
Pacific Journal of
Mathematics

INTEGRAL INEQUALITIES FOR FUNCTIONS WITH
NONDECREASING INCREMENTS

HUGH D. BRUNK

Vol. 14, No. 3 July 1964
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H. D. BRUNK

1. Introduction. One of the fundamental inequalities of analysis
is Jensen's inequality,

(1.1)

for convex /, with G a probability distribution function. However, G
need not be a probability distribution function in order that (1.1) hold
for all convex / . Let X{t) be nondecreasing for a ̂  t S β. It was
shown in [1] that under mild regularity conditions on G, if G{a) = 0,
necessary and sufficient conditions for

(1.2) J/[*(«)] dG(t) ^ f(\[x(t) dG(t

for all convex / are

(1.3) G(β) = 1 ,

and

(1.4) Γ G ( u ) d X ( u ) ^ 0 , Γ [ l - G(u)] dX(%) ̂ 0 ί o v a ^ t ^ β .
Jcύ J ί

This result was applied to show that:
(i) sufficient conditions in order that (1.2) hold for convex / are

X(a) = 0,/(0) ^ 0, and 0 ̂  G(t) ^ 1 for a ̂  t ^ β; and
(ii) if / is convex on [0, b] with /(0) ^ 0, if 0 g a± ̂  ^ am ̂

b, if 0 ̂  hλ ̂  ^ hm ̂  1, then

m Γ~ m "1

(1.5) Σ (-iy-^/(α3) ^ / Σ i-iy-'hflj .
3=1 Lj=l J

The latter, (ii), was proved independently by Olkin [5]. Ciesielski [2]
obtained results (under unnecessarily stringent hypotheses) related to
(i) through change of variable, and obtained also analogous two-dimen-
sional results. These provided part of the motivation for the present
study of fe-dimensional analogues of (1.2).

In the present paper, X( ) denotes a map from the real interval
[a, β) into an interval I in fc-dimensional Euclidean space Rk such that
each component of X is nondecreasing. The function / is a map from
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Rk into the reals. The property of / critical for inequality (1.2) in
this context is that of having nondecreasing increments, rather than
convexity; for k = 1 it coincides with convexity. Functions with
nondecreasing increments are discussed briefly in § 2. In § 3, conditions
(1.3) and (1.4) are shown to be necessary and sufficient for (1.2) (k ^ 1),
and fc-dimensional analogues are given of (i) and (ii), above. Section
4 is devoted to the ^-dimensional analogue of a related theorem of
Levin and Steckin [4], giving conditions on H necessary and sufficient

f[X(t)] dH(t) ^ 0 for all/with nondecreasing increments.

2 Functions with nondecreasing increments • Let Rk denote the
ά-dimensional vector lattice of points x = (x19 , xk), x{ real for i =
1,2, , fc, with the partial ordering x — (xu , xk) ^ y = (ylf , yk)
if and only if xζ ^ y< for i — 1, 2, , fc.

DEFINITION 2.1. A real-valued function / on an interval IcRk

will be said to have nondecreasing increments if

(2.1) f(a + h)- f(a) £ f(b + h) - /(&)

whenever αe /, 6 + he I, 0 g he Rk,a ^ 6 . Even in the one-dimensional
case, k = 1, this does not imply continuity. Indeed, every solution of
Cauchy's equation, f(x + y) = f(x) + f(y), has equal increments. (Note
that if fl9 /2, •••,/* are functions of a single real variable satisfying
Cauchy's equation, then f(x) = Σ^i/ίί35*) ίs a function on Rk satisfying
Cauchy's equation.) However, our interest in this paper is solely in
continuous functions with nondecreasing increments.

It is of interest to note that such a function is convex along
positively oriented lines, i.e., lines whose direction cosines are nonnegative,
with equations of the form x = at + b where (0, , 0) ^ a e Rk, b e Rk.
If f(x) is continuous with nondecreasing increments for b ^ x 5g a + 6,
set φ(t) = f(at + 6), 0 ^ t ^ 1. In order to prove φ convex, it suffices
[3, Theorem 86, page 72] to show that [φ(r) + φ(s)]/2 ̂  φ[(r + s)/2]
for O ^ r ^ s ^ l . Set c = (s - r)/2. Then φ(s) - φ[(r + s)/2] =
φ(r + 2c) — φ(r + c) =f(ar + b + 2ca) —f(ar + b + ca) ̂ f(ar + b + ca) —
f(ar + b) = 9>(r + c) — φ(r) = φ[(r + s)/2] — ̂ (r). Thus φ is convex.

It is immediate from the definition that if the partial derivatives
/.(#) = df/dXi (xlf *• , Xjc) exist for x e /, then/ has nondecreasing incre-
ments if and only if each of these partial derivatives is nondecreasing
in each argument; in other words, if and only if the gradient, Vf =
(fi(χ)> '' f fk(%)) is nondecreasing on /. The second partials, if they
exist, are then nonnegative. If / is continuous and has nondecreasing
increments on /, it may be approximated uniformly on I by polynomials
having nondecreasing increments and therefore nonnegative second
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partial derivatives. To see this, let us set, for convenience, I =
{x:xeRk,(0, , 0) ^ a ^ (1, , 1)}. It is known that the Bernstein
polynomials

Σ Σ Σ /(iiM, iJn*, , ik/nk) Π (ψ) x)*l - XsY^

converge uniformly to / on I as ni —> co, . . . , nk —* co, if / is continuous.
Further, if / has nondecreasing increments these polynomials have
nonnegative second partial derivatives, as may be shown by repeated
application of the formula

(d/dx) Σ (f) α^(l - a)- 4 = rc Σ (" 7 X) (ai+ι - a,) x\l - a?)-1-* .

3 A line integral inequality of Jensen's type Perhaps the most
direct analogue of Jensen's inequality for / defined on an interval
IaRk would involve the integral of / over I with respect to a normed
measure. The inequality we treat here, however, deals with a line
integral over a positively oriented curve. By the term "positively
oriented curve" we understand a nondecreasing map X — (Xu , Xk)
of a real interval [a, β) into an interval Icz Rk: a ^ t' ^ t" < β implies
X(t')^X(t"), i.e., Xtf) £ Xάt") for i = 1, 2, , k. Theorem 3.1,
below, relates such a map X and a real valued function G of bounded

variation on [a, β). The integrals \ X dG and 1 GdX appearing
Jίo>,β) Jίcύ.β)

in the statement of Theorem 3.1 are related through the formula for
integration by parts: \ XdG + \ GdX = I d(XG) for every interval

/ r Jj JJ JJ )c Γ \
/ c [a, β) by \ XdG we understand the vector \ Xx dG, , I XkdG),

and similarly for \Gdx,\ d(XG)J. In order for this to hold and also

to avoid minor difficulties in the determination of G at common points
of discontinuity of X and G, we shall assume henceforth without further
reference that X is nondecreasing and continuous from the right (i.e.,
Xi is nondecreasing and continuous from the right for i = 1, , k)
and G is continuous from the left. For simplicity of notation, we
write X(β) for X(β~) and G(β) for G(β~). Some further bits of notation
will be required: the symbol [a, t} will refer to either of the left
intervals [a, t) or [a, t); and {ί, β) to either of the right intervals [t, β)
or (ί, β). Also, if a = (a19 , ak) e Rk, then a+ = (αί, , αί), where
at = max (α̂ , 0), i = 1, 2, , k. Further, we set ξt = I X{ dG, i =

S J[α>,β)
XdG.

Cα»,β)

THEOREM 3.1. IfG(a) = 0, ί/ιe^ necessary and sufficient conditions
in order that
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(3.1) ί f[X(t)]dG(t)^f\\ X(t)dG(t)]

for every continuous function f on I with nondecreasing increments
are

(3.2) G(β) = 1

and

G dX ^ 0 for every left interval [α, t} c [α, β) and

I [1 — G] dX ^ 0 for every right interval {t, β) c [a, β) .

The case k = 1 of Theorem 3.1 appears in [1]. We note that for k = 1
the class of continuous functions with nondecreasing increments is
identical with that of continuous convex functions. If k > 1, (3.2)

(3.3) do not imply (3.1) for all continuous convex / . For example, set

X(t) = (0, 2b) for 0 ^ t ^ 1/2, X(t) = (2b - 1,1) for 1/2 ^ ί ^ 2, G(0) -

0, G(2) = 1, and let G have saltus 1 at t = 0, saltus - 1 at t = 1/2, and

saltus 1 at ί = 1, being constant on each of the intervening intervals.

Set f(x) = (#! — #2)
2, where as = (xl9 x2); then / is convex, but does not

have nondecreasing increments. We have I f[X(t)]dG(t) = — 1, while

f\\ X{x)dG{t)\ = 1, so that (3.1) fails, although (3.2) and (3.3) are
LJ[0,2) J

satisfied: indeed, 0 ^ G ^ 1 (cf. Lemma 3.1).
Before proceeding to the proof of Theorem 3.1, we examine relations

among the following properties of G, for given X:

(3.4) 0 ^ G(t) ^ 1 for t e [a, β)

G dX ^ 0 for every left interval [a, t] c [a, β) , and

[1 - G] dX ^ 0 for every right interval {ί, β] c [a, β)

(3.3)

s,
(3.5)

ί[ G dX ^ [X(t+) - ξ]+ for ί e [a, β) ,
) J[«M]J[«M]

1 G dX ^ [X(t~) - ξ]+ for ί 6 [a, β)
J[α,ί)

'(

(3.6) J
'( [1 -σ\dX^[ξ- X(t-)]+ for t e [α, /8) ,

J

f

ct'β)

([1 - G] dX ^ [ | - X(ί+)]+ for t e [a, β) .
β

LEMMA 3.1. We have (3.4) =» (3.3). lZso, i/ G(α) = 0 αwd G(β) =
1, ίΛβΛ (3.3) <=» (3.5) *=> (3.6).
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Proof. That (3.4) implies (3.3) is obvious. Also, if G(a) = 0,
G(β) = 1, then

ξ = ( Xdg = X(a) + ( (1 - G) dX ,

so that

[ (1 - G) dX = g - X(α) - ( (1 - G) dX ,
J{ί,β) J[θ5,ί}

where [a, t) U {ί, /S) is a disjoint partition of [a, β); or,

f( (l-G)dX = |-X(«-)+ ( GdX,
(3.7) JJt*.β) W)

(1 - G) dX = f - X(t+) + \ GdX .
U(ί,β) J[Λ.ί]

Thus (3.3) implies that

ί GdX^X{t-)-ξ, \ GdX^X(t+)-ξ.
J[»,t) Jl»,ί]

With the first inequality in (3.3), this implies (3.5). Thus (3.3) => (3.5).
Also, it is clear from (3.7) that (3.5) and (3.6) are equivalent. Finally,
(3.5) and (3.6) clearly imply (3.3), and the proof of Lemma 3.1 is complete.

Lemma 3.2 will be used in the proof of the sufficiency of the
conditions in Theorem 3.1.

LEMMA 3.2. Under the hypotheses of Theorem 3.1, and conditions
(3.2) and (3.3),

ί F/[X(t)].d[X(t) - | ] + <£ f[X(β)] - f(ξ) .
J[Λ,β)

Proof. We observe first that X(a) ̂  f ^ X(/S). This follows from
the inequalities

0 ^ ( G(%) dX(u) = X(β) - ( X(u) dG{u) =
J[α5,β) J [ β )

and

0 ^ ( [1 - G(u)] dX(u) = -
J[β»,β)

Since X is nondecreasing, there is, for i = 1, 2, , fc, a unique smallest
real number r< such that Xi(τ,~) ^ & ̂  X»(^ί"). Suppose rx ̂  τ2 ̂
• ^ τk; the proof is similar for other orderings. We have
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\ Ff[X(t)] d[X(t) -

&) + ί Σ

(
Jttiitj)

+ ••• +
"Since /«(«) = /<(«!, , **) is nondecreasing in each argument, i
1, 2, , A;, we have, for 1 ^ i < j ^ &, and for T ^ ^ ί < τs,

I t follows that

^ t 2/«[-XΊ(*), ,
J[tj_1,τj) t=l

^ ί ) , •• , X 3 - 1 ( t ) , ξJt" >,ξk]

τ7),. fX ί_1(τ7),f J f ...,|J

(rr.!), , Xi-fa-d, ξ3; , |J, i = 2, , k

Therefore

[ Ff[X(t)] d[X(t) - f]+ ^
β)

i 2

This completes the proof of Lemma 3.2.

Proof of Theorem 3.1; necessity. Equation (3.2) follows from (3.1)
with / = 1 and / ΞΞ - 1 . For 1 ^ i ^ k, and a ^ t < β, set /(a?) =
f(xl9 , xk) = [^ - Xi(ί-)]+. For this function /, (3.1) yields
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f [XM - X{(t-)]+ dG(u) Ξg [f« - *,(*")]+ .

But

ί [Xiiu) - Xi(t~)]+ dG(u) = ( [X. fa) - Xi(t-)] dG(u)
Jl<χ,β) Jίt,β)

( [

> so that

( [1 - G(μ)] dX^u) S [& - Xάt-ψ , i = 1, 2, , fc ,

j verifying the first part of (3.6). The verification of the second part
is similar. With Lemma 3.1, this completes the proof of the necessity
of (3.2) and (3.3).

Sufficiency. Set Q(t) - (Q1(t)9 , Qk{t)) - j ^ G(u) dX(u) for a ^
t<β. Then by (3.5) we have Q(^) ̂  [ X ^ ) -*§]+ for α ^ t < /3.
Since / can be approximated uniformly in / by polynomials with
nondecreasing increments, there is no loss in generality in assuming that
the partial derivatives /<(&), i = 1, 2, , k, exist and are nondecreasing
in each argument. We then have, for i = 1, 2, •••,&,

ί

- \
J

since

Q08) - [X(β) - I] - [XC8) -

by (3.7). Therefore

/[*(*)] dG(t) = f[X(β)] - ( G(t) Pf[X(t)] dX(t)
,β) hc*>β~))

= F[X(β)] - \ Ff[X(t)] dQ(t)

^ f[X(β)] ~ \ Ff[X(t)]-d[X(t) - ξ]+ ^ f(ξ)

ΐ y Lemma 3.2. This completes the proof of the theorem.
In each of the following corollaries, Corollary 3.1 and Corollary

3.2, it is assumed that X is a nondecreasing map, continuous from the
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right, from [a, β) into a fc-dimensional interval / containing the origin
0 = (0, •••, 0); that / is a continuous function from I into the reals,
which has nondecreasing increments; that G is a real-valued function of
bounded variation on [a, β), continuous from the left, and that G(β) = 1.

COROLLARY 8.1. If X(a) = o = (0, , 0), ΐ/ /(0) ̂  0, if G(a) ^

0, and if (3.3) holds, then

(3.1) ( f[X(t)]dG(t)^f\\ X(t)dG(t)].
JΓα.β) LJ[«,/3) J

The case k = 1 of this corollary appears in [1].

Proof. Set G&) = G(t) for t > a, Gλ(a) = 0. Then by Theorem 8.1,

( f[X(t)] dG.it) ̂  f\ \ X(t) dGAt)] .

But

( Xit) dG1(t) = ( X(t) dG(t)
Jla,β) Jίoύ,β)

since X(a) = 0. Also

f[X(t)] dG.it) = f(0)G(a) + ί f[X(t)] dG(t) ,
φ) J[05,β)

and (3.1) follows.

COROLLARY 3.2. // either
( i ) G(a) = 0 or
(ii) X(a) ̂  0,/(0) ^ 0, and if
(ii i) 0 ̂  G(t) g 1 for a^t < β ,
then

(3.1) ί f[X(t)]dG(t)^fϊ\ X(t)dG(t)\.

Proof. By Lemma 3.1, (iii) implies (3.3) so that under hypotheses
(i) and (iii), (3.1) is immediate from Theorem 3.1. If (ii) and (iii) hold,
choose a* < a, set X*(a*) = 0, X*(t) = X(t) for a ^ t < β, and let
X* be linear for α* ̂  ί ^ α. Set G*(a*) = 0, G*(t) = G{a) for α* ̂
ί ^ α, G*(ί) = G(t) for α ̂  t < β. Then G*(/3) = 1, G*(a*) = 0, and
0 ^ G* ̂  1. From Lemma 3.1 and Theorem 3.1 it follows that

( f[X*(t)] dG(t) ̂  f\\ X*(t)dG*(t)\ .

But



INTEGRAL INEQUALITIES FOR FUNCTIONS 791

[ X*(t) dG*(t) = \ X(t) dG{t),

and

f f[X*(t)] dG*(t) = fWHμ) + \ f[X(t)] dCKt) ,
J[«*.β) J[α,β)

Since /(0) ^ 0 and G(α) ̂  0, conclusion (3.1) follows.

REMARKS ON COROLLARY 3.2. The case k = 1 of Corollary 3.2
appears in [1] with the hypothesis X(α) = 0. With a change of variable
in Corollary 3.2 we obtain the following theorem.

Let Y be a nonincreasing map, continuous from the left, from
<0,1] into I<zRk, with Y(l) ̂  0. Let Hbe continuous from the right
and of bounded variation on (0, 1], and suppose H(0) — 0, H(t) ^ 0 on
(0,1], I I dH(t) I > 0. If f is continuous with nondecreasing incre-

J (0,1]

ments on I, and if /(0) gL 0, then

\ f{Y)dHl\ \dH\^f(\ YdHl\ \dH\).
J(0,l] / J(0,l] \J(0,l] / J (0,1] /

It suffices to set X{t) = Y(l - t), G(t) = 1 - Γ#(l - t)l[ dH(t)l on
L / J(0,l] J

[0,1) in Corollary 3.2. Cases k = 1 and k = 2 of this latter theorem,
for discrete and for continuous H, appear in [2], with additional
hypotheses: for k = 1, that / ' is convex; and for k = 2, that the first
partial derivatives are convex along positively oriented lines.

Ciesielski points out (in the two-dimensional case) that setting
f(xlf x2) — xxx2 yields a generalization of an inequality of Chebyshev
[3, page 43]: if Ylf Y2 are nonincreasing, nonnegative and continuous
from the left on (0,1], if H is continuous from the right and of
bounded variation on (0,1], and if H(0) = 0, H(t) ̂  0 on (0,1], then

\ Y.Y.dHl \dH\^\ Y^Hl Y2dH.
J (0,1] J (0,1] J (0,11 J (0,1]

COROLLARY 3.3. Let f be a continuous map from a k-dimensional
interval I containing the origin into the reals, with nondecreasing
increments, such that /(0) ^ 0. Let m be a positive integer, and
let 1 :> hx ̂  h3 ̂  ^ hm ^ 0. Let a^ e I, j = 1, 2, , m, with
(1, , 1) > a, ̂  a2 ̂  ^ am ^ (0, . . , 0). Then

<3.8) Σ (-ly^Σ

For inequality (3.1) becomes (3.8) if a = 0, β = 1, if G has saltus
{-ly-fy. at 1 - i/m, (j = 1, 2, ., m) with <?(!)•= 1, and if X(l-j/m) =
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djU = 1,2, - . . , m ) .

The one-dimensional case appears in [1], and was proved independently
by Olkin [5]. For references to earlier special cases by Szegii,.
Weinberger, and Bellman, cf. [5].

4 An inequality of Levin and Steckin

THEOREM 4.1. Let I denote an interval in Rk; let X be a
nondecreasing map from \a, β) into I, continuous from the right*
Let H be continuous from the left and of bounded variation on [a, β),
with H{a) = 0. Then,

(4.1) ( f[X(t)]dH(t)^0
Jl>,β)

for every continuous function f from I into R with nondecreasing
increments, if and only if

(4.2) H(β) - 0 ,

(4.3) ( H(u) dX(u) - 0 ,
h<*>β)

and

(4.4) ( H(u) dX(u) ^ 0 for [a, t] c [a, β) .
Jl<*,t]

Proof of necessity. The validity of (4.1) for/ = 1 and for/ = —1

implies (4.2). Further, (4.1) for f(x) = xh where x = (x19 , xk), and

for f(x) = -Xj (j = 1, 2, , k), implies \ Xj(u) dH(u) = 0, j =

S J[Λ.β)
H(u) dX(u) = 0, which is (4.3).

[Cύ,β)

Inequality (4.4) results from (4.1) after integration by parts, on setting,,
for fixed j ( i = 1, 2, , k) and fixed t,a^t< βff(x) - [XAt+) - ^ ] +

or

Proof of sufficiency. Since, as remarked in § 2, / may be approx-
imated uniformly on I by functions with continuous nonnegative second
partial derivatives, we may assume that the second partials fiS exist
and are continuous and nonnegative. We then have

f[X(t)] dH(t) -= - \ H(t) Ff[X(t)] dX(t)

= - Σ Ϊ fAX(t)]H(t)dX3(t)
j=i J[»,β)

= Σ Σ ( Mm) dxm \ H(u) dxtu),
i = l i=l Jlcόφ) J[0,ί)
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by (4.2) and (4.3). But by (4.4) each term in the last sum is nonnegative,.
so that (4.1) is verified.

The one-dimensional (k = 1) version of Theorem 4.1 appears as.
Theorem D.I in [4], and indeed the proof of Theorem 4.1 is the natural
extension of the proof given in [4].

Sufficiency in the one-dimensional (k = 1) version of Theorem 3.1
was proved in [1] as a consequence of Theorem 249 in [3]; it is exhibited
below for continuous X as a consequence also of Levin and Steckin's
Theorem D.I (Theorem 4.1 above, with k = 1). Choose τ so that
X(τ) = f = ( X(t) dG(t). Set H(t) = G(ί) for a ^ t < τ, H(t) = G(t) - L
for τ ^ t < β.'β) Then H(a) - 0, H(β) = 0. Also

H(u) dX(u) = G(u) dX(u) - dX(u)
)ίa,β) J[α>,/3) hτφ)

= X(β) - ξ _ [X(β) _ χ(τ)] = o

and

ί f fl"(w) dX(u) = \ ^ G(u) dX(u) ^ ]0

if a S t < τ, while

H(u) dX(u) = \ G{u) dX(u) — 1 dX(u)
,t} J[o5,ί} J[r,ί}= ί

JO,*}

for τ ^ ί < β. From (4.1) it then follows that

ί f[X(t)] dH(t) = [ /[X(t)] Λ?(t) - f(ξ) ^ 0 ,

which is (3.1).
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