BOUNDS FOR DERIVATIVES IN ELLIPTIC BOUNDARY VALUE PROBLEMS

James Henry Bramble and Lawrence Edward Payne
INTRODUCTION

In a recent paper [7], Payne and Weinberger gave pointwise bounds for solutions of second order uniformly elliptic partial differential equations. The bounds for the function and its gradient involved derivatives of the boundary data. Later [2] the present authors gave a method for obtaining bounds in which no derivatives of the boundary data appeared. Pointwise bounds for derivatives were not dealt with. In [4] the authors gave a method for bounding derivatives for Poisson’s equation. The method was, however, restricted to the Laplace operator (or the constant coefficient case) and was not generally applicable.

In this paper we consider the operator

\[Lu \equiv (a^{ij}u_{,i})_{,j} \]

where \(u \) is a sufficiently smooth function defined in some region \(R \) (with boundary \(C \)) of Euclidean \(N \) dimensional space. Here the notation \(u_{,i} \) denotes the partial derivative of \(u \) with respect to the cartesian coordinate \(x^i \). In (1.1) the summation convention is used, i.e. \((a^{ij}u_{,i})_{,j} \equiv \sum_{i,j=1}^{N} (a^{ij}u_{,i})_{,j} \). The coefficient matrix \(a^{ij} \) may be a function of position and is assumed to be uniformly positive definite and bounded above. That is there exist positive constant \(a_0 \) and \(a_1 \) such that

\[a_0 \sum_{i=1}^{N} \xi_i^2 \leq a^{ij} \xi_i \xi_j \leq a_1 \sum_{i=1}^{N} \xi_i^2 \]

for any real vector \(\xi = (\xi_1, \ldots, \xi_N) \). We shall give a method involving the use of a parametrix, for obtaining bounds on any derivative of a function \(u \) at an arbitrary interior point \(P \) of \(R \). These bounds are in terms of \(Lu \) and \(\max_{S(P)} |u| \), where \(S(P) \) is a sphere containing \(P \). Estimates of this type for very general elliptic operators are described by John [6]. His method does not involve the parametrix and hence the expressions which could be derived would turn out to be quite different. Thus the problem is reduced to that of bounding \(\max_{S(P)} |u| \) in terms of quantities which are data of some boundary value problem. We assume throughout that \(Lu \) and the coefficients \(a^{ij} \) are sufficiently smooth so that all subsequent indicated operations are valid.

In this paper we concern ourselves only with the derivation of appropriate a priori inequalities. The manner of applying such ine-
II. Mean value expressions. To obtain the desired bounds we shall first need a certain expression which is in a sense analogous to the solid mean value theorem for harmonic function. One such expression was given in [2]; however, it is quite complicated. We derive now a simpler expression.

Since a fundamental solution corresponding to the operator \(L \) is not in general known we make use of a Levi function (or parametrix) (c.f. Miranda [6]).

Let \(P \) and \(Q \) be two points in \(R \). One possible definition of a parametrix is

\[
\Gamma(P, Q) = -(2\pi)^{-1}[a(Q)a(P)]^{1/4} \log \rho , \quad N = 2
\]
\[
\Gamma(P, Q) = 2^{1/3(N-2)}[(N - 2)\omega_N]^{-1}[a(Q)a(P)]^{1/4}\rho^{-(N-2)} , \quad N \geq 3
\]

where \(\omega_N \) denotes the surface of the unit sphere in \(N \) dimensions,

\[
\rho^2 = [a_{i\alpha}(Q) + a_{i\alpha}(P)](x^i_P - x^\alpha_Q)(x^i_P - x^\alpha_Q),
\]

and \(a(Q) \) denotes the determinant of the matrix \(a_{ij}(Q) \), the inverse of the neighborhood of \(P \), this function \(\Gamma \) has the property that

\[
L_Q \Gamma = O(r_{PQ}^{-(N-3)}), \quad r_{PQ} \to 0
\]

where \(r_{PQ} \) is the distance from \(P \) to \(Q \). An alternate form for a parametrix is

\[
\bar{\Gamma}(P, Q) = (2\pi)^{-1}[a(P)]^{1/3} \log \bar{\rho}
\]
\[
\bar{\Gamma}(P, Q) = [(N - 2)\omega_N]^{-1}[a(P)]^{1/3}[\bar{\rho}]^{-(N-2)} .
\]

Here \(\bar{\rho}^3 = a_{ij}(P)(x^i_P - x^i_Q)(x^i_P - x^i_Q) \). The function \(\bar{\Gamma}(P, Q) \) is such that if the \(a_{ij} \) are twice continuously differentiable in the neighborhood of \(P \), then

\[
L_Q \bar{\Gamma} = O(r_{PQ}^{-(N-1)}), \quad r_{PQ} \to 0 .
\]

Comparing (2.2) and (2.4) we see that \(\bar{\Gamma} \) is a better approximation to the fundamental solution than is \(\Gamma \) near \(Q = P \).

Now let \(S_a(P) \) be the interior of a sphere of radius \(a \) with center at \(P \), and such that \(S_a(P) \subset R \). We define the function \(f_n(P, Q) \) as follows (for \(P \) fixed)

\[
(2.5)\begin{align*}
(a) & \quad f_n(P, Q) = \begin{cases} 1, & Q = P \\ 0, & r_{PQ} \geq a \end{cases} \\
(b) & \quad f_n^{(i)}(P, P) = 0, \quad i = 1, 2, \ldots, N - 1 \\
(c) & \quad f_n(P, Q) \in C^{n-1}(E^N)
\end{align*}
\]
(continuous derivatives up to and including those of order \(n - 1 \) at each point of Euclidean \(N \)-space.) One such function, for example, is the polynomial with values
\[
\left[\int_{r_{PQ}} \rho^{n-1}(a^2 - \rho^2)^{n-1} d\rho \right] \left[\int_{0}^{a} \rho^{n-1}(a^2 - \rho^2)^{n-1} d\rho \right]^{-1}, \quad r_{PQ} \leq a.
\]

Another possible choice is the function
\[
\left\{ \int_{r_{PQ}} \exp \left[-\rho^{-2}(a^2 - \rho^2)^{n-1} \right] d\rho \right\} \left(\int_{0}^{a} \exp \left[-\rho^{-2}(a^2 - \rho^2)^{n-1} \right] d\rho \right)^{-1}, \quad r_{PQ} \leq a
\]
which satisfies (2.5) for all \(n \). Clearly
\[(2.6) \quad \Gamma_n(P, Q) = f_n(P, Q) \Gamma(P, Q)\]
also satisfies (2.2). But \(\Gamma_n(P, Q) \) has all derivatives up to and including those of order \(n - 1 \) vanishing on \(r_{PQ} = a \). Using (2.1) and (2.2) we find from Green's identity that
\[(2.7) \quad u(P) = \int_{S_a(P)} u(Q)L_Q \Gamma_n(P, Q) dV_Q - \int_{S_a(P)} \Gamma_n(P, Q)Lu(Q) dV_Q,
\]
provided \(n \geq 2 \). This expression is analogous to (5.8) of [2]. In addition to being simpler it possesses the advantage that the integration is taken over spheres, rather than ellipsoids which vary from point to point. We could as well have defined
\[(2.8) \quad \bar{\Gamma}_n(P, Q) = f_n(P, Q) \bar{\Gamma}(P, Q)\]
and obtained
\[(2.9) \quad u(P) = \int_{S_a(P)} u(Q)L_Q \bar{\Gamma}_n(P, Q) dV_Q - \int_{S_a(P)} \bar{\Gamma}_n(P, Q)Lu(Q) dV_Q,
\]
with \(n \geq 2 \).

III. Pointwise bounds. Either (2.7) or (2.9) can be used to obtain bounds in the Dirichlet problem. Using the Schwarz inequality we have
\[(3.1) \quad \left[\int_{S_a(P)} u(Q)L_Q \bar{\Gamma}_n(P, Q) dV_Q \right]^p \leq \left[\int_{R} u^2 L_{r_{PQ}}^2 dV \right] \left[\int_{S_a(P)} \bar{r}_{PQ}^n dV \right]^p.
\]
Equation (2.9) together with (3.1) and the bounds given by Theorem I and II of [2], yield pointwise bounds for \(u \) in terms of \(Lu \) in \(R \) and the values of \(u \) on \(C \).

In order to bound the first derivatives of \(u \) we can use (2.7), with \(n \geq 3 \), to obtain
\[
\frac{\partial u(P)}{\partial x_P^i} = \int_{s_a(P)} u(Q) L_q \frac{\partial \Gamma_n(P, Q)}{\partial x_P^i} \, dV_q
\]

(3.2)

\[- \frac{\partial}{\partial x_P^i} \left[\int_{s_a(P)} \Gamma_n(P, Q) L u(Q) \, dV_q \right].
\]

Hence we have

\[
\left| \frac{\partial u(P)}{\partial x_P^i} \right| \leq \max_{Q \in s_a(P)} |u(Q)| \left| \int_{s_a(P)} L_q \frac{\partial \Gamma_n(P, Q)}{\partial x_P^i} \right| dV_q
\]

(3.3)

\[+ \left| \frac{\partial}{\partial x_P^i} \left[\int_{s_a(P)} \Gamma_n(P, Q) L u(Q) \, dV_q \right] \right|.
\]

Now if \(a\) is so chosen that we can obtain a bound for \(\max_{Q \in s_a(P)} |u(Q)|\) then (3.3) provides a bound for \(\left| \frac{\partial u(P)}{\partial x_P^i} \right|\). If, for example, the least distance from \(P\) to the boundary \(C\) is \(r_0\), then we could choose \(a = (1/2)r_0\). Thus the closure \(\bar{S}_a(P)\) of \(S_a(P)\) is a compact subset of \(\mathbb{R}\) and hence only interior bounds for \(u\) are required. Note that we could not replace (3.2) by a similar expression involving \(\Gamma_n\) since the integrals on the right would not exist.

We note from (3.2) that

\[
\int_{s_a(P)} L_q \frac{\partial \Gamma_n(P, Q)}{\partial x_P^i} \, dV_q = 0.
\]

(3.4)

Thus if \(n \geq 4\) we have the representation

\[
\frac{\partial^2 u(P)}{\partial x_P^i \partial x_P^j} = \int_{s_a(P)} [u(Q) - u(P)] L_q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x_P^i \partial x_P^j} \, dV_q
\]

(3.5)

\[- \frac{\partial^2}{\partial x_P^i \partial x_P^j} \left[\int_{s_a(P)} \Gamma_n(P, Q) L u(Q) \, dV_q \right].
\]

since

\[
[u(Q) - u(P)] L_q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x_P^i \partial x_P^j} = O(r_{pq}^{-(n-1)})
\]

(3.6)

for \(r_{pq} \to 0\). From (3.5) we see that

\[
\left| \frac{\partial^2 u(P)}{\partial x_P^i \partial x_P^j} \right| \leq \max_{Q \in s_a(P)} \frac{|u(Q) - u(P)|}{r_{pq}} \left| \int_{s_a(P)} L_q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x_P^i \partial x_P^j} \right| dV_q
\]

(3.7)

\[+ \left| \frac{\partial^2}{\partial x_P^i \partial x_P^j} \left[\int_{s_a(P)} \Gamma_n(P, Q) L u(Q) \, dV_q \right] \right|.
\]

Now

\[
\max_{Q \in s_a(P)} \frac{|u(Q) - u(P)|}{r_{pq}} \leq \max_{Q \in s_a(P)} \left| \text{grad } u(Q) \right|.
\]

(3.8)
Clearly we can use (3.3) with a smaller value of a to bound the right hand side of (3.8). Thus we can bound an arbitrary second derivative of u in terms of Lu in R and the maximum of $|u|$ over a compact subset of R. In order to treat an arbitrary third derivative we note from (3.5) that

$$
(3.9) \int_{S_a(P)} (x_Q^n - x_P^n) L_Q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x'_P \partial x'_P} d V_Q = \frac{\partial^2}{\partial x'_P \partial x'_P} \left[\int_{S_a(P)} \Gamma_n(P, Q) L x_Q^n d V_Q \right]
$$

for $\alpha, i, j = 1, \ldots, N$. Combining (3.9) and (3.5) we have

$$
(3.10) \frac{\partial^3 u(P)}{\partial x'_P \partial x'_P} = \int_{S_a(P)} \left[u(Q) - u(P) - (x_Q^n - x_P^n) u_{,a}(P) \right] L_Q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x'_P \partial x'_P} d V_Q
$$

$$
- \frac{\partial^2}{\partial x'_P \partial x'_P} \left[\int_{S_a(P)} \Gamma_n(P, Q) Lu(Q) d V_Q \right]
$$

$$
- u_a(P) \frac{\partial^2}{\partial x'_P \partial x'_P} \left[\int_{S_a(P)} \Gamma_n(P, Q) L x_Q^n d V_Q \right]
$$

where we have summed over α from 1 to N. It follows from (3.10) that if $n \geq 5$

$$
(3.11) \frac{\partial^3 u(P)}{\partial x'_P \partial x'_P} = \int_{S_a(P)} \left[u(Q) - u(P) - (x_Q^n - x_P^n) u_{,a}(P) \right] L_Q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x'_P \partial x'_P} d V_Q
$$

$$
- \frac{\partial^2}{\partial x'_P \partial x'_P} \left[\int_{S_a(P)} \Gamma_n(P, Q) Lu(Q) d V_Q \right]
$$

$$
- u_a(P) \frac{\partial^3}{\partial x'_P \partial x'_P} \left[\int_{S_a(P)} \Gamma_n(P, Q) L x_Q^n d V_Q \right]
$$

The first integral on the right may be bounded as

$$
(3.12) \left| \int_{S_a(P)} \left[u(Q) - u(P) - (x_Q^n - x_P^n) u_{,a}(P) \right] L_Q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x'_P \partial x'_P} d V_Q \right|
$$

$$\leq \max_{\alpha, i, j = 1, \ldots, N} |u_a(P)| \int_{S_a(P)} L_Q \frac{\partial^2 \Gamma_n(P, Q)}{\partial x'_P \partial x'_P} d V_Q.
$$

Now (3.11) and (3.12) can be used to reduce the problem of bounding third derivatives to that of bounding second derivatives. It is clear how to proceed to higher derivatives. In each of the preceding bounds certain differentiability assumptions must be made. These conditions become more and more stringent the more derivatives of u that we wish to bound. Some conditions of this nature are of course required since in general u cannot be expected to be smooth.

Thus for an arbitrary derivative at P the method described above yields a bound in terms of Lu in R and the maximum of $|u|$ on a compact subset (for example $S_a(P)$ for some a) of R. These bounds, together with bounds for $|u|$ in $S_a(P)$ in terms of data in various
boundary value problems, yield pointwise bounds for derivatives at interior points in terms of the respective data. For such bounds see [1, 2, 3, 4, 5, 7, 8].

The techniques which we have used here to bound derivatives of solutions to boundary value problems at interior points in terms of the operator and bounds for the solution itself, will carry over quite naturally to higher order equations and to equations of other than elliptic type.

BIBLIOGRAPHY

UNIVERSITY OF MARYLAND
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

ROBERT OSSERMAN
Stanford University
Stanford, California

M. G. ARSOVE
University of Washington
Seattle 5, Washington

J. DUGUNDJI
University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should by typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Erik Balslev and Theodore William Gamelin, *The essential spectrum of a class of ordinary differential operators* ... 755
James Henry Bramble and Lawrence Edward Payne, *Bounds for derivatives in elliptic boundary value problems* .. 777
Hugh D. Brunk, *Integral inequalities for functions with nondecreasing increments* ... 783
William Edward Christilles, *A result concerning integral binary quadratic forms* ... 795
Peter Crawley and Bjarni Jónsson, *Refinements for infinite direct decompositions of algebraic systems* ... 797
Don Deckard and Carl Mark Pearcy, *On continuous matrix-valued functions on a Stonian space* ... 857
Raymond Frank Dickman, Leonard Rubin and P. M. Swingle, *Another characterization of the n-sphere and related results* 871
Edgar Earle Enochs, *A note on reflexive modules* ... 879
Vladimir Filippenko, *On the reflection of harmonic functions and of solutions of the wave equation* ... 883
Derek Joseph Haggard Fuller, *Mappings of bounded characteristic into arbitrary Riemann surfaces* ... 895
Curtis M. Fulton, *Clifford vectors* ... 917
Irving Leonard Glicksberg, *Maximal algebras and a theorem of Radó* 919
Kyong Taik Hahn, *Minimum problems of Plateau type in the Bergman metric space* .. 943
A. Hayes, *A representation theory for a class of partially ordered rings* 957
J. M. C. Joshi, *On a generalized Stieltjes trasform* ... 969
J. M. C. Joshi, *Inversion and representation theorems for a generalized Laplace transform* ... 977
Eugene Kay McLachlan, *Extremal elements of the convex cone B_n of functions* ... 987
Robert Alan Melter, *Contributions to Boolean geometry of p-rings* 995
James Ronald Retherford, *Basic sequences and the Paley-Wiener criterion* 1019
Dallas W. Sasser, *Quasi-positive operators* ... 1029
Oved Shisha, *On the structure of infrapolynomials with prescribed coefficients* 1039
Oved Shisha and Gerald Thomas Cargo, *On comparable means* 1053
Maurice Sion, *A characterization of weak* convergence 1059
Morton Lincoln Slater and Robert James Thompson, *A permanent inequality for positive functions on the unit square* 1069
David A. Smith, *On fixed points of automorphisms of classical Lie algebras* 1079
Sherman K. Stein, *Homogeneous quasigroups* .. 1091
J. L. Walsh and Oved Shisha, *On the location of the zeros of some infrapolynomials with prescribed coefficients* 1103
Ronson Joseph Warne, *Homomorphisms of d-simple inverse semigroups with identity* ... 1111
Roy Westwick, *Linear transformations on Grassman spaces* 1123