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1. Introduction. Let A be the automorphism group of a semi-sim-
ple Lie algebra & over an algebraically closed field of characteristic zero.
Let n(A,) denote the minimal multiplicity of 1 as characteristic root
for elements of a connected (algebraic) component A, of A, and let
m(A,) denote the minimal dimension of fixed point spaces for elements
of A,. Jacobson showed in [3] that n(4;) = m(A4,), and determined these
numbers. It is the purpose of this paper to extend these results to
automorphisms of classical Lie algebras over essentially arbitrary fields,
using the method of Chevalley [1], as extended by Steinberg [10], for
associating such algebras with semi-simple complex Lie algebras.

Throughout the paper fields of characteristics 2 and 3 will be ex-
cluded without further mention. The results obtained here are valid
in some cases in characteristics 2 and 3, but exclusion of these cases
permits considerable simplification of the exposition. All vector spaces
in this paper are finite dimensional.

2. Lie algebras and automorphism groups. Let £, be a semi-
simple Lie algebra over the complex field C. Let £, be a Cartan
subalgebra of &,, and let e, f;, h; (1 =4 =1) be a canonical set of
generators; i.e. the h; form a basis for 9, and

[A:s] =0,

[esfil = Oiihi s
[ehs] = Ajie:
Lfihi] = —Asfi,

where (4;;) is the Cartan matrix of ¥,. Let ayh;) = A;; for 4,5 =
1,2, +--,l. Then 7 = {a,, a,, -+-, a;} is a fundamental system of roots
(of &, with respect to Oy), and the e; (respectively, f;) are root vectors
for the «a; (respectively, —a,).

For each (nonzero) root «, let ¥, denote the root space of «, and
let &, be the unique element of [&,,%_,] such that a(h,) = 2. In
particular, h,, = h;, 1 = 1< 1.

(1)

THEOREM (Chevalley [1]). %, contains a complete set {e,} of root
vectors for the (nonzero) roots « such that
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(2) [eseu] = P for all a;
(3) [eweﬁ] = i(’)” + 1)6w+B ’

for all roots «, B such that a + 8 is a root, where r 1is the largest
integer q such that B — qa s a root.

It is easily seen from Chevalley’s proof of this theorem that the
set {e,} may be taken to contain the ¢; and f;, 1 < ¢ = [. Furthermore,
the h, are integral linear combinations of the £; and the roots are
integral linear combinations of the a;, so theset {h; |1 <t =1} U{e,|
a nonzero root} is a basis for ¥, with an integral multiplication table
eontained in (1)~(3) and the relations

(4) leahi] = a(e, .

Such a basis {k;, ¢,} (containing the e; and f;) will be called a Cheval-
ley basis for 2y. Henceforth a particular Chevalley basis will be
assumed fixed. When it is convenient to do so, linear transformations
in 8, will be identified with their matrices relative to this basis.

Let K be an arbitrary field, and form a Lie algebra ¥ over K,
related to &, as in [1]: R is the tensor product (over the integers) of
the additive group of K with the additive group generated by the
Chevalley basis {h;, e,} of £; & is equipped with the multiplication
table (1)-(4) after identifying 1 & e, with e,, ete. Thus the h,, ¢,,
ete., are now thought of as elements of £, but observe that the sub-
seripts still refer to roots of %,.

Let © = 3! Kh;,. 9 is an abelian subalgebra of €, and the roots
of  relative to © are the linear functions & defined by a@(hg) = the
class modulo the characteristic of K of a(h,).

We follow the approach of Steinberg [10] in relating the Lie alge-
bras € of Chevalley with the Lie algebras of classical type of Millg
and Seligman [4]. First let £, be simple. Then we have [10, 2.6]:
(a) No h, is in the center 3 of 2.

(b)Y B=1{heH|ah) =0 for all roots a of .
(¢) If €=2/R, and 9=9/3, then & is simple and 9 is a Cartan sub-
algebra of €.

More generally, if & is only semi-simple, then £,=%2,,P --- P L, ,,
where the £;, are (non-abelian) simple ideals in £,. Thus =8,
oo P&, where the &; are the Lie algebras of Chevalley corresponding
to the &, and are non-abelian ideals in 8. The center 3, of &, is as
described in (b), and the center 3 of Lis 3, P --- P 3,. Furthermore,
Q8= (/2D - B (L/3,). Every such algebra £ =2/3 will be
called a classical Lie algebra. (These are essentially the Lie algebras
of classical type of Mills and Seligman, although some additional alge-
bras over fields of characteristics 2 and 3 can be obtained by the
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process described here.)

If R, is simple, 8 == 0 if and only if ¥, is of type A, and the
characteristic p of K divides I + 1. In this case, 3 is one-dimensional
I8, §1].

Let A, denote the automorphism group of £,. As an algebraic
group, A, has a decomposition

(5) AUZAOUA1U"'UAT—1

into connected (algebraic) components, where A, is the component of
the identity automorphism. (The terminology of algebraic groups will
be seen to be more natural here than that of topological groups.)

An automorphism of the Cartan matric (A;;) of ¥, is a permuta-
tion s of the numbers 1,2, ---, 1 such that A;; = A, . for all %, j.
Associated with such a permutation s is a unique automorphism ¢ of
Q, such that e/ = ¢,,), fF =foe, 2=1,2, -++, 1 [2, p.280]. Following
Steinberg, we call ¢ a graph automorphism of ¥,. The set F' of graph
automorphisms is a finite group, and the elements of F={1,0, --,
o, form a system of coset representatives of 4, in A, [2, Chapter
IX; 38, Corollary to Theorem 6]:

(6) A, = A U0 AU -+ Uo,LA4,.

This decomposition coincides with (5), and the number » of algebraic
components is also the order of F.

For each root « and each complex number ¢, let x,(f) denote the
automorphism exp (¢t ad e,) of £,. The significance of the Chevalley
basis for automorphisms is that the matrix of every x,(¢) has entries
which are polynomials in ¢ with integer coefficients [1]. Let x,(§)
denote the matrix obtained from «,(f) by replacing the complex para-
meter ¢ by an indeterminate £&. We can then replace & by an arbitrary
element ¢ of K to obtain a matrix over K, again denoted «,(t). Con-
sidered as a linear transformation of ¥ relative to the Chevalley basis,
2,(t) is an automorphism.

We also introduce certain diagonal (relative to the Chevalley basis)
automorphisms of £. Let k£ be any homomorphism of the additive
group generated by the roots of ¥, into the multiplicative group K*.
We associate with k& the automorphism 7(k) of & defined by An(k) = h
for he®, e k) = k(a)e, for e a root of ,. In particular, we can
associate a homomorphism % with each ¢ e K* and each root « of &,
by defining k(B) = t#"«’ for each root B. The corresponding auto-
morphism will be denoted z,(t). .

Next we associate automorphisms of £ with the graph automor-
phisms of ¥,. Let o be a graph automorphism with associated
permutation s, We have k7 = [e], /7] = [€.4), for] = Iy, 50 0 permutes
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the h;’s. For an arbitrary root v = >\ ka;, let v/ = S ka ;. 7 isa
root [2, p. 122, XVI] and one can show that e = +e,. This is done
by induction on the level (i.e. >\ |k;|) of v. Hence, relative to the
Chevalley basis, the matrix of ¢ has only the numbers 0, 1, —1 as
entries (and in fact, exactly one nonzero entry in each row and column).
Thus the matrix of o defines an automorphism o of & over K. These
automorphisms will also be called graph automorphisms.

The automorphism group of £ is isomorphic to the automorphism
group of £ [10, p. 1122]. We will therefore identify automorphisms
of € with their induced automorphisms in £, but all references to
matrices will mean relative to the Chevalley basis in 2.

The group G of Chevalley is the group of automorphisms of & (or
Q) generated by the ,(t) for all roots @ and te€ K and the %(k) for
all homomorphisms %4 of the additive group generated by the roots into
K*,

THEOREM (Steinberg). If A is the automorphism group of L (or
Q), G the Chevalley group, and F = {1,a,, -+, 5,_} the group of graph
automorphisms, then G is normal in A, and

(7) A=GUoGU---Uo, G

18 the coset decomposition of A over G.

Steinberg proves this theorem in [10] only for the case of ¥,
simple, but the extension to the semi-simple case is straightforward if
one considers the action of A in €. The analogy between equations
(7) and (6) is clear; in fact, they coincide if K is an algebraically
closed field of characteristic zero. However (7) is also analogous to
(5) by the following result.

THEOREM (Ono [5, Theorem 3]). If K is infinite, and the Killing
form of 2, is mondegenerate modulo the characteristic of K, then G
18 the algebraic component of 1 in A, and (7) is the decomposition
of A into connected algebraic components.

3. Indices of automorphism groups. For each component (or
coset) A; of A, define the index n(A4;) to be the minimal multiplicity
of the characteristic root 1 for elements of A;. For each 7e A, let
%)) denote the subspace of £, of 7-fixed points. Define another index
m(A4;) to be the minimal dim F()), ne€ A;. We have [3, Theorem 6
and Corollary, Theorem 10]:

THEOREM (Jacobson). Let o; be the unique element of F im A,
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and let s; be the associated automorphism of the Cartan matrix.
Then n(A;) = m(A;) = the number of cycles in the decomposition of
s; into disjoint cycles.

"COROLLARY. (4, =1 =dim 9y, and 0 < n(A) <!l if © # 0.

In view of Steinberg’s theorem in the previous section, it is rea-
sonable to ask for the relationship between n(A;) and both the minimal
multiplicity n(o,G) of 1 as characteristic root and the minimal dimen-
sion m(0;G) of fixed point spaces for elements of ¢,G in the automor-
phism group A of 8. (Obviously a distinction between € and ¥ must
be maintained here; we will consider £ in §4.)

In the sequel we will make use of the subgroup G’ of G generated
by the automorphisms x.(t) for « a root of ¥, and te K. For each
root « and each tec K*, z,t)eG’, and if K is algebraically closed,
G =G 1, §1IV].

THEOREM 1. Let %, A, A, K, 8, A, G, and o; be as defined
above. Then n(o,G) = m(c,G) = n(4,).

Proof. The first inequality is clear. We first assume K is alge-
braically closed, so that G is generated by the x,(f). We have seen
that an arbitrary element 7 of A can be written as a product of
exactly one o;¢ F' and certain z,(¢;)’s in some order. Thinking now
of matrices, 7 is then a specialization of a corresponding product 7(&)
of matrices o;, z,(£;), where the £s are indeterminates, one for each
x-type factor. Since the entries of x,(&;) are polynomials in &; with
integer coefficients, 7(£) is a matrix whose entries are polynomials in
certain indeterminates &, &, ---, &, with integer coefficients.

The number m of indeterminates appearing in a matrix 7(§) depends
not only on the automorphism 7 but on the choice of a representation
of 7 as a product of the generators; this number plays no special role
here, but it must not be assumed to be constant.

The integer coefficients of the polynomial entries of 7(§) may be
chosen so that specialization of the &; to complex numbers ¢; gives an
element 7(t) of A,, and the choice of o, determines the component in
which 7(t) lies.

Let o; be fixed, and let [; = n(A4;). The fact that [; < dim ()
for ne A; can be expressed as follows: for every specialization & —
t;eC, rank (Y(t)—I) =n — l;, where n =dim&; =dim&. A similar
statement can be made for 7(&), for if n(§) — I had a nonzero minor
of size > n — l;, that minor would be a polynomial and would remain
nonzero under some specialization &, —t;€ C. Hence we see that for
every 7(€) corresponding to o; (i.e. for every element 7€ o,G and for
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every representation of 7 as a product of o; and certain of the other
generators) we have rank (& —1I) < n — [,. But then specializing
&, —t;e K, the rank of such a matrix certainly cannot increase. Hence
rank (9 — I) < n —1; for every 7€ o,G, or in other words m(c,G) = I,.

Now drop the assumption of algebraic closure on K, and let £ be
the algebraic closure of K. If 7 is an arbitrary element of 0,G, then
the extension of 7 to an automorphism of £, is still in the component
of A(8;) corresponding to ¢;. This is clear, because 7 = 0,7, T€G,
and ¢ can be expressed as a product of the generators of G, whose
extensions to £, are elements of G(8,). Hence dim ¥(7) = dim F(%,) =
l; for yeo,G. This completes the proof of Theorem 1.

THEOREM 2. Let %, A, A, K, 8, A, G, and o; be as in Theo-
rem 1, and suppose further that K is infinite. Then m(c,G) = m(4A;).
For ¢ =0, n(G) =n(4,) =1. If, in addition, the characteristic of
K does not divide the length of any cycle in the permutation as-
sociated with o;, then n(0,G) = n(A;). In particular, this is the case
1f &y is simple.

Proof. For the Chevalley group itself, we consider the diagonal
automorphisms (or matrices) 2z,(¢) =diag{l,1, «--,1, +--, tF ...}
where each of the first [ elements is 1, and the following entries are
of the form ¢+’ where B runs through all the roots of £,. For some
selection of ¢,,,, - -+,?, € K, to be determined presently, let 7 = []}z,,(t).
The diagonal entries of 7 after the lth one are of the form [[!¢8%?,
For each root B, some B(h;) = 0. Thus each of these entries is a
rational expression in the ¢, which is not identically 1. Since K is
infinite, we can choose t,, -+, ¢, so that none of the diagonal entries
of 7 after the Ith one is 1. (This can be expressed as a polynomial
condition of degree = 3(n — l), where n = dim &, since |B(k;)| < 3.)
Thus 7 is an element of G for which [ = dim (1) = the multiplicity
of 1 as characteristic root.

Now consider an element 0 == 1 in F. ¢ maps  into itself, and
also maps the subspace & spanned by the root vectors {eg} into itself.
In , o acts as a permutation of the k;, and in & (as noted above)
the matrix of ¢ has only 0, +1 as entries, and exactly one nonzero
entry in each row and column. If % is chosen as in the previous
paragraph, we have 07|9 = 0|9 (where the bar denotes restriction),
and 07| has nonzero entries where o|& does and each of these
entries will be *+ one of the entries of #|&. If K is infinite, then
the t; selected to define 7 can be chosen to satisfy not only the con-
ditions imposed above, but also the condition that 1 not be a charac-
teristic root of 07|&.

Next consider the permutation matrix o|$. For a suitable
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arrangement of the basis h, ---, h, of O, this matrix consists of
diagonal blocks, where each block is the matrix of a cyclic permuta-
tion. Let T be a linear transformation in a k-dimensional space which
cyclically permutes a basis u,, Uy, +++, 4. Then the fixed point space
of T is spanned by w, + %, + -+ + u,. The characteristic polynomial
of T (up to sign) is (v — DOV + N2 oo 4N+ 1). 1 is a root
of the second factor if and only if k-1,=0. Thus the multiplicity of
1 as characteristic root of 7T is 1 if and only if the characteristic of
K does not divide k.

We have demonstrated that each cycle of s contributes exactly
one dimension to the fixed point space of ¢]9, and, if the charac-
teristic does not divide the length of the cyecle, exactly 1 to the multi-
plicity of 1 as characteristic root. If &, is simple, only cyecles of
lengths =< 3 occur, which completes the proof of Theorem 2.

COROLLARY. Let & be a split semi-simple Lie algebra over an
arbitrary field of characteristic zero, and let A = GUo,GU -+ U0,,G
be the automorphism group of . Then m(o,G) = n(o,G) = the num-
ber 1; of cycles in the decomposition of the permutation s;. For G
itself, 1, = 1, the dimension of a Cartan subalgebra, and for v =+ 0,
0< ;<.

REMARKS. (a) The corollary extends the results of Jacobson [3]
beyond the algebraically closed case. Part of this is essentially con-
tained in [3] in remarks following Theorem 10.

(b) The decomposition of A in the corollary is also the decom-
position into connected algebraic components, by Ono’s theorem in § 2.

We will consider in the remaining sections the extent to which
the exclusion of small fields is necessary to obtain the conclusions of
Theorem 2. In particular, we will answer this explicity for the
Chevalley group for algebras of types A, B, C, and D.

There is also the question of how these results may be extended
to the algebras &, in the case where one or more components are of
type A;,, |l +1. In the following section we will obtain explicit
results in the case where ¥, itself is simple of type A, »|l + 1.

4, Algebras of type A. Let &, be simple of type A,. Then &
can be taken to be the Lie algebra of all (I + 1) x (I + 1) matrices of
trace 0 over K. If A is any nonsingular (I + 1) x (I + 1) matrix, then
the mapping X — A7'XA is an automorphism 7 of ¥. This automor-
phism is in G, by [9, 82] and the last paragraph of the proof of
Theorem 1.

THEOREM 3. If ¥, is of type A, and K is any field (of charac-
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teristic + 2, 3), then m(G) =1. If |K|> 1+ 1, then n(@) =1.

Proof. Let 7 be an automorphism given by conjugation by a
cyclic matrix A. The space of all matrices commuting with A4 (i.e.
all polynomials in A) has dimension ! + 1, since the minimum poly-
nomial of A has degree [ + 1. (%) is the intersection of this space
with &, and has dimension [.

An alternate approach to selecting an 7€ G gives a slightly weaker
result, but also gives an automorphism having 1 as characteristic
root with multiplicity [. Let 7: X — A7 XA where A = diag {a,, @, -+,
a,1.}, the a; being all distinct and all different from 0. This requires
| K| >1+ 1. Take as basis for € the matrix units e;;, 7 + 7, and the
diagonal matrices h; = €;,1,;11 — €5, 1 =4 = 1. Then h? =h,, and ¢}; =
a;'ae;. Since a;i'a; = 1 for ¢ = j, we have [ = dim () = the multi-
plicity of 1 as characteristic root, which completes the proof.

Now suppose the characteristic p of K divides I + 1. Then & has
one-dimensional center 3 consisting of scalar multiples of the identity
matrix. A more convenient basis than the one listed above is obtained
by replacing h, by I =1h, + (1 — Dhy+ «-- +2h,_, + h,, and taking
this to be the first basis vector. The cosets of the remaining basis
vectors then form a basis for & = 2/3.

Since [ > 1, we have one nontrivial graph automorphism ¢ with
associated permutation (1, )(2,1 — 1) ---, in which the number of cycles
is [ + 1)/2]. We will denote by #(G) the minimal multiplicity of 1
as characteristic root for elements of G acting in &, and similarly
define 7(c@), m(G), m(oG).

THEOREM 4. Let & be a (simple) classical Lie algebra of type A,
over a field K of characteristic p, where p|l +1. Let A =G U oG
be the automorphism group of L. Then #(G) = mG)=1—1, and
(oG =z m(oG@) = [0 + 1)/2]. If |K]|>1+1, then #(G) = m(G) =1 —1,
and if K is infinite, then n(cG) = m(cG@) = [(I + 1)/2].

Proof. We observe first that I = (lh, + ({ — V) by + +-- + 2k, +
h)y =1lh, + 0 —1Dhyy+ <<+ +2hy + h, = —1. Every element of the
subgroup G’ of G acts by a conjugation in & [6, (3.5)], so I is a fixed
point of every element of G’. G is generated by G’ and certain auto-
morphisms leaving © = >, Kh; pointwise fixed, so I is fixed under
every element of G. On the other hand, if » = o7, 7€@G, then I" =
(—I) = —1, so I is not fixed under 7.

Relative to the bases chosen above for € and ¥, every automor-
phism 7 of £ has a matrix of the form
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(8) A=|%

where B is the matrix of the induced automorphism 7 in & We
have just seen that a, =1 if e G and a, = —1 if yeoG. For any
7, the characteristic polynomial of A is

(9) SO =N —a)f(h;7),

where f(:; 77) is the characteristic polynomial of B. Thus for 7eg@,
the multiplicity of 1 as characteristic root of 7 is exactly 1 less than
that for n. In particular, if |K|>1+4+1, #(G) £1 — 1.

Now for 7eG, 8=F(®), hence dim F()) = dim F()) — 1 (where
the bar denotes image under £ — 8). Clearly IS F(7), so | —1 <
m(G) £ WG). Again, if | K| >1+1, #(G)=1—1.

On the other hand, if 7€ 0G, 8 N F() = 0, so dimF()) = dimF) <
dim F(7), and m(6G) = [(! + 1)/2). By (9), the multiplicity of 1 as
characteristic root must be the same for » and 7. Hence if K is in-
finite, then 7(cG) = m(cG) = [(I + 1)/2].

5. Simple algebras of types B, C, D. Let ¥, be simple of type
B,, C,, or D,. Then ¥ can be taken to be the Lie algebra of n x n
matrices X over K (n = 2l or 2l 4+ 1) such that X = —S™'X'S, where
X' is the transpose of X, and S is

0
(];((:I 0 Il:l r {0 Il}
, 0
gk —~I, 0 I, 0
0 I, 0

in the respective cases B, C, or D. If A is any matrix such that
ASA’ = S, then X — A7 XA is an automorphism of £, and, as for type
A, is in the Chevalley group. We will select in each case a diagonal
matrix A which defines an automorphism of £ having I-dimensional
fixed point space, after discarding a suitable number of small fields.
The orthogonality condition requires that A be of the form diag {a,,
Qyy +ovy Qa7 a7 <o+, a7’} in cases C and D and of the form diag {1,
Qg O, = *y Gypyy A3, oo, A4} In case B.

THEOREM 5. Let & be a simple classical Lie algebra of type B,
C,, or D, over a field K, and let G be its Chevalley group. Then
(@) =m(@G) =11 |K|>2l 2l +1, or 2l — 1 @n the respective cases
Bl’ Cl, DL'
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Proof. TFirst consider case C. Denoting matrix units by e,;;, a
basis for 2 [7, § XVII] is

h; = € — €4y, iy H
Civi) = € — €y it VFEJ;
Cimiy—iy = i ghr T €4 a0, T < J;
Civiy = €yt T €1, 1<J;
€2y T €51 H
€2i) = €1, H

where in all cases 9,5 = 1,2, ---,1. If we choose A as above, then
conjugation by A acts diagonally, leaving the A; fixed, and the re-
maining diagonal elements have the forms a;'a;, a;'a;!, a,a; (¢ # j),
a;?, ai. Hence we wish to choose the a; so that no a; is 0, 1, —1, or
a¥* for j +#+ ¢; in other words, so that

Hiaai — 1) Iici(a; — a)aa; — 1) £ 0.

The left-hand side of this inequality is a polynomial of degree 21 + 1
in each of the a;,. Thus there exist such elements in K if | K| > 2] + 1.

The details for types B and D are similar, and appropriate bases
are given in [7, § XVII]. For type B the same conditions are obtained
except that some a; may be —1. Hence | K| > 2] suffices. For type
D, both 1 and —1 are allowed, so | K| > 2] — 1 suffices.

REMARK. Professor G. B. Seligman has communicated to the
author a proof that m(G) =1 when 2 is of type B,, C,, or D,, over
any field K of characteristic == 2 or 3. His proof is a natural analog
of the first part of the proof of Theorem 3, although the details are
naturally more complicated. As in Theorem 3, this approach does not
yield n(G) = [.
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