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Introduction. The main result of this paper is Theorem 5 which
deals with the structure of infrapolynomials with prescribed coefficients.
This theorem was quoted (without proof) in a previous paper [Shisha
and Walsh, 1961], and was used there to prove a few results concerning
the geometrical location of the zeros of some infrapolynomials with
prescribed coefficients [loc. cit., Theorems 11, 12, 16, 17]. Two similar
results are given here in Theorem 6.

We refer the reader to the Introduction of the last mentioned
paper for'a review of the development of the concept of infrapolynomial.
Here we shall just mention two of the underlying definitions.

A. Let n and ¢ be natural numbers (¢ < n), n,, %y, * -+, n, integers
such that 0 <%, <%, -+ <m, < n, and S a set in the complex plane’.
An nth infrapolynomial on S with respect to (ny, N, «++,m,) is a
polynomial A(z) = >\"_,a,2” such that no B(z) = >\*, b2 exists, satisfy-
ing the following properties.

(1) B(z) # A(2),

(2) bnv:anv(”:]ﬂz;"',q)’

(3) |B()| <|A(2)| whenever zc S and A(z) = 0, and

(4) B(z) =0 whenever z€ S and A(z) = 0.

B. Let n be a natural number. A stmple n-sequence is a sequ-
ence having one of the forms

(071y""k;n_l’n—l_l—ly"'yn) [kzo,lzo,k+l+2£n]7
0,1, -, B[0<k<n],n—0l,n—-10l+1---,0) [0l <n].

Theorem 5 may yield information on the location of the zeros of
an nth infrapolynomial A(z) on a set S with respect to a simple n-
sequence ¢. For it allows (under quite general conditions) to set
A(z) = B(z) D(2) where D(z) is a polynomial all of whose zeros lie in S,
whereas B(z) is a divisor of a polynomial Q(z) whose structure is given
by the theorem. By studying the location of the zeros of Q(z), one
may get information on the location of the zeros of A(z). By this
method, Theorems 11, 12, 16, 17 [loc. cit.] were proved. (Compare
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1 Dates in square brackets refer to the bibliography.

2 We deal throughout this paper with the open plane of complex numbers.
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1040 O. SHISHA

also the proof of Theorem 6 below.)

Theorem 5 is a generalization of Fekete’s structure theorem [1951],
and we use his method of proof [ef. also Fekete 1955]. The concept
of a “juxtafunction” (Definition 1) is a generalization of Fekete’'s
“nearest polynomial” [1955], later termed “ juxtapolynomial” [Walsh
and Motzkin 1957]. Theorems 1-4 and Lemmas 1-4 are contained in
the author’s Ph. D. thesis [1958]; they are needed for the proof of
Theorem 5, and they generalize previous results of Fekete [1951, 1955].
The principal results of the present paper were published by the author
(without proof) in abstracts (1958a, 1959, 1961].

1. DEFINITION 1. Let S be a set in the complex plane and let
11 be a set of complex functions defined on® S such that whenever f, € 11,
fae Il and ¢, ¢, are complex numbers, then c,f, + c,fa€ Il. Let f be
a complex function defined on S. A juxtafunction to f on S with
respect to Il is an element p of Il having the property: there does
not exist a qe Il satisfying
(a) q(z) = f(?) for at least one z¢e S,
b)) 1/ —ak®) | < I|f() — p()| whenver ze S and p(z) # f(2),
©) q() = f(2) whenever ze S and p(2) = f(z).

ExampLES A. Let S(# @) be® a closed and bounded set in the com-
plex plane. Let f, p, 0y, -, D, * be complex functions with domain
S which are continuous on S, and assume, furthermore, that p4(z) = 0
throughout S. For every complex function « with domain S which
is continuous on S, let ||| = max [| (z)v(2) |, z on S]. It is known
that there exist complex numbers N}, A, ---, A* such that for every
complex A Ay cc0, Ay,

(1) |7 Enm

Consider the linear space /7 of all linear combinations (with complex
coefficients) of p, p,, +++, »,. Then p = " \¥p, is a juxtafunction
to f on S with respect to /7. Indeed, suppose that some ¢ = S\ \p,
satisfies (a), (b) and (¢) of Definition 1. Let £ be a point of S such
that

If = all =1 OAQ) — a1 -

Then by (a) q(€) # f({), and therefore, by (c), () # f(§). From (b)
we get [[f— A=~ all = O — Q) | < [ Of(©)

8 i.e. their domains include S.
¢ The domain of ¢if; + ¢ is the intersection of those of fi and fe.
5 @ denotes the empty set.
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=N <Nf —all = |If — 2N ||, contradieting (1).

B. Let f, p, D2 ---, D, be real functions with domain S = [0, 1],
continuous there, and assume furthermore that p, »,, ---, p, are or-
thonormal on [0,1]. Let Il be again the set of all linear combinations

N 1
(with complex coefficients) of p, Dy --- p,. Let A} = S f(@)p,(x)dx
0
=12 ---,n). Then p = >\".\¥p, is a juxtafunction to f on S with
respect to /1. Indeed, if p = f, then the last assertion follows from
Lemma 1 below. We thus assume that p(x,) = f(x,) for some x,€ [0, 1].
Suppose there exists a ¢ = 3" \p, satisfying (a), (b) and (c) of
Definition 1. Then |f(x) — q(x)| < |f(x) — p(x)| throughout [0, 1], and
| f(xe) — qoe) | < | f(ag) — p(5) |. Thus
1 n 2 1 n 2
[[7@ — £ Reowm@ [de < [[ @) — Sreme e,
contradicting the least squares property of the Fourier coefficients \F.

LemMma 1. Let S and II be as in Definition 1 and let f be an
element of II with domain S. Then f is the unique function with
domain S which is a juxtafunction to f on S with respect to II.

Proof. f is such a juxtafunction, since (a) and (c) of Definition
1 are mutually contradictory when p is f. If » (with domain S)

belongs to /I and p = f, then ¢ = —;—(p + f) belongs to /I and satis-

fies (a), (b) and (c), so that p is not a juxtafunction to f on S with
respect to I7.

THEOREM 1.
Hypotheses.

1. S(+©) is a closed and bounded set in the complex plane, f, p,,
Py +++, D, are complex functions defined and continuous on® S.

2. Il is the set of all complex functions defined on S which can
be represented throughout S as linear combinations (with complex
coefficients) of the pis.

3. P ts a juxtafunction to f on S with respect to II, and p(z)
# f(z) throughout S.

6 As the domain of f may properly include S, its continuity on S means that if
a€ S, and if (@57, is a sequence of points of S converging to @, them lim flay) = fa).
Jooo

Similarly for pi, pe, --+, pr and in Lemma 2.
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Concluston. There exist distinet points 2,2, +++, 2z, of SA < m
< 2n + 1) and positive A, Ay, = ++ , \,, Such that:

I). »(z) is a juxtafunction to f on s = {2, 2, ---, 2,} with re-
spect to 17,

(II). No complex b, b,, --- , b, exist such that | f(z) — 3"_.b,0,(2) | <
| f(z) - p(2)| throughout s,

(III)~ Zﬁzl)\wpv(z#)/{f(zn) - p(zu)} =0,v=12---,m.

REMARK 1. Observe that (I) is implied by (II).
For the proof of Theorem 1 we shall need two lemmas.

LEMMA 2. Let S(+@) be a closed and bounded set in the complex
plane, and Il a set of complex functions, defined and continuous on
S such that whenever f.cll, f,e Il, and ¢, and ¢, are complex num-
bers, then c,f, + c;f.€ll. Let f be a complex function defined and
continuous on S, and let p be an element of Il such that p(R) = f(2)
throughout S. A mecessary and sufficient condition for the existence
of a qe ll satisfying throughout S

(2) |f(2) — q2) | <|f(2) — ()|
18 the existence of an re Il, satisfying throughout S
(3) [f(2) — p(2) — (@) | < |f(R) — p(&) + r(@) ]| .

Proof of Lemma 2.

Necessity. Let r = q¢ — p. Then throughout S

|f(2) — p(2) — (@) | < |f(2) — P | <|f(&) — p@) [{2 — | f(&) — (@) | X
|f(2) — p(2) |7} < [2{f() — p(2)} — {f(2) — q(@)} | = |f(&) — (&) + 7(2) | .

Sufficiency. We use the fact that if a,b are arbitrary complex
numbers, the inequalities |a — b| < |a 4 b|, Re(b@) > 0, are equivalent.
Since throughout S

Relr(2)/[{f(z) — p()}] = | f(2) — p(2) |7 Re[r(2){f(2) — p(2)}] >0,

we have there a |7(2)/{f(z) — p(@)}|* < 2Re[r(z)/{f(2) — p(2)}]
where a = min [|{f(z) — p()}/7(2) |*"Re(r(2)/{ f(2) — p(2)}), # on S].
Let ¢ = p + ar. Then throughout S,

() — (@) | = |f() — p(2) | |1 — ar@){f(z) — @)} | = [f(z) — p@)] %
[1+ & r@)/(f(2) — p(2) |' — 2aRe{r()(f(2) — p() " < [f(2) — p(2) | .
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LeMMA 3. Let the Hypotheses 1, 2 of Theorem 1 hold, and let p
be an element of II such that p(z) = f(z) throughout S. For every
ze S, let F(z) denote the point (x.(2), ¥.(2), £:(2), ¥,(2), ++ - , £.(2), ¥.(2))
of the (real) Euclidean 2n-space E,,, where x(2) s the real part and
¥,(2) the tmaginary part of p,2) {f(z) — p(z)}. A necessary and suf-
Jicient condition for the existence of a qe Il satisfying (2) through-
out S, 1s that the point 2,, = (0,0, --- 0) of F,, does mnot belong to
the convex hull H of" F(s).

Proof of Lemma 3.

Necessity. By Lemma 2 there exists an re IT such that (3), i.e.
the inequality

(3a) Re[r(2){ f(2) — p()}] > 0

holds throughout S. Let s,t,8,6, ***,8,, %, be reals such that
throughout S, r(z) = S r_.(s, — it,)p,(?). Then throughout S we have

(4) 5 80,(0) + L0E) > 0
and thus F(s) is a subset of the half-space

(5) 8%y + By + e oo A+ Sapey + Ly, >0

Therefore H is also a subset of this half-space, and consequently 2,, ¢ H.

Su fliciency. Since H is compact and 2,,¢ H, we can find a half-
space (5) containing F(S). Thus (4) holds for every ze S. Setting
r = >." s, — it,)p,, we have throughout S, (3a), and therefore (3).
Thus, by Lemma 2, there exists a g€ Il satisfying (2) throughout S.

Proof of Theorem 1. f cannot belong to I, for otherwise, by
Lemma 1, the restrictions of f and of » to S would coincide, con-
tradicting Hypothesis 3. By Definition 1, there does not exist a ge Il
satisfying (2) throughout S. Using notations of the last lemma, it
follows that 2,,€ H. By a well known theorem of Carathéodory there
exist in F(S) distinct points A, A, «++, 4, (m < 2n + 1) and there
exist positive 4,, 4,, +-+, 4, such that

(6) an:%AMAM.

Let

7 F(s) is, as usual, the set of all F(z), z€ S.
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(7) A, =F@), z.€8 (=12 - ,m).

Then the z, are distinet, and from (6) we get by taking components,

(8) éIAMpV(zM){m} =0 (y - ]_’ 2, eee, n) .
"Thus
glkupv(zﬁ)/{f(zu) — ()} =0 =12 +--,n)

where A, = A.]f(z)) — pR)[*>0 (=12, .-+ ,m). Let s={z,2,

-+, 2.}, and let = be the set of all functions defined on s which can
be represented throughout s as linear combinations (with complex coef-
ficients) of the »,. Obviously pen, since pell. From (6) and (7)
it follows that £2,, belongs to the convex hull of F'(s) and therefore,
by Lemma 3 (taking there s in place of S and 7 in place of II) there
does not exist a qerm satisfying (2) throughout s. This concludes the
proof.

REMARK 2. Suppose that one of the p, in Theorem 1 equals
throughout S a constant ¢(#£0). Then from (8) we obtain >\, 4,{f(z.)
— p(z)} = 0. Thus 0 belongs to the convex hull of the image of s
(and a fortiori of S) under f — p. [Compare Motzkin and Walsh 1953,
§2, and Fekete 1955, §18].

REMARK 3. Let 8" = {2, 2, -+-, 24} be a finite set in the complex
plane and suppose that f, p,, v, -« , », are complex functions defined on
.8’. Let 7’ be the set of all complex functions representable through-
out s’ as a linear combination with complex coefficients of p,, p,, +--,
P,. Let p be an element of 7#’ such that () # f(z) throughout ¢,
.and suppose there exist nonnegative reals Ay, +--, Ny (not all zero)

such that
élxﬁpv(zu)/{f(z#) P =0 (v =1,2, -, m).

‘'Then there does not exist a ¢ €z’ such that (2) holds throughout s'.
Indeed, we have

,éALPV(Z“)M} =0(=12 :--,m)

where 4, are nonnegative reals, not all zero. Therefore (using nota-
tions of Lemma 3) £,, belongs to the convex hull of F(s'). By Lemma
3, there does not exist a gen’ satisfying (2) throughout s’. Conse-

«quently, p is a juxtafunction to f on s’ with respect to 7'.
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THEOREM 2. Let the hypotheses of Theorem 1 hold and suppose
furthermore that f — , ., Dy, -+ ; D, are real valued throughout S.
Then the inequality 1 < m < 2n + 1 in the conclusion of Theorem 1
can be replaced by 1 < m < n + 1.

Theorem 2 is proved with the aid of the following lemma, in the
same way that Theorem 1 was proved with the aid of Lemma 3.

LEMMA 4. Let the hypotheses 1, 2 of Theorem 1 hold, let p be
an element of II such that f(z) #= p(z) throughout S, and suppose that
f— 0,0, Doy =+, D, are real throughout S. For every ze€ S, let F\(z)
denote the point (p)R}f(2) — p(2)}, PLIS(R) — PR}, -+, PRI Sf(2) —
p(2)}) of the (real) Euclidean m-space E,. A mecessary and suffictent
condition for the existence of a qe€ Il satisfying (2) throughout S, is
that the point 2, = (0,0, ---,0) of K, does not belong to the convex
hull of F(S).

The proof of the last lemma is analogous to that of Lemma 3.

We shall make frequent use of the concept of unisolvence. We
mention therefore the following

DEFINITION 2. Let S be a set in the complex plane, and (p,(2))r—,
a finite sequence of complex functions defined on S. The sequence
will be called unisolvent on S if and only if for every complex
€1, Cyy oo, €, (ot all zero) the set of all z€ S for which >,—.c,p,(z) = 0,
contains less than n points.

REMARK 4. Thus (p,(2))7-, is unisolvent on S if and only if this
sequence is linearly independent on every m-point subset of S. A
simple example is the sequence (2*~);-,, which is unisolvent on every
subset of the complex plane. A unisolvent sequence has been termed
also (for an important particular case) a “Tchebycheff system”. Other
terms used in this connection are “ Haar system” and “interpolational
system ”.

THEOREM 3. Let the hypotheses of Theorem 1 hold and suppose
that each of the sequences (p(2))i_.(j =1,2, ---,n) is unisolvent on
S. Then the inequalities

(9) 1<m<2n+1

wn Theorem 1, can be replaced by the sharper estimate n +1 < m <
2n + 1. Furthermore, if the additional hypothesis of Theorem 2 is
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made too, (9) can be replaced by m = n + 1.

Proof. Choose distinct points 2, 2, «++, 2, of S and positive \,,
g *** 5 Ay such that (I), (II) and (III) of Theorem 1 hold, where 1 <
m < 2n + 1 and where, furthermore, 1 < m < n + 1 in case the addi-
tional hypothesis of Theorem 2 holds. We shall prove that » +1 < m.
Indeed: suppose m < n. Then since (p,(?))7~, is unisolvent on S, the
determinant whose jth row is p,(2;) p«%;) +++ 0,.(2;) is different from
zero. Therefore there exist constants ¢, .-+, ¢, such that f(z) =
Suie,p(2) throughout s. Let m have the same meaning as in the
proof of Theorem 1; then few. By Theorem 1, (II), p is a juxtafunc-
tion to f on s with respect to 7. By Lemma 1 (with S replaced by
s, I by 7, and f by the restriction of our f to s) we have f(z) = p(?)
throughout s, contradicting hypothesis 3 of Theorem 1.

2. We apply now Theorems 1, 2 and 3 to nth infrapolynomials
(cf. the Introduction).

THEOREM 4. Let n and q be matural mumbers (q < m), n,, N,
«vo, N, tntegers such that 0 < n, < My+er < m, <n, and S a closed
and bounded set im the complex plane. Let A(z) (0 throughout S)
be an nth infrapolynomial on S with respect to (n,, ++-,n,). Then®

there exist distinct points 2z, 2, <<+, 2, of S,
(10) 1<m<2n—q)+3

and positive Ay, Ny, * =+, A SUch that A(z) is an nth infrapolynomial
on s = {2, 2, ***, Zn} With respect to (N, Ny +++, n,) and such that

(11) SN2/ A,) = 0 W=1,2--,n+1—q)
=1

where 1,1y <o+ lyg (<o <l are the elements of {0,1,

o, )} — My, N, o+, M} If the polynomials A(z), 2", «-- , 2"~ qre
real valued throughout S, then (10) can be replaced by 1 < m < n +
2 —q. If each of the sequences (27)i_, (j=1,2, -+, n+1—¢q) is
unisolvent on S, then (10) can be replaced by

12) n—q+2<m<2n—q)+ 3.

If the polynmomials A(z), 2%, -, 21 qre real valued throughout
S and each of the sequences (2™)i_, (j=1,2, -+, n+1—q) is un-
1solvent on S, then (10) can be replaced by m = n — q + 2.

REMARK 5. If (ny, my, +-+, n,) of Theorem 4 is a simple 7n-sequ-

8 As is easily seen, S cannot be empty. [Cf. Shisha and Walsh, 1961, footnote 7
on p. 117].
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ence (cf. the Introduction) and if, in case n, = 0, 0¢ S, then as is
easily seen, the sequences (2)i_, (j =1,2, +++,n + 1 — q) are unisol-
vent on S.

Proof of Theorem 4. Let II be the set of all complex functions
defined on S which are expressible throughout S as linear combinations
of 2", 2", «.v 2"~ with complex coefficients, and let f(z) = S .a, 2",
piR) = — Z‘i‘%“’alvzl”. It is easily seen that p(z) is a juxtafunction to f
on S with respect to [I. Therefore, by Theorem 1 there exist distinet
points 2, +++, 2, (M < 2(n +1—¢q) +1=2(n — ¢g) + 3) of S and positive
Aiy Ny, to+, N, such that (11) holds, and such that no complex
b, by, +++, b, , exist satisfying

q n1—q
Sa,z -5 e <] 4@
v=1 vl

]
throughout s = {2,, 2,, *+- , 2,.}. Thus A(2)is an nth infrapolymial on s
with respect to (n,, %y -+, n,). The rest of Theorem 4 follews from
Theorems 2 and 3.

REMARK 6. Let %, n,, %, -+, %, be integers (¢ < n, 0 < n, < n,
coe < my < m), AR) = S a,2” a polynomial, z, 2, <+, %y points of
the complex plane, and A, A}, «--, My (AL > 0) nonnegative reals
such that A(z,) =0 (#=1,2, -+-, M), and such that > Mz A(z.)
=0 (v=1,2,---,n+1—q), where the [, have the same meaning
as in Theorem 4. Then A(z) is an #th infrapolynomial on s = {z, z,,
e+, 2y} with respect to (n, %, +--,n,). Indeed: let f and p be as in
the last proof, and let 7’ be the set of all complex functions repre-
sentable throughout s’ as a linear combination (with complex coefficients)
of 2,2, «v. 2'*=1 The asserted conclusion follows from Remark 3.

We give now the following structure theorem which is the main
result of this paper.

THEOREM 5. Let n and q¢ (1 < q < n) be integers, and o a simple
n-sequence of q elements. Let S be a closed and bounded set in the
complex plame, and in case 0€ o, assume that 0¢ S. Let A(z) (#£0)
be an nth infrapolynomial on S with respect to o, and let B(z) (+0
throughout S) be a divisor of A(z). Assume also that the degree’ r
of B(z) ts > q. Then B(z) is a divisor of some

—q+2
%)

(13) Q) = P + 2~

=1

Mg (R)/ (2 — 2,)

9 By degree of a polynomial (#0) we mean its exact degree. The polynomial 0 is
assigned the degree-1.
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Here M is an integer satisfying r < M < 2r — q + 1, the z, are dis-
tinct points of S, g(z) = [1%7"%(z — 2,.), the N, are positive reals with
S, =1, PR) is a polynomial of degree < q— 1 such that
P(2)g(z) + 25+ 4s of degree < M, and K ismin|v,v¢o,v=0,1,2,.-.],

REMARK 7. As will be seen from the proof of Theorem 5, if S
and the coefficients of B(z) are real, the inequality r < M < 2r —qg + 1
of the theorem can be replaced by the equality M = r.

In the proof of Theorem 5 use will be made of the following

LeMMA 5. Let n, q, 0 and K be as in the last theorem, let S be
a set in the complex plane, and let A(z) (£0) be an nth infrapoly-
nomial on S with respect to ¢. Let B(z) be a polynomial of degree
r(>q) dividing A(z). Then B() ts an rth infrapolynomial on S
with respect to o, where g, is that stmple r-sequence of q elements
for which K =min[v,vé¢o,v=20,1,2, «--].

The proof of Lemma 5 is straightforward and may be omitted.

Proof of Theorem 5. By Lemma 5, B(2) in an rth infrapolynomial
on S with respect to the sequence o, defined there. We choose (cf.
Theorem 4 and Remark 5) distinet points 2y, 2,, *+-, %2, of S and posi-
tive Ny, Ny, +-¢ , A, such that >\ A, =1 and

(14) MZ;leﬁ/B(zﬂ) =0
for every integer p satisfying 0 < o <7, p¢o,. Here m is an integer

satisfying » — ¢ + 2 < 2(r — @)+ 3, and in case S and the coefficients
of B(z) are real we may take m =7 — ¢ + 2. Set

15 0@ =1 —2), NE) = 5 Mg 9@/ (Bl — 2 -

If ¢ and v are integers, 1< p<m, 0 <y <r—q+ K, then
i g (@) {B(2u) (@ — 2,12 = — ,2':o Nz HETI(G) 51 g7 7(0)/B(2.)
(the equality is obvious if 2z, =0, and otherwise it is obtained by
Leibnitz’s rule for differentiating a produect). Therefore, from (15)

we get

(16) NOO) == 35003 070) S nzi /B
(UZO,]_, Sty Ir—q"i_K)'
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Since {0,1, «+-, r} — {0} ={r — ¢ + K — 5};Zi, therefore (16) and (14) yield
N”0)=0,v=0,1, .-, r — q. Hence we can write N(z) = 2"~ M,(2)
where M,(z) is a polynomial (of degree < m — 2). Let

Mi@) = S\ Mal0@)/(BE)E — 2} -

By (14),

M=

NMZ,IE/B(Z,,‘) =0

1

b
It

and therefore the degree of My(z) is <m — 2. For every z; different
from zero we have by (15), Mi(z;) = z;"""'N(z;) = \z%g'(2;)/B(z;) =
My(z;). Since there are at least m — 1 such z;, we have M,(z) =
M,(z). Consider now the polynomial

B(@) = BRI — 50006~ 7) -

Forj=1,2, ---, mwehave R(z;) = B(z;)My(z;) — 7\;zfg'(z;) = 0. There-
fore we can write R(z) = g(r)U(z), where U(z) is some polynomial.
Algo, the relation N(z) = 27" M,(2) and the definition of R(z) imply
that the degree of the latter is < m + ¢ — 2. Therefore the degree
of U(z) is at most ¢ — 2. If K > 1, then the relation

B&M(?) = 60 UR) + 30250/ — 2)

yields, upon putting 2% = [z + (2, — 2)]* and developing the last right
member,

BRMR) = 0@IUE) + Asmi@)] + 7 S 000G — 7).,

where Az ,(2) is a polynomial of degree K — 1. The last relation (with
Ag_(2) = 0) holds also when K = 0. We set now P(z) = U(z) + Ag-.(?),
and get that B(z) is a divisor of

Q) = PR)g(z) + 25 gl)»,hg(z)/(z —2).

The degree of Q(z), i. e. of B(z)M,y(z), is < m + q — 2. Thus the degree
of P(z)is < q — 1, and that of P(2)g(z) + 25" "' is <m 4+ q— 2. We
set now M =m + q — 2, and observe that the conclusions of the
theorem are all satisfied.

REMARK 8. The polynomial Q(z) of (13) is an Mth infrapolynomial
on {2, 2, *++, %y 412} With respect to o0,, where o, is that simple:
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M-sequence of ¢ elements for which min|y,v¢0,v=0,1,2, .--]= K.
This follows from Theorem 1 of Shisha and Walsh [1961].

THEOREM 6. Let S be a closed and bounded set im the complex
plane, A@R) = 3*0.2" (n > 1, a, # 0) an nth infrapolynomial on S
with respect to (n — 1), and suppose that A(z) #= 0 throughout S. Then :

(@) Every zero { of A(2) is of the form

QA7) (@) — MOtas/a,}

where ¢(C) belongs to the convex hull of S and where 0 < N () < 1.0

(b) Suppose that S lies in a closed disc C: |z —a| < r (=0).
Then all zeros of A(z) belong to CUC, where C, is the closed disc
1z —le — (@,—fe)l| < r. If C and C, are disjoint then A(z) has at
least m — 1 zeros belonging to C. [Multlplicities are always being
counted].

Proof. We choose distinet points 2, 2., *-+, 2, 0f S and positive
My Ny o0 0, Ay (< 20 4 1) such that Simn, =1 and >0 \20/ARR) =0
for all integers p with 0 < p<n, p#xn—1. Thenl = SN A(z)/
Azy) = SN, 127 AR, and so

S M AR = 1ay

We set () = [1i-z — 2, N@) = 2z 9@)/AAR) (2 — 2.)) =
a;tz™t + «+.. We follow the proof of Theorem 5 from the sentence
following (15). Again we have N™(0) = 0 for every v satisfying 0 <
y < n — 2. Thus we may set N(z) = 2" M,(z), where M,(z) = a; 2™ ™"+«
is some polynomial. Let M, (2) = >r Mg@/{AR)Z —2z)}. If =1,
then My(2) = N(z) = M,(z). If = > 1 then for each z; different from
zero, Mi(z;) = N.9'(2;)] A(z;) = My(z;), and since there are at least m — 1
such z; and M (2) and M,(z) are of degrees < m — 2, we have again
My(2) = M (z). Congider now the polynomial R(z) = A(R)M,(z) —
Zlﬂl}zlx}bg(z)/(z - zﬂ-) = (a'n/a/n——l)zm + --+ For .7 = 17 2; s, M, R(zﬂ) = 0’
and therefore R(z) = (a,/a,-)9(z). Thus, A(z) is a divisor of Q(z) =
@/, —)g() + Srng(®)/(z — 2,). Let { be a zero of A(2). Then
9(0) # 0, and thus a,/a,, + /(€ — 2,) = 0. Since 2/ (€ — 24)
can be written [Shisha and Walsh 1961, Lemma on p. 127] as M()/
(€ — e(@)) where ¢({) and A({) are as required in (a) of our theorem,
{ is of the form (17). Suppose now that S lies in a closed disc C: |z —a |
< r(=0). Then by a theorem due to J.L. Walsh [ef. 1922, Theorem
VI; see also Shisha and Walsh 1961, p. 147] all zeros of Q(z) lie in

1 Thus ¢ belongs to the set swept by the convex hull of S while being displaced,
the displacement being given by the vector —an—1i/as.
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CUC, and if C and C, are disjoint, the number of zeros of Q(z) in
them is, respectively, m — 1 and 1. From this follow the conclusions
of part (b) of our theorem.,
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