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HOMOMORPHISMS OF J-SIMPLE INVERSE
SEMIGROUPS WITH IDENTITY

R. J. WARNE

Munn determined all homomorphisms of a regular Rees matrix
semigroup S into a Rees matrix semigroup S* [3, 2], This generalized
an earlier theorem due to Rees [7, 2].

We consider the homomorphism problem for an important class of
^-simple semigroups.

Let S be a ώ-simple inverse semigroup with identity. Such semi-
groups are characterized by the following conditions [1, 4, 2].

Al: S is cZ-simple.
A2: S has an identity element.
A3: Any two idempotents of S commute.

It is shown by Clifford [1] that the structure of S is determined
by that of its right unit semigroup P and that P has the following
properties:

Bl : The right cancellation law hold in P.
B2: P has an identity element.
B3: The intersection of two principal left ideals of P is a

principal left ideal of P.

Two elements of P are L-equivalent if and only if they generate
the same principal left ideal.

Since any homomorphic image of a cϊ-simple inverse semigroup
with identity is a d-simple inverse simigroup with identity [5], we
may limit our discussion to homomorphisms of S into S* where S*,
as well as S, is of this type.

In §1, we consider two such semigroups S and S* with right
unit semigroups P and P* respectively. We determine the homomor-
phisms of S into S* in terms of certain homomorphism of P into P*,
and we show that S is isomorphic to S* if and only if P is isomorphic
to P*.

In §2, we show that if P is a semigroup satisfying Bl and B2
on which L is a congruence relation then P is a Schreier extension of
its group of units U by P/L and that P/L satisfies Bl, B2, and has
a, trivial group of units. P satisfies B3 if and only if P/L satisfies
B3. The converse of this theorem is also given. In this case, we
determine the homomorphisms of P into P* in terms of the homomor-
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1112 R. J. WARNE

phisms of U into Ϊ7* and those of P/L into P*/L* and give the cor-
responding isomorphism theorem. In §3, some examples are given.

It is a pleasure to acknowledge several helpful conversations with
Professor A. H. Clifford.

Section 1* The correspondence between the homomorphism of S
and those of P.

We first summarize the construction of Clifford referred to in the
introduction.

Let S be any semigroup with identity element. We say that the
two elements are ^-equivalent if they generate the same principal
right ideal: aS = bS. L-equivalent elements are defined analogously.
Two elements a and b are called ώ-equivalent if there exists an ele-
ment of S which is L-equivalent to a and R- equivalent to b (This
implies the existence of an element of S which is .^-equivalent to a
and L-equivalent to b.) We shall say that S is eZ-simple if it consists
of a single class of ώ-equivalent elements.

Now let P be any semigroup satisfying Bl, B2 and B3. From
each class of L-equivalent elements of P, let us pick a fixed repre-
sentative. B3 states that if a and b are elements of P, there exists
c in P such that PaΓ\Pb = Pc. c is determined by a and b to within
L-equivalence. We define avb to be the representative of the class
to which c belongs. We observe also that

(1.1) avb — bva .

We define a binary operation x by

(1.2) (axb)b = avb

for each pair of elements a, b of P.
Now let P~xoP denote the set of ordered pairs (α, b) of elements

of P with equality defined by

(1.3) (a, b) = (a'f bf) if a' — pa and br = pb where p is

a unit in P (p has a two sided inverse with

respect to 1, the identity of P).

We define product in P~xoP by

(1.4) (α, b)(c, d) = ((cxb)a, (bxc)d) .

Clifford's main theorem states : Starting with a semigroup P satisfy-
ing Bl, 2, 3 equations (1.2), (1.3), and (1.4) define a semigroup P~xoP
satisfying Al, 2, 3. P is isomorphic with the right unit subsemigroup
of P~λoP (the right unit subsemigroup of P~ιoP is the set of elements
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of P~γoP having a right inverse with respect to 1. This set is easily
shown to be a semigroup). Conversely, if S is a semigroup satisfy-
ing Al, 2, 3 its right unit subsemigroup P satisfies Bl, 2, 3 and S
is isomorphic with P~λoP.

The following results are also obtained :
The elements (1, a) of P~xoP constitute a subsemigroup thereof

isomorphic to P. We have

(1.5) (1, α)(l, b) = (1, ab) for α, b in P.

The ordered pair (1, 1) is the identify of P~λoP, i.e.

(1.6) (α, 6)(1, 1) = (1, l)(α, b) = (α, 6) for α, 6 in P.

The right inverse of (1, a) is (α, 1), i.e.

(1.7) (1, a)(a, 1) = (1, 1) for a in P .

(1.8) (α, c) = (α, 1)(1, c) for all a and c in P .

We identity S with P ^ o P and P with {(1, α) : a in P}.

(1.9) (avb)c = p(acvbc) where α, 6, and c are in P and

jθ is α unit in P .

(1.10) The idempotent elements of P~~λoP are just those

elements of the form (α, a) where a in P .

(1.11) (α, α)(δ, 6) — (αt>&, αv&) for all α, 6 in P .

(1.12) aLb{a, b in P) if and only if a = pb where p is

a unit in P .

Let P and P * be semigroups satisfying Bl, and B2 and B3. Let
v and u be the ' join' operations on P and P * respectively defined
on page 2. Let iV be a homomorphism of P into P * . N is called a
semilattice homomorphism (or sl-homomorphism) if

(1.13) P*((avb)N) - P*(αiV) n P*(WV)

i. e. (avb)N LaNubN in P * .
It is easily seen that we always have P*((avb)N) ci P*(aN) Π P*(bN).

However, the reverse inclusion is not generally valid. For example,
we might have P = G+, P * = G*+, where G and G* are lattice-ordered
groups. An order-preserving homomorphism of G into G* need not
preserve the lattice operations.

THEOREM 1.1. Let S and S* be semigroups satifying Al, A2, and
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A3, and let P and P* be their right unit subsemigroups, Let N, be
a sl-homomorphism of P into P*, and let k be an element of P*.

For each element (a, b) of S, define

(1.14) (α, b)M = [(aN)k, (bN)k]

the square brackets indicating an element of S*. Then M is a
homomorphism of S into S*. Conversely, every homomorphism of S
into S* is obtained in this fashion.

PROOF. TO show that M is single valued, let (α, b) = (α', &').
Then, af = pa and b' = pb where p is a unit in P by (1.3). Thus,
a'N = pNaN and b'N = pNbN. Thus, since pN is a unit of P*f

(α, b)M = (α', 6 ' ) ^ by (1.3). To show that M is a homomorphism let
x and 0 be the operations defined on P and P * respectively by (1.2).

Thus, using (1.2), (1.9), (1.13), and (1.12) obtain {{rN)k (g) (nN)k){nN)k =
(rN)k u(nN)k = w(rNunN)k = iιγ>* ({rvn)N)k — wp*(((r x n)n)N)k
= wp*((r x n)N)(nN)k where w and />* are units in P * . Thus, from
Bl,

(1.15) (ri\0& ® (wiSOfc = w/o*((r x

Now, from (1.2), (1.1), and (1.15), we have ((nN)k <g> (rN)k) (rN)k =
(nN)k u(rN)k = (rN)k u(nN)k = w^* {{rvn)N)k = ̂ ^o* ({nvr)N)k =
wp* (((n x r)r)N)k = w<o* ((w x r)iV) (rJV) Jfc. Therefore, by Bl,

(1.16) (̂ ΛΓ)A (g) (rJNΓ)fc = ̂ ^ * {(n x

Thus, by (1.14), (1.4), (1.15), (1.16), and (1.3), (m, n)M(r, s)M =
[(mN)k, (nN)k] [(rN)k, (sN)k] = [((rN)k 0 (nN)k) (mN)k, ((nN)k ®
(rJV)fc) (siV)fc] = [w/o*((r x ^)iV) (mN)k, wp* ((n x r)JV) (sN)k] =
[((r x n)m)Nk, ((n x ^ s ) ^ ^ ] = ((r x ri)m, (n x r)s)M = ((m, ^) (r, s))ilί.
Conversely, let M be a homomorphism of S into S*. Then, by (1.6)
and (1.10),

(1.17) (l,l)M=[k,k]

for some k in P * . Now suppose that (1, n)M = [α, 6] and (n, l)ilf =
[c, d] for n in P. It thus follows from (1.7) and (1.6) that [α, b]
[c, d] [α, 6] - [α, 6] and [c, ώ] [α, b] [c, d] = [c, d]. From (1.8) and (1.7),
it easily follows that [α, 6] [6, α] [α, 6] = [α, δ] and [6, α] [α, 6] [6, α] =
[6, α]. Hence, [&, a] and [c, d] are inverses of [α, &] (2, p. 27). There-
fore, it follows from a theorem of Munn and Penrose (4; 2, p. 28,
Theorem 1.17) that [6, a] = [c, d]. Thus

(1.18) (1, n)ilf = [α, 6]

(n, 1)M = [&, α]
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Now, from (1.7), (1.17), and (1.18), [a, b] [b, a] = [k, k]. Thus, from
(1.8) and (1.7), we have [a, a] = [k, k]. Hence, by (1.3), a = pk where
p is a unit of P * . Therefore, by (1.18) and (1.3),

(1.19) (1, n)M = [pk, b] = [k, ρ~'b] = [k, c]

where c = p-λb. Now, again using (1.8) and (1.7), [c, k] [k, c] = [c, c].
Thus, by (1.11), [k, k] [c, e] = [kuc, kuc] = [c, c\. Therefore, by (1.3)
(1.12), P*(kuc) = P*c. Hence, by the definition of it, P*kf)P*c =
P*c and P*c G P*k. Thus, we may write c = BJc where Bn in P * .
Thus, from (1.19), we have

(1.20) (1, n)M = [k, Bnk]

(n,l)M=[Bnk,k].

It follows easily from (1.8), (1.20) and (1.7) that

(1.21) (m, n)M = [BJc, BJc] .

Thus, to complete the proof, we must show that n—*Bn is a homo-
morphism of P into P * and that P * (Bm u Bn) G P*Bmm. It follows
from (1.20), (1.3), and (Bl) that n-+Bn is single valued. To show
that n —* Bn is a homomorphism we first note that from (1.5) and (1.20),
[k, Bmk) [k, BJc] = [k, BmJc] Thus, by (1.4)

(1.22) [(A; <g> Bmk)k, (BJc ® k)BJc] = [k, BmJc] .

From (1.2), the definition of u, and (1.12)

(1.23) (k 0 BJc) BJc = ku (BJc) - wBJc

where to is a unit of P * . Thus, by (Bl)

(1.24) k <g> (BJc) = w .

By virtue of (1.2), (1.1), and (1.23), ((BJc <g) k)k = (BJc) uk = ku
(BJc) = wBJc. Hence, by (Bl),

(1.25) (BJc) ®k = wBm.

If we substitute (1.24) and (1.25) in (1.22), we obtain [wk, wBmBnk] =
[k, Bmnk]. Hence, from (1.3) and (Bl), we have BmBn = Bmn. We now
show that P*(BmuBn) = P*Bmm. From (1.4), (1, m) (n, 1) = (n x m,
m x «). Hence, it follows from (1.21), (Bl), and (B2) that [k, BJc]
[BJc, k] = [BnxJc, BmXJc\. Thus, by virtue of (1.4), [((BJc) <g> (BJc))k,
((BJc) 0 (BJc)M = [BnXJc, Bmxnk] Hence, by (1.3) and (Bl), (BJc) 0
(BJc) = p*1BnXm where (0% is a unit of P * . Thus, by (1.2), BJcuBJc
= ((BJc) <g) (BJc)) BJc = p\BnXmBJc = ρ\BlΛXm)uk = ρ\BnυJc. There-
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fore, by (Bl) and (1.9), f/ (BnuBJ = ρ"i

1Bnυm where ρf is a unit of
P * . Hence P*(BnuBm) = P*Bnυm.

THEOREM 1.2. Let S, P, S*f and P * be as in Theorem 1.1. Let
Ω be the set of isomorphisms of P onto P * . Define (m, n)MN = [mN, nN]
for N in Ω. Then {MN: N in Ω} is the complete set of isomorphisms
of S onto S*. Hence, N—*MN is a one-to-one correspondence between
the isomorphisms of P onto P * and those of S onto S* and S is
isomorphic to S* if and only if P is isomorphic to P * . The group
of automorphisms of P is isomorphic to the group of automorphisms
of S.

PROOF. We first show that P * (aNubN) e P * ((avb)N) for α, b
in P and for any isomorphism N of P onto P * . It is easy to see that
Pa e P6 if and only if P*(aN) c P*(bN). Since aNubN = zN for
some s in P, P*zN = P*(aN) Γί P*(bN) ^ P*(aN), P*(bN) by the
definition of w. Thus, Pz CΞ P(avb) by the definition of v and the
desired result follows. Therefore, by Theorem 1.1, MN is a homomor-
phism of S into S*. To show it is one-to-one let (m, w)Λfjy = (p, q)MN,
i. e. [mίί, nN] = [piV, giV]. Thus, using (1.3), we may show that
mN = (|0' p)JV and wiV = (|θ' g)JV where ff is a .unit of P. Thus, by
(1.3), (m, w) = (p, g). Clearly, MN maps S onto S*. Conversely, let
M be an isomorphism of S onto S*. By Theorem 1.1, (m,n)M =
[(mN)k, (nN)k] where k in P * and ΛΓ is a homomorphism of P into
P * . Now, it follows from (1.6), (Bl), and (B2) that (1, 1) M= [k, k]
= [1*, 1*] where 1* is the identity of P * . Thus, by (1.3), k is a
unit of P * . Now, let wA = k~λ (nN)k for all n in P. It is easily
seen that A is a homomorphism of P into P * . Now, by (Bl), (B2),
and (1.3), we have

(1.26) (m, 1)M = [(mN)k9 k] = [&-1(miV)fc, 1*] = [mA, 1*]

(1, m)Jlf = [k, (mN)k] = [1*, k-\mN)k\ = [1*, m i ] .

Thus, from (1.26) and (1.3), we have mA = ^A implies m = n. Let
α be in P * . Then, by the remarks on page 3, it follows that [1*, a]
= (1, m)M for some m in P. Hence, by (1.26) and (1.3), a = mA.
Therefore A is an isomorphism of P onto P * . From (1.26) and (1.8),
we have (m, w)Λf = [mA, nA]. Thus, M = M 4 .

Section 2* A reduction of the homomorphism problem by an
application of Schreier extensions.

We first will briefly review the work of Redei [6] on the Schreier
extension theory for semigroups (we actually give the right-left dual
of his construction.). Let G be a semigroup with identity e. We con-
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sider a congruence relation n on G and call the corresponding division
of G into congruence classes a compatible class division of G. The
class H containing the identity is said to be the main class of the
division. H is easily shown to be a subsemigroup of G. The division
is called right normal it and only if the classes are of the form,

(2.1) Half Ha2, (a, = e)

and hx a{ = h2 a{ with hly h2 in H implies h± = h2. The system (2.1)
is shown to be uniquely determined by H. H is then called a right
normal divisor of G and G/n is denoted by G/H.

Let G, if, and S be semigroups with identity. Then, if there
exists a right normal divisor H' of G such that iJ = Hf and S = G/H',
G is said to be a Schreier extension of H by S.

Now, let H and S be semigroups with identities E and e respec-
tively. Consider H x S under the following multiplication:

(2.2) (A, a) (B, b) = (ABα< αδ) (A, B in if; α, 6 in S)

in which

α\ Ba (in i ί )

designate functions of the arguments α, & and B, a respectively, and
are subject to the conditions

(2.3) ae - E, ea = E, Be = B, Ea = E .

We call H x S under this multiplication a Schreier product of if and
S and denote it by HoS.

Redei's main theorem states:

THEOREM 2.1 (Redei). A Schreier product G = HoS is a semi-
group if and only if

(2.4) (AB)C = ACBC {A, B in H: c in S)

(2.5) (Ba)cca = c α ΰ c α (B in H; a, c in S)

(2.6) (ab)ccab = cα(cα)δ (α, 6, c in S)

are valid. These semigroups (up to an isomorphism) are all the
Schreier extensions of H by S and indeed the elements {A, e) form
a right normal divisor H' of G for which

(2.7) G/H' = S (H'(E, a) — a)

H' = H {{A, e) — A)

are valid.
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THEOREM 2.2 Let U be a group with identity E and let S be a
semigroup satisfying Bl and B2 (denote its identity by e) and suppose
S has a trivial group of units. Then every Schreier extension P =
UoS of U by S satisfies Bl and B2 (the identity is (E, e)) and the
group of units of P is Uf — {(A, e): A in U} ~ U. Furthermore L
is a congruence relation on P and P/L — S. P satisfies B3 if and
only if S satisfies B3.

Conversely, let P be a semigroup satisfying Bl and B2 on which L
is a congruence relation. Let U be the group of units of P. Then
U is a right normal divisor of P and P/U = P/L. Thus, P is a
Schreier extension of U by P/L. P/L satisfies Bl and B2 and has
a trivial group of units.

REMARK. Hence if P is any semigroup satisfying Bl and B2 with
group of units U such that L is a congruence relation on P, we will
write P = (U, P/L, a\ Ab) in conjunction with Theorem 2.1 and 2.2.
(We note that L is a right regular equivalence relation on any semi-
group) a\ Ab will be called the function pair belonging to P.

REMARK. A theorem of Rees [8, Theorem 3.3] is a special case
of the above theorem.

Proof. It follows easily from (2.2) and (2.3) that P satisfies Bl
and has identity (Et e). From Theorem 2.1, U' = U. Now, suppose
(A, a) is a unit of P. Then, (A, a) (B, b) = (E, e) for some (B, b)
in P. Hence by (2.2), ab =-e. Thus, by (Bl), (B2), and the fact that
the group of units of S is e, a = b = e, and (A, a) in U''. From (2.2)
and (2.3), every element of U' is a unit of P.

Next, we determine the principal left ideals of P. From (2.2),
we have

(2.8) P(Af a) = {(BAbba, ba): B in U, b in S}

= {(C, ba): C in U, b in S}.
Since P(A, a) just depends on α, we may write P(A, a) = Pa for all
A in U.

Next, we show that

(2.9) (A, a) L (B, b) if and only if a = b .

Now, from (2.8), (̂ 4., a) L (B, b) implies b — xa and a = yb for some
x, y in S Thus, by Bl, xy = yx = e, and since S has a trivial group
of units, x = y = e. Thus, a = b. The converse is evident from (2.8).
It follows easily from (2.9) and (2.2) that L is a congruence relation.
L(E,a) will denote the L-class of P containing (E, a). It is easily seen
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that the mapping L{E>a) —» a is an isomorphism of P/L onto S. Now
suppose S satisfies B3,( i.e. α, b in S implies there exists c in S such
that

(2.10) Sa n Sb = Sc .

From (2.10) and (2.8),

(2.H) P f l n Λ - PC

and P satisfies B3. If P satisfies B3, it follows from (2.8) and (2.11)
that S satisfies B3.

Now, let P be a semigroup satisfying Bl and B2 with group of
units U on which L is a congruence relation. By (1.12) (this is shown
without using B3) U is the congruence class mod L containing the
identity 1 of P, i.e. U is the main class of the compatible class divi-
sion of P given by L. If a in P, La = Ua from (1.12). If pxa — p2a
a where ply p2 in Z7, then ft = p2 by Bl. Thus, U is a right
normal divisor of P and P/U= P/L. Hence, P is a Schreier extension
of U by P/L. By virtue of (1.12) and (Bl), P/L satisfies Bl.

Let α - ^ α be the natural homomorphism of P onto P/L. Then,
ΐ is the identity of P/L. Let a be a_unit of P. Then, by (1.12), (Bl),
and (B2), a is in U. Hence, a = 1. Therefore, P/L has a trivial
group of units.

THEOREM 2.3. Let P=(U, P/L, a\ Ah) and P * = (U*, P*/L*9

6C, Bc) be semigroups satisfying Bl and B2 on which L and L* are
congruence relations. U and ab, Ah denote the unit group and func-
tion pair of P. Z7* and bc, Bc denote the unit group and function
pair of P * . P/L is the factor semigroup of P mod L and P*/L*
is the factor semigroup of P* mod L*. Let f be a homomorphism
of U into £7*, g be a homomorphism of P/L into P*/L*, and h be
a function of P/L into U*. Suppose /, g and h are subject to the
following conditions:

(2.12) (ah) (bh){ag)(agybg) = (abf)(ab)h

(2.13) (bh)(AfYbΰ) = (Abf)(bh) .

For each (A, a) in P define

(2.14) (A, a)M = [(Af)(ah), ag]

where the square brackets denote elements of P * . Then M is a
homomorphism of P into P * Conversely, every homomorphism of P
into P * is obtained in this fashion. M is an isomorphism if and
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only if f and g are isomorphisms.

Proof. Clearly, M is single valued. From (2.14), (2.2), (2.4),
(2.13) and (2.12), we have

(A, a)M (B, b)M = [Af)(ah), ag] [(Bf)(bh), bg] =

- [(Af)(ah)((Bf)(bh)Y^(ag)^\ag. bg] = [(Af){ah){Bfy°{bhy°{ag)b\{ab)g]

= [(Af)(Baf)(ah)(bhy°(ag)b°, (ab)g] = [(Af)(Baf)(abf)(ab)h, (ab)g]

[(ABaah)f(ab)hf (ab)g] = (ABaa\ ab)M = ((A, a)(B, b))M .

Thus, M is a homomorphism of P into P * . Conversely, let M be any
homomorphism of P into P * . It follows from Bl and B2 that UM CΞ
Z7.* Thus, by Theorem 2.2, we may let

(2.15) (A,β)M=[A/,β*]

where β and e* denote the identities of P/L and P*/L* respectively.
Clearly, / is a mapping of U into U*. It follows easily from (2.15),
(2.2) and (2.3) that / is a homomorphism of U into U*. Let E be
the identity of U. Then,

(2.16) (Ey a)M = [αfc, α#] .

Clearly, h is a function of P/L into ?7* and g is a function of P/L
into P*/IΛ From (2.2) and (2.3), (A, α) = (A, β)(S, α). Thus, by
(2.15), (2.16), (2.2), and (2.3)

(2.17) (A, α)M - (A, β)M(S, α)M = [A/, e*][ah, ag] - [(A/)(αΛ), αg] .

From (2.2) and (2.3), we have {E, a){E, b) = (a\ ab). Thus, by (2.17),
we have [ah, ag] [bh, bg] = [(abf)(ab)h, (ab)g]. Therefore, by (2.2)

(2.18) [(ah)(bhy(agy°, (ag)(bg)] = [(abf)(ab)h9 (ab)g] .

From (2.18), it follows that g is a homomorphism and (2.12) is satisfied.
From (2.2) and (2.3), we have (E, b)(A, e) - (A6, b). Thus, from (2.17)
and (2.15), [bh, bg] [A/, e*] = [{Abf){bh), bg]. Hence, (2.13) follows from
(2.2) and (2.3).

Suppose M is an isomorphism of P onto P * . Therefore, by (2.14)
(A, a)M = [(Af)(ah), ag] where / is a homomorphism of U into U*f h
is a single valued mapping of P/L into Z7* and g is a homomorphism
P/L into P*/L*. It is easy to see that UM = ?7*. Thus, by virtue
of theorem 2.2, if J5 in Z7*, there exists A in U such that (A, e)M =
[B, e*]. Thus, by (2.15), Af=B and / maps U onto C7*. By (2.15),
/ is one-to-one and hence is an isomorphism of U onto U*. To show
g is one-to-one, let



HOMOMORPHISMS OF ^-SIMPLE INVERSE SEMIGROUPS WITH IDENTITY 1121

(2.19) ag = bg .

There exists x in U* such that

(2.20) x(bh) - ah .

Now, by (2.2) and (2.3), (xf~\ e)(E, b) = (xf~\ ό). Hence, by (2.15),
(2.14), (2.2), (2.3), (2.19) and (2.20), (xf~\ b)M = [x, β*] [bh, bg] = [x(bh),
bg] = [ah, ag] = (E, a)M. Hence, a = b. It follows immediately from
(2.14) that g maps P/L onto P*/L* and hence g is an isomorphism of
P/L onto P*/L*.

Conversely, suppose there exists an isomorphism / of U onto U*9

an isomorphism g of P/L onto P*/L* and a single valued mapping h
of P/L into U* such that (2.12) and (2.13) are satisfied. Therefore,
by (2.14), {A, a)M = [(A/)(αfe), α#] is a homomorphism of P into P*.
It is easily seen that ikf is one-to-one. Let [B, b] be in P*. Now there
exists a in P/L such that b = ag and A in U such that (Af)(ah) =
B. Hence (A, α)M - [B, 6] by (2.14).

REMARK. If ah = E*, where # * is the identity of ?7*, then
(2.12) and (2.13) simplify greatly :

(2.12/ (ag)b» = abf ,

(2.13)' (A/)6* - Abf .

Professor Clifford remarks that we can bring this about by making a
new choice of representative elements in P or in P*, respectively, in
the following two cases : if the range of h is contained in the range
of / or if ag = a'g (α, a' in P/L) implies ah = a'h.

Section 3* Examples* We give some examples to illustrate the
theory.

EXAMPLE 1. The bicyclic semigroup " C " [2, p. 43] consists of
all pairs of nonnegative integers with multiplication given by

(3.1) (i, j)(k, s) = (ί + k - min (j, k)j + s - min (j, k)) ,

A complete set of endomorphisms of " C" is given by

(3.2) (i, i)ikf(ί, fc) = (ti + fc, ti + k)(i, j are nonnegative integers)

where (ί, k) runs through all ordered pairs of nonnegative integers.
The only automorphism of ' C' is the identity.

EXAMPLE 2. Let G be any group of order greater than or equal
to two with identity E. Let Io be the nonnegative integers under
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the usual addition. Consider P = Gxlo under the following multiplication.

(3.3) (A, a)(B, b) = (ABa, a + b)

where Ba = B if a = 0
Ba = £7 if α ^ 0 .

P is a semigroup satisfying (Bl), (B2), (B3) which is not left cancella-
tive. Let S be the semigroup corresponding to P in Clifford's main
theorem. Let h be a mapping of 70 into G such that oh — E and ά/&
= (α + &)/& for all α =£ 0. Let / be an automorphism of G. Then,

(3.4) ((A, α), (B, b))M = (((A/)(αΛ), α), ((B/)(6Λ), 6)) where (A, α) ,

(J3, 6) in P is an automorphism of S. Conversely every automorphism
of & is obtained in this fashion.

One obtains similar results if Io is replaced by the positive part
of any lattice ordered group.

EXAMPLE 3. Let G+ be the positive part of any lattice ordered
group G. Let S be the semigroup corresponding to G+ in Clifford's
main theorem. Then there exists a one-to-one correspondence between
the automorphisms M of S and the order preserving automorphisms
N of G. This correspondence is given by

(m, n)M = (mN, nN) (m and n in G+) .
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