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Introduction. Throughout this paper we consider analytic mappings
f(@) of an arbitrary open Riemann surface R into an arbitrary Riemann
surface S. Heins [3] introduced the class of Lindelofian maps when E
is hyperbolic, and defined them in terms of Green’s functions; further
contributions have been made by Rao [4],[5]. In the case of planar
regions these maps are the classical functions of bounded characteristic.

Sario [6],[7], has utilized principal functions [1] on the range
surface to obtain generalizations of the main theorems for mappings
of R into S. In this paper a different first main theorem is obtained
in which the proximity function is a generalization of Nevanlinna’s
proximity function by means of the substitution of a principal function
for the logarithmic function. It is shown that the resulting class of
functions of bounded characteristic are the Lindelofian maps, and that
an extremal decomposition characterization of these functions can be
obtained as in the classical case.

1. An auxiliary family of functions. Analytic mappings from
an arbitrary open surface R into an arbitrary surface S can be considered
in terms of families .~ of LH functions, i.e., harmonic functions,
with isolated logarithmic singularities having integral coefficients. For
the purposes of this paper we slightly generalize the term, parametric
disk: 4 = (Q, ) is a parametric disk if Q is a classical parametric disk,
and there is defined on it a metric ¢ that is a real scalar multiple of
the induced metric.

We let £ be the local variable on S, and fix ¢S and a parametric
disk at o. If S is closed we define t({, g, @) for a ¢ S\o (set difference)
as the LH function on S which has singularities log |{ — a| and
—log |{ — ¢ | and is normalised by

lim (¢(¢, 0, @) + log |{ —0 ) =0

in terms of the fixed parametric disk. At « a parametric disk is
fixed such that

Received September 19, 1963. This paper represents part of a thesis submitted to
the faculty of the University of California, Los Angeles, in partial fulfillment of the
requirements for the Ph. D. degree. The author is indebted to Professor L. Sario for
his guidance and to Dr. K. V. R. Rao for his advice and help.

895



896 D. J. H. FULLER

in terms of it. We define successively

t(Cr a, 6) = _t(C, g, a) ’ CKES\O' ’
W, a,d) =, a,0) + UL, 0, 0), a,0eS\o .

These functions form the family .7~

If S is open, more than one family can usually be formed. We
consider an exhaustion of S by regular regions £ that contain o and
«, and define on Q2 the funection ¢,({, o, @) which satisfies the above
conditions for ¢, o, a) as well as one of the following:

(a) the normal derivative of ¢,(, o, @) vanishes on the boundary
92 of 2,

(b) a consistent partition of the boundaries of the regions 2 is

given, and £.({, o, @) has constant value and vanishing flux over each
part of 82 (J1] pp. 87-90).
By the theory of normal operators ([1] pp. 152 ff.) t(, o, @) is defined
as the directed limit of £,{, o, &) as S is exhausted by the regions
2. U a,0) and (¢, @, 0) are then defined as in the case of closed
surfaces S. Each condition in (a) and (b) determines a family .7. It
will be represented by .7, if (a) is satisfied and by 7(P) if (b) is
satisfied for a partition P; if P is the identity partition I, we write
7).

Since each function ¢ is a principal function ([1] p. 169), a family
.7 will be called a principal family. We note that a change in the
fixed parametric disk at o changes every function ¢, o, &) by the same
constant but leaves ¢(, @, 0) unaltered. Further, in view of our
definition of parametric digsk, for any given .7~ and constant k there
exists a family .77’ such that for all m,

{1, 0,0) =m} = {{[t'(,0,0) =m + k}, te 7,1’ e T .

We consider functions belonging to any principal family. If
«, 6 € S\o, these functions have the following four obvious properties.

t(c’ a’ a) = 0 b
t(C’ a’ 5) + t(C7 37 a) = O ?

D lim (HC, 3, @) + log | — 3| = 10,0, @) ,
to,a,d)=0.

LEmMMA 1.1. #a, 7, d) + (7, 6, @) + (0, a,v) = 0 when «a, v, are
distinct points in S.

Proof. If S is open we let 2 & S be a regular region containing
a,v, and 6, and consider functions ¢, defined on 2. We remove small
closed disks in £ that contain «,,d and apply Green’s formula to
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toC, @, v) and £,(,0,7) over the remaining region. On letting the
disks shrink to points we obtain

—'t!)(a! 67 7) + tﬂ(67 C(, ,Y) + R(ry) = 0
where
R('Y) = 1}}}} (tﬂ(C’ 5’ ’7) - t!Z(C? «, 7) = tﬂ(,\/v 57 a))

and the lemma follows by letting 2 — S.
If S is closed the same method is applied to S instead of to Q.

COROLLARY 1.2, ¥«, 9, 0) =t(0, , 0), @, € S\o.

Proof. This is obvious when a and ¢ are identical; if they are
distinct it follows from replacing v by ¢ in the lemma and applying (1).

COROLLARY 1.3. If « is distinct from o and v, then t(«, {, 7) is
of class LH on S\o with singularities at a and o.

Proof. If v = o this is implied by Corollary 1.2. Otherwise

Ha, L, ) +UE, 0,0) = Ua, 0,7),

which is constant.

LEMMA 1.4. +:S\o X S\o — [— 0, o] |¥(7, @) = (9, 7, &) s con-
tinuous for every fixed 0.

Proof. If 6 = o then + is identically zero; if not,

¥(71, a) = 19, 7, 0) + t(0, 0, @)

and each term is continuous by Corollary 1.2.

Sario [8] proves that if < S\o is compact and @ is an open set
containing E and o, then t(v,«,0)e .7, is uniformly bounded for
acKE,veS\Q. The same proof holds for ¢(v, «, 6) € 77(P). From the
harmonicity of t(v, @, ) in v and in &, and from its uniform boundedness,
it follows by a lemma of Heins ([2] p. 445) that

Lemma 1.5. If 8 =S x S\((o, o) U{(o, O} U{(L, o)} U{(C, O)}), then
6. 8" — (—o0, )| é(7, a) = t(v, &, 0) is continuous.

LeEMMA 1.6. IFf S =S x S\(o, 0) then ¢: S’ — [—co, o] |d(v, @) =
(v, @, 0) s continuous.

Proof. It suffices to consider the continuity at points (v, &), ¥, =
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a, =+ 0, and (0, ), &+ 0. For the first we let 4 be a parametric
disk at a, such that o¢ 4, and F be a closed connected neighborhood
of «, that does not intersect 4. For every (v, @) € F' X F there exists
7 € 84 such that i(v, «, o) > (9, «, 6), which is bounded by Sario’s lemma.
for all e 04, e F, No generality is lost by taking t(%, «, ¢) > 0 for
all neod,acF.

Let 4 be a homeomorphism of 4 onto a closed disk in the plane,
and g the Green’s function on this disk. By its extremal property

1, @, 0) — g(¥(©), ¥(a)) = 0

for {,ae F. Since for any =, there exists a neighborhood E, of the
origin of the disk such that g(z, @) = n for 2z, a € E,,, we have t(v, @, 0) > n
for v,aey'(&,) N F, and ¢ is continuous at (v, a,).

For the second case we let 04 be the boundary of a parametric
disk at a;, and F' and G be compact connected neighborhoods of ¢ and
a, that do not intersect d4. For { e F, ae (@, there exists e 04 such
that

t(C; a; ao) < t(77, a, aO) - t(77, a’ O') + t(77, 09 a’o) ’
which, by Sario’s lemma, is bounded above, say by M. Hence
t(c’ a’ O-) < M + t(c’ ao’ 0) ’

and the lemma follows, since for any =, t({, a, 6) < » in some neigh-
borhood of o.

We conclude this section by noting that the limits of ¢(, %, o),
t,0,v) and ¢&,v,v) as vy— o0 are o, — and 0 respectively, and
that £(¢, o, 0) is not defined.

2. Jensen’s formula. The main tool used in this paper is Jensen’s:
formula generalized for Riemann surfaces. We let 2 be a regularly
imbedded relatively compact region on the surface K and let v(2) be
an LH function on 2. The positive singularities of v(z) in 2 will be
designated by a;,,9=1, ---,m, and the negative singularities by
b;,5 =1, ++-, n; their multiplicities will be given by f; and v; respectively..

We obtain the formula from the following proposition:

LemMmA 2.1. If r is not a singularity of v(z), then

(2) o) == | 0@ pe, ) + 3 ol 1) — S0, 1)

where p(z, r) and g(z, r) are the capacity and Green’s functions defined
on 2 with singularities at the point r, and 02 is oriented counter-
clockwise about r.
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Proof. We first take the case when v(2) has no singularities on
2. Let 4= 2 be a small closed disk that contains . On applying
Green’s formula to p(z, ) and v(z) over 2\4, and letting 4 shrink to
r we obtain

~

o) = o= | 9@d"p( ) .

We next take the case when #(2) has a singularity vlog|z — a|,
o €02, but has none in Q. Let p(z, ) have the value k on 82; there exists
an € > 0 such that the boundary components of 2, = {z|p(z, r) < k — ¢},
have a natural one-to-one mapping on those of 92.

Let the components of 82 be {v},t=1, -+, n, with a€v, and
the corresponding components of 902. be {v.}. For % # 1, we apply
Green’s formula to v(z) and p(z, r) over each component of Q2\2. and
obtain

[ vpe,n =] dn).

For i =1, we let £ be the double of 2\2,. If ¢ is the total flux
of p(z, r) along 7v,, the function

W) = exo| £ ot 1) — b+ imte, )|

maps the first component of 0 conformally onto an annulus, such that
v, is mapped onto the unit circle B, and v, onto B,.={w||w]| =
exp [—(27/q)e]}. We may assume that the point ¢ is mapped on w = 1.
Consequentl‘zy do = 2r/q d*p(z, 7).

Since S i log|e® — 1| = 0, it follows that
1]

| v@dper =L @hre) —vlog|re® —1)ds.

Bl_BlS

By applying Green’s formula to the last integrand and to log|7e®|
over the annulus between the circles, we find

Sy _ w@d 0, 1) = sgmd*v(z) .

Summing over all the components of 82 we obtain

(3) o= | @ 1 = | v@dp 1) = o).

For the general case we note that

'U(Z) - ;I /’tig(a’i’ z) + %‘4 ng(bjy Z)
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‘is a harmonic function on 2. The application of (3) to this function
myields (2). We immediately obtain

COROLLARY 2.2, (Generalized Jensen’s formula). If f s an
-analytic mapping of R into a Riemann surface S on which is defined
@& function (¢, a, 0) belonging to a principal family, and if f(r), &
.and 8 are distinct, then,

@ HIW), @, 0) = = | 476, @ 0)d*pe, )
+ ; ﬂig(aiy ’l") - ]E ujg(djr ’l') .

‘where {a;} and {b;} are the inverse images in 2 of « and o respectively,
and p;, v; are their multiplicities.

If 7(r) is a singularity of #({, «, 0) the following proposition holds:

LEMMA 2.3. If f(r)=«a, and if the Laurent expansion of f(2) in
the neighborhood of r s f(2) = >\ ¢z, with respect to the parametric
disks at r and a fixed by p(z, r) and €, o, @) respectively, then

(5) lim (Np(e, 7) + Hf@), 0, @) = log | 1| .
2T N
If f(z) = 0, then, with the above expansion,

(6) lim (—~Np(z, 1) + UG, 0, ) = log |1 .

Proof. We shall use the same symbol z for an arbitrary point on
the surface and for its image under the mapping associated with the
parametric disk under consideration. £(f(z)) and p(z) will represent
(f(2), 0, @) and p(z, r), and I;, ete., constant coefficients. We set

4(2) = exp [t(f(2)) + it*(f(2)] ;

-this is single-valued in a neighborhood of 7.
If f(r) = o, the expansion in that neighborhood is

‘ q(z):clz—N+ — Sl

N N+1
‘Similarly, there is a neighborhood of 7 in which
7(2) = exp [p(z) + ip*(2)]

can be expanded as
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r) =z + imizi .
Hence

L~ lim () (r@)”

CN 27T

which yields the first conclusion. The second is proved in the same
‘way. This concludes the proof.
If we let N equal N or —N according as f(r) is ¢ or «, then the

function
tf(R) + Ap(x) — 3V 1:9(s4, 2) + }J:‘/ v,;9(a;, 2)
is harmonic on 2, when the summations are over the inverse images

in 2\r. On applying Jensen’s formula (4) and substituting from (5)
-or (6) we obtain the alternative expression

tog |[-L-| = L { #7@)ap@ + fon + 3V oo, m) — S vi06as 1)
Cy 2w Jog 7 7
We shall need the following property of subharmonic functions:

LEMMA 2.4. Let u be an u.s.c. function on a region W.
(i) If w is subharmonic on W, then for every regular 2 whose
closure is in W, and every ze Q,

1) u@) S | ww)d*pow, 2) .

(i) If for every ze W, there is a regular Q such that
uz) = 1 S w(w)d*po(w, z)
o2 Jon
over every level line 0h of po(w, 2), then w is subharmonic on W.

Proof. To prove (i) we take an arbitrary 2 and ze¢ 2, and let
{v,} be a descending sequence of continuous functions on 92 tending
to w. For any wedfR, we have by (2)

lim u(z) < lim 1 S v, (w)d*p(w, 2)
2w zsw 27 Joe
for all v,. By applying the monotone convergence theorem and the
maximum principle we obtain the desired result.

For (ii) we let 2, be an arbitrary point in the region, and choose
a parametric disk about z,, In terms of the associated unit disk the
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hypothesis yields
1 2x .
w(zy) = —S w(z, + re®) do
2r Jo

for 0 < r =1. The subharmonicity of u follows from the theory of
functions on the plane,.

We immediately obtain

COROLLARY 2.5. If u(z) s subharmonic on 2, and z2€ 2, < 92,
then

(8) [, w)dn 0,2 = | wwdpw,2),

where p,(w, z), 1 =1, 2, is the capacity function on £,.

3. Argument principle. Using the same notation as before we
let 2 be a relatively compact regularly imbedded open set in the surface
R, and n(%2, «), n(2, 6) the number of inverse images (with multiplicities)
in 2 of points a and ¢ in S that are not on the image of 82. We
have

(9) | @@, @, 0) = n(@,8) — w2, @)
2w Joa

where 0 is oriented counter-clockwise, and ¢ belongs to any principal
family.

This statement follows from removing small disks at each of the
inverse images of a and 0, applying Green’s formula to t(f(2), «, 0)
over the remainder of 2, and taking the limit as the disks shrink to
points.

We choose re Q. If p(z, r) is the capacity function on £, and k

is its value on 002, we let 2, ={zc2|p{, r) < h} and 8h be the
boundary of 2,.

THEOREM 3.1. If a and 0 are not in the image of 0h, and if
a, 0 and f(r) are distinct, then

1) L @), @, 0 1) = 0, 8) — nih, @)

where n(h, 6) and n(h, @) are the number of inverse images (with
multiplicities) of 0 and a in 2,, and t belongs to any principal family.

Proof. We let t(f(2)) and p(z) represent t(f(2), @, d) and »(z, r),
{a;} and {d;} be the finite number of inverse images of & and ¢ in 2,.
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There is a finite A’ such that 2, does not contain any of these inverse
images. We remove small disks about the ais and ds and apply Green’s
formula to ¢(f(2)) and p(z) over the remainder of 2,\2,.. After evaluating
and letting the disks shrink to points we obtain

gah_ah,t(f (2))d*p(z) + 27‘6[; po(a;) — % p].p(dj)]
=, ) - W ause,

since p(2) is the capacity function on both 2, and 2,.. In this relation-
ship #; and v; are the multiplicities of the corresponding inverse images.
The differentiation of this equation yields

% |, tF@*pe = % [hgahd*t(f(z»]

~lim Lo @*t(7@) — @t ¢

g

a"t(@) |

9(h—e)—0h

Since the last term vanishes for sufficiently small ¢, we substitute
from (9) and obtain the required relationship.
We note that (10) is an invariant property of principal families.

4. Logarithmic capacities. A logarithmic capacity of a compact
set K properly contained in an arbitrary surface S can be defined in
relation to any principal family .7~ if o€ S\E. We let ¢ be a regular
positive unit mass distribution on E. Since #({, %, ¢) is l.s.c. on E, we
define the logarithmic potential of /¢ relative to & as

pu) = | ¥, 7, 0) i)

on S\o. The following proposition carries over from the plane:

LEMMA 4.1. The logarithmic potential p.(4)) ts harmonic on
S\(EUo) and superharmonic on S\o. In the neighborhood of
g, p(n) —log |n — a| is bounded.

Proof. We let
., 1, 0) = min {n, (L, 1, 0)},

and

Pul) = | 46,7, 0) dpx(0) .

By Lemmas 1.5 and 1.6, ¢,(Z, %, 0) is continuous in (£, ), { € E, ne S\,
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and as E is compact there is for any arbitrary point 7, € S\¢ and ¢ > 0,
a neighborhood 4 of 7, such that

16(C, 1, 0) — 6L, 7 0) | <&, e E,ned,

It follows that ».,(%) is continuous and p.(%) l.s.c. on S\c.

Let I" be a disk about %, such that 81" is a leve!l line of £({, 7,, o).
We orient 81" clockwise about 7,. Since t({, 7, 6) is bounded below for
all (e E,nedl’, and —i(, %, o) is the capacity function on I', we
have by Corollary 1.2 and (2),

£, 1,7 0) | 1.7, 0) @) = | 467 0) (o)
7T Jer B E

where for each ¢, £,(C, v, o) is the harmonic function in » on I’ with
boundary values t,.(C, , 0). Further, by superharmonicity, ,.(C, %, 0) <
t(&, %, 6) for each { and for all n. We substitute in the above equation
and apply the monotonic convergence theorem as n— «., We obtain

| @t o) | 467 0 e = | e 7 0) de©
o Jor B B
and p.(%) is superharmonic by (7).

If 7,¢ E U 0, I" can be chosen such that I' £ S\(E U ¢). Since £, 7, o)
is harmonic on I’, the same method establishes the harmonicity of
p.(m) on S\(EF U o) by (2) and the maximum principle.

To establish the final part of the lemma we need only note that
by Lemmas 1.5 and 1.6 there is a neighborhood 4 of ¢ such that

tC,n0)=tmL,o)=log|n—o|+ h®L),lcE necdo,

where A7, {) is bounded.
We deduce the following proposition:

COROLLARY 4.2, If p is as above and f: B — 8 is analytic, then,
for a regular 2C R,

an | dro | 1@, 0 a6 = | a6 n | 1@, ¢ o) ap©) -

where t belongs to any principal family & and p ic the capacity
function on 2. The iterated integral is either finite or + oo,

Proof. There exists a closed disk D & S about ¢ such that

(a) DN E is void,

Mb) ta,l,0)<0,aeD,{eckK by 1.6,

(¢) the intersection of D and the image of 82 consists of a finite
number (possibly zero) of Jordan arcs B;, %=1, -+, n, each of which
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passes through o.

We divide 82 into the inverse images v;,, ¢ =1, «++, n, of B;, and
the remainder 7.

On 7 the funetion t(f(z), , 0) is uniformly bounded below for { e E
and we may apply Fubini’s theorem to

[,am@ | tr@, & o) d*piz, ).

The integral is either finite or -+ oo.

For each ¢, we exhaust 8,\c by a sequence of compact sets F;.
By (¢) the restriction of d*p(z, v) to f(F;) N 7v; induces a positive
mass function on F; & D\o. Its logarithmic potential

P =\, U@, 0) 0 )

fUFE
is harmonic on S\D by 4.1. By (b) the functions p,;; form a decreasing’
sequence; by Harnack’s principle its limit

Pu(© = | 470, £, ) d"p(z, 1)

is either — oo, or harmonic on S\D.

We may assume that p(z, 7) is zero on 02; then exp {p(z, ) + 1p*(z, r)}
(choosing any branch of p*) maps 7, onto an arc of the unit circle.
For any {,€ E we have

D.(C0) = SB log |e® —1|df + ¢

where ¢ is some finite constant. Since this integral is bounded with
respect to « and B, p.:({,) is finite, and p.;({) is bounded on E.
Consequently, by (b), we may apply Fubini’s theorem to

|20 | 850, €, 0) @0t m)

for each 4, and the integral is finite. Summing over 7 and 7v,;, we
obtain the required relation.

5. First main theorem. To develop a first main theorem for
analytic mappings f: R— S where R and S are arbitrary Riemann
surfaces, we fix a point 6 € S and define a principal family 7; we
then select points 7€ S and r<€ R such that o, 7 and f(r) are distinct.
A parametric disk is selected at r.

Let ¢ = max {t,0}. For a regular region 2 = R such that re £,

the proximity function m(®2, ), the counting function N(%2, f) and the
characteristic function T(2, f) of f on Q are defined as
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m(@, £) = | 1@, 0,7 &0, 1),
N@,f) = L7, {8} =008,
T(@, /) = m(2, ) + N@, ),

where p and g are the capacity and Green’s functions on 2, and s; is
repeated in accordance with its multiplicity.

The proximity m(R2, @) and the counting functions N(2, a) at the
point & are defined as m(%2, f) and N(2, f) when a = o; otherwise we
define

m(@2, @) =L | (@), @ 0)d"pe, 1),

N@, )= 29,7, H{a}=F"(@)ng.

where a; is repeated in accordance with its multiplicity.
The first main theorem reads:

THEOREM 5.1. For every ac S\f(r),
m(2, a) + N, a) = T(2, 1) + 01) ,

where O(1) s a bounded function with respect to Q.

Proof. When a = ¢ it is trivial; when « == 0, Jensen’s formula
{4) is

Hfr), @, 0) = 2 | 17@), @, 0) d*pla, ) + S olas, )

_ 1 S HF(@), 0, @) d*plz, ) — 3 9(s:, 7) ,
2 Joe '

which is
12) m(2, @) + N2, @) = | #(f@), 0,0 d*pz, 1)
+ N, f) + 0Q1) .
For £ e S we define
¢ = ¢, 0, @) — 1, 9, 7) -

There is a neighborhood 4 of ¢ in which both ¥, o, &) and ¥, o, 7)
are positive. Hence in 4,

Q(C) = t(C; o, a) - t(C9 g, 7'-) = t(c; T, a) ’
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which is bounded. Outside 4, q({) is obviously bounded. It follows
that

HF@), 7, @) = Hf(@), 7, 7) + O(1) .

We conclude the proof by substituting this in (12).

We note that if 7 and .97"” are principal families defined with
respect to the same point ¢, then the functions ¢'(¢, o, 7) and t"(, o, 7)
belonging to these families differ by a bounded harmonic function.
Consequently the corresponding characteristic functtions 7, and 7, are
related by TW(Q, )= T«(2, f) + OQ1) where O(1) is bounded with respect
to 2.

Before defining functions of bounded characteristic we shall develop
an alternative representation of the characteristic function. For this
purpose we prove the following lemma.

LEMMA 5.2. N(2, () is continuous on S\f(r).

Proof. Let a be an arbitrary point in S\f(r), and let a,, -+, q,
with multiplicities v,, +--, v, be the inverse images of «a in 2.

We can construct open connected neighborhoods D’, D of «a in
S\f(r), and E}, E; of a; in Q\r for every j, such that the following
properties hold:

(a) Each neighborhood lies in a parametric disk about its associated
point.

(b) Every inverse image of { € D'\« is simple and { has v; inverse
images in #j.

(¢) Every ze E}\a; is simple.

(d E;,cE.

(e) Every ¢ e D\« has y; roots in E;, and D & D',

(E)\a;, £) is a smooth covering surface of S. If () is an arc in
D from an arbitrary d e D to «, its path of determination 7'(t) from
an inverse image of ¢ in E; cannot intersect EJ\E; and must tend to a;,.
Similarly if the inverse image is not in an £/, ¥'(f) must tend to 02.
Hence every component of the inverse image of D that intersects Q
is either a neighborhood of some a; or intersects 0£.

Let D,={£]|{ — a| < p)} be a disk in D in terms of the local
coordinates. Let F;, be the component of the inverse image of D, that
contains a;, let G4, 5 =1, --+, n be the components that intersect the
inverse images b;, j =1, ---,n, of @ on 82, and let Hy, 7 =1, -+, m,
be the other components that intersect 2. The number of components
is finite since 82 and 0D, are analytic curves.

We define a real-valued function 2;(z) on H;, by h;(z) = |f(z) — «|.
For each H;, there exists r; > 0 such that hyz) > r; for 2z H;,N 2,
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and there exists a positive r, < r; for all j. Let Dy = {{ || — a| < .

Let M be a uniform bound of the number of inverse images in 2
of e S. TFore >0 and every j, there exist neighborhoods 4(b;) & G,
of b; such that

L9z, 7) — gla;, 7)| < % ,  zeday),
and
lg(z, 7) | < % ,  zedd,)

where ¢(z, r) is the Green’s function on £ and vanishes outside £.
Then | N(2, {) — N(2, o) | < ¢ in the intersection of D, and the images
of 4(a;) and 4(b;) for all j. This completes the proof.

LEMMA 5.8. If pis a regular positive unit measure on a compact
set E < S\, and if p.(0) =\ t(, {, 0) dp() 1s the logarithmic potential
B
with respect to any family 7, then

(13) =P ) = = || PUS@) 00, )

+ N@, f) — SEN(Q, 0)dm) .

Proof. By Lemmas 1.5 and 5.2 we may integrate Jensen’s formula
(4) over E and obtain

[ #5), 0,0 @) = = | (@) |, 1/G@), 0,0 d*pe, )

+ M@, ) — | M@0 -

We apply (11) and obtain the required result, which is the natural
generalization of Frostman’s formula.

The characterization of T(f, f) that we need is a consequence of
the next theorem.

For a fixed 0,7€ S and 7€ R such that o, 7 and f(7) are distinct,
we shall write () for (¢, o, 7), t.(() for max{m, t({)} and p(z) for

»(z, 7).

THEOREM 5.4. If E, ={{|t(() = m} where m s finite and ¢t
belongs to the principal family 7 (I) with respect to the identity
partition, then
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(14) (f) = = | ta(£@) d*p(@)

- N@f) - o= | N2 0 dHo .

Proof. We first prove this theorem for the case in which some
extra hypotheses hold, and then remove the restrictions.

We assume that either S is closed or that S is a regular region
containing the image of 2 and that m = lim#() as {—£€8S. We
choose a unit mass distribution on the compact set E,, (oriented clockwise
about o) such that dy = 1/27 d*¢({). Its logarithmic potential is

(15) puT) = 5= | E, 7, 0) dHO)

E,, divides S into two components, one containing o and the cother
7; we shall call them the o,- and 7,-components. If S is a regular
region one of these components is a neighborhood of the ideal boundary;
we suppose that it is the o,-component.

If m < €(n) < oo, then the flux of £, %, ) is zero over the boundary,
E, U088, of the o,-component and is also zero over the boundary, S,
of S; since E, N 0S is void, it follows that the flux over E, is zero.
As t({) is constant on E,, it follows from (15) that

—p) = — o | 8, 0) d7HO) — U A HE, 7, 0)]

The application of Green’s formula to #({, %, o) and () over the
T,-component proves that the right-hand side equals —i(z, 7, 0) = t,.(7).

If —eo <tm) <m, we write U, 7, 0)=1H 7,0)+ L n 7) in
(15). The flux of #({, 7, 0) iz 27 and the flux of ¢, 7, ) is zero over
the boundary, E,, of the 7,-component. The first integral equals —m.
We add a zero term and obtain

—p) = m = = |6 7,9 dHE) — 60 dHE, 7, )

from (15). We apply Green’s formula to ({, 7, 7) and #({) over the
o,-component, and it follows that —p.(9) = m — (0,9, 7) = m = ¢,.(0)
by (1).

We obtain the same results if we suppose that the t,-component
is a neighborhood of the ideal boundary.

Since the application of Lemma 4.1 to (15) shows that p.(%) is
continuous at 7, we conclude that —p.(c) = £,.(7).

If » € E,, we note that ¢({, 7, 0) is superharmonic in the neighborhood
of E,. We consider the level lines £,,_. and E,,,., ¢ > 0. For sufficiently
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small ¢, either t¢({) is the capacity function on the 7, ., T,- and T,
components or —t({) is the capacity function on the corresponding
g-components. In either case we apply (8) to (15) and obtain

tm—s(y]) é _p,u.(yi) é tm+8(77) ’

which yields —p.(n) = t,.(7).

We substitute in (13) and obtain (14).

To remove the restrictions we shall denote the intersection of FE,
and the image of 2 by E.. Then E/ is compact and

|, M@, 0 d*i0) = || N2, 0)d*i(0).

If S is a regular region and m = lim £({) as { —£&€dS, we take
& > 0 sufficiently small that

{Clgradt@) =0 and m +e <) = m} S E, .

For ¢, > ¢ >0 we map E, .. into E, along the level lines of &*({).
These are well defined as the different branches of t*({) differ by an
additive constant. The mapping is one-to-one except that onto each of
the finite number of zeros of grad #({) on E, is mapped a finite number
(one more than the order of the zero) of points on £ ..

On the image of O we set the measures dy. = 1/2x d*t() on
E) .., 0<e<e. By Helly’s theorem there exists a limiting measure
that is obviously on E,. By the continuity of the normal derivative
of #({) it is, under the above mapping, d*¢({), a.e. Hence, if N, =
min (N, q), we obtain

lim S
’

g0

N2, 0 d"HO) = | M@, D) a*HQ) .

Em+e

The opposite inequality is obtained by Fatou’s lemma. Consequently,

lim| M@0 = | N© OO .
g m+e m

We now establish (14) for m by applying it to m -+ ¢, which is permissible,
and letting ¢ — 0.

If S is arbitrary we consider an exhaustion of S by regular regions
W such that W contains 0,7 and the image of 2. We denote by
t7(C) = tw(, 0, 7) the function in the .7(I) family defined with respect
to W, and we set E,, = {{e W|t, () = m}.

Let W, be a regular region containing the image of 2. We first
consider m such that E, N W, contains no zeros of grad ¢(), and cover
it with a finite number of parametric disks. We select ¢, > 0, such
that the set
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F:{Cleoét(C)ém‘l“@o}n I/T/vo

is contained in these disks and does not contain any zeros of grad ¢({).
On each disk we use t() and any branch of ¢*({) as local variables.

Since E, and 0 W, are analytic manifolds, their intersection consists
of a finite number of components. Consequently there exists a compact
F’ S F such that the intersection of E,, and the image of 2 is contained
in the interior of F”, and that 8F" intersects K, at a finite number
of points, each of which has a neighborhood in which 8F’ lies on a
level line of t*({). We set Ef = E, N F’

Since t,() and its normal derivative tend uniformly on compact
sets to #({) and its normal derivative, there is for any ¢ > 0, a W, such
that

ErpnS{lim—e<UD) <m+enNF,

and that the maximum angle between E,,, and E, is less than 7n/2,
for W 2 W,.. For sufficiently small ¢ we can map K}, univalently onto
E¥ along the level lines of £*({).

We have set up the set we need for the proof. We apply (14) to
the region W and let W— S. It is only necessary to examine the
convergence of the last term. On W, we choose a set of measures
Aty = 1/2r d*¢,(C) on Ef,. For sufficiently large W,

| N2, 080 = | N©2,0d" 0 .

We apply Helly’s theorem as before and obtain the necessary convergence.
Consequently, the theorem holds for open S if there is no zero of grad
() on E,,.

If grad ¢({) has a zero on E,, we apply (14) to E, .. and take the
limit as e — 0. To obtain the convergence of the last term, we choose
the set of measures dyt. = 1/27 d*4({) on K., and apply Helly’s theorem.
This completes the proof.

By taking m = 0 in (14) we immediately obtain a generalization
of Cartan’s formula:

COROLLARY 5.5. If the characteristic T(2, f) is defined in terms
of a principal family 7(I), then

(16) T(@, /) = UFm) + o= | N2, 00 .

or

As a side issue we shall strengthen Lemma 5.2,

LEMMA 5.6. If f(02) is the image of 82, then N(R,() is LP on
S\f(69).
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Proof. Let ae S\(f(02) U f(r)). We take 0 at «, a parametric
disk 4 at «, and an arbitrary 7. Let ¢() = ¢, g, 7)€ 9(I). There
exists m, such that {{|H{) = m} & AN\(F(OR) U f(r)).

For m = m,, (14) yields

m=——| mape) + N@,@)— | NMe0@H,
T JEp
which is
N@ @) = = | N@,0 Q) .
T JE,

Since —#({) is the capacity function on the neighborhood of & bounded
by m = m,, the funetion N(£, {) is harmonic on S\(f(@2) U f(r).

Let the multiplicity of  be k. By the construction used in Lemma
5.2 there is for any %, a neighborhood of f(r) such that each { therein
has & inverse images In

{zlg(z, r) > n},

and a uniformly bounded number of other inverse images, for all of
which ¢(z, ) is uniformly bounded above. Hence N(£, ) has a loga-
rithmie singularity with coefficient k. This completes the proof.

6. Functions of bounded characteristicc. The remark after
‘Theorem 5.1 shows that if the characteristic function T(£, f) is bounded
with respect to £ when it is defined in terms of one principal family
7, then it is also bounded when defined in terms of another family.
We shall show that this property is also independent of the points o, 7, 7,
provided that o, 7 and f(r) are distinct.

For a fixed family 7(I) and a fixed z, we define

2(2,0) = o= |, #5@, 0, 9 &"pule, 0),

y(‘Q; Q) = ; gﬁ(siy Q) ’ {sz} = f—l(a) n ‘Q ’

#(@,9) = = | 1@, 7, 0)*pifz 0),

Y (2,9 = Z 9,9, {}=r"@ne,

and w =2+ y,% =2 + ¥y, where 2 is a regular region in R, and s,,
t; are repeated in accordance with their multiplicities.

LemmA 6.1, If Q exhausts R, then the limits of ¥(2,q) and
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w2, q) are either L P (harmonic with positive logarithmic singularities)
Sunctions or -+-oo; if the limit of w(2, q) s LP, then the limit of
(2, 9) is harmonic.

Proof. The classical method is employed. We first prove that
2, & 2, implies u(2,, q) < u(2,, q). Let ze Q,. We write £() for ¢, o, 7).

If t( f(z)) >0, then t( (@) = t(f(2)) = w(2,, 2) — u'(2,,2) by Jensen’s
formula (14). Hence t( f(2)) < u(2,, 2) for all ze 2,. Consequently,
1

E;‘L'— Sbalz(f(z)) d*pl(z’ 9= ziﬂ' Sfml I:u(‘Qm Z) - %:4 9:(s;, Z)] d*p(z, q) ,

which is, by transposition,
w2y, @) = w2, 9) .

For any fixed 2, we exhaust B by £ 2 2,. By the application of
Harnack’s principle to w(2, q) — u(2,, 9) over 2,, we find that the limit
of (2, q) is LP or + o over 2, and hence over R.

By the maximum principle, ¥(2,, @) < %¥(2,, ¢) when 2, < 2,, and
the same proof carries through.

If the limit of (2, q) is LP, so is that of y(2, q): further, both
functions have the same singularities. By taking the limit of (2, q) =
w(2, ) — y(2, ¢), we obtain the harmonicity of the limit of (2, q).
'This completes the proof.

THEOREM 6.2. If T(2,f) is bounded with respect to 2, then it
18 bounded for any choice of r, 7,0 if f(r), 0 and v are distinct.

Proof. A subscript indicates functions defined in terms of the new
parameters.

(a) If r is changed to 7, such that f(r) % g, then T«(Q,f) =
(82, ) is bounded since the limit of (2, q) is LP.

(b) If 7 is changed to 7,, we have

| 7402, f) = 1@, £ = o= | |66 — H@)|dpie, 7).

The integrand is bounded since the function ¢(¢) in the proof of
‘Theorem 5.1 is bounded.
(¢) If o is changed to o,, we may by (b) take o, as 7 in defining
T(2, f). From the definitions of the terms
TR, f) — (m(2, 0) + N(£, 0))

is a constant function. It follows from Theorem 5.1 that T(2,f) —
T«(2, ) = 0.



914 D. J. H. FULLER

We have established the fact that the following class of functions
is well-defined.

DEFINITION. An analytic function f: R— S, where R 1is an
arbitrary open surface and S an arbitrary surface, is of bounded
characteristic, fe MS, if T(Q, f) is bounded with respect to 2 = R,

It follows from Lemma 6.1 that if f € MB, then the limit of (2, q)
is a positive superharmonic function on E. Consequently R is hyperbolic
and we set

N(R; C7 ’I") = -lol_'ng N(‘Q: C) = E{%;gﬁ(zw Ir) ’ {z’b} :f—l(C) ﬂ Q .

Since ([3] p. 429) N(R, ¢, r) = >.; 9(z;, 7), {z;} = F ), where g is Green’s
function on R, it follows ([3] p. 418) that the class MB is identical
with the Lindelofian maps. We are able to obtain a characterization
in terms of N(R,, q).

THEOREM 6.3. If f: R— S is analytic, the following statements
are equivalent:

(a) feMB

(b) there exists se R and open U S S such that N(R,(, s) < o«
for Le U,

(¢) N(R,C )< o,seR, {eS\f(r).

Proof. To prove that (b) implies (a) we select ae U\f(s) and a
parametric disk 4 at « such that 4 & U\f(s).

Set 4, ={Ced,|N(R,, s) <n} then by Lemma 5.2 N(R,(,s) is
lower semi-continuous and 4, is closed. Also 4 = U 4,. By Baire’s
category theorem there exists M such that 4, has an interior point.

Let @ < 4, be an open region, and e Q\(g U f(s)). We define a
family .7 (I) at 0; ¢(¢, 0, 7) has a level line F'in Q. There is a principal
family .7,'(I) such that E = {{|t'() = 0}, t' € 77'(I). Substitution in
(16) yields

T(9, /) £ P(f6) + | MIHQ) <

for all 2. Hence fc MB.

(¢c) implies (b) trivially. To show that (a) implies (c) we note that
by Lemma 6.1, N(2, {) is bounded above for s€ R, { € S\ f(s), whenever
fe€ MB. This completes the proof.

An extremal decomposition characterization of MB functions is
given by the following:

THEOREM 6.4. An analytic f: R— S is of class MB if and only
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if t(f(z)) is the difference between two LP functions, where t may
be from any principal family 7.

Proof. From the proof of Lemma 6.1,
8f(2) = u(2, z) — u'(2, 2)

for all 2. If fe MB, then the limits of % and % are LP functions.
This proves the necessity.

For the sufficiency we assume t(f(z)) = v(z) — w(z), v, we LP.

The singularities of u(2, ) are positive singularities of #(f(z)), and
so among the singularities of v(z). Hence v(z) — u(2, 2) is superharmonic
on 2 and attains its minimum on 02,

Let wed2. By (2), (2, 2) is the harmonic function on 2 with
boundary values t(f(w)) and

lim (0, 2) = t(f(w))

for any approach to w; also y(2,2)— 0 as z— w, and v(w) = t(f(w)).
Consequently v(z) — (2, 2) = 0 on 2.
Since w(z)e LP, there exists re€ £ such that v(r) < «. Hence
w(2, r) is bounded for all £, and fe€ MB. This concludes the proof.
The integrand of the proximity function used by Sario [8] is

s, ) = UL, o, 0) + log (1 + €*9) (1 + €*@), @~ 0
= log (1 + €*¥), a=o0.

where t€ .7, and () = t(, 0, 7). A comparison of the characteristic
functions, evaluated at o, shows that the functions of bounded char-
acteristic with respect to Sario’s characteristic function are the same
as those treated above.
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