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1. Introduction. In this paper we are concerned with the
existence of minimal surfaces with respect to the B-area (see §4)
and related problems in a bounded domain D in the space C* of two
complex variables z,, 2,.

Let K,(2,%),2 = (2, +++, 2,), be the Bergman kernel function of a
bounded domain D in the space C™ of % complex variables. Through-
out this paper, we assume K,(z, Z) has the boundary value infinity at
every point on the boundary of D. The kernel K,(z,%) enables us
to define the Bergman metric

(L.1) dsh(®) = 3 Ts(z, B)d2,da,, T,; — 2108 Ky
Hy=1 02,07,

which is invariant with respect to pseudo-conformal mappings [4,
pp. 51-53]. Using (1.1) we construct (see §2) the complete Bergman
metric space (D, d) over D and state a theorem for complete Riemannian
spaces that for any two points in D, there exists a minimal curve
with respect to d which connects the two points.

In § 3 we show that, if D is a plane domain bounded by finitely
many boundary components b, b,, ---,b,, then there exists a minimal
closed curve with respect to d among those curves which are homotopic
to a fixed inner boundary component, say b, in D(b,) (see §3 for
notation). If D is doubly connected, there exists a unique minimal
closed curve in D. Furthermore, we prove a distortion theorem which
gives bounds for the Bergman lengths of the minimal closed curves.

Analogous results are obtained in the case of two complex variables
replacing the length by the B-area.

For a closed Jordan curve [” in a complete metric space (D, d),
we ask whether there exists a minimal surface with respect to the
B-area which spans I'. Answers to this question which constitute
the main result of this paper are given in §4.

As a generalization of §3, we consider a domain D which is
topologically equivalent to a product domain of the form D, x D,,
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944 KYONG T. HAHN

where D, is a bounded domain as considered in §3. When does there
exist a minimal closed surface with respect to the B-area among
those surfaces which are homotopic to T; in D(T)) (see §5 for nota-
tion)?

Answers are given in §5. Distortion theorems for the minimal
surfaces are given in §6.

2. The Bergman metric space. A (continuous) curve ¢ in D is
said to be regular if it admits a regular (parametric) representation,
i.e., there exists a continuously differentiable representation

(2.1) G Lz, =G((t),k=1,2,+-+,n,tecl=]a,b],

and dG,/dt never vanish simultaneously at any tel. A curve ¢ in D
is said to be precewise regular if it admits a piecewise regular re-
presentation, i.e., there exists a partition 4: @ = ¢, <t, < v t,  <t, =
b such that G|[t,—y, ] is regular for k =1,2, ---, m.

For a piecewise regular curve ¢ given by (2.1), we define

2.2 L) = || 5 TtGee), G2 4G, 1%y

Ly(c) is independent of the choice of piecewise regular representa-
tions of ¢. Ly(c) will be called the Bergman length of c.

For any two points 2' and 2° in D, we define a distance function
d by

(2.3) d(z', 2’y = inf L(c) ,

where ¢ runs over all piecewise regular curves which connect z' and
z'. Then the following theorem holds [15, § 16].

THEOREM 2.1. d satisfies all the axioms for a metric and the
metric space (D, d) is topologically equivalent to the metric space
(D, p) with the FEuclidean metric p. Moreover, the metric space
(D, d) 1s finitely comnected in the semse that every pair of points in
D can be connected by a curve of finite Bergman length.

The metric space (D, d) will be called the Bergman metric space
over D. The significance of this metric space is that all metric
properties are invariant under pseudo-conformal mappings.

We define the length (generalized) of a continuous curve ¢ in
D in the following way: For a partition A4(I) ={I, L, ---, L.}, I, =
[ten tel, k=1,2, ---, m, of I, we define
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o(G; 4(I)) = é‘l o(G; 1), o(G; 1) = d(G(t,), G(t,-)) .

Further, we define

(c) = sup a(G; 4(1)) ,

where 4 runs over all possible partitions of I. Then _$(c) is in-
dependent of the choice of continuous representations of ¢. Clearly,
the functional .&, is lower semi-continuous, i.e.,

F(e) £ liminf .7 (c,), if ¢, —c.
k— oo

Further, for every piecewise regular curve ¢, L,(c) = .&5(c) |15, §16].

If %7(¢) < oo, ¢ is said to be rectifiable. A curve is said to be
completely degenerated if there is a representation G|I such that G
is constant on I. A representation G|I is said to be wmormal if
LG Y] = — ¢, for t,t' et <t.

Let ¢ be a rectifiable curve which is not completely degenerated.
Then ¢ admits a normal representation G |[0, . (c)], If we set F(t)=
Git.e(e), tel, I, =]0,1], then F'|I, is also a representation of c.
Such a representation F'|I, is called a reduced representation of c.
For a closed curve, F' is defined on (— oo, ) and is periodic of period
1. It is, therefore, enough to consider F' on [,. If F'| I, is a reduced
representation of a curve ¢, then the inequality

(2.4 AUE@), F(t) = 3(c) [t 1]

holds for every t,t €1,

A metric space is called complete if every bounded infinite subset
contains a limit point in the metric space. If D is homogeneous,
(D, d) is always complete. Further, for every bounded generalized
analytic polyhedron D, (D,d) is complete. This is a result of
S. Kobayashi (see [11] for details). For domains D in the space C»,
n < 2, Bergman has shown that the distance from a point in D to
the boundary becomes infinite under certain hypothesis on the
boundary of D |1}, [6, Chap. III]. 1t is clear, in this case, that the
metric space (D, d) is complete. Without going into great details in
this direction, we shall assume in the sequel that the metric space
(D, d) is always complete.

A curve K in (D,d) which connects z' and z* in D is called a
mintmal curve between z' and 2* if &7 (K) = <(c) for all curves ¢
connecting 2 and z°.

THEOREM 2.2. For any two points 2" and 2%, 2' +# z,, wn (D, d),
there exists a minimal curve K between z2' and 2'. Further, the
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minimal curves are analytic (see [10] or [15, §17]).

3. The existence of a minimal closed curve in a plane domain
and its distortion theorem. We consider a multiply connected bounded
domain D in the space C* bounded by N Jordan closed curves
b, by, -+, b,, where b, is the outer boundary component. Let (D, d)
be the Bergman metric space derived from the Bergman metric

3.1) dsi(z) = Ky(2,%) | dz|*.

It is assumed that (D, d) is complete. Then all the previous con-
siderations, lemmas and theorems can be carried over to this case.
We fix an inner boundary component of D, say b,. Without loss of
generality, we may assume b, to be a circle.

Let &(D; b)) be the class of all closed continuous curves ¢ in D
which are homotopic to b, in D(b,), where D(b,) is a ring domain
bounded by b, and b, which contains the domain D, and D(b,) is the
closure of D(b). A curve K(D;b) in R(D;b,) which satisfies the
condition .Z5(K(D; b)) < .<(¢c) for all ce R(D;b,), will be called a
minimal closed curve of D with respect to b,. Due to the complete-
ness of (D; d) and the behavior of K,(z, Z) (described on page 943) on
the boundary of D, we have

THEOREM 3.1. There exists a minimal closed curve K(D;b,) of
the domain D with respect to b,. Further, it ts analytic.

Proof. Let v =inf, 27 (c), where ¢ runs over the class &(D;b,).
Then 0 < v < o, There exists a minimizing sequence {c,} of rectifiable
curves in R(D; b). Let G,|I, be the reduced representation of c,.
By (2.4), we have

d(Gi(t), G(t)) = Z(e,) | t—t'| for each k,

and {<%(c,)} has an upper bound é which is finite. We choose an M
such that M* > §/l(b,), (b)) is the Euclidean length of b,. Then no
¢, lies completely in D — Dy, D,, = |21 K,(2,7) < M]. Let

© = max d(z, 2) ,
21 29€D
then for every pair of positive integers » and ¢, we have
d(G(1), Gt)) <o +20,0=t=<1. Hence, we can select a sub-
sequence {G,} of {G;} which converges uniformly to a continuous
function G° on I,. Let K be the closed curve whose representation is
given by G°|I,. Since c,,— K, and by the lower semi-continuity of
%, we obtain &5(K) = v. The analyticity of K is obvious.
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THEOREM 3.2. FEvery doubly connected domain has a wunique
minimal closed curve. It is analytic.

Proof. We shall show first that annulus @ = [z|r < |z| < 1] has
a unique minimal closed curve given by ¢, = [2]|2| = 7]. Let P, =
lr<lz|<r?], P,=[z|r*<|z|<1]. If en P, = ¢, it is immediate
that Lgy(c,) = Ly(c), since the kernel function Kz, zZ)' assumes its
minimum on ¢, IfeN P, = ¢, by the conformal mapping { = /2, we:
have €N P, = ¢, where ¢ is the image curve of ¢ under { = 7/z.
Since Ly(€) = Ly(c), Ly(c,) < Ly(c) follows. If ¢cN P, = ¢ and c N P, + ¢,
we obtain two closed curves ¢, ¢, consisting of the subares of ¢ and
¢, and such that ¢, N P, = ¢, ¢, P, = ¢. By the previous arguments,
Ly(e)) = Ly(c,), ©=1,2. Since Ly(c;) + Ly(c;) = Ly(c) + Ly(c,), we
have L(c,) < Ly(c). Let D be a doubly connected domain. Then D
can be mapped by a univalent analytic function f(z) onto Q. It is
clear that f~(¢,) is the unique minimal closed curve of D with respect.
to the inner boundary component by the univalency of f(z).

We consider a domain D in the 2z-plane which is bounded by
b =[z||z|=7], by =[z||2] =1], and (N — 2) closed Jordan curves.
by +++,by_,. The curves b,, -+-, b,_; lie in the domain bounded by b,
and b,.

Let A, =[z|r<l|z|<1], A, =[z||z—a|<p,|2]| > 7], be exterior
and interior domains of comparison for D, respectively, i.e., A, DDDA,.
Then

(3.2) L, (K(A)) = L(K(D)) = L, (K(4y)) ,

where K(A,), K(A4,) and K(D) are minimal closed curves of A4,, 4, and
D with respect to b,, respectively. It is an immediate consequence
of the fact that if BCA, then Ky(2,7) = K,(2,%Z) for z¢ B. The:
linear transformation

_ 2= (a+ pd) -
(3.3) W= e ) 0<lal=p0—r,

maps A onto Q, = [2| R < |z| < 1], where R is given by

t A simple computation shows that the kernel function of Q,
1 ((xt; —2log 7, Zni)]
at

7| 2|2

Koz, 2)= [513(2 log|z|; —2logr, 2mi)+

(see [9], [18]), where P and ¢ are the Weierstrass elliptic functions, assumes its:
minimum on co.

2 Here we choose a and p in such a way that |2 — a| < p contains b; but no other
b, k=2, ---, N, and A to be the largest among such domains.
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_ [ (@ + pdy "
E= [(p + ad)® — 'rde] ’
d— r— qd— (02 4 [(,',.2 —q? — 102)2 . 4azp2]1/z
2a0 )

(3.4)

Since L, (K(A,)) = L, (K(Qz)), using (3.2), we obtain

THEOREM 3.3. E(r) < (1/2)L,(K(D)) < E(R),
where R is given by (3.4) and

E(r) = |7 (log r; —21log 7, 271) — i{(we; —2 log 7, 2ma) [V,

B and  are the Weierstrass elliptic functions.

The estimation of the bounds for the Bergman lengths of the
minimal closed curves in Theorem 3.3 seems to be done only for a
special domain. However, every multiply connected domain can always
be mapped onto such a domain by a conformal mapping. Therefore,
if we know the geometry of a given domain D, combining the various
distortion theorems in the theory of conformal mappings and the
result in Theorem 3.3, we can obtain various bounds for the Bergman
lengths of the minimal curves for quite general domains.

4, The existence of a minimal surface which spans a given closed
curve in (D, d). A surface S in the space C? is said to be continuously
differentiable if it admits a continuously differentiable representation

G ) Qo PRy = Gk(uu %2), k= 1; 27 (uu uz) € Qo :[O = Uy Uy S 1] .

A surface S is said to be piecewise continuously differentiable if it
admits a piecewise continuously differentiable representation G | Q,, i.e.,
there exists a partition 4 = {4, 4,, -- -, 4,,} of @, by rectilinear triangles
4, such that G| 4, is continuously differentiable, k1 =1,2, ---, m.
The ordinary B-area element at a point (z,, 2,) on a piecewise con-
tinuously differentiable surface S is defined by the equation [6,
Chap. XIJ

“.1) dbg(z) = | 2Gu G g au.
0y, us) |

The ordinary area element of S is given by the equation

dag(z) = [gu9: — (Re 912)2]1/2du1du2 ’

(4.2) 2 0G. G,
ng:_Z G‘b Gl a,,6’=1,2.

= 0u, oug’

Further (4.1) can also be written in the following form,
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4.1y dbS(Z) = [gng22 - }glz |2]1"2 du,du, .

Therefore, das(z) = dbs(z) at every point z e S; the equality holds if

and only if Img,, = 0.
For a piecewise continuously differentiable surface S, the ordinary

B-area is defined and given by the equation

(G, G)
0y, u,)

(4.3) b(S) = m dudu, .

Q
b(S) is independent of the choice of piecewise continuously differenti-
able representations G |Q, of S. A surface S is said to be analytic
if it admits an analytic representation G| @, i.e., 0G,/0w = 0,k =1, 2,
w = U, + U
For an analytic or an anti-analytic surface S, b(S) =0. It is
also clear that 6(S) = 0 if and only if the tangent plane of S at
every point is an analytic plane. A simple computation shows the
following lemma:

LEMMA 4.1. The following three conditions are equivalent:
1) u(S) =a(S),

2) 946G, G) + Gy, G) _ 0 at each point on S,
0wy, Us) 0y, Us)

3) § G AdG, + G, dG, = 0 for every closed curve ¢ on S.

Let D be a bounded domain in the space C? on which (D, d) is
complete. The quantity

(4.4) dBp(z) = [Ku(z, 2)]"* dby(2), 2 = (2, 22) ,

is invariant with respect to pseudo-conformal mappings and a monotone
decreasing functional of D [6]. dBy(2) is called the invariant B-area
element of S. For a piecewise continuously differentiable surface S
in D, the invariant B-area of S is defined and given by the equation

Gy, Gy)
! a(uly u2)

.5) B,(3) = ||1Kx(G, &1 dudu,

[

and is independent of the choice of piecewise continuously differenti-
able representations G| Q, of S.

A surface S in D is said to satisfy the condition (L) with respect
to the metric d if there exists a representation G| Q, of S for which
there exists a constant L(S) > 0 depending only on S and satisfying
the inequality

{(4.6) 20(G; o(w,, wy)) = L(S) [ w, — w, |
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for every pair of points w., w, in Q,; here o(w,, w,) is the line segment
that joins w, and w, in Q,, w, = u{¥ + w, k=1, 2.

It is clear that G |98(Q,), where 8(Q,) is the boundary of @, is a
representation of the boundary curve I" of S and that I" is rectifiable.

It is also clear that every continuously differentiable surface S
satisfies the condition (L) with respect to d.

We shall say that a surface S is of class C'S(L, N,I') if S
admits a continuously differentiable representation

GIQU:zk:Gk(w)9 k:]-yz!wery

which satisfies the following conditions:

(a) for a fixed positive constant L, L(S) < L,
(b) for a fixed positive constant N,

0G(w,)  0G(w
ou; ou;

2)}gle1~w21, i=1,2G=Gy,G),

for every pair of points w,, w, in Q,,
(¢c) S spans a preassigned closed Jordan curve I" in D in such a
way that G is a one-to-one mapping on 8(Q,).

A surface S, is called minimal surface of the class C'S(L, N, I')
if By(S,) < B,(S) for all SeC'&L, N, I').

THEOREM 4.1.° For each L and N for which the class C'S(L, N, I')
18 not empty, there exists a minimal surface S, in the class.

Proof. Let infy B,(S) =<, where S runs over all surfaces in
C'S(L, N,I'). Then 0 <Y < . Hence, there exists a minimizing
sequence {S,}. Let G"|Q, be a representation of S, which satisfies

conditions (a), (b) and (¢). From (a) it follows that for any pair of
positive integers », ¢,

(G (w), G'(w)) < 2-2° L .

Therefore, {G"(w)} is equi-bounded. The equi-continuity of {G"(w)}
follows from the inequality

4.7  dG"(w), G (W) =L|w—w'| for any w, w' €Q, and all n.

Hence, we can select a subsequence {G™(w)} of {G"(w)} which con-
verges uniformly to a continuous function G°(w) defined in @, Let
G°| Q, define a surface S,. Then it is clear that S, spans I in such
a way that G° is a one-to-one mapping on 9(Q,). The family {6G™/0u;}

8 Replacing (a) by the condition (a’) on page 951, a result similar to Theorem 4.1
can be given (see Corollary 2).
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of continuous functions 8G™/0u; is equi-bounded and equi-continuous
by (b) for j = 1,2, Therefore, we can select a subsequence {G™i(w)}
of {G™(w)} which converges uniformly to G°(w) and such that {8G™i/ou,}
converges uniformly to a continuous function 8G°/ou; for j =1, 2.
This implies that S, is a continuously differentiable surface. In order
to show S,e C'&(L, N, I'), let ¢,, and ¢, be the image curves of a
line segment o(w,, w,) which connects two points w, and w, in @,
under G™(w) and G°(w), respectively. Then ¢,, converges to ¢, and,
hence, lim L,(c,,) = L,(¢,) by the lower semi-continuity of L,. Since
Ly(en,) <1 | w, — w,| for all m;, Ly(c)) = L |w, —w,|. It is clear that
G*(w) satisfies (b). Since the functional B, is lower semi-continuous in
C'®(L, N, I') and S, e C'&L, N, ), we have B,(S; =7. Thus S, is
a minimal surface in the class C'S(L, N, I').

REMARK. In the case that [” lies on an analytic plane 7 and
the portion T of w N D enclosed by I" is simply connected, T is a
minimal surface of C’'R(L, N, I') with some L and N, and By(S,) = 0.
In general, if there exists an analytic surface S in D which spans [,
then S is a minimal surface with some L and N, and ByS) = 0.

Let C'&(N, I') be the class of continuously differentiable surfaces
in the space C* which span a preassigned Jordan closed curve [” in (?
and satisfy the condition (b). Then (b) implies condition (a) with
respect to the Euclidean metric 0 for every surface in C'S(N, I).
Since C* is complete with respect to o, the following corollary follows
by the same procedure as in Theorem 4.1,

COROLLARY 1. In the class C'S(N, '), there exists a minimal
surface S, in the sense that

b(S,) = b(S) for all SeC'&(N, ).

Let C’'R,(N, I') be the class of continuously differentiable surfaces
S in D which satisfy conditions (b), (¢) and
(a’) for a preassigned real number a, 0 < a = 1,

(4.8) dbs(2) = « at every point ze S .
das(z)

We notice that the class C'R,(N, I') is motone decreasing with
respect to «.

COROLLARY 2. For a fived a >0 and N for which C'., (N, I
is mot empty there exists a minimal surface in the class.

Proof. The B-areas B,(S,) of S, which belong to a minimizing
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sequence {S,} have a fixed uppper bound. Therefore, condition (a")
ensures the existence of an M > 0 such that every S, lies completely
in Dy, Dy = [2| Ky(2,2) = M]. This implies condition (a) with some
L, which depends on o and N. Hence, the corollary follows from
the theorem.

5. The existence of minimal closed surfaces in (D, d). Let D,
be a domain in the space of one complex variable z, bounded by =,
closed curves b{¥, b, -+, by"). Here b is the outer boundary com-
ponent of D, and b{® is an inner boundary component, which is a
circle, i.e., ¥ =[z,]]2,| = 7).

Let D be a domain in the space C* which is topologically equivalent
to the product domain D = D, x D,, and T, the topological image of
T, =b" x b®, A surface S in D which is homotopic to T, in D(1}),
where D(T,) is the topological image of D(T)) = Dy(b{®) x D,(b{) (see
§ 3 for notation), is a closed surface of the torus type and, hence,
admits a doubly periodic representation

GIRZ:zk :Gk(uly 7/62),]13 = 17 2’ (uU u2)€R2,
R = (—c0 <y ty < +00),

of periods 1. For our purposes, therefore, it is enough to consider G
on the unit square @, as a representation of S.

We shall say that a closed surface S is of class C'&,(N, T,) if S
is homotopic to T, in D(T,) and admits a continuously differentiable
representation G | Q, satisfying condition (a’) and (b) in §4. By the
same procedure as in Corollary 2 of Theorem 4.1, we can prove the
following theorem for any fixed & > 0.

THEOREM 5.1. For each N for which the class C'&,(N, T,) is
not empty, there exists a minimal closed surface S,(D) in the class.

Let D'R(D, T,) be the class of all closed surfaces S of the form
S =¢ X ¢ in D, where ¢, is a piecewise continuously differentiable
closed curve in D, which is homotopic to b{* in D,(b{*). For each
SeD'SD, T), we have By(S) = Ly (c) « Lp(c;). It follows from the
fact that K3(2, 2) = K, (2, ;) * K;,(2,, 2,) [7]. Therefore, the following
is an immediate consequence of Theorem 3.1.

THEOREM 5.2. There exists a minimal surface S.(D) of the
class D'D, T). It is given by K(D,) x K(D,), where K(D,) is

minimal closed curve of D, with respect to b*.

Let A=A, X A,, where A, is a doubly connected plane domain in
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the z,-plane. Let D'®,(A, T) be the class of piecewise continuously
diﬁ'erentiable_closed surfaces S in A which are homotopic to T =
b X b in A, where b is the inner boundary component of 4,, and

satisfy the condition dag(z) = dbs(2).* Then the following theorem
holds:

THEOREM 5.3. There exists a unique minitmal closed surface in
the class D'®(A, T). It is given by K(A) x K(A,), where K(A,) is
a minimal closed curve of A, with respect to b,

Proof. Let A=Q=@Q, X Q, Q. = [2:.|7: < |2 ] <1]. We shall
show S,(Q) = K(Q,) x K(Q,) is a unique minimal closed surface of
D'R(Q, T). Let Py =[z,]7 < |2:| <1, Pu =1z, | 7= 2] <1].
If SeP, x P, it is immediate that ByS)= By(S.). For any
SeD'®(Q, T), S can be replaced by a surface SeD'S(Q, T) with
By(S) = By(S) and lying in P, x P, by the pseudo-conformal mapping
2 = 14/, bk =1,2. Thus, ByS) = B,(S,) for every SeD'&(Q, T).
There exists a univalent analytic function f.(z,) which maps A4, onto
Q. Therefore, the pseudo-conformal mapping w, = fi'(z,) maps A
onto @ and, hence, S,.(Q) onto S,(4), S.(4) = K(4,) X K(A,). The
uniqueness of S,.(4) is clear.

6. Bounds for the B-areas of minimal closed surfaces in the
space (D, d). Using the method of exterior and interior domains of
comparison, various bounds for the B-areas of minimal surfaces can
be obtained. As we have considered in §38, let D, be bounded by
b = [z ||z | = 7], b® =]z ||z =1], and (n, —2) closed Jordan
curves b, «--, b, which lie in the domain bounded by bi" and b}).
Let Ay = [2e|7 <2l < 1l, Au = [2]l2e — @] < 00 2] > 7],
0<]|a,| £ p, — 7, be exterior and interior domains of comparison for
D,, respectively. Then A; = A; X A;, can be used as exterior and
interior domains of comparison of D = D, X D, i.e., AljDZNDANZ. Let
S,.(D) and S,(A4;) be minimal surfaces of the classes D'R(D, T.) and
D'R(A;, T), respectively. Then B, (S.(A) = By(S.(D)) = B.(S.(4s)).
Using this inequality, we have the following distortion theorem for
minimal surfaces of the class D'S(D, T).

THEOREM 6.1. [[3.,E(r)) = (1/4)B3(S.(D, T\)) = [1i- E(R,), where
R, is given in (3.4) with the corresponding subscript k and E(r) s
given in Theorem 8.3.

By a construction of an interior domain of comparison for D in

4 This is the case a = 1 in (a’) (see (4.8) and Lemma 4.1).
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Theorem 5.1, we can also obtain a distortion theorem for minimal sur-
faces S,(D) in Theorem 5.1 which gives us an upper bound. Suppose
an interior domain of comparison for D is given by A,,, then we
have

THEOREM 6.2. By(S.(D)) < 4 IIi-, E(R,), where R, and E(r) are
gtven as in Theorem 6.1.

REMARK. For the product domain @ = @, X @, of two annuli @,
and @, K(Q,) X K(Q,) is not necessarily a minimal surface for the
class D'8,(Q, T) for a fixed o, 0 < a < 1.
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