LINEAR TRANSFORMATIONS ON GRASSMAN SPACES

ROY WESTWICK
1. Let U denote an n-dimensional vector space over an algebraically closed field F, and let G_{nr} denote the set of nonzero pure r-vectors of the Grassmann product space $\Lambda^r U$. Let T be a linear transformation of $\Lambda^r U$ which sends G_{nr} into G_{nr}. In this note we prove that T is nonsingular, and then, by using the results of Wei-Liang Chow in [1], we determine the structure of T.

For each $z = x_1 \wedge \cdots \wedge x_r \in G_{nr}$, we let $[z]$ denote the r-dimensional subspace of U spanned by the vectors x_1, \ldots, x_r. By Lemma 5 of [1], two independent elements z_1 and z_2 of G_{nr} span a subspace all of whose nonzero elements are in G_{nr} if and only if $\dim ([z_1] \cap [z_2]) = r - 1$; that is, if and only if $[z_1]$ and $[z_2]$ are adjacent. If $V \subseteq \Lambda^r U$ is a subspace such that each nonzero vector in V is in G_{nr} and if V is maximal (that is, not contained in a larger such subspace) then $\{[z] \mid z \in V, z \neq 0\}$ is a maximal set of pairwise adjacent r-dimensional subspaces of U. These sets of subspaces are of two types; namely, the set of all r-dimensional subspaces of U containing a common $(r - 1)$-dimensional subspace, and the set of all r-dimensional subspaces of an $(r + 1)$-dimensional subspace of U. We adopt the usual convention of calling these sets of subspaces maximal sets of the first and second kind respectively. We will let A_r denote the set of those maximal V which determine a set of pairwise adjacent subspaces of the first kind, and we will let B_r denote the set of those maximal V which determine a set of pairwise adjacent subspaces of the second kind.

2. In this section we prove that if T sends each member of B_r into a member of B_r then T is nonsingular.

Let U_i, \ldots, U_t be k-dimensional pairwise adjacent subspaces of U and let $z_i \in G_{nk}$ be such that $[z_i] = U_i$ for $i = 1, \ldots, t$. Then $\{U_1, \ldots, U_t\}$ is said to be independent if and only if $\{z_1, \ldots, z_t\}$ is an independent subset of $\Lambda^k U$. We note the following facts concerning an independent set $\{U_1, \ldots, U_t\}$. If it is of the first kind (in the sense of the previous section) then there is an independent set of vectors $\{x_1, \ldots, x_{k-1}, y_1, \ldots, y_t\}$ of U such that for $i = 1, \ldots, t$, $U_i = \langle x_1, \ldots, x_{k-1}, y_i, \cdots \rangle$ denotes the linear subspace spanned by the vectors enclosed. If it is of the second kind, then there is an independent set of vectors $\{x_1, \cdots, x_{k+1}\}$ such that $U_i = \langle x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k+1}\rangle$, for $i = 1, \cdots, t$. It is easily

Received July 2, 1963. The author is indebted to M. Marcus for his encouragement and help.

1123
deduced from this that \(\dim (\bigwedge^r U_1 + \cdots + \bigwedge^r U_l) \) is equal to \(t \binom{k - 1}{r} \) or \(\sum_{i=0}^{l} \binom{k - i}{r} \) according as the set of subspaces \(\{U_i\} \) is of the first or second kind. We adopt the usual convention that \(\binom{m}{n} = 0 \) if \(m < n \). Finally, if the set \(\{U_1, \ldots, U_l\} \) is not independent, then for some \(i, \bigwedge^r U_i \subseteq \bigwedge^r U_1 + \cdots + \bigwedge^r U_{i-1} \). In fact, the choice of \(i \) such that \(\{z_i, \ldots, z_{i-1}\} \) is independent and \(z_i \in \langle z_1, \ldots, z_{i-1} \rangle \) will do. We require the

Lemma 1. Let \(\{U_1, \ldots, U_{s+1}\} \) be a set of pairwise adjacent \(k \)-dimensional subspaces of \(U \). Suppose further that the set is independent and is of the second kind. Let \(V \subseteq \bigwedge^r U_1 + \cdots + \bigwedge^r U_{s+1} \) be a subspace with dimension \(\binom{k - s}{r - s} \), where \(s \leq r \leq k \). Then there is a set \(\{V_1, \ldots, V_s\} \) of pairwise adjacent \(k \)-dimensional subspaces of \(U \) such that \(V \cap (\bigwedge^r V_1 + \cdots + \bigwedge^r V_s) \neq \{0\} \).

Proof. Let \(m = \binom{k - s}{r - s} \) and let \(\{z_1, \ldots, z_m\} \) be a basis of \(V \). Choose an independent set of vectors \(\{x_1, \ldots, x_{k+1}\} \) of \(U \) such that for \(i = 1, \ldots, s + 1 \), \(U_i = \langle x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k+1} \rangle \). We can write

\[
 z_i = z_i^1 + x_1 \wedge \cdots \wedge x_{s-1} \wedge x_s \wedge z_i^3 + x_1 \wedge \cdots \wedge x_{s-1} \wedge x_{s+1} \wedge z_i^3
\]

where

\[
 z_i^1 \in \bigwedge^r U_1 + \cdots + \bigwedge^r U_{s-1} \quad \text{and} \quad z_i^3 \in \bigwedge^r \langle x_{s+2}, \ldots, x_{k+1} \rangle
\]

for \(i = 1, \ldots, m \). In the case that \(s = 1 \), we take \(z_i^1 \in \bigwedge^r \langle x_3, \ldots, x_{k+1} \rangle \). In the case that \(s = r \), we take \(z_i^1, z_i^3 \in F \). If \(\{z_i^1, \ldots, z_m^1\} \) or \(\{z_i^3, \ldots, z_m^3\} \) is dependent, then we can form a linear combination of \(z_1, \ldots, z_m \) which will be in \(\bigwedge^r U_1 + \cdots + \bigwedge^r U_{s+1} \) or \(\bigwedge^r U_1 + \cdots + \bigwedge^r U_{s-1} + \bigwedge^r U_s \), respectively. If, on the other hand, both sets are independent then each is a basis of \(\bigwedge^{r-s} \langle x_{s+2}, \ldots, x_{k+1} \rangle \) since \(\dim (\bigwedge^{r-s} \langle x_{s+2}, \ldots, x_{k+1} \rangle) = \binom{k - s}{r - s} = m \). Let \(z_i^1 = \sum_{j=1}^{m} a_{ij} z_j^1 \), \(i = 1, \ldots, m \). Choose \(\lambda \neq 0 \) and \(b_i \in F \), not all equal to zero, such that

\[
 \lambda b_j = \sum_{i=1}^{m} b_i a_{ij}, \quad j = 1, \ldots, m.
\]

Then

\[
 0 \neq \sum_{j=1}^{m} b_j z_j = \sum_{j=1}^{m} z_j^1 + \sum_{j=1}^{m} x_1 \wedge \cdots \wedge x_{s-1} \wedge (x_s + \lambda^{-1} x_{s+1}) \wedge b_j z_j^3
\]

\[
 \in \bigwedge^r U_1 + \cdots + \bigwedge^r U_{s-1} + \bigwedge^r V_1
\]

where \(V_1 = \langle x_1, \ldots, x_{s-1}, x_s + \lambda^{-1} x_{s+1}, x_{s+2}, \ldots, x_{k+1} \rangle \). The subspaces...
U_1, \ldots, U_{s-1}, V_1$ are pairwise adjacent and so the Lemma is proved.

The nonsingularity of T is now proved as follows. Let W be a subspace of U. We prove, by induction on the dimension of W, that T is one-to-one on $\Lambda^r W$ and that the image of $\Lambda^r W$ under T is $\Lambda^r W'$ for some subspace W' of U with $\dim(W) = \dim(W')$. When $\dim(W) = r + 1$ this is clear since we are assuming that B_r is sent into B_r by T. Suppose that the statement has been proved for k-dimensional subspaces, and consider a $(k+1)$-dimensional subspace W of U. Let s be the largest integer such that for any set $\{W_1, \ldots, W_s\}$ of pairwise adjacent k-dimensional subspaces of W, T is one-to-one on $\Lambda^r W_1 + \cdots + \Lambda^r W_s$. If $s \geq r + 1$ then T is one-to-one on $\Lambda^r W$, since in this case, for an independent set $\{W_1, \ldots, W_s\}$ we must have $\Lambda^r W = \Lambda^r W_1 + \cdots + \Lambda^r W_s$. Suppose then that $1 \leq s \leq r$ and let $\{U_1, \ldots, U_{s+1}\}$ be any set of $s + 1$ pairwise adjacent k-dimensional subspaces of W. If the set is dependent then T is one-to-one $\Lambda^r U_1 + \cdots + \Lambda^r U_{s+1}$, since we may drop one of the terms. Therefore we assume that the set is independent. Choose k-dimensional subspaces U_1', \ldots, U_{s+1}' such that $T(\Lambda^r U_i) = \Lambda^r U_i'$ for $i = 1, \ldots, s + 1$. For each $j \leq s$, T maps $\Lambda^r U_1 + \cdots + \Lambda^r U_j$ onto $\Lambda^r U_1' + \cdots + \Lambda^r U_j'$. Therefore, since T is one-to-one on $\Lambda^r U_1 + \cdots + \Lambda^r U_{s+1}$, the set $\{U_1', \ldots, U_{s+1}'\}$ is independent. Furthermore, the set $\{U_1', \ldots, U_{s+1}'\}$ is also independent. If not, then the image under T of both $\Lambda^r U_1 + \cdots + \Lambda^r U_s$ and $\Lambda^r U_1 + \cdots + \Lambda^r U_{s+1}$ is $\Lambda^r U_1' + \cdots + \Lambda^r U_s'$. But then the dimension of the null space of T in $\Lambda^r U_1 + \cdots + \Lambda^r U_{s+1}$ is at least as large as the difference in the dimensions of $\Lambda^r U_1 + \cdots + \Lambda^r U_{s+1}$ and $\Lambda^r U_1 + \cdots + \Lambda^r U_s$, that is, $\left(\binom{k-s}{r-s} \right)$. We apply Lemma 1 to contradict the choice of s.

It follows that T is one-to-one on all of $\Lambda^r W$. Finally, let $\{W_1, \ldots, W_{k+1}\}$ be an independent set of k-dimensional pairwise adjacent subspaces of W (necessarily of the second kind). Let W_i' be chosen so that $T(\Lambda^r W_i) = \Lambda^r W_i'$. It follows easily that $\{W_1', \ldots, W_{k+1}'\}$ is of the second kind also, so that the image of $\Lambda^r W$ is $\Lambda^r W'$ where W' is the $(k+1)$-dimensional subspace of U containing W_1', \ldots, W_{k+1}'. By taking $W = U$ we see that T is one-to-one on $\Lambda^r U$.

3. It is necessary to investigate whether a general T does necessarily send each element of B_r into B_r. For the cases $n > 2r, n < 2r$, this is proved directly, using Lemma 2. The case $n = 2r$ requires a more delicate argument, given at the end of this section; there it is shown that if some element of B_r is sent into B_r by T, then T sends B_r into B_r.

Lemma 2. Let $r < n$ and let V_1 and V_2 be in A_r such that $V_1 \cap V_2 \neq \{0\}$. Then, if $V \subseteq V_1 + V_2$ and $\dim(V) = n - r$, we have $V \cap G_{sr} \neq \phi$.
Proof. Let \(U_i \) be the \((r - 1)\)-dimensional subspace of \(U \) determined by \(V_i \) for \(i = 1, 2 \). Since \(V_1 \cap V_2 \neq \emptyset \), either \(U_1 = U_2 \) or \(\dim (U_1 \cap U_2) = r - 2 \).

If \(U_1 = U_2 \) then \(V_1 = V_2 \), so that in this case it is clear that \(V \cap G_{nr} \neq \emptyset \).

Suppose that \(\dim (U_1 \cap U_2) = r - 2 \) and let \(\{x_1, \ldots, x_{r-2}\} \) be a basis of this intersection. Choose \(y_i \) such that \(U_i = \langle x_1, \ldots, x_{r-2}, y_i \rangle \) for \(i = 1, 2 \). Choose \(u_i \) and \(v_i \) in \(U \), \(i = 1, \ldots, n - r \), such that

\[
\{z_i = x_1 \land \cdots \land x_{r-2} \land (y_1 \land u_i + y_2 \land v_i) \mid i = 1, \ldots, n - r\}
\]

forms a basis of \(V \). If

\[
\{x_1, \ldots, x_{r-2}, y_1, y_2, v_1, \ldots, v_{n-r}\} \quad \text{or} \quad \{x_1, \ldots, x_{r-2}, y_1, y_2, u_1, \ldots, u_{n-r}\}
\]

is dependent, then there is a linear combination of the \(z_i \) which is in \(V_1 \) or \(V_2 \) respectively. If, on the other hand, both sets are independent, then they are both bases for \(U \) and we may write

\[
u_i = w_i + c_i y_2 + \sum_{j=1}^{n-r} a_{ij} v_j, \quad i = 1, \ldots, n - r,
\]

where \(w_i \in \langle x_1, \ldots, x_{r-2}, y_1 \rangle \) and \(c_i, a_{ij} \in F \). We note that \(\det (a_{ij}) \neq 0 \) so we can choose \(\lambda \neq 0 \) and \(b_j \) for \(j = 1, \ldots, n - r \), not all zero, such that \(\lambda b_j = \sum_{i=1}^{n-r} b_i a_{ij} \). Then

\[
0 \neq \sum_{j=1}^{n-r} b_j z_j = x_1 \land \cdots \land x_{r-2} \land (y_1 + \lambda^{-1} y_2) \land \left[\sum_{j=1}^{n-r} b_j c_j \right] y_2 + \lambda \left[\sum_{j=1}^{n-r} b_j v_j \right]
\]

is an element of \(V \cap G_{nr} \). This proves the Lemma.

For \(n < 2r \) the image under \(T \) of an element of \(B_r \) is an element of \(B_r \). For \(n < 2r \) this is clearly so since the subspaces of \(\bigwedge^r U \) in \(B_r \) have dimension \(r + 1 \), which is greater than the dimension \((n - r + 1) \) of the subspaces in \(A_r \).

For \(n > 2r \) we proceed as follows. The image of an \(A_r \) is an \(A_r \). Suppose that the image of a \(W \in B_r \) is a subspace of a \(V \in A_r \). Choose two elements \(V_1 \) and \(V_2 \) of \(A_r \) such that \(V_1 \cap V_2 \neq \emptyset \) and \(\dim (V_1 \cap W) = \dim (V_2 \cap W) = 2 \). One does this by choosing \(V_1 \) and \(V_2 \) so that the \((r - 1)\)-dimensional subspaces of \(U \) determined by them are adjacent subspaces of the \((r + 1)\)-dimensional subspace determined by \(W \). Now, \(T(V_i) = T(V_i) = V \) since each is in \(A_r \) and each intersects \(V \) in at least two dimensions. Therefore \(T(V_1 + V_2) = V \) and so the null space of \(T \) in \(V_1 + V_2 \) has dimension equal to \((2n - 2r + 1) - (n - r + 1) = n - r \). By Lemma 2, it follows that the null space of \(T \) intersects \(G_{nr} \) which contradicts the hypothesis that \(T \) sends \(G_{nr} \) into \(G_{nr} \).
In the case that \(n = 2r \) the image of a \(B_r \) may be an \(A_r \) since the dimensions are equal. However, we prove that if some \(B_r \) is sent into a \(B_r \) by \(T \), then the image of each \(B_r \) is a \(B_r \). Suppose not. Then we can choose \((r + 1)\)-dimensional subspaces \(W_1 \) and \(W_2 \) of \(U \) such that \(T(\Lambda^r W_1) \in A_r \) and \(T(\Lambda^r W_2) \in B_r \). Furthermore, we can choose \(W_1 \) and \(W_2 \) adjacent, so that \(\dim(W_1 \cap W_2) = r \). Choose three distinct elements \(V_1, V_2, \) and \(V_3 \) of \(A_r \) such that the \((r - 1)\)-dimensional subspaces of \(U \) determined by these elements are contained in \(W_1 \cap W_2 \). Then \(\dim(V_i \cap \Lambda^r W_j) = 2 \) for \(i = 1, 2, 3 \) and \(j = 1, 2 \), so that \(T(V_i) \) intersects \(T(\Lambda^r W_j) \) in at least two dimensions for each \(i, j \). This implies that each \(T(V_i) \) is equal to one of \(T(\Lambda^r W_j) \) and so two of them are equal. The argument of the previous paragraph now leads to a contradiction.

4. By essentially the same argument as used by Chow in [1] to prove his Theorem 1, we can prove that; if \(S \) is a nonsingular linear transformation of \(\Lambda^r U \) sending \(G_{nr} \) into \(G_{nr} \), and if the image of each \(B_r \) is a \(B_r \), then \(S \) is a compound. (By a compound we mean a linear transformation of \(\Lambda^r U \) which is induced by a linear transformation of \(U \).)

In the case that \(n \neq 2r \) it follows that \(T \) is necessarily a compound. For \(n = 2r \), \(T \) is a compound if some \(B_r \) is sent into a \(B_r \). If we let \(T_0 \) denote a linear transformation of \(\Lambda^r U \) induced by a correlation of the \(r \)-dimensional subspaces of \(U \), then \(T_0 \) is nonsingular and sends \(G_{nr} \) onto \(G_{nr} \). The image of each \(A_r \), under \(T_0 \) is a \(B_r \). Therefore, if a \(B_r \) is sent by \(T \) into an \(A_r \), the \(T_0 T \) is a compound. We have proved the

Theorem. Let \(U \) be an \(n \)-dimensional vector space over an algebraically closed field and let \(T \) be a linear transformation of \(\Lambda^r U \) which sends \(G_{nr} \) into \(G_{nr} \). Then \(T \) is a compound except, possibly, when \(n = 2r \), in which case \(T \) may be the composite of a compound and a linear transformation induced by a correlation of the \(r \)-dimensional subspaces of \(U \).

Reference

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and on submission, must be accompanied by a separate author’s résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
James Henry Bramble and Lawrence Edward Payne, *Bounds for derivatives in elliptic boundary value problems* .. 777
Hugh D. Brunk, *Integral inequalities for functions with nondecreasing increments* .. 783
William Edward Christilles, *A result concerning integral binary quadratic forms* .. 795
Peter Crawley and Bjarni Jónsson, *Refinements for infinite direct decompositions of algebraic systems* .. 797
Don Deckard and Carl Mark Pearcy, *On continuous matrix-valued functions on a Stonian space* .. 857
Raymond Frank Dickman, Leonard Rubin and P. M. Swingle, *Another characterization of the n-sphere and related results* .. 871
Edgar Earle Enochs, *A note on reflexive modules* .. 879
Vladimir Filippenko, *On the reflection of harmonic functions and of solutions of the wave equation* .. 883
Derek Joseph Haggard Fuller, *Mappings of bounded characteristic into arbitrary Riemann surfaces* .. 895
Curtis M. Fulton, *Clifford vectors* .. 917
Irving Leonard Glicksberg, *Maximal algebras and a theorem of Radó* .. 919
Kyong Taik Hahn, *Minimum problems of Plateau type in the Bergman metric space* .. 943
A. Hayes, *A representation theory for a class of partially ordered rings* .. 957
J. M. C. Joshi, *On a generalized Stieltjes trasform* .. 969
J. M. C. Joshi, *Inversion and representation theorems for a generalized Laplace transform* .. 977
Eugene Kay McLachlan, *Extremal elements of the convex cone B_n of functions* .. 987
Robert Alan Melter, *Contributions to Boolean geometry of p-rings* .. 995
James Ronald Retherford, *Basic sequences and the Paley-Wiener criterion* .. 1019
Dallas W. Sasser, *Quasi-positive operators* .. 1029
Oved Shisha, *On the structure of infrapolynomials with prescribed coefficients* .. 1039
Oved Shisha and Gerald Thomas Cargo, *On comparable means* .. 1053
Maurice Sion, *A characterization of weak∗ convergence* .. 1059
Morton Lincoln Slater and Robert James Thompson, *A permanent inequality for positive functions on the unit square* .. 1069
David A. Smith, *On fixed points of automorphisms of classical Lie algebras* .. 1079
Sherman K. Stein, *Homogeneous quasigroups* .. 1091
J. L. Walsh and Oved Shisha, *On the location of the zeros of some infrapolynomials with prescribed coefficients* .. 1103
Ronson Joseph Warne, *Homomorphisms of d-simple inverse semigroups with identity* .. 1111
Roy Westwick, *Linear transformations on Grassman spaces* .. 1123