& and d as a compact subset. Let B be the re-
striction of the Gelfand representatives B^ to the closure X of Y in
^CJ 0 , and p the restriction to X of the map ^ ^ o —• ^ dual to A —> Bo.
Trivially p(X) is the closure, in ^J?, of Y.

Now p is 1 — 1 on p~λ Y, so p~x Y = Y; for each h in Bo is con-
tinuous on Y while for each x in X, h(x) is a cluster value of h at
ρ(x). Thus ρ(x) =yeY implies h(x) = h(y) = h(y), and x = y. (Since

each Um is open in ^#, hence in p(X), this implies Um = p~ιUm is
open in X.)

Each m in p(X)\Y lies in the boundary Fo of F, clearly. Since
each Um is open in X, by local maximum modulus and (4.4) we have
dBf\ U=Φ, so dBcX\U; since ρ~Ύ = 7 and Y = d \J U we have
p(dB)c.ρ(X)\Ucd{J(p(X)\Y)c:dUF0, so β ^ c β U r W For each
x in p~\F^), f(x) is a cluster value of / at p(x), so that either f(x) e E
or p(x) e K = UΓ=i ̂  (where K{ is hull-kernel closed). Thus the locally
compact space dB\d c ρ~\K) U (f~\E) 1Ί X), a countable union of closed
subsets of X. By category, one of the sets ^ ( i Q Π (0Λ\0) or
f~\e) fl (^\9)? e G E* h a ^ a nonvoid relative interior V in 9^8 if
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Suppose p~\Ki) n {®j\&) has nonvoid relative interior V. Then if
S = {heA: h(Ki) = 0}, K{ = ΓϊhesΛ"x(0), and since / = hop on X, we
have /o-1(JE<) = n*6β^"1(0). Trivially ^ ( i Q is all boundary in X
(since p~\Ki) f]Y — Φ and Y is dense), so 2.2 applies to yield the
contradiction V = dB Γ\ V = Φ.

Again if f~\e) Π (ΘB\Θ) has nonvoid relative interior V in θB\d, then
(β — /)"1(0) contains V, and coincides with its boundary in X since
(e — Z)" 1^) Π ? is nowhere dense in Γ = ^£\F by hypothesis, hence
has a dense complement. Since this again yields V = V ΓίθB = Φ by
2.2, we conclude that dB\d = #.

The remainder of the proof is now clear.

COROLLARY 4.10. Suppose that the hypotheses of 4.9 are satisfied
except for the requirement that A\d be maximal in C(d). Then the
closed subalgebra of C{^€\F) generated by f and A\{^\F) has the
same Silov boundary as A.

5. Integral closure. For a boundary X of A we shall call A
integrally closed in C(X) if, when α0, alf , αw_x are in A and fe C(X)
then

(5.1) p(f) =fn + a^J"-1 + + α0 - 0 on X

implies feA. We shall see that algebras to which 3.2 applies have
this property for12 X = ^ f as a consequence of 3.2 and the implicit
function theorem for analytic functions on Cn.

Recall that if F is analytic near (z°, w°) = (z°, . , z°n, w°) in Cn+\
F(z\ w°) = 0 and (SF/βw) - Fn+I(z°, w°) Φ 0 then, for some δ > 0 and
neighborhood V of 2° in Cn, there is a unique function ψ on F for
which

= 0 a n d | <p(z) -w°\<δ;

and φ is analytic on V. Consequently if

(5.2) F(a19 •.-,«„/) = 0

on a neighborhood of me^?, where α l f •••, α^e A,fe C(^f), and
α^m) = z°if f(m) = w°, then

near m. Thus / can be uniformly approximated by a power series in
au ---,an near m, and for some neighborhood Um of m, /1 Um e (A \ Um)~.
So we have

12 The same argument, using 3.3, yields this for any boundary X for which local
maximum modulus applies to Λ on X, if 4 is relatively maximal in C(X),
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LEMMA 5.1. Let a19 , ane A,fe C{^€), and suppose F is
analytic on a neighborhood of (a^m), , an(m),f(m)) in Cn+1 while
(5.2) holds on a neighborhood of m. Then f is locally approximable
at m if F^ajjn), , an(m),f(m)) Φ 0.

We can now easily obtain the integral closure of the algebras in
3.2. Slightly more generally we have

THEOREM 5.2. Suppose A is an intersection of relatively maximal
subalgebras of C(^t) with Silov boundaries proper in ^ . If
fe C(^/έ) is locally approximable on ^f\d outside the set where (5.1)
holds then feA; in particular A is integrally closed in

Proof. /, and so p(f), is locally approximable on ^f\d except
where p(f) — 0, so that p(f) = aeA by (3.2). Changing aQ, we can
thus assume

v(f) =fn+ α-i/-1 + + a0 = 0

everywhere on ^'. But now / is locally approximable off the set
where

p\f) = nf*-1 + (n - l)an^fn~2 + + θχ = 0

by 5.1, so p'(f) is locally approximable off p'ify^O), and pf{f) e A by
3.2. Continuing we finally have (n\)f + aeA, and feA.

COROLLARY 5.3. Suppose A satisfies the hypothesis of 5.2, while
feA does not have an nth root in A for some n > 1. Then ̂ /ί\f~x($S)
is not simply connected (and if ^ is locally connected, some com-
ponent of ^\f~\G) is not simply connected.)

Finally, if A is also analytic on ^ , ^t\g~λ{$i) is connected for
each g in A.

If ~^t\f~\ϋ) were simply connected we could find an h in
C(-^\/-2(0)) with hn=f on ^€\f~\®)\ setting fc-Oon f-\0) we
obtain an wth root of / in C(^£), and h e A by 5.2. (Similarly if the
components of ^f\f~\G) were simply connected we could find such an
h on each component, and, if the components are open, we can combine
these to again obtain an wth root in C(^t).)

Finally if A is also analytic on ^f, and ^f\g~\0) = U U V Φ Φ,
with U, V open and disjoint, then

g on U U g-'iO)

—g on V
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defines an h in C{^£) which lies in A by 3.2; since h + g or h — g
vanishes on a nonvoid open set ( F o r U) one vanishes identically.
But h = g implies V= Φ, h = — # implies U ~ Φ, so ^^\g"\ϋ) must
be connected.

Actually if A satisfies the hypothesis of 5.2 and is analytic on ^
then A is algebraically closed in C(^C) in the obvious sense. More
generally such an A is analytically closed in C(^C) in the following
sense.

Let al9 , an e A, fe C(^)9 and let F be a function analytic on
a neighborhood in Cw+1 of the range of the map

p:m-> (α^m), , an(m), f(m))

despite our earlier notation we now let Fk = [(d/dzn+1)
kF]opf k ^ 0.

Clearly F is not "independent of zn+1 on p(^f)" if and only if Fk(m) Φ 0
for some m and k ^ 1, and so we shall call A analytically closed in
C{^) if, for such aiff and JP, with Fk(m)φ0 for some fc^l and m,

(5.3) ^(α,, •• ,α n ,/) = 0

implies feA.

THEOREM 5.4. If A is an intersection of relatively maximal
subalgebras Aa of C(^t) each having its Silov boundary proper in

and A is analytic on ^C, then A is analytically closed in C(^/έ).

For / is locally approximable on ^\(d U -Pf̂ O)) by 5.1, so that
Fx is also, and F1 e A by 3.2. Of course we may have Fτ = 0, but
even then we know / (and so F2) is locally approximable on
^t\(d U Ff^O)), so that F2eA by 3.1; since not every Fk = 0 we have
some Fk a nonzero element of A, and choosing k least, / is locally
approximable on ^€\{d U i^O)) .

But now the final portion of 3.5 applies, with E void and Fςι(ϋ)
our (single) hull-kernel closed subset of ^ (which is necessarily
nowhere dense since Fk Φ 0 and A is analytic on ^).

For an algebra to which Radό's theorem applies the preceding
argument shows (5.3) implies FkeA for all k, and clearly we can
replace î YHO) in the proof by K = f}k F^iO), with / locally approxi-
mable off this set; thus the hypothesis that K is nowhere dense is an
adequate replacement for the analyticity of A on ^£, yielding the
first half of

THEOREM 5.5. Suppose (5.3) holds with F appropriately analytic
and fe C{^//). Let K = Γ\F^(0).

(1) If A satisfies the hypotheses of 5,2 and K is nowhere
dense, feA,
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( 2) If A I d is maximal in C(d), and ^// Φ d U K, then f coin-
cides with an element of A off the interior of K.

Since FkeA for all k, and / is locally approximable off K, (2)
follows from 4.9 (with E void, and K the K of 4.9). Of course we
could assume, as in 5.2, that 5.3 holds wherever / is not known to be
locally approximable.

Actually any algebra A with ^ Φ d is contained in a subalgebra
B of C(^f) given by 3.4 to which (1) applies, as is easily seen. In
particular, B provides an integral closure of A in C{^f).

THEOREM 5.6. Suppose ^ A Φ dA. Then A is contained in a
subalgebra B of C(^/fA) which is integrally closed in C(^fA) and has
dB r=z dA. Thus, in particular, if fzC(^i€A) satisfies (5.1) for a{ in
A, the subalgebra of C(,^fA) generated by A and f has dA as its Silov
boundary.

With B given by 3.4, the proof is precisely that of 5.2, with B
in place of A.

Finally we should note that something stronger than integral
closure in C(^/έ) holds for our intersections of relatively maximal
algebra—we could require only that (5.1) holds locally on ^f\d, i.e.,
that each m in the (non-compact) space ^C\9 has a neighborhood on
which an equation of the form (5.1) holds. Then, rather than invoking
3.2, we could simply show that for B, the subalgebra of C{^£)
generated by A and /, one has dBcd. (Indeed if me dB\d and we
choose p as in (5.1) of least possible degree with p(f) = 0 on a
neighborhood Um of m, then / and pr{f) are locally approximable on
ί^w\p'(/)~1(0), so m cannot lie in this open set—nor in its boundary by
2.2. Thus m is interior to p'ifY1^), so p'{f) vanishes near m, contra-
dicting the assumption that p had least degree.)

6* Removable singularities* We next note an analogue of the
elementary removable singularities theorem for analytic functions.

THEOREM 6.1. Suppose A\d is an intersection of maximal
subalgebras Aa of C(9),mey/\9, and f is a bounded continuous
function on ^f\{m} which is locally approximable by A on

U {m}). Then feA\

For each affopa is locally approximable by A2 on Λ0ΆJ\(P*1('M') U fy9

while p^im) is a hull-kernel closed set13 contained in Λ?A\pA = ^ A \d.
13 For {m} is hull-kernel closed in ^ and pa : ^AΛ -> -^ is continuous even when

hull-kernel topologies are used,
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Thus by 4.9 (with E = φ, F = K - p?(m)), fo poύeA2\ ( J i l p W so
/ e A« I (^r\{m}) and / e A \ (^\{m\).

Trivially {m} could just as well be any hull-kernel closed set in
^f\d. The result yields immediately an (imperfect) analogue of the
elementary facts on behavior of analytic functions near isolated singu-
larities.

COROLLARY 6.2. Suppose A\d is an intersection of maximal
subalgebras of C(d) and f is a continuous function on ^f\{m},
which is locally approximable on ^\(d U (m}). Then either

(a) feA\(^/\{m})
(b) / = const. + l/#, g e A, and g~\0) = {m},

or
(c) for each (deleted) open neighborhood V of m there is a compact

K in C for which f( V) is dense in C\K.

Suppose (a) fails, so / cannot be bounded by 6.1. Let V be as in
(c) and take K = f(^\( V U {m})) which is compact. If (c) fails for
this K then for some z e C\K, z — f is bounded away from zero on V;
since it is also bounded away from zero on ^/έ\( V U {m}) (by the
distance from z to K), g = (l/(z — f)) e C(^f\{m}), and is locally
approximable on ^t\(d U {m}), so we can take g to be an element of
A by 6.1. But now to obtain (b) we need only see that ^ ( O ) = {m};
evidently g cannot vanish elsewhere, and if g(m) Φ 0 then g has a
bounded inverse, whence / is bounded, contradicting our hypothesis
that (a) fails.

Remark (Added in proof.) Wermer has pointed out the following
completely elementary proof of 2.2, which actually applies if A is
merely a multiplicative subsemigroup of C(X). (For simplicity we
shall suppose ^ — {/}, a singleton):

For x e V we have a net {ys} in Y converging to x, with f(yδ) Φ 0
for each d. Fixing d, for geA we have

\fg(V*) I ̂  sup I M X ) I = sup \fg(X\V) \

so I g(y8) I ̂  cδ sup | g(X\V) |, all g in A. Replacing g by its kth power
and taking kth roots

whence | g(yδ) I ̂  sup | g(X\V) |. Since this holds for any δ,

\g(χ)\S:BVφ\g{X\V)\,geA,

go X\V is a boundary, and V f] d = ψ<
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An even shorter (but nonelementary) proof can be obtained using
Bishop's result on the existence of Jensen (representing) measures [3],
as Bishop observes in his forthcoming paper "Conditions for analyticity
of certain sets" (§3).

REFERENCES

1. H. Behnke, K. Stein, Modification komplexer Mannigfaltigkeiten und Riemannscher
Gebiete, Math. Ann., 124 (1951), 1-16.
2. E. Bishop, A minimal boundary for function algebras, Pacific J. Math., 9 (1959),

629-642.
3. E. Bishop, Holomorphic completions, analytic continuation and the interpolation of

seminorms, Ann. of Math., 7 8 (1963), 468-500.
4. H. Cartan, Sur une extension d'une theoreme de Radό, Math. Ann., 125 (1952), 49-50.
5. I. Glicksberg, A remark on the analyticity of function algebras, Pacific J. Math.,

13 (1963), 1181-1185.
6. E. Heinz, Ein elementarer Beweis des Satzes von Radό-Behhnke-Stein-Cartan uber

analytischen Functionen, Math. Ann., 131 (1956), 258-259.
7. Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood

Cliffs, N. J., 1962.
8. K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta

Math., 103 (1960), 217-241.
9. T. Radό, Uber eine nicht-fortsetzbare Riemannsche Mannigfaltigkeit. Math. Z., 20

(1924), 1-6.
10. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960.
11. H. Rossi, The local maximum modulus principle, Ann. of Math., 72 (1960), 1-11.
12. J. Wermer, On algebras of continuous functions, Proc. Amer. Math. Soc, 4 (1953),
866-869.

UNIVERSITY OP WASHINGTON





MINIMUM PROBLEMS OF PLATEAU TYPE IN THE
BERGMAN METRIC SPACE

KYONG T. HAHN

Dedicated to my teacher Professor C. Loewner on his seventieth birthday

1. Introduction* In this paper we are concerned with the
existence of minimal surfaces with respect to the J?-area (see §4)
and related problems in a bounded domain D in the space C2 of two
complex variables zlf z2.

Let KD(z, z), z = (zlf , zn), be the Bergman kernel function of a
bounded domain D in the space Cn of n complex variables. Through-
out this paper, we assume KD{z, z) has the boundary value infinity at
every point on the boundary of D. The kernel KD(z, z) enables us
to define the Bergman metric

(1.1) dsl{z) = Σ T^zf z)dz4zVJ T& = d^°lKl) ,
i OZβZ

which is invariant with respect to pseudo-conformal mappings [4,
pp. 51-53]. Using (1.1) we construct (see §2) the complete Bergman
metric space {D, d) over D and state a theorem for complete Riemannian
spaces that for any two points in D, there exists a minimal curve
with respect to d which connects the two points.

In § 3 we show that, if D is a plane domain bounded by finitely
many boundary components blf b2, •••, bn, then there exists a minimal
closed curve with respect to d among those curves which are homotopic
to a fixed inner boundary component, say blf in Dφ^ (see §3 for
notation). If D is doubly connected, there exists a unique minimal
closed curve in D. Furthermore, we prove a distortion theorem which
gives bounds for the Bergman lengths of the minimal closed curves.

Analogous results are obtained in the case of two complex variables
replacing the length by the J5-area.

For a closed Jordan curve Γ in a complete metric space (D, d),
we ask whether there exists a minimal surface with respect to the
jB-area which spans Γ. Answers to this question which constitute
the main result of this paper are given in §4.

As a generalization of § 3, we consider a domain D which is
topologically equivalent to a product domain of the form Όx x Dif
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doctor thesis at Stanford University. The author wishes to express his thanks to
Professor S. Bergman and Professor C. Loewner for their pertinent criticism in the
preparation of this paper. This research was supported by Navy Contract Nonr-225(11)
and NSF Grant 21344.
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where Dk is a bounded domain as considered in § 3. When does there
exist a minimal closed surface with respect to the i?-area among
those surfaces which are homotopic to Tx in D( Tλ) (see § 5 for nota-
tion)?

Answers are given in § 5. Distortion theorems for the minimal
surfaces are given in § 6.

2 The Bergman metric space. A (continuous) curve c in D is
said to be regular if it admits a regular (parametric) representation,
i.e., there exists a continuously differentiable representation

(2.1) G\I:zk = Gk{t), fc == 1, 2, , n, t e I = [α, δ] ,

and dGJdt never vanish simultaneously at any t e I. A curve c in ΰ
is said to be pίecewise regular if it admits a piecewise regular re-
presentation, i.e., there exists a partition A: a = t0 < tx < tm-.± <tm —
b such that G \ [tk-u tk] is regular for k = 1, 2, , m.

For a piecewise regular curve c given by (2.1), we define

(2.2) LM = (T Σ Tμ-iG(t),
at

LD(c) is independent of the choice of piecewise regular representa-
tions of c. LD(c) will be called the Bergman length of c.

For any two points z1 and z2 in D, we define a distance function
d by

(2.3) d(z\ z2) - inf LD(c) ,
c

where c runs over all piecewise regular curves which connect z1 and
z2. Then the following theorem holds [15, §16].

THEOREM 2.1. d satisfies all the axioms for a metric and the
metric space (Z>, d) is topologically equivalent to the metric space
(D, p) with the Euclidean metric p. Moreover, the metric space
(D, d) is finitely connected in the sense that every pair of points in
D can be connected by a curve of finite Bergman length.

The metric space (D, d) will be called the Bergman metric space
over Ό. The significance of this metric space is that all metric
properties are invariant under pseudo-conformal mappings.

We define the length (generalized) of a continuous curve c in
D in the following way: For a partition Δ{I) = {I1912, , Im}, Ik =
[**-i> tk], k = 1, 2, , m, of 7, we define
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σ(G; Δ{I)) = ± σ(G; Ik), σ(G; Ik) = d(G(tk),
k = l

Further, we define

where Δ runs over all possible partitions of /. Then -S#(c) is in-
dependent of the choice of continuous representations of c. Clearly,
the functional £?D is lower semi-continuous, i.e.,

^ lim inf £fD(ck), if ck —> c .

Further, for every piecewise regular curve c, LD(c) = ^fD{c) [15, § 16].
If j£fD(c) < co, c is said to be rectifiable. A curve is said to be

completely degenerated if there is a representation G 11 such that G
is constant on /. A representation G | / is said to be normal if
J^D(G; [t, t ']) - V - t, for t,t'elyt< tf.

Let c be a rectifiable curve which is not completely degenerated.
Then c admits a normal representation G \ [0, ^fD(c)], If we set F(t) —
G(tjSfD(c)), t e Io, Io = [0, 1], then F\I0 is also a representation of c.
Such a representation F \ Io is called a reduced representation of c.
For a closed curve, F is defined on (-co, oo) and is periodic of period
1. It is, therefore, enough to consider F on /0. If F\ Io is a reduced
representation of a curve c, then the inequality

(2.4) d(F(t), F(t')) S j£fD(c) 11 - t' I

holds for every £, V e /0.
A metric space is called complete if every bounded infinite subset

contains a limit point in the metric space. If D is homogeneous,
(D, cϊ) is always complete. Further, for every bounded generalized
analytic polyhedron Ό, (D, d) is complete. This is a result of
S. Kobayashi (see [11] for details). For domains D in the space Cn,
n ^ 2, Bergman has shown that the distance from a point in D to
the boundary becomes infinite under certain hypothesis on the
boundary of D [1], [6, Chap. III]. It is clear, in this case, that the
metric space (D, d) is complete. Without going into great details in
this direction, we shall assume in the sequel that the metric space
{D, d) is always complete.

A curve K in (D, d) which connects z1 and zλ in D is called a
minimal curve between z1 and z2 if j5fD(K) ^ JzfD(c) for all curves c
connecting z1 and z2.

THEOREM 2.2. For any two points z1 and z2, z1 Φ z2y in (D, d),
there exists a minimal curve K between zL and z2. Further, the
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minimal curves are analytic (see [10] or [15, §17]).

3» The existence of a minimal closed curve in a plane domain
and its distortion theorem* We consider a multiply connected bounded
domain D in the space C1 bounded by N Jordan closed curves
bit b2, -",bn, where bn is the outer boundary component. Let (D, d)
be the Bergman metric space derived from the Bergman metric

(3.1) dsl{z) = KD(z, z) \dz\2 .

It is assumed that {D, d) is complete. Then all the previous con-
siderations, lemmas and theorems can be carried over to this case.
We fix an inner boundary component of D, say bλ. Without loss of
generality, we may assume b± to be a circle.

Let ®(D; bx) be the class of all closed continuous curves c in ΰ
which are homotopic to bλ in D{b^), where D{b^) is a ring domain
bounded by bx and bn which contains the domain D, and D{b^ is the
closure of D(b^). A curve K(D; b±) in &(D; b±) which satisfies the
condition ^fD(K(D; b,)) ̂  SfD{c) for all c e B(D; bλ), will be called a
minimal closed curve of D with respect to blm Due to the complete-
ness of (D; d) and the behavior of KD{z, z) (described on page 943) on
the boundary of D, we have

THEOREM 3.1. There exists a minimal closed curve K(D; 6X) of
the domain D with respect to blm Further, it is analytic.

Proof. Let 7 = infc J2^(c), where c runs over the class &(D; b±).
Then 0 < 7 < oo. There exists a minimizing sequence {ck} of rectifiable
curves in Sΐ(D; bλ). Let Gk \ IQ be the reduced representation of ck.
By (2.4), we have

d{Gk(t), Gk{tf)) ^ J2fD(ck) \t-t'\ for each k ,

and {^fD{ck)} has an upper bound δ which is finite. We choose an M
such that Mm > d/lfa), l(b±) is the Euclidean length of bx. Then no
ck lies completely in D — DM, DM = [z \ KD(z, z) < M]. Let

p = max d(zlf z2) ,

then for every pair of positive integers p and q, we have
d(Gp(t), Gq{t)) < p + 2δ, O ^ ί ^ l . Hence, we can select a sub-
sequence {Gki} of {Gk} which converges uniformly to a continuous
function G° on Io. Let K be the closed curve whose representation is
given by GQ\I0. Since ck% —> K, and by the lower semi-continuity of

we obtain jSfD(K) = 7. The analyticity of K is obvious.
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THEOREM 3.2. Every doubly connected domain has a unique
minimal closed curve. It is analytic.

Proof. We shall show first that annulus Q = [z \ r < \ z \ < 1] ha&
a unique minimal closed curve given by c0 = [z | | z | = r 1 / 2]. Let P2 =
[z\r<\z\< r1 / 2], P2 = [z \ r112 < \ z \ < 1]. If c n Pi = 0, it is immediate
that LQ(cQ) ^ LQ(c), since the kernel function KQ(z, zf assumes its
minimum on c0. If c f] P2 = φ, by the conformal mapping ζ = r/z, we-
have c Π P! = Φ, where c is the image curve of c under ζ = r/z..
Since Lρ(c) = LQ(c), LQ(c0) ^ Lρ(c) follows. If c f] Pi ^ Φ and c f ] P 2 ^ λ
we obtain two closed curves clf c2 consisting of the subarcs of c and
c0 and such that cx Π P2 = <£, c2 Π Pi = Φ- By the previous arguments,
LQ(Ci) ^ LQ(c0), i = 1, 2. Since L Q ^ ) + LQ(c2) = Lρ(c) + LQ(c0)9 we
have ί/ρ(c0) ^ ί/ρ(c). Let ΰ be a doubly connected domain. Then D
can be mapped by a univalent analytic function f(z) onto Q. It is
clear that f~\c0) is the unique minimal closed curve of D with respect-
to the inner boundary component by the univalency of f{z).

We consider a domain D in the z-plane which is bounded by
h = [z I I z I = r], 6^ = [z I | z \ = 1], and (iV — 2) closed Jordan curves.
62, •• ,δ i^_1. The curves 62, •• ,6W_1 lie in the domain bounded by bt

and bN.
Let Ax = [z I r < | z \ < 1], A2 = [2; | | 2 — α | < p, \ z \ > r] 2, be exterior

and interior domains of comparison for D, respectively, i.e., A1ZDDZ^A2.

Then

(3.2) LΛl(K(Ad) ^ L»(K(D)) £ LA2(K(A2)) ,

where K(Aλ), K(A2) and K(D) are minimal closed curves of Alf A2 and
i) with respect to blf respectively. It is an immediate consequence
of the fact that if B(zA, then KB{z, z) ^ KA(z, z) for zeB. The
linear transformation

(3.3)
w o

p — d(z — α)

maps A onto Q^ = [z \ R < | z \ < 1], where R is given by

1 A simple computation shows that the kernel function of Q,

(see [9], [18]), where $ and £ are the Weierstrass elliptic functions, assumes its*,
minimum on Co.

2 Here we choose a and p in such a way that \z — a\ < p contains 61 but no other
bicy k = 2, , N, and A2 to be the largest among such domains.
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R „ Γ r* - (α + pdf

<3.4) l(p

d = r2 - α 2 - p 2 + [(r 2 - α 2 - p 2 ) 2 - 4αV>2]1/2

2aρ

Since LA2(K(A^) = LgΛ(X"(QΛ)), using (3.2), we obtain

THEOREM 3.3. E(r) ^ (l/2)LJ9(i?:(D)) g E(R),
where R is given by (3.4) and

E(r) = [πφ (log r; - 2 log r, 2ττί) - iζ(πi; - 2 log r, 2τα)]1/2 ,

1β ami ζ are ίfee Weierstrass elliptic functions.

The estimation of the bounds for the Bergman lengths of the
minimal closed curves in Theorem 3.3 seems to be done only for a
special domain. However, every multiply connected domain can always
be mapped onto such a domain by a conformal mapping. Therefore,
if we know the geometry of a given domain D, combining the various
distortion theorems in the theory of conformal mappings and the
result in Theorem 3.3, we can obtain various bounds for the Bergman
lengths of the minimal curves for quite general domains.

4* The existence of a minimal surface which spans a given closed
curve in (D, d). A surface S in the space C2 is said to be continuously
differentiable if it admits a continuously differentiable representation

G I ζ>0: s* = Gk(ulf u2), k = 1, 2, (ul9 u2) e Qo =.[0 ^ ul9 u2 ^ 1] .

A surface S is said to be piecewise continuously differentiable if it
admits a piecewise continuously differentiable representation G | Q09 i.e.,
there exists a partition Δ = {Δ19 Δ2, , Δm} of Qo by rectilinear triangles
Δk such that G\Δk is continuously differentiable, k = 1, 2, , m.
The ordinary B-area element at a point (^, £2) on a piecewise con-
tinuously differentiable surface S is defined by the equation [6,
Chap. XI]

(4.1) dbs(z) —
d(ulf u2)

The ordinary area element of S is given by the equation

das(z) == [gng22 - (Re g^

Further (4.1) can also be written in the following form,
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(4.1)' dbs(z) = [gng22 — \ g121
2]1/2 duλdu2 .

Therefore, das(z) >̂ dbs(z) at every point z e S; the equality holds if
and only if Im g12 = 0.

For a piecewise continuously differentiable surface S, the ordinary
5-area is defined and given by the equation

(4.3)
θ(ul9 u2)

duxdu2 .

b(S) is independent of the choice of piecewise continuously differenti-
able representations G \ Qo of S. A surface S is said to be analytic
if it admits an analytic representation G | QQ, i.e., dGJdw — 0, k — 1, 2,
w — ux + w 2 .

For an analytic or an anti-analytic surface S, b(S) = 0. It is
also clear that b(S) = 0 if and only if the tangent plane of S at
every point is an analytic plane. A simple computation shows the
following lemma:

LEMMA 4.1. The following three conditions are equivalent:

1) 6(S) = α(S),

2)

3) Φ GLdG1 + G2dG2 = 0 / o r ei erT/ closed curve c on S.

Let D be a bounded domain in the space C2 on which (D, rf) is
complete. The quantity

(4.4) dBD{z) - [KD(z9 z)]112 dbs(z), z - (zlf z2) ,

is invariant with respect to pseudo-conformal mappings and a monotone
decreasing functional of D [6], dBD(z) is called the invariant B-area
element of S. For a piecewise continuously differentiable surface S
in D, the invariant S-area of S is defined and given by the equation

(4.5) BD(S) - [ \[KD(G,
JJ

and is independent of the choice of piecewise continuously differenti-
able representations G \ Qo of S.

A surface S in D is said to satisfy the condition (L) with respect
to the metric d if there exists a representation G \ Qo of S for which
there exists a constant L(S) > 0 depending only on S and satisfying
the inequality

<4.6) SfD{G\ σ(w19 w2)) ^ L(S) \w1-w2\
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for every pair of points w{, w2 in QQ; here σ(wu w2) is the line segment
that joins wλ and w2 in Qo, wk = u[k) + iu{

2

lc\ k = 1, 2.
It is clear that G | 0(QO)> where 9(Q0) is the boundary of Qo, is a

representation of the boundary curve Γ of S and that Γ is rectifiable.
It is also clear that every continuously differentiable surface S
satisfies the condition (L) with respect to d.

We shall say that a surface S is of class C'®(L, N, Γ) if S
admits a continuously differentiable representation

G\Q0:zk = Gk(w) , k = 1, 2, w e QQ,

which satisfies the following conditions:
(a) for a fixed positive constant L, L(S) ̂  L,
(b) for a fixed positive constant N,

N { ^ i = 1, 2, G = (Gu G ) ,

for every pair of points wl9 w2 in Qo>

(c) S spans a preassigned closed Jordan curve Γ in D in such a
way that G is a one-to-one mapping on d(Q0).

A surface Sm is called minimal surface of the class C'Sl(Ly N, Γ)
if ^ ( S m ) g SΛ(S) for all S e C'ffl(L, N, Γ).

THEOREM 4.1.3 For each L and N for which the class C'$t{L, N, Γ)
is not empty, there exists a minimal surface Sm in the class.

Proof. Let infs BD(S) = Ύ, where S runs over all surfaces in
C'&(L, N, Γ). Then 0 S Ύ < °°. Hence, there exists a minimizing
sequence {Sn}. Let Gn \Q0 be a representation of Sn which satisfies
conditions (a), (b) and (c). From (a) it follows that for any pair of
positive integers p, q,

d(Gp(w), Gg(w)) ^ 2-2*12 L .

Therefore, {Gn(w)} is equi-bounded. The equi-continuity of {Gn(w)}
follows from the inequality

(4.7) d(Gn(w), Gn(w')) ^L\w - w'\ f o r a n y w, w' e Qo a n d al l n.

Hence, we can select a subsequence {Gm(w)} of {Gn(w)} which con-
verges uniformly to a continuous function G°(w) defined in QQ. Let
G° I Qo define a surface So. Then it is clear that So spans Γ in such
a way that G° is a one-to-one mapping on d(Q0). The family {dGm/dUj}

3 Replacing (a) by the condition (ar) on page 951, a result similar to Theorem 4.1
can be given (see Corollary 2).
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of continuous functions dGm/dUj is equi-bounded and equi-continuous
by (b) for j = 1, 2. Therefore, we can select a subsequence {Gmi{w)}
of {Gm{w)} which converges uniformly to G°(w) and such that {ΘGmί/dUj}
converges uniformly to a continuous function dG°/dUj for j = 1, 2.
This implies that So is a continuously differentiate surface. In order
to show Soe C'$Ϊ(L, N, Γ), let cm% and c0 be the image curves of a
line segment σ(w19 w2) which connects two points wx and w2 in Qo

under Gmi{w) and G°(w), respectively. Then cmi converges to c0 and,
hence, Km LD(cm.) ^ LΌ(c0) by the lower semi-continuity of L^. Since

LD(cmi) ^ L\w1 — w2\ for all m ί f LB(c0) ^L\w1 — w2\ . It is clear that
G\w) satisfies (b). Since the functional BD is lower semi-continuous in
C'®(L, N, Γ) and So e C'®{L, N, Γ), we have Bΰ(S0) = 7. Thus So is
a minimal surface in the class C'St(L, N, Γ).

REMARK. In the case that Γ lies on an analytic plane π and
the portion π of π (Ί D enclosed by Γ1 is simply connected, π is a
minimal surface of CSΐ(L, N, Γ) with some L and N, and BD(S0) = 0.
In general, if there exists an analytic surface S in D which spans Γ,
then S is a minimal surface with some L and N, and JB0(S) = 0.

Let C'Sΐ(N, Γ) be the class of continuously diff erentiable surfaces
in the space C2 which span a preassigned Jordan closed curve Γ in C2

and satisfy the condition (b). Then (b) implies condition (a) with
respect to the Euclidean metric p for every surface in C'St(N, Γ).
Since C2 is complete with respect to p, the following corollary follows
by the same procedure as in Theorem 4.1.

COROLLARY 1. In the class C'$ΐ(N, Γ), there exists a minimal
surface Sm in the sense that

b(Sf

m) ^ b(S) for all S e C'$l(N, Γ) .

Let C'StΛ(N, Γ) be the class of continuously diff erentiable surfaces
S in D which satisfy conditions (b), (c) and

(a') for a preassigned real number a, 0 ^ a ^ 1,

(4.8) ^fiί?) ^ a Sit every point z e S .
das(z)

We notice that the class C'®a(N, Γ) is motone decreasing with
respect to a.

COROLLARY 2. For a fixed a > 0 and N for which CfBa(N, Γ)
is not empty there exists a minimal surface in the class.

Proof. The S-areas BD(Sn) of Sn which belong to a minimizing
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sequence {Sn} have a fixed uppper bound. Therefore, condition (a')
ensures the existence of an M > 0 such that every Sn lies completely
in DM, DM = [z I KD(z, z) S M]. This implies condition (a) with some
L, which depends on a and N. Hence, the corollary follows from
the theorem.

5 The existence of minimal closed surfaces in {D, d). Let Dk

be a domain in the space of one complex variable zk bounded by nk

closed curves b[k\b{k\ •• ,&i*). Here b^ is the outer boundary com-
ponent of Dk and b[k) is an inner boundary component, which is a
circle, i.e., b[k) = [ ^ [ 1 ^ 1 = r J .

Let D be a domain in the space C2 which is topologically equivalent
to the product domain D = D1 x D2, and ϊ\ the topological image of
ΐ\ = 6ί1} x &ί2). A surface S in ΰ which is homotopic to T± in JJ(Ί\),
where D(Ti) is the topological image of D(ΐj - Dx{b{k)) x A(&ίfc)) (see
§3 for notation), is a closed surface of the torus type and, hence,
admits a doubly periodic representation

G I R2: zk - G fcK, wa), fc = 1, 2, (^, u2) e β 2 ,

R* = (-co < ^ , % 2 < +co) ,

of periods 1. For our purposes, therefore, it is enough to consider G
on the unit square Qo as a representation of S.

We shall say that a closed surface S is of class C'&a(N, 2\) if S
is homotopic to 2\ in JD(2\) and admits a continuously differentiable
representation G \ Qo satisfying condition (a;) and (b) in § 4. By the
same procedure as in Corollary 2 of Theorem 4.1, we can prove the
following theorem for any fixed a > 0.

THEOREM 5.1. For each N for which the class C'Ba(Nf TΊ) is
not empty, there exists a minimal closed surface Sm(D) in the class.

Let Df$i{D, Tj) be the class of all closed surfaces S of the form
S = cλ x c2 in D, where ck is a piecewise continuously differentiable
closed curve in Dk which is homotopic to b{k) in Dk{b[k}). For each
SeD'Stφ, 2\), we have JB^(S) = Lφύ L^fe). It follows from the
fact that KD{Z, Z) = KDl(zu zt) KD2(Z2, Z2) [7]. Therefore, the following
is an immediate consequence of Theorem 3.1.

THEOREM 5.2. There exists a minimal surface Sm(D) of the
class D'Slφ, fx). It is given by K(D^ x K(D2), where K(Dk) is a
minimal closed curve of Dk with respect to b[k).

Let A—Aλ x A2, where Ak is a doubly connected plane domain in
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the 24-plane. Let DfStx{A, T) be the class of piecewise continuously
differentiate closed surfaces S in A which are homotopic to T =
&ί1} x b{

2

] in A, where b[k) is the inner boundary component of Ak9 and
satisfy the condition das(z) = dbs(z).A Then the following theorem
holds:

THEOREM 5.3. There exists a unique minimal closed surface in
the class D'ft^A, T). It is given by K(A1) x K(A2), where K(Ak) is
a minimal closed curve of Ak with respect to b[k).

Proof. Let A = Q = Qx x Q2, Qk = [zk\rk < \zk\ < 1]. We shall
show Sm(Q) = K(Q^} x K(Q2) is a unique minimal closed surface of
D ' S l ά Q , T). L e t P l k = [ z k \ r k < \ z k \ < rψ], P 2 k = [zk \ r ψ ^ \ z k \ < \ \ .
If SeP21xP22, it is immediate that BQ(S) ^ BQ(Sm). For any
SeD'St^Q, T), S can be replaced by a surface SeZ>%(Q, Γ) with
BQ(S) = BQ(S) and lying in P2 1 x P22 by the pseudo-conf ormal mapping
s? = rjzk, k - 1,2. Thus, Bρ(S) ^ 5 Q (SJ for every SeD'^iQ, T).
There exists a univalent analytic function /fc(zΛ) which maps A^ onto
Qk. Therefore, the pseudo-conf ormal mapping wk = fΰ\^k) maps A
onto Q and, hence, SJQ) onto SW(A), SW(A) - K{AX) x iί(A2). The
uniqueness of Sm(A) is clear.

6» Bounds for the JS-areas of minimal closed surfaces in the
space (D, d). Using the method of exterior and interior domains of
comparison, various bounds for the ΰ-areas of minimal surfaces can
be obtained. As we have considered in § 3, let Dk be bounded by
bίk) = [zk\\zk\= rk\ &<£ = [^11^1 = 1], and (nk - 2) closed Jordan
curves bψ\ ••-, δ^U, which lie in the domain bounded by b[k) and &J£.
L e t A l k = [zk I rk < \ z k \ < 1 ] , A 2 k = [zk \ \ z k - a k \ < p k , \ z k \ > rk\
0 < \ak\ ^ pk ~ rk, be exterior and interior domains of comparison for
A , respectively. Then Aά = Aόl x Aj2 can be used as exterior and
interior domains of comparison of D — Dx x D2, i.e., Ax Z) J9 Z) A2. Let
Sm(,D) and SUA,-) be minimal surfaces of the classes D'Stφ, f,) and
D'fft(Ajf TO, respectively. Then S^l(Sm(A1)) ^ Bz(Sm(D)) ^ ^ 2 (S m (A 2 )).
Using this inequality, we have the following distortion theorem for
minimal surfaces of the class D'Sΐφ, 2\).

T H E O R E M 6 . 1 . Π U # ( n ) ^ ( / ) 2 > ( U A )) Π
Rk is given in (3.4) with the corresponding subscript k and E(r) is
given in Theorem 3.3.

By a construction of an interior domain of comparison for D in

4 This is the case a = 1 in (ar) (see (4.8) and Lemma 4.1).
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Theorem 5.1, we can also obtain a distortion theorem for minimal sur-
faces Sm(D) in Theorem 5.1 which gives us an upper bound. Suppose
an interior domain of comparison for D is given by A2kf then we
have

THEOREM 6.2. BD(Sm(D)) ^ 4 ΠJUI E(Rk)9 where Rk and E(r) are
given as in Theorem 6.1.

REMARK. For the product domain Q = Qλ x Q2 of two annuli Qλ

and Q2, ϋΓ(Qi) x K(Q2) is not necessarily a minimal surface for the
class D'$ΐa(Q, T) for a fixed a, 0 < a < 1.
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A REPRESENTATION THEORY FOR A CLASS
OF PARTIALLY ORDERED RINGS

ALLAN HAYES

The lattice ordered rings known as /-rings, introduced by Birkhoff
and Pierce in [1], have been studied very intensively in the last few
years. In particular Pierce has shown in [4] that the /-rings without
nonzero nilpotents are precisely the (isomorphic images of) lattice
ordered subdirect unions of totally ordered rings with integrity, and
Johnson in [2] has gone on to prove that any Archimedean /-ring with
no nonzero nilpotents can be represented as a lattice ordered ring of
continuous extended realvalued functions on a locally compact Hausdorff
space.

Since many commonly occurring examples of partially ordered rings
are not lattice ordered it is natural to ask whether these two results
can be generalised so as to be independent of the lattice structure.
Such a generalisation is given here when multiplication is assumed
commutative.

Theorem 1 characterises the subdirect unions of totally ordered
commutative rings with integrity; Theorem 2 sharpens this result and
Theorem 8 completes the programme by extending Johnson's represen-
tation,,

The plan of the paper is as follows:
Section 1 is an introduction to the subject matter and methods of

the paper; the succeeding three sections contain proofs of Theorems
1, 2 and 3 respectively and § 5 shows that for /-rings the represen-
tations given preserve the lattice structure.

1* Introduction* Throughout this paper "ring" will be an abbrevi-
ation for "commutative associative rirίg".

A partially ordered (or po-) ring is a ring whose elements are
partially ordered in such a way that if a Ξ> b then a + c ^ b + c for
all c and ac ^ be for all c Ξ> 0. Among the po-rings those with in-
tegrity (i.e. without divisors of zero) and a total ordering (the toi-rings)
are particularly simple and it is our first aim to find out when a po-
ring can suitably be built up from toi-rings. To make this more precise:

If {Riliei is a nonempty family of toi-rings their direct union,
Y,Ri9 is formed by taking the class of all functions a: I—>\J R{ with
a(ί) e Ri for all i, and defining addition by (a + b){i) = a(i) + b(i) for
all i; multiplication by (ab)(i) — a{i)b(i) for all i, and order by a ^ b

Received September 16, 1963. This work was supported by N.S.F. Grant 3639-50-
8476.
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when a{i) ^ b(i) for all i. Σ Ri ί s then a po-ring (in fact it is an
/-ring). A subdirect union of the family {Ri}iei is a subring, R, of
Σ -R< satisfying i2(i) = JB< for all i, together with the partial ordering
induced on it by the partial ordering of Σ R% If i n addition, whenever
R contains a it contains α+, defined by a+(i) = a(ί) V 0 for all i, it
is called a lattice ordered subdirect union of {Ri}ίei (and is an /-ring).

A mapping, fc, from one po-ring to another is called a homo-
morphism if it is a ring homomorphism such that h(a) Ξ> /*,(6) when
a ^ b: it is called an isomorphism if it is a ring isomorphism with
h{a) ^ &(&) if and only if a ^ 6.

Suppose i? is a po-ring and ξ> is a nonempty class of homomorphisms,
h, of R onto ίoi-rings i?Λ respectively. Suppose further that if a e R
and α ^ 0 then there is an hefQ with h(a) < 0. For any a e R let α
be the function on ξ> defined by a(h) = /&(α) for all hefe. Then 5 =
{α: α G 2?}, with the natural induced structure, is a subdirect union of
Σ Rh> and the map a—+a is an isomorphism of R onto R.

To generate the homomorphisms needed we look at the semirings
in R (i.e. the nonempty subsets, S, of J? with SS U (S + S) c S).
Under conditions stated in the next section, if a0 ^t 0 then maximal-
isation by Zorn's Lemma yields a semiring P, with α o ί P and
P'Pr a — P',1 which contains all a ^ 0 and all squares in R. From
this a homomorphism onto a ίoΐ-ring arises as follows:

I = Ppi — P is a prime ring ideal in i2. For,
( i ) if α, 6 e Z then clearly a — be I;
(ii) if α e / and ceR then C G P O Γ C G - P (otherwise — (( — c)c) =

c2 G P') and in either case ac e I;
(iii) if a e Γ and 6 e Γ then α e F o r - α e P' and b e F o r -6 e P';

whence α6 G P' or —abe P' and certainly abe Γ. Let /?- be the canonical
homomorphism of R onto 12/7, which is a ring with integrity. A simple
calculation shows that h(P) is a semiring, h~\h{P)) = P, /&(P) U —h(P) =
h(R) and ft(P) Π - M P) = {0}. So if we define h(a) ̂  A(δ) to mean
h(a) — fc(6) G fc(P), (i.e. α — b G P) then this is a total ordering making
R/I into a ίoi-ring which is called the quotient ring of R by P and
is denoted by iϋ/P. Since P contains all α 2> 0, α0 G P' and h~\hP) —
P, /& is a homomorphism of JB onto i?/P and h(a0) < 0.

It is convenient to write a(P) for h(a) and to use abbreviations
similar to writing a^b, (P) for a(P) Ξ> δ(P).

The representation of a po-ring as a ring of real valued functions
on some set would be very useful. Unfortunately it seems difficult
to find a simple general condition permitting this, which does not
make all the functions used bounded. Nevertheless, a po-ring of the
type here considered which is also Archimedean (that is na ^ b, n —

1 Pr = R\P.
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1, 2, implies a ̂  0) can be represented using functions with values
in the extended real numbers. The possibility of this is suggested by
the observation that in a toi-ring R if ab ^ 0 and a > 0 then cb ^ 0
for all c ̂  0 so that if

a = inf {m/n: m and n are integers, n > 0, and

mb ^ wα& for all b > 0}

( — suρ{m/w: m and w are integers, n > 0, and
raδ ^ wα& for all b > 0})

it follows by routine calculations that ά I> 0 when α ̂  0, ah = ab
unless α = 0 and b — ± oo or vice versa, and α + b = ά + 6 unless α
and 6 are infinite and of opposite sign. Here the infimum is taken in
the extended reals and the infimum of the empty set is +°o. The
main problem is to guarantee that the substitution of a for a, which
is usually far from being (1 — 1), still leaves enough information for
reconstruction of the original po-ring; it is here that the assumption
that the ring is Archimedean is required.

The following notation will be standard for the rest of the paper:
If R is a po-ring then R+ — {x: x ^ 0} is the class of quasi positive

elements of R and R++ = {x: x > 0} is the class of positive elements
of R.

Z is the po-ring of integers.
R is the 39o-ring of real numbers and R the "quasi po-ring" of

the extended real numbers with the usual topology of the two point
compactification.

If a set X is fixed in some context and YaX then Y' will denote
X\Y. The empty set is denoted by Φ. The set with x as its only
element will sometimes be denoted simply by x.

If A and B are subsets of a partially ordered set then A ^ B
means that every element of A is less than or equal to every element
in B.

2. /*-rings* Lemma 1 below, on the semirings in a ring, is the
key to the rest of the paper. It is used in this section to produce a
characterisation of the isomorphic images of subdirect sums of toi-rings
(Theorem 1).

A semiring S in a ring R is said to be normal with respect to a
nonempty subset H of R if no expression of the form

( 1 ) >_j \ — X.) %^ SiCLi i&i,2 * &ί n — ^1^2
ΐ=l l
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is zero, where each a is in H, each s is in S, each n is in Z++, q is
in Z++ and N is in Z+.

If S contains all squares in R and H = {α} then £ is normal with
respect to H if and only if sa - a2n e S' for all seS and all neZ++.

Normality of S with respect to Himplies HczS'. For if aeHΠ S
then (-l)1+1aa + (-l)1+1aa - aa - aa = 0.

A semiring P in a ring i? is called prime if P'P' a — P\
The usefulness of normality is due to the following result:

LEMMA. If S is a semiring containing all squares in a ring
R, and H is a nonempty subset of R then there is a prime semiring
P in R with P z> S and P'ZD H if and only if S is normal with
respect to H.

Proof. ( i ) If such a P exists then for any al9 α2, , ane Pf

and any seS, ( —l)w+1sα1α2 an g 0, (P) (see § 1 for this notation);
and if n is even —aλa2 an < 0, (P). So any expression of the form
(1) is <0, (P) and cannot be equal to zero.

(ii) Conversely, if S is normal with respect to H then Zorn's
lemma shows that there is a maximal semiring, P, among the semi-
rings containing S which are normal with respect to H. It will be
proved that P is as required.

Since P contains all squares in R, if x e R then the semiring, Px,
generated by P U {x} is Z+x + xP + P. So if x e P' and y e P', since
neither Px nor Py is normal with respect to H, there are identities of
the form

l)^+1(sj + β < K i * »<•«, ~ OA . α* - (β' + 8) = 0

and

Σ (-l)Wί+1(*5 + *y)6y.i δy , ~ 6A ft*. - (f + t) = 0 ,

where every α and 6 is in H, every ^ and m is in Z + + , q and r are
in Z++, M and JV are in Z+, every s and t is in P, every s' is in
J?-^ + xP and every ί' is in Z+y + τ/P.

Collection of the terms involving xf y respectively to one side of
the equations (taking the rest to the other side) followed by multipli-
•cation of the new equalities yields, after rearrangement, the following,
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NM

Σ ( - l ) " 4 ^ ' * ^ . ! ai>%ιbiΛ • - - bjιmj + s't'
i = lj = l l J

+ Σ (-l) <+ί*ίt'α*,i aitni + Σ {-IT^Xs'b^ - bj

NM

+ Σ (-iYi+m^18it/ι{Λ α i ( f l |δΛ l - bJιm
i=lj=l

+ Σ (-l) i+%taiΛaiΛ - • a{
i=l

l r ^ Λ , . tti.A b2r

+ Σ (- i )^ +>ϊ+1ίΛ.i H~PΊ ^ + (-1Γ+ 1A b2r

+ ( — l ) 2 q + 1 t a 1 --- a2q — st — a x a 2 a2qbxb2 b2r = 0 .

If xye —P this would contradict the hypothesis that P is normal
with respect to iί.

It is clear that PZDS and P'z>Hf so the proof is complete.

COROLLARY. If Ή has only one element, a, then there is a P as
required if and only if sa — a2n e S' for all se S and all ne Z++.

The full force of Lemma 1 is not required until §4; up to that
point the corollary will be sufficient.

From now on A will always denote a po-ving, S^ the class of all
semirings in A which contain A+ and & the class of prime semirings
in A which contain A+. If ^ is a subset of & such that for any
a£ A+ there i s a ΰ e ^ with a(D) < 0 then 3f will be said to be
distinguishing.

A is called an f*-ring if A+ contains all squares in A and is
normal with respect to every single point set {a} with a$A+.

We have:

THEOREM 1. A is isomorphic to a subdirect union of toi-rings
if and only if it is an f*-ring.

Proof. ( i ) If .A is an /*-ring then the Corollary to Lemma 1
shows that & is distinguishing, so that from the discussion in the
previous section, A is isomorphic to a subdirect union of toi-ήngs {A/P}P€^.

(ii) If A can be identified with a subdirect union R of toi-r'mgs
{Riϊiβi then a e A\A+ implies a(i) < 0 for some iel, say a(iQ) < 0.
Consequently, if s e A+ and n e Z + + , (sa — a2n)(%) < 0 and sa — a2n 0 A+.
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Thus A is normal with respect to {a}. Also, for any ae A, (a2)(i) =
a(ίf ^ 0 for all i e I, so α2 e A+. Thus A is an /"-ring.

3* Ring Archimedean /*-rings* In this section a class of /*-
rings is introduced which includes the Archimedean /*-rings and for
which a considerable sharpening of Theorem 1 is possible (see Theorem
2 below).

A po-ring R is called ring (or r-) Archimedean if Z*a + R+a ^b
implies a ^ 0. An Archimedean po-ring is necessarily r-Archimedean,
but the converse is not true, since every totally ordered field is r-
Archimedean.

The following two measures of size will be used.
In any toi-rmg R an element, a, is called a ring (r—) order unit

if Z+a + R+a — R+ = R, and is called ring (r-) infinitesimal if
Z+α2 + # + α 2 ^ I a \. Notice that if for some ? > 0, (Z+ \ a \ + R+ \ a \)q ^ q
then a is r-infinitesimal and (Z+ \a\ + R+\a\)p ^ p for all p ^ 0. A
ίoi-ring is r-Archimedean if and only if every positive element is an
r-order unit.

The main result to be proved is:

THEOREM 2. A necessary and sufficient condition that A be an
r-Archimedean f*-ring is that it be isomorphic to a subdirect union
of r-Archimedean toi-rings with no nonzero r-infinitesimal elements.

It will be convenient to divide up the proof into a number of
lemmas.

LEMMA 2. Let A be an r-Archimedean f*-ring and 3f a dis-
tinguishing subclass of &. If a (D) is r-infinitesimal in AID for
all De & such that a$D then a ^ 0.

Proof. For each De 2ϊ either (i) a ^ 0 or (ii) a < 0, (D) and
[Z+(-a) + A+(-a)](-a) ^ (-α), (D). In either case [Z+(-a) +
A+(—a)]a2 ^ a\D). Therefore, since 3f is distinguishing, [Z+(—a) +
A+(—a)]a2 ^ α2; whence, A being r-Archimedean, (—α)3 ̂  0, and in an
/*-ring this implies — a ^ 0, i.e. a ^ 0.

LEMMA 3. In any toi-ring R if a is not r-infinitesimal then

\a\ is an r-order unit.

Proof. If Z+\a\ + R+\a\ ^ b while (nQ\a\ + po\a\)\a\ > \a\

with nQeZ+ and p 0 e R + , then δ > 0 and (no\a\ + pQ\a\)b > b ^

(nob + po6) I a \ = (n01 a \ + p0 \ a \)b, which is impossible.
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Let ^/ί be the class of maximal elements in & (under set
inclusion).

LEMMA 4. If Peg?, aePf and \a(P)\ is an r-order unit in
A/P then no Q e &> can contain P U {a}, therefore there is an Me ^^
with a$ Mz) P.

Proof. Suppose such a Q does exist and take qeQ. Since — a(P)
is an r-order unit in A/P there are ne Z+ and pe P such that
n[(-a) + p{-a)] ^ q(P). So n(-a) + p(-a) - q e P and q e P + na +
pa c Q, contrary to the hypothesis that qeQ'.

The three previous lemmas show that ^ is distinguishing for
r-Archimedean /*-rings. However, a stronger result is needed to prove
the Theorem.

LEMMA 5. In any toi-ring R the class, I, of r-infinitesimal
elements is a prime ring ideal such that if \ c | ^ | a | and a e I then
eel.

Proof. If a e I and | c | < | a |, then for any ne Z+ and p, q e R+,
(n I c I + p I c \)q ̂  (n | a | + p \ a \)q g g, so c e I.

If a,bel, neZ+ and p,qeR+, (2n\a - b\ + 2p\a - b\)q ^
(2n\a\ + 2p\a\)q + (2n\b\ + 2p\b\)q^2q, whence (n\a-b\ + p\a-b\)q^q
and a — be I.

lί ae I and eei? then aee I, for if not then, by Lemma 3, there
are n e Z+ and p e R+ such that n \ ae \ + p \ ae | > 2 | e |. But, since
α G I, \e\ ̂  n\ae\ + p \ ae |, and these two inequalities together yield
the contradiction, 0 > \e\.

I has now been proved to be an ideal: it remains to prove that it
is prime.

If a,beΓ there are m,neZ+ and p,qeR+ such that for any
s > 0, (m I a I + p | α |)β > s and (w | 6 | + q \ b \)s > s, whence, by multi-
plication (mn I α6 I + (mp + nq + pg) | ab \)s2 > s2 > 0, and so αδ e I'.

Let ^ C * — {M e ̂ //\ A/M contains no nonzero r-infinitesimal
elements}.

Then we have:

LEMMA 6. If Me ̂ t\<^£* then every element of A/M is r-infinite-
simal.

Proof. Let IM = {x e A: x(M) is r-infinitesimal} and let P =
Lemma 5 shows immediately that P is a semiring containing A.
Furthermore if a,bePf then — a(M) and —b(M) are positive and non-
r-infinitesimal in A/M. So a(M)b(M) is positive and non-r-infinitesimal
in A/M, and -abePr.
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The maximality of M and the supposition that i k f ί ^ ' * imply
therefore that P = A. So if ae A there is a be IM with | b(M) \ ^
Jα(Λf)|, whence a(M) is r-infinitesimal.

The following simple result proves to be important.

LEMMA 7. If a is a non-r-infinitesimal positive element of a
toi-ring R then there is a beR+ such that b2 > a

Proof. If a2 Ξ> a there is nothing to prove. If a2 < a then, since
a is not r-infinitesimal, there are n e Z+ and p e R+ with (na + pa)a>a;
whence (na + pa)2a2 > a2 > α3, (na + pafa2 > α3 and (wα + pa)2 > α.
So wα + pa may be taken for 6.

Proof of Theorem 2.
( i ) Necessity. ^£* is a distinguishing subset of ^ 5 ; for if

a ^ 0 Lemma 2 shows that there is a Pe ^ with α e P ' and a(P)
not r-infinitesimal and by Lemma 4 there is an Me^t containing A+

with a$M, so ^£ is distinguishing. Lemma 6 and a second application
Of Lemma 4 show that ^ # * is distinguishing.

Reference to the introduction completes the proof.

(ii) Sufficiency. Suppose A is identified with a subdirect union
of a family {ϋ?Jί€I of toi-ήngs without nonzero r-infinitesimal elements.
If a G A satisfies Z+a + aA+ ^ b and a(i) > 0 for some i e I then
Z+α(ί) + P%i)Φ) ^ &(ΐ) for all peA+; and by Lemma 7, Z+a(i) +
Rta{ϊ) ^ 6(i). So, since 12̂  is r-Archimedean, a(i) ^ 0, contrary to
hypothesis. Thus a ^ 0 and -A is r-Archimedean.

4* Archimedean /*-rings* A ring of 5-valued functions on a
nonempty set X is a nonempty class, R, of Λ-valued functions on X
such that

( i ) If {fi}iei is any finite subclass of R there is at least one
point x in X where every /<(#) is finite.

(ii) If /, g and ft are in R and /(a?) ^ #(#) for all x where ft(#)
is finite then f(x) Ξ> #(#) for all α? in X.

(iii) If / and g are in i? then there are functions s, p and n in
iϋ such that s(x) = /(x) + #(#) whenever /(a?) and fif(α ) are not infinite
and of opposite sign, p(x) = /(ίc)̂ (cc) unless /(&) = 0 and g(x) = ± oo
or vice versa, and w(#) = —f(%) for all α? in X.

Condition (ii) shows that such s, p and w are unique, so they may
be denoted by / + g, fg and —/ respectively.

Subsets of X of the form {x:f(x) = ±00} are called nul-sets (a
name suggested by integration theory and Condition (ii)).

It is easily seen that any ring of JB-valued functions on a set X



A REPRESENTATION THEORY FOR A CLASS 965

is an Archimedean /*-ring. Conversely, if A is an Archimedean /*-ring,
and for each aeAa denotes the function P—>α(P) defined on
was defined in the Introduction), then Lemma 8 below and the remarks
in the Introduction show that for any distinguishing subset 3ί of
3P A I £& = {a I &\ ae A} is a ring of .R-valued functions on &, and
the map a —* a \ £& is an isomorphism of A onto A\Sf.

If £& is any subset of ^ , a, b e A and Xe R it is convenient to
adopt conventions similar to £${a *> λ) for {De ̂ :a(D) ^X} and

(a ̂  b) for { ΰ e ^ : a(D) ^

LEMMA 8. If A is an Archimedean f*-ring and & is a dis-
tinguishing subset of £P and if S^(μ < b) is a nul-set then a ^ b.

def
Proof. There is a ceA+ with £&(c = oo) Z) ̂ ( α < 6); so 6 =

c + α2 + 62 satisfies ^ ( α ̂  0) U ̂ ( 6 Φ 0) c ^ ( e ̂  0) and ^ ( α < 6) U
± oo) U ̂ ( 6 = ± oo) c ^ ( β = oo).

Consider the following three situations which may occur for a

( i ) b> a,{D) and e(D) = oo; whence Z+(b - a) ̂  e(b - α), (D)
and so Z+(b - α)2e ^ e4 + (b - a)\ (D).

(ii) b > α, (D), and e(D) < oo; whence a(D) and 6(i?) are finite,
(b~^a)(D) = 0, and so Z+(b - a)2e g 2e, (D).

(iii) B α , ( ΰ ) .
In all cases Z+(b - a) ̂  e" + (6 - α)2 + 2e, (D). So Z+(δ - a)e ^

β4 + (b — af + 2e and, A being Archimedean, (δ — a)e ̂  0. This, in
an /*-ring with e as here defined, implies b — a S 0, that is a ^ b.

COROLLARY. JVO nul-set can contain a nonempty set of the form
μ > 0).

Let ^ * * = {Me^f*: 3a e A with a(M) nonzero}.
Lemma 8 shows that ^/ί** is distinguishing and so the mapping
α|.^lΓ** is an isomorphism of A onto A|c^^**.
Two natural topologies for ^^**, ^ 7 with the sets of the form
*(α > 0) as a subbase, and ^\ with the sets of the form
*(α > 0) as a subbase, turn out to be the same.

LEMMA 9. ^T = ̂ ( = ^ " say). ^Γ is Hausdorff and is the
weak topology induced on ^yfί** by A.

Proof. ^ 3 ^ 7 , for if Me^e**(a > 0) there is a ftei with
b(M) > 0, and since a{M) is an r-order unit, there are, using Lemma
7, n e Z+ and eeA+ such that na + e2a > b, (M). So
Me ^f**(na + e2a > 0) c ^**(na + e2a > 0) c ^^**(α > 0). Con-
versely, y ί D ^ , for if Me^f**(a> 0) then for some weZ + + ,
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Me ^ f **(α > 1/n); so na3 > a\ (M) and Me ^f**(na* - α2 > 0) cz
^t**(S ^ 1/n) c ^ * * ( α > 0). J^~ is Hausdorίf. If M19 M2 e ̂ T * *
and Λfx =£ M2 there are ax e M\M2 and α2 e M2\MX. Whence a — aλ —
a2 e (-Ml) Π Mi, that is M2 e ^T**(α < 0) and Λζ e^**(a > 0).

Finally, ^ ~ is the weak topology induced by A on ̂ C * * . For,
by definition, J7~ is coarser than this weak topology. Conversely, if
λ > - oo^**(α ^ λ) = n {^T**(sάβ2 ^ re2): r/s < λ, s > 0 and e e A},
and so is closed with respect to ^~.

Next it is shown that .^C**(α ^ ε) is compact for all ε > 0 and
all aeA.

It is sufficient to prove the following result.

LEMMA 10. If aeA then ^€"**(α ^ —1) is compact.

Proof. Alexander's Theorem ([3] p. 139) shows that it is sufficient
to prove that any cover of ^^***(α ^ —1) by sets of the form
^£**{c < 0), ce A, has a finite subcover.

Accordingly, suppose C is a subset of A such that {^#**(c < 0):
ceC} covers t^#/**(α ^ — 1) and contains no finite subcover. A contra-
diction will be derived from this.

Consider any J l ί e ^ f * * ( α ^ -1) and any rational number m/n
with n>0, ra>2 and 2/8<m/n<l. Since a(M)^ - 1 , naa*< ~ma\ (M)
so wαα4 + (m - 2)α4 < -2a4 < -α 2 , (M), that is [na α2 + (m - 2)α2]α2 +
α2 < 0, (M). Thus [na α2 + (m - 2)α2]α2 + α2 e N = Γι {MΊ α(ikί) ̂  -1}.

Let if = {na α2 + (m - 2)α2: m ̂  2, n > 0 and 2/3 < m/w < 1}.
If {Ci}I=1cC there is an ΛίG^^**(α^ -1) with {cJUcΛf. So

the semiring, S, generated by A + UC is normal with respect to iSΓ
and there is a P e ^ with Pz)S and PnN^φ. For any &eiξ
fcα2 + α2 < 0, (P), so k(P) is not r-infinitesimal in A/P. There is there-
fore an Mo e ̂ /ί with Mof] K = φ. Now for any element na a2 +
(m - 2)α2 oί Kna-a2 + (m- 2)a2 < 0, (ikf0); whence α(Mo) ̂  -(m-2)/n.
Consequently a(M0) ̂  — 1, so ikfoe^f**, while Λf0ZDC, which is
contrary to the hypothesis on C.

^y£** may include semirings M such that A(M) c {0, ± oo}. Lemma
8 shows that these are not algebraically significant (i.e. ^C*** =
{Me ^£**\ 3a e A with a(M) ί {0, ± oo}} is distinguishing). Considered
as a subspace of the topological space {̂ *̂*, ̂ "}, ^^*** is a Hausdorff
space. Further, since for all α e A and all λ, ε e R+, ^€**(X ^ a ̂  ε)
is a closed, and therefore compact, subset of {̂ *̂*, ̂ "} which is-
contained in ̂ * * * . So ^^*** is a locally compact Hausdorff space;
for if ΰ e ^ * * * andJ9G^^**(α>0)_thereis_aδGAwith oo>6(JD)>o,
so ^T**(α ^ 1/2 α(D) Λ 1) Π ̂ t**(2b(D) ^ 6 ^ 1 / 2 δ φ ) ) is a compact
neighbourhood of J5 in ̂
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The following analogue of [2] Theorem 4.1 has now been proved.

THEOREM 3. If A is an Archimedean f*-ring the mapping α —>
ΰ\^y/ί*** is an isomorphism of A onto a ring A\^ίί*** of extended
real valued functions on ^/S***. The weak topology induced on ̂ f***
by A\^€*** is Hausdorff and locally compact and relative to it each
set ^ί***(X :Ξ> a ^ ε) with aeA and λ, ε e R++ is compact. No function
is infinite at every point of a nonempty set of the form ^£***{a > 0).

The rest of Johnson's theorem seems to require that A be an
/-ring.

5* /-rings* A commutative /-ring is a po-ring A which is lattice
ordered in such a way that if a A b = 0 then ac A b = 0 f or all ceA+.

An /-ring without nonzero nilpotents is an /*-ring. For if 6, c e A
and b A c = 0 then be A be = 0, that is be = 0. So for any a ί A+,
s e A+ and n e Z++, sa - a2n = sa+ - ear - (a+)2n - (α~)2% ^ sa+ - (α~) 2 \

And the latter expression is not in A+ since a+ A a~ = 0 yields
^α+ Λ (α~)2w = 0; whence (sα+ - {a-)2n)~ = (α~)2w ^ 0. Furthermore if
A is an /*-ring which is lattice ordered and such that a Λ b = 0
implies αί> = 0 then for any Pe^,{a A b)(P) = α(P) Λ 6(P) For if
,α Λ b = c then (a — c) Λ (δ — c) = 0, so (a — c)(b — c) = 0; whence
(α - c)(P)(6 - c)(P) - 0. But A/P is a ring with integrity, so (a - c)(P) = 0
•or (& - c)(P) = 0. Therefore, since (a - c) ^ 0 and (6 - c) ^ 0,
(α - c){P) A(b- c){P) = 0 and α(P) Λ δ(P) - c(P) - (α Λ δ)(P). Conse-
quently the isomorphisms set up in Theorems 1 and 2 are isomorphisms
onto a lattice ordered subdirect union of toi-vings which preserve
lattice relations.

As for Theorem 3, it follows that for any α, b e A and any
Me ^T***, a(M)Ab(M) = aAb(M). Whence the sets {^***(α>0)}αe,ι
form a basis for J7~ and so does the class of sets {^#***(α > 0)}aeA.
So each function a is finite on a dense subset of ^ # * * * (i.e. it is an
extended function in the sense of [2]). Finally, Lemma 2.6 (ii) of [2]
may be used to prove that the topology of ^Γ*** is precisely the
weak topology induced by the bounded functions in A\^/έ***\

Note added in proof. Lemma 3, together with the remark at
the end of the fourth paragraph of § 3, shows that for any toi ring,
Mf the following three properties are equivalent:

( i ) R is r-Archimedean,
(ii) R has no nonzero r-infinitesimal elements,
(iii) Every element of R++ is an r-order unit.
So Theorem 2 can be sharpened. For example, we may omit

""with no nonzero r-infinitesimal elements''.
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ON A GENERALIZED STIELTJES TRANSFORM

J. M. C. JOSHI

1. Introduction* In a series of recent papers [1-4] I have dis-
cussed various properties and inversion theorems etc. for the transform

(i.i) F(X) =

x
Jo

where f(y) e L(0, α>), β ^ 0, η > 0.

F(a?) = A\~(xyyF(x, y)f(y)dy
Jo

where, for convenience, we denote Γ(β + rj + 1)/Γ(a + β + η + I) by
A and ^ ( α ; 6; — α ί/) by JPίίc, ?/), α and b standing respectively for
β + 7] + 1 and α: + α. For a — β = 0 (1.1) reduces to the well known
Laplace Transform

(1.2)

The transform (1.1), which may be called a generalization of Laplace
Transform, arises when we apply Kober's [5] operators of Fractional
Integration [6] to xβe~x.

The object of the present paper is to give a generalization of
Stieltjes Transform, to give an inversion theorem for it and to use
that inversion theorem to obtain an inversion theorem for the transform
(1.1). In another paper (to appear elsewhere) I have found out inver-
sion operators directly for (1.1).

2* Generalized Stieltjes transform* We prove

THEOREM 2.1. If

(2.1) φ(s) = [~e—F(x)dx
Jo

where F(x) is given by the convergent integral (1.1), then

(2.2)
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969



970 J. M. C. JOSHI

provided that β^O, V > 0 and f(y) e L(0, oo).

Proof. We have

Φ(s) = A\ e~sxdx\ (xy^F^a; b; — xy)f{y)dy
Jo Jo
foo foo

= A\ yβf(y)dy\ x^'^F^a; b; — xy)dx
Jo Jo

on changing the order of integration, which is easily seen to be
justified under the conditions stated, since [7, page 59]

i-Fiία; b; — x) — —^-^—x~ a { l + 0[| x )~x} (x —> co)

Γ(b — a)

and

1F1(a; b; - x) = 0(1) (x -> 0).

Therefore [7, page 43]

γ\S) —— • I I I Jj I a* KJ ~\~ JL O ~~"

S J o \ θ ' \ o

under the conditions stated.

COROLLARY 2.1(a). When β = 0, 3? = 2m, α = -m - k + (1/2),
^(s) reduces to the generalization of Stieltjes Transform

{2.3)

ί̂m - λ; + 4

x λ\°°F(2m + 1,1; m - k + -i; -—)f(v)dy
s Jo V 2 s/

•introduced by Varma [8]

COROLLARY 2.1(b). When a = /3 = 0, ίfee^ ^(s) reduces to the
well known Stieltjes Transform [9, page 323]

<2.4) φ) = Γ(β
Jo

+

COROLLARY 2.1(C) ΐ^/iβu /3 = 0, α = -η = 1 - σ, ψ(β) reduces
another generalization of Stieltjes Transform [9, page 328]
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3* Generalized Stieltjes transform, as convolution transform* In
this section we will find out an inversion operator for the generalized
Stieltjes Transform (2.2) by putting it into the form of Convolution
Transform. The Convolution Transform with kernel G(x) of the
function ψ(x) into f{x) is defined as [10, page 4]

(3.1) f(x) = Γ G(x - t)Φ{t)dt .
J-oo

The corresponding inversion function E(x), which serves to invert
the transform, is defined by the equation

If Φ(s) be defined as in (2.2), we have

β + 2; b; - ^){syfj (y)dy

because, by Euler's theorem on homogeneous functions,

or

and

(P)[yβ+1F(a, β + l b; y)] = yβF(a, β + 2; b; y)

Therefore

-esφ'(es) = AΓ(β + 1)Γ e-{-y)φ+1)F(a, β + 2; 6; β-(-y:

or

J —oo

where
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ξ(s) = -eψ(e8)

and

Therefore the inversion function E{%) is given by the equation

= AΓ(β + 1)Γ e-"*+ +1)F(a, β + 2; b; - e~y)dy
J

_ Γ{Ύ] - x)Γ{β + x + 1)Γ(1 - x)
Γ(a + Ύ] - x)

provided that

b Φ 0, - 1 , - 2 , , Re(l - x) > 0, ife()? - α;) > 0

and

Re(β + x + 1) > 0

since [11, page 79]

f C i ϊ β ) Λ Γ ( a ) Γ ( b ) Γ ( d + β)

if

< 0, i2β(α + s) > 0, i2e(6 + s) > 0 ,

and d Φ 0 or a negative integer.
Therefore,

} - ζ(8)

or

D)Γ(1 — D) ds

and we shall give definite meaning to the operations involved. Now

1 = lim nx f
- a?)

and

Γ(α + y - α?) = l i m n-*- Λ (D - V - k)(D + β + I + k)
Γ{η - n)Γ(β + x + 1) —« Γ(w + 2) M φ - a - rj - k)

Also we have [10, page 66]
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ff(l - lp)[emF(β')] = ( " ) ^ 6 M f ^ )
k=i\ k / (n — 1)!

and

Π (/>' + a + &)[e- (α+w)aJW)] = e-
( α-1 ) a ji^+ 1 )(β*)

fc=0

Π {Df + a - Jfc^- jFίβ )] - βί +i-^ ̂ ^+^ίe )
Λ;=0

where j ^ - * - 1 ^ ) denotes a function ψ(x) such that

Using the above relations,

E{D){-e>Φ'(e°)}

χ 2)?+iβ(i +P+i)̂ ( )(β ) = / ( β ) ^ = A , (^_> oo) .

des

Returning to original variables, we have.

(3 2) lim (- \ ^ A ^ + a)
V v V(% + β)Γ(n)Γ{n + 2)

x

We thus have.

THEOREM 3.1. f(s) e C B on 0 < s < oo αwd i/ ίλβ integral (2.2)J
converges, then (3.2) /̂ oicίs /or s > 0.

COROLLARY 3.1(a). Wfceti /S = 0, α = - m - f c + (1/2), 17 = 2m
we fecwe ίfce corresponding result for Varma's Transform.

COROLLARY 3.1(b). When a — β = 0 ^e fcα^ β ίfee Theorem 9.4
0/ Hirschman and Widder [10, page 69],

COROLLARY 3.1(C). Similarly for a = —η = I — σ and β = 0 we
have a theorem for (2.5).

4. Application, to geueralized Laplace transform* We may now
use inversion formula derived above to obtain a new inversion of
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the Generalized Laplace Transform (1.1). For we have, as above

<4.1) Φ(s) = n££±*L\(V-)'F(aJ3 + 1; 6; - l
S Jo \ S / \ 8

Therefore if we invert the integral (4.1) we get f(y). But

φ(8) = [°e-snF(x)dx .
Jo

Therefore

φ(n-D(s\ ^ (-y-A°°e-
8Xxn-ιF(x)dx

Jo

Sn Jo \ S

by a simple change of variable. But the repeated use of the theorem

ψ χ

gives

Therefore,

Similarly,

where, for convenience, we write

Then

Therefore finally we have,
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lim <-)•lim < )
Γ(n - 1 + β)Γ(n + l)Γ(n - 1)

X

= lim (-)•
Γ(n-1 + β)Γ{n + ΐ)Γ(n -

Jo

We have thus proved

THEOREM 4.1. // f(x) e i in 0 <x<oo and if F(x) is definea
by the convergent integral (1.1) then the result (A) holds for almost
all positive values of s.

COROLLARY 4.1. When a = β = 0 we have Theorem 25(α) of
Widder [9, page 385].

I am indebted to Dr. K. M. Saksena for guidance and help in
the preparation of the paper.
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INVERSION AND REPRESENTATION THEOREMS FOR
A GENERALIZED LAPLACE TRANSFORM

J. M. C. JOSHI

l Introduction. In a series of recent papers I have discussed
various properties and inversion theorems etc. for the transform

,(1.1) Γ{a + β + V + 1 J o

a + β + y + 1; -%y)f(y)dy .

where f(y) e LO, oo), β ^ 0, η > 0.

= A\ (xy)βf(x,y)f(y)dy
Jo

where for convenience we denote Γ(β + η + 1)1 Γ(a + β + η + 1) by
A and iF^α; b; —xy) by ψ(xy); a and b standing respectively for β +
7] + 1 and a + a. For a = β — 0 (1.1) reduces to the wellknown
Laplace transform

(1.2) F(x) = \~e~**f(y)dy .
Jo

The transform (1.1), which may be called a generalization of the
Laplace transform, arises if we apply Kober's operators of fractional
integration [2] to the function a^e-^fl].

The object of the present paper is to obtain an inversion and a
representation theorem for the transform (1.1) by using properties of
Kober's operators defined below.

2. Definition of operations. The operators given by Kober are
defined as follows.

#.[/(*)] ^ x
1 (Oί)

1 \<X)

where f(x)eLp(0, oo), 1/p + 1/q = 1, if 1 < p < ™ and 1/p or 1/q 0
if p or q = l, a > 0, ζ > -(1/p), V > -(1/q).

The Mellin transform Mf(x) of a function/(a?) eLp(0, oo) is defined
as

Received November 4, 1963.
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Mf(x) = \"f{x)xudu (p = 1)
JO

and

indexF fa;

= lim fixy-V'dn (p > 1) .

The inverse Mellin transform Af"V(ί) of a function ψ(t) e Lq(— co, α>)
is defined by

(2.1) M-χΦ(t) = A- Γ Φ^x-m (q = 1)
2ττ J-oo

and

1 indexp fϊ7

= — lim φ{t)χ-u-^dt (q > 1) .
2π τ^~ j-j

If Mellin transform is applied to Kober's operators and the orders
of integrations are interchanged we obtain, under certain conditions

r(y +—-it)
M{Iv\f(x)} = — -J- —Mf(x)

( { λ } ]

and

r(ζ + — + ί
M{KξJ(x)} = — —L- —Mf(x) .

[ ( l ) ]

But

M(e~* ofi) = Γe-α?β+"-1/ffίZα? = r(β + it + —) , if Be(β + — ) > 0

Therefore

and
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(
V / \ V

Γ[a + {r + ± + ft}]
3>

By (2.1) we then have

+ l.-u)r(β + — + u
(2.2) / .OΛr ) = J - -2 . ϋ- x~ -« dt

"U ^ ( )]
and

r(ς + — + u)r(β + ± + ϋ)

-•) = J- p^—- : Vj *-"-" dt

provided that 1/p > 0, η + 1/g > 0 and ξ + 1/p > 0.

3* Inversion theorem.̂  We now define an inversion operator which
will serve to invert (1.1).

An operator is defined for integral values of n by the relations

W0[G(x)] - G(x) ,

Wn[G(x)] - (-)^+^(jL)\χ-βG(x)], (Λ = lf 2, •)

\Wn[G(x)]]n=nlt(n = 1, 2f •)

THEOREM 3.1. If f(t) is bounded in (0 < t < oo) ίfee ,̂ provided
that the integral (1.1) converges, ΎJ > 0, /3 ̂  0

/or almost all positive t.

Proof. Let a? be any number greater than zero. Then, since the
integral (1.1) converges, we can differentiate under the integral sign-
Also (2.2) gives

(3.1)

Using this relation we get
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W,[F(n)] = (-rn^n

a + β + V + n + l - xy)f{y)dy .

Therefore

_ Γjβ + y + 1) ίnγ+n+1 1
Γ(a +β + η + l)\t) Γ(n + β+l-a)

x I Vβ+niF1(n + β + η + l; a + β + η + 1 + n; — xy)f(y)dy
Jo

1
-a) v t I Γ(b)

x ["y'+ΊFάa + n;b + n; -xy)f(y)dy
Jo

in the notation of § 1.

Γ(b + n)Γ(n + β + 1 - a) V t /

x 1 (tvY^JΓ^a + n b + n; —nv)f(tv)dt
Jo

Γ(6 + w)Γ(n + /3 + 1 - α) \T/

x 1 vn+β

xFx{β + η + n + l;a + β + η + n + l; —nv)f(tv)dt
Jo

l)y a simple change of variable. Now by using a result of Slater [4]
we have

—,f nl iFx{a + n b + n; —v) ~ (nv)a~-he~nυ (n—>oo).
Γ(b + n)

Therefore

lim QU9t{F(n)} - lim

But [3] we have for almost all positive t

- o27TΛ ^
(^ + p + 1 — a)

and so we have our theorem.
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5. Representation theorem* In this section we propose to give
a set of necessary and sufficient conditions for the representation of a
function as an integral of the form (1.1). We shall need a lemma
which we now prove.

LEMMA 4.1. If n is a positive integer and x and t are positive
variables then

Proof. It is plain that

is a homogeneous function of zero order. Therefore applying Euler's
theorem we get

or

Proceeding in the same manner we have

using (3.1).

THEOREM 4.1. The necessary and sufficient conditions that a
given function F(x) may have the representation (1.1) with f(y)
bounded and Rer] > 0 Re β ^ 0 are that
( i ) F{x) has derivatives of all orders in 0 < x < oo.
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(ii) F(x) tends to zero as x tends to infinity and
(iii) I Qn,t{F(x)} I < M for all integral n (0 < t < oo).

Proof. First let us suppose that F(x) has the representation (1.1) •
Under the conditions of the theorem it is obvious that all the derivatives-
of F(x) exist. Also

F{x) < M'

x I {xyψxF^β + Ύj + 1; a + β + V + 1; —xy)dy
o

MT{Ύ])Γ(β + 1)
#Γ(α: + ?7)

since /(?/) is bounded. So F(x) tends to zero as x tends to infinity.
To prove the necessity of (iii) we see, as in Theorem 3.1, that

i QnAF(χ)} i ̂  \Γί ^ Γ * ! 7 — r Γ* +'-*«—*>}{lub | / ( ^ } ' I = M

I i (n + p + 1 — a) Jo J lo^ί<«, j

To prove the sufficiency let us suppose that the conditions are satisfied.
If we now set

Jn = \~ IvΛ(xy)βe-°v}Qn>y{F(x)}dy
Jo

we have

n = Γ(n + l + β-a)

It will be seen in the course of the arguement that this integral exists-
Integrating by parts we have

where

φ Ξ ( « L Y β -
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HSΓow

InJ = Q{P+y) (ί — 0)

= 0(1) /8 = 0(ί-»«)

= 0(1) β>0(t->co)

for [1]

Also the hypotheses of the theorem by implications mean that

F(x) = Qix-1)

and in general

F{n)(x) - Oix-71-1)

.and

= {(-Y^βiβ + 1) (β + n - 2)t~β-n+1F(t) + ί-*Fι—1J(ί)} .

Therefore the integrated part

= Olt^A^it) + F-W-W}] -> 0 as t -> 0 .

Also it is

= OlAj.Fζt) + ίjF7^"1^*)] —• 0 as ί —> co .

Therefore the integrated part is zero and integrating by parts again

+ /S + 1 - a)

+ (z£l^ ("f—V
Γ(n + β + 1 - a) Jo Vdί/

Now

and
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Therefore as before the integrated part again approaches zero when t
tends to zero and t tends to infinity. Proceeding in the same manner
we obtain

by the Lemma 4.1. Hence

It is clear that this integral exists under the hypotheses of the theorem
and therefore all the previous integrals exist. By a simple substitution,
this gives on using the asymptotic expansion of ^ ( α ; b; x) [4]

Jn - -
Γ{n + β + l-a) Jo

vfieF(
Γ{n + β + l-a) Jo \u

Let

Now

(l/u)F(l/u) = 0(1) (u-+°o) and F(-) = 0(1) (u -> 0)

Hence it is easily seen
( i ) ψ(u) e L (1/R ̂ t < R) for every R > 1.

S oo

ψ(u)e~cudu converges for any fixed c > 0, and

(iii) \ uψ(u)du also converges. Therefore [3]
Jo

Now if

Then χ(xy) eLin0^y<oo under the conditions assumed for the
convergence of (1.1). Therefore by a theorem on weak compactness,
of a set of functions [5] the inequalities in the hypothesis (iii) of the
theorem imply the existence of a subset {%} of the positive integers
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and a bounded function f(y) such that

lim \°{Q^F(x))\χ(x9 y) - Γχ(a, y)f(y)dy .
i-»°° JO JO

Hence

F(x) = \~χ(x,y)f(y)dy
Jo

and the theorem is established.
I am indebted to Dr. K. M Saksena for guidance and help in the

preparation of the paper.
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EXTREMAL ELEMENTS OF THE CONVEX
CONE Bn OF FUNCTIONS

E. K. MCLACHLAN

Let Bo be the set of nonnegative real continuous on [0,1], let Bx

be the set of functions belonging to BQ such that Δ\f{x) = f(x + h) —
f{x) ^ 0, h > 0, for [x, x + h] c [0, 1], and let Bn,n>l be the set of
functions belonging to Bn-λ such that Δtf(x) ^ 0 for [x, x + nh] c [0,1]
[1]. Since the sum of two functions in Bn belongs to Bn and since
a nonnegative real multiple of a Bn function is a Bn function, the set
of Bn functions form a convex cone. It is the purpose of this paper
to give the extremal elements [2] of this cone, to prove that they are
not dense in a compact convex set that does not contain the origin but
meets every ray of the cone, and to show that for the functions of
the cone an integral representation in terms of extremal elements is
possible. The intersection of the Bn cones is the well-known class of
functions, the absolutely monotonic functions. Thus the set of these
functions form a convex cone also. The extremal elements for this
convex cone are given too.

In some correspondence with the author relative to the convex cone
B2, Professor F. P. Bonsall noted that the extremal elements of B2

were the indefinite integrals of the characteristic functions that are
extremal elements of the weak closure of Bλ. Professor Bonsall guessed
that successive integration would give the extremal elements of Bn. This
proved to be a very good guess, and the author gratefully acknowledges
the assistance of these comments.

In the following discussion the vertex of the convex cone is not
considered as an extremal element.

1* The convex cone Bo. For fe Bo, then takef^x) = xf(x) and
f2 = / — flm Then / is the sum of functions in BQ that are not proportional
to /. Therefore, Bo has no extremal elements.

2* The convex cone Bx. For / = c > 0 and f = fλ+f2 where
fx and f2eB, then 0 - Δ\f{x) = Δ\flx) + Δ\f2{x) implies Δlf^x) = 0
for i = 1, 2 and [x, x + h] c [0,1]. Therefore f{ = cif c< > 0, i = 1, 2,
where cx + c2 = c. Hence / is an extremal element of J51# Now / =
c > 0 belongs also to Bn for n > 1. The set Bn is a subcone of Bλ

and hence / = c is again an extremal element of Bn.
If / is not constant then /(0) = m and /(I) — M and a non-propor-

tional decomposition can be given by taking/^x) — min (f(x), (1/2)(M + m))

Received October 23, 1963.
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and /, = / - U

3* The convex cone B2. The functions of B2 are exactly the
non-negative, nondecreasing and convex functions on [0, 1] [5].

Again the positive constant functions are extremal functions. If
feB2,f is not constant and /(0) > 0 then take fλ = /(0) and f2 = / - /1#

In so doing /x and f2 e B2 and fλ and /2 are not proportional to /. Since
this same technique still can be used for Bn, n > 2, the only extremal
elements of Bn such that /(0) > 0 are the positive constant functions.

If f(x) = 0,xe [0, ξ] and m(x - ξ) for x e (f, 1] where 0 ^ ξ < 1
and m > 0, then for f = fi + f2 it follows that fx and /2 are zero where
/ is zero and fτ and f2 are linear where / is linear. Thus fx and /2

are proportional to / and / is therefore extremal.
If f(x) = 0,xe [0, ξJ, m ^ - £0 for £ e (ξu ζJ,

Σ m4(a> - f 0

for a? G (ffc, 1] where 0 < ξ 1 < ξ2 < < ξk < 1 and m< > 0 for i =
1, 2, ., jfc, for k > 1 then / e 52. Let /̂ a?) - 0, for x e [0, f J,/χ(a?) =
^i(» — f i) for (f l f 1] and f2= f — fx. Then /x and /2 e B2 and both are
not proportional to /.

Finally, if / is not any of the above functions, but / belongs to
B2, let ?χ = inf {x:f(x) > 0}. Then 0 ^ & < 1. On [flf 1], / is convex,
f(ξi) = 0 and /(I) is finite. Furthermore, the right-hand derivative at
fi,/ί(fi) is finite and in [fx, ϊ]fL, the left-hand derivative, must take
on more than a finite number of values since / is not polygonal on
[ξlf 1]. Thus there exist ξ2, ξλ < ξ2 ^ 1 such that on [ξl9 fJ/J. is not
piecewise linear on three or more non-overlapping segments whose
union is [ξl9 ξ2] and fL(ξ2) is finite. By Lemma 4 of a paper by the
author [4], there exist convex, nonnegative and nondecreasing functions
/i and /a different from / on [ξl9 ξ2] such that fλ and f2 have the same
values and the same derivatives at the end-points as / and / = af1 +
(1 — a)f2 for some a, 0 < a < 1. Thus define fx and f2 equal to / on
the complement of [ξl9 ξ2] relative to [0, 1] and then afx and (1 — a)f2

belong to B2 and both are not proportional to /.
Thus the extremal elements of B2 are positive constant functions

and those / such that f(x) = 0, x e [0, ξ] and /(as) = m(x — ξ) for x e [ξ, 1]
where 0 ^ ξ < 1 and m > 0. Designate this latter function by/(f, 1;)
for m = 1.

4* The convex cone I?%, w > 2. The function /, such that f(x) —
0, a; e [0, £], /(a?) = m(x - f)—x, a? e [f, 1], 0 ^ f < 1 and m > 0, that is

— 1;) belongs to Bn and is an extremal element of Bn.
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Already mf(ξ, 1;) belongs to B2. Now by induction it shall be
shown that mf{ξ, n — 1;) e Bn for n > 2. In fact, it is true in general
that if /eJ?n_! and if

F(x)= [f(t)dt,
Jo

then Fe Bn* For if Δ\f(x) ^ 0 for k = 0, , n - 1 then

Δ\F(x) = Δt1 \X+tlf(t)dt = z/r1/^) > 0

where x < ξ < x — fe and k = 0, , w. Thus since

m / ( £ , n - 1; α?) = ( * ( % - l ) m / ( £ , n - 2; t) dί
Jo

and since by the induction hypothesis (n — 2)mf(ξ, n — 2;)eBn-l9 it
follows t h a t mf(ξ, n-l;)e Bn.

Similarly, by induction it shall be shown that / = mf(ξ, — 1;) is
an extremal element of Bn It has already been shown that mf(ξ, 1;)
is an extremal element of Bn-± for any m > 0 and for 0 ^ ξ < 1. Now
let / = mf(ξ, n — 1;) = / x + / 2 where /x and /2 belong to Bn. For
w > 2, functions in j?w have derivatives, // and fl on [0, 1) (See [5]
Chapter IV) and the functions // and fi belong to Bn^ on [0, δ] for
any δ, 0 < d < 1. Take δ < 1 such that ξ < δ, then by the induction
hypothesis it follows that f( and /2

; are proportional to f' = (n — l)m
M, n - 2;) on [0, δ]. Hence /,(x) - \tf(x) + ci9xe [0, δ], 0 S λif

where c< is a constant for i = 1, 2. Since /^O) = /2(0) = (n — l)m
f(ξ, n — 2; 0) = 0 it follows that c{ = 0, i = 1, 2 and hence /i and /2

are proportional to / on [0, δ] for any δ, 0 < S < 1. However, since
/, /i and /2 are continuous on [0, 1], it follows then that f± and /2 are
proportional to / on [0, 1]. Therefore, mf(ζ, n — 1;) is an extremal
element of Bn.

Notice that like the positive constant functions these functions
w&/(?f n — 1;) f° r f — 0, that is the functions m/(0, w — 1;) belong to
Bn for all n since its derivatives of all orders exist and are nonnegative
on [0,1]. However, if ξ > 0, let s and k be integers such that s > k
and let x and h be such that x + (s — 2)fe = ξ, 0 ^ α? < x + sfe ^ 1»
Then

Δ\mf(ξ, k; x) = m[(2fe)fe - s(fe)&] - m/^(2* - β) .

Hence, if s > 2fc, then the expression on the right is negative and thus
mf(ξ, k;) g Bs. This means that whereas mf(ζ, n — 1;) e Bn it does not
belong to Bό for i > 2*"1.

It remains only to show that the functions of Bn other than the
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positive constant functions of the form mf(ξ, fc;), 0 ^ ξ < 1, m > 0,
k = 1, 2, , w — 1 that belong to i?% are not extremal elements of Bn.

It is known that / ' exists and is a continuous function on [0, 1).
If / ' can be extended to be a continuous function on [0, 1], that is, if
lim/'(#) as x —> 1~ exists and is finite, then freBn^lΛ By assuming
the induction hypothesis on n, there exist functions gλ and g2 belonging
to JBΛ_1 such that / ' = gλ + g2 and gx and g2 are not proportional t o / ' .

S x

g^t) dt, i — 1, 2. Thus fλ and /2 belong to Bn and they
0

are not proportional to / . For if fγ = λx/, λx ^ 0, then // = λ x/' = glβ

This clearly violates what is known about gx. Hence such a function
/ is not an extremal element of Bn.

Finally, suppose that feBn and lim f'(x) = +co as x —> 1~. Then
the following must be true: / ' , / " , -- ,f{n-2) and / j — 1 } , the right-hand
derivative of/u"2 ) are defined on [0,1); each of them approaches + co
as x approaches one from the left; and Δ\f{j){x) ^ 0 for 0 S x < 1,
j = 1, 2, , w — 1, (with the special understanding for j = n -1- 1),
& = 0,1, 2, , n — j . Denote by 2i»-y[0,1) the set of real functions
Φ of [0,1) Δ\ Φ(x) ̂  0, 0 ^ x < 1, k = 0,1, , n - i for i - 1, 2, ,
-Mr — 1 such that Φ(x) —> + co as x —> 1~. The functions Bn-j[0,1) form
a convex cone and f{j) e Bn-j[0,1) for j = 1, , w — 1. By an argument
similar to the one given earlier, the indefinite integral of a function
F in £ J 0 , 1 ) belongs to Bw+i[0,1) if Γ F(ί) dί -> + co as x -> 1"". Also

Jo

if βr, 0! and g2 e Bm[0,1), g = gλ + g2, and ^i and g2 are not proportional

to g, then the indefinite integrals of gx and #2 are not proportional to g.

Not that if g = gx + g2 as above and if \ S(t) dt is finite, then the

S i - Jo

gi(t) dt for i = 1, 2. If the lim #(£) = + oo as
J O f l -

gi(t) dt = + oo then the same will be true of I #;(£) dt
o Jo

for i = 1, 2 if there exists constants τ< > 0, i = 1, 2 such that #*(£) ^

7ΐ ^(ί) for some δ, 0 < d < 1. For the case when 1 βr^ί) dί is finite

S x Jo

#;(£) dt, i = 1,2 can be extended into a function
0

that is continuous on [0, 1]. Hence ft and f2 will belong to Bm+1.
Thus the object is to find two functions gx and g2 that belong to

B^O, 1), such that / | w ~ υ = Λ + #2, ί/i and g2 are not proportional to
fln-1], and such that &(t) ^ λ,/!—"(ί), δ ^ ί < 1, δ > 0. Then /i given
by

S X f ί T O _ 2 f «2 f f l

••• \ gi(o Jo Jo Jo

i — 1, 2 belong to !?„ and give a nonproportional decomposition of / .
The lemma below shows how the functions gx and g2 with the desired
properties can be constructed.
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LEMMA. Given f on [0,1) such that f is right continuous, non-
neqative, nondecreasing and f(x) —• + co as x —> Γ . There exist two
functions fx and f2 on [0,1) that are right continuous, nonnegative
and nondecreasing, f' = fτ+ f2, ft and f2 are not proportional to / ,
and fi(x) ^ Ύif(x) on [δ, 1) for some 0 < δ < 1 and τ< > 0, i — 1, 2.

Proof. All the discontinuities of / must be jump discontinuities„
If the point x = 1 is an accumulation point of the discontinuities of /,
then there exist cl9 c2 and c3, 0 < cx < c2 < cz < 1 such that / has a
jump of θi at c<, 0< > 0, i = 1, 2, 8. Take 0 = (1/2) min (^ 02 03). Let
Λ be such that A(x) = (1/2) (/(α?) - θ), cx ^ x < c2, fx(x) = (1/2) (f(x) + θ),
c2^x <c3 and fx(x) = (1/2)/(x) otherwise. Take / a = / - Λ. Then
/x and / 2 have the required properties.

If the point x = 1 is not an accumulation point of the discontinuities
then there exists 3, 0 < d < 1 such that / is continuous on [δ, 1). Let
ξ be a point such that f(ξ) = f(δ) + 1, then δ ^ ξ < 1. Take / x such
that Λίa?) = (l/2)Λa?)f 0 ^ a? < f and /,(*) - (1/3) (f(x) - f(δ) - 1) +
(1/2) (/(§) + l),ξ ^x<l. Let / 2 = / - Λ. Then again Λ and f2 have
the required properties.

5* Absolutely monotonic functions^ The continuous functions
/ on [0, 1] such that f{k)(x) ^ 0 for 0 < x < 1, k = 0, 1, 2, were
called absolutely monotonic functions by Bernstein. These functions
clearly form a convex cone of functions on [0, 1]. Since the functions
/belonging to Bn, n > 2, have f{k)(x) ^ 0, k = 0, 1, , n - 2, it follows
that ΠΓ-o Bn is contained in the set of absolutely monotonic functions.
Since the continuous functions / on [0, 1] such that f{k)(x) ^ 0, k ^ n
on (0, 1) have Δ\f(x) ^ 0 for k ^ n, then Π ^ o Bn is the set of absolutely
monotonic functions. Denote this set by B^

From the earlier remarks it is clear that c0, cx x, c2 x
2, belong to

B^ for Ci > 0, i = 0,1, 2, and they are indeed extremal elements
of IL. Since any fe B^ is absolutely monotonic on [0,1) it follows that

Λ%) = Σ /U )(0) (xn/nl) , 0 ^ αj < 1 .

Consequently, if as many as two terms are nonzero in the series
expansion, then take ft equal to one of the two nonzero terms and
/a = / — /i. Then clearly fτ and f2 belong to fL and / has a nonpropor-
tional decomposition. Hence the only extremal elements of Bw are the
functions c{ x\ ct > 0, i = 0, 1, 2,

The following theorem summarizes all of the results up to this
point.

THEOREM. The convex cone Bo has no extremal elements. The
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functions f = c > 0, where c is a constant, are extremal elements of
Bn, n = 1, 2, 3, . The function mf(ξ, n - 1; x) = 0 for 0 ^ x < ξ
and m(x — f)*"1 for ξ^x^l, m>0,0^ξ<l are extremal elements
of Bn, n = 2, 3, . Γfeβ owfo/ other extremal elements of Bn, n =
2, 3, are those functions mf(ξ, k;), k = 1, 2, , w — 2 £/&a£ belong
to Bn. The extremal elements of the convex cone B^, the absolutely
monotonic functions, are the functions of the form c{ x\ c{ > 0, i =
0,1,2, . . . .

6* Integral representations• The set of functions Bn — Bn, n Ξ>
1, form a linear space containing the convex cone Bn. Using the
topology of simple convergence Bn — Bn becomes a locally convex space.
Let Cn be the set of functions / of Bn such that /(I) = 1. Clearly,
Cn meets every ray of Cn once and only once and does not meet the
origin in Bn — Bn, that is the zero function. Furthermore, Cn is convex.
Each function / of Cn is such that 0 ^ f(x) ^ 1 for all 0 ^ x ^ 1 since
/ is nonnegative and nondecreasing. It follows by use of the Tychonoίf
theorem that Cn is contained in a compact set in Bn — Bn, namely
{/: fe Bn - Bn, 0 ^ f(x) ^ 1, 0 ^ x ^ 1}. Thus Cn is compact, if it can
be shown that Cn is closed. This will be done by showing the complement
of Cn is open.

If geBn\Cn then g(l) Φ\. The set

7(1; ε) + g - {f:fe Bn - Bn, |/(1) - g(l) \ < ε}

where ε = (1/2) 11 — #(1) | is an open set about g that fails to meet Cn.
If g g Bn then there exists x0, k and h such that Δ\ g(x0) = d < 0. Now

Δ\ g(x0) - Σ ( - 1 ) ' ( J ) 9(xo + (fc - 3) h) .

Consider

V = V(x0, x0 + h, , x0 + kh; ε) + g

= {f:feB%- Bn, \f(x0 + jh) - g{xa + jh) | < s, j = 0,1, , k} .

where e = 2-ik+1)(--d). Then V does not meet Cn since for if fe V

Σ ( ?) l/(«o + (k - 3)h) -

e 2" + δ

(1/2) 8 < 0 .
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Hence f$Bn.
Thus by Theorem 39.4 of Choquet [3], it follows that for any

function f0 in Cn there exists a nonnegative measure μQ on the closure

of the extreme points of Cn such that fo(x) \ dμQ = 1 fix) dμQ. Since

Cn meets every ray of the cone Bn and does not contain the origin,
it follows that each function of Bn is a scalar multiple of such a
representation.

If the set of extremal elements of Cn are dense in Cn, then the
above result would be of no interest, but this is not the case. Consider
gQ(x) = (1/2) + 2n-2f(l/2, n - 1; x). Then g0 belongs to Bn since it is
the sum of two functions in Bn. Notice further that gQ(l) = 1 and
hence goe Cn. The neighborhood of g0,

Vo = F(0, 1; 1/8) + g0

= { / : /€ Bn - Bn, \f{i) - qo(i) | < (1/8), i = 0, 1} ,

does not meet any extreme point of Cn. Any positive constant function
of Cn is f(x) = 1 for all x and hence /(0) > 5/8 at x = 0. Any function
of the form mf(ξ, k;) that belongs to zero at x — 0 and hence does
not belong to Vo.

7* Remarks* Choquet [3] discusses convex cones of functions
related to the cones discussed here. The main difference is that the
differences, Δk

hf{x), alternate in sign as k takes on successive integral
values in the cones that Choquet considered.
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CONTRIBUTIONS TO BOOLEAN GEOMETRY OF BRINGS

ROBERT A. MELTER

1* Introduction* In a paper in this journal [7], J. L. Zemmer
proposed two problems relating to the geometry of the Boolean metric
space of a p-ring. (A p-ring is a ring R in which px = 0 and xp = x
for some positive prime p, and all x e R. The axioms of a p-ring im-
ply its commutativity.) The first problem asked for necessary and
sufficient conditions in order that a subset of such a space (hereafter
called a p-space) be a metric basis; the second problem was the deter-
mination of congruence indices for p-spaces, with respect to the class
of Boolean metric spaces. The present paper contains solutions to
these questions as well as a brief discussion of certain properties of
the group of motions of a p-space, and an introduction to analytic
geometry in a p-space. The reader is referred to Zemmer's paper for
definitions not contained herein.

2* Metric bases for p-spaces* Let us recall the following defini-
tion.

DEFINITION 2.1. A subset S of a Boolean metric space Mis called
a metric basis, if and only if x, y in M and d(x, s) = d(y, s) for all
s e S imply x = y.

Let R be a p-space and B its Boolean ring of idempotents. It is
well known that B is a subdirect sum of GF(2) [6]. Denote by 5*
the complete direct sum of these same rings.

Associate with every subset S of R a subset S of B* defined as
follows:

Let Sjtk be the subring of B* consisting of those elements z of
B* having the property

z s n (s - jy~\8 - ky-1

ses

for j , k = 0, 1, 2, , p - 1, j Φ k.
Let

s = U s,,k[j < fc; 3, k = o, l, 2 , . . . , p - l ] .
set

THEOREM 2.1. Let R he a p-space with Boolean ring of idem-
potents B. If S is a subset of R then S is a metric basis for R if

Received August 12, 1953. The contents of this paper formed a part of the author's
University of Missouri Doctoral Dissertation, written under the direction of Professor
Joseph L. Zemmer.
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and only if S Π B ~ 0, where Π indicates set intersection.

Proof. A sequence of lemmas will be established, followed by the
demonstration of the theorem itself.

LEMMA 2.2. Let w, s, b, d be elements of a p-ring such that vf =
•w, and w C (s — by-1 Π (s — dγ~\ then (s — dwy~x = (s — bw)p~\

Proof. By the binomial expansion

»(s — dwy-1

+ -ί? iK? 2 1 ^ws^-3 + + dp-χw

Similarly (s — bw)p~λ = w(s — δ)^"1 — tί s 2" 1 + s2'"1. Hence (s —
(s - bwy-1 = w[(s - d)p-χ - (s - &)*-1]. But w S (β - δ)2 '"1 Π (s - d ) ^ 1

implies w(β — δ) 2 " 1 = w(s — dy~λ = w and hence w[(s — δ)2)~1 — (β — d)p~Ύ\ =
w — w = 0, and thus (s — dw)p~γ = (β — bιv)p~1

t which establishes the
lemma.

LEMMA 2.3. Let x, y9 s, f, g be elements of a p-ring such that
(x - s)*-1 - (y - s)*-1, and (/ - g)p-λ - 1, then (x - fY^y - g)9"1 S
(s — fy~\s — βf)23"1 where the bar over an idempotent indicates its
complement in the Boolean ring of idempotents.

Proof. Let

a - (x - sy-1 t = (y- gY"1

and recall that 1 = (/ — g)p~λ. By hypothesis a = 6 and using the fact
that the mapping a? —> α^"1 is a strong Boolean valuation the following
inequalities are obtained:

α g r U w b — a ξ=t{j v l S % U v

but l g w U ' y implies u U v = 1, or equivalently

:* u + v + UT; = 1 ,

the addition taking place in the Boolean ring of idempotents.
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But then,

l = u{JvSr\Ja\J t = 1

I = u{J v g=r{J t [J v = 1

Let c = (r U t), then c\ju = 1 and cU^ = l or c + u + uc = 1
and c + v + cv = 1. Adding the two last equalities it follows that
(u + v)(l + c) = 0,(u + v)(l + r + t + rί) - 0, or (u + v)(l + r)(l + ί) =
0. But by * (w + v) = (1 + uv) so that (1 + uv)(l + r)(l + ί) = 0, and
in turn (1 + uv)ft = 0 or ffw = f F. Returning to the original sym-
bols, this is equivalent to

(x - fY~'{y - gy-1 g (β - / ^ ( β - g)^"1

which establishes the lemma.

LEMMA 2β4. Let x, y be elements of a p-ring such that
(x — y)p-τ Φ 0. Then elements /, #, cα^ be selected from the summands
of the identity, 0, 1, 2, , p — 1 ŝ c/z, ίfeαί

(i) (/ ~ QY'1 = 1, and
(ii) ( i c - Z ^ d z - f l f ^ ^ O .

Proof. From the hypothesis it is clear that x Φ y. If the p-ring
is considered as a subring of the ring of all functions on a set X
with values in GF(p), then there is some element t0 of X such that
α?(ί0) =̂  2/(ίo) Let / and # correspond to the functions f(t) = x(ί0) for
all ί e l and flr(ί) Ξ y(t0) for all ί e X It will be shown that / and
g satisfy the conditions set forth by the conclusion of the lemma.
Clearly / and g are distinct for every ί, and hence (/ — g)v~x = 1.
But (x - f){Q = (y - g)(tQ) - 0, so that (x - fYΛQ = ( I F ^ F U ) =
1, and (x -fy-^y-g)*-1 Φ 0.

Proo/ o/ Theorem 2.1.

Necessity. Suppose S is a metric basis and S Γ\ BB w Φ 0. Then
w is an element of some Sjfk9 say S6>d. Consider bw and dw. Since
ύ and d are distinct and at least one is a unit in the p-ring, bw Φ dw.
But then by Lemma 2.2 (s — dw)9"1 = (s — bw)p"1

9 that is bw and dw
have the same distances from every element of S contradicting the
assertion that S was a metric basis.

Sufficiency. Suppose S Π B = 0 and S is not a metric basis. Then
there are elements x, y, of R such that d(x, s) = d(̂ /, s) for all s e S,
and x Φ y. By Lemma 2.4 there are summands of the identity /, g,
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such that

(/ - ΰ)p-λ = 1 and (x - f)p^(y - gf~ι Φ 0 .

But by Lemma 2.3

(x - ff-'iy - gf~ι = w £ (a - fy-\s - gy-1

for all seS, that is w e Sf,g or weS, so that 0 φ w e S Π B. This
contradiction terminates the proof of Theorem 2.1.

An examination of the proof of Theorem 2.1 reveals that the role
played by the set of summands of the identity can be taken by any
equilateral p-tuple with side 1. Further, if S Π B — 0 with respect to
a given equilateral p-tuple with side 1, then S f) B = 0 with respect
to every equilateral p-tuple with side 1.

A restatement of the theorem can be given which exposes its
content of a metric characterization of metric bases.

THEOREM 2.5. Let R be a p-space with distance algebra B. A
subset S of R is a metric basis for R if and only if there exists an
equilateral p-tuple with side 1, {v19v2, 9vp}9 such that the dis-
tance algebra does not contain a nonzero element w such that
w £ f\s d{s, Vi)d(8, vά) [i Φ j , i, j ~ 1, 2, , p\. {The intersection is to
be formed in the Boolean completion of the distance algebra).

The statement of Theorem 2.5 can be somewhat simplified in a
p-space for which the distance algebra is a complete Boolean algebra.

THEOREM 2.6. Let R be a p-space with complete distance algebra
B. A subset S of R is a metric basis for R if and only if there
exists an equilateral p-tuple with side 1, {vlf v2, , vp}, such that
Πsd(s, v{)d(s$ v3 ) = 0, i Φ j .

A similar result obtains if S is any finite subset of an arbitrary
p-space.

THEOREM 2.7. Let R be a p-space and S a finite subset. Then
S is a metric basis for R if and only if there exists an equilateral
p-tuple with side 1, {vl9 v29 , vp} such that f]s d(sf vt)d(s, Vj) = 0

A useful algebraic interpretation of Theorem 2.7 is incorporated
in the following Theorem 2.8.

THEOREM 2.8. Let R be a p-space. Consider the p-ring R as a
subdirect sum of GF(p), that is as a set of "sequences" with terms:
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•in GF(p). Then if S is a finite subset of R9 S is a metric basis
for R if and only if the set of fcth terms of elements of S contains
at least p — 1 distinct elements of GF(p), for every k.

COROLLARY 1. A set of p — 1 elements of a p-space forms a
metric basis if and only if it is equilateral of side 1.

COROLLARY 2. A metric basis for a p-space contains at least
p — 1 elements.

COROLLARY 3. Every element of an autometrized Boolean algebra
forms a metric basis.

Corollary 3 was originally discovered by Ellis [1].

Ellis [2] quotes a conjecture due to J. Gaddum that m a metric
space any equilateral set containing the maximal number of elements
forms a metric base provided the space is complete and convex.

In a p-space the maximal equilateral sets have exactly p-elements.
These sets are metric bases if and only if they have side 1, that is
that they are maximal with respect both to number of sides and to
common distance.

It is interesting to note that in a p-space even though every
metric basis must contain at least p — 1 points, there are infinite
minimal metric bases, that is infinite metric bases such that no proper
subset is also a metric basis. The following example illustrates such
a case.

Example 2.1. Let R be a 3-space in which the distance algebra
B is the complete direct sum of countably many copies of GF(2). Let
S be the set of atoms in B. Then S is a metric basis for R9 but no
proper subset of S has this property.

We concluded this section with a brief study of superposability
properties of metric bases in p-spaces.

It is known that every congruence between two finite subsets of
a p-space can be extended to a motion. The following example illustrates
that this conclusion cannot be extended to metric bases.

EXAMPLE 2.2. Let [0,1) be the right open interval on the real
line. Let B denote the class of all subsets of [0, 1) that are unions
of finitely many right open intervals [a, 6), 0 S a <Ξ 1, 0 g b ^ 1, where
a and b are rational numbers. Then B is an atom-free Boolean algebra
whose Boolean operations are the usual set operations [4]. Further-
more, B is not a complete Boolean algebra. For example, the set X
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of open intervals of the form [0, a) where a < 2 has no least upper
bound.

Represent this Boolean algebra as "sequences" of zeros and ones
indexed by the continuum from 0 to 1. Then a typical element of X
will appear as follows:

1,1,1,1, - - - I , •• 0,0, 0,0,0, •• 2 --0,0,0,0,0,

A typical element of the set X* of upper bounds of X will appear a&

( l , l , l , l , l , 1,1,1, •• 2 --1,1, 0,0,0, •••).

and a typical element of the set Y of complements of elements of X*
will appear as

(0,0,0, 0,0,. . 2 . . 0 , 0 , 1 , 1 , 1 , . . . ) .

It is clear that the sets X and Y have the same cardinality since
they are both infinite subsets of a countable set.

Let #—>/(#) be any one-to-one correspondence between X and Y.
Zemmer [7] has shown that in a p-space with B as Boolean algebra
of idempotents there is a congruence which cannot be extended to a
motion, between the sets A and C defined as follows: A contains 0,
and for each x in X the element x + f(x). C contains 0, and for each
x in X the element x + 2f(x). The congruence F between A and C
takes 0 into 0 and x + f(x) into x + 2/(x). It will be shown, more-
over, that in the 3-ring with B as Boolean algebra of idempotents the
sets A and B are metric bases. Theorem 2.1 can be applied. Since
0 e A, it is clear that Γ\*eA d(a, 0)d(a, 2) and C{aeA d(a, Q)d(a, 1) are
both equal to zero. However, since for any coordinate less than the
l/ 2 /2th there is a 1 in x for some x in X and for any coordinate
greater than the V 2 /2th there is a 1 in some y in Y and since xy =
= 0, ΓίaβA d(a, 1) (in the complete direct sum) is the atom with a 1 in
the V 2 /2th coordinate, but since B itself is atom free, this implies
that there are no elements z of B such that z S ΓϊaβA d{a, l)d(a, 2)
and hence by Theorem 2.1 A is a metric basis. A similar argument
shows that C is also a metric basis, which establishes the example.

3* Imbedding and characterization theorems*

DEFINITION 3.1. Let {S} be a class of Boolean metric spaces.
Then a Boolean metric space R is said to have congruence indices
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(n, k) with respect to {S} provided evey member of {S} containing
more than n + k distinct points, is congruently imbeddable in R, when-
ever every n of its poinits are imbeddable in R.

DEFINITION 3.2. A space R is said to have congruence order n
with respect to {S} provided it has congruence indices (n, 0) with re-
spect to {S}.

(It is understood that the distance algebras of members of the
comparison class are isomorphic with the distance algebra of the space
R.)

The following series of theorems will establish that a p-space with
Boolean algebra of idempotents B where B is a complete direct sum
of GF{2) has best congruence order p + 1 with respect to the class
of all Boolean metric spaces (S, B, d). Theorem 3.4 generalizes a
theorem due to Ellis [1].

LEMMA 3.1. If A and B are congruent metric bases for a
Boolean metric p-space R and if f: A—+B is a congruence between
the two sets, which can be extended to a motion, then the extension
is unique.

Proof. Suppose / and g are distinct motions which agree on A;
then there is an xe R such that f(x) Φ g(x). But for all a e A,

d(f(x), f(a)) = d(x, a) = d(g(x), g(ά)) ,

= d(g(x),f(a)),

which contradicts the assumption that B is a metric basis.

LEMMA 3.2. If A is a metric basis, for a Boolean metric p-space,.
and A and B are superposable then B is also a metric basis.

Proof. Let / be a motion which takes A onto B. Suppose B is
not a metric basis, then there are elements x, y, of R such that
xΦy, and d(x, b) = d(y, b) for all b e B. But then d{f~\x), f~\b)) =
d(f~~\y)> f~\fy) for all f~\b) in A, and since Z"1 is, in particular, one-
to-one, this contradicts the assertion that A is a metric basis.

COROLLARY. If A is a finite metric basis for a Boolean metric
p-space, and A and B are congruent, then B is also a metric basis.

Proof. This follows immediately from the lemma and the corol-
lary to Theorem 5 of [7].

If {S19 S2, , Sk} and {tu t2, , tk) are subsets of a Boolean metric
space the statement
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Si, Sa, , Sk f** tlf t2, •••,** is to indicate that the mapping which
takes Si into U (ΐ = 1, 2, , k) is a congruence.

LEMMA 3.3. If {r[, rί, •••, r ^ } is a metric basis for a Boolean
metric space and

rί", rΐ\ , r'iU, x'" ~ rί, rί, , r U s'
n", rί", . , r^, »»' ~ rί, rί, , r U 2/'

Proof. Consider the unique motion which takes

M, < , r U α/} into K ' , < ' , , r^ l f ^ } .

Such a motion exists since by the corollary to Theorem 5 of [7]
any congruence between two finite sets can be extended to a motion.
If A c B and A is a metric basis, then B is also a metric basis. Hence
{rί, rj, , r'p-l9 x'} and {r"9 r"r, , r^ l f x'"} are superposable, and by
the corollary to Lemma 3.2, {rί", rί", •••, rj,"i, x'"} also forms a metric
basis and then by Lemma 3.2 the congruence

Λ . " ' r ' " . . . Λ . ' " . . . / v . ' " ^ 4 / y ' Λ . ' . . . Λ . ' /y '

' l > ' 2 > > r P - i > •••>•*/ ^ ^ r ] , r 2 , , r p _ ! , Λ

can be uniquely extended to a motion. Suppose that this motion takes
y' into y* where 2/* ̂  y'". Then

rΓ, rί", r;;^, ym ** r[", rί", , r'p
fL19 y*

which contradicts the fact that {rί", rί", , r"^}, being congruent
to a metric basis are themselves a metric basis by the corollary to
Lemma 3.2.

THOREM 3.4. A Boolean metric space S with distance algebra B
is congruently imbeddable in the p-space R with Boolean algebra of
idempotents B if:

(i) S contains p — 1 points congruent with a metric basis of R,
(ii) Every p + 1 points of S are congruently imbeddable in R.

Proof. Let {ρlf p2, , pp-λ} be a p — 1 tuple of S congruent with
{̂ i> r2, , rp-J a metric basis in R, that is

( 1) ft, ft, , flp-i ̂  n, r2, , rp_! .

Let pp be another point of S. Then there exists {r[, rί, , r ^ , rj}
in S, such that
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< 2) ft, ft, ft, , ft ^ rί, rί, ., rp

and by the corollary to Lemma 3.2 {r[, rl, • ••, r ^ J is a metric basis.
Let ζ e S. Then again there exists {rί', rί', , r" , x"} e iϋ such

that

( 3 ) ft, ft, , ft, ζ ~ r\', < , , < , a"

and therefore

( 4 ) r1? r2, , rv ^ r±, r 2 , , r p „

Let x; be the image of x" under the unique motion which preserves
congruence (4). Thus there is defined a single-valued mapping xr = x'(ζ)
of S into JB, and

(5 ) ft, ft, , pP9 ζ^r[,r[, , r;, x' .

It remains to show that distances are preserved.
Let ζ,ηeS and let x9y be the corresponding elements in R. Now

( 6 ) ft, ft, , pP-l9 ζ,V^ rί", rί", , r;^, a"', j Γ e R

for some p + 1 tuple {rί", rί", . . , r'JU, x'", y"'} e R. Then using
Lemma 3.3, (5), (6) and the fact that rj, rί, , r'P9 y

r ^ ft, ft, , ft, η
it follows that

and hence d(ζ9 η) = d(x\ y').

THEOREM 3.5. Lβί S be a Boolean metric space with distance
algebra B, then every p-tuple of S is imbeddable in the pspace R
with Boolean ring of idempotents B.

COROLLARY. Every finite Boolean metric space is imbeddable in
a p-space, for some prime p.

Proof. Let {s19 s2, , sp} be a p-tuple in S. Let qi5 denote d(si9 Sj).
Consider the following set of p — 1-tuples of elements of B:

βί = (0,0, ... ,0)

βί = («12, 0, . . - , 0 )

3̂ = (^13^4, gisfe, 0, ,0)

Q14Q24QM, 0, * * , 0 )

QuQ^QsjoZ-f " > Q3Q23 * ' " ~Q^uhQ13Q23 QJ-L,, 0, , 0 )
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It is clear that the s are p — 1-tuples of pairwise orthogonal elements
of B and therefore by Theorem 1 of [7] correspond to elements of R.
It remains to show that the mapping λ : S| —> s is an isometry. Let
q'ij = d(s'i9 8j).

Consider the rings B and R in their subdirect sum representations.
In order to show that λ is an isometry it is sufficient to show that
qlj has a zero in a given component if and only if qi3 has a zero in
that same component. Let Qί3 and Qlj represent the ath component
of qi3 and qlj, respectively. Let S3 represent the entry in the ath
component of the subdirect sum representation of sj.

Assertion. Qi3 ~ 0 if and only if Qlj = 0.
It is clear that Ql3 = 0 if and only if Q[3 = 0, [j = 1, 2, , p].

Suppose, therefore, that ί, j Φ 1.
Suppose that Q o — 0 and assume without loss of generality that

i is less than j . Then S3 is equal to x where 0 ^ x ^ i — 1. But
if Sj = x — 1 where 1 < x <i then Q t i = 1 for t = 1, 2, , x — 1,
and ζ>xi = 0 which implies that Qni = 1 for w = 1, 2, , x — 1. (For
if Qni = 0 for some n, [n = 1, 2, , a? — 1] then by the triangle
inequality Qn< = 0, Q o = 0 imply Qnj = 0 which is a contradiction.)
But then since Qxj = 0, Q^ = 0 imply Qxi = 0, Sf = a? — 1, and

Qlj = o.
Now, still under the hypothesis that Q{j = 0 it remains to show,

in order to complete the proof of the necessity of the assertion that
if Sj = 0, then S< = 0. But if S, = 0, Ql3 = 0. (For suppose Sj = 0
and Qld — 1, then there must be an r, [r = 2, 3, , j — 1] such that
Qrj = 0. But then by examining the term in s'3 involving Qr3 it is
seen that there must be a v strictly less than r such that Qυ3 = 0,
and proceeding by induction Qu = 0, contrary to hypothesis). But
Qu = 0 and Qi3 = 0 imply by the triangle inequality that Qu — 0 and
hence Si = 0 which completes the proof of the necessity of the assertion.

To demonstrate the sufficiency of the assertion it must be shown
that if Qlj = 0, then Qi3 == 0.

If Qiά — o, then Si ™ S3 — x9 where x is an integer mod p. Assume
without loss of generality that i < j and suppose x Φ 0, i — 1. Then
Qx-i,3 = 0, Qβ-i,i = 0 which together imply that Qi3 = 0. If x = ΐ — 1,
it is clear from examining the term in Sj involving Qi3 that Qi3 — 0,
and lastly if x = 0, Qxi = 0, and Qxi = 0; hence by the triangle ine-
quality Qu = 0. This completes the proof of the theorem.

To clarify the proof, it seems worthwhile to establish the theorem
without using the subdirect sum formulation, in a particular instance.
Thus let {su s2, s3} be a Boolean metric triple. Then
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«ί = (0, 0) ,

«ί = (?12, 0) ,

Since the sum of the coordinates in a Boolean vector representation is
the distance from the origin it is clear that q12 = q'12. By the same
token

Lastly gi3 = d(ss — si, 0). The Boolean vector representation of S3 — s£
is (au a2) where

<*>! = 012013023 + 0 1 3 0 2 ^

Ml = 012013023 + 012012023 + 013023

so that #23 = &i + ct2, which upon simplification gives

#23 = Ql2 + 013 + 012013023

= 023

since in any Boolean metric space the product of the lengths of the
sides of a triangle is equal to their sum.

Before indicating the procedure for imbedding p + 1-tuples, a defini-
tion of a chain of integers and some lemmas concerning these chains
will be presented.

DEFINITION 3.3. Let i, j be positive integers such that i ^ j . An
(i, j) chain is any finite sequence of positive integers such that

(1) The sequence has exactly j terms,
( 2) The first element in the sequence is 1, and the last is i,
(3) The terms in the sequence are selected from the integers

1,2, . . . , j ,
(4) If r and s are integers which occur in the sequence and r

is less than s, then the first occurrence of r precedes the first occur-
rence of sβ Every integer between r and s must occur if r and s
occur.

Let xl9 x2, •••, Xj be an (i,j) chain. Define a metric on this chain
by letting d(xa, xb) = rab = 1 if xa Φ xb and d(xa, xb) = rab = 0 if xa =
xb.

LEMMA 3.6. Let sl9 s2, « ,s υ be a v-tuple in a Boolean metric
space. Let ti5 = d(si9 Sj) and let Ti3 denote the ath component in the
subdirect sum representation of tij9 Then there exists a unique (i, v)
chain Γ such that rab = Tab, a, b = 1, 2, , v.
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Proof\ By induction on v. For v = 1 the theorem is trivially
satisfied. Suppose then that {sl9 s2,

 β , sk} is a Boolean metric k tuple
and xu x2f , xk is the unique chain such that rab — Tab. If TW}k+1 — 1
for w — 1, 29 •••,&, let α^+i be the next integer not already used in
the chain. This integer is uniquely determined and rab = Tab a,b =
1, 2, , k + 1. On the other hand if T-,k+1 = 0 where 1 ̂  w ̂  ft + 1,
let xk+1 = cc-j. #&+1 is uniquely determined, for if T-fk+1 = 0 and
Tij.k+i = 0, then by the triangle inequality T-,~ — 0 and so x^ = x= =
xk+1 and hence r^tk+1 = 0. If ra,k+1 = 0, then xα = % + 1 = x^, hence,
Ta,Tv = 0, which with the hypothesis Γ^A+I = 0, yields Ta,k+1 = 0, which
completes the proof.

DEFINITION 3.4. Let {pl9 p2, , pfc} be a finite subset of a Boolean
metric space. Then the distance product of this subset is defined to
be

Π d(pi9 Pj) .

THEOREM 3.7. Let S he a Boolean metric space with distance
algebra B. Ap + 1-tuple K of S is imbeddable in the p-space R with
Boolean ring of idempotents B if and only if the distance product
of K is zero.

Proof. The necessity is easily established. Let {tu t2, , tp+1}
be points of a p-space. In the α'th component of the subdirect sum
representation, each of the tr must contain one of the elements of GF(p).
Thus in this αth component, for some c, d, tc and td have the same
element of GF(p)9 and hence the distance product has a zero in the
ath component. Since this is true for every a, the distance product
of {tL912, , tp+1} is zero.

To establish the sufficiency of the condition, let {sl9 s29

 β ,§i} be
a Boolean metric j-tuple and let Cio be an arbitrary (i, j) chain. De-
note by qab the distance d(sai sb) and let Cf 3 be the product

H 9(Qab)

where g(qab) = cΰ~b, if the αth and 6th terms in Ci3 are identical;
9(Qab) = Qab, if the αth and δth terms in Ci3 differ. Let {sl9 s29 s3, •••,
sp+1} be a Boolean metric p + 1 tuple with distance product zero.
Define a set of p — 1-tuples of B as follows:

tj = (tιj, tl, . . , ίί, . . , tr1) (J = 1, 2, , p + 1)

where tj is equal to zero if / > J — 1, otherwise ίj is the Boolean
algebra union of all the elements of B of the form C*+ltJ.
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Let Tj denote the α'th component in the subdirect sum representa-
tion of tj.

In order to show that the mapping s7 —> tj is a mapping into a
p-ήng, it is sufficient to establish that TjΓj* = 0, if nφm. But
this follows at once from the fact that T? = 1 if and only if there is
an (n + 1, J) chain xl9 x2, *--,Xj such that the α'th component of
d(sa9 sb) is equal to d(xaf xb) [α, 6 = 1, 2, , J ] , for it follows from
Lemma 3.6 that two (i,j) chains are isometric if and only if they
are identical.

Since Tj = 1 if and only if tj has an I in the α'th component and
also if and only if {sl9 s2, •••, Sj} is such that for a unique ( / + 1, J)
chain ylf y2, , yj9 d{yaj yb) is equal to the ath component of d(sa, sb)9

(α, 6 = 1, 2, , J ) , it follows that {R1 + 1, i23 + 1, , Rp+1 + 1}, where
Rk is the ath component of ί/c, is the unique chain such that d(Rm + 1,
Rn + 1) is equal to the αth component of d(sm, sn) (m, w = 1, 2, , p + 1)
and hence the αth component of d(ta9 tb) == 0 if and only if the αth
component of d{sa, sb) = 0. This completes the proof of the theorem.

Recall that if B is a Boolean ring, B* designates the complete
direct sum of those GF(2) used in the subdirect sum representation
of B.

LEMMA 3.8. Let S be Boolean metric space with distance algebra
B, in lΰhich the distance product of every p + 1 paints is zero.
Then S is congruent with a subset of a Boolean metric space S*
with distance algebra B*, such that B is isomorphic with a sub-
algebra of B*, the distance product of every p + 1 points of S* is
zero, and S* contains an equilateral p •— 1-tuple of side 1.

Proof. Let {tu t2, , tn) be a maximal equilateral set of side 1
in S. If n ^ p — 1, no further proof is needed. If n < p — 1, con-
sider B in its subdirect sum representation and let B* be the complete
direct sum of the GF(2) used to represent B. Let S* be the set union
of S and an element σ. Define a distance δJ in S* as follows: if
x,yeS, d'(x, y) = d(x, y), d'(σ, σ) = 0. For xes, define df(x, σ) = qf

xσ

by giving its ath component Qxσ as follows: If for all w e S, the ath
component of d(vj, tτ) = 0 for some i = 1, 2, , n then Ql:σ. = 1 for
all xe So If there is a wa such that the ath component of d(wa9 t^) =
1 for all i = 1, 2, - , n, then let Q'xtr = 0 if and only if d(x, wa) has
a zero in the α'th component.

To show that S* is a Boolean metric space, observe that it is
clear that if r, s are elements of S*, with r — s9 then d'(r, s) = 0.
If d'(r, s) = 07 it is evident that r = s if r and s are both elements
of S. Suppose then that d\x, σ) = 0 where a e S , But then in the
αth component d(x, w^) has a zero, where ιva is such that the α'th
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component of d(wa, t{) = 1 for i = 1, 2, , n, by the triangle inequal-
ity. Since this is true for every a, {t19 t2, , tn9 x) is an equilateral
set of side 1, contrary to hypothesis. The symmetry of d' follows at
once from its definition. For the triangle inequality the only triples
which need be studied are those of the form (x, y, σ). But, referring
now to the ath component, if d(x, y) = 0, d(y, σ) — 0 then d(y, wa) ~
0, hence d(x, wΆ) = 0 and d(x, σ) = 0 and if d(x, σ) = 0, d(y, σ) = 0
then d(x, wa) = 0, d(y, wa) = 0, and d(x, y) = 0. In all other cases
d(x, y), d(xy σ), d(y, σ) clearly form a metric triple, because x, y, σ, is a
Boolean metric triple unless in some component two of d(x, σ), d{y, σ), d{x, y)
are equal to zero and the third is equal to one.

To show that {tlf t2, , tn} form an equilateral set of side 1,
suppose this is not the case, then in some ath component, for some
1, d(σ, ti) — 0, but then d{σ, wa) = 0, hence d(wa, ί<) — 0, contrary to
the definition of wa.

In verifying that the distance product of every p + 1 points of
5 * is zero, it is sufficient to consider p + 1 tuples {rl9 r2, , rp, σ},
[Vi e S] where in some α:th component, the distance products of the r's
is one. But if the ath component of d'(rif a) is one for i = 1,2, , p,
then either there is for every i, a j , [j = 1, 2, , n] where n < p — 1,
such that d\Ti, t3) has a zero in the αth component (which implies
that for some i, j , k, df{τif tk), d'(r3, tk) have zeros in the αth com-
ponent and so d'(ri9 rά) has a zero in the ath. component, contrary to
hypothesis). On the other hand, if there exists a wa such that in the
ath component d\wΛ, tά) — 1 for all j , [j — 1, 2, , n], and d\σ, r<)
has a 1 in the αth component, then d'(wa, r<) has a 1 in the αth com-
ponent. But then {rl9 r2, , rv, w^} is a p + 1 tuple in S with distance
product different from zero.

Continuing in this manner a space containing an equilateral p — 1
tuple of side 1 is obtained.

THEOREM 3.9. Let S be a Boolean metric space with distance
algebra B and let iϋ* be the p-space with Boolean ring of idempotents
B*. The space S is congruently imbeddable in j?* if and only if
the distance product of every p + 1 points of S is equal to zero.

Proof. By hypothesis the distance product of every p + 1 points
of S is zero. Then by Lemma 3.8, S is congruently contained in a
Boolean metric space S*, with distance algebra B*, containing an
equilateral p — 1 tuple of side 1, and in which the distance product
of every p + 1 points is zero. By Lemma 3.7, every p + 1 points of
S are imbeddable in lϋ*, and by Theorem 3.4, S* is congruently im-
beddable in Λ*, and hence S is congruently imbeddable in i2*. This
establishes the sufficiency of the condition and the necessity follows
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immediately from Theorem 3.7.

COROLLARY 1. S is congruently imbeddable in R* if and only if
every p + 1 points of S are congruently imbeddable in the p-space
R, with Boolean ring of idempotents B.

COROLLARY 2. R* has congruence order p + 1 with respect to
the class of all Boolean metric spaces (S, B*, d).

LEMMA 3.10. A p-space does not have congruence order p.

Proof. Let M be a Boolean metric space of any cardinality in
which the distance of every two distinct points is one. Then M has
every p points imbeddable in a given p-space, but M itself need not be.

THEOREM 3.11. A p-space R*, with distance algebra B* has best
congruence order p + 1 with respect to the class of all Boolean metric
spaces.

Proof. By Corollary 2 of Theorem 3.9 the best congruence order
of R* is less than or equal to p + 1, but by Lemma 3.10 the con-
gruence order is greater than p.

Another topic of interest in distance geometry is psuedo sets.

DEFINITION 3.5. A p + 1 tuple T in a Boolean metric space is
said to be a pseudo-p-space p + 1 tuple if every p points of T are
imbeddable in a p-space but T is not.

THEOREM 3.12. A Boolean metric p + 1 tuple is either imbeddable
in a p-space or is a pseudo-p-space p + 1 tuple.

Theorem 3.9 gives a solution to the congruent imbedding problem
of determining necessary and sufficient conditions in order that a
Boolean metric space be isometric with a subspace of a p-space. In
order to obtain a characterization of Boolean metric spaces themselves
one method is to first categorize those subspaces of a given p-space
which are themselves p-spaces among the class of all subspaces of the
p-space. This is accomplished in the following two theorems.

THEOREM 3.13. Let R be a Boolean metric p-space with distance
algebra B. Let S be a subspace of R. Then a necessary and suffi-
cient condition that S be a p-space is that:

(1 ) There exists a subalgebra B of B such that S contains an
.equilateral p — 1 tuple with side 1 of B : {tl9 t2, , tp^9
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( 2 ) There is a one-to-one correspondence between the elements
of S, and the set of paiπvise orthogonal p — 1 tuples: {clf c2, , c^}
of elements of B, such that for x e S, d(x, t^ = cl.

Proof. The necessity is clear, since for any sub-p-space, {t1912, ,
ίp-J can be taken as summands of the identity and the c{ are then
the "coordinates" in a Boolean vector representation.

Sufficiency. If the conditions of the theorem are satisfied the set
of p — 1 tuples of c's form a p-ring, which is a subring of the original
ring.

THEOREM 3.14. Let S be a Boolean metric space with distance
algebra B. A necssary and sufficient condition that S be a p-space
is that:

( 1 ) The diβtance product of every p + 1 points of S is zero
and for some subalgebra B of B

( 2 ) S contains an equilateral p — 1 tuple of side 1 in B
( 3 ) There is a one-to-one correspondence between the elements

of S, and the set of painvise orthogonal p — 1 tuples: {cu c2, , cp^
of elements of B, such that for x e S, d(x9 tt) = cl.

Proof. By Theorem 3.9, S is a subspace of a p-space, but by
Theorem 3.13, S is then a p-space.

4* Properties of the group of motions* This section is devoted
to developing certain properties of the group of motion of p-spaces.

THEOREM 4.1. In a p-space every rotation about the origin is a
product of a finite number of involutions.

Proof. Let R be a p-space and B its distance algebra. Let x —+
f(x) be a rotation about the origin on R, and M the matrix corresponding
to / . Then M = {ai5) is a (p — 1) x (p — 1) matrix with elements in
B satisfying aikaij = 0, j Φ k, and aiSak3 = 0, i Φ k, and MM' Φ I,
where α^ e B.

For beB9 denote by br, the r th component of b in the subdirect
sum representation of B, and define Mir) — (ct^ ).

Then the set {M(r)}9 r e ^ , consists of at most (p — 1)! different,
matrices each of which is a permutation matrix. Clearly

where the elements on the right are transposition matrices.
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Whence M{r) can be transformed into Mk

{r) by a certain permuta-
tion of its columns.

Let Mrk be the matrix which results from applying these same
column operations to M.

Let Zr be the product of those elements in M corresponding to
the Γs in M{r). Let Z{

r

s) be the sth component of Zr, and note that
Zίs) - 1 if and only if M{r) = M{s).

Let ikfr* be the matrix obtained from Mrk by multiplying every
element by zr and then adding Zr to the elements along the main di-
agonal, i.e., MX = ZrMrk + ZrI.

Denote the matrix of tth components of M*k by M*k

{t).
It follows that:

M*k

ιt) - Mlr) if MM - ikf(ί)

M*k

{t) = I if AΓr ^ ΛΓ* .

(From the definition of AΓ*fc, if M{r) = M{t), M*k

w = M$, and
from the definition of Mrk, M^ = ikfr

( ,̂ which is equal to Mk

[r) by the
definition of M{

k

r\ that is, Mr\
{t) - Mi r ) ).

Thus

Π M*k

ιt) = Af.(r) if M ( r ) = M ( ί )

Π M*k

w = I if M M Φ Mm (fc = 1, 2, , p - 2) .

Now select a minimal set of r'β, L = (rx, r2, , rm) such that
each M{r) = Λίri for some TjβL. Then

M = Π M*4 (fc = 1, 2, . . . , p - 2, f iGL) .

To show this, observe that

M ( λ ) - Π M*P (k - 1, 2, . . . , p - 2, r ,GL) ..

Let r β e L be such that M ( λ ) = M ( ^ . Then

π

COROLLARY. Every motion which leaves zero fixed in a 3-space
is a reflection. Every reflection in a S-space therefore has determi-
nant equal to — 1 .

The proof of Theorem 4.1. suggests that there is a close relation-
ship between the group of motions of a ^-space, and permutation
groups. Indeed it is the case that the group of motions is a subgroup
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of the direct product of permutation groups on p — 1 letters. This
will be made precise in the following two theorems.

DEFINITION 4.1. Let B be a Boolean ring. Consider B as a sub-
direct sum of GF(2). Let φ be a group of permutations on ^-symbols
and Gφ the full direct product of φ of the same cardinality and num-
ber of summands as B. For beB, and Peφ, let g(P, b) be the element
of Gφ, which effects the permutation P where b has Γs and the
identity permutation elsewhere. Denote by Gφ(B) the subgroup of
'Gφ generated by the set of elements g(P,b), Peφ, beB.

THEOREM 4.2. Let R be a p-space with Boolean ring of idem-
potents B. Then the group of motions of R which leave zero fixed
is GT(B) where T is the symmetric group on p — 1 symbols.

Proof. Let M be a motion matrix for R. In the proof of Theo-
rem 4.1 it was shown that M can be written as a product of matrices
M?.k, but these matrices correspond to motions of the form g(t, b)
where t is a transposition.

COROLLARY. Let R be a p-space. Then the group of motions of
R is GS(B), where S is the group of permutations on p symbols.

Proof. Let f(x) be a motion, then f(x) = xM + b. It has been
.shown in the theorem that the rotation is an element of GT(B) and
hence of GS(B). Consider now the translation t(x) = x + t. It can
be written as the product of translations as tx{x) t2(x) , tp^(x)
where U(x) = x + i(l — (t — i))*-1 which are elements of GS{B).

On the other hand it must be shown that every element of GSB
is a motion. It suffices to show that every g(P, b) is a motion. Thus
let g(P, b) be given. If P fixes zero, the result follows from the
theorem. If P does not fix zero, let 0' be the image of zero under P.
Consider the permutation q: x —> x — 0' of the integers mod p. Then
g(pq, b) is a motion and has a matrix M, and f(x) = xM + 0'δ cor-
responds to g(p, b).

THEOREM 4.3. Let R be a 3-space with Boolean ring of idem-
potents B. Then every motion f on R which leaves 0 fixed is of the
form f(x) = ax where a is a unit in the Z-ring.

Proof. It follows from Theorem 4 of [7] that f(x) = xM where
M = (αo ) i, j = 1, 2, and aiS e B. Further

\1 + α a
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Suppose then that x = (xl9 x2), and so

f(x) = (aXi + (1 + a)xi9 (1 + a)xx + ax2)

- (xlfx2)-(a91 + α)

where (α, 1 + a)(a9 1 + α) = (1, 0) = 1.

5* Analytic geometry in p-spaces* If a rectangular coordinate
system is introduced in a Euclidean plane E, a point P can be repre-
sented as a pair (x9 y) of real numbers. One then seeks to describe
geometrically the loci of equations of the form y = f(x), and conversely,
given a geometric description of a plane set, to find the equation of
which it is the corresponding locus. But a point P in the Euclidean
plane may also be considered to be represented by the single complex
number z = x + iy. Here the question is not so much the investiga-
tion of the loci of equations of the from f(z) = 0; a study is rather
made of the way in which geometric properties change or remain in-
variant under transformations w = f(z) of the plane into itself. It is
the purpose of the following remarks to exhibit theorems which illus-
trate that an analytic geometry for ^-spaces may be developed in a
manner analogous with both of the methods discussed above for
Euclidean plane geometry.

Suppose, therefore, that R is a p-space. Since the elements of
the p-ring R are in one-to-one correspondence with the points of the
p-space R, every function f(x) defined for all x in the p-ring R and
having values in the p-ring R induces a mapping of the p-space R into
itself. This mapping need not of course preserve distances, and in
general will not even be one-to-one. Theorem 5.2 establishes necessary
.and sufficient conditions that a polynomial function defined on a p-ring
R induce a motion on the corresponding p-space.

The following theorem, which was first established in 1882 is needed
for the proof.

THEOREM 5.1. Raussnitz [6]. Let f(x)=a^1x
p-1+ a0x

p~2+a1x
p~3 +

- + αp_2 be a polynomial where α̂  6 GF{p)9 (i = —-1,0,1,2, , p — 1).
Then a necessary and sufficient condition that /(0), /(I), , f(p — 1)
be distinct is that (i) the determinant R(k) be equal to zero for k =
0 , 1 , , ap-.2 — 1, ap-2 + 1, , p — 1 where

D a1 a2 ap—3 ap—2 /c

L a2 a2 ap~2 fc a0

a•p-4
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and (ii) α_x = 0.

THEOREM 5.2. Let R be a p-space. Then a necessary and suffi-
cient condition that the polynomial

P(x) = a^x*-1 + aox
p-2 + axx

p-* + + α p _ 2 ,

where the a{ (i = — 1 , 0,1, , p — 1) are elements of the p-ring
induce a motion on the p-space R is that

(i) a^ = 0
and

(ii) R(ck) = 0 (k = 0, 1, 2, , p - 1) where

R(ck) -

a0

a,
aλ

a2

a2

V—Ί ^k wo

wj)—2

and ck = — (α^-2 — fc)*'"1 + fc + 1. (AΓo£β ί/^αί R(k) has integer argu-
ments whereas the arguments of R(ck) are elements of a p-ring).

Proof. Suppose that the polynomial P(x) corresponds to a motion
M on the p-space R, and consider the p-ring R as a subdirect sum of
GF(p). Then the elements of R may be represented as (rl9r2, ••-,
ru •••) where the rteGF(p). Clearly M induces a permutation pt on
the components rt9 for every t. If for xλeR and x2 e R, r\ = r\ and
M(r}) Φ M(r])f then d(xlf x2) will have a zero in its tth. component
while d{M(xύ, M(x2) will have a one in the tth. component contradict-
ing the assumption that M is distance preserving. The uniqueness of
pt is a consequence of the fact that the motion M is a well defined
mapping. Let aj>t be the tth component of aό in the subdirect sum
representation of R. Then the polynomial

Pt(x) = a-^x*-1 + θo9tx
p-* + α l f ία*-8 + + α p - > f ί

must represent the permutation pt on the elements of GF(p). Hence
by Theorem 5.1, α_1>t = 0, for all t, so that α_x = 0. Also, i2(fcέ) = 0
for all t, and fc = 0,1, 2, , αp_2 — 1, αp_2,ί + 1, , p — 1. Notice
however that ck,t ranges over 0, 1, 2, , αp-2,« — lf» ^P-2,* + 1> * *>
p — 1 as fc takes on the values 0,1, , p — 1. Thus β(cA) = 0, for
k = 0,1, 2, , J> — 1, and the necessity of conditions (i) and (ii) is
established.

On the other hand, suppose that conditions (i) and (ii) are satis-
fied by P(x). It will first be shown that the polynomial P*(x) where
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P*(x) = P(x) — αp_a also satisfies conditions (i) and (ii). For each t,
the polynomial Pt(%) satisfies the conditions of Theorem 5.1 and hence
P{x) induces a permutation pt on the t t h component of the subdirect
sum representation of the p-ring R. But in each component P*(x) also
induces a permutation and since conditions (i) and (ii) of Theorem 5.1
are necessary conditions, P*(x) satisfies conditions (i) and (ii) of Theorem
5.2. It is clear that if P*(x) is a motion, so also is P(x), and thus it
is sufficient to consider polynomials P(x) for which ap-2 = 0.

Since there are only a finite number of different permutations on
the elements of GF(p), it is possible to choose a finite set of distinct
permutations

{Qi, tf2, , Q.} = Γ

in such a way that for each ί, pt is equal to one of the qό. Note
that 1 S s S pl. Now, with each permutation qjf there is associated
at most a finite number of polynomials

Qn&) - ί $ α p - 2 + iiii»p"s + + *!&.*& [Λ = 1, 2, , wy]

in GF(p) [x] which satisfy the conditions of Theorem 5.1 and such
that q3(i) = Qjk(i), i = 0, 1, , p - 1, λ; = 1, 2, • , w, .

Define 6yA, an element in the Boolean ring of idempotents, as
follows:

bh = (α0 - iί i)*-1 U (θχ - iί ϊ)11-1 U U K_ 3 - i'Jλ^)^1 .

This element has a zero in those components t of the subdirect sum
representation of the Boolean ring of idempotents, where

ah)t = iΆ [h = 0, 1, « , P - 3]

and has a 1 in the other components. Let

δ, = 1 + Π bik ,

and note that 6̂- has a 1 in those components t where the permutation
Qj — Vt and zeros elsewhere.

Define a matrix M — (w^ ) as follows:

m,i, - 6 iχ + hJ2 + + hJυ

where qjχy qJ2, , qjr, , gif> are those elements of Γ which satisfy
qjr(i) = j , and mi5 = 0 if there are no such permutations in Γ. It can
be seen that m^ has a 1 in the t th component if and only if Pt(i) =

j . Since the δ̂  are pair wise orthogonal and a permutation is a one-to-
one onto map, it is clear that M satisfies the conditions for a motion
matrix and P(x) = xM.
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To illustrate the second point of view in analytic geometry refer-
ence will be made to the particular instance of a 3-space, although
similar results could be obtained for larger primes.

It follows from the Boolean vector representation of p-rings that
a 3-ring can be represented as the set of all pairwise orthogonal ordered
pairs (x, y) of elements from its Boolean ring of idempotents. Thus
the pair (x, y) can be considered as coordinates for points in the 3-space..
The locus of all points of the 3-space, whose coordinates satisfy an
equation of the form Ax + By + C = 0, where A U B — 1, is called a
linear set. (The indicated operations are those of the Boolean ring of
idempotents).

THEOREM 5.3. A linear set is a circle of radius A + B + C.

Proof. Denote by Ω the linear set associated with the equation.
Ax + By + C = 0. Then if (x, y) e Ω,

d[(x, y),(L + B,l + A)] = A + B+C.

For

d[(x, y), (1 + B,1 + A)] = d[((l + B,1 + A)~ (x, y)), 0]

= d[(c, d), 0] = c + d

where

c = (1 + A)x + y{l + A + 1 + B + 1) + (1 + B)(l + x + y)

d = (1 + B)y + a5(l + A + 1 + B + 1) + (1 + A)(l + x + y)

hence

c + d = Ax + By + A + B — A + B+C.

Also if d[(l + B, 1 + A), (xf y)] = A + B + C then from the above

[d(x, y), (1 + B, 1 + A)] = Ax + By + A + B

and hence Ax + By + C = 0.

COROLLARY. The form A + B + C is a complete set of invariants
for linear sets under motions.

The following theorem illustrates a connection between the geom-
etry of a p-space and the geometry of its Boolean ring of idempotents.

THEOREM 5.4. If R is a p-space and B the corresponding
Boolean ring of idempotents, then B itself is a Boolean metric space
and is isometric to the set of idempotents of R, considered as a sub-
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space of R. Further, any motion on B, can be extended to a motion
on R.

Proof. In an autometrized Boolean ring, the distance between
two elements is the ring sum. But if x and y are idempotents in a
ring their sum in the Boolean ring of idempotents is x + y — 2xy.
But it is easy to see that if x and y are idempotents in a p-ring
x + y — 2xy = (x — yY"1. Hence the distance between two idempotents
is the same, whether the set of idempotents is considered as a sub-
space of the p-space, or as forming a Boolean ring itself.

If / is a motion on B, then the motion f*(x) = xM + /(0) is a
motion on R which coincides with / on B, where the matrix M = (m^ )
is defined as:

mn = mp-Lp-x = 7(0) , m^-i == m H ( 1 = /(0) ,

mH = 1 for i Φ 1, p — 1, and all other elements in the matrix equal
to zero.
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BASIC SEQUENCES AND THE PALEY-WIENER
CRITERION

JAMES R. RETHERFORD

1. Introduction. Throughout the paper X will denote a complete
metric linear space (i.e., a complete topological linear space with topology
derived from a metric d with the property that d(x, y) — d(x — y, 0),
for all x,yeX) or some specialization thereof over the real or complex
field; 11 # | | will denote d(x, 0); and if {xn} is a sequence in X, [xn] will
denote the closed linear span of the elements {£cw}weω.

A sequence {xn\ is said to be a basic sequence of vectors if {xn}
is a basis of vectors of the space [xn], i.e., for each x e [xn] there
corresponds a unique sequence of scalars {αj such that

(1.1) x = Σa&if

the convergence being in the topology of X. We say that the basis
is unconditional if the convergence in (1.1) is unconditional. It is well
known that if {xn} is a basic sequence of vectors, then every x e [xn]
can be represented in the form x = ΣΓ=i/i(#)#ί where {/J is the
sequence of continuous coefficient functionals biorthogonal to {Xi} (Arsove
[1, p. 368], Dunford and Schwartz [4, p. 71]).

Similarly, we say that a sequence {MJ of nontrivial subspaces of
a complete metric linear space X is a basis of subspaces of X, if for
each xeX, there corresponds a unique sequence {#*}, x{ e Mt for each
i, such that

(1.2) x = Σ,Xi.

This concept has been studied by Fage [5], Markus [9], and others in
separable Hubert space and by Grimblyum [6] and McArthur [10] in
complete metric linear spaces. We say that the basis of subspaces is
unconditional if the convergence in (1.2) is unconditional.

If {Mi} is a basis of subspaces for X, for each ieω define E{

from X into X by E^x) = x{ where ΣΓ=i x% is the unique representation
of x e X. Eι is a projection (linear and idempotent); E{Ej = 0 if ί Φ j ;
the range of Et is M<; for each x e X, x = ΣΓ=i E^x) and if E^x) = 0
for each i, then as = 0. {Mτ) will be called a Schauder basis of
subspaces if each ^ is continuous.

September 24, 1962. This research was supported by the Air Force Office of Scien-
tific Research.
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A sequence {M }̂ of non-trivial subspaces of X is a (unconditional)
basic sequence of subspaces if {ikfj is a (unconditional) basis of subspaces
of [Mi], the closed linear span of \Jieω M{. If {MJ is a basic sequence
of subspaces and x e [Mt] then x = ΣΓ=i -£*(#), where 2^ is now defined
on [Mt].

The classical Paley-Wiener theorem can be formulated in X as
follows.

1.3. THEOREM. Let {xn} and {yn} be sequences in X and let
be a real number (0 < λ < 1) such that

X

(1.3a) Σ dn ~ Vn) ^ λ

holds for arbitrary scalars alf « , α m . Then (1) if {xn} is a basis
so is {yn}; (2) if {xn} is fundamental (i.e., [xn] = X) so is {yn}.

Recently Arsove [1] showed that Theorem 1.3 is valid in a complete
metric linear space. It is the purpose of this paper to show that this
result and results similar to those of Pollard [13], Hilding [7], and
Nagy [11] (all of which generalize condition 1.3a) are valid for basic
sequences of subspaces in X. As a corollary to Theorem 4.3 we obtain
a new version of the Paley-Wiener theorem.

The author wishes to express his gratitude to Professor C. W.
McArthur for his help and encouragement in the preparation of this
paper.

2. Basic sequences of subspaces* Special cases of the following
lemma have been used by Hilding [7, p. 93], Nagy [11, p. 76], and
others to prove theorems similar to Theorems 2.3 and 2.4.

2.1. LEMMA. Let {Mt} and {Ni} be sequences of nontrivial
subspaces of the complete metric linear space X. Suppose that for
each ieω there exists a one-to-one linear transformation Ti of Mi
onto Ni and suppose further that there are positive numbers m, M
such that

(2.1a) m V
2

holds for arbitrary xt e Mi9 i — 1, , p. Then
( i ) there is a linear homeomorphism T of [M^ onto [Ni] such that
the restriction of T to M{ equals Ti for each ieo) and such that

(2.1b) m\\x\ T(x)\\ ^ for all xe[Mζ]
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(ii) {Mi} is a (unconditional) basic sequence of subspaces if and only
if {N^ is a (unconditional) basic sequence of subspaces.

Proof. Let Xo denote the space of finite linear combinations of
\Jieω MiΛ These, of course, are reducible to the form Σ?=i xi9 α?< e M{.
If xif x'i e Mi9 i = 1, , p and Σ?=i χι = Σ?=i χl t h e n f r o m 2 l a it
follows that Σ?=i Γίί^ί) = Σ?=i Γi(»0. Thus we may define a linear
transformation S from Xo into [ JVJ by S(Σf=i »<) = Σ?=i Γ ; ( ^ ) and
have m | | a? || ^ | |S(a) | | ^ M||a?| |, for all xeX0. It is clear that S
restricted to M{ is equal to T; and that S is continuous. Thus defined
on a dense subset of [Mi], S has a unique linear extension T to [ΛfJ
satisfying 2.1b. From 2.1b it follows that T is one-to-one and T~~r

is continuous. We show T is onto [N{].

Let y e [JVJ. Then 7/ = limfc gfe where gk is of the form gk = ^ί\]yψ\
yψ] 6 Ni, i = 1, , %(fc). For each such ^ f c ) there is a unique x^ e Mi
such that Ti(xik)) = ^ f c ) . Let &fc = Σ " ^ ^1& ). Then from 2.1b,
|| hp — hq || ^ (1/m) || flτP — flrJI, so {fej is Cauchy and there is an x0 e [JkfJ
such that {̂ fc} —> x0. Clearly, T(x0) = y.

To verify (ii) suppose {M{} is basic, i.e., a basic sequence of
subspaces. Let ye[Ni\. Then y = T(x) for some xe[M{]. x has a
unique expansion x = ΣΠ=i»», »» e Λf< and y — ΣΠ=i Γ ί^) , Γ(α?i) e Nt.
Now if 2/ = ΣΓ=i 1/i, yi^Ni, then ^ = T(x ) for some unique xleM^
Hence 0 = Γ(ΣS=i ̂ i " ^0 which implies xt = a J. Since the expansion
for 2/ is unique, it follows that {JVJ is basic. The converse follows
from (i) in the same way. If in the preceding argument {Mt} had
been assumed an unconditional basis of subspaces for [M ]̂ then the
series ΣΠ=i#ϊ would have been unconditionally convergent to x and
since T is a linear homeomorphism it follows that ΣΠ=i ϊX&i) would
be unconditionally convergent.

2.2. DEFINITION. TWO sequences {x{} and {y{} (in the given order)
in X are said to have the property:

(P-W) (for Paley- Wiener) if there is a real number λ (0 < λ < 1)
such that || Σ?=i aί(χi — 2/») II ^ λ || Σ?=i aiχi II holds for arbitrary scalars
a19 a2, , an;

(P-H) (for Pollard-Hilding) if for each positive real number k,
there are real numbers λx, λ2(0 ^ X{ < min [1; 21"1/fc], i = 1, 2) suc/^ ίfeαt

w II Γ II w

»=i II L IU=i

k !| n

holds for arbitrary scalars a19 , an;

(N) (/or Nagy) if there are real numbers λ', μ,v (0 ^ λ' < 1, 0 ^

v < 1, 0 ^ ^ , μ*^[l- λ'][l - 2;]) s^cfe that
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n

Σ aίχi
2

+ μ
n

s i affii • + v

holds for arbitrary scalars al9 , an.

If k = 1 and λx = λ2 property P-H reduces to

Σ< V <(2.2a)

where λ = Xλ = λ2.

2.3. LEMMA. If {xn} and {yn} are sequences in X with property
P-W, P-H or N then 2.2a holds, with λ (0 < λ < 1) an appropriately
chosen constant.

Proof. That property P-W implies 2.2a is obvious. If {xn}, {yn}
have property P-H, let λ = [max (λx, λ2)]1/fe; if {xn}, {yn} have property
iV let λ =

2.4. THEOREM. Suppose {M{} and {N^ are sequences of nontrivial
subspaces of X and suppose that for each ieω, T{ is a one-to-one
linear transformation of Mi onto ΛΓ{. Suppose further that there
is a λ(0 < λ < 1) such that

(2.4a) + Σ

/or arbitrary a?4 e ilfίf ΐ = 1, , n. Then
( i ) there is a linear homeomorphism T of [Mi] onto [N^ such that
T restricted to Mi equals Tt for each i and such that

(2.4b) [(1 -λ)/(l + λ)] || x || ^ || T(x) \\ £ [(1 + λ)/(l - λ)] || x II

for each x e [ΛfJ;
(ii) {Mi} is a (unconditional) basic sequence of subspaces if and only
if {Ni} is a (unconditional) basic sequence of subspaces.

Proof.

Σ Ti V

+

i.e.,

ι = l
g [(1 + λ)/(l - λ)]
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Σ Xi s [(l + λ)/(i - λ)]

Σ Uxt) < [(1 + λ)/(l - λ)]

The conclusions follow from Lemma 2.1.

2.5. COROLLARY. Suppose {M{} and {N^ are sequences of non-
trivial subspaces of X and suppose that for each ieω, 7^ is a one-
to-one linear transformation of Mi onto Nim Suppose further that
{Xi} and {Ti(Xi)} have property P-W, P-H or N, for arbitrary x{ e Mi
(observe that since x{ e M{ is arbitrary, x{ and T{(Xi) include the scalar
a{ for each i) then the conclusions of Theorem 2.4 hold. In particular,
if Property P-W holds and {MJ is a basis of subspaces for X, so is

Proof. The first part of the corollary follows from Lemma 2.3
Arsove [1, p. 367] has shown how to prove the other assertion of the
corollary. We repeat the proof for completeness.

Since Property P-W holds there exists a linear operator T from
X into X satisfying || x - T(x) \\ g λ ]] x \\, x eX and such that T
restricted to M{ equals T{. Let A = T — I, where I is the identity
operator. A is continuous at each xeX and furthermore | |Aπ(x)| | S
λw | | sc | | for each xeX and positive integer n. Thus a linear operator
U of X onto X may be defined by U(x) = Σ ϊ = o ( - A Λ ( » ) ) , » e X It
follows that || U(x) || ^ (1 — λ)"1 (| x ((, so £7 is continuous. Given y e X,
let x = U(y). Then y = (I + A)x = T(x) so T is onto X.
is a basis of subspaces for X.

Thus

3. Basic sequences of vectors. If X has a basis of vectors {xn},
then {xn} induces in a natural way a basis of subspaces {AfJ for X.
We have only to define M{ to be the span of the single element Xi
(denoted by 8p(Xi)). From the remarks in the introduction we have
sc = ΣΠ=i/»(#)#* for each xeX, so E^x) —fi(x)Xi. Since h(a) — ax{ is
a linear homeomorphism of the scalar field into X and fi(x) is a con-
tinuous linear functional it follows that E{ is continuous for each ieco
and so {ΛfJ is a Schauder basis of subspaces for X. Thus, for
Schauder bases of vectors, we obtain the following theorems as corol-
laries to the theorems of § 2.
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3.1. THEOREM. Suppose {x^ and {y^ are nontrivial (i.e., ^ ,
y. φ 0, for each izω) sequences in X and suppose there is a
λ(0 < λ < 1) such that

Σ <*<iKi

holds for arbitrary scalars aly , an. Then,
( i ) there exists a linear homeomorphism T of [x{] onto [y{] such
that T(Xi) = y{ for each ieω, and
(ii) {x{} is a (unconditional) basic sequence of vectors if and only
if {Viϊ is a (unconditional) basic sequence of vectors.

Proof. Let Mt = sp(x{) and N{ = sp(y{). Define a linear operator
Ti from Mi onto Nζ by Ti(ax{) = ay{ where a is an arbitrary scalar.

Clearly, Γ< is one-to-one and continuous. 3.1a can be rewritten

(3.1b)

for arbitrary x\ e Mί7 i = 1, , n. The conclusions follow from Theorem
2.4.

Thus in particular, if {xn} and {2/J are nontrivial sequences in X
with property P-W, P-H or N, the conclusions of 3.1 are valid.

We have remarked that if {xn} and {yn} have property P-W and
{xn} is a basis of vectors for X, then {yn} is a basis of vectors for X.
From 3.1 it follows that if {xn} is an unconditional basis of vectors
for X, then {yn} is an unconditional basis of vectors for X.

4. Basic sequences in Banach spaces. From Grinblyum [6] the
following can be derived (a proof is given in [10]).

4.1. LEMMA. Let {MJ be sequence a of nontrivial closed subspaces
in a Banach space X. {Mi} is a Schauder basis of subspace for [M^
if and only if there is a K ^ 1 such that for arbitrary p, q eω,
p ^ q we have || Σ?=i χi II = ^Ίl Σ?=i x< lit for arbitrary x{ e Mif i =
1, •••,«.

4.2. LEMMA. Lei {ikfj δe α sequence of nontrivial closed subspaces
of a Banach space X. {M{} is an unconditional Schauder basis of
subspaces of [M{] if and only if there is a K Ξ> 1 such that for
arbitrary finite sets of positive integers F, Ff with FcF' we have

F Xi II ^ K\\ Σ < e j . , Xi II, for arbitrary xi e Mi9

4.3. THEOREM. Suppose {Λf<} and {iVJ are sequences of closed
nontrivial subspaces of a Banach space X.
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(1) If there is a λ(0 < λ < 1) such that for an arbitrary finite set
of integers Ff and arbitrary y{ eNi9 ie F', there exists xt e Miy ie F'
such that

(4.3a)
iβF

holds for arbitrary FczF' then {N{} is an unconditional (Schauder)
basic sequence of subspaces if {M{} is an unconditional (Schauder)
basic sequence of subspaces;
(2) if there is a λ(0 < λ < 1) such that for arbitrary qeω and
arbitrary y19 , yq, yi e Nif i = 1, , q there exist xl9 , xq, xi e Mi9

i = 1, , q such that

(4.3b)

holds for all p ^ q then {iVJ is a (Schauder) basic sequence of
subspaces if {Mi} is a (Schauder) basic sequence of subspaces.

Proof. We prove (2). The proof of (1) is analogous using Lemma
4.2 instead of 4.1.

Suppose {M^ be a basis of subspaces for [M^. By Lemma 4.1
there is a K ^ 1 such that

We have

P

< K ^ q .

7 i \iji «̂ ί
i=l

V

i=l

and from (4.4b) it follows that

Also

Thus we have

q

i=l

- λ i=l

1 + λ
1 - λ

— λ
Σffc

Thus by Lemma 4.1, {iVi} is a basis of subspaces for [N{].
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4.4. COROLLARY. Let {̂ } and {τ/J be non-trivial sequences in a
Banach space X.
(1) If there is a λ(0 < λ < 1) such that for an arbitrary finite set
of indices Ff and arbitrary scalars {αj, ie Ff, there exist scalars
{bi}, i e F'y such that

(4.4a)
iβF HO

holds for arbitrary FczF' then {y^ is an unconditional (Schauder)
basic sequence of vectors if {x{} is an unconditional (Schauder) basic
sequence of vectors)
(2) if there is a λ(0 < λ < 1) such that for arbitrary qeω and
arbitrary scalars alf , aq there are scalars bl9 , bq such that

< λ(4.4b)

holds for all p ^ q then {T/J is a (Schauder) basic sequence of vectors
if {%i\ is a(Schauder) basic sequence of vectors.

Proof. Let Mt = sp(xi), N{ = sp(y{) and apply the preceeding*
theorem.

4.4 is a new form of the Paley-Wiener theorem for we no longer
require the coefficients of x{ and ^ to be the same. We could now
define properties similar to properties P-W, P-H and N by merely
asserting the existence of a scalar b{ to replace the coefficient of Xι
in each of the properties defined in 2«2. It is easy to see that these
new forms of properties P-W, P-H and N imply the hypotheses of
corollary 4.5.

It is unknown^to the author whether [xn] is linearly homeomorphic
to [yn] or not.
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QUASI-POSITIVE OPERATORS

D. W. SASSER

l Introduction* The classical results of Perron and Frobenius
([6], [7], [12]) assert that a finite dimensional, nonnegative, non-nilpotent
matrix has a positive eigenvalue which is not exceeded in absolute
value by any other eigenvalue and the matrix has a nonnegative
eigenvector corresponding to this positive eigenvalue. If the matrix
has strictly positive entries, then there is a positive eigenvalue which
exceeds every other eigenvalue in absolute value, and the correspond-
ing space of eigenvectors is one-dimensional and is spanned by a vector
with strictly positive coordinates. Numerous generalizations of these
results to order-preserving linear operators acting in ordered linear
spaces have appeared in recent years; a short bibliography is included
at the end of this paper. In this paper a generalization in a different
direction is obtained which reduces, in the finite dimensional case, to
the assertion that the Perron-Frobenius theorems hold if it is only
required that all but a finite number of the powers of the matrix
satisfy the given conditions. The principal results are theorems of the
Perron-Frobenius type which are applicable to any compact linear
operator (the compactness condition is weakened somewhat), acting in
an ordered real Banach space J3, which satisfies a condition weaker
than order-preserving. In addition, the results apply to the case when
the "cone" of positive elements in B has no interior.

2* Preliminaries* Throughout the sequel, B will denote a real
Banach space with norm || | |. The complex extension of B, B, is the
complex Banach space B = {x + iy | x, y e B} with the obvious definitions
of addition and complex scalar multiplication and the norm in B is
II ff + ί# II = sup*? || cos θ x + sin θ y ||. If T is a (real) linear operator
on B into B, the (complex) linear operator T on B into B is defined
by T(x + iy) = Tx + iTy. T is bounded if and only if T is bounded,
in which case | | J Γ | | — | | T | | . The spectrum, σ(T), and the resolvent,
p(T), are defined to be the corresponding sets associated with the
operator f. We denote the spectral radius of T by ττ, ττ —
l i n w ]| T * | r = supλ6τ(r) I λ | (provided || Γ | | < oo).

In all of our results there will be a basic assumption that the
linear operator under consideration is quasi-compact, a notion which
we will now define. A bounded linear operator T is compact (also
called completely continuous) if each sequence Txl9 Tx2, , with

Received September 13, 1962. This work was performed under the auspices of the
United States Atomic Energy Commission.
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II %i II ^ 1, i = 1, 2, , has a convergent subsequence. T is quasi-
compact if there exists a positive integer n and a bounded linear oper-
ator V such that Tn — V is compact and r F < r^.1 There are a number
of properties possessed by quasi-compact operators some of which we
state now without proof.2 If Xoeσ(T) and |λof = rΓ, then λ0 is an
isolated point in σ(T) and is in the point spectrum, i.e., (λo7— T) is
not one-to-one. The resolvent operator, R{X, T) = (XI — T)*1, exists-
in a neighborhood of λ0 (excluding λ0) and, in this neighborhood,,
R(X, T) has a Laurent series expansion of the form

ϊ1) + Σ ( λ ~ λo)
fcΛ(λo, Γ)

k0(λ - χoy

where Ak(X0, T) is a bounded linear operator and the series on the*
right is convergent in the uniform operator topology. The integer
n(X0) is the index of λ0, i.e., n(X0) is the smallest integer n such that
{x I (X0I - ΐγ+1x = 0} = {x I (λ0/ - T)nx = 0}. P(λ0, T) is a projection
onto the finite dimensional space {x \ (X0I — f)n{λo)x = 0}. The minimal
property of n(X0) implies that (X0I - T)u(λo)-1P(λo, T) Φ 0.

We recall that for an arbitrary bounded linear operator, the resolv-
ent R(X, T) = (XI - Γ)-1 is an analytic function of λ for Xep(T) and
the expansion R(X, T) = ΣΓ=o(l/λ)*+1T* is valid for | λ | > rτ.

3* Quasi-positive operators* A cone in B is a convex set K
which contains Xx for all λ ^ 0 if it contains x. if is a proper cone
if x G if and —xeK imply a? = 0. A cone if induces an ordering ^ in
B with a? Ξ> 2/ if and only if x — ye if. This transitive ordering
satisfies

( 1 ) if x ^ y, u ^ v, then a; + u ^ ?/ + v,
(2) if a? Ξ> 1/ and λ ^ 0, then Xx ^ λ̂ /, and
( 3 ) x ^ y iί and only if — # ^ — a?.

If the cone is proper, then the ordering satisfies, in addition,
( 4 ) if x Ξ> y and y ^ x, then x — y.

We will use the notation x> y to denote x ^ y, x Φ y. Associated
with a cone if is a closed cone if+ in the conjugate space B* of con-
tinuous, real-valued, linear functions on B, consisting of those x* e B*
with the property that a;*(a?) ^ 0 for all x e K. if+ is a proper cone
if and only if the linear space spanned by K is dense in B (a set with
this property is called fundamental). This is an easy consequence of
the Hahn-Banach theorem on the extension of linear functionals. We
will use the notations x* ^ y* and #* > y* to denote x* — y* e K+

1 Note that a compact operator is quasi-compact if and only if it has a positive
spectral radius.

2 For details, see Yu. L. SmvΓyan, Completely continuous perturbations of operators,.
Amer. Math. Soc. Translations 10, 341-344.
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and x* — y* e K+, x* Φ y*, respectively. An element x > 0 (x* > 0)
will be called strictly positive if x*(x) > 0 for all x* > 0 (x*(x) > 0
for all x > 0).

The following theorem is a characterization of a closed cone and
its interior (when the latter is nonvoid) in terms of K+. The proof
may be found, for example, in [11] (Theorem 1.3 and its corollaries,

m. 16).

THEOREM 1. Let K be a closed cone in B. Then xe K if and
•only if x*(x) ^ 0 for all x* Ξ> 0. If K has a nonvoid interior, then

(1) x is in the interior of K if and only if x is strictly
positive and

(2) for each x on the boundary of K there exists an x* > 0
such that x*(x) = 0.

COROLLARY. If K is a closed proper cone, K+ is a total set of
functionals, i.e., for each x Φ 0, xe B, there exists x* > 0 such that
x*(x) Φ 0.

Proof. Since either x$K or —x$K if x Φ 0, this follows im-
mediately from Theorem 1.

A linear operator T on B into B will be called positive with re-
spect to a cone K if TK ϋ K. In the absence of ambiguity we will
simply say T is positive. In our applications K will be a closed cone
and in this case, in view of Theorem 1, T is positive if and only if
x*(Tx) ^ 0 for all x ^ 0, x* ^ 0. Since Tx ^ 0 if x ^ 0, we have
x*(T2£) ^ 0 and, in general, x*{Tnx) ^ 0 for all n and all x ^ 0, x* ^ 0.
We define T to be quasi-positive if for each pair a? ̂  0, x* ^ 0, there
exists an integer n(x, x*) Ξ> 1 such that x*(Tnx) >̂ 0 if w ^ w(cc, £*).
We define T to be strictly quasi-positive if for each pair 8 > 0, cc* > 0,
there exists an integer n(x, x*) ^ 1 such that x*(Tnx) > 0 if w ^
7&(cc, x*). Finally we define T to be strongly quasi-positive if it is not
nilpotent3 and for each pair x > 0, x* > 0, lim infΛ_oβa?*(Γna?)/|| Tw || > 0.

4* Spectral properties* Throughout this section, K will denote a
closed proper cone in B and K will be assumed to be fundamental. T
will denote a quasi-compact bounded linear operator with spectral
radius 1. This restriction on the spectral radius is for convenience
only and the results given may be interpreted for a general (quasi-
compact) bounded linear operator S with spectral radius rs > 0 by
considering the operator T = (l/rs) S which has spectral radius 1.

3 An operator T is nilpotent if Tn = 0 for some n.
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THEOREM 2. // T is quasi-positive and quasi-compact with
spectral radius 1, then leσ(T) and the index of 1 is not exceeded
by the index of any other point λ e σ ( T ) , | λ | = 1.

Proof. Assume that lep(T). Since ρ(T) is open and R(X, T)
is analytic in X for Xep(T), it follows that the function g(X) —
α*(i2(l/λ, T)x), x>0, x* > 0, is analytic for l/Xeρ(T), in particular
for λ in some neighborhood of 1. Moreover, R(X, T) = ΣΓ=o(l/λ)*+1Γ*
if | λ | > l , hence g{\) = ΣΓ=oλ *+1&*(ϊτ*a0 if | λ | < l . A theorem of
Pringsheim states that if a power series has nonnegative coefficients
and converges in the open unit disk, either 1 is a singularity of the
series or the series has radius of convergence greater than I.4 Clearly
it is sufficient to assume that all but a finite number of the coefficients
are nonnegative. Since x*(Tnx) Ξ> 0 if n ^ n(x, x*), and g(X) is analytic
in a neighborhood of 1, we conclude that the series 2"-oλ&+1x*(Γ/cx)
converges in | λ | < 1 + <? for some δ > 0. By assumption rτ = 1, hence
R(X, T) has a singularity somewhere on | λ | = 1, say at λ0. Since T
is quasi-compact, the expansion

( λ — λ o ) f t

is valid for 0 < | λ — λ01 < S', where n = w(λ0) is the index of λ0

and (λo7 - Γ)%-1P(λ0, T) Φ 0. We may choose x > 0 such that
(λo7 - Γ^-^(λo, Γ)ίc = y Φ 0 since iΓ is fundamental and by Theorem 1
we may choose cc* > 0 such that #*(?/) ̂  0. It follows easily that

g(X) = (λ/λo)
%(l/λo - λ)—Λ(λ) , 11/λ - λ01 < δ ,

where h(X) is analytic and h(l/X0) = α?*(y) ^ 0. Thus g has a pole at
l/λ0 which contradicts the fact that g has a Taylor's series about the
origin with radius of convergence greater than 1. Our assumption
that lep(T) leads to a contradiction, hence leσ(T).

Now let the index of 1 be w. It is easy to see that
lim^x(λ - l)kR(X, T) = 0 if k > n. It follows that for | λ | > l ,
l i m ^ λ - 1)* Σ:, 0(l/λ) r o + 1x*(Tmx) = 0 for every pair x > 0, x* > 0
and clearly this implies l i m ^ (λ - l)k Σ ^ (l/λ)m+1x*(Twx) - 0 if
k > n and j ^ 0. If λo€(τ(T), |λ o | = l and λ0 has index i, then
limλ_λo(λ — λo)

ιi2(λ, T) Φ 0. We may choose x > 0 and x* > 0 such
that limλ^λo(λ - X0)

ιx*(R(X, T)x) Φ 0 and it follows that for | λ | > 1,
limλ^λo(λ - λo)

ι-ΣΞί=i(l/λ)m+1a;*(Γ-a;) Φ 0. Let λ0 = e*, X = peiφ, p>l. If
j ^ n(x,x*), I (λ - \yΣ£=,ilMm+1x*(Tmx)\ £(p-l)ιΣZ=i(VP)m+1**(Tmx)*
The expression on the right in this last inequality tends to zero a&

4 See Titchmarsh, Theory of Functions, pg. 214. Acknowledgement is due here to
S. Karlin for the essence of the proof in Theorem 2 (see [10], Theorem 4).
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p tends to 1 if I > n, hence I ^ n. This completes the proof.

THEOREM 3. If T is quasi-positive and quasi-compact with
spectral radius 1, there exist elements u > 0 and u* > 0 such that
Tu = u, T*^* = u*.δ

Proo/. By Theorem 2, leίj(T). We have

, T) = ±iL^JTlp(lf τ) + ±(X- l)kAk(l, T)

where P(l, T) is a projection onto the finite-dimensional space
{x\(I- T)nx = 0} and (I- Γ)—^(1, T) φ 0. Let Γ = (I- ΓJ ^Pί l , T).
It is easy to see that R(X, T)B g £ for λ real. Since Γ =
limλ_* (λ - l)%Λ(λ, T), it follows that ΓB S £. Also ΓΓ = ΓΓ = Γ.
Let x ^ 0, x* ^ 0 be arbitrary and let JV= w(«, a;*). If λ > 1, we
have x*(TNR(X, T)x) = S^o(l/^)m+1x*(T^+m)x ^ 0. It follows that
for λ > 1, x*{TNΓx) = limλ^ (λ - l)w ΣS=o (l/X)m+1x*(T^+m^) ^ 0. Since
T^Γ = Γ, Γ is a positive operator. We choose v > 0 such that .A; =
% Φ 0. Then % > 0 and Tu = ΓΓv = Γv = u. We choose v* > 0 such
that v*(w) > 0. Letting ^* = Γ*^*, we see that for x ^ 0, t6*(a?) =
(Γ1*!;*)^) = v*(Γx) ^ 0 since v* > 0 and Γ is a positive operator.
Hence u* ^ 0, and since u*(v) - (Γ*v*)(v) - ^*(Γ^) - v*(u) > 0, u* > 0.
Finally, we have ΓT"= Γ which implies Γ*Γ* = Γ*, hence T V =
Tr*(T'*ΐ;*) = Γ*v* = u* which completes the proof.

For strictly quasi-positive operators we obtain stronger results in
the next two theorems.

THEOREM 4. // T is strictly quasi-positive and quasi-compact
with spectral radius 1, then leσ(T), 1 has index one and f has a
representation of the form f = Σ?=i λ Λ + S where λx = 1, | X3 \ = 1,
P] = Pj9 SP3 - P3S - 0, j = 1, 2, , m, P.P, = 0 i/ i ^ i, α^d
rs < 1.

Proo/. By Theorem 2, leσ(T). By Theorem 3, there exists
u* > 0 such that T%* = u* and for x > 0, %*(») = u*{Tnx) > 0 if
w ^ n(x, u*), hence î * is strictly positive. Let the index of 1 be n.
Then Γ = limx^(\ - l)ni2(λ, T) ^ 0 . For λ > 1 and arbitrary x we
have

u*(Γx) - lim (λ - 1)» Σ (lA)*+1w*(Γ*a?) - lim
λ-»i &=o λ->i

= u*(x) lim (λ - l)^-1 = 0
λ

5 71* is the adjoint of T, defined on 5 * by (T*x*)(x) = x*(Tx).
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unless n = 1. In proving Theorem 3 we showed that Γ is a positive
operator, hence there exists x > 0 such that Γx > 0 and therfore
<w,*(Γ#) > 0. It follows that n = 1. By Theorem 2, every λ oetf(T),
I λ01 = 1, has index 1 and hence P(λ0, T) = limx_^o (λ — λo)J?(λ, Γ) exists
and is a projection onto the finite dimensional space {x | (Xj — T)x ~ 0}.
Let λx = 1, λ2 , λm be an enumeration of the points in σ(T) with
absolute value 1 and let P3 = P(Xjf T). Since f commutes with R(X, T)
and Pj = limλ_λ j(λ — X3)R(Xf T), it follows that f commutes with P3.
For iΦj we have λ P P, = TP.P, - PiTPj = XjPiPj, hence P^ = 0.
Define the bounded linear operator S by the equation f = Σ?=i λ;P? + &
Since TP3= P3T = X3P3, P] = P3 and P^Py = 0 if iΦj, it follows
that P,S = SP3 = 0. This implies Γw = Σ ^ i ^ P , - + S\ Suppose r^ ^
1. T is quasi-compact, hence Γw = U + V for some n where U is
compact and rv < 1. The operator J7' defined by ϊΓα = C7α? - Σi7=i^]Pj%
is compact6 and Sw = Z7' + F. Therefore S is quasi-compact. Let
λ G σ(S), I λ I = rs ^ 1. Then Sic = Xx for some & e B, a; ^ 0. Since
P3S = SPy = 0, it follows that Γcc = Xx and therefore for some j , X = λ̂
and PjίE = a?. This implies Sx = SPy^ — 0, a contradiction. Therefore
r^ < 1 and the proof is complete.

Before stating our next result, we state the following lemma

which is easily proved.

LEMMA 1. If E is a finite dimensional real Banach space, K
is a cone in E and K is fundamental, then K contains an open set.

THEOREM 5. If T is strictly quasi-positive and quasi-compact
with spectral radius 1, the eigenspace for T corresponding to the
eigenvalue 1 is one-dimensional.

Proof. By Theorem 4 we have T = Σ?=i λ Λ + S where P3 is a
projection onto the eigenspace corresponding to X3, \ = 1, | λ, | = 1,
P3S = SP3 = 0, i = 1, 2, , m and P 4 P y = 0 if ΐ ^ j . By a theorem
of Kronecker, there exists a sequence n19 n2 of positive integers
such that lim^ooX?* = 1, j = 1, 2, , m.7 Since r^ < 1, it follows
that lim^oollS*!! = 0. This implies l i m ^ fΛ* = Σ?=iPy. Let P =
Σ?=i Pi For x e B we have Px = l i m ^ T w ^ , hence PB S B. For
α? ̂  0 and a;* ^ 0, x*(Px) = lim^oo ^ * ( Γ W ^ ) ^ 0, hence P is a positive
operator. Consider the finite dimensional real Banach space PB with
closed proper cone PK. Since K is fundamental in B, it is clear that
PK is fundamental in PB. Therefore, by Lemma 1, PK contains an
open set (open relative to PB). Since T is strictly quasi-positive, every

6 The compact operators from an ideal in the algebra of bounded linear operators
and any bounded operator with a finite dimensional range is compact.

7 See, for example, Hardy & Wright, The Theory of Numbers, Oxford Univ. Press.
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non-trivial fixed vector of T in K is strictly positive. By Theorem 3,
there exists u > 0 such that Tu = u. Let Tx = x, x Φ 0. We wish
to show u and x are linearly dependent and for this purpose we may
assume x£K (otherwise replace x by — x). It is clear that uePK
and x e PB. Let t0 — sup {t \ u + tx e PK}. Since u is in the interior
of PK and x g Pif, it is easy to see that 0 < ί0 < co and that u + £0#
is on the boundary of PK. Hence, by Theorem 1, there exists x* e (PK)+

such that x*(u + tox) = 0. We extend x* to y* e I?* by defining y*(y) =
x*(Py). Since PK g if, it follows that j / * e if+. We have P(u+ίox) =
w + ίoα5, hence #*(w + toa;) = x*(u0 + tox) = 0. Now u + £0^ is a fixed
vector of T which is not strictly positive, hence u + tox = 0, which
completes the proof.

Our next result is a characterization of strongly quasi-positive
operators.

THEOREM 6. If T is quasi-compact with spectral radius 1, then
T is strongly quasi-positive if and only if the following conditions
are satisfied:

( 1 ) leσ(T) and 1 is the only point in σ(T) with absolute value
one,

( 2 ) the eigenspace for T corresponding to the eigenvalue 1 is
one-demensional and is spanned by a strictly positive element u,

( 3 ) there exists a strictly positive element u* such that T*u* —

Proof. In Theorems 3, 4, 5 we have seen that if T is strictly
quasi-positive (in particular, if it is strongly quasi-positive), then
leσ(T) and (2) and (3) hold. There remains to show 1 is the only
point in o{T) with absolute value one. We define the operator P —
Σ ? = I - P Ϊ

 a s ίn Theorem 5 and recall that PB is a finite dimensional
real Banach space with closed proper cone PK containing interior ele-
ments. Let λ = eiθ be a point in σ(T) and let f(x + iy) = eίθ(x + iy)
for some x, y in B, not both zero. It is easy to see that Px = x and
Py = y, hence x e PB and y e PB. At least one of the four elements
x + y, x — y, y — x, —x — y must be not in PK since otherwise
x + y = 0, x — y = 0, hence x = y = 0. Therefore α$ + fo/ g PK for
some choice of a = ± 1 and & = ± 1 . Now choose £ > 0 such that
u + £(α# + by) = v is on the boundary of PK. By Theorem 1, there
exists x* e (PiQ+, %* Φ 0, such that x*(v) = 0. We extend x* to
2/* G if+ : y*(y) = x*(Py). Now choose a sequence of positive integers
nl9n2, ••• such that lim^*, eίΛ*β = 1. It follows that limib_oo T

n*i; = v.
Since rτ = 1, we have || T% || ^ 1 for all n and hence if v > 0,

liminf y*(Tnv) ^ liminf τ/*(T^)/|| T % | | > 0 .
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This is impossible since lim^y*^71^) = y*(v) = 0. Therefore v = 0r

i.e., ax + bj = — (l/t)u. Since f(x + iy) = eίθ(# + iy), it follows that
tt*(ac) + iu*(y) = eίθ(u*(x) + iu*{y)). This implies either e*'β = 1 or
u*(x) = u*(y) = 0. The second alternative is incompatible with
ax + by = — (l/ί)% since w*(w) > 0. Therefore e<β = 1 and the necessity
of (1), (2), (3) is proved.

Now let T satisfy conditions (1), (2), (3). We assume without
loss of generality that u* is normalized so that u*(u) = 1. Define the
bounded linear operator S by Tx — u*(x)u + Sx. As in Theorem 4, it
can be shown that rs < 1. We have Su = Tu — u*(u)u = w — u — 0
and it follows that Γnα = u*(x)u + SΛα;. Since r^ < 1, || Sn \\ ̂  M for
all w and hence || Tn \\ ̂  || u* \\ \\u\\ + || Sn \\ ̂  M' for all n. Moreover,,
Snx —>0 as n —> co for all α?. Hence if x > 0 and #* > 0,

liminf &*(T αO/|| Γ*ll ^ Km inf (u*(x)x*(u) + x*(S

^ u*(a;)ί»*(%)/M/ > 0 .

Therefore T is strongly quasi-positive and the theorem is proved.

THEOREM 7. Assume that B is a lattice8 with respect to the
ordering given by K. Then Theorem 6 is true if "strongly quasi-
positive" is replaced by "strictly quasi-positive."

Proof. Conditions (1), (2) and (3) in Theorem 6 imply T is strongly
quasi-positive, hence, a fortiori, T is strictly quasi-positive. Now
suppose T is strictly quasi-positive. Then leσ(T) and (2), (3) hold.
It is easy to see from the representation of Theorem 4, T = ΣΓ=i ^JPJ +
S, that || Tn\\ is bounded independently of n. Hence, by a theorem
of Krein-Rutman ([11], Theorem 8.1 and corollary), every λ e σ ( T ) ,
I λ I = 1, is a root of unity. It is easily verified that every power of
T is quasi-compact and strictly quasi-positive, hence the eigenspace for
Tn corresponding to the eigenvalue 1 is one-dimensional for all n. If
fx = Xx, I λ I = 1, \n = 1, then Tnx = Xnx = x and it follows that
λ = 1 which completes the proof.

An immediate consequence is the following corollary.

COROLLARY. If B is a lattice, every strictly quasi-positive and
quasi-compact operator is strongly quasi-positive.

The conclusion of this corollary is not true in general as we will
illustrate by an example. Let B be three-dimensional (real) Euclidean

8 I.e., each pair of elements in B has a greatest lower bound and a least upper
bound.
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space, B = {(xlf x2, α3)}, and let K = {(xl9 x2, x3) \ x\ + x\ ^ x\, x3 ^ 0}. If

we interpret "to the right" to mean any direction in which the %
coordinate is increasing, each non-trivial element x* e K+ is represented
by a plane through the origin whose unit normal at the origin directed
to the right lies in K. Let T be a rotation about the x3 axis through
θ radians where θ and 2π are incommensurable. It is clear that
|| Tn\\ = 1 for all n and that TK ^ K. To show that T is strictly
quasi-positive it suffices to consider x* e K+ which is represented by a
plane tangent to K. If p is in the interior of K, Tnp is in the interior
for all n, hence x*(Tnp) > 0. Now let p be on the boundary of K.
There exists exactly one point q which has the same xs coordinate as
p and such that x*(q) = 0. Since 0 and 2π are incommensurable, there
is at most one value of n such that Tnp = qΛ Therefore, x*{Tmp) > 0
for all m sufficiently large and, hence, T is strictly quasi-positive. If
p is on the boundary of K, so is Tnp for all n. We can pick a sequence
nly n2, such that Tn 'cp converges to a point q on the boundary of
K and there exists x* e i£+ such that x*(q) = 0, x* Φ 0. This shows
T is not strongly quasi-positive.
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ON THE STRUCTURE OF INFRAPOLYNOMIALS
WITH PRESCRIBED COEFFICIENTS

0. SHISHA

Introduction* The main result of this paper is Theorem 5 which
deals with the structure of infrapolynomials with prescribed coefficients.
This theorem was quoted (without proof) in a previous paper [Shisha
and Walsh, 1961]1, and was used there to prove a few results concerning
the geometrical location of the zeros of some infrapolynomials with
prescribed coefficients [loc. cit., Theorems 11, 12, 16, 17]. Two similar
results are given here in Theorem 6.

We refer the reader to the Introduction of the last mentioned
paper for a review of the development of the concept of inf rapolynomial.
Here we shall just mention two of the underlying definitions.

A. Let n and q be natural numbers (q < ri), n19 n2, , nq integers
such that 0 < nλ < n2 < nq < n, and S a set in the complex plane2.
An nth. inf rapolynomial on S with respect to (n19 n2, , nq) is a
polynomial A(z) =. Σ? = o avz

v such that no B(z) = Σv=o M v exists, satisfy-
ing the following properties.

(1) B(z)*A(z),
( 2 ) 6Wv = αnv (y = 1, 2, , q),
( 3 ) I B(z) I < I A(z) I whenever z e S and A(z) Φ 0, and
(4) B(z) = 0 whenever zeS and A(z) = 0.

B. Let n be a natural number. A simple n-sequence is a sequ-
ence having one of the forms

(0,1, , fe, n - I, n - I + 1, , n) [k > 0, I > 0, k + I + 2 < n] ,
(0,1, , k) [0 < k < ri\, (n - I, n - I + 1, , n) [0 < I < n] .

Theorem 5 may yield information on the location of the zeros of
an nth infrapolynomial A(z) on a set S with respect to a simple n-
sequence σ. For it allows (under quite general conditions) to set
A(z) = B(z) D(z) where D(z) is a polynomial all of whose zeros lie in S,
whereas B(z) is a divisor of a polynomial Q(z) whose structure is given
by the theorem. By studying the location of the zeros of Q(z), one
may get information on the location of the zeros of A(z). By this
method, Theorems 11, 12, 16, 17 [loc. cit.] were proved. (Compare

Received September 12, 1963. This research was supported (in part) by the U.S
Air Force through the Air Force Office of Scientific Research.

1 Dates in square brackets refer to the bibliography.
2 We deal throughout this paper with the open plane of complex numbers.
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also the proof of Theorem 6 below.)
Theorem 5 is a generalization of Fekete's structure theorem [1951],

and we use his method of proof [cf. also Fekete 1955]. The concept
of a " juxtafunction" (Definition 1) is a generalization of Fekete's
"nearest polynomial" [1955], later termed "juxtapolynomial" [Walsh
and Motzkin 1957]. Theorems 1-4 and Lemmas 1-4 are contained in
the author's Ph. D. thesis [1958] they are needed for the proof of
Theorem 5, and they generalize previous results of Fekete [1951, 1955].
The principal results of the present paper were published by the author
(without proof) in abstracts (1958a, 1959, 1961],

1Φ DEFINITION 1. Let S be a set in the complex plane and let
Π be a set of complex functions defined on% S such that whenever fλ e Π,

f2e Π and c19 c2 are complex numbers, then4 c1f1 + c2f2e Π. Let f be
a complex function defined on S. A juxtafunction to f on S with
respect to Π is an element p of Π having the property: there does
not exist a q e Π satisfying
(a) q(z) Φ f(z) for at least one ze S,
(b) |/(s) - q(z) I < |/(s) - p(z) I whenver ^ e S a n d p(z) Φ f(z),
(c) q(z) = f(z) whenever z e S a n d p(z) = f ( z ) .

EXAMPLES A. Let S(Φ0) be5 a closed and bounded set in the com-
plex plane. Let /, ply p21 , pnf μ be complex functions with domain
S which are continuous on S, and assume, furthermore, that μ(z) Φ 0
throughout S. For every complex function ψ with domain S which
is continuous on S, let || ψ \\ = max [| μ{z)ψ(z) \, z on S]. It is known
that there exist complex numbers λf, λ2*, ••• , λ* such that for every
complex λ2 λ2, , λΛ,

Consider the linear space // of all linear combinations (with complex
coefficients) of plf p2, , pn. Then p = Σ?=i^?Pv is a juxtafunction
to / on S with respect to Π. Indeed, suppose that some q = Σ?=iλ'?>v
satisfies (a), (b) and (c) of Definition 1. Let ζ be a point of S such
that

Then by (a) q(ζ) Φ f(Q9 and therefore, by (c), p(Q Φ f(ζ). From (b)

we get | | / - ΣlUλv'Λ II = 11/ - q \\ - I MO(/(O - ?(O) I < I MC)(/(O

i.e. their domains include S.
The domain of ci/i + C2/2 is the intersection of those of /1 and f2.
0 denotes the empty set.
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- V(O) I < 11/ - Q II = 11/ - Σ^Λ?/v II, contradicting (1).

B. Let /, plf p2, , pn be real functions with domain S — [0,1],
continuous there, and assume furthermore that plf p2, , pn are or-
thonormal on [0,1]. Let 77 be again the set of all linear combinations

(with complex coefficients) of pl9 p2, pn. Let λ* = I f(x)pv(x)dx
Jo

(v — 1, 2, , n). Then p = Σv-iλ?Pv is a juxtafunction t o / on S with
respect to 77. Indeed, if p = /, then the last assertion follows from
Lemma 1 below. We thus assume that p(x0) Φ f(x0) for some x0 e [0,1].
Suppose there exists a q = Σ?=iλvί>v satisfying (a), (b) and (c) of
Definition 1. Then \f(x) - q(x) \ < \f(x) - p(x) | throughout [0, 1], and
\f(x0) - q(x0) I < \f(x0) - p(x0) \. Thus

[\f(%) - Σ Re(Xv)py(x)ldx < [\f(x) - Σ X?py(x)ldx ,
JoL v=i J JoL v=i J

contradicting the least squares property of the Fourier coefficients λ*.

LEMMA 1. Let S and Π be as in Definition 1 and let f be an
element of Π with domain S. Then f is the unique function with
domain S which is a juxtafunction to f on S with respect to Π.

Proof, f is such a juxtafunction, since (a) and (c) of Definition
1 are mutually contradictory when p is / . If p (with domain S)

belongs to 77 and p Φ f, then q = — (p + f) belongs to 77 and satis-

fies (a), (b) and (c), so that p is not a juxtafunction to / on S with
respect to 77.

THEOREM 1.

Hypotheses.

1. S(Φ0) is a closed and bounded set in the complex plane, /, p19

P2, J Pn are complex functions defined and continuous on6 S.

2. II is the set of all complex functions defined on S which can
be represented throughout S as linear combinations (with complex
coefficients) of the p[s.

3. p is a juxtafunction to f on S with respect to 77, and p(z)
Φ f(z) throughout S.

6 As the domain of / may properly include S, its continuity on £ means that if

S, and if (aj)J=:1 is a sequence of points of S converging to a, them lim/(θ;) = f(a).

Similarly for pίt p2, , pn and in Lemma 2.
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Conclusion. There exist distinct points zlf z2, , zm of S (1 < m
< 2n + 1) and positive λx, λ2, , λm such t h a t :

(I). p(z) is a juxtafunction to / on s = {zlf z29 ••• , zm} with re-
spect to /7,

(II). iVo complex 6X, δ2, , bn exist such that \f(z) — Σΐ=ibvpv(z) I <
\f(z) - p(z) I throughout s,

(III). Σ?=iλμPv(^)/{/(«μ) - V(z»)} = 0, v - 1, 2, . . . , n.

REMARK 1. Observe that (I) is implied by (II).

For the proof of Theorem 1 we shall need two lemmas.

LEMMA 2. Let S(Φ<Z) be a closed and bounded set in the complex
plane, and Π a set of complex functions, defined and continuous on
S such that whenever fλe Π, f2e Π, and cλ and c2 are complex num-
bers, then cγfΎ + c 2/ 2e 77. Let f be a complex function defined and
continuous on S, and let p be an element of Π such that p(z) Φ f(z)
throughout S. A necessary and sufficient condition for the existence
of a qe Π satisfying throughout S

( 2 ) \f(z)-Q(z)\<\f(z)~p(z)\

is the existence of an reΠ, satisfying throughout S

( 3) \f(z) - p(z) - r(z) I < \f(z) - p(z) + r(z) | .

Proof of Lemma 2.

Necessity. Let r = q — p. Then throughout S

|/( 2 ) - P(Z) - r(z) I < |/(z) - p(z) I < |/(2) - p(z) I {2 - \f(z) - q(z) \ x

\f{z) - p(z) n < I 2{f(z) - p(z)} - {/(«) - q(z)} \ = \f(z) - p{z) + r(z) \ .

Sufficiency. We use the fact that if a, b are arbitrary complex
numbers, the inequalities |α — 6 | < | α + 6 |, Re(ba) > 0, are equivalent.
Since throughout S

Re[r(z)/{f(z) - p(z)}] = \f(z) - p(z) |-2 Re[r{z){f(z) - p(z)}] > 0 ,

we have there a \ r(z)/{f(z) - p(z)} | 2 < 2Re[r(z)/{f(z) - p(z)}]
where a = min [| {f(z) - p(z)}/r(z) | >Re(r(z)/{f(z) - p(z)}), z on S].
Let q = p + ar. Then throughout S,

\f(z) - q(z) I = \f(z) -p(z)\\l- ar(z){f(z) - p(z)}-' | = \f(z) - p(z) \ x

[1 + « Ί r(z)/(f(z) - p(z)) | 2 - 2aRe{r(z)(f(z) - p{z))-'}]w < \f(z) - p(z) | .
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LEMMA 3. Let the Hypotheses 1, 2 of Theorem 1 hold, and let p
be an element of Π such that p(z) Φ f(z) throughout S. For every
zeS, let F(z) denote the point (xx{z), yx{z), x2{z), y2{z), , xn(z), yn{z))
of the {real) Euclidean 2n-space E2n9 where xv(z) is the real part and
yv(z) the imaginary part of pv{z) \f(z) — p(z)}. A necessary and suf-
ficient condition for the existence of a qe Π satisfying (2) through-
out S, is that the point Ω2n = (0, 0, 0) of E2n does not belong to
the convex hull H of7 F(s).

Proof of Lemma 3.

Necessity. By Lemma 2 there exists an r e Π such that (3), Le-
the inequality

(3a) Re[r(z){f(z) - p(z)}] > 0

holds throughout S. Let s19t19 s2, ί2, , 8n9 tn be reals such that
throughout S, r(z) = Σv=i(sv — itv)pv(z)m Then throughout S we have

( 4 ) i > A ( z ) + t,yv{z) > 0

and thus F(s) is a subset of the half-space

( 5 ) Sx&x + tλx2 + + snx2n^ + tnx2n > 0 .

Therefore H is also a subset of this half-space, and consequently Ω2n £ H»

Sufficiency. Since H is compact and Ω2n 0 H, we can find a half-
space (5) containing F(S). Thus (4) holds for every ze S. Setting
r = ΣJ=i(sv — itv)Pvf we have throughout S, (3a), and therefore (3).
Thus, by Lemma 2, there exists a qe Π satisfying (2) throughout S.

Proof of Theorem 1. / cannot belong to 77, for otherwise, by
Lemma 1, the restrictions of / and of p to S would coincide, con-
tradicting Hypothesis 3. By Definition 1, there does not exist a qe Π
satisfying (2) throughout S. Using notations of the last lemma, it
follows that Ω2n eH. By a well known theorem of Caratheodory there
exist in F(S) distinct points Au A2, , Am (m < 2n + 1) and there-
exist positive A19 Λ2, , Λm such that

( 6 ) β ! n

Let

F(s) is, as usual, the set of all F(z), zeS.
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<7) Aμ = F(zμ), zμeS (μ = 1,2,- ,m).

Then the zμ are distinct, and from (6) we get by taking components,

•( 8) Σ Λμv,{zμ){f{zμ) - p(zμ)} = 0 (v = 1, 2, , n) .
μ = l

Thus

m
v ΛZΦMA*) - P(«μ)} = 0 (υ = 1, 2, , w)
μ = l

where λμ = J μ |/(sμ) — p(Zμ) | 2 > 0 (μ = 1, 2, , m). Let s = fo, 22,
• * > m̂}> and let π be the set of all functions defined on s which can
be represented throughout s as linear combinations (with complex coef-
ficients) of the pv. Obviously peπ, since peΠ. From (6) and (7)
it follows that Ω2n belongs to the convex hull of F(s) and therefore,
by Lemma 3 (taking there s in place of S and π in place of 77) there
does not exist a q e π satisfying (2) throughout s. This concludes the
proof.

REMARK 2. Suppose that one of the pv in Theorem 1 equals
throughout S a constant c(Φθ). Then from (8) we obtain Σ?=i^μ{/fe)
— p(zμ)} = 0 c Thus 0 belongs to the convex hull of the image of s
(and a fortiori of S) under / — p. [Compare Motzkin and Walsh 1953,
§2, and Fekete 1955, §18].

REMARK 3. Let sf = {zu z29 , zM} be a finite set in the complex
plane and suppose that /, pί9 p2, , pn are complex functions defined on
s'. Let π' be the set of all complex functions representable through-
out sf as a linear combination with complex coefficients of plf p2, ••• ,
pn. Let p be an element of πr such that p(z) Φ f(z) throughout s',
and suppose there exist nonnegative reals X\, , λ'* (not all zero)
such that

Σ KPVMHA**) ~ P(^)} = 0 (v - 1, 2, . . . , n) .
fi=l

Then there does not exist a q e πf such that (2) holds throughout s'.
Indeed, we have

,) - p(zμ)} = 0 {v = 1, 2, . , n)

where Λ'μ are nonnegative reals, not all zero. Therefore (using nota-
tions of Lemma 3) Ω2n belongs to the convex hull of F(s'). By Lemma
3, there does not exist a qeπ' satisfying (2) throughout s'. Conse-
quently, p is a juxtafunction to / on s' with respect to ττ\
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THEOREM 2. Let the hypotheses of Theorem 1 hold and suppose
furthermore that f — p, p19 p2, pn are real valued throughout S.
Then the inequality 1 < m < 2n + 1 in the conclusion of Theorem 1
can be replaced by 1 < m < n + 1.

Theorem 2 is proved with the aid of the following lemma, in the
same way that Theorem 1 was proved with the aid of Lemma 3.

LEMMA 4. Let the hypotheses 1, 2 of Theorem 1 hold, let p be
an element of Π such that f(z) Φ p(z) throughout S, and suppose that
f — P, Pi, P2, , Vn ave real throughout S. For every ze S, let Fx(z)
denote the point (pL)(z){f(z) - p{z)}, P2(z){f(z) - p{z)}, , pn(z){f(z) -
p{z)}) of the (real) Euclidean n-space En. A necessary and sufficient
condition for the existence of a q e Π satisfying (2) throughout S, is
that the point Ωn = (0, 0, , 0) of En does not belong to the convex
hull of F1(S).

The proof of the last lemma is analogous to that of Lemma 3.

We shall make frequent use of the concept of unisolvence. We
mention therefore the following

DEFINITION 2. Let S be a set in the complex plane, and (pv(z))"=1

a finite sequence of complex functions defined on S. The sequence
will be called unisolvent on S if and only if for every complex
Ci> 02, , cn (n°t aM zero) the set of all z e S for which Σ?=APvOs) = 0,
contains less than n points.

REMARK 4. Thus (pv(z))Z=-i is unisolvent on S if and only if this
sequence is linearly independent on every w-point subset of S. A
simple example is the sequence (z"-1)^, which is unisolvent on every
subset of the complex plane. A unisolvent sequence has been termed
also (for an important particular case) a "Tchebycheff system". Other
terms used in this connection are " Haar system" and " interpolational
system ".

THEOREM 3. Let the hypotheses of Theorem 1 hold and suppose
that each of the sequences (pv(z))l=1(j = 1, 2, , n) is unisolvent on
S. Then the inequalities

( 9 ) l<m<2n + 1

in Theorem 1, can be replaced by the sharper estimate n + 1 < m <
2n + 1. Furthermore, if the additional hypothesis of Theorem 2 is
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made too, (9) can be replaced by m = n + 1.

Proof. Choose distinct points zu z2, , zm of S and positive Xlr

λ2, , λm such that (I), (II) and (III) of Theorem 1 hold, where 1 <
m < 2n + 1 and where, furthermore, 1 < m < n + 1 in case the addi-
tional hypothesis of Theorem 2 holds. We shall prove that n + 1 < m.
Indeed: suppose m < n. Then since (pv0s))vU is unisolvent on S, the
determinant whose jih row is Pifo ) p2(^i) Pmfe) is different from
zero. Therefore there exist constants c19 , cm such that f(z) =
Σv=î vPv(^) throughout s. Let π have the same meaning as in the
proof of Theorem 1 then feπ. By Theorem 1, (II), p is a juxtafunc-
tion to / on s with respect to π. By Lemma 1 (with S replaced by
s, Π by 7Γ, and / by the restriction of our / to s) we have f(z) = p(z}
throughout s, contradicting hypothesis 3 of Theorem 1.

2* We apply now Theorems 1, 2 and 3 to wth infrapolynormals
(cf. the Introduction).

THEOREM 4. Let n and q be natural numbers (q < n), nlf n2,
• , nq integers such that 0 < nλ < n2 < nq <n, and S a closed
and bounded set in the complex plane. Let A(z) (=£0 throughout S)
be an nth infrapolynomial on S with respect to (n19 ••• ,nq). Then8"
there exist distinct points z19 z2, *",zm of S,

(10) 1 < m < 2(n - q) + 3

and positive Xlf λ2, , λm such that A(z) is an nth infrapolynomial
on s — {zx, z2, , zm} with respect to (nlf n2, , nq) and such that

(11) Σ ^lHlA(Zy) = 0 (v - 1, 2, , n + 1 - q}
l

where llf l2, , ln+1-q (k < l2 < ln+ι-g) are the elements of {0,1,
• * , Ά — {nu n2, , nq}. If the polynomials A(z), zh, , zln+1~g are-
real valued throughout S, then (10) can be replaced by 1 < m < n +
2 — q. If each of the sequences (z1*)3^ (j = 1, 2, , n + 1 — q) i»
unisolvent on S, then (10) can be replaced by

(12) n-q + 2<m<2(n-q) + 3.

If the polynomials A(z), zh, , zln+1~q are real valued throughout
S and each of the sequences {zh){=ι (j = 1, 2, , n + 1 — q) is un-
isolvent on S, then (10) can be replaced by m — n — q + 2.

REMARK 5. If (nl9 n2y , nq) of Theorem 4 is a simple w-sequ-

8 As is easily seen, S cannot be empty. [Cf. Shisha and Walsh, 1961, footnote 7
on p. 117].
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(cf. the Introduction) and if, in case nλ = 0, 0 g S, then as is
easily seen, the sequences {zh)i=x (j = 1, 2, , n + 1 — q) are unisol-
vent on S.

Proof of Theorem 4. Let Π be the set of all complex functions
defined on S which are expressible throughout S as linear combinations
of zι ι*+1~9

with complex coefficients, and let f(z) =
p(z) = — ^Σvil~9alvz

h. It is easily seen that p(z) is a juxtafunction to /
on S with respect to Π. Therefore, by Theorem 1 there exist distinct
points zlf , zm (m < 2(n + 1 — q) + 1 = 2(n — q) + 3) of S and positive
λi, λ2, , λm such that (11) holds, and such that no complex

b2 bn+1_q exist satisfying

V A(z)

throughout s = {zl9 z2y

with respect to (n19 n2,
Theorems 2 and 3.

, zm}. Thus A(z) is an %th infrapolymial on s
The rest of Theorem 4 follows from

REMARK 6. Let n, nί9 n2,

• < nq < n), A(z) Ξ Σ ί = o ^ v

the complex plane, and λj, λ',
such that A(Zμ) φ 0 (/i = 1, 2,
— 0 (v = 1, 2, , n + 1 — q),

,nq be integers (g < n, 0 < n1< n2

a polynomial, ^, ^2, , zM points of
, λ^ (Σ?=Λμ > 0) nonnegative reals

, M), and such that Σ ί = Λ v M W
where the lv have the same meaning

as in Theorem 4. Then A(z) is an nth. infrapolynomial on s' = {zl9 z2f

• , zM} with respect to (nl9 n29 , nq). Indeed : let / and p be as in
the last proof, and let πf be the set of all complex functions repre-
sentable throughout sf as a linear combination (with complex coefficients)
of zι\ z n+1-q The asserted conclusion follows from Remark 3.

We give now the following structure theorem which is the main
result of this paper.

THEOREM 5. Let n and q (1 < q < n) be integers, and σ a simple
•n-sequence of q elements. Let S be a closed and bounded set in the
complex plane, and in case Oeσ, assume that O ί S . Let A(z) (^0)
be an nth infrapolynomial on S with respect to o, and let B{z) (=£0
throughout S) be a divisor of A(z). Assume also that the degree9 r
of B(z) is > q. Then B(z) is a divisor of some

•(13) Q(z) == P(z)g(z)

9 By degree of a polynomial (Ξ£0) we mean its exact degree. The polynomial 0 is

.assigned the degree-1.
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Here M is an integer satisfying r < M < 2 r — g + 1, the 2V are dis-
tinct points of S, g(z) = Tlf!=ί+\z — Zμ), the λμ are positive reals with
Σί^Ίff+%* = 1, P(z) is a polynomial of degree < q — 1 such that
P(z)g(z) + zκ+M~q+1 is of degree < M, and K is min [y,vίσ,v = 0,l,2, ].

REMARK 7. As will be seen from the proof of Theorem 5, if S
and the coefficients of B(z) are real, the inequality r<M<2r — q + 1
of the theorem can be replaced by the equality M = r.

In the proof of Theorem 5 use will be made of the following

LEMMA 5. Let n, q, σ and K be as in the last theorem, let S be
a set in the complex plane, and let A(z) (^0) be an nth. infrapoly-
nomial on S with respect to σ. Let B(z) be a polynomial of degree
r(>q) dividing A(z). Then B(z) is an rth infrapolynomial on S
with respect to σ0, where σ0 is that simple r-sequence of q elements
for which K = min [v, v £ σQ, v = 0, 1, 2, •].

The proof of Lemma 5 is straightforward and may be omitted.

Proof of Theorem 5. By Lemma 5, B(z) in an rth infrapolynomial
on S with respect to the sequence σ0 defined there. We choose (cf
Theorem 4 and Remark 5) distinct points zlf z2, , zm of S and posi-
tive λi, λ2, , λm such that Σ?=i V ~ 1 a n d

m

for every integer p satisfying 0 < p < r, p£σ0. Here m is an integer
satisfying r — q + 2 < 2(r — q)+ 3, and in case S and the coefficients
of B(z) are real we may take m = r — q + 2. Set

(15) g(z) = Π (z - zμ), N(z) = ± \μz^^g(z)/{B(z,)(z - zμ)} .

If μ and v are integers, 1 < μ < m, 0 < v < r — q + K, then

)( μ)}] Σ

(the equality is obvious if 2μ = 0, and otherwise it is obtained by
Leibnitz's rule for differentiating a product). Therefore, from (15)
we get

(16) ΛP>(0) = - ± 0) i ! ur^(O) Σ x^+

(υ = 0, 1, , r - q + iΓ) .
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Since {0,1, , r} - {σ0} = {r-q + K-jftzl, therefore (16) and (14) yield
NM(0) = 0, v = 0,1, , r - q. Hence we can write N(z) = zr-q+1M1(z}
where Mλ(z) is a polynomial (of degree < m — 2). Let

M2(z) = Σ \^g(z)/{B(z,)(z - zμ)} .
μ = l

By (14),

) = 0

and therefore the degree of Λf2(«) is < m — 2. For every 2y different
from zero we have by (15), Mλ{z3) = zj'+^Nizj) = \^gr{z3)IB{z3) =
M2(zd). Since there are at least m — 1 such £ i5 we have Afi(z) Ξ=.

. Consider now the polynomial

For i = 1, 2, , m we have i2(^, ) = B(z3)M2{z3) - \3-zJg'(z3) = 0. There-
fore we can write R(z) = g{z)U{z), where U(z) is some polynomial..
Also, the relation N(z) = 2;r~g+1M2(^) and the definition of R{z) imply
that the degree of the latter is < m + q — 2. Therefore the degree
of Ϊ7(z) is at most q — 2. If if > 1, then the relation

B(z)Λf,(z) = ff(2)tf(z) + Σ λμ<ff(2)/(^ - z,)
μ=l

yields, upon putting s£ = [2 + ( μ̂ — 2)]^ and developing the last right
member,

B(z)M2(z) = g(z)[U(z) + Aκ^(z)] + zκ £ Xtf(z)/(z - zμ) ,

where Aκ^(z) is a polynomial of degree K — 1. The last relation (with.
A^-iίs) Ξ 0) holds also when if = 0. We set now P(z) = U(z) + Aκ^(z)P

and get that B(z) is a divisor of

Q(z) = P(«)ff(2) + s* Σ ^ ^ ) / ( « - ^ ) .
μ = l

The degree of Q(z), i. e. of B(z)M2(z), is < m + g - 2. Thus the degree
of P(z) is < « - 1, and that of P(z)g(z) + zκ+m-τ is < m + q - 2. We
set now Λf = m + q — 2, and observe that the conclusions of the
theorem are all satisfied.

REMARK 8. The polynomial Q(z) of (13) is an Mth inf rapolynomial
on {zu z2, , zM-g+2\ with respect to σlf where σλ is that simple
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ilf-sequence of q elements for which min [v, v 0 σl9 v — 0,1, 2, •] = K.
This follows from Theorem 1 of Shisha and Walsh [1961].

THEOREM 6. Let S be a closed and bounded set in the complex
plane, A(z) = Σ l = o ^ ^ (n > 1, an Φ 0) an wth infrapolynomial on S
with respect to (n — 1), and suppose that A(z) Φ 0 throughout S. Then:

(a) Every zero ζ of A(z) is of the form

<17) c(ζ) - Mζ)[an-Jan]

where c(ζ) belongs to the convex hull of S and where 0 < λ (ζ) < I.1 0

(b) Suppose that S lies in a closed disc C: \z — α | < r (>0).
Then all zeros of A(z) belong to C U Cl9 where Cx is the closed disc
] z — [a — (αn-i/αΛ)] | < r. If C and d are disjoint then A(z) has at
least n ~— 1 zeros belonging to C. [Multiplicities are always being
counted].

Proof. We choose distinct points zl9 z2, , zm of S and positive
λx, λ2, , λw (m < 2n + 1) such that Σμ=iλμ = 1 and Σ^iλ^/AOSμ) = 0
for all integers p with 0 < p < n, p Φ n - 1. Then 1 = S?=iV^fe)/

SO

We set
α"!^™"1 + . We follow the proof of Theorem 5 from the sentence
following (15). Again we have iV(v)(0) = 0 for every v satisfying 0 <
v < n — 2. Thus we may set N(z) = f W ^ ) , where Mx{z) = a~L1z

m~n +
is some polynomial. Let M2(z) = Σμ=1Xμjg(z)/{A(zμ)(z — zμ)}. If n = 1,

then Λfa(s) Ξ iV(̂ ) = Mλ{z). It n>l then for each z5 different from
zero, M±{z3) = X^g\zj)/A(Zj) — M2(z3), and since there are at least m — 1
.such a;,- and Mx(z) and ilfa(^) are of degrees < m — 2, we have again
ikf2(2) = Mλ(z). Consider now the polynomial R(z) = A(z)M2(z) —
Σ?«iλμί7(2)/(2 ~ z») = W U f + . . . For i = 1, 2, , m, R(zs) = 0,
and therefore R(z) = (ajan^g(z). Thus, A(z) is a divisor of Q(«) Ξ
(ajan^)g(z) + ΣiZ^μΰWK* ~ ^ ) L ^ t ζ be a zero of A(s). Then
ff(ζ) ^ 0, and thus ajan^ + Σ?=Λμ/(ζ - ^ ) - 0. Since Σ?=Λμ/(ζ - ^ )
•can be written [Shisha and Walsh 1961, Lemma on p. 127] as λ(ζ)/
(ζ — c(Q) where c(ζ) and λ(ζ) are as required in (a) of our theorem,
ζ is of the form (17). Suppose now that S lies in a closed disc C: \z — a\
< r (>0) . Then by a theorem due to J. L. Walsh [cf. 1922, Theorem
VI; see also Shisha and Walsh 1961, p. 147] all zeros of Q(z) lie in

10 Thus ζ belongs to the set swept by the convex hull of S while being displaced,
the displacement being given by the vector —On-ildn
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and if C and d are disjoint, the number of zeros of Q(z) in
them is, respectively, m —- 1 and 1. From this follow the conclusions
of part (b) of our theorem.
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ON COMPARABLE MEANS

0. SHISHA AND G. T. CARGO

1. Let -co < α < 6 < c o , and let Φ denote the set of all functions,
continuous and strictly monotone in [α, 6]. For every φ eΦ, every
positive integer n, every xl9x29 '9xn of [α, 6], and every positive
Qiy Q2, , Qn with Σ?=i #v = 1, we consider the mean

Mφ(x19 x2, , xn\ q19 q2, , qn) = φ-\Σil=i qM®*)) .

Let ψ and χ be elements of Φ. We write

if and only if the inequality Mψ(xi9 x2, , x J ?i, g2, , qn) ^
M^Xi, x29 -. , αΛ i g1? g2, , g j holds for every w ^ 1, every xx, x2,
xn of [α, 6], and every positive q19 q29 , gΛ with Σ?=i9v — l

A well-known necessary and sufficient condition for (1) to hold is
that χiψ-^x)) be convex in [ψ(a), ψ(b)] (or [ψ(b), ψ(a)]) if χ is increas-
ing, and that Xiψ'^ix)) be concave there if X is decreasing.

It is not difficult to see that (1) holds if and only if Mψ(x19 x2 \ ql9 q2) ^
Mx(xlf x21 ql9 q2) for every xl9 x2 of [a9 b] and every positive ql9 q2 with
Qi + Q2 — 1, which in turn holds if and only if Mψ{x19 x211/2, 1/2) ^
Mχί^i, x2\ 1/2, 1/2) for every x19 x2 of [α, 6],

Similarly, we write

( 2 ) Mir<Mχ

if and only if the inequality

Mf(x19 x29 , a?Λ I QΊ, g2 , qn) < Mx(x1} x2, . , xn | qu q2 . . , O

holds for every w ^ 2, every ^ , x2, — , xn (not all equal) of [α, 6], and
every positive ql9 q2, - *,qn with Σ?=i9v = l A necessary and suffi-
cient condition for (2) to hold is that %(ψ~\x)) be strictly convex in
[ψ(a)f ψ(b)] (or [^(6), ψ(a)]) if X is increasing, and that Xiψ^x)) be
strictly concave there if χ is decreasing. Also, (2) holds if and only
if Mψ(xl9 x21 ?i, q2) < M%(x19 x21 q19 q2) for every xx, x2 {Φ xx) of [α, b] and

every positive QΊ, q2 with ^ + g2 = 1, which in turn holds if and only
if Mγ(x19 x211/2, 1/2) < M%(xly x2 \ 1/2, 1/2) for every xx and x2 (Φ x,) of
[α, 6].

2. In this paper we give simple criteria for the validity of (1)

Received December 30, 1963. The work of the second author was supported by the
National Science Foundation through grant NSF-GP 1086.
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and of (2), and then we give a few applications.

THEOREM 1. Let ψ and χ be elements of Φ differentiate in (a, b),
and let ψ' Φ 0 there. A necessary and sufficient condition for (1) to
hold is that X'lψ' be nondecreasing in (a, 6) if ψ and χ are monotone
in the same sense, and that χ'lψf be nonincreasing there if ψ and χ
are monotone in opposite senses.

Proof. Consider the function u(x) ΞΞ χ{ψ~\x)). Let / denote the
open interval joining ψ(a) to ψ(b), and let J be the closure of /. For
every f e J, we have

Suppose that ψ and χ are monotone in the same sense. Then (1) holds
if and only if u(x) is convex in J in case χ increases, and if and only
if u(x) is concave there in case χ decreases. So (1) holds if and only
if vf(x) is nondecreasing in J in case ψ increases, and if and only if
u\x) is nonincreasing there in case ψ decreases. From this, with the
aid of (3), one easily infers that (1) is equivalent to χ'jψ' being non-
decreasing in (a, b). Similarly one shows that (1) is equivalent to
X'jψ' being nonincreasing in (α, 6), if ψ and χ are monotone in opposite
senses.

One can modify Theorem 1 by replacing in it (1) by (2), "non-
decreasing" by "strictly increasing," and "nonincreasing" by "strictly
decreasing."

3 Given a function ψ, one may construct by means of Riemann-
Stieltjes integrals functions X such that Mψ S M%. In fact, we have
the following

THEOREM 2. Let ψ be a real function, continuous in [a, b] and
differentiate in (a, b). Let m(x) be nondecreasing or nonincreasing
in [a, b], continuous in (a, b), and suppose m{x)ψ\x) Φ 0 throughout
(a, b). Let C be a real constant, and for every x e [a, b] let

χ(x) = C+ \Xm(t)dψ(t) .
Jα

Then ψ and χ belong to Φ. If m(x) is positive in (a, b) and non-
decreasing in [a, b], or negative in (a, b) and nonincreasing in [a, b],
then Mψ S Λfχ. Otherwise, M% ^

Proof. Since ψ' Φ 0 in (a, b), by a well known property of the
derivative, ψ' is either positive throughout (a, b), or negative through-
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out (a, b). Thus ψ is strictly monotone in [a, 6], Also, by well-known
properties of the Riemann-Stieltjes integral, χ is continuous in [a, 6],
and χ'(x) — m(x)ψ'(x) throughout (a, b) (and so χ is strictly monotone
in [a, 6]). If m(a?) is positive in (a, 6) and nondecreasing in [α, 6], then
α/r and X are monotone in the same sense in [a, 6], χ'/ψ' is nondecreas-
ing in (a, 6), and hence by Theorem 1, Jlί^ ^ Λfx. Similarly the rest
of Theorem 2 follows.

Theorem 2 can be modified by replacing in it "nondecreasing"
by "strictly increasing," "nonincreasing" by "strictly decreasing,"
"ikZ> ^ Mx" by "MΨ < MJ and "M χ ^ Λf*" by "Mx < i l V '

4* A converse of Theorem 2 is the following

THEOREM 3. Let ψ and χ be elements of Φ differentiable in (a, b)r

and suppose ψ' Φ 0 there. Suppose, furthermore, that Mψ ^ M%.

Then there exists a function m(x), nondecreasing in (a, b) if ψ and

χ are monotone in the same sense, and nonincreasing there if ψ and

X are monotone in opposite senses, such that throughout [a, b]

m(t)ψ'(t)dt (a Lebesgue integral) .
α

Proof. For every x e (a, b), let m(x) = χ'(x)/ψ'(x). By Theorem 1,
m(x) has the monotonicity property steated in Theorem 3. Now for
every x e [a, b]

X(x) - X(a) = \Xχ'(t)dt = \Xm{t)ψ'{t)dt

(cf. [5], Theorems 269 (p. 188) and 264 (p. 183)).

REMARK. Observe that the integral in (4) can be written, under

appropriate conditions, as a Riemman-Stieltjes integral: \ m(t)dψ(t).

[Cf. loc. cit, Theorem 322.1 (p. 254), and 322 (p. 253)].
Theorem 3 remains valid if we replace in it "Λfy ^ Λfχ" by

"Mψ < Mx," "nondecreasing" by "strictly increasing," and "nonincreas-
ing" by "strictly decreasing."

5* It is known that if the end-point a is positive and r < s,
rs Φ 0, then Mxr < MχS, and Mx-\r\ < Mlogx < ilί>ι. Consequently, if
α > 0 then for every real r (φ 0,1), Miχry < MχTj and M{]osxV< Mlogx.
The question thus arises: Under what' conditions on a function φ
does one have Mφ, < Mφ (or Mφ, ^ Mφ)Ί

THEOREM 4. A necessary and sufficient condition for a real
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function φ to fulfill the conditions (<X)~(Ύ) below is that φ{x) should

be {throughout [α, b]) of one of the forms A + \ exp C(t)dt9 A —

VexpC(t)dt, A + \ exp{ — C{t)}dt, A — \ exp{ — C{t)}dt, where A is a

real number, and C(t) is a function, continuous and convex in [a, b],

differentiate in {a, b), and satisfying there C'{x) < 0.

(a) φ is twice differentiate in (α, b), φ'{a) and φ\b) exist as right
and left hand derivatives, respectively, φf(a)φ'(b) Φ 0, and φ' is con-
tinuous in [a, b].

(β) φ'φ" Φ 0 throughout (a, b) {and hence ψ and ψτ are strictly
monotone in [a, b]).

( 7 ) Mφ,^Mψ.

Proof.

Necessity. By Theorem 1, φ'jφ" is either positive and nondecreas-
ing in {a, b), or negative and nonincreasing there. Thus, φ"\φf is
either positive and nonnincreasing in {a, b), or negative and non-
decreasing there. In the first case we set C{x) = —log | φ'(x) \ (in [a, b]).
Then C{x) is continuous in [a, b] and C'{x) < 0 in (a, b). Also C'{x) is
nondecreasing in {a, b), and, therefore, C{x) is convex in [a, b]. Either

exp{ — C{t)}dt, or for every x e [a, b],
exp{ — C{t)}dt. In the second case, we set C{x) —

a

log I φ'{x) I (in [a, b]). Then C{x) is continuous in [a, b], C{x) < 0 in
{a, b), and, again, C(x) is convex in [a, 6]. Either for every xe[a, b],

exp C{t)dt, of for every x e [a, b], φ{x) = φ{a) —
exp C(t)dt.

a

Sufficiency, {a) and (β) clearly hold. Also, by the convexity of
C{t), C'{t) is nondecreasing in {a, b). Now, either throughout {a, b),
φ'jφ" = {C{t)}~\ or throughout {a, b), φ'lφ" = -{C\t)Y\ In the first
case, φ' and φ are monotone in opposite senses, and φ'jφ" is non-
increasing in {a, b). In the second case, φf and φ are monotone in the
same sense, and φ'jφ" is nondecreasing in {a, b). In either case, by
Theorem 1, Mφ, ^ Mφ.

Theorem 4 can be modified by replacing in it "convex" by "strictly
convex," and "Mφ, ^ Mφ" by "Mφ, < Mφ."

THEOREM 5. Let φ be strictly monotone in [a, b] and three-times
differentiate in {a, b). Let φf be continuous in [a, b] {where φr{a)
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and φ'(b) are right and left hand derivatives, respectively). Let
φ" φ 0 throughout (a, b). A necessary and sufficient condition for
Mφ, ^ Mφ to hold is that φf'2 ^ <p'φr" throughout {a, b) if φ' and φ
are monotone in the same sense, and that φ"2 ^ φ'φf" throughout
{a, b) if φr and φ are monotone in opposite senses.

Theorem 5 follows easily from Theorem 1 by considering the de-
rivative of φ'\φ".

Similarly, under the hypotheses of Theorem 5, Mφ> < Mφ holds,
if φ"2 > φ'φtn throughout (a, b) and φ and φ' are monotone in the
same sense, and also if φ1'2 < φ'φ'" throughout {a, b) and φ and φ'
are monotone in opposite senses.

As an example, let a = 0, b = π/2, φ(x) = cos x. φ and φr are
monotone in the same sense in [0, π/2], and φ"2 — cos2x > — ύv?% =
φ'φ'" throughout (0, π/2). Therefore, MLsinίC < Mcosx, i.e., Msίnx < Mcosx.

6. In a previous paper [3] the authors studied, for given positive

Q13 ?a, •••,£» ( w i t h Σ ? = i Qy = 1)> t h e r a t i o

\F(x±,x2, -- ,xn)

\ = M%(x19 x2, •••,«?„! ql9 q2, , qn)/Mf(x19 x2, , xn \ qlf q2, , qn)

where 0 < a, ψ(x) = xr, χ(x) = xs (r < s, rs Φ 0).

Their purpose was to find an upper bound for F in

I = {(x19 x2, , xn): a g xk <L b, k = 1, 2, , n} .

A crucial step was to show that if X* is a point of I such that
F(X*) = max {F(X) :XeI}, then X* is necessarily a vertex of I. In
particular, X* cannot be an interior point of I. This last property
holds under quite general conditions:

THEOREM 6. Let ψ and χ be elements of Φ, differentiate in
(a, b), and satisfying ψ'χ' Φ 0 there. Assume 0 g [a, 6], Mψ < M%.
Let q19 , qn (n > 1) be given positive numbers with Σv=i Qv — 1? crnd
let I be as in the last paragraph. Let F of (5) attain its maximum
in I at a point X* = (ccf, •••,#*) o/ /. Then X* is not an interior
point of I.

Proof. Suppose that some x* satisfies a < xf < b. Then
(ΘF/Θxj).^,*. = 0, i.e.,

V = l , 2 , - - , Λ
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Thus

χ'(χ!W(χf) =

x

Let C denote the right hand side of the last equality. If both xf and
xϊ are interior points of [α, 6], then χ'(xf)/φ'(xf) = C = X'(xt)lψ'(x*),
and hence, by the strict monotonicity of χ'/Ψ' [see the end of § 2],
#* = x*. Thus, if X* were an interior point of /, we would have
x* = x* =...=: x*9 and therefore

1 - F(xf, xϊ, ••-,«*) = max {F(X) :XeI}>l.
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A CHARACTERIZATION OF WEAK* CONVERGENCE

MAURICE SION

1. Introduction* Let X be a locally compact, Hausdorff space
and {μi ieD} be a net of Radon measures on X (in the sense of
Caratheodory). The weak* or vague limit of this net is the Radon
measure v such that

Km I fdμ{ = I fdv

for every continuous function / vanishing outside some compact set.
In this paper, we construct in § 3 a Radon measure φ* from a given
base & for the topology of X and lim inf{ μ{ and then, in § 4, we
give necessary and sufficient conditions for <p* to be the weak* limit
of the μ{. In particular, if the latter exists then it is the φ* gener-
ated when & is the family of all open sets.

The measure φ* is obtained from another measure φ by a standard
regularizing process. The definition of φ easily extends to abstract
spaces but that of £>* makes essential use of the topology. Thus, it
is of some importance to know when 9 = 9*, that is, when a measure
constructed through an abstract process from the μt turns out to be,
in the topological situation, the weak* limit of the μim In Theorem 3.3
we give a condition for φ = φ* and in § 5 we give an example to show
that the condition cannot be eliminated.

We refer to standard texts such as Halmos [1], Kelley [2], and
Munroe [3] for the elementary properties and concepts of topology and
measure theory used in this paper.

2. Notation*
2.1 a) denotes the set of natural numbers.
2.2 0 denotes both the empty set and the smallest number in ω.
2.3 μ is a Caratheodory (outer) measure on X if and only if μ is a

function on the family of all subsets of X such that μθ — 0 and

0 S μA ^ Σ μBn ^ °° whenever A c U ^ c I .

2.4 For μ a Caratheodory measure on X, A is ^-measurable if and
only if 4 c l and for evey TaX

μT= μ(TnA) + μ(T - A) .

2.5 For X a topological space, μ is a Radon measure on X if and

Received September 26, 1963. This work was supported by the U. S. Air Force
Office of Scientific Research.
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only if μ is a Caratheodory measure on X such that:
( i ) open sets are //-measurable,
(ii) if C is compact then μC < oo,
(iii) if a is open then μa = sup {μC C compact, C c a},
(iv) if A c X then //A = inf {μa α: open, A c #}.

2.6 For X a topological space, C0(X) is the family of all real-valued
continuous functions on X vanishing outside some compact set.

2.7 (D, <) is a directed set if and only if D φ 0, D is partially
ordered by < so that for any i, j eD there exists k e D with i < k
and j < k.

2.8 A net is a function on a directed set.
2.9 A denotes the closure of A.

3. The lim inf measure* Let X be a regular topological space;
& be a base for the topology of X, closed under finite unions and
intersections; (D, <) be a directed set and, for each ieD, μ{ be a
Radon measure on X.

For each α e ^ , let

ga = lim μ^ ( = sup inf μiά) < oo
•Jen jβD ieD

and let φ be the Caratheodory measure on X generated by g and &
(see method I of Munroe [3]), i.e. for each A c X,

ψA = inf { Σ 9<z H countable, He: &,

As we show in § 5, <p need not be a Radon measure even when
X is compact and Hausdorff. For this reason, for any A c X let

φ*A = inf sup
α> open 0 compact

A(za Oczcύ

IVe then have the following:

3.1 THEOREM, φ is a Caratheodory measure on X such that:
( i ) if A and B are disjoint, closed, compact sets then φ(A[}B) =

ψA + φB.
(ii) if AdX then φA = mi{φa\ a open, Ac a}.
(iii) if C is compact and for every ae &', ga = lim^ μfii then

φC = inf {ga; ae^, Ccza}.

3.2 THEOREM, φ* is a Radon measure on X such that:
( i ) φ* ^ φm

(ii) if C is compact then φ*C = φC.
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3.3 THEOREM. If every open set in X is the countable union
of compacta then φ* = φ.

Proofs

Proof of 3.1
( i ) Let A, B be closed, compact and A f] B = 0. Since X is

regular and & is closed to finite unions, there exist a, β e & such
that Ada, ΰ c / 3 and α f l £ = 0. Given ε > 0, choose Ύne^ for
neω so that A U Bc LLeω7% and

Let 7; = 7Λ Π a and 7;' = Ίn Π /5. Then 7l, 7" e ^ , A c U^eω7;,
neωTi' and hence

Since ε is arbitrary and φ is a Caratheodory measure we have φ(A UB) =
φA + φB.

(ii) Let A c X . If φA = co then the conclusion is trivial. So,
let φA < co and ε > 0. Then there exists a countable Ha^ such
that A c \Ja,eHa and

Σ g& ̂  ψA. + ε

and therefore

φ( U a) ^ Σ ^ ^ = Σ ga = ψA + ε

(iii) Suppose for every a e &, ga = lim^ ̂ α . Then for α0, , an

in ^ we have

Σ Qock = lim

= g(\Jak).
\k=0 /

Hence for any compact C,

= inf {ga ae ^

Proof 0/3.2
( i ) Clearly, for any compact C, φC < 00 and, for any open a,
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φ*a — sup {φC C compact, Ccza} ^ φa .

Thus, for any i d , using 3.1 (ii) we have

φ*A = inf {φ*a a open, A c α}

^ inf {φa α open, A c α}

(ii) For any compact C and open α ^ C , we have φC ^ φ*af

hence <PC ^ ?>*C. By (i) then <P*C = <?C.

(iii) To see that 9* is a Radon measure, we now only need to
check that open sets are <£>*-measurable. Let a be open, TcX and
ε > 0. Let T" be open, TcT' and <£>*T'<<p*T+ε. Note that if
C is compact, /3 is open and Cc/3 then, by regularity, Cc/3. Thus,
since Tf Γί a is open, there exists a closed, compact CλcT' {\a with
<P*(T" n α) ^ ^CΊ + ε. Also, since T' — d is open, there exists a
closed compact C 2 c f - d with cp*(Γ' - Q g φC2 + ε. Then

α) + φ*(T - α) ^ φ^T7 ' n a) + φ*(T' - Q

^ φ d + φC2 + 2ε

- ^ ( d U d ) + 2ε (by 3.1 (i))

^ ^*T" + 2ε

^ 9* Γ + 3ε .

Proof of 3.3. We need only show that <p*A = φA for open A.
Given such A, by assumption, A = LLeωd* where the Cn are compact
and CΛ c Cw+1. Because of regularity, we may assume that the Cn

are closed compact. We shall show that φA = limπ φCn. To this end,
let ε > 0 and define an and C'r, by recursion as follows: let C = d
and, for any ^ e ω, let an be open, Ci c αn, ^^w ^ 9?C» + ε/2w+1 and

d+i — Cn+1 — U ^i •
3=0

Then the C» are closed compact, mutually disjoint and AcU»e»α»
Thus,

i Σ <P<x» ^ Σ ψC'n + ε

- limΣ^C; + ε = lim?>(Uc;V e
jar w=o iv \w=o /

^ lim 9?C^ + ε .
N

4. Weak* convergence. Let X be a locally compact, Hausdorff
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•space, ^ be the family of Radon measures on X, μ be a net in
It is well known that ^ can be identified with the set of positive
linear functionals on CQ(X) so that the weak* or vague limit of the
μ{ is defined by

4.1. DEFINITION. (W*)-!^ μt = v if and only if y e ^ f and, for
every feC0(X),

lim

On the other hand, for any base έ%? for the topology of X, let

4.2. DEFINITION. ^-Lim^ μi be the measure φ* defined in § 3. If
& is the family of all open sets then we simply write Lim^ μi instead
of .^-Lim^ μim

We then have the following:

4.3. THEOREM. (WΓ*)-lϊm< <̂ exists if and only if there exists a
base & for the topology of X, closed under finite unions and inter-
sections, such that, for every ae£?, lim ί// iα< co, in which case,

(TΓ*)-lim μi = ^-Lim μt = Lim μ{ .
* i i

The proof of this theorem is given in Lemmas A, B, C, D, E below.
A restricted version of Lemma B was proved by Wulfsohn [4].

LEMMA A. Let v e ^£ and

έ%? -=z \a : a is open, a is compact and v (boundary a) = 0} .

Then & is a base for the topology of X and is closed under finite
unions and intersections.

Proof. Let A be open and aeA. Then there exists / e C0(X)
such that: 0 ^f(x) ^ 1 for xeX, f(μ) = 1 and f(x) - 0 for x$ A.

Since [fdv < oo, there exists 0 < t < 1 such that vί/"1!*}) = ° L e t

α = {ίc: f(x) > ί}. Then a is open, αeα c i and boundary a = /^{ί}
so that α e ^ . Thus, ^ is a base. It is closed to finite unions
and intersections since boundary (a U β) U boundary (α: n /3) c boundary
•a: U boundary /3 for any open a, β.

LEMMA B. (TΓ*)-limi^ί = v if and only if ι> e^t and l i m ^ α =
va for every open a with a compact and v (boundary a) — 0.

Proof. Let (W*y\im^i = v, a be open, a compact, v (boundary
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a) = 0. For any compact Cca, let feC0(X), 0 ^f(x) ^ 1 for all
xeX, f(x) = 1 for x e C, f(x) = 0 for x$a. Then

vC ^ I fdv = lim I /cZμ; g Km /^α .

Hence

va ^ lim /ί/* .

Now, since y (boundary a) = 0, given ε > 0, let /S be open, aczβ and
y/3 ^ va + ε = vα: + ε. Let / e Co(^), 0 S f(x) ^ 1 for x e X, f(x) = 1
for a? e a, f(x) = 0 for a? ί /8. Then

Πm^α g lim l / ώ ^ = \fdv ^ p/3 ^ va + ε .

Thus,

va = lim ^ α .
i

Conversely, suppose v e ^ and lim^ μ^ = vα for every open α: with
a compact and v (boundary a) = 0. Let fe C0(X), ε > 0. Then there
exist tk Φ 0 for & = 0, , n such that tk < tk+1, t0 ^ f(x) ^ ίw for
x e l , K/-%}) = 0 and

w—i r w—l

where

α* = {a?: t* < f(x) < tk+1}

so that ak is open, αA is compact and v (boundary ak) = 0. Then
= i;αΛ and

S Λ - 1

fdv ^ lim Σ **AWfc + ε

^ Km Xfdμi + ε .

Now, let ft be open, βk be compact, v (boundary βk) = 0, α λ c βk

and υ/3j. ̂  yα4 + ε/(n \ tk+11). Then linii μβh = vβk and

ϊim (fdμt ^ lim Σ **

= Σ ^+1^/5*

n-1
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LEMMA C. / / (Wr*)-limiμ< = v and

& = {a: a is open, a is compact, v (boundary a) — 0}

then

v =

Proof. Let ga = lim* μ/κ for any ae &, φbe the measure gener-
ated by sr and & (see §3). Then, in view of Lemma B and 3.1 (iii),.
for any compact C c l ,

Now, for any open CCDC there exists, by Lemma A, β e & with
C cβca. Therefore, using Lemma B, and the outer regularity of vy

we have

vC = inf {va a open, Cca)

= inf {v/3; βe^, Cczβ}

= inΐ{gβ; βe<^, Cczβ}

Hence, for any A c l ,

z A = inf sup vC
cύ open (7 compact
Acoύ Odd

= inf sup <pC =
<» open C compact ^
Acoi Oczoύ

LEMMA D. Let & be a base for the topology of X, closed under
finite unions and intersections, such that for any a e &, lim^ μ{a < 00.
Then

, = (W*)-\im μ, .

Proof. For <xe &, let ga = limi^α = lim^ia:, 99 be the measure-
generated by g and ^ and φ* = ^ - L i m ^ i (see §3). Then, by
Theorem 3.2, <ρ* e ̂ . Let α be open, a compact, φ*(boundary a) = 0.
By 3.2 (ii), we have

φ*a =

and by 3.1 (iii),

φa = inf {̂ /3 /3 e ̂ , α c β) .

Given ε > 0, let β e &, aaβ and gβ g φ*a + ε. Then
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lim μ{a ^ Km μβ = gβ g <£>*<* + ε .
i i

On the other hand, let C be compact, C(za and <p*α < <ρ*C"+ ε =
φC + ε. Then there exists 7 G ^ such that C C T C α and therefore

φC ^ gy = lim μ/r ̂  lim μpί .

* *

Thus,

lim /^α ^ <£>*α: ̂  lim μ{a
i i

so that l i m ^ a = φ*a. By Lemma B then φ* = (TF*)-limiμi.

LEMMA E. Lei & be a base for the topology of X, closed under
.finite unions and for every az^?, l im ί ^ ΐ α< oo. Then

,^-Lim μt = Lim μt .
i i

Proof. For any open a, let ga = jim^ ^ α , ^ be the measure
generated by g and ̂  and ̂ 2 be the measure generated by g and the
family of all open sets. We have to show that for any compact C,
ΨiC = φ2C Now, clearly φ2C ̂  ^ C . Suppose φ2C < &> and ε > 0.
Let at be open for i = 0, , w, C c U?=o *̂ and

Σ ^^ί ̂ ^ C + 6.

For each xeC there exists βe & such that xeβacίi for some i =
0, *',n. Since C is compact, there is a finite family Hcz& which
covers C and is a refinement of {aQ, , α:J. For each i, let ft be
the union of all those elements in H which are contained in aim Then
A e ^ , βiCLcti and CcU=oft . Thus,

^iC ^ Σ Qβi ^ Σ flrα* ̂  ^2C + ε .
ΐ=0 • i=0

5 Remarks* Let ^ , ^, ^ be as in § 3, The following example
-shows that φ need not be a Radon measure.

Let X be the set of all ordinals up to and including the first
uncountable ordinal Ω. Then, in the order-topology, X is compact
Hausdorίf. For each i < Ω, let μ{ be the point mass at ΐ, that is,
μfiί = 1 if i e a and μfii = .0 if i$a. Let

^ — {a α is open and Ωg(a — a)}.

For any α: e ̂ , if β ί α then α is countable and hence #α: = linii^a: = 0;
if Ωea then ga = 1. Let A-= JSΓ— {β}. Then A is open and, being
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uncountable, for any countable family J ϊ c ^ which covers A there
exists aeH with ga = 1. Thus, φA = 1. On the other hand, if C
is compact C c A then C is countable and hence φC = 0. Thus,

φA ^ sup {φC C compact, C c A} .

Note, however, that if, instead of taking & as above, we let &
be the family of all open sets in X then there exist uncountable, dis-
joint a, β e & with A = a U β. Then ga = gβ = 0 so that φA = 0.
In this case, φ is the point mass at Ω and φ = φ*.

We are unable to determine if this holds true in general for com-
pact or locally compact Hausdorff spaces, i.e. if φ = φ* whenever &
is the family of all open sets in X.
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A PERMANENT INEQUALITY FOR POSITIVE
FUNCTIONS ON THE UNIT SQUARE

MORTON L. SLATER AND ROBERT J. THOMPSON

Introduction* During the past few years the van der Waerden
conjecture on the minimum of the permanent of a doubly stochastic
matrix has received considerable attention. (See Marcus and Newman
[1] and [2], Marcus and Mine [1], among others.) This conjecture
states that if A is a doubly stochastic matrix, i.e. if

an ̂  0, Σ an = ΣΣ

then the permanent of A is Ξ>w! n~n. (The permanent of A is Σ Π αicr(<),
where the summation is taken over all permutations σ in the symmetric
group.) Despite the seemingly elementary character of the conjecture,
it is, so far as the present authors are aware, still unresolved in
general, although it has been settled in some special cases. (See the
above references.)

An implication of the conjecture is that some term of the permanent
expansion must be greater than or equal to n~n. This was established
by Marcus and Mine [1] in 1962. Specifically they showed that if
Π da is not exceeded by any other term in the permanent expansion,
then

(1) Σ log α« ^ Σ Σ aio log aid ^ n log n~x .

The second inequality above is a simple application of Jensen's inequality
using the convex function x log x; the first inequality is the key to the
problem. It is the extension of this inequality to functions defined on
the unit square that is referred to in the title of this paper. We will
show in §4 that under suitable hypotheses

(2) co > fX \ogf(x, x) dx ^ [ [f(x, y) logf(x, y) dxdy ^ 0 .
Jo Jo Jo

The proof of (2) (and incidentally a new proof of (1)) is based
ultimately on the following theorem:

THEOREM 1. Let S be an arbitrary set and f(p, q) a real-valued
function defined on S x S with the following property:

(C) if pl9 ' , pn is any finite sequence of points in S, not
necessarily distinct, then

Received September 12, 1963. This work was performed under the auspices of the
United States Atomic Energy Commission.
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f(Vi, V,) + /(ft, ft) + + /(P-i, P.) + f(pn, ft) ^ 0 .

Then there exists a real valued function φ defined on S such that
for all (p, q)eS x S

f(p, q) ^ φ{p) - φ(q) .

Furthermore, given any s e S, we may determine φ(p) so that for
-all peS

/(ft s) ^ φ(p) ^ -/(s, p) , and φ{s) = 0 .

This theorem for finite sets S is essentially contained in a paper
by S. N. Afriat [1] which appeared in 1963 in connection with a study
of empirical preference analysis in economics. Theorem 1 was discovered
independently by the authors in their study of the van der Waerden
conjecture; it is very closely related to the linear programming dual
of a theorem proved by Garret Birkhoff [1], which states that the
doubly stochastic matrices are the convex hull of the permutation
matrices. Indeed it was this last fact which persuaded us that Theorem
1 could be applied directly to the van der Waerden conjecture. In § 1
we will give a proof of this theorem which differs essentially from
that for the finite case given by Afriat; it is certainly much shorter.

The proof of (2) to be given in §§3 and 4 will depend on Theorem
1 and on the following "Arzela type" compactness result proved by
M. Riesz. We state it, for reference, in the form that we shall use it.
It is also convenient to state here a partial converse of the Fubini
theorem proved by L. Tonelli.

THEOREM A (M. Riesz). Let M be a set of functions in L (0,1).

If
1° there exists a constant K such that for all x(t) e M

and if

2° for every ε > 0, there is a δ > 0 such that for all x(t)e M
and all h for which \ h \ < d

Γ| x(t + h)-~ x(t) \dt<ε ,
Jo

then the set M is conditionally compact in the sense of the metric
of L. A proof of the above result can be found in Nemyckii [1].

THEOREM B (Fubini converse: L. Tonelli). Let f(x, y) be measurable
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on the unit square. If for almost all x, \f(x,y)\ is summable as a
function of y, and if

\dx \ \f(x,y)\dy
Jo Jo

exists as an iterated integral and is finite, then f(x, y) is summable
on the unit square.

A proof of this theorem is in McShane [1].

1* Proof of theorem 1* Define g(p, q) = f(p, q) for p Φ q and
9(P, V) = 0. Then g satisfies condition (C) and / ^ g. Choose a fixed
se S and define

φ(p) = lub{g(p, qx) + g(qu ga) + + g(qn-i, Qn) + 0(ff«, s)}

where the least upper bound is taken over all finite sequences qlf , qn

selected from S. Since g satisfies (C) the finite sum is always ^ — g(s, p),
and so the least upper bound is finite. Now fix qx = q and let the
remaining q{ range unrestricted. The definition of φ yields at once
φ{p) ^ g(p, q) + φ(q) so that f(p, q) ^ g(p, q) ^ φ{p) - φ(q) as claimed.
Finally f(p, s) ^ g{p, s) ^ <p(p) ^ — g(s, p) g —f(s, p), which completes
the proof.

It may be worth remarking that if the range of / is any conditionally
complete lattice ordered group, the proof goes through unchanged.

2 Proof of the matrix theorem* In this section we give a proof
of inequality (1) based on Theorem 1. Suppose as stated in the introduc-
tion that the n x n matrix A is doubly stochastic and that Π au ^
Π ttiσu) for all permutations σ. It is technically convenient to assume
for the moment also that ai3 > 0.

Let bi:i = loga{j — logα^; then bid as a function on S x S, S =
{1, 2, •••,%}, is easily seen to satisfy condition (C). (This follows
readily from bi{ = 0 and Σ hσd) ^ 0 for all σ.) Hence there exists a
vector c{ such that b{j ^ c.L — cό. Thus

log ai3- ^ log au + c, - c3- , i, j = 1, . . . , n ,.

so that

aiό log ai3 ^ ai5 log au + ai3- c{ - aί3- c3 .

If we now sum first with respect to j and then with respect to i, the
vector c{ drops out and we have

Σ Σ α<i log ai3 ^ Σ log α« .
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The positivity restriction of the aiS is easily removed by a simple
continuity argument.

3* Functions on the unit square* In this and the following
section we shift our attention from the discrete matrix situation of § 2
and study an analogous situation on the unit square.

Let I denote the half open unit interval [0,1) and J^Γ the class
of one-to-one measure preserving transformations of I onto I. We will
prove the following theorem:

THEOREM 2. Let f(x, y) be a measurable function on I x I which
satisfies

1° for all Te^~,f(x, Tx)eL(I) and [fix, Tx)dx ^ 0,

and

2° the limit as δ —> 0 of Γ \f(x, x + δ) | dx = 0.
Jo

(The function f(x9 y) is defined outside I x I to be periodic of period
one in x and y.) Then there exists a function φeL (I) such that
for almost all (x,y)e I x /

f(χ, y) S φ{χ) - φ(y).

The proof of Theorem 2 requires two lemmas. (Throughout this
section we will assume that 1° and 2° above hold.)

LEMMA 1. Let Ea.1 be the union of a finite number of disjoint
intervals and let T e J7~ be such that TE = E. Then

(3) ( f(x, Tx) dx^O.
JE

Proof. We may assume that the intervals of E are semi-open
(open on the right), so that the same is true of the finite set of non-
continuous intervals that compose I — E. Let J = [α, b) be one such
interval of I — E. Define a measure preserving transformation Un on
J as follows: set δn = (b — a)/2n and

Unx = x + δn , a + 2(k - l)δn ^ x < a + (2k - l)δn

Un x = x - δn , a + (2k - l)δ ft ^ x < a + 2k δn ,

k = 1, . . . , w .

Then

I ̂ , Un x) s j[ \flx, x + δn)\dx + ̂  \f(x, x-δn)\ dx

0 as n -> oo by 2° of Theorem 2 .
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If we define Un similarly on each of the finite set of J d — E, and
Un x = Tx for x e E, then Une^~ and

( f(x, Un x) dx + \ f(x, Tx) dx ^ 0 ,
JI-E JE

by 1° of Theorem 2. Since ί f(x, Un x) dx -» 0, the result follows.
JI-E

LEMMA 2. Let f(x, y) be as in Theorem 2. Define for 0 < λ < 1

( 4 ) f{x, y; λ) - λ \kf(χ + t,y + t)dt.
λ Jo

Then f(x, y; λ) satisfies condition (C) of Theorem 1 on I x /.

Proof. We prove the lemma for the function λ/(a$, 2/; λ). Define
jFte, α?a, , xn; λ) = λ/fo, α?a; λ) + + λ / K , ay λ) = Ffo λ). We
will show that given any ordered set x = (xlf , xn), F(x; λ) ^ 0 for
all 0 < λ < 1. The following two easily verified properties of F(x; λ)
will be required:
(5a) given any finite ordered set x, there are finite ordered sets x{i),

each of which has distinct components, and elements xdf such that
identically in λ

F(x; λ) = F(x{1); λ) + . . . + F(x{k); λ)

+ F(xu xλ\ λ) + + F(xp, xp; λ)

{5b) identically in x

F(x; λ) - F(x; λx) + F(x + \; λ2) + . . + F(x + λx + + λ,_i; λk) ,

where λ = λx + + Xk.
(We leave to the reader the verification of the above.)

As a consequence of Lemma 1 (F(xj9 x3-; λ) g 0) and (5a), it will
suffice to prove F(x; λ) ^ 0 when the components of x are distinct.
Suppose then that x = (xl9 , xn), xi Φ xd for i Φ j , 0 ^ Xι < 1, and
consider for the moment the xt rearranged in increasing order, say
Vi, , V«- We define λ* = Min {y2 - ylf yz - y2, , yn - yn-l9 yx +

1 — Vn}, and note that λ* > 0 by our conditions on the xt. Suppose
ίirst that 0 < λ ^ λ ,̂ and let E be the set of points x{ + t (i = 1, , n;
0 ^ ί < λ) reduced modulo 1. For 0 k ί < λ define Γ(aji + ί) = xi+1 + t,
1 = 1, , n — 1 and Γ(ίc% + *) = «! + *, where again all numbers are
reduced modulo 1. Since λ ^ λ*, T is well defined on i?and TE = E.
For xel — E, define Tec = a?, and we have Te^Z By the periodicity
of/,

F(α?; λ) = ί /(a?, Γx) dx, which is ^ 0 by Lemma 1 .
JE
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We have shown, then, that

( 6 ) for 0 < λ ^ λ* , F(x; λ) ^ 0 .

Finally, since for 0 < λ < 1 we may write λ = k λ* 4- r where k is
a nonnegative integer and 0 ^ r < λ*, we see that (5b) and (6) complete
the proof. (This is equivalent to iterating T k times with λ = λ^
and then using T with λ = r.)

Before staring the proof of Theorem 2 we make a heuristic remark
about hypothesis 2°. If fix, y) ^ φ(x) - φ(y),f(%, x) = 0, and all the
functions are smoothly differentiable, then the surfaces z = f(x, y) and
z = φ{χ) — φ(y) are tangent along y = x, and so φ(x) is determined
(up to an additive constant) by φ'(x) = fx{x, x). This suggests strongly
that the "nature" of ψ in general is determined by the behavior of
fix, y) in the neighborhood of y = x. This will become clear in the
proof that follows; later we will mention some consequences to φ of
altering 2°.

We proceed now to the proof of Theorem 2. By Theorem 1 and
Lemma 2 we know that for each λ, 0 < λ < 1, and for any s e /, we
can find a function φ(x\ s, λ) such that for all (x,y)elx I

( 7 ) f{x, y; λ) ^ φ(x; 8, λ) - <p(y; s, λ) ,

f(x, 8; λ) g φ(x; β, λ) ^ -f(s, x; λ) ,

and

φ(s; s, λ) = 0 .

The remainder of the proof will be devoted to analyzing the (conditional)
compactness of the family {φ(x; s, λ)} in L (I).

Theorem A (Riesz-Arzela) tells us that conditional compactness is-
implied by equicontinuity and uniform boundedness. We have from (7)>

(8) f{x, y; λ) S φ(x; s, λ) - φ(y; s, λ) ^ -fiy, x; λ) ,

so that

(9 ) I φ(x + δ; s, λ) - φix; s, λ) | ^ \f(x + d, x;X)\ + \f(x9 x + δ; λ) |

f [{M + δ,x)\ + \fix, x
λ Jo

Thus by 2°, φ(x; s, λ) is continuous and hence measurable. Furthermore
from the first inequality of (9) and Theorem B we have easily

(10) 1 I φ(x + δ; s, λ) — φix; s, λ)
Jo

dx
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so that the entire family {φ(x; s, λ)} is equicontinuous (L).
Uniform boundedness (L) is more of a problem. We have found

it necessary to choose an appropriate sub-family, and this will be done
in the following paragraphs.

Since f(x, y) is measurable on / x I we conclude from 2° and
Theorem B that there exists a number a > 0 such that / is summable
on the set P bounded by the lines x = 0, x = 1, y = x ± a. We define
f(x, y) — f(x, y) on P and all points in the plane congruent to P modulo
one in x and y; elsewhere we set f(x, y) = 0.

We will choose sx e I so that 0 ^ sL < a, and both (11) and (12)
are satisfied:

(11) as λ — 0

lim — \ l dx\ \f(x, y)\dy=\ \f(su y) \ dy < oo ,
λ Jsi JO JO

and

i

lim —
λ

and

dy\ \f(x, y)\dx= \f(x, s,) \ dx <
JO JO

(12) as n—> co, for almost all x e I,

lim/„(«!, α) = f(s19 x) , and lim/Λ(a?, s j = /(x, s2) ,

where fn(x, y) = /(x, /̂ w 1 ) .

For almost all se I (11) holds since fe L(P) and so e L(I x I).
Similarly, (12) is valid for almost all sel by the fundamental theorem
of calculus. (We introduce fn in (12) to avoid some possible measurability
difficulties.) Thus sx can certainly be chosen as required.

We will now show that the family {φ(x; sl9 n~λ)} is uniformly
bounded (L). We choose s2f •• ,sA. so that

(13)

(14)

(15)

and

S%+i ^i

Si satisfies

Now define

< 2α

(11)

[al9 \

s±< s2<

for i = 1,

when sλ is

a s Ύb *

lim fn(su

lim fn(Si,

) = LO, * +

• < sk < 1 ,

. . . , f e - l ,

replaced by s{

. Si) = /(Si, ^)

«)> (αΛ, δ*) =

and

>

1 -

2,

- α ,

- sΛ < α

• , fe; and

6 — Δ,

1), and (c^

finally

•..,fe.

:, W -
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(Si — a, Si + α), i = 2, , fc — 1. The union of these intervals covers
J. Write φn(x; sλ) for <p(a;; su n~x). Then by (8)

(16)

Hence

I φn(x; 8j I ̂  |Λ(α?, «,) I + |/.(e<f a?) | + I ?>»(«*; βi) I ,

for # e J and ΐ = 1, , k .

(17)

^ P IΛ(«, «i) I da? + Γ* |/»(«i, α?) I do?

^ At + Bi + C{, where ,

for 1 ̂  i ^ Λ, by (14)

M # l/(ί», J/)

Jsί JO

n\ dx\ \f(x, y)\dy>

C, - 0, by (7) ,

and for 2 ^ i ^ fc, by (15)

C4 - (b, - α,) Z^δ {\fn(8if s,) I

Since

- α 4 ) | ^ ( e < f s,)

(18) ^ ( ^ Si) I dx ; «i) I

we have established uniform boundedness (L) and Theorem A applies.
We have then that some subsequence {φH(x; sx)} converges to φ(x)
(say) in L and fnt(x, y) converges to f(x, y) for almost all (a?, y)e I xl.
Since for all (x, y), fn(x, y) g φn(x; sλ) — <pn(y; s j , Theorem 2 follows.

We now return to our remark preceding the proof of the theorem.
We have just seen that the fact that φ is in L(I) has been determined
by condition 2°. It is reasonable to expect that a strengthening- of 2°
should lead to a "smoothing" of φ, and this is indeed the case. If 2°
is replaced by

"2£ for fixed p (1 ̂  p < co) the limit as 8 -> 0 of

then φ e I/p(/). The modification of the proof consists of invoking the
Lp version of Theorem A, which is also to be found in Nemyckii [1].
Finally if we replace 2° by
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"2Z the limit as δ -> 0 of ess sup, \f(x, x + δ) | - 0" ,

then φeC(I). (The classical Arzela or Ascoli theorem is used.)

4* The permanent theorem in L(I X /)• In this section we
state and prove the L(I x /) analog of the discrete theorem of § 2.

THEOREM 3. Suppose that f(x, y) defined and measurable on
I x I has the following properties:

1° fix, V)>0 and [ f(x, y) dx - [ f(x, y) dy - 1, for all x, y;
Jo Jo

2° for all Te^\ f(x, Tx) is measurable,

f(Xy X)

and

and

log f(x, x + δ) dx —̂  0 , as o —-> 0 .

w / l o g / e L ( ί x /) and

log/(a?, .τ) rfa; ̂  f(x, y) logf(x, y) dxdy ^ 0 .

o Jo Jo

Proof. Conditions 2° and 3° above suffice for the application of
Theorem 2 to the function log [f(x, y)/f(x, x)]' there exists φ(x)eL(I)
such that for almost all x,y

(20) log f}^ yl £ φ(x) - φ(y) .
f(x, x)

If we multiply by f(x, y) and rearrange, we find

(21) -—^f(x,v)logf(x,y)
e

^ f{χ, y) log/(α, x) + φ(χ)f(χ, y) - φ(v)f(χ, y),

where the first inequality is a consequence of — 1/e = î& x log a; for
x > 0. Now, as functions of #, /(x, y) log/(x, x) and <p(x)f(x, y) both
G L by 1° above. Again, if we apply Theorem B to φ{y)f{x, y),
integrating first with respect to x9 we see that φ(y)f(x, y) e L(I x /),
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and so for almost all x, that function is summable as a function of y.
Thus by (21), f(x, y) \ogf(x, y) is summable y for almost all x,

and integrating gives

(22) 0^ \1f(x,y)logf(x,y)dy
Jo

^ log/(α, a?) + 9>(α) - \ <P(y)f(x, V) dy .
Jo

( /ri \ ri

The first inequality above is Jensen: ψl \ fdy) ^ I ψ(f)dy, where
\ \Jo / Jo

φ(x) = # log x.) Hence

(23) logf(x, x) ̂  [ ψ{y)f{x, y) dy - φ(x) ,
Jo

and so log/(x, x) is bounded below by a summable function. Now,
since by 1° and Theorem B feL(Ix I), it follows that for almost
all δ, f(x, x + δ) e L(I). We choose δ so that f(x, x + δ)e L(I).
Since log/(a?, α? + δ)< f(x, x + δ), and since by 2° log/(a?, x + δ) -
\ogf(x, x)eL(I), we see that

(24) log/(a?, x) ύ f(x, x + δ) + log [f(x, x)/f(x, x + δ)] ,

and so log f(x, x) is also bounded above by a summable function; hence
logf(x, x)eL(I). Returning to (21) we apply Theorem B and have
/ log/eL(J x /); then integrating both sides of (22) φ drops out and
we have (19) as asserted.
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ON FIXED POINTS OF AUTOMORPHISMS OF
CLASSICAL LIE ALGEBRAS

DAVID A. SMITH

l Introduction* Let A be the automorphism group of a semi-sim-
ple Lie algebra 8 over an algebraically closed field of characteristic zero.
Let n(A{) denote the minimal multiplicity of 1 as characteristic root
for elements of a connected (algebraic) component A{ of A, and let
m(Ai) denote the minimal dimension of fixed point spaces for elements
of At. Jacobson showed in [3] that n(A^ = w(A<), and determined these
numbers. It is the purpose of this paper to extend these results to
automorphisms of classical Lie algebras over essentially arbitrary fields,
using the method of Chevalley [1], as extended by Steinberg [10], for
associating such algebras with semi-simple complex Lie algebras.

Throughout the paper fields of characteristics 2 and 3 will be ex-
cluded without further mention. The results obtained here are valid
in some cases in characteristics 2 and 3, but exclusion of these cases
permits considerable simplification of the exposition. All vector spaces
in this paper are finite dimensional.

2. Lie algebras and automorphism groups. Let 20 be a semi-
simple Lie algebra over the complex field C. Let ξ>0 be a Cartan
subalgebra of 2σ, and let eί9 fi9 h{ (1 ^ i S I) be a canonical set of
generators; i.e. the h{ form a basis for ξ}09 and

Λi] = 0 ,

, χ v

where (Ai:}) is the Cartan matrix of Sσ. Let a^hj) = AH for i, j =
1, 2, , I. Then π = {a19 a2, , at} is a fundamental system of roots
(of 20 with respect to fQ0), and the e{ (respectively, f{) are root vectors
for the α< (respectively, — a<).

For each (nonzero) root a, let 2a denote the root space of a, and
let ha be the unique element of [£U SLJ such that a(hΛ) = 2. In
particular, hΛi = hi9 1 ^ i ^ I.

THEOREM (Chevalley [1]). 2σ contains a complete set {eΛ} of root
vectors for the (nonzero) roots a such that
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( 2 ) [eae^a] = hω for all a

( 3 ) [eaeβ] = ±(r + l)eΛ+β,

for all roots α, β such that a + β is a root, where r is the largest
integer q such that β — qa is a root.

It is easily seen from Chevalley's proof of this theorem that the
set {ea} may be taken to contain the e{ and/;, 1 ^ i ^ I. Furthermore,
the hΛ are integral linear combinations of the hiy and the roots are
integral linear combinations of the aif so the set {hi | 1 ^ i ^ 1} (J {eω \ a
a nonzero root} is a basis for 20 with an integral multiplication table
contained in (l)-(3) and the relations

(4 ) [e Al - α(*X .

Such a basis {hif eω} (containing the β* and fi) will be called a Cheval-
ley basis for 80. Henceforth a particular Che valley basis will be
assumed fixed. When it is convenient to do so, linear transformations
in 20 will be identified with their matrices relative to this basis.

Let K be an arbitrary field, and form a Lie algebra 8 over K,
related to 20, as in [1]: 8 is the tensor product (over the integers) of
the additive group of K with the additive group generated by the
Chevalley basis {hif eω} of £>G; 8 is equipped with the multiplication
table (l)-(4) after identifying 1^ 0 ea with ea, etc. Thus the ha, eΛ,
etc., are now thought of as elements of S, but observe that the sub-
scripts still refer to roots of &G.

Let ξ> = Σ ί Kh{. ξ> is an abelian subalgebra of 8, and the roots
of 8 relative to ξ> are the linear functions a defined by a(hβ) = the
class modulo the characteristic of K of a(hβ).

We follow the approach of Steinberg [10] in relating the Lie alge-
bras 8 of Chevalley with the Lie algebras of classical type of Mills
and Seligman [4]. First let 20 be simple. Then we have [10, 2.6]:
( a ) No hΛ is in the center 3 of 8.
(b) & = {h e § I a(h) = 0 for all roots a of 8 }̂.

( c ) If 8=8/8, and §=φ/3> then 8 is simple and § is a Cartan sub-

algebra of 8.
More generally, if 20 is only semi-simple, then &a=%i,o(B ' @%r,c,

where the 2iy0 are (non-abelian) simple ideals in 20. Thus 8 = 8 2 φ
• 0 8r, where the 8* are the Lie algebras of Chevalley corresponding
to the 2i)C, and are non-abelian ideals in 8. The center 3; of 8̂  is as
described in (b), and the center 3 of 8 is 3 i Θ Θ 3 r Furthermore,
2/3 = (2JpΛ) 0 0 (2r/3r) Every such algebra 8 - 2/3 will be
called a classical Lie algebra. (These are essentially the Lie algebras
of classical type of Mills and Seligman, although some additional alge-
bras over fields of characteristic^ 2 and 3 c$n be obtained by the



ON FIXED POINTS OF AUTOMORPHISMS OF CLASSICAL LIE ALGEBRAS 1081

process described here.)
If 2G is simple, 3 =£ 0 if and only if 20 is of type Aι and the

characteristic p of K divides I + 1. In this case, 3 is one-dimensional
[8,§1]

Let AG denote the automorphism group of S>0. As an algebraic
group, AG has a decomposition

( 5 ) Λ = Λ U Λ U ••• U 4 - 1

into connected (algebraic) components, where Ao is the component of
the identity automorphism. (The terminology of algebraic groups will
be seen to be more natural here than that of topological groups.)

An automorphism of the Cartan matrix (Aid) of 2G is a permuta-
tion s of the numbers 1, 2, , I such that Ai3 = Asii)fS{j) for all i, j .
Associated with such a permutation s is a unique automorphism σ of
2G such that ej = es{i), ft - /.„>, i = 1, 2, . , I [2, p. 280]. Following
Steinberg, we call σ a graph automorphism of 2G. The set i*7 of graph
automorphisms is a finite group, and the elements of F = {1, σl9 •••,
σr^} form a system of coset representatives of Ao in AG [2, Chapter
IX; 3, Corollary to Theorem 6]:

( 6 ) A0 = A0\J a,A0 U U tfr-A .

This decomposition coincides with (5), and the number r of algebraic
components is also the order of F.

For each root a and each complex number t, let xa(t) denote the
automorphism exp(ί ad eΛ) of 20. The significance of the Chevalley
basis for automorphisms is that the matrix of every xjf) has entries
which are polynomials in t with integer coefficients [1]. Let xa(ξ)
denote the matrix obtained from xΛ(t) by replacing the complex para-
meter t by an indeterminate ξ. We can then replace ξ by an arbitrary
element t of K to obtain a matrix over K, again denoted xa(t). Con-
sidered as a linear transformation of S relative to the Chevalley basis,
xΛ(t) is an automorphism.

We also introduce certain diagonal (relative to the Chevalley basis)
automorphisms of 8. Let k be any homomorphism of the additive
group generated by the roots of 2G into the multiplicative group K*.
We associate with k the automorphism Ύ]{k) of 8 defined by hη{k) — h
for fee©, ej](k) = k(a)ea for α: a root of S .̂ In particular, we can
associate a homomorphism k with each te K* and each root α of 2G

by defining &(/3) = tβ{h^ for each root β. The corresponding auto-
morphism will be denoted za(t).

Next we associate automorphisms of S with the graph automor-
phisms of 2G. Let σ be a graph automorphism with associated
permutation β. We have fe? = [<,/f] = [es{i),fs{i)] = hs{i), so σ permutes



1082 DAVID A. SMITH

the hi's. For an arbitrary root 7 — Σ&<α*ι let Y = Σ & A w 7' is a
root [2, p. 122, XVI] and one can show that e° = ± β r . This is done
by induction on the level (i.e. Σ I &« I) °f ?• Hence, relative to the
Chevalley basis, the matrix of σ has only the numbers 0, 1, — 1 as
entries (and in fact, exactly one nonzero entry in each row and column).
Thus the matrix of a defines an automorphism σ of 8 over K. These
automorphisms will also be called graph automorphisms.

The automorphism group of 8 is isomorphic to the automorphism
group of 8 [10, p. 1122]. We will therefore identify automorphisms
of 8 with their induced automorphisms in 8, but all references to
matrices will mean relative to the Chevalley basis in 8.

The group G of Chevalley is the group of automorphisms of 8 (or
8) generated by the xΛ(t) for all roots a and te K and the η(k) for
all homomorphisms k of the additive group generated by the roots into
K*.

THEOREM (Steinberg). // A is the automorphism group of 8 (or
8), G the Chevalley group, and F — {1, σ19 , σr_J the group of graph
automorphisms, then G is normal in A, and

(7) A = G U σfi U U σr^G

is the coset decomposition of A over G.

Steinberg proves this theorem in [10] only for the case of 8̂
simple, but the extension to the semi-simple case is straightforward if
one considers the action of A in 8. The analogy between equations
(7) and (6) is clear; in fact, they coincide if K is an algebraically
closed field of characteristic zero. However (7) is also analogous to
(5) by the following result.

THEOREM (Ono [5, Theorem 3]). If K is infinite, and the Killing
form of 8(7 is nondegenerate modulo the characteristic of K, then G
is the algebraic component of 1 in A, and (7) is the decomposition
of A into connected algebraic components.

3 Indices of automorphism groups* For each component (or
coset) At of Ac define the index n(A{) to be the minimal multiplicity
of the characteristic root 1 for elements of A{. For each ηeAc, let
x§(ή) denote the subspace of 8^ of -̂fixed points. Define another index
m(Ai) to be the minimal dim $()?), y}eA{. We have [3, Theorem 6
and Corollary, Theorem 10]:

THEOREM (Jacobson). Let σ{ be the unique element of F in Ai9
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and let s{ be the associated automorphism of the Cartan matrix.
Then n{Ai) = m(A^ = the number of cycles in the decomposition of
Si into disjoint cycles.

COROLLARY. n(A0) = I = dim φ σ , and 0 < n(A{) <l if i Φ 0.

In view of Steinberg's theorem in the previous section, it is rea-
sonable to ask for the relationship between n(A{) and both the minimal
multiplicity n(θiG) of 1 as characteristic root and the minimal dimen-
sion miOiG) of fixed point spaces for elements of σ{G in the automor-
phism group A of S. (Obviously a distinction between S and 8 must
be maintained here; we will consider S in § 4.)

In the sequel we will make use of the subgroup G' of G generated
by the automorphisms xΛ(t) for a a root of 20 and te K. For each
root a and each teK*, za(t)eG', and if K is algebraically closed,

THEOREM 1. Let 20, Ao, Aiy K, 8, A, (?, and σ{ be as defined
above. Then n(OiG) ̂  m{σiG) ^ n{Ax).

Proof. The first inequality is clear. We first assume K is alge-
braically closed, so that G is generated by the xa(t). We have seen
that an arbitrary element 7) of A can be written as a product of
exactly one σ { e i ^ a n d certain xJtjYs in some order. Thinking now
of matrices, rj is then a specialization of a corresponding product τ)(ξ)
of matrices σi9 xa(ξj), where the ξ's are indeterminates, one for each
£-type factor. Since the entries of xΛ{ξ3) are polynomials in ξ3- with
integer coefficients, η(ξ) is a matrix whose entries are polynomials in
certain indeterminates ξlf ξ2, •••,?» with integer coefficients.

The number m of indeterminates appearing in a matrix 7)(ξ) depends
not only on the automorphism 7) but on the choice of a representation
of 7) as a product of the generators; this number plays no special role
here, but it must not be assumed to be constant.

The integer coefficients of the polynomial entries of τj(ξ) may be
chosen so that specialization of the ξ3- to complex numbers t3 gives an
element rj(t) of Ao, and the choice of σ{ determines the component in
which 7]{t) lies.

Let σ{ be fixed, and let k = n{A,). The fact that h ^ dimity)
for 7] e Ai can be expressed as follows: for every specialization ξ3- —•
*i€ C, rank (η(t) — I) S n — lif where n = dim8 0 = dim 8. A similar
statement can be made for τj(ξ)f for if 37(1=) — / had a nonzero minor
of size > n — li9 that minor would be a polynomial and would remain
nonzero under some specialization ξ3 —> £y e C. Hence we see that for
every τ](ξ) corresponding to o{ (i.e. for every element TJ e afi and for
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every representation of rj as a product of Oi and certain of the other
generators) we have rank {~η(ξ) — I) ^ n — liΛ But then specializing
ξj —> tj e K, the rank of such a matrix certainly cannot increase. Hence
rank {η — I) ^ n — l{ for every ΎJ e afi, or in other words miσfi) ^ Z*.

Now drop the assumption of algebraic closure on K, and let Ω be
the algebraic closure of K. If yj is an arbitrary element of σfi, then
the extension of 7) to an automorphism of 2Ω is still in the component
of A(2Ω) corresponding to σ{. This is clear, because rj = σ τ, τ e G ,
and τ can be expressed as a product of the generators of G, whose
extensions to 2Ω are elements of G(8fl) Hence dim %(η) = dim g(%) ^
iί for rjeσiG. This completes the proof of Theorem 1.

THEOREM 2. Lei SOf Ac, Ai9 K, 8, A, G, and σ{ be as in Theo-
rem 1, and suppose further that K is infinite. Then m(σiG) — m{Ai).
For i = 0, %(G) = n(A0) — ϊ. //, in addition, the characteristic of
K does not divide the length of any cycle in the permutation as-
sociated with σi9 then nfoiG) = n(Ai). In particular, this is the case
if 20 is simple.

Proof. For the Chevalley group itself, we consider the diagonal
automorphisms (or matrices) za{t) — diag {1,1, , 1, , tβ{h<*\ •},
where each of the first I elements is 1, and the following entries are
of the form tm^ where β runs through all the roots of 8σ. For some
selection of tlf t2, , tι e K, to be determined presently, let η = Πί^ί**)-
The diagonal entries of η after the Zth one are of the form ΠUi ( Λ ΐ ) .
For each root β, some £(&*) Φ 0. Thus each of these entries is a
rational expression in the tι which is not identically 1. Since K is
infinite, we can choose tlf , tx so that none of the diagonal entries
of rj after the ϊth one is 1. (This can be expressed as a polynomial
condition of degree ^ S(n — I), where n = dim 8, since | β(hi) | ^ 3.)
Thus 7] is an element of G for which I = dim %{*η) = the multiplicity
of 1 as characteristic root.

Now consider an element σ Φ 1 in JP. σ maps ξ> into itself, and
also maps the subspace © spanned by the root vectors {eβ} into itself.
In ξ>, G acts as a permutation of the hif and in @ (as noted above)
the matrix of σ has only 0, ± 1 as entries, and exactly one nonzero
entry in each row and column. If η is chosen as in the previous
paragraph, we have ση \ ξ> — σ \ ξ> (where the bar denotes restriction),
and ση \ © has nonzero entries where σ \ © does and each of these
entries will be ± one of the entries of rj \ @. UK is infinite, then
the ti selected to define η can be chosen to satisfy not only the con-
ditions imposed above, but also the condition that 1 not be a charac-
teristic root of of] I ©.

Next consider the permutation matrix σ \ ξ>. For a suitable



ON FIXED POINTS OF AUTOMORPHISMS OF CLASSICAL LIE ALGEBRAS 1085

arrangement of the basis hlf , hι of ξ>, this matrix consists of
diagonal blocks, where each block is the matrix of a cyclic permuta-
tion. Let T be a linear transformation in a ^-dimensional space which
cyclically permutes a basis uu u2, * ,uk. Then the fixed point space
of T is spanned by uλ + u2 + + uk. The characteristic polynomial
of T (up to sign) is (λ - lXλ*-1 + λ*~2 + + λ + 1). lκ is a root
of the second factor if and only if k lκ = 0. Thus the multiplicity of
1 as characteristic root of T is 1 if and only if the characteristic of
K does not divide k.

We have demonstrated that each cycle of s contributes exactly
one dimension to the fixed point space of σ\!g, and, if the charac-
teristic does not divide the length of the cycle, exactly 1 to the multi-
plicity of 1 as characteristic root. If 20 is simple, only cycles of
lengths g 3 occur, which completes the proof of Theorem 2.

COROLLARY. Let 8 be a split semi-simple Lie algebra over an
arbitrary field of characteristic zero, and let A = G U σλG U U σr-iG
be the automorphism group of 8. Theft m(σiG) = n{ύiG) = the num-
ber l{ of cycles in the decomposition of the permutation s{. For G
itself, l0 — I, the dimension of a Cartan subalgebra, and for i Φ 0,

REMARKS. ( a ) The corollary extends the results of Jacobson [3]
beyond the algebraically closed case. Part of this is essentially con-
tained in [3] in remarks following Theorem 10.

( b ) The decomposition of A in the corollary is also the decom-
position into connected algebraic components, by Ono's theorem in § 2.

We will consider in the remaining sections the extent to which
the exclusion of small fields is necessary to obtain the conclusions of
Theorem 2. In particular, we will answer this explicity for the
Chevalley group for algebras of types A, B, C, and D.

There is also the question of how these results may be extended
to the algebras S, in the case where one or more components are of
type Au p\l + l. In the following section we will obtain explicit
results in the case where 2^ itself is simple of type Au p\ I + 1.

4. Algebras of type A. Let &0 be simple of type AlΛ Then S
can be taken to be the Lie algebra of all (I + 1) x (I + 1) matrices of
trace 0 over K. If A is any nonsingular (I + 1) x (ϊ + 1) matrix, then
the mapping X—> A~XXA is an automorphism η of 8. This automor-
phism is in G, by [9, §21 and the last paragraph of the proof of
Theorem 1.

THEOREM 3, If %o is °f type At and K is any field (of charao-
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teristic Φ 2, 3), then m(G) = I. If \ K | > I + 1, then n(G) = Z.

Proof. Let 37 be an automorphism given by conjugation by a
cyclic matrix A. The space of all matrices commuting with A (i.e.
all polynomials in A) has dimension I + 1, since the minimum poly-
nomial of A has degree I + 1. gθ?) is the intersection of this space
with 8, and has dimension £.

An alternate approach to selecting an Ύ] e G gives a slightly weaker
result, but also gives an automorphism having 1 as characteristic
root with multiplicity I. Let η : X—• A~*XA where A = diag {αx, α2, ,
aι+1}, the α̂  being all distinct and all different from 0. This requires
I K\ > I + 1. Take as basis for 8 the matrix units eίy, ΐ Φ 3, and the
diagonal matrices hi = ei+1>i+1 — eiif 1 ^ i ^ I. Then Λ? =feif and e?,- =
a^afiij. Since α^α,- ̂  1 for i ^ i, we have i = dim g(^) = the multi-
plicity of 1 as characteristic root, which completes the proof.

Now suppose the characteristic p of K divides I + 1. Then 8 has
one-dimensional center 3 consisting of scalar multiples of the identity
matrix. A more convenient basis than the one listed above is obtained
by replacing ht by I = lhλ + (I — ϊ)h2 + +2hι^1 + hu and taking
this to be the first basis vector. The cosets of the remaining basis
vectors then form a basis for 8 = 8/3.

Since I > 1, we have one nontrivial graph automorphism σ with
associated permutation (1, i)(2, I — 1) , in which the number of cycles
is [(I + l)/2]. We will denote by n(G) the minimal multiplicity of 1
as characteristic root for elements of G acting in 8, and similarly
define n(σG), m(G), m(σG).

THEOREM 4. Let 8 be a (simple) classical Lie algebra of type At

over a field K of characteristic p, where p \ I + 1. Let A = G U oG
be the automorphism group of 8. Then n(G) ̂  m(G) ̂  I — 1, and
n(σG) ^ m(σG) ̂  [(I + l)/2]. If\K\>l + l, then ή(G) = m(G) - I - 1,
and if K is infinite, then n(σG) = m(σG) = [(I + l)/2]

Proof. We observe first that I* = (lhx + (I - 1) h2 H h 2/^_! +
/&,)"• = Zftj + (I - Vjh^ + +2h2 + K= -I. Every element of the
subgroup G' of G acts by a conjugation in 8 [6, (3.5)], so / is a fixed
point of every element of G'. G is generated by G' and certain auto-
morphisms leaving © = Σ K^i pointwise fixed, so / is fixed under
every element of G. On the other hand, if rj = στ, τ e G, then I77 =
( — J) τ — — J, so / is not fixed under ΎJ.

Relative to the bases chosen above for 8 and 8, every automor-
phism 7] of 8 has a matrix of the form
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( 8 ) Λ =

where i? is the matrix of the induced automorphism η in 8. We
have just seen that a1 = 1 if ??eG and ê  = —1 if ηeσG. For any
17, the characteristic polynomial of A is

where /(λ 37) is the characteristic polynomial of B. Thus for η e G,
the multiplicity of 1 as characteristic root of rj is exactly 1 less than
that for η. In particular, if \K\> I + I, n(G) g ί - 1 .

Now for r? e G, 3 £ ??0?), hence dim g(^) = dim g(^) - 1 (where
the bar denotes image under 8-^8) . Clearly g()?) gΞ g(o?), so I — 1 g
m(G) ^ w(G). Again, if | K \ > ί + 1, w(G) = i - 1.

On the other hand, if η e σG, 3 Π S(̂ ?) = 0, so dimg(^) = dimg(^) ^
dimg(^), and m(σG) ^ [(ί + l)/2]. By (9), the multiplicity of 1 as
characteristic root must be the same for η and rj. Hence if K is in-
finite, then n(σG) - m(σG) = [(I + l)/2].

5. Simple algebras of types B, C, D. Let 8^ be simple of type
Bt9 Cu or Dt. Then 8 can be taken to be the Lie algebra of n x n
matrices X over K (n - 21 or 21 + 1) such that X - -S^X'S, where
X ' is the transpose of X, and S is

1 0 0

0 0 7,

0 /, 0J

0
or

0

0.

in the respective cases J5, C, or J). If A is any matrix such that
ASA' = S, then X—> A~XXA is an automorphism of S, and, as for type
Au is in the Chevalley group. We will select in each case a diagonal
matrix A which defines an automorphism of 8 having ί-dimensional
fixed point space, after discarding a suitable number of small fields.
The orthogonality condition requires that A be of the form diag {au

α2, , au aϊ1, aΐ1, , aj1} in cases C and D and of the form diag {1,
α2, α3, , aι+lf ai\ , af^} in case B.

THEOREM 5. Let 2 be a simple classical Lie algebra of type Bu

Cu or Dι over a field K, and let G be its Chevalley group. Then

n(G) = m(G) = I if \K\ > 21, 21 + 1, or 21 — 1 in the respective cases

Bu Cu A
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Proof. First consider case C. Denoting matrix units by eij9 a
basis for £ [7, § XVII] is

"*% — &ii ei+l,i+l \

e(-i>3) ~ eίj &j+l,i + lf > 1 Φ 3 \

e(-i,-j) = βi,j+ι + ej,i+ι , i <j

eu, j) = β i + I, j + ej+h i , i < i

e(2i) —

where in all cases ί,j = 1, 2, •••, I. If we choose A as above, then
conjugation by A acts diagonally, leaving the ht fixed, and the re-
maining diagonal elements have the forms aτxai9 a^aj1, a^j (i Φ j),
aγ2, a\. Hence we wish to choose the a{ so that no a{ is 0, 1, — 1 , or
af1 for j Φ i; in other words, so that

The left-hand side of this inequality is a polynomial of degree 21 + 1
in each of the aim Thus there exist such elements in K if | K | > 21 + 1.

The details for types B and D are similar, and appropriate bases
are given in [7, § XVII], For type B the same conditions are obtained
except that some a{ may be — 1 . Hence \K\> 21 suffices. For type
D, both 1 and —1 are allowed, so \K\ > 21 — 1 suffices.

REMARK. Professor G. B. Seligman has communicated to the
author a proof that m(G) = I when 2 is of type Bι? Cu or Dlf over
any field K of characteristic Φ 2 or 3. His proof is a natural analog
of the first part of the proof of Theorem 3, although the details are
naturally more complicated. As in Theorem 3, this approach does not
yield n(G) = I.
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HOMOGENEOUS QUASIGROUPS

SHERMAN K. STEIN

A mathematical system whose group of automorphisms is transitive
we will call homogeneous. If the group of automorphisms is doubly
transitive, then we will call the system doubly homogeneous. We ex-
amine here homogeneous and doubly homogeneous finite quasigroups.

We prove that there are no homogeneous quasigroups whose order
is twice an odd number (Theorem 1.1). As the quasigroups satisfying
the identity X(YZ) = XY-XZ show, there are homogeneous quasi-
groups of all other orders ([5], p. 236).

We then examine doubly homogeneous quasigroups and show that
they are intimately connected with nearfields (Theorem 2.2). Since all
finite nearfields are known, we thus have a complete description of
the doubly homogeneous quasigroups.

In the last two sections we obtain various equivalent descriptions
of double homogeneity and apply them to the construction of block
designs and models for certain identities.

1* Homogeneous quasigroups* In this section two theorems are
obtained that generalize results concerning distributive quasigroups.

THEOREM 1.1. There is no homogeneous quasίgroup of order
4k + 2.

Proof. Let (Q, o) be a homogeneous quasigroup of order 4fc + 2.
We first construct out of this quasigroup an idempotent homogeneous
quasigroup of order 4fc + 2.

Define / : Q —> Q by f(x) — χoχ. We assert that / is onto Q, and
hence a bisection. Indeed, let a be a fixed element of Q, b = αoα, c
an arbitrary element of Q, g an automorphism of (Q, o) such that g(b)
= c. We then have

c = g(b) = g(aoa) = g{a)og(d) = f(g(a)) .

Thus / is onto Q.
We thus can define a quasigroup (Q, 0 ) , isotopic to (Q, o), by

f(x)Θf(y) = xoy. Since f(x)Θf(x) - χoχ=f(χ), (Q, 0 ) is idempotent.
Moreover, if g is an automorphism of (Q, o), it is also an automorphism
of (G, 0) , since
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o(f(χ))ΘΛv)) = g(v°v) = 9(χ)

and

^)) = (g(x)og(χ))Q(g(y)og(y))

= 9(X)°9(V) .

Thus (Q, Θ) is an idempotent homogeneous quasigroup of order 4ifc + 2.
By ([5], p. 237), such quasigroups do not exist, and the theorem is
proved.

As was shown in [6], if Q is a left-distributive quasigroup, then
there is a quasigroup A! orthogonal to it. The next theorem gener-
ralizes this fact. The proof makes use of the notion of transversal
for a quasigroup, (Q, o), of order n. A transversal for (Q, o) is a set
T c Q x Q, T ={(&!, 2/i), , (xn, yn)} such that «< = av implies i = i',

j / y = I/,-/ implies j = i', and xioyi = xόoy3- implies i = j . It is easily-
seen that there is a quasigroup orthogonal to (ζ), o) if and only if
there are w disjoint transversals for Q.

THEOREM 1.2. // (Q, o) is α quasigroup of order n possessing a
transitive set of n automorphisms, then there is a quasigroup or-
thogonal to it.

Proof. Let Φu φif , φn be a transitive set of n automorphisms
of (Q, o) and Q = {6X, 6a> , bn}. We shall define n disjoint transversals
for Q, Γ(l), T(2), , Γ(^), where T(k) c Q ' x Q , t = l ,2, ,w. Select
α 6 Q and let

The first coordinates of the n elements of T(k) are distinct and so are
the second coordinates also T(i) Γϊ T(j) = Φ iί i ^ j .

It must be shown that Φi(a) o ̂ ^6^ = φό{a) o ̂ (̂6 )̂ implies that i = j .
From the assumed equation it follows that Φi(aobk) = Φj(aohk). Since
the w automorphisms ^ , , Φn are transitive on a set of w elements, it
follows that if Φι and φs agree on a single element of Q then Φι — φό

thus Φi = Φj, and the theorem is proved.

2* Relations between doubly homogeneous quasigroups and
nearfϊelds* Consider a finite doubly homogeneous groupoid (G, o). For
any order n the two groupoids defined by χoy = x O r χoy — y are
doubly homogeneous (in fact any bijection of G is an automorphism of
(G, o)). Also the groupoid of order 2 given by l o l = 2, 2o2 = l,
1©2 — 2, 2 o l = i ? and its transpose are doubly homogeneous. We will
show that the only other doubly homogeneous groupoids are quasigroups
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THEOREM 2.1. A doubly homogeneous groupoid (G, o) is either:
(i) The groupoid defined by x o y = χ9 for all x, y eG,
(ii) The groupoid defined by χoy = y for all x,yeG,
(iii) An idempotent doubly homogeneous quasigroup, or
(iv) A groupoid isomorphic to the groupoid defined above.

Proof. First let us show that if the order of G is at least 3,
then (G, o) is idempotent. To do so, let c, deG, c Φ d, coc — d. Let
•eeG, e Φ c, d, and Φ be an automorphism of (G, o) such that

Φ(c) = c, 0(<Z) = e .

Then we have

coc = d and coc = ψ(c)o0(c) = ^(coc) = 0(cZ) — e

a contradiction that implies coc — c.
Assume that α, 6eG, a Φ b. If αo& = α, then the double homo-

geneity of ((?, o) implies that χoy •= x for all x,yeG. Similarly, if
aob — b, then χoy = y for all x,yeG.

Consider finally the case, aob = c9 c Φ afb. Double homogeneity
implies that the equations AoY — C and XoB = C have solutions, X,
Y if A Φ C, B Φ C. Combining this with the idempotency of (G, o),

we see that if (G, o) has order at least 3, then it is a quasigroup.

The case of order 2 is left to the reader.

In view of Theorem 2.1, we will examine doubly homogeneous
quasigroups.

In the rest of this paper we will generally assume that all quasi-
groups are idempotent. An idempotent quasigroup that can be gen-
erated by two elements will be called a two-generated quasigroup. A
two-quasigroup is a doubly homogeneous two-generated quasigroup. We
will show that two-quasigroups and finite nearfields are closely related.

A finite near field, S, consists of a finite set S and two binary
operations, + and ., defined on all of S. The operation + is an abelian
group, the operation ., restricted to S — {0} is a group, and left dis-
tributivity holds, a(b + c) = ab + ac. From these conditions it follows
that αO = 0 = Oα and ( - l ) α = - a = α ( - l ) (see [8, pp. 188-190]), and
that the equation ax + bx = c has a unique solution if a + b Φ 0. More-
over, it is implicit in [8] that a finite nearfield has a primitive element.

THEOREM 2.2. If (S, o) is a two-quasigroup, then there is a near-
field (S, + , .) and primitive element k such that χoy = χ + (y — χ)k.
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The automorphisms of {S, ©) are of the form Φ(x) = a + bx.

Proof. The group G of automorphisms of (S, o) is doubly transi-
tive and only the identity automorphism fixes two elements of S. Such
a group of permutations on a finite set determines a near field as fol-
lows ([9], p. 25, [2], pp. 385-388).

The elements of G leaving no elements fixed, together with the
identity transformation, form an abelian, simply transitive normal sub-
group N of G. Select an element 0 e S. We define x + y as follows.
There is a unique σ e N, such that σ(0) = x define x + y to be σ(i/).

We define $ 2/ as follows. Select 1 e S, 1 Φ 0. Define a? j/ to
be τ(y) where τ(0) = 0, r(l) = x. Then (S, + , .) is a nearfield. More-
over, since σ(x) = x + b and τ(x) = ax (a Φ 0) are automorphisms of
(S, o), then so is 0(#) = ax + 6. Since there are (w) (w — 1) such ^'s,
where n is the cardinality of S, it follows that every automorphism
of (S, o) has the form Φ(x) — ax + b.

Next, we express the quasigroup (S, °) in terms of the nearfield
(S, + , .) just constructed. Let Ool = k. If x, ye S, x Φ y, let Φ be
the automorphism of (S, 0) such thar ^(0) = x, Φ(ϊ) = y, that is, Φ(u)
= x + (y — x)u for all ue S. Then we have

x°y = ^(0)o^(l) = 0(0ol) = 0(fc) = « + ( ] / - x)fc, (x Φ y).

Since α?oα? = ^ + (x — x)k, (S, o) is of the asserted form.

COROLLARY 2.3. A commutative two-quasigroup (Q, o) is of (odd)
prime order, p, and is expressible in terms of GF(p), the Galois
field of p elements, by the formula x o y = (x + y)/2.

Proof. (Q, o) is expressible in terms of a nearfield (Q, + , .) by
the formula χoy = x + {y — x)k. Since (Q, o) is commutative, Ool =
Io0. Thus

k = Ool = l o 0 = 1 -k ,

hence

k+k=1.

By left distributivity k 2 = 1. Now, the element 1 in any finite
nearfield generates a Galois field with a prime number of elements, say
p elements. The equation k 2 = 1 shows that p Φ 2 and that k is an
element of that Galois field. Since k is a primitive element of (Q,
+ , .), we see that (Q, + , .) is the Galois field with p elements, and
χoy =zχ + (y - a)(l/2) = (a? + !/)/2.

The next corollary relates doubly homogeneity to the identity
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(χoy)o(zow) — (χoz)o(yow), which has several names, including "the
medial law".

COROLLARY 2.4. A two-generated quasίgroup (S, °) of prime
order p, is medial if and only if it is doubly homogeneous.

Proof. If (S, o) is doubly homogeneous, then it is of the form
% + (v — %)k, for some nearfield. But the only near fields of prime
order are the Galois fields. Thus x o y = (1 — k)x + ky and a simple
computation shows that satisfies the identity (x o y) o (z o w) = (x o z) o (y o w)
Hence (S, o) is medial.

Conversely, if (S, o) is medial, it is of the form χoy = ̂ 4(α?) + -£?(?/)
where (£?, +) is an abelian group on p elements, and A and B are
automorphisms of (S, +) such that A(x) + B(x) = #, for all # e S (see
[4]). But (S, +) can be imbedded in the larger structure (S, +, .)>
the Galois field of p elements, in such a way that every automorphism,
Φ, of (S, +) is of the form φx = αα? for some α e S . Thus A(a?) =
(1 — k)x and S(α?) = kx for some fc. Hence we have χoy = χ + (y — χ)k
and so (£, o) is doubly homogeneous.

THEOREM 2.5. Lei (S, +, .) Iβ α .^wiίe nearfield and keS, kφ
0, 1. Define a binary operation o on Sby x°y — x + (y — x)k. Then
(S, o) is α doubly homogeneous quasigroup. (S>, o) is α two-quasigroup
if and only if k is a primitive element of S.

Proof. It is easy to see that (S, ©) is a quasigroup. For example,
if xoy = χΌy9 then

# + (!/ — #)& = %>' + (1/ — «')*

and so

(x - α') = (x - y)k + (y - x')k .

But we also have

(x - x') = (x - y)l + (y - x')l .

By the definition of a nearfield and the fact that k Φ 1, we obtain
x = xf.

For a,beS, a Φ 0, define ^: S -> S by Φ(x) = ax + b. Each ^
is an automorphism of (S, o) and the collection of all such ^'s is doubly
transitive on S. Thus (S, °) is a doubly homogeneous quasigroup.

If (S, o) is a two-quasigroup, it is generated, as a quasigroup, by
any two of its elements, in particularly by {0, 1}. Now, the nearfield
in (Sf +, .) generated by k contains 0 and 1; thus k is a primitive



1096 SHERMAN K. STEIN

element of (S, + , .) Finally, we must show that if k is a primitive
element of (S, +, .), then {0, 1} generates the quasigroup (S, o). To
do so, let (T, o) be the subquasigroup of (S, ©) generated by {0, 1}.
We will show that T = S.

First of all, (Γ, o) is doubly homogeneous. Indeed, if α, δe T,
aΦ bf and 0 is an automorphism of (S, ©) such that 0(0) — α, 0(1) = δ,
then 0(T) is contained in the quasigroup generated by {α, 6}. Since
T and φ(T) have the same cardinality, Φ(T) — T, and φ \ T is an auto-
morphism of (Γ, o), taking 0 into α, and 1 into δ.

Thus, by Theorem 2.2, (Γ, o) is related to a nearfield (Γ, 0 , Θ>
by the formula xoy = a? 0 (y Q x) 0 k', where (T, 0 , 0 ) can be chosen
to have the same 0 and 1 as (S, +, .) [©denotes subtraction in (Γ,
0 , Θ)] We will show that 0 and 0 are restrictions of + and .,
and thus ( Γ , φ 0 ) is a subnearfield of (S, +, .).

Note first that since O©(10O)0fc ' = Ool = O + ( l - 0)k, we
have k = kf and thus fee T. Next we will show that xφy = x + y and

xQy = x .y for all x,ye T.

For a? = 0, it is obvious that x®y = x + y. Let x e T, x Φ 0,
and ^: S —> S be the automorphism of (S, o) given by φ(y) = x + y*
Then Φ\T is an automorphism of (T, o) without fixed points. Thus
(φ \T)y = u®y for some fixed u e T a n d all i/eΓ. Since u = (Φ\T) (0) =
0(0) = x, we have u = x. Thus α? © 1/ = (̂  | Γ)τ/ = (̂i/) = x + # for
all x,yeT.

To show xQy — x y for all x, ye T, we proceed similarly. For
x = 0 or 1 the statement is trivial. Let x Φ 0, 1, x e T. Let Φ : S—> S
be defined by Φ(y) — x y. Then φ \ T is an automorphism of (Γ, o)
with the one fixed element, 0. Thus (Φ \ T)(y) — uQy for some u+
Since u = u 0 1 = (Φ \ T)(l) = ^(1) = x 1 = x, we have u = x. Hence
xΘv = (Φ\T)y = Φ{y) = x -y, for all x,yeT.

Thus (Γ, ©, Θ) is a subnearfield of (S, +, .) and contains the
element k. Since k is a primitive element of the nearfield S, we must
have S — T. Thus (S, o) is generated by {0, 1} and therefore is a
two-quasigroup.

COROLLARY 2.6. If k is a primitive element of a nearfield S,
then {0, k} generates S by the single binary operation x o y = α; -f

The relation between quasigroups and near fields is shown further

in the following theorems. For simplicity if k is an element of a

nearfield (Q, + , .), then the quasigroup (Q, o) defined by χoy = x +

(# — »)]fc we denote Q(k).

THEOREM 2.7. / / (Q, +, .) is a nearfield, k,k'eQ and Φ: Q-^Q
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is an automorphism of (Q, + , .) such that φ(k) = k', then Φ is an
isomorphism between Q(k) and Q(k').

Proof. Let o denote multiplication in Q(k) and 0 denote multi-
plication in Q{k'). Then Φ{χoy) = φ(x + (y - x)k) = φ(x) + (Φ(y) -
Φ(x))k' = Φ{x)QΦ{y). Thus ^ is an isomorphism of Q(k) onto Q(fc')

The next theorem is the converse of Theorem 2.7.

THEOREM 2.8. / / (Q, + , .) is a near field, k, k! are primitive
elements of (Q, + , .), and Q(k) is isomorphic to Q(fc'), then there is
an automorphism φ of (Q, + , .) such that φ(k) = k'.

Proof. Let a : Q(k) —• Q{kf) be an isomorphism between the quasi-
groups Q(k) and Q{kf). Let o and 0 be the operations in Q{k), Q{k')
respectively. Since Q(k) is doubly homogeneous, we may assume that
α(0) = 0 and α(l) = 1. Then

a(k) = α(0 1) = α(O)0α(l) = 0 0 1 = ^

We will show that a is an automorphism of {Q, + , .).
Let σ be an antomorphism of Q(k) defined by σ(x) = x + 6, b Φ 0.

Then, aaar1, being an automorphism of Q(fc') and having no fixed ele-
ments, is of the form x—>x + c for some fixed c. Thus aσ(t) = a{t) + c
for all teQ equivalently, α(ί + b) = α(ί) + c. In particular, α(δ) =
α(0 + δ) = α(0) + c = c, and we have a(t + b) = a(t) + α(δ). That is,
a is an automorphism of (Q, + ) .

Similarly, let σ: Q(&) —• Q(k) be given by σ(x) = αx. Since σ is
an automorphism of Q(&) with σ(0) = 0, ασα""1 is an automorphism τ
of Q{kf) with r(0) = 0. Thus τ{x) = a'x for some a' e Q. We have

) = τα(tτ), or equivalently, a(ax) = a'a(x). But a(l) = 1 hence
= α(α 1) = α'α(l) = α' 1 = α'. Thus α(αa ) = α(α)α(aj), and α is

an automorphism of (Q, •)• This ends the proof.
As another application of Theorem 2.2 we have

THEOREM 2.9. A1 left-distributive two-quasigroup is medial (hence
right-distributive).

Proof. Let (Q, o) be a left-distributive two-quasigroup. By
Theorem 2.2, χoy = x + (y — a )fc for some nearfield (Q, + , .). Since
left translation by 0 is an automorphism of (Q, o)9 there exist a,beQ
such that

0oχ = a + bx for all xe Q.
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Thus xk = a + bx for all x e Q.
It is easy to see that a = 0 and 6 = fe, by letting a? = 0,1. Thus

xk = &# for all #e Q. Since & is a primitive element of (Q, +, .), the
nearfield in question is commutative, hence a field. The theorem follows
immediately.

It might be remarked that a quasigroup and its conjugates [5]
have the same automorphisms. Thus the conjugate of a two-quasigroup
is a two-quasigroup. If x o y = z then two of the six conjugate opera-
tions, a and β, are defined by xaz = # and j/#δ = a?. Here a and /3
denote division on the left and right respectively. It turns out that
a and β are easily expressed in terms of the nearfield describing o.
For if xoy — x + (y — x)k = z, then y = x + (z — x)k~ι. Also, it can
be shown that if xoy — z then x — y + (z —

3* Two-homogeneity and identities* Let Q be a finite idem-
potent quasigroup and Φ(Q) be the identities valid on Q [7]. Let F be
the free groupoid on two generators x, y and F(Q) be the homomorphic
image of F obtained from F through factoring F by Φ(Q). That is,
define an equivalence relation, ^ , on ί7 as follows: If U, Ve F and
U= V is an identity valid on Q, write U~ V. Then F(Q) is F / ~ .
It is easily seen that F(Q) is a finite idempotent quasigroup. Note
also that if Ue F and a,beQ, then replacement of x and ?/ in ί7 by
a and 6 defines an element in Q we denote this element, U(a, 6).
We may denote U itself as U(x, y). lί Ue F, then U determines a
unique element of F(Q), denoted U.

THEOREM 3.1. Let Q be a quasigroup generated by {α, &}, and
assume that for all U, Ve F such that U(a, b) = V{a, 6), one also
has the identity U(x, y) = V(x, y) valid on Q. Then Q is isomorphic
to F(Q). The converse holds.

Proof. Since Q satisfies all the identities that F(Q) satisfies, there
is a homomorphism h : F(Q) —• Q such that h(x) = a, h(y) = 6. Also
we can define a function k; Q-+ F(Q) by setting &(α) = 2? and k(b) = #,
and extending this assignment to a homomorphism. (The possibility
of defining this k is equivalent to the hypothesis made on a and b.)
Clearly h and k are inverse to each other, hence isomorphisms.

Conversely, assume that h: F(Q) —> Q is an isomorphism. Let

a = h(x), b = h(y). If ί/(α, &) = V(a, 6), then λ[ϋ(«Γί)] = h[V(x^y)].
Since fc is an injection, U(x9 y) = F(a?, #). Thus ?7^ F, which was
to be proved.

COROLLARY 3.2. A two-quasigroup Q is isomorphic to F(Q).
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It should be noted that for a quasigroup Q, F(Q) is doubly homo-
geneous if and only if it is generated by any pair of elements. And
when F(Q) is a two-quasigroup, any two elements of Q generate a quasi-
group isomophic to F(Q).

COROLLARY 3.3. Two two-quasigroups are isomorphic if and only
if they have the same identities in two variables.

COROLLARY 3.4. A two-generated quasigroup Q is doubly homo-
geneous if and only if for all distinct a,beQ and all distinct c,
deQ, U(a, b) = V(a, b) is equivalent to U{c, d) = V(c, d) for all terms
U, V in two variables.

Proof. Clearly, if {a, b) generates Q, so does {c, d}. Then apply
Theorem 3.1 and the remarks preceding Corollary 3.3.

As already mentioned, a two-quasigroup is defined by its identities
in two variables. In fact, if Q is a two-quasigroup of order n, then
Q can be defined by ri* — n + 1 identities, namely the identity X2 = X
and an identity corresponding to each product v,i(a, b) ud(af b) = uk(a, 6),
i Φ j , where each element of Q is represented in the form us(a, b) for
some term in a and b. Let us consider, for example, the only two-
quasigroup of order four, Q, given by:

a

b

ab

ba

a

a

ba

b

ab

b

ab

b

ba

a

ab

ba

a

ab

b

ba

b

ab

a

ba

Since a ab = ba and ab ba = a, Q satisfies the identities:
(i) X-XY= ΓXand
(ii) XY-YX=X. We will show that (i) and (ii) are sufficient

to reconstruct the multiplication table for Q. This will be useful in § 4.

THEOREM 3.5. A finite groupoid Q' satisfying the identities (i),
X ' XY — XY and (ii), XY - YX = X is a quasigroup. Moreover
any two distinct element a,beQ' generate a quasigroup Q" described
by the preceding multiplication table.

Proof. Let L and R be a left-and right translation in Qf by
the same element. By (i), LL = R. We prove that L is an injection.

Let c, d, ee Q' and cd = ce. We will show that d = e. We have
c cd = c ce and, by (i), dc = ec. Thus dc cd = ec ce. By (ii),
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d = e. Thus Q' is a quasigroup.
Since Q' satisfies X X 7 = 7X, it satisfies X XX = XX. Since

Q' is a quasigroup it must therefore satisfy XX = X thus Qr is
idempotent.

We next show that distinct elements of Qr do not commute. As-
sume that c, d e Qf, cd = dc. Then, by (ii) we have c = cd cίc =
dc cd = d.

Now let us examine the quasigroup Q" generated by a and 6.
First of all, Q" is an idempotent quasigroup and ab φ ba. Thus Q"
has at least the four distinct elements a, 6, ab, ba. We will show that
Q" has no more elements.

From (i) and (ii) we obtain XY(XY YX) = XY - X, hence YX.
1 7 - 1 7 X and thus Y = XY - X. From 7 = I 7 I follows
Y = X 7X [7]. Also, I 7 7 - 1 7 ( 1 7 . X) = X . X 7 = YX.

From these identities follow: aa = α, 66 = 6, ab - ab = ab, ba 6α
= δα a - ab — ba, a δα — 6, b - ab = a, b ba — ab; ab α — 6, αδ 6

= 6α, α6 6α = α ba > a — ab, ba 6 = α, 6α α6 = 6. Thus Q' has
only the four elements α, 6, αδ, 6α. Moreover its multiplication table
is the one already given.

4* Block designs and quasigroups* By a pairwse balanced in-
complete block design on a set S we will mean a family of subsets
Bl9 B2, , Br of S, each containing the same number of elements,
k > 3, such that each pair of elements of S is a subset of exactly
one of the J5's. If (S, ©) is a doubly homogeneous quasigroup, then
the two-generated subquasigroups of S form a pairwise balanced in-
complete block design (for brevity, block design). Calling the card-
inality of S, v, we then have a doubly transitive block design B(k, v)
where k, incidentally, is a power of a prime. The following theorems
show various relations between block designs and algebraic aspects of
quasigroups.

THEOREM 4.1. A two-generated quasigroup Q is doubly homo-
geneous (hence a two-quasigroup) if and only if the two-generated
subquasigroups ofQxQ all have the same order.

Proof. Assume that Q is a two-quasigroup of cardinality q. Con-
sider the quasigroup Q* c Q x Q generated by {(a, c), (6, d)}, where
a, 6, c, and d are distinct. Let π : Q x Q —•> Q be the projection defined
by 7ϋ(ql9 q2) = qx. Then π(Q*) = Q since Q is generated by any two of
its elements, in particular, a and 6. Now, for any U and V, terms
in the variables x and y, U((a, c), (6, d)) = V((a, c), (6, d)) if and only
if, U(a, 6) = V(a, 6) and U(c, d) = F(c, rf). By Corollary 3.4, U(a, b)
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= V(a, b) if and only if U{c, d) = V(c, d). Thus π is an isomorphism
onto Q, and {{a, c), (6, d)} generates a quasigroup of order q. Special
cases such as {(α, 6), (6, 6)}, {{a, 6), (α, 6)} or {(a, b), {c9 a)} are easily
disposed of.

Conversely, assume that ζ)*, of order q, is two-generated and that
every two elements of Q x Q generate a quasigroup of the same order,
necessarily q. We will show that Q is doubly homogeneous. Let {alr

a2) and {bu b2} be two distinct pairs of elements of Q, ax Φ a2, bλ Φ b2.
Then a — (au a2) and c — (blf a2) generate a quasigroup of order q
thus a and b = (bu b2) generate a quasigroup Q* such that τr(Q*) = Q.
This implies that two elements of Q* are equal if their first coordinates
are equal. Thus U(al9 bj = V(au bj is equivalent to U(a2, b2) — V(a2, 62).
By Corollary 3.4, Q is a two-quasigroup.

The notion of two-quasigroup can be used to give a simple proof
of the following combinatorial theorem due to Skolem [1, p. 183].

THEOREM 4.2 If k is a prime power and B(k, vx) and B(k, v2)
exist, then B(k, vλv2) exists.

Proof. Let B(k, v{) be a block design on the set Sif i — 1, 2. Select
a two-quasigroup Q of order k. On each block of B(k, vx) and B(k, v2)
define a quasigroup isomorphic to Q. This defines on Si a quasigroup
Qiy i = 1, 2, such that every two elements of Si generate a quasigroup
isomorphic to Q. Every two elements of Qx x Q2 generate a quasigroup
R satisfying all the identities that Q satisfies. Since Q — F(Q), R is
a homomorphic image of Q. As a two-quasigroup contains no proper
subquasigroups, (other than those with one element), R is isomorphic
to Q. This shows that on Si x S2 there is a B(k, v±v2).

THEOREM 4.3. There is a quasigroup of order v satisfying the
identities X XY = YX and I 7 YX= X if and only if v = 12n + 1
or v — 12n + 4.

Proof. Recalling the example at the end of I 3 and the argument

in the proof of Theorem 4.2, we see that such quasigroups exist if and
only if there is a B(4, v). As Hanani proved in [3], a B(4, v) exists
if and only if v — 12n + 1 or v = 12n + 4.

Similar reasoning shows that if an identity in two letters has a
two-quasigroup model of order k, and there is a B(k, v), then the
identity has a model of order v. In particular, since X XY— YX
has a two-quasigroup model of order 5, it has, by [3], models of all
orders of the form 2Qn + 1 or 20w + 5 (except possibly 141).
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ON THE LOCATION OF THE ZEROS OF
SOME INFRAPOLYNOMIALS

WITH PRESCRIBED COEFFICIENTS

J. L. WALSH AND 0. SHISHA

l Various results have been obtained regarding the zeros of infra-
polynomials with prescribed coefficients. (See e.g. [Walsh, 1958], [Walsh
and Zedek, 1956], [Fekete and Walsh, 1957], [Shisha and Walsh, 1961,
1963], and [Shisha, 1962]). Our purpose in the present note is twofold:

(i) to contribute more deeply to that study, making use of some
properties of polynomials and rational functions, and

(ii) conversely, further to show how results concerning infra-
polynomials can be used in the investigation of some rational functions
and in particular some combinations of a polynomial and its derivative.

2 We repeat here the underlying definition. Let n and q be
natural numbers (q ^ n), nl9 n2, , nq integers such that 0 ^
nλ < n2 < nq g n, and S a pointset in the (open) complex plane. An
nth infrapolynomial on S with respect to (nlf n2, , nq) is a polynomial
A(z) = Σv=o <̂ v2v having the property: There does not exist a polynomial
B{z) = Σ?=oMv such that B{z) ξέ A(z), bnv = α»v (v = 1, 2, , q),
I B(z) I < I A(z) I whenever z e S and A(z) Φ 0, and B(z) = 0 whenever
zeS and A(z) = 0.

3* Of special importance among the above sequences (nl9 n2, , nq),
are "simple ^-sequences" [Shisha and Walsh, 1961]. Given a natural
number n, we define a "simple ^-sequence" to be a sequence having
one of the forms (0, 1, , k, n - I, n - I + 1, , n) [k ^ 0, I ^ 0,
k + l + 2^ri\; (0, 1, ••-,&) [0 ^ k < n]; (n - I, n - I + 1, , n)
[0 S I < ri\. We shall consider wth infrapolynomials on some special
sets S with respect to simple ^-sequences σ. The sets S will consist
of n — s + 2 points, where s is the number of elements of σ, and S
will be required not to contain the origin, in case σ contains zero.
As explained in the Introduction to the last mentioned paper, this
particular situation is of special importance, as the general case is to
a large extent reducible to it, and as these particular nth infrapolynomials
are closely related to certain combinations of a polynomial and its
derivative. Numerous results on such combinations exist in the litera-
ture.

Received May 2, 1963. This research was supported (in part) by the U.S. Air Force
through the Air Force Office of Scientific Research.
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4* THEOREM. Let n be a natural number, σ a simple n-sequence,
s its number of elements. Let S = {zlf z2, , zn-s+2} be a set of
n — s + 2 (distinct) points of the (open) complex plane, and set
δ(z) Ξ Πv=ί+2 (z - zv). In case σ = (0,1, , k) or a = (0,1, , k,
n — I, n — I + 1, , n) set K = k + 1. In case Ogσ, set K— 0
(Thus K = min [v,v£σ, v = 0,1, 2, •]). Also, in case Oeσ, assume
0 g S. Let A(z) = Σv =o ̂ v2v be an nth infrapolynomial on S with
respect to σ.

Then [by Theorem 1, Shisha and Walsh, 1961] one can set

{ 1) A(z) = P(z)g(z) + azκ * Σ ' \Φ)K* ~ *v) .

i, λa, •• ,λn-β + a are nonnegative reals with Σv=ί+ 2λ v = 1, a is
a complex number, and P(z) is a polynomial of degree1 ^ s - 1 such
that P(z)g(z) + az

κ+n~8+1 is of degree ^ n.2

I. Let S be contained in a disc C: \ z — c \ ̂  r. Then every
zero ζ($C) of A(z) satisfies

< 2 ) \P(Q + (ζ - c)aζ*/{\ζ - c | 2 - r 2 } | ^ r | α ζ ' | / { | ζ - c |2 - r2} .

If K = 0, and if a zero ζ o/ A(^) satisfies r <. p± ^ \ζ — c\ ^ p2,
then I α I/{ft + r} ^ | P(ζ) | ^ | α: |/(ft - r) i.e. (in case a Φ 0 and P(z)
is not a constant) ζ ϊΐes m the closed interior of the lemniscate
I p(z) I — I a I/(ft — r), awd w ί/̂ β closed exterior of the lemniscate

II. Lei P(^) Ξ βz* + T^;'"1 + (ί ^ 0, /3 ̂  0), and suppose that
S and all the zeros of P(z) lie in some closed disc C, and that a Φ 0,
K—Q. Let wl9 w2, , wt+1 be distinct solutions of wt+1 — — a/β.
Then every zero (ίC) of A(z) lies in \J\t\(wv + C).3

III. Suppose that A(z) is a real polynomial,4 and that a Φ 0.
Assume, furthermore, that P(z)/(ctzκ) is of the form A + Σv=i ^v^v +
Σί=i Bvz~v with all Re(Av) ^ 0 and all Re(Bv) ^ 0. Let z0 be a non-real
zero of A(z) satisfying | arg z0 \ ̂  min (π/p, τr/g).5 Then z0 belongs to
-at least one (Jensen) disc

( 3 )
Δ

1 Degree of a polynomial means its exact degree. The polynomial 0 is assigned the
degree —1.

2 One can show that a and P(z) are uniquely determined, and in case a Φ 0, so are
2ίj λϊ, * *, λn—s+2.

3 wv + C denotes the closed disc consisting of all points wv + z, zeC.
4 i.e. the coefficients of A{z) are real.
5 arg denotes the principal value of the argument.
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In particular, if p ~ q = 1, every non-real zero of A(z) belongs to at
least one of these discs.

IV. Suppose that A(z) is a real polynomial, a Φ 0, and that
P(z)/(azκ) is of the form Σ?=o A^ + Σί=i ^ ~ v (p ^ 0, q ^ 2) with
all Re(Av) ^ 0 and all Re{Bv) ^ 0. Suppose furthermore that λv > 0
implies Re{zv) > 0 (v = 1, 2, , w — s + 2). Lei 20 6e α non-real
zero of A(z) satisfying \ arg£01 ^ min {π/(p + 1), π/(q — 1)}. 7%β%:

A. There exists a v, l^v^n~s + 2, Im(zv) Φ 0, such that z0

belongs to the closed interior of the circle passing through zv and ~zv

and tangent to the line 0zv.

B. If neither zQ nor ~zQ belongs to S, one can choose v so that
λv > 0, and therefore Re(z0) > 0.

V. Suppose that S is a real set contained in a finite interval
J: ojj. rg x ^ x2, that A(z) is a real polynomial, and that K = 0.
Suppose P(z) is of the form βzt + ΊZ^1 + (t ^ 0, β Φ 0), and that
all zeros of P(z) lie in the above interval. Then every real zero ($ J)
of A(z) is of the form ξ + ω where ξ e J and ω is a real number
satisfying ωt+1 = —a/β. Thus, if t is odd and aβ > 0, all real
zeros of A(z) lie in J.

5. Proof of Part I. Let ζ ( ί C) be a zero of A(z). Then by (1),

P(ζ) + aζκ T λv/(ζ - zv) - 0 .
V = l

By a result due to Walsh [cf. 1950, § 1.5.1, Lemma 1]

By an elementary mapping property of the function 1/z we have

- ^) - (C - c)/{|ζ - c | 2 - r 2} | ^ r/{|ζ - c(2 - r2} ,

from which (2) follows. The rest of part I is easily obtained from (2).

Proof of Part II. Let ζ ( ί C) be a zero of A(z). Again we have
a relation (4), which implies P(ζ)(ζ — s') = — α. Furthermore, the last
left hand side can be written [Walsh, 1922] β(ζ - η)t+1 with ηeC.
Hence ζ e U S (w> + C).

Proof of Part III. We may assume g(z0) Φ 0, g(z0) Φ 0. Since
ϊ = A(z0) = 0, we have by (1),
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0 = P(zo)/(aFo«) + f λv/(z0 -
l

V = l V = l

V q

— A I V A ^v I V
v=i v=i v^i

q

- 2V)-X + (Zo - 2,)"1}
v=i

By theorem 21 [Shisha and Walsh, 1961], there exists a v (with λv > 0) 1
such that z0 lies in (3).

Similarly, using Theorem 22 [loc. cit.] one proves Part IV.6

Proof of Part V. Let ζ (g J ) be a real zero of A(z). Then
ί>(ζ) + <*Σv=ί+2 V ( ζ - *v) = 0. Now, Σv=ί+2λv/(ζ - zv) can be written
as l/(ζ — x')9 x' G J . Also, since all zeros of P(z) lie in J, one can
set P(ζ)(ζ - a;') - β(ζ - ξ)t+\ ξeJ. Setting ω = ζ - f, we have ζ -
f + ω, ω ί + 1 = -α//3.

6. We apply now our results to some special cases. We continue
to assume the contents of the first paragraph of the Theorem. Thus,
the contents of the second paragraph of the Theorem hold, too.

(a) Suppose σ — (n). If an = 0 then A(z) = 0, for otherwise the
polynomial B(z) = 0 would fulfill the properties stated at the end of
§ 2. We thus assume that an Φ 0. Then a~xA(z) is an infrapolynomial
("Extremalpolynom") on S in the sense of Fekete and von Neumann
[1922], Also one easily sees that P(z) = 0, a = an. By a known result
[loc. cit., p. 138, cf. also Fejer 1922] all zeros of A(z) belong to the
convex hull of S. Thus Parts I, II and V of the Theorem do not
apply. Parts III and IV do apply; but they can be derived from known
results [Fekete and von Neumann 1922 p. 138, and Walsh 1958 p. 305].
Thus, if z0 is a non-real zero of A(z), and if A(z) is a real polynomial,
then z0 belongs to at least one of the discs (1). If, in addition, λv > 0
implies Re(zv) > 0 (v = 1, 2, , n + 1), then A and B of Part IV hold.

(b) Suppose σ = (n — 1, n). Then s = 2, K = 0 and [Shisha and
Walsh 1961, p. 146]

6 Observe that if (i) A{z) is a real polynomial, (ii) a φ 0, and (iii) S is symmetric in.
the axis of reals, then (i) a is real, (ii) λ\, = λμ. if 2V = zJL, and (iii) g(z) and P(z) are real
polynomials. Indeed, suppose zv = zjl. Then (1) yields azξλ vg'izv) — A(zv) = A(zμ) =
azκ?ψgr(Z),). Thus, if a is real, λv = λμ.. To prove that a is real, choose vo, μo so that
λvQ > 0 and 2v0 = Zμ70. Then (ΛVo + λ^Imiμ) = 0, and therefore I miμ) = 0. From (1) we
see now that P(z)g(z) is a real polynomial; therefore, so is P(z).
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A(z) = ang(z) -

λv ^ 0, Σ?=i λv = 1. Thus, P(z) = an and a = an^ + an Σv=i Sv One
can apply Part I. Part II implies that if an Φ 0 and if S lies in a
closed disc C, then every zero ( ί C ) of A(z) lies in — (tf/αn) + C.
This, however, is a known result [loc. cit. Theorem 14, cf. also Walsh
1922 Theorem VI]. Again, the information we obtain from Part III
follows from known results [Fekete and Walsh 1957 Theorem X,
Fekete and von Neumann 1922 p. 138]. Assume that A(z) is a real
polynomial, a Φ 0, λv > 0 implies Re(zv) > 0 (v = 1, 2, , n), and
Re(aja) ^ 0 (i.e. if an Φ 0 then Σ ί U ^ Φ v ) ^ -an^/an). By Part IV
if 20 is an arbitrary non-real zero of A(z), then the conclusions A and
B there hold. Finally, one can apply also Part V.

(c) Suppose σ = (n — 2, n — 1, n). Then s = 3, K — 0. We set
P(z) = ^ + τz, so that (1) yields

n—1 w—1

Thus, setting σx — Σΐllzv, σ2 = ΣisyocSM-i^ϋj we have

A(z) = (p + τz)g(z)

Σv=

Σ
V = l

where

/? = anσλ + αw_ x, τ = αΛ , α =α%_ 2 + ^ ( α ^ + αw_i) - αwσ2 .

We may apply Parts I-V. For example, suppose that A(z) is a real
polynomial, that a Φ 0, and that either an = 0, or an Φ 0 and

(αw_2K) + {anjan) Re{σx) + Re{σ\ - σ2) ^ 0 .

Then Re(τ/a) ^ 0, and therefore, by Part III, every non-real zero of
A(z) belongs to at least one of the discs (3).

(d) Suppose σ — (n — 3, n — 2, n — 1, n). Here s = 4, if = 0.
We set P(z) = p + σoz + τ^;2, and from (1) we get

Thus, setting
we have7

Ai

/n—2

\V=1

/T 'T*
n—2

V = l

2 = Σ

n-Z = P

ZjZfc i —

(z) + a

<

V = l

/n—2

.(Σ
\V = 1

ζj<lc<

Σ

7 Observe that if w = 4, Σi£i<k<mgn-rzjZkZm is zero, being an empty sum;
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where

τ = an , σo = an^ + anσ1 , p = αΛ_2 + (an^ + anσ1)σ1 — anσ2 ,

α = αw_3 + (αw_2 + α ^ . ^ + anσ\ - 2α%<J2)σ1 - an^σ2 + anσ3 .

Here again we can use I-V of the Theorem. For example, suppose S
is contained in a disc C: | z — c | ^ r . By I, if a zero ζ of A(z) satis-
fies r < ρλ <: I ζ - c I <; P2, then

I a |/(ft + r) ^ I ^ + σo2; + τz2 \ ̂  | α |/(ft - r) .

By II, if aτ Φ 0, if C contains also the zeros of P(z) = p + σoz + τz2,
and if wl9 w2, w3 are distinct zeros of w2 + a/τ, then every zero ( ί C)
of A(«) lies in U U (wv + C).

7* The following theorem is due to Marden [contained in his
Theorem (1,1), 1949]. Let zl9z2,' ,zm be (distinct) points of the
(open) complex plane, let μl9 μ2, , μm be positive numbers, and let
Ao, Alf , Ap-! (p ^ 1) be arbitrary complex numbers. Let

p-i

V=0

and set S = {zlf z2, •••, zm}. Let T be the set of those zeros of F(z)
at which S subtends an angle < π/(p + 1). Then the number of
points of T (each counted according to its multiplicity) is ^ p.
From this follows a result on the zeros of combinations of the form
Q(z) = P(z)f(z) + f'(z) where f(z) and P(z) are polynomials. (See loc.
cit. Theorem (4.3)).

Using known results on infrapolynomials, we can derive Marden's
theorem very easily. For the theorem is obviously true if all the Av

are zero. Furthermore, one obviously may assume that Ap-λ Φ 0, m > 1.
Set g(z) = ΠΓ=i (s - O , μ = ΣΓ=i μv, \ = μjμ (v = 1, 2, , m). Con-
sider the polynomial

A(z) = A~1_1g(z)F(z) =

= zm+v-χ + . •

which by Theorem 1 of [Shisha and Walsh, 1961] is an (m + p — l)th
infrapolynomial on S with respect to (m — 1, m, , m + >̂ — 1). By
a theorem due to Zedek [cf. Zedek 1955, Walsh and Zedek 1956, and
Fekete and Walsh 1957] the number of points of T (which is the
number of zeros of A(z), multiplicities taken into account, at which
S subtends an angle < π/(p + 1)) is g p.
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HOMOMORPHISMS OF J-SIMPLE INVERSE
SEMIGROUPS WITH IDENTITY

R. J. WARNE

Munn determined all homomorphisms of a regular Rees matrix
semigroup S into a Rees matrix semigroup S* [3, 2], This generalized
an earlier theorem due to Rees [7, 2].

We consider the homomorphism problem for an important class of
^-simple semigroups.

Let S be a ώ-simple inverse semigroup with identity. Such semi-
groups are characterized by the following conditions [1, 4, 2].

Al: S is cZ-simple.
A2: S has an identity element.
A3: Any two idempotents of S commute.

It is shown by Clifford [1] that the structure of S is determined
by that of its right unit semigroup P and that P has the following
properties:

Bl : The right cancellation law hold in P.
B2: P has an identity element.
B3: The intersection of two principal left ideals of P is a

principal left ideal of P.

Two elements of P are L-equivalent if and only if they generate
the same principal left ideal.

Since any homomorphic image of a cϊ-simple inverse semigroup
with identity is a d-simple inverse simigroup with identity [5], we
may limit our discussion to homomorphisms of S into S* where S*,
as well as S, is of this type.

In §1, we consider two such semigroups S and S* with right
unit semigroups P and P* respectively. We determine the homomor-
phisms of S into S* in terms of certain homomorphism of P into P*,
and we show that S is isomorphic to S* if and only if P is isomorphic
to P*.

In §2, we show that if P is a semigroup satisfying Bl and B2
on which L is a congruence relation then P is a Schreier extension of
its group of units U by P/L and that P/L satisfies Bl, B2, and has
a, trivial group of units. P satisfies B3 if and only if P/L satisfies
B3. The converse of this theorem is also given. In this case, we
determine the homomorphisms of P into P* in terms of the homomor-
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phisms of U into Ϊ7* and those of P/L into P*/L* and give the cor-
responding isomorphism theorem. In §3, some examples are given.

It is a pleasure to acknowledge several helpful conversations with
Professor A. H. Clifford.

Section 1* The correspondence between the homomorphism of S
and those of P.

We first summarize the construction of Clifford referred to in the
introduction.

Let S be any semigroup with identity element. We say that the
two elements are ^-equivalent if they generate the same principal
right ideal: aS = bS. L-equivalent elements are defined analogously.
Two elements a and b are called ώ-equivalent if there exists an ele-
ment of S which is L-equivalent to a and R- equivalent to b (This
implies the existence of an element of S which is .^-equivalent to a
and L-equivalent to b.) We shall say that S is eZ-simple if it consists
of a single class of ώ-equivalent elements.

Now let P be any semigroup satisfying Bl, B2 and B3. From
each class of L-equivalent elements of P, let us pick a fixed repre-
sentative. B3 states that if a and b are elements of P, there exists
c in P such that PaΓ\Pb = Pc. c is determined by a and b to within
L-equivalence. We define avb to be the representative of the class
to which c belongs. We observe also that

(1.1) avb — bva .

We define a binary operation x by

(1.2) (axb)b = avb

for each pair of elements a, b of P.
Now let P~xoP denote the set of ordered pairs (α, b) of elements

of P with equality defined by

(1.3) (a, b) = (a'f bf) if a' — pa and br = pb where p is

a unit in P (p has a two sided inverse with

respect to 1, the identity of P).

We define product in P~xoP by

(1.4) (α, b)(c, d) = ((cxb)a, (bxc)d) .

Clifford's main theorem states : Starting with a semigroup P satisfy-
ing Bl, 2, 3 equations (1.2), (1.3), and (1.4) define a semigroup P~xoP
satisfying Al, 2, 3. P is isomorphic with the right unit subsemigroup
of P~λoP (the right unit subsemigroup of P~ιoP is the set of elements
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of P~γoP having a right inverse with respect to 1. This set is easily
shown to be a semigroup). Conversely, if S is a semigroup satisfy-
ing Al, 2, 3 its right unit subsemigroup P satisfies Bl, 2, 3 and S
is isomorphic with P~λoP.

The following results are also obtained :
The elements (1, a) of P~xoP constitute a subsemigroup thereof

isomorphic to P. We have

(1.5) (1, α)(l, b) = (1, ab) for α, b in P.

The ordered pair (1, 1) is the identify of P~λoP, i.e.

(1.6) (α, 6)(1, 1) = (1, l)(α, b) = (α, 6) for α, 6 in P.

The right inverse of (1, a) is (α, 1), i.e.

(1.7) (1, a)(a, 1) = (1, 1) for a in P .

(1.8) (α, c) = (α, 1)(1, c) for all a and c in P .

We identity S with P ^ o P and P with {(1, α) : a in P}.

(1.9) (avb)c = p(acvbc) where α, 6, and c are in P and

jθ is α unit in P .

(1.10) The idempotent elements of P~~λoP are just those

elements of the form (α, a) where a in P .

(1.11) (α, α)(δ, 6) — (αt>&, αv&) for all α, 6 in P .

(1.12) aLb{a, b in P) if and only if a = pb where p is

a unit in P .

Let P and P * be semigroups satisfying Bl, and B2 and B3. Let
v and u be the ' join' operations on P and P * respectively defined
on page 2. Let iV be a homomorphism of P into P * . N is called a
semilattice homomorphism (or sl-homomorphism) if

(1.13) P*((avb)N) - P*(αiV) n P*(WV)

i. e. (avb)N LaNubN in P * .
It is easily seen that we always have P*((avb)N) ci P*(aN) Π P*(bN).

However, the reverse inclusion is not generally valid. For example,
we might have P = G+, P * = G*+, where G and G* are lattice-ordered
groups. An order-preserving homomorphism of G into G* need not
preserve the lattice operations.

THEOREM 1.1. Let S and S* be semigroups satifying Al, A2, and
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A3, and let P and P* be their right unit subsemigroups, Let N, be
a sl-homomorphism of P into P*, and let k be an element of P*.

For each element (a, b) of S, define

(1.14) (α, b)M = [(aN)k, (bN)k]

the square brackets indicating an element of S*. Then M is a
homomorphism of S into S*. Conversely, every homomorphism of S
into S* is obtained in this fashion.

PROOF. TO show that M is single valued, let (α, b) = (α', &').
Then, af = pa and b' = pb where p is a unit in P by (1.3). Thus,
a'N = pNaN and b'N = pNbN. Thus, since pN is a unit of P*f

(α, b)M = (α', 6 ' ) ^ by (1.3). To show that M is a homomorphism let
x and 0 be the operations defined on P and P * respectively by (1.2).

Thus, using (1.2), (1.9), (1.13), and (1.12) obtain {{rN)k (g) (nN)k){nN)k =
(rN)k u(nN)k = w(rNunN)k = iιγ>* ({rvn)N)k — wp*(((r x n)n)N)k
= wp*((r x n)N)(nN)k where w and />* are units in P * . Thus, from
Bl,

(1.15) (ri\0& ® (wiSOfc = w/o*((r x

Now, from (1.2), (1.1), and (1.15), we have ((nN)k <g> (rN)k) (rN)k =
(nN)k u(rN)k = (rN)k u(nN)k = w^* {{rvn)N)k = ̂ ^o* ({nvr)N)k =
wp* (((n x r)r)N)k = w<o* ((w x r)iV) (rJV) Jfc. Therefore, by Bl,

(1.16) (̂ ΛΓ)A (g) (rJNΓ)fc = ̂ ^ * {(n x

Thus, by (1.14), (1.4), (1.15), (1.16), and (1.3), (m, n)M(r, s)M =
[(mN)k, (nN)k] [(rN)k, (sN)k] = [((rN)k 0 (nN)k) (mN)k, ((nN)k ®
(rJV)fc) (siV)fc] = [w/o*((r x ^)iV) (mN)k, wp* ((n x r)JV) (sN)k] =
[((r x n)m)Nk, ((n x ^ s ) ^ ^ ] = ((r x ri)m, (n x r)s)M = ((m, ^) (r, s))ilί.
Conversely, let M be a homomorphism of S into S*. Then, by (1.6)
and (1.10),

(1.17) (l,l)M=[k,k]

for some k in P * . Now suppose that (1, n)M = [α, 6] and (n, l)ilf =
[c, d] for n in P. It thus follows from (1.7) and (1.6) that [α, b]
[c, d] [α, 6] - [α, 6] and [c, ώ] [α, b] [c, d] = [c, d]. From (1.8) and (1.7),
it easily follows that [α, 6] [6, α] [α, 6] = [α, δ] and [6, α] [α, 6] [6, α] =
[6, α]. Hence, [&, a] and [c, d] are inverses of [α, &] (2, p. 27). There-
fore, it follows from a theorem of Munn and Penrose (4; 2, p. 28,
Theorem 1.17) that [6, a] = [c, d]. Thus

(1.18) (1, n)ilf = [α, 6]

(n, 1)M = [&, α]
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Now, from (1.7), (1.17), and (1.18), [a, b] [b, a] = [k, k]. Thus, from
(1.8) and (1.7), we have [a, a] = [k, k]. Hence, by (1.3), a = pk where
p is a unit of P * . Therefore, by (1.18) and (1.3),

(1.19) (1, n)M = [pk, b] = [k, ρ~'b] = [k, c]

where c = p-λb. Now, again using (1.8) and (1.7), [c, k] [k, c] = [c, c].
Thus, by (1.11), [k, k] [c, e] = [kuc, kuc] = [c, c\. Therefore, by (1.3)
(1.12), P*(kuc) = P*c. Hence, by the definition of it, P*kf)P*c =
P*c and P*c G P*k. Thus, we may write c = BJc where Bn in P * .
Thus, from (1.19), we have

(1.20) (1, n)M = [k, Bnk]

(n,l)M=[Bnk,k].

It follows easily from (1.8), (1.20) and (1.7) that

(1.21) (m, n)M = [BJc, BJc] .

Thus, to complete the proof, we must show that n—*Bn is a homo-
morphism of P into P * and that P * (Bm u Bn) G P*Bmm. It follows
from (1.20), (1.3), and (Bl) that n-+Bn is single valued. To show
that n —* Bn is a homomorphism we first note that from (1.5) and (1.20),
[k, Bmk) [k, BJc] = [k, BmJc] Thus, by (1.4)

(1.22) [(A; <g> Bmk)k, (BJc ® k)BJc] = [k, BmJc] .

From (1.2), the definition of u, and (1.12)

(1.23) (k 0 BJc) BJc = ku (BJc) - wBJc

where to is a unit of P * . Thus, by (Bl)

(1.24) k <g> (BJc) = w .

By virtue of (1.2), (1.1), and (1.23), ((BJc <g) k)k = (BJc) uk = ku
(BJc) = wBJc. Hence, by (Bl),

(1.25) (BJc) ®k = wBm.

If we substitute (1.24) and (1.25) in (1.22), we obtain [wk, wBmBnk] =
[k, Bmnk]. Hence, from (1.3) and (Bl), we have BmBn = Bmn. We now
show that P*(BmuBn) = P*Bmm. From (1.4), (1, m) (n, 1) = (n x m,
m x «). Hence, it follows from (1.21), (Bl), and (B2) that [k, BJc]
[BJc, k] = [BnxJc, BmXJc\. Thus, by virtue of (1.4), [((BJc) <g> (BJc))k,
((BJc) 0 (BJc)M = [BnXJc, Bmxnk] Hence, by (1.3) and (Bl), (BJc) 0
(BJc) = p*1BnXm where (0% is a unit of P * . Thus, by (1.2), BJcuBJc
= ((BJc) <g) (BJc)) BJc = p\BnXmBJc = ρ\BlΛXm)uk = ρ\BnυJc. There-
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fore, by (Bl) and (1.9), f/ (BnuBJ = ρ"i

1Bnυm where ρf is a unit of
P * . Hence P*(BnuBm) = P*Bnυm.

THEOREM 1.2. Let S, P, S*f and P * be as in Theorem 1.1. Let
Ω be the set of isomorphisms of P onto P * . Define (m, n)MN = [mN, nN]
for N in Ω. Then {MN: N in Ω} is the complete set of isomorphisms
of S onto S*. Hence, N—*MN is a one-to-one correspondence between
the isomorphisms of P onto P * and those of S onto S* and S is
isomorphic to S* if and only if P is isomorphic to P * . The group
of automorphisms of P is isomorphic to the group of automorphisms
of S.

PROOF. We first show that P * (aNubN) e P * ((avb)N) for α, b
in P and for any isomorphism N of P onto P * . It is easy to see that
Pa e P6 if and only if P*(aN) c P*(bN). Since aNubN = zN for
some s in P, P*zN = P*(aN) Γί P*(bN) ^ P*(aN), P*(bN) by the
definition of w. Thus, Pz CΞ P(avb) by the definition of v and the
desired result follows. Therefore, by Theorem 1.1, MN is a homomor-
phism of S into S*. To show it is one-to-one let (m, w)Λfjy = (p, q)MN,
i. e. [mίί, nN] = [piV, giV]. Thus, using (1.3), we may show that
mN = (|0' p)JV and wiV = (|θ' g)JV where ff is a .unit of P. Thus, by
(1.3), (m, w) = (p, g). Clearly, MN maps S onto S*. Conversely, let
M be an isomorphism of S onto S*. By Theorem 1.1, (m,n)M =
[(mN)k, (nN)k] where k in P * and ΛΓ is a homomorphism of P into
P * . Now, it follows from (1.6), (Bl), and (B2) that (1, 1) M= [k, k]
= [1*, 1*] where 1* is the identity of P * . Thus, by (1.3), k is a
unit of P * . Now, let wA = k~λ (nN)k for all n in P. It is easily
seen that A is a homomorphism of P into P * . Now, by (Bl), (B2),
and (1.3), we have

(1.26) (m, 1)M = [(mN)k9 k] = [&-1(miV)fc, 1*] = [mA, 1*]

(1, m)Jlf = [k, (mN)k] = [1*, k-\mN)k\ = [1*, m i ] .

Thus, from (1.26) and (1.3), we have mA = ^A implies m = n. Let
α be in P * . Then, by the remarks on page 3, it follows that [1*, a]
= (1, m)M for some m in P. Hence, by (1.26) and (1.3), a = mA.
Therefore A is an isomorphism of P onto P * . From (1.26) and (1.8),
we have (m, w)Λf = [mA, nA]. Thus, M = M 4 .

Section 2* A reduction of the homomorphism problem by an
application of Schreier extensions.

We first will briefly review the work of Redei [6] on the Schreier
extension theory for semigroups (we actually give the right-left dual
of his construction.). Let G be a semigroup with identity e. We con-
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sider a congruence relation n on G and call the corresponding division
of G into congruence classes a compatible class division of G. The
class H containing the identity is said to be the main class of the
division. H is easily shown to be a subsemigroup of G. The division
is called right normal it and only if the classes are of the form,

(2.1) Half Ha2, (a, = e)

and hx a{ = h2 a{ with hly h2 in H implies h± = h2. The system (2.1)
is shown to be uniquely determined by H. H is then called a right
normal divisor of G and G/n is denoted by G/H.

Let G, if, and S be semigroups with identity. Then, if there
exists a right normal divisor H' of G such that iJ = Hf and S = G/H',
G is said to be a Schreier extension of H by S.

Now, let H and S be semigroups with identities E and e respec-
tively. Consider H x S under the following multiplication:

(2.2) (A, a) (B, b) = (ABα< αδ) (A, B in if; α, 6 in S)

in which

α\ Ba (in i ί )

designate functions of the arguments α, & and B, a respectively, and
are subject to the conditions

(2.3) ae - E, ea = E, Be = B, Ea = E .

We call H x S under this multiplication a Schreier product of if and
S and denote it by HoS.

Redei's main theorem states:

THEOREM 2.1 (Redei). A Schreier product G = HoS is a semi-
group if and only if

(2.4) (AB)C = ACBC {A, B in H: c in S)

(2.5) (Ba)cca = c α ΰ c α (B in H; a, c in S)

(2.6) (ab)ccab = cα(cα)δ (α, 6, c in S)

are valid. These semigroups (up to an isomorphism) are all the
Schreier extensions of H by S and indeed the elements {A, e) form
a right normal divisor H' of G for which

(2.7) G/H' = S (H'(E, a) — a)

H' = H {{A, e) — A)

are valid.
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THEOREM 2.2 Let U be a group with identity E and let S be a
semigroup satisfying Bl and B2 (denote its identity by e) and suppose
S has a trivial group of units. Then every Schreier extension P =
UoS of U by S satisfies Bl and B2 (the identity is (E, e)) and the
group of units of P is Uf — {(A, e): A in U} ~ U. Furthermore L
is a congruence relation on P and P/L — S. P satisfies B3 if and
only if S satisfies B3.

Conversely, let P be a semigroup satisfying Bl and B2 on which L
is a congruence relation. Let U be the group of units of P. Then
U is a right normal divisor of P and P/U = P/L. Thus, P is a
Schreier extension of U by P/L. P/L satisfies Bl and B2 and has
a trivial group of units.

REMARK. Hence if P is any semigroup satisfying Bl and B2 with
group of units U such that L is a congruence relation on P, we will
write P = (U, P/L, a\ Ab) in conjunction with Theorem 2.1 and 2.2.
(We note that L is a right regular equivalence relation on any semi-
group) a\ Ab will be called the function pair belonging to P.

REMARK. A theorem of Rees [8, Theorem 3.3] is a special case
of the above theorem.

Proof. It follows easily from (2.2) and (2.3) that P satisfies Bl
and has identity (Et e). From Theorem 2.1, U' = U. Now, suppose
(A, a) is a unit of P. Then, (A, a) (B, b) = (E, e) for some (B, b)
in P. Hence by (2.2), ab =-e. Thus, by (Bl), (B2), and the fact that
the group of units of S is e, a = b = e, and (A, a) in U''. From (2.2)
and (2.3), every element of U' is a unit of P.

Next, we determine the principal left ideals of P. From (2.2),
we have

(2.8) P(Af a) = {(BAbba, ba): B in U, b in S}

= {(C, ba): C in U, b in S}.
Since P(A, a) just depends on α, we may write P(A, a) = Pa for all
A in U.

Next, we show that

(2.9) (A, a) L (B, b) if and only if a = b .

Now, from (2.8), (̂ 4., a) L (B, b) implies b — xa and a = yb for some
x, y in S Thus, by Bl, xy = yx = e, and since S has a trivial group
of units, x = y = e. Thus, a = b. The converse is evident from (2.8).
It follows easily from (2.9) and (2.2) that L is a congruence relation.
L(E,a) will denote the L-class of P containing (E, a). It is easily seen
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that the mapping L{E>a) —» a is an isomorphism of P/L onto S. Now
suppose S satisfies B3,( i.e. α, b in S implies there exists c in S such
that

(2.10) Sa n Sb = Sc .

From (2.10) and (2.8),

(2.H) P f l n Λ - PC

and P satisfies B3. If P satisfies B3, it follows from (2.8) and (2.11)
that S satisfies B3.

Now, let P be a semigroup satisfying Bl and B2 with group of
units U on which L is a congruence relation. By (1.12) (this is shown
without using B3) U is the congruence class mod L containing the
identity 1 of P, i.e. U is the main class of the compatible class divi-
sion of P given by L. If a in P, La = Ua from (1.12). If pxa — p2a
a where ply p2 in Z7, then ft = p2 by Bl. Thus, U is a right
normal divisor of P and P/U= P/L. Hence, P is a Schreier extension
of U by P/L. By virtue of (1.12) and (Bl), P/L satisfies Bl.

Let α - ^ α be the natural homomorphism of P onto P/L. Then,
ΐ is the identity of P/L. Let a be a_unit of P. Then, by (1.12), (Bl),
and (B2), a is in U. Hence, a = 1. Therefore, P/L has a trivial
group of units.

THEOREM 2.3. Let P=(U, P/L, a\ Ah) and P * = (U*, P*/L*9

6C, Bc) be semigroups satisfying Bl and B2 on which L and L* are
congruence relations. U and ab, Ah denote the unit group and func-
tion pair of P. Z7* and bc, Bc denote the unit group and function
pair of P * . P/L is the factor semigroup of P mod L and P*/L*
is the factor semigroup of P* mod L*. Let f be a homomorphism
of U into £7*, g be a homomorphism of P/L into P*/L*, and h be
a function of P/L into U*. Suppose /, g and h are subject to the
following conditions:

(2.12) (ah) (bh){ag)(agybg) = (abf)(ab)h

(2.13) (bh)(AfYbΰ) = (Abf)(bh) .

For each (A, a) in P define

(2.14) (A, a)M = [(Af)(ah), ag]

where the square brackets denote elements of P * . Then M is a
homomorphism of P into P * Conversely, every homomorphism of P
into P * is obtained in this fashion. M is an isomorphism if and
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only if f and g are isomorphisms.

Proof. Clearly, M is single valued. From (2.14), (2.2), (2.4),
(2.13) and (2.12), we have

(A, a)M (B, b)M = [Af)(ah), ag] [(Bf)(bh), bg] =

- [(Af)(ah)((Bf)(bh)Y^(ag)^\ag. bg] = [(Af){ah){Bfy°{bhy°{ag)b\{ab)g]

= [(Af)(Baf)(ah)(bhy°(ag)b°, (ab)g] = [(Af)(Baf)(abf)(ab)h, (ab)g]

[(ABaah)f(ab)hf (ab)g] = (ABaa\ ab)M = ((A, a)(B, b))M .

Thus, M is a homomorphism of P into P * . Conversely, let M be any
homomorphism of P into P * . It follows from Bl and B2 that UM CΞ
Z7.* Thus, by Theorem 2.2, we may let

(2.15) (A,β)M=[A/,β*]

where β and e* denote the identities of P/L and P*/L* respectively.
Clearly, / is a mapping of U into U*. It follows easily from (2.15),
(2.2) and (2.3) that / is a homomorphism of U into U*. Let E be
the identity of U. Then,

(2.16) (Ey a)M = [αfc, α#] .

Clearly, h is a function of P/L into ?7* and g is a function of P/L
into P*/IΛ From (2.2) and (2.3), (A, α) = (A, β)(S, α). Thus, by
(2.15), (2.16), (2.2), and (2.3)

(2.17) (A, α)M - (A, β)M(S, α)M = [A/, e*][ah, ag] - [(A/)(αΛ), αg] .

From (2.2) and (2.3), we have {E, a){E, b) = (a\ ab). Thus, by (2.17),
we have [ah, ag] [bh, bg] = [(abf)(ab)h, (ab)g]. Therefore, by (2.2)

(2.18) [(ah)(bhy(agy°, (ag)(bg)] = [(abf)(ab)h9 (ab)g] .

From (2.18), it follows that g is a homomorphism and (2.12) is satisfied.
From (2.2) and (2.3), we have (E, b)(A, e) - (A6, b). Thus, from (2.17)
and (2.15), [bh, bg] [A/, e*] = [{Abf){bh), bg]. Hence, (2.13) follows from
(2.2) and (2.3).

Suppose M is an isomorphism of P onto P * . Therefore, by (2.14)
(A, a)M = [(Af)(ah), ag] where / is a homomorphism of U into U*f h
is a single valued mapping of P/L into Z7* and g is a homomorphism
P/L into P*/L*. It is easy to see that UM = ?7*. Thus, by virtue
of theorem 2.2, if J5 in Z7*, there exists A in U such that (A, e)M =
[B, e*]. Thus, by (2.15), Af=B and / maps U onto C7*. By (2.15),
/ is one-to-one and hence is an isomorphism of U onto U*. To show
g is one-to-one, let
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(2.19) ag = bg .

There exists x in U* such that

(2.20) x(bh) - ah .

Now, by (2.2) and (2.3), (xf~\ e)(E, b) = (xf~\ ό). Hence, by (2.15),
(2.14), (2.2), (2.3), (2.19) and (2.20), (xf~\ b)M = [x, β*] [bh, bg] = [x(bh),
bg] = [ah, ag] = (E, a)M. Hence, a = b. It follows immediately from
(2.14) that g maps P/L onto P*/L* and hence g is an isomorphism of
P/L onto P*/L*.

Conversely, suppose there exists an isomorphism / of U onto U*9

an isomorphism g of P/L onto P*/L* and a single valued mapping h
of P/L into U* such that (2.12) and (2.13) are satisfied. Therefore,
by (2.14), {A, a)M = [(A/)(αfe), α#] is a homomorphism of P into P*.
It is easily seen that ikf is one-to-one. Let [B, b] be in P*. Now there
exists a in P/L such that b = ag and A in U such that (Af)(ah) =
B. Hence (A, α)M - [B, 6] by (2.14).

REMARK. If ah = E*, where # * is the identity of ?7*, then
(2.12) and (2.13) simplify greatly :

(2.12/ (ag)b» = abf ,

(2.13)' (A/)6* - Abf .

Professor Clifford remarks that we can bring this about by making a
new choice of representative elements in P or in P*, respectively, in
the following two cases : if the range of h is contained in the range
of / or if ag = a'g (α, a' in P/L) implies ah = a'h.

Section 3* Examples* We give some examples to illustrate the
theory.

EXAMPLE 1. The bicyclic semigroup " C " [2, p. 43] consists of
all pairs of nonnegative integers with multiplication given by

(3.1) (i, j)(k, s) = (ί + k - min (j, k)j + s - min (j, k)) ,

A complete set of endomorphisms of " C" is given by

(3.2) (i, i)ikf(ί, fc) = (ti + fc, ti + k)(i, j are nonnegative integers)

where (ί, k) runs through all ordered pairs of nonnegative integers.
The only automorphism of ' C' is the identity.

EXAMPLE 2. Let G be any group of order greater than or equal
to two with identity E. Let Io be the nonnegative integers under
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the usual addition. Consider P = Gxlo under the following multiplication.

(3.3) (A, a)(B, b) = (ABa, a + b)

where Ba = B if a = 0
Ba = £7 if α ^ 0 .

P is a semigroup satisfying (Bl), (B2), (B3) which is not left cancella-
tive. Let S be the semigroup corresponding to P in Clifford's main
theorem. Let h be a mapping of 70 into G such that oh — E and ά/&
= (α + &)/& for all α =£ 0. Let / be an automorphism of G. Then,

(3.4) ((A, α), (B, b))M = (((A/)(αΛ), α), ((B/)(6Λ), 6)) where (A, α) ,

(J3, 6) in P is an automorphism of S. Conversely every automorphism
of & is obtained in this fashion.

One obtains similar results if Io is replaced by the positive part
of any lattice ordered group.

EXAMPLE 3. Let G+ be the positive part of any lattice ordered
group G. Let S be the semigroup corresponding to G+ in Clifford's
main theorem. Then there exists a one-to-one correspondence between
the automorphisms M of S and the order preserving automorphisms
N of G. This correspondence is given by

(m, n)M = (mN, nN) (m and n in G+) .
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LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

R. WEST WICK

1* Let U denote an ^-dimensional vector space over an algebraically
closed field F, and let Gnr denote the set of nonzero pure r-vectors of
the Grassmann product space A r U. Let T be a linear transformation
of A r U which sends Gnr into Gnr. In this note we prove that T is
nonsingular, and then, by using the results of Wei-Liang Chow in [1],
we determine the structure of T.

For each z — xx /\ /\ xre Gnr, we let [z] denote the r-dimensional
subspace of Uspanned by the vectors xlf •••, xr. By Lemma 5 of [1],
two independent elements z± and z2 of Gnr span a subspace all of whose
nonzero elements are in Gnr if and only if dim ([zj Π [z2]) = r — 1; that
is, if and only if [2X] and [z2] are adjacent. If V Q Λ r Uis a subspace
such that each nonzero vector in V is in Gnr and if V is maximal
(that is, not contained in a larger such subspace) then {[z] \ze V, z Φ 0}
is a maximal set of pairwise adjacent r-dimensional subspaces of U.
These sets of subspaces are of two types; namely, the set of all
r-dimensional subspaces of U containing a common (r — l)-dimensional
subspace, and the set of all r-dimensional subspaces of an (r + 1)-
dimensional subspace of U. We adopt the usual convention of calling
these sets of subspaces maximal sets of the first and second kind
respectively. We will let Ar denote the set of those maximal V which
determine a set of pairwise adjacint subspaces of the first kind, and
we will let Br denote the set of those maximal V which determine a
set of pairwise adjacent subspaces of the second kind.

2* In this section we prove that if T sends each member of Br

into a member of Br then T is nonsingular.
Let Ul9 , Ut be fc-dimensional pairwise adjacent subspaces of U

and let zt e Gnk be such that fo] = ί/* for i = 1, , t. Then {Ulf , Ut}
is said to be independent if and only if {zl9 , zt} is an independent
subset of Afc U. We note the following facts concerning an independent
set {Uu , Ut). If it is of the first kind (in the sense of the previous
section) then there is an independent set of vectors {xlf , xk-.lf yu , yt)
of U such that for i = 1, , t, C/i — ζxl9 , xk~19 y» > < •> denotes
the linear subspace spanned by the vectors enclosed. If it is of the
second kind, then there is an independent set of vectors {xl9 , xk+1}
such that Ui = ζx19 , x^l9 xi+1, , xk+^9 for i = 1, , t. It is easily

Received July 2, 1963. The author is indebted to M. Marcus for his encouragement
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deduced from this that dim (A r E7i + + Λ r Ut) is equal to t(k ~ V) +

( ^ ) or Σ<=o (*. __ 1 ) according as the set of subspaces {Ui) is of

the first or second kind. We adopt the usual convention that ( j =

0 if m < n. Finally, if the set {Ul9 , Ut} is not independent, then
for some i, A r U{ C Λ r Ui + + A r C -̂i" In fact, the choice of i
such that {«!, , «i_i} is independent and 2;e<X, •• ,^_1> will do.

We require the

LEMMA 1. Let {Ulf •••, ί7s+1} be a set of pair wise adjacent k-
dimensional subspaces of U. Suppose further that the set is independent
and is of the second kind. Let V S A r Ux + A r Us+1 be a subspace

/h o\

with dimension ί \, where s^r^k. Then there is a set
\τ — sj

{Vu , Vs} of pair wise adjacent k-dimensional subspaces of U such

that FΠ (A r Vx + + A r V.) Φ {0}.

r — s) a n ( * ^ e t {zi>"m>z»} ^ e a basis of V.

Choose an independent set of vectors {xlf , xk+1} of U such that for

1 = 1, , s + 1, Ui = ζxlf , Xi-U xi+1, , xk+iy. We can write

Zi = zi + xxΛ Λ xs-ι A xs A z\ + xx A Λ xs-λ A xs+1 A z\

where

z\z A Ux+ ••• + A ί/.-i and 4 4 e Λ < » s + 2 , , % i )

for i = 1, , m. In the case that s — 1, we take sj G A r ^3> •> »*+i>

In the case that s = r, we take z\, z\ e F. If {z\, , zf\ or {sj, •••,«?}

is dependent, then we can form a linear combination of zl9 , 2;m which

will be in A r E7ί+ W i + A r ^ s + i or A r ^ + + Λ r ϋ.-i + A r ϋ .

respectively. If, on the other hand, both sets are independent then

each is a basis of Ar~s <Λ+2, , aWi> since dim (Ar~s <X+2, , %+i» =

( r Z g) = m L e t ^ = Σ?=i αϋ«3, i = 1, , m. Choose λ ^ 0 and 6* e F,

not all equal to zero, such that

Then

0 ^ Σ Mi = Σ «ί + Σ «i A Λ a.-! Λ (xs + λ~^s+1) Λ 6^1
3=1 3=1 3=1

e Λ ϋ i + + A ^ 3 - 1 + A Vi

where F x = <*t , »,_!, xε + λ~xa;,+1, xs+2, , xk+1>. The subspaces
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Ulf , Us-U VΊ are pairwise adjacent and so the Lemma is proved.
The nonsingularity of T is now proved as follows. Let i f be a

subspace of U. We prove, by induction on the dimension of W, that
T is one-to-one on A r ^ and that the image of /sj W under T is
A r W for some subspace W of U with dim(tF) = dim(W'). When
dim (W) = r + 1 this is clear since we are assuming that Br is sent into
Br by T. Suppose that the statement has been proved for fc-dimensional
subspaces, and consider a (k + l)-dimensional subspace W of U. Let
s be the largest integer such that for any set {Wl9 , Ws} of pairwise
adjacent fc-dimensional subspaces of W, T is one-to-one on h? Wx +
•• + ArΫPs I f s ^ r + 1 then T is one-to-one on A r W, since in
this case, for an independent set {Wl9 •••, Ws} we must have A r W —
A r W1 + + A r Wa. Suppose then that 1 ^ s ^ r and let {Ulf , Us+1}
be any set of s + 1 pairwise adjacent Λ-dimensional subspaces of W.
If the set is dependent then T is one-to-one A r Uλ + + A r Us+1

since we may drop one of the terms. Therefore we assume that the
set is independent. Choose fe-dimensional subspaecs Ul, •••, U'8+1 such
that 7\Ar Ui) = A r Ul for i = 1, , s + 1. For each j ^ s, Γ maps
A r Z7i + + A r Uj onto A r C7 + + A r U's. Therefore, since T
is one-to-one on A r Ux + + A r Us, the set {C//, , U's} is independent.
Furthermore, the set {Ul, , ?7/+i} is also independent. If not, then the
image under T of both A r Uλ + + A r U. and A r U, + A r ^ s+i is
A r Ul + + A r Us. But then the dimension of the null space of
T in A r Ux + + A r Us+1 is at least as large as the difference in
the dimensions of A r Ux + + A r Us+1 and A r Ux + + A r Ua9

__ ). We apply Lemma 1 to contradict the choice of s.

It follows that T is one-to-one on all of A r W. Finally, let {Wl9 , Wk+1}
be an independent set of Λ-dimensional pairwise adjacent subspaces of
W (necessarily of the second kind). Let W[ be chosen so that
Γ(A r Wi) = Ar Wl. It follows easily that {Wl, •••, WUi} is of the
second kind also, so that the image of Ar W is A r W' where W is
the (k + l)-dimensional subspace of U containing Wl, •••, Wί+1. By
taking W = U we see that T is one-to-one on A r U.

3* It is necessary to investigate whether a general Γ does
necessarily send each element of Br into Br. For the cases n > 2r,
n < 2r, this is proved directly, using Lemma 2. The case n = 2r
requires a more delicate argument, given at the end of this section;
there it is shown that if some element of Br is sent into Br by Γ,
then T sends Br into I?r.

LEMMA 2. Lβ£ r < w and let Vi αntZ F2 be in Ar such that
Vx Π F2 ^ {0}. Γfeβ%, if V S VΊ + F2 and dim ( F ) = w - r, ^β have
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Proof. Let E7i be the (r — l)-dimensional subspace of U determined
by Vi for ΐ = 1, 2. Since Vi Π F2 ^ {0}, either U, = U2 or dim (t/Ί Π t/,) =
r-2.

If t/Ί = Z72 then Vx — V29 so that in this case it is clear that
Vf]GnrΦφ.

Suppose that dim (ί/ί Π ϋi) — r — 2 and let {xl9 , #r_2} be a basis
of this intersection. Choose y{ such that U{ — ζxu , #r_2, ?/,)> for
i = 1, 2. Choose ^ and t\ in Z7, i = 1, , n — r, such that

fe^^Λ Λ xr-2 Λ (l/i Λ Ui + τ/2 Λ Vt) \i = 1, , w — r}

forms a basis of F. If

to, , α;r_2, ̂ , y2, vl9 , ^_y} or {x,, , xr_2, i/!, j / 2 , u l y , %n̂ r}

is dependent, then there is a linear combination of the z{ which is in
Vx or V2 respectively. If, on the other hand, both sets are independent,
then they are both bases for U and we may write

n-~ r

ui-=-wiΛ- CiV2 + Σ aa^3 , ΐ = 1, , w — r ,
3=1

where wi e ζxu , α?r_2, ^)> and cif aiό e F. We note that det {ai5) ψ 0
so we can choose λ Φ 0 and 6̂  for i = 1, , n — r, not all zero, such
that λ bj = Σ?=ir &^ίi Then

0 = α?! Λ Λ Xr-2 Λ (Vx + λ"1^) Λ [ ( Σ " M i V + λ Σ"
L\i=i / 3=1

is an element of Vf]Gnr. This proves the Lemma.
For n Φ 2r the image under T of an element of Br is an element

of Br. For n < 2r this is clearly so since the subspaces of A r U ίn Br

have dimension r + 1, which is greater than the dimension (n — r + 1)
of the subspaces in Ar.

For w > 2r we proceed as follows. The image of an Ar is an Ar.
Suppose that the image of a We Br is a subspace of a 7 G Ar. Choose
two elements Vx and V2 of Ar such that VΊ Π F2 ^ {0} and dim (FΊ Π TF) =
dim (V2 Π W) = 2. One does this by choosing Vx and F 2 so that the
(r — l)-dimensional subspaces of U determined by them are adjacent sub-
spaces of the (r + l)-dimensional subspace determined by W. Now,
T( Vx) = T{ V2) = V since each is in Ar and each intersects V in at
least two dimensions. Therefore T(V1 + V2) = Fand so the null space
of T in Vi + F2 has dimension equal to (2n — 2r + 1) — (n — r + 1) =
w — r. By Lemma 2, it follows that the null space of T intersects ,Gnr

whiςh contradicts the hypothesis that T sends Gnr into Gnr,
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In the case that n = 2r the image of a Br may be an Ar since
the dimensions are equal. However, we prove that if some Br is sent
into a Br by T, then the image of each Br is a Br. Suppose not.
Then we can choose (r + l)-dimensional subspaces Wλ and W2 of U
such that T(ArW1)eAr and T{^rW2)eBr. Furthermore, we can
choose WΛ and W2 adjacent, so that dim (Wx Π W2) = r. Choose three
distinct elements Vl9 V2, and F3 of Ar such that the (r — l)-dimensional
subspaces of U determined by these elements are contained in WΊΠ W2.
Then dim (F< Π A r Ws) = 2 for i = 1, 2, 8 and i - 1, 2, so that Γ(F,)
intersects T(Ar W, ) in at least two dimensions for each i, j . This
implies that each T(Vi) is equal to one of 7\Λr Wi) and so two of
them are equal. The argument of the previous paragraph now leads
to a contradiction.

4* By essentially the same argument as used by Chow in [1] to
prove his Theorem 1, we can prove that; if S is a nonsingular linear
transformation of A r U sending Gnr into Gnr, and if the image of each
Br is a Brj then S is a compound. (By a compound we mean a linear
transformation of Λ r U which is induced by a linear transformation
of U.)

In the case that n Φ 2r it follows that T is necessarily a compound.
For n = 2r, T is a compound if some jBr is sent into a 2?r. If we let
To denote a linear transformation of A r U induced by a correlation of
the r-dimensional subspaces of U, then To is nonsingular and sends
Gnr onto Gnr. The image of each Ar under To is a I?r. Therefore, if
a Br is sent by T into an Ary the T0T is a compound. We have
proved the

THEOREM. Let U be an n-dimensional vector space over an
algebraically closed field and let T be a linear transformation of
A r U which sends Gnr into Gnr. Then T is a compound except,
possibly, when n — 2r, in which case T may be the composite of a
compound and a linear transformation induced by a correlation of the
r-dimensional subspaces of U.

REFERENCE

1. Wei-Liang Chow, On the Geometry of Algebraic Homogeneous Spaces, Annals of
Math., 50 (1949), 32-67.





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
ROBERT OSSERMAN

Stanford University
Stanford, California

M. G. ARSOVE

University of Washington
Seattle 5, Washington

J. DUGUNDJI

University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced), and on submission, must be accompanied by a separate author's
resume. Manuscripts may be sent to any one of the four editors. All other communications to
the editors should be addressed to the managing editor, L. J. Paige at the University of California,
Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 14, No. 3 July, 1964

Erik Balslev and Theodore William Gamelin, The essential spectrum of a class of
ordinary differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

James Henry Bramble and Lawrence Edward Payne, Bounds for derivatives in
elliptic boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Hugh D. Brunk, Integral inequalities for functions with nondecreasing
increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

William Edward Christilles, A result concerning integral binary quadratic
forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

Peter Crawley and Bjarni Jónsson, Refinements for infinite direct decompositions of
algebraic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

Don Deckard and Carl Mark Pearcy, On continuous matrix-valued functions on a
Stonian space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857

Raymond Frank Dickman, Leonard Rubin and P. M. Swingle, Another
characterization of the n-sphere and related results . . . . . . . . . . . . . . . . . . . . . . . . . 871

Edgar Earle Enochs, A note on reflexive modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
Vladimir Filippenko, On the reflection of harmonic functions and of solutions of the

wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
Derek Joseph Haggard Fuller, Mappings of bounded characteristic into arbitrary

Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
Curtis M. Fulton, Clifford vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917
Irving Leonard Glicksberg, Maximal algebras and a theorem of Radó . . . . . . . . . . . . . 919
Kyong Taik Hahn, Minimum problems of Plateau type in the Bergman metric

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
A. Hayes, A representation theory for a class of partially ordered rings . . . . . . . . . . . . 957
J. M. C. Joshi, On a generalized Stieltjes trasform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
J. M. C. Joshi, Inversion and representation theorems for a generalized Laplace

transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
Eugene Kay McLachlan, Extremal elements of the convex cone Bn of functions . . . . . 987
Robert Alan Melter, Contributions to Boolean geometry of p-rings . . . . . . . . . . . . . . . . 995
James Ronald Retherford, Basic sequences and the Paley-Wiener criterion . . . . . . . . . 1019
Dallas W. Sasser, Quasi-positive operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
Oved Shisha, On the structure of infrapolynomials with prescribed coefficients . . . . . 1039
Oved Shisha and Gerald Thomas Cargo, On comparable means . . . . . . . . . . . . . . . . . . . 1053
Maurice Sion, A characterization of weak∗ convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
Morton Lincoln Slater and Robert James Thompson, A permanent inequality for

positive functions on the unit square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
David A. Smith, On fixed points of automorphisms of classical Lie algebras . . . . . . . . 1079
Sherman K. Stein, Homogeneous quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
J. L. Walsh and Oved Shisha, On the location of the zeros of some infrapolynomials

with prescribed coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
Ronson Joseph Warne, Homomorphisms of d-simple inverse semigroups with

identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111
Roy Westwick, Linear transformations on Grassman spaces . . . . . . . . . . . . . . . . . . . . . . 1123

Pacific
JournalofM

athem
atics

1964
Vol.14,N

o.3


	 vol. 14, no. 3, 1964
	Masthead and Copyright
	Erik Balslev and Theodore William Gamelin
	James Henry Bramble and Lawrence Edward Payne
	Hugh D. Brunk
	William Edward Christilles
	Peter Crawley and Bjarni Jónsson
	Don Deckard and Carl Mark Pearcy
	Raymond Frank Dickman and Leonard Rubin and P. M. Swingle
	Edgar Earle Enochs
	Vladimir Filippenko
	Derek Joseph Haggard Fuller
	Curtis M. Fulton
	Irving Leonard Glicksberg
	Kyong Taik Hahn
	A. Hayes
	J. M. C. Joshi
	J. M. C. Joshi
	Eugene Kay McLachlan
	Robert Alan Melter
	James Ronald Retherford
	Dallas W. Sasser
	Oved Shisha
	Oved Shisha and Gerald Thomas Cargo
	Maurice Sion
	Morton Lincoln Slater and Robert James Thompson
	David A. Smith
	Sherman K. Stein
	J. L. Walsh and Oved Shisha
	Ronson Joseph Warne
	Roy Westwick
	Guidelines for Authors
	Table of Contents

