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THE ESSENTIAL SPECTRUM OF A CLASS OF
ORDINARY DIFFERENTIAL OPERATORS

E. BALSLEV AND T. W. GAMELIN

Introduction. The purpose of this paper is to give a method of
determining the essential spectrum of a class of ordinary differential
operators in L? of an interval with o as a singular endpoint. The
method relies on the mapping theorem for the essential spectrum,
proved for ordinary differential operators by Rota [9]. A discussion
of this type of theorem is presented in §1. The essential spectrum
of the constant coefficient operator and the Euler operator is determined
in §4. It is found that the essential spectrum of the Euler operator
is an algebraic curve which varies with the index »,1 < p < oo.

In §85 and 6 the class of differential operators which are compact
with respect to the constant coefficient operator, or Kuler operator, is
determined. By a fundamental theorem of perturbation theory, these
operators may be added to the original operator without altering the
essential spectrum.

The results apply to differential equations of Fuchsian type. This
includes the Riemann differential equation, whose spectral theory was
investigated by Rota [10].

1. Spectral mapping theorems. Let A be a closed, densely-
defined operator in a Banach space X. A is a Fredholm operator if
the null space .#7(4) of A is finite dimensional and the range <#(A)
of A is closed and of finite codimension in X. The Fredholm index
of A is the number

k(A) = dim 47(4) — codim #(A4) .

A complex number A is in the essential resolvent set of A, denoted
by o0.A), if A\] — A is a Fredholm operator. Otherwise N is in the
essential spectrum of A, denoted by 0.,(4). p(A) and ¢(A) will denote
the resolvent set and spectrum of A respectively.

Let B(%X) denote the ring of bounded operators on %X, and let &
denote the ideal of compact operators in <Z(X). v = FX)/¥ is a
Banach algebra. The coset A + & of an element A e .<Z(X) will be
denoted by A, and its spectrum will be denoted by sp(A). The in-
vertible elements of .o~ are the cosets B = B + &, where Be Z(¥)
is a Fredholm operator (cf [1]). In particular, sp(4) = 0,(4) for all
Ae Z(%).
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756 E. BALSLEV AND T. W. GAMELIN

LEMMA 1. Let Ae Z (%), and let f be analytic in a neighborhood
of 0(A). Then o(f(4)) = f(0(A)). If e pl4), then

w(pI — f(A)) = Z{e( — A): v e f ()},

where N is counted in the set f~(u) according to its multiplicity as
a solution of f(z) — 1 = 0.

Proof. The first assertion of the lemma is a trivial consequence
of the spectral mapping theorem for Banach algebras:

0.(f(4) = sp(f @A) = sp(f(A) = f(sp(A)) = f(@.(A)) .
By replacing f by ¢ — f it suffices to establish the formula
£(f(A)) = Z{e(I — A): ne f70)} .

We can decompose the spectrum of A into a finite number of
spectral (closed and open) subsets F;, 1 =1, -:-,n, such that f is
analytic in an open connected neighborhood of each F;. Corresponding
to each spectral set F);,, there is a projection E; onto a closed invariant
subspace %; of X such that I = >\'_, E;, E;E; =0, 1 ++ j, and (A |%,) =
F; (cf [5], VII. 3).

Since the index « satisfies the appropriate additivity conditions, it
suffices to prove the formula for the restriction operators A|%,;, i.e.
we may assume that f is analytic in a connected open neighborhood
of a(4).

If f is identically zero, then f(A) = 0 is Fredholm, so % is finite
dimensional, and the result is trivial. If f is not identically zero, it
has a finite number of zeros z, :--, 2,€0(4), counted according to
their multiplicity. Let

92) = f@))(z, —2) - (2, — 2) .

g is analytic and nonzero in a neighborhood of ¢(A4), so g(A4) is in-
vertible and has index zero. Now

f(A) = (& — A) -+ (z,]— A)g(4),

where the 2,7 — A are Fredholm. Since the index of a product of
Fredholm operators is the sum of their indices, we have

R(F(A) = 3 k(eid — A)

= (eI — A): e £740) N a(A)}
= SO — A): e f-0)} .

If A and B are unbounded operators with domains < (A4) and
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Z(B), then their product is defined by
Z(AB) = {x e 2 (B): Bx€ 2 (A)}, (AB)x = A(Bx) .

A and B commute if AB = BA.

If A and B are closed, densely-defined Fredholm operators, then
AB is closed and densely-defined, AB is Fredholm, and £(AB) = k(4) +
£(B) (ef [6]). Conversely, if {4;)*, is a commuting set of closed
operators such that A=A, .-+ A, is closed, densely-defined and Fredholm,
then each of the A, is densely-defined and Fredholm. For #(4A)=2_7+7(4)
and H#(4) & #(A,) for each ©. As a special case of these remarks,
we can state a version of Lemma 1 for unbounded operators. For
ordinary differential operators, the spectral mapping theorem is due to
Rota [9].

LeMMA 2. Let A be a closed, densely-defined operator in X, and
let p be a polynomial of degree n.

(a) If p(o.,(A)) is mot the entire complex plane, then p(A) is
densely defined and closed.

(b) If p(A) is densely defined and closed, then o, (p(A)) = p(c.(A)).

If e p.(p(4),
w(p] — p(A)) = 3Ol — 4,

where \,, -++, N, are the solutions of p(r) — pt = 0, counted according
to their multiplicity.

Proof, pI — p(A) = (I — A)--+- (M, — A), where the NI — A
commute. If p¢¢p(o,(A)), then each \; is in p,(A4), so pl — p(4) is
densely-defined and closed. Hence p(A4) is densely-defined and closed.

Part (b) of the lemma is a consequence of the preceeding discussion.

2. Some basic facts about linear operators. Let A be a closed
densely-defined linear operator in a Banach space X. The domain < (4)
of A becomes a Banach space when endowed with the A-topology, or
graph topology, defined by the norm ||z, = |l«| + ||Ax|. A linear
operator B: & (B) — X is said to be A-defined if <(B)=2 < (A). B
is A-bounded if the restriction of B to =2 (A) is a bounded operator
from < (A4), with the graph topology, to X. Its A-norm || B, is
given by

| Blla= sup {|| B/l .}
2€ gyl4)

B is A-compact if it is compact as an operator from < (A4), with the
graph topology, to ¥%.
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If A’ is a second operator which is closed on Z(A) = & (4),
then the A'-topology for 2 (4) coincides with the A-topology for = (4).
The following lemma gives criteria for A”’= A + B to be closed on
2 (A), and collects certain facts which will be used later.

LEMMA 8. Let A be a closed densely-defined operator in %, and
let B be an A-defined (not cecessarily closed) linear operator in %.
(a) If there exist 0 = a <1 and 0 < B such that

| Br|| = al|lAz|| + Bllx|| for xe 2 (4),

then A + B is closed on < (A).
(b) If B is A-compact, then A + B is closed on <= (4), and
0(A + B) = 0,(4),

k(A + B—N)=k(A— ) for vep,(A).

(¢) If nep,(A), then there is an e(\) > 0 such that || B||, < e(\)
implies ve p,(A + B).

(d) If B is closed and A-compact, then for every € >0, there is
a K(e) > 0 such that

| Bx|| = el Az || + K() ||zl , wxeF(A).

Proof. (a), (b) and (c) are well-known. Suppose that (d) is not
true. Then there is an ¢ > 0 and a sequence {x,} in = (A) such that

|| Bz, || = e || A2, || + n || @] .

Since the inequality is homogeneous, we may assume ||2,|,= 1.
Passing to a subsequence, if necessary, we may assume, that Bz,
converges to y. Since

| Br, || 2z ellwn|la + (=) llw. |l =+ (n — o) |2, 1],

x, converges to 0. Since B is closed, ¥y = 0. On the other hand,
|y || = lim|| Bx,|| = ¢, a contradiction.

The argument establishing part (d) can be found in [4], p. 39.
There are operators B which are A-compact but for which no inequality
of the form ||Bx|| = ¢||Ax|| + K(¢) ||z || obtains.

3. Differential operators. Let (a, 8) be an interval, where
a = —co and B = + oo are allowed as endpoints. A formal differential
expression | on the interval («, B) is an expression of the form

1F)e) = 3, a7 0)

where the a; are complex-valued measurable functions on (a, 8).
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The maximal operator L in L%, B), 1 < p < oo, associated with
l, is defined by

(L) = {fe L (a, B): f¥ exist and are loc. a.c.,, 0=5=<n—1,
l(f)e L"(«,B)} and

Lf=Uf)y, fezd).

The operator Lg is the restriction of L to C= functions with compact
support contained in («, 8).

If L) is closable, then the minimal operator L, associated with
is the closure of L;. A differential operator associated with [ is an
operator L, such that

(L) s 2(L,)s Z2(L)
and
L.f=Uf), [fe=zl).

Under mild restrictions on the coefficients a,(t), for instance, that
a;(t) be locally integrable, 0 < j <% — 1, and that 1/a,(t) be locally
integrable, the maximal operator L is densely defined and closed. In
this case, & (L,) is of finite codimension in = (L).

Any finite dimensional extension of a Fredholm operator is again
Fredholm (cf [6]). Hence, under the preceeding restrictions on the
coefficients a;, 0.(L,) = p.(L) for all differential operators L, determined
by I. This set is called the essential resolvent set of I, and denoted
by o.(1). Its complement o.(l) is the essential spectrum of 1.

If =22(L,) is of codimension £k in < (L), and pep,(), then
(el — L,) = k(ul — L)y — k (cf [6]). To determine the Fredholm index
of puI — L,, it suffices then to find the index of #I — L, or of ul — L,

In the following, D, and D will denote respectively the minimal
and maximal operators in L*(«, B) determined by the differential ex-
pression (If)(t) = f'(t), where («, 8) is the interval under consideration.

4. The basic formulae for the essential spectrum.

THEOREM 1. Let M be the maximal differential operator in
L*[0, ) associated with the expression

(mf)e) = 35 ;1) ,

a; constants.
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Let 7 be the polynomial
w(z) = i a;@ .
7=0

Then
o.(m) = {w(@ir): —co < r < oo},

If »ep,(m), the Fredholm index x(AI — M) is the number of roots
of m(z) =\, counted according to their multiplicity, which lie in the
half-plane .“(z) < 0.

Proof. The equation g — D,g = f is satisfied by
6(s) = (M — D () = —e| e s 1yt .
0

If Z(0\) <0, then W — D)7'f = kxf, where ke L(—c, ). So
(A — D)™ is bounded, and »ep(D,). In particular, k(A — D) =0
for Z(\) < 0.

If “2(\) >0, the adjoint differential equation of \f = D,f has
the solution e* e L0, ), which must be orthogonal to the range
of \I — D,. If fe #(\I — D),

I — Dyyf(s) = e“re*“f(t)dt .
This is again a convolution operator with an L*-kernel, and so (A — D,)™?
is bounded on # (M — D,). It follows that <#(\I — D,) is the subspace
of L*[0, =) orthogonal to e, and so is closed and of codimension 1
in L?[0, ). Hence A€ 0,(D,) and k(A — D)) = —1 for () > 0.

Since the Fredholm index is constant on each component of 0.(D,),
the line “2(\) = 0 must be the essential spectrum of D,. Since D is
an extension of D, by one dimension, (Al — D) =1 if ZZ(\) < 0 and
k(M — D) = 0 if &) > 0.

This establishes the theorem for the special case of the operator
D. It suffices now to prove that M = m(D);' then the general result
follows from Lemma 2. From the inequality of Lemma 5 we derive
the inequality

I D*fll = K{|MFI +1IF1},  FeCR(0, ).

Thus, the M-norm and D"norm on C;°(0, ) are equivalent, and it
follows, that
(M) = 2(Dp) = 2(x(D,)) .

Since M is an extension of 7(D), and since dim =2 (x(D))/ =2 (n(D,)) = n,
it suffices to show, that dim 2 (M)/=2(M,) = n.

1 Professor S. Goldberg pointed out, that a proof was missing here.
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Since =2(M) = =v(M — A\I), we may assume, by altering the
constant term of m, that M is Fredholm. Then
dim 2(M)/<2(M,) = dim .+ (M) + codim .2 (M,)
= dim 4+ (M) + dim .+"(L)
where L is the maximal differential operator associated with the adjoint
expression (ef. [9]).

We may also assume, that the roots A, <+, N, of 7(2) =0 have
distinet real parts. Then .#7(M) is spanned by the exponentials e,
and _#"(L) is spanned by the exponentials e~*i*, From this it is easy
to conclude that dim /(M) + dim +#"(L) = n.

THEOREM 2. Let the Euler differential expression | on the interval
[1, ) be defined by

W) = 35 bt (o),

where the b, are constants. Let L be the associated maximal operator
wm LP[1, ), 1 < p < ., Let d be the polynomial

a@) = b+ 36, 1T (2 - (%+j>>.

=0
Then o(l) = {d(ir): —c0 < 7 < o}, For ne p(l), the Fredholm index
k(A — L) is the number of rools of d(z) —x =0, counted according
to their multiplicity, which lie in the half-plane F2(z) < 0.
Proof. For fe L*[1, =), we define
(Tf)(s) = el*f(e), 0 = s < oo .

It is easily verified, that 7 is an isometric isomorphism of L?[1, o)
and L7[0, ). Its inverse is given by

f@) = (@'g)t) = t7V7g(log t), L =t < oo .
We have

AF _ prammg(log 8y — %t—ﬂm-lgaog t)

dt
—)p)— d 1 ]
— $—(1/p)—1 _ 4
t [( ds p)g(s) s=logt

By induction on k, the following formula obtains

3:{ — t—u/m—x[(d;‘ls — (% + k- 1>><_d%_ —_ <%. + k- 2>> ces

(e = 7))
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Therefore
(¢ LL)o) =TT (& - (—;— +4))ef @)
Let I, be the differential expression
LG =fP@), 1 St < o,
and let L, be the corresponding maximal operator in L?[1, «). Then
k—1
L, :f“‘jl;[()(D— (% +j>)z-,kg 1.
Consequently,
L=cbnr+ 3 bk'ij (p- (_11)_ +3))]r-
Since the essential spectrum and Fredholm index remain invariant

under isometric isomorphisms, the result follows from Theorem 1.

REMARK. The essential spectrum of L could also be computed by
writing L as a polynomial in the operator x(d/dx), which has the
essential spectrum {—(1/p) + tr, —oco < 7 < o}, The Euler operator
was originally represented as a polynomial by George Boole.

5. Perturbation of the constant coefficient operator. The
inequalities, on which the results of this section are based, are es-
sentially special cases of similar estimates for elliptic partial defferential
operators (cf [4]). Similar results for perturbation of partial differential
operators are obtained in [3]. For p = 2 theorems of this type for
elliptic operators, including Lemma 7, are proved by Birman (ef. [11]).

LEMMA 4. Given € > 0, there exists a constant K, depending only
on p and &, such that

Civeseyra={ s | 10w ratde] 11w pae + K| rey rae}

Jor all N =0, all functions b locally in L*[0, ), and all functions
f in the domain of the maximal operator D im LP[0, o).

Proof. Let r be a small positive number Let a be a continuously
differentiable function on [0, ] such that
0=a=1,a0)=1 and a(r)=0.

If fe 2/(D), then
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& = = L@@ £t + s)ds
= —[la@s'¢ + 5as — [ @)1 + s)ds
£ = (177 + 9 1ds + K 15 + 9 1ds
=rnf|1re+ordst” + Ko7+ 9) s}
<o\ 17 + 9 P ds + K[ 1f¢ + 9P dsf

where (1/p) + (1/9) = 1.
If r is chosen so that ¢Y? = rY%,, then

IFOF = SSZ‘f’“ +s)rds + Kﬂlf(t +8)|7ds ;
[ Do s pat

= [0 b elr@r + K176 st

=N O PELIG P+ KIF() Pdtds

={ s [T ra{el” 7@ rds + K[ 116 Ps)

N=<8<oo

LEMMA 5. Given € > 0, there exists K(¢) > 0 such that
ID*fll = ellD*fIl + K@ fll, fe (D), 0=k <mn,

where the norms are taken in L*[0, o).

Proof. Let [0,r] be a finite interval. Replacing f by f’ and
proceeding as in the proof of Lemma 4, we arrive at the inequality
r r 1/
701 = Cored [T 17 + 9 ds + K)| 17 + 9P ds)
Suppose {f,} is a D*bounded sequence in L*[0, r]. It is easy to
see that the derivatives f, are uniformly bounded and equicontinuous
on the interval [0, »]. Hence the operator D in L?[0, r] is compact

with respect to the operator D* in L?[0, 7].
By Lemma 3(d), there exists a K;(r) > 0 such that

K17 +9rdss | 1776+ 9 rds + Ko | 176+ 9 Pds.

If 7 is chosen so that 0 < r» < 1 and &"? = 2C,r"?, then the above
inequalities yield the pointwise estimate
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For e e+ ord+ K@\ 1£¢+ 91 ds .

Integrating from 0 to « and exchanging the order of integration,
we arrive at the following inequality

I DA = ell DFIIP + K@ NP
This is equivalent to an inequality of the form
| DFIl = ell DIl + K@ fII -
Inequalities of the form
| D*fIl = e[ DSl + K@ || f1]

follow easily by induction on k. Since D*** is D"bounded, we finally
obtain an inequality of the desired form

I D*FIl = el D*fil + K@) I f1l

Let b be a measurable function on the interval [0, «), and define
the linear operator B in L?[0, ) by

Z(B) = {fe L’[0, «): bf e L"[0, )},
Bf =b-f, fe 2(B).

B is closed and densely-defined.
In the following, Li.Ja, ) will denote the space of measurable
functions on [a, o) which are locally in L*|a, ).

LEMMA 6. B s D-defined if and only if be L0, ) and

lim supgs“[b(t) Pt < oo .
If B is D-defined, then for every & >0, there ewists a K(¢) > 0
such that
| Bf|| < el| DFI| + K@) |Ifll, fe 2(D) .
In particular, D + B is closed on =Z(D).

Proof. Suppose that B is D-defined. Since B is closed, B is D-
bounded. Let f be a C*-function on (—co, =) such that
0=r=1
fs)=1,0=s=1
f(8 =0, —co <8 —1,2=8< 0,
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Let f,(t) = f(t —s), and let g, be the restriction of f, to the

interval [0, o).
If s= 0, then

| 1owau pae = a1t < 11va, P < 1 BBl 1P
< 1| B3 Kl o + 1F [oicmrm}
Hence be L2 [0, «), and

lim sup Sm]b(t) Pdt < oo .
Conversely, suppose b€ L2[0, =) and
8+1
limsupg 1B(t) |7 dt < oo .
Then
8+1
supS 1B(t) [P dt < oo .
0<8<o0Js

It follows from Lemma 4, with N = 0, that B is D-bounded and
| Bf|| = el DfIl + K() | fll, fe Z(D).
By Lemma 3(a), D + B is closed.

LemMMA 7. B s D-compact if and only if be L]0, <) and

lim S““] bt P dt = 0 .

Proof. Suppose that B is D-compact. By Lemma 6, b< L% [0, ).
Suppose that there exists a sequence s, — - and a K > 0 such that

Ssmlib(t)]pdth, n=1,2 ..

Let {g,,} be the functions defined in the proof of Lemma 6; since {g, }
is a D-bounded sequence, and B is D-compact, we can assume that

1 Bgs, [l =20,
passing to a subsequence if necessary. On the other hand,

| By, |I> = S”"“lb(t) rdt= K,

8n

a contradiction. Hence lim,,_,,,,SHl |b(t) |7 dt = 0.
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Conversely, suppose that be L%]0, <) and that

lim Sm[ b(t) P dt = 0 .

8—o0 Jg

Let ), denote the characteristic function of [0, N], and define
BNf: XNbf,fe ,@'(D) .
By Lemma 4, there is a constant K > 0 such that
1B = BofIF = | bty pat
8+1
= &{ sup | () P atfll DI + 1710} -

N<=8<oo

Hence || B — Byl|lp— 0 as N— oo, so it suffices to show that each By
is D-compact.

For this purpose, let {f,} be a D-bounded sequence in <=Z(D).
Since

t t 1/p

150 = 50| = || siar| s 1e—spe{[ 11y par}”
the f, are equicontinuous on [0, N]. If {f, 541 1s a subsequence which
converges uniformly on [0, N] then {B,f: j}jf;l converges in L?f[0, ).

Hence B, is D-compact.

THEOREM 3. Let M be the maximal operator in LP[0, <), 1<p< o,
corresponding to the differential expression

(mf)() = i a; (), a; constants, a, = 0 .
3=0

Let B be the maximal operator in L*[0, «) corresponding to the
differential expression

S 60500,

where the b; are measurable.
(@) B s M-bounded if and only if b;e LLJ0, =) and

limsup88+llbj(t) Pdt < 0,0 <j<m—1.
(b) B is M-compact if and only if b;c LE [0, «) and

1im5”1|bj(t)|pdt =0,0=j=<n—1.
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(¢) If B is M-bounded, then for every ¢ > 0 there exists K(¢) > 0
such that

I Bfil = ellMfIl + K@ fl, fe Z(M) .

In particular, M + B 1s closed on = (M).

Proof. Suppose that B is M-bounded. If the functions g, are
constructed as in the proof of Lemma 6, we have

§+1 8+1
sup |16, P at = sup |7 By.t) 1 at
s=0 8 8
= sup || By, ||? = sup | Bl% (|| Mg, || + 11g,1])? < o

Hence b,e L% J0, o) and

lim sup Ss“] by(t) |7 dt < oo

Let 1 =k <n —1 and assume that b; e L0, ) and

loe
s+1 .
limsupg bty Pdt < o0, 0<j<k—1.

The functions g, can be altered so that
gPt)y=1,s<t=<s+1,.

The same type of estimate as used in the preceding paragraph
yields the results

bk € Lﬁc[o, oo)
and

lim sup S”W b(t) |7 dE < oo .

By induction, this holds for all k,0 =k =<n — 1.
Conversely, assume b,(t) € L [0, o) and

s+1 .
limsups 10,8 |7dE < 0, 0<j=m—1.
Let B; be the maximal operator corresponding to the expression

bi(6) SO ().
By Lemma 6,

IB,f 1| < &1 DI || + Ke) [| DFIl, Fe (D)
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From Lemma 5 we can deduce an inequality of the form
| Bif Il = &; | D*fIl + K(&y) || fl, fe 2(D) .

Summing over j we arrive at an inequality of the form
I Bfl| = ellD"fll + K@ fIl, fe 2(D") .

Since M is a polynomial in D of order n, 2(M) = =2 (D"), and the
M-topology is equivalent with the D"-topology for & (M). Hence we
get an inequality of the desired form,

I BfIl = ell MfIl + K@ ISl .

By Lemma 3(a), M + B is closed on &2 (M). This completes the proof
of parts (a) and (c) of the theorem.
If

lim 55“1 bit)Pdt = 0,0 < <n—1,

then each B; is D?*-compact, by Lemma 7. And so B; is D"-compact,
therefore M-compact. Hence B is M-compact.
Conversely, if B is M-compact, then the relations

lim S’“| bu(t) Pdt = 0

can be proved by induction on k£ as in the proof of part (a) and of
Lemma 7.

THEOREM 4. Let M and L be the maximal operators in L?[0, o),
1 < p < o0, corresponding to the differential expressions

(mf)(t) = i a;f9 (), a; constants, a, = 0,
i=o

L)) = (mf)(E) + ]20 b)) .

Suppose b, is continuous and satisfies

bo(t) # —a,, 0 <t < oo
lim b,(¢) = 0 .

t—oo
Suppose b; € L [0, ) and satisfies
8+1
1im§ b, ) Pdt =0, O0=j=n—1.

Then 2(L)= 2 (M), and o) =o0,m). If nep,(m), kO —M)=
(A — L).
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Proof. Let B, be the maximal operator corresponding to the
expression b,(t)f(t).> In view of Theorem 3 and Lemma 38 it suffices
to prove the theorem in the case

@) = (mf)E) + b)) .

So we assume b;(t) = 0,0 = j = » — 1. Since the essential spectrum
and the Fredholm index are localizable to the endpoint <o, and since
the graph topologies of < (L) and < (M) are equivalent on compact
subsets of [0, ), we may assume, by passing to an interval of the
form [N, o), that |b,(t)]| <, 0=t < .

We have

*° ip
1Bl ={{] 1estrr =0 1t}
= el D || < 1 D" 1l MFI + 151D -

If ¢ is sufficiently small, Lemma 3(a) applies, and < (L) = 2(M).
Also, by Lemma 3(c) and suitable choice of &, we must have o,() =
o (m).

Now suppose |b,(t)]| < la,l|,0 =t < o, so that the hypotheses of
the theorem are satisfied for

(e )@) = (mf)(E) + B,

where 0 < 8 =1. We have shown that o,z = o,(m), so that the
function B — k(M — Lg) is well-defined, M€ p,(m). This function is
continuous and integervalued, hence a constant. In particular,
kM — M) = k(M — L).

6. Perturbation of the Euler operator.

THEOREM 5. Let L be the maximal operator in LP[1, o), 1<p< oo,
corresponding to the Euler differential expression

A1)®) = 3 btif9t), b, constants, b, # 0.
7=0

Let C be the maximal operator in LP[1, o) corresponding to the
exPression

S e prIw)
i=0
where the ¢; are measurable,
(@) C is L-bounded if and only if ¢;€ L1, ) and
timsup | eit)Pdt < o for some a> 1,055 n—1

2 Professor S. Goldberg pointed out, that the proof was incomplete. The remaining
part can be found at the end of the paper.
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(b) C is L-compact if and only if c;e Li[l, ) and

lim Sas—t—‘cj(t)k’dt: 0 for some a > 1,0 <n—1.

(¢) If C is L-bounded, then for every € > 0 there exists K(g) > 0
such that

ICrIl = ell LIl + K@ fIl, fe 2(L) .

In particular, L + C s closed on = (L).

Proof. Let M be the maximal operator in L*[0, <) corresponding
to the differential expression

0 =+ 50T (A (241,

and let B be the maximal operator in L?[0, =) corresponding to the
expression

co(e’) + :21 ci(e’) :}Z[: (%ls— — (—;— + k)) .
Let 7 be the isometry of L?[1, =) and L?[0, <) introduced in the proof
of Theorem 2. Then
L ="Mt
and
C=1t"Br.
Also,

es

@s e
" Liewrat={ " e prau.

Combining Theorem 3 and a downward induction argument on the-
coefficients ¢;, we arrive at parts (a) and (b) of Theorem 5. Part (c)
also follows from Theorem 3.

THEOREM 6. Let L and M be the maximal operators in L*[1, ),
1 < p < oo, corresponding to the differential expressions

(I)(E) = 3, bHif9(t), b; constants, b, = 0 .

(mf)() = ) + 3, eOUF9) -
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Suppose ¢, is continuous and satisfies

lime,(t) = 0.
t—o0

Suppose ¢; e L0, «) and satisfies

wsl

tlc,~(t)|”dt=0for some a>1,0=5j=<n—1.

liﬂm S
Then =2(L)= <2 (M), and o(l)=0,(m). Lf nep,(m), kO — M) =
£ — L).

Proof. A straightforward verification, as in the proof of Theorem
5, shows that the transform of Theorem 6 under 7 is Theorem 4.

7. Some special cases. The perturbation criterion of Theorem 5
includes all functions ¢(t) such that ¢="/7¢(t) € L?[1, ). It includes all
bounded measurable functions with limit zero at o. The ecriterion
shows, for instance, that if a <j <mn, then t*f is compact with
respect to the Euler operator of degree n. If & < n, Theorem 6 shows,
that t*f™ has no effect on the essential spectrum of [. In particular,
if

(mf)0) = 3 a;(t)f (1)

is a Fuchsian differential expression, where a,(t) = 0(t"), then m can
be written in the form of Theorem 6, and the essential spectrum of
m can be determined from the coefficients as in Theorem 2.

For instance, consider the Riemann differential expression

. " ’ ct* +dt + e
(mf)(@) = ¢t + 1)f"(t) + (at + b)f'(t) + -—m——f(t) .

BExcept for the change of variable ¢ — —¢ this is the equation'investi-
gated by Rota [10]. By Theorem 6, o,(m) = o.(I), where

(L)) = Ef"(t) + atf'(t) + cf (@) .
By Theorem 2,
o,(l) = {d@r): —oo < r < oo},

where



772 E. BALSLEV AND T. W. GAMELIN

Hence

az(m):{—7‘2+fér<a—1—«2—> +i2+(1—a)—1—+c: —o0 <1< oo}.
p p D

This is equivalent to the expression obtained by Rota.

8. Remarks.

(a) The Euler operator in L7(0, 1].
The mapping 7 defined as in the proof of Theorem 2 by

Tf(s) = e’f ()

also establishes an isometric isomorphism of L*(0, 1] and L*(— <, 0].
The Euler operator

L=23 atD
i=o

in L?(0,1] is isometric isomorphic via = to the constant coefficient
operator

A ) ({CRE )
in L?(— o0, 0].

The operator D in L?(— o, 0] is isometric isomorphic to the operator
(—D) in L?[0, co); therefore D in L?(— , 0] has the essential spectrum
{it: —oo <t < oo}, and the Fredholm index of A — D is 0 for FZ\ <0
and 1 for Z\ > 0.

It follows, that I on the interval (0, 1] has the same essential
spectrum as ! on the interval [1, «) and the Fredholm index of N — L
is the number of roots of the polynomial d(z) — A of Theorem 2, counted
with multiplicity, which lie in the half-plane %z > 0.

The perturbation results also carry over to the interval (0, 1]. The
Theorems of §6 are true for the operator L in L?(0,1], when 1 is
substituted for 0 and 0 for oo, in particular we now take the limes and
lim sup of Sw A/u) | e(u) [P du as s — 0.

The Euler operator L in L*(0, ) is isometric isomorphic via 7 to
the constant coefficient operator considered above in LP(— oo, o), and

the essential spectrum is given by the same formula. The Fredholm
index is 0, o.(L) = (L) and L, = L.

(b) The condition

lim supS s%—ib(t) [Pdt < o for some a > 1
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is equivalent to the condition

lim sup sg —%;lb(t) Pt < oo

Also, the condition

lim rs%—]b(t) |Pdt = 0 for some a > 1

8§—o 8

is equivalent to the condition
(=1 B
lim s -t—2|b(t) [Pdt =0.
This second set of conditions could just as well have been used

in Theorem 5 and 6.
The proof of these assertions follows from the inequalities

sup S”l |b(t) |” dt < sup asS”L] b(t) |” dt
s=N Js T s=N s 2
=< asup sr—l—l b(t)|?dt ,
sZN s tz
and

=1 = (et
sup s —|b(t)|”dt=sups}]§ Loy pde
S=N s t2 32N a=0 t?

an
alg

o antlg
<sups 3\ " " Libeypar

< ¢ supgws—lt—lb(t)I”dt.

(¢) A Dbasis of solutions fi(\,?), -+, fu(X,t) of a differential
equation I(f) = \f of order » is said to be a norm-analytic basis at
N if there is a neighborhood N of X, such that (i) the functions f;
are analytic in A for € N and (ii) there is an integer %k such that
for each xe N, {f}i., span the set of solutions of I(f) = Mf which
lie in L?. In [10], Rota proved the following criterion:

LEMMA. If at ) either the differential operator I in L* or its
adjoint 1* im L7, (1/p) + (1/g) =1 (cf [9], for definition of adjoint),
does not have a norm-analytic basis of solutions, thenm X\ belongs to
the essential spectrum of 1.

If | is the Euler differential expression of Theorem 2, the equation
I(y) = Ny has solutions @,(t) = t*/, where «; is a root of the algebraic
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equation
b2z —1)eec(z—n+1)+ e +b2z+b=x.

Now ;e L*[1, ) if and only if F(a;) < —(1/p).
Hence [ will not have a norm-analytic basis at any point of the

curve
>»=bn<?3”r—%)(ir—%——l)---(iv'—%—n—i-l)

+---+b1<ir—%>+bo, —o L < o,

This curve is identical to {d(ir): —co < r < o}, where d(z) is the
polynomial defined in Theorem 2.

If ) is not on this curve, then it can be shown that the resolvent
operator (A — [)™ is a sum of integral operators whose kernels are of
the Hardy-Littlewood-Polya type (cf [7], or [5] pp. 531-532). This
yields another proof of Theorem 2, but the details are more complicated.

This method also shows that the essential spectrum of the Euler
operator is precisely the set of points at which ! or [* does not have
a norm-analytic basis of solutions. That this is not true in general
is shown by the following example.

Define

CH)YE)=f'(t) + (sint + tcost) f(t),0 =t < oo
The equation If = )\ f has the solution
PA(t) = exp [t(r — sin?)],

while the adjoint equation [*¢ = A\g has the solution
Pa(t) = 1/Pa(@) .

Now @, € L?[0, ) if () < —1 and @, ¢ L*[0, «) if <2-(\) > —1,
so I does not have a norm-analytic basis on the line Z(\) = —1.

Similarly, {* does not have a norm-analytic basis on the line
Z(\) =1. 1 and I* have norm-analytic bases if “Z(\) # =+1.

Since 0 is a regular endpoint for the differential expression [, a
necessary condition that a point ) be in o.(l) is that either @, € L?[0, o)
or € L0, ), A/p) + (1/g) =1 (cf [9]). Hence the entire strip
{—1 = Z(\) £1} is contained in the essential spectrum of I. It is
easy to see that o.(l) actually coincides with this vertical strip.

It seems possible that the boundary of the essential spectrum of
an arbitrary differential expression consists of points A at which either
If =\f or l*g = Ag does not have a norm-analytic basis of solutions.
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(d) The fact that the isomorphism (zf)(s) = e*2f(e*) converts a
resolvent operator of Hardy-Littlewood-Polya type into a resolvent
operator of convolution type is a special case of the following situation.

Let K be a measurable function on [0, ), and let

(TH@ = L[ K (L) rady, fe L0, ) .

The mapping 7 may be regarded as an isometric isomorphism of
L7[0, ) and L?(—oo, ).
The operator S = zT7! in L?(— o, ) is given by

(So)@) = |~ K(e)emeg@)dz .

S is a convolution operator with kernel
J(,,.) — K’(e—r)e((llp)—l)r .

Conversely, a convolution operator in L?(—o, ) with kernel J de-
termines a Hardy-Littlewood-Polya operator in L?[0, ) with kernel

K(s) = s"»J(—log s) .
The norm of S is at most the L*-norm of J. Hence if
|1 dr = [T KE s7ds <
then T is bounded, and
170 = |1 K@) s ds.
This last statement is just the Hardy-Littlewood-Polya inequality

(et [7]).

Added in Proof. Professor S. Goldberg has pointed out that the
proof that D(L) = D(M) in Theorem 4 is incomplete, i.e., it must be
shown that feL” and lfeL? imply mfeL?. This follows easily
with the aid of a more general form of theorem 3(c), namely, that
inequalities of the form

I Bfll = e llmfl + K|f

obtain, where the norm is taken in L?[0, N) for 1 = N< o, and K
depends on € and » but not on N. These inequalities result from
modifying and sharpening the proofs of § 5.
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BOUNDS FOR DERIVATIVES IN ELLIPTIC
BOUNDARY VALUE PROBLEMS

J. H. BRAMBLE AND L. E. PAYNE

I. Introduction. In a recent paper [7], Payne and Weinberger
gave pointwise bounds for solutions of second order uniformly elliptic
partial differential equations. The bounds for the function and its
gradiant involved derivatives of the boundary data. Later [2] the
present authors gave a method for obtaining bounds in which no de-
rivatives of the boundary data appeared. Pointwise bounds for de-
rivatives were not dealt with. In [4] the authors gave a method for
bounding derivatives for Poisson’s equation. The method was, however,
restricted to the Laplace operator (or the constant coefficient case) and
was not generally applicable.

In this paper we consider the operator

(1.1 Lu = (a¥u,;),;

where u is a sufficiently smooth function defined in some region R (with
boundary C) of Euclidean N dimensional space. Here the notation u,;
denotes the partial derivative of u with respect to the cartesian coordi-
nate #'. In (1.1) the summation convention is used, i.e. (a"u,;),; =

Yz (@ u ), ;. The coefficient matrix ¢ may be a function of position
and is assumed to be uniformly positive definite and bounded above.
That is there exist positive constant a, and a, such that

s

. . N -
(1.2) a, >, & = aEE S a, ; &

K2

il

1

for any real vector & = (&, +--, &y). We shall give a method involving
the use of a parametrix, for obtaining bounds on any derivative of a
function % at an arbitrary interior point P of R. These bounds are
in terms of Lu and maxgy., |%|, where S(P) is a sphere containing P,
Estimates of this type for very general elliptic operators are described
by John [6]. His method does not involve the parametrix and hence
the expressions which could be derived would turn out to be quite
different. Thus the problem is reduced to that of bounding maxy ., | % |
in terms of quantities which are data of some boundary value problem.
We assume throughout that Lu and the coefficients a*/ are sufficiently
smooth so that all subsequent indicated operations are valid.

In this paper we concern ourselves only with the derivation of
appropriate a priori inequalities. The manner of applying such ine-

Received September 18, 1963. This research was supported in part by the National
Science Foundation under grant-NSF GP-3.
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qualitites to obtain bounds has been thoroughly discussed in previous
papers (see e.g. [2, 4, 7).

II. Mean value expressions. To obtain the desired bounds we
shall first need a certain expression which is in a sense analogous to
the solid mean value theorem for harmonic function. One such ex-
pression was given in [2]; however, it is quite complicated. We derive
now a simpler expression.

Since a fundamental solution corresponding to the operator I is
not in general known we make use of a Levi function (or parametrix)
(c.f. Miranda [6]).

Let P and @ be two points in R. One possible definition of a
parametrix is

(P, Q) = —(2r) " [a(Q)a(P)]"* log 0, N=2

D ne @ = 2 - o, a@aPe, Nz

where @, denotes the surface of the unit sphere in N dimensions,
0* = [a:;(Q) + a;(P)}(xp — ) (@h — a}) ,

and a(Q) denotes the determinant of the matrix a,{(®), the inverse of
a'(Q). If the a* are twice continuously differentiable in the neighbor-
hood of P, this function /" has the property that

(2.2) Lol" = O(rzg"™), 7p¢ — 0

where 7, is the distance from P to Q. An alternate form for a
parametrix is

I'(P, Q) = (2r)7[a(P)]"* log §

(P, Q) = [(N — 2wy {a(P) o]~ .

Here p* = a,,(P)(xb — wi)(xh — 23). The function I'(P, Q) is such that
if the a* are continuously differentiable in the neighborhood of P, then
(2.4) L, = O(rs8 1), 15— 0 .

Comparing (2.2) and (2.4) we see that I" is a better approximation
to the fundamental solution than is I’ near @ = P.

Now let S,(P) be the interior of a sphere of radius a with center
at P, and such that S,(P)c B. We define the function f,(P, Q) as
follows (for P fixed)

(2.3)

_jl,QzP
@ £B@=1

@5 (1) fOPBP) =0i=12 - N—1
© fu(P, @) e CrIEY)
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(continuous derivatives up to and including those of order » — 1 at
each point of Euclidean N-space.) One such function, for example, is
the polynomial with values
a a —1
("o = oo ][ [“omia - oo s rra 5
TPQ 0

Another possible choice is the function

{S;Q exp[—p7*(a* — p“’)”]dp}{S:exp [—07%@® — pﬁ)*]dp}_l, Tre = @
which satisfies (2.5) for all n. Clearly
(2.6) I'(P, Q) = f.(P, QI(P, Q)

also satisfies (2.2). But I",(P, Q) has all derivatives up to and including
those of order » — 1 vanigshing on 7., =a. Using (2.1) and (2.2) we
find from Green’s identity that

@0 wP) = Ss  UQLT WP, QdV, - SS TP, QLu@d Ve,
provided » = 2. This expression is analogous to (5.8) of [2]. In addition
to being simpler it possesses the advantage that the integration is taken
over spheres, rather than ellipsoids which vary from point to point.
We could as well have defined

(2.8 T'y(P, Q) = f(P, QI (P, Q)
and obtained

@9  wP)=| w@LIAP,QdVe— | TP, QLuQdVa,

a

with n = 2.

III. Pointwise bounds. Either (2.7) or (2.9) can be used to obtain
bounds in the Dirichlet problem. Using the Schwarz inequality we
have

@0 [ w@Lel P, @ave] = [( wrsaV ][] marryav,.
8q(P) R 8o (P)
Equation (2.9) together with (8.1) and the bounds given by Theorem
I and II of {2], yield pointwise bounds for # in terms of Lw in R and
the values of u on C.

In order to bound the first derivatives of % we can use (2.7), with
n = 3, to obtain
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6”(P) — S w(@Q)L, a['n(P_, Q) av,
(8.2) 0xp 84(P) 0xh

0
oxt,

[S TP, QLu(@d V| .

Hence we have

‘ au(P) < max |u(@] LQM¢ v,
3.3) QESL(P) Jagp) oz, ‘
* 62}; [Ssa(m ru(P, QLu(@)d VQ:H :

Now if a is so chosen that we can obtain a bound for maxges,») | %(Q) |
then (3.8) provides a bound for |0u(P)/dx%|. If, for example, the least
distance from P to the boundary C is 7, then we could choose a =
(1/2)r,. Thus the closure S,(P) of S,(P) is a compact subset of R
and hence only interior bounds for w are required. Note that we could
not replace (3.2) by a similar expression involving I°, since the integrals
on the right would not exist.

We note from (3.2) that

3.4) S LB gy g,
8g(P) ot

Thus if » = 4 we have the representation

Pull) _ | - L0,
P 7 eal WL LRl e
62
= 5035 Lo, L DLU@A Ve
since
(3.6) [w(Q) — u(P)]LQQCn_(B_Ql_O(,, )

0x 00

for r,,— 0. From (3.5) we see that

o'u(P) < max w(@Q) — u(P) S IL oI, Q) |4 J
oxLox) QES(P) Tpo sau’) 0x0x}
3.7 0*
| Batsar Ll TP QLU@a ]
Now
(3.8) max M‘< max | grad w(Q) | .
QES (P QES(
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Clearly we can use (3.8) with a smaller value of @ to bound the right
hand side of (8.8). Thus we can bound an arbitrary second derivative
of  in terms of Lu in R and the maximum of || over a compact
subset of B. In order to treat an arbitrary third derivative we note
from (3.5) that

(3.9) S (@t — 22 L, 0 LB @) gy —L—[S (P, Q) Lasd VQ]
8,(P) ox%L0x) oxL0x 84(P)

for a,4,5 =1, -+, N. Combining (3.9) and (8.5) we have

o) - § (@) — u(P) = (@ — apa(P)ILe T2V,
: __
(3.10) oxLox, [Ssau’)F"(P’ DLu@d VQ]

0 ;
_ P9 _ o
wslP) || 0P, QL Ve ]

where we have summed over @ from 1 to N, It follows from (3.10)
that if n = 5

_BuP) __ (P — (a5 — a2y o(PY| Ly P TP Q)
e = Vo D@ — 0(P) = @ = ot P Lo g2 bV
el |
. - I',(P, Q) Lu(Q)d
(3.11) i Ly [P QLUQUV
0° -
alP) 002500 Usam LF, Q) Largd VQ] )

The first integral on the right may be bounded as

[, @ — w(P) ~ @ — oppunPIL 2 LR D gy |

(3.12) 6905:6%1;6%%
ol (P
= max | u,.(Q) IS Tre iLQ—';A];le dV,.
SOEseE) S4(P) 0x00%0x )

Now (3.11) and (8.12) can be used to reduce the problem of bounding
third derivatives to that of bounding second derivatives. It is clear
how to proceed to higher derivatives. In each of the preceding bounds
certain differentiability assumptions must be made. These conditions
become more and more stringent the more derivatives of u that we
wish to bound. Some conditions of this nature are of course required
since in general u cannot be expected to be smooth.

Thus for an arbitrary derivative at P the method described above
yields a bound in terms of Lu in R and the maximum of || on a
compact subset (for example S,(P) for some a) of E. These bounds,
together with bounds for |u| in S,(P) in terms of data in various
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boundary value problems, yield pointwise bounds for derivatives at
interior points in terms of the respective data. For such bounds see
[1, 2, 3, 4, 5, 7, 8].

The techniques which we have used here to bound derivatives of
solutions to boundary value problems at interior points in terms of
the operator and bounds for the solution itself, will carry over quite
naturally to higher order equations and to equations of other than
elliptic type.
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INTEGRAL INEQUALITIES FOR FUNCTIONS WITH
NONDECREASING INCREMENTS

H. D. BRUNK

1. Introduction. One of the fundamental inequalities of analysis
is Jensen’s inequality,

(L.1) 7@ a6(@) = #( (v d6(@)) ,

for convex f, with G a probability distribution function. However, G
need not be a probability distribution function in order that (1.1) hold
for all convex f. Let X(f) be nondecreasing for ¢« <t < B. It was
shown in [1] that under mild regularity conditions on G, if G(a) = 0,
necessary and sufficient conditions for

(1.2) |Lrxnace = (| xw do)
for all convex f are

(1.3) GB)=1,

and

(1.4) S;G(u) dXu) =0, Si[l —GW)]dXw) =0 fora<t<g.

This result was applied to show that:

(i) sufficient conditions in order that (1.2) hold for convex f are
X(a)=0,f0)=<0,and 0 =Gt =1 for a =t =< B; and

(ii) if fis convex on [0,d] with f(0) =0, if0<a, < .--
b,if0h, <+-- <h, <1, then

IA
A

A,

(L5) S (~Dhs @) = A3 (-1
The latter, (ii), was proved independently by Olkin [5]. Ciesielski [2]
obtained results (under unnecessarily stringent hypotheses) related to
(i) through change of variable, and obtained also analogous two-dimen-
sional results. These provided part of the motivation for the present
study of k-dimensional analogues of (1.2).

In the present paper, X( -) denotes a map from the real interval
[, B) into an interval I in k-dimensional Euclidean space R* such that
each component of X is nondecreasing. The function f is a map from

Received November 29, 1963. This research was supported by the United States
Air Force Office of Scientific Research.
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784 H. D. BRUNK

R* into the reals. The property of f critical for inequality (1.2) in
this context is that of having nondecreasing increments, rather than
convexity; for k=1 it coincides with convexity. Functions with
nondecreasing increments are discussed briefly in § 2. In § 3, conditions
(1.3) and (1.4) are shown to be necessary and sufficient for (1.2) (k = 1),
and k-dimensional analogues are given of (i) and (ii), above. Section
4 is devoted to the k-dimensional analogue of a related theorem of
Levin and Steckin [4], giving conditions on H necessary and sufficient

8
in order that g SFIX(®)] dH(t) = 0 for all f with nondecreasing increments.

2. Functions with nondecreasing increments. Let R* denote the
k-dimensional vector lattice of points « = (x,, ---, x,), «; real for 7 =
1,2, -+, k, with the partial ordering * = (%, +-+,2,) =y = (¥, +**, Ys)
if and only if ¢, <y, for +=1,2, ---, k.

DEFINITION 2.1. A real-valued function f on an interval IC R*
will be said to have mondecreasing tncrements if

2.1) fla + k) — fla) = f(b + k) — f(b)

wheneveraec I, b+ hel,0 < he R, a <b. Even in the one-dimensional
case, k = 1, this does not imply continuity. Indeed, every solution of
Cauchy’s equation, f(x + y) = f(x) + f(¥), has equal increments. (Note
that if £, fs, <+, fr are functions of a single real variable satisfying
Cauchy’s equation, then f(x) = >k, fi(x;) is a function on R* satisfying
Cauchy’s equation.) However, our interest in this paper is solely in
continuous functions with nondecreasing increments.

It is of interest to note that such a function is convex along
positively oriented lines, i.e., lines whose direction cosines are nonnegative,
with equations of the form « = at + b where (0, ---,0) < ac R*, be R".
If f(x) is continuous with nondecreasing increments for b < x < a + b,
set (t) = flat +b),0 =t <1. Inorder to prove ¢ convex, it suffices
[3, Theorem 86, page 72] to show that [@(r) + @(s)]/2 = P[(r + s)/2]
for 0=r=<s=1. Set ¢=(s—1r)2. Then @(s) — @[(r + 8)/2] =
@(r + 2¢) — p(r + ¢) = far + b + 2ca) — flar + b + ca) = f(ar + b + ca) —
flar +b) = p(r + ¢) — @(r) = P[(r + 8)/2] — ¢(r). Thus @ is convex.

It is immediate from the definition that if the partial derivatives
fi(x) = offox; (x,, -+ -, x,) exist for « € I, then f has nondecreasing incre-
ments if and only if each of these partial derivatives is nondecreasing
in each argument; in other words, if and only if the gradient, Vf =
(fx), -+, fr(x)) is nondecreasing on I. The second partials, if they
exist, are then nonnegative. If f is continuous and has nondecreasing
increments on I, it may be approximated uniformly on I by polynomials
having nondecreasing inerements and therefore nonnegative second



INTEGRAL INEQUALITIES FOR FUNCTIONS 785

partial derivatives. To see this, let us set, for convenience, I =
{x:xe R% (0, ++-,0) =2 =(1, --+,1)}. Itis known that the Bernstein
polynomials

1 mg g k
S S Gy i, < i) T1 (%) ot — i
i1=0 ig=0 =0 j=1 \Yj
converge uniformly to f on I as n,— o, +++, n, — o, if f is continuous.
Further, if f has nondecreasing increments these polynomials have
nonnegative second partial derivatives, as may be shown by repeated
application of the formula

(d/dx) ié <,Z/) axi(l—z)"*=mn ZLZ;; (n : 1> (@41 — @) (1 — @)* 7%,

3. A line integral inequality of Jensen’s type. Perhaps the most
direct analogue of Jensen’s inequality for f defined on an interval
I RF would involve the integral of f over I with respect to a normed
measure. The inequality we treat here, however, deals with a line
integral over a positively oriented curve. By the term “positively
oriented curve” we understand a nondecreasing map X = (X, ---, X})
of a real interval [a, 8) into an interval I R:: a0 < t' <t < B implies
Xty = X"y, ie.,, X)) = X,@¢t") for 1=1,2,+--, k. Theorem 3.1,
below, relates such a map X and a real valued function G of bounded
variation on [a, 8). The integrals X dG and G dX appearing

[w:8) [@,B)
in the statement of Theorem 3.1 are related through the formula for
integration by parts: XdG + |\ GdX = |\ d(XG) for every interval
J J J
Ic|a, B) (by S X dG we understand the vector { \ X, dG, ---, S X, dG),
J J J
and similarly for S G dzx, S d(XG)). In order for this to hold and also
J J

to avoid minor difficulties in the determination of G at common points
of discontinuity of X and G, we shall assume henceforth without further
reference that X is nondecreasing and continuous from the right (i.e.,
X, 18 nondecreasing and continuous from the right for ¢ =1, -+« k)
and G is continuous from the left. For simplicity of notation, we
write X(G) for X(8™) and G(B) for G(8~). Some further bits of notation
will be required: the symbol [a, ¢t} will refer to either of the left
intervals [«, t} or [«, t); and {£, B) to either of the right intervals [t, &)
or (t,8). Also, if a = (a,, ---, a,) € R*, then a* = (a;, -+, af), where
af = max (a;, 0),i=1,2, --+, k. Further, we set & = S X, dG, i =
1,2, -,k and g:S X dG. o

(@,8)

THEOREM 3.1. IfG(a) =0, then necessary and sufficient conditions
wn order that
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(3.1) |, /1xea6e = 5[ |  x®dew]

for every continuous function f on I with nondecreasing increments
are

(3.2) GR) =1

and

S )G dX = 0 for every left interval [a, t} C|a, B) and
(3.3) fetr?
[l —G]dX = 0 for every right interval {t, B) C|a, B) .

{t:8)

The case k¥ = 1 of Theorem 3.1 appears in [1]. We note that for k =1
the class of continuous functions with nondecreasing increments is
identical with that of continuous convex functions. If &> 1, (3.2)
(3.3) do not imply (3.1) for all continuous convex f. For example, set
Xt)=(@,2) for0=t=<1/2, X(t) = (2t — 1,1) for 1/2=t =< 2,G(0) =
0,G(2) =1, and let G have saltus 1 at ¢ = 0, saltus —1 at ¢t = 1/2, and
saltus 1 at ¢ = 1, being constant on each of the intervening intervals.
Set f(x) = (¥, — ,)’, where & = (%, ¥,); then f is convex, but does not
have nondecreasing increments. We have f [X(?)] dG(t) = —1, while
f[g[o X(z) dG(t)] — 1, so that (3.1) fails, aithough (3.2) and (3.3) are
satlsﬁed indeed, 0 = G =1 (cf. Lemma 3.1).

Before proceeding to the proof of Theorem 8.1, we examine relations
among the following properties of G, for given X:

(3.4) 0=G@) =1 for tele,p);

S[ }G dX = 0 for every left interval [«, t} C[a, B) , and
@5t

(3.3)
{ B)[l — G]dX = 0 for every right interval {t, 8] C|[«, B) ;
S GdX = [X(t+) — & for tela, B),
(3.5) (o1
 GAXz[XE) — & for tela,);
[ [m-6laxz(e— XN for tela, ),
(3.6) [0

S(M([l — GldX = [E — X(tH)]* for te[a, B).

LemmA 3.1. We have (3.4) = (3.3). Also, if G(a) = 0 and G(B) =
1, then (3.3) = (3.5) = (3.6).
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Proof. That (3.4) implies (3.3) is obvious. Also, if G(a) =0,
G(B) =1, then

£ = S Xdg = X(@) + S 1—G)dx,
[@,B) [@,B)
so that
S{ (1= @dX = £ - X@ - S[ (-G dx,
where [«, t} U {t, B) is a disjoint partition of [«, B); or,
S (11— @) dX = & — X(t7) + S Gdx,
[t,B) [wst)

S 1 —G)dX = & — X(t*) + S Gdx .
t,B) [@,t]

(

(3.7)

Thus (3.8) implies that
g GdX = X(t-) — &, E GdX = X(t*) — E.
[o,t) [a,t]

With the first inequality in (8.3), this implies (3.5). Thus (3.3) = (3.5).
Also, it is clear from (8.7) that (8.5) and (8.6) are equivalent. Finally,
(3.5) and (8.6) clearly imply (8.3), and the proof of Lemma 3.1 is complete.

Lemma 3.2 will be used in the proof of the sufficiency of the
conditions in Theorem 3.1.

LEMMA 3.2. Under the hypotheses of Theorem 3.1, and conditions
(3.2) and (3.3),

Sm,if [X(®)]-d[X(t) — & = FIX(B)] — @ -

Proof. We observe first that X(a) < & < X(B8). This follows from
the inequalities

0= SEM’B)G(u) dX(u) = X(B) — ![W’S)X(u) dG(u) = X(B) — &,
and

0= 5 [1 — Gu)] dX(u) = —X(@) +§ X() dGw) = £ — X(@) .

[@,B) [
Since X is nondecreasing, there is, for7 =1, 2, ---, k, a unique smallest
real number 7; such that X;(z;) < & =< X,(¢}). Suppose 7,=7, =

- < 74; the proof is similar for other orderings. We have
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|, 7rIx®1-dxe) — &

-5 | sxolaxe - e
=3 S FIX®)dX(t)

i

L 2sxolaxe + | SAXOlX®

[ty

+oet | pxe1ax .

Since fix) = fi(x,, -+, 2,) is nondecreasing in each argument, ¢ =
1,2, -+, k, we have, for 1 =¢<j =<k, and for 7,_; =t < 7y,
FIX@), ---, Xk(t)]
= filX@), - -+, Xinit), Xi(27), Xja(Tiha)s =+ 5 Xiu(Ti)]
= fz[Xl(t)’ M) J—l(t)! én ) gk] .

It follows that

[ Sruxoraxe

[':j_l,':j) 1=1

=| S ALK, -y Xia®), & ++ -0 E] AX)

[':j_l,':j) =1

S Vf[Xl(t)y ] Xj—l(t)y 5.7') ] ék]
-1y

'd[Xl(t), ey Xj—l(t)7 gjr ] é::k]
= f[XI(T;)’ M) Xj—l(TJT): gi: M) Ek]
——f[Xi(T;_—-l)r M) Xj—l(T;—1)5 gj; M) Ek]y j = 2’ M) k.

"Therefore

[ PAXOLAXO — 8 S 1K), -, XB)
— FIXR), ++ o, Xenaei), 8]
+ 3 XD, oy Ko, 8 oo, &)

- f[Xl(TJT—-l), ey Xj—2(z'.1'_—1)y gi—l; ety ék]}
= fIX(B)] — f) .

‘This completes the proof of Lemma 38.2.
Proof of Theorem 3.1; necessity. Equation (3.2) follows from (3.1)

with f=1 and f=—1. For 14k, and a =t <pB, set f(x) =
F@y, oo, ) = [2; — Xi(E)]". For this function f, (8.1) yields
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Sw,m[Xi(’“) — X, dGu) = [& — X)) .
But
S [Xi(u) — Xi(t_)]+ dG(u) = 5 [Xz(u) _ Xi(t")] dG(u)
[@sB) [£:8)
= | 1 -Gwlaxw,
[6:8)
s0 that
S[t,s)[l — Gw)] dX;(w) = [& — Xi@)]", 1=1,2, -4, k),

| verifying the first part of (3.6). The verification of the second part
is similar. With Lemma 3.1, this completes the proof of the necessity
of (3.2) and (3.3).

Sufficiency. Set Q) = (@), - -+, Qu(®)) = S[w G(u) dX() for a 5
t < B. Then by (3.5) we have Q(t*) = [X(t*) — &]* for @ <t < B.
Since f can be approximated uniformly in I by polynomials with
nondecreasing increments, there is no loss in generality in assuming that
‘the partial derivatives fi(x),? =1, 2, .-, k, exist and are nondecreasing
in each argument. We then have, for ¢ =1,2, -, k,

| FIXO1Q0 = £IXEIQ) - | @) drIX o]
= FIXEIQE) — | [Xi) — &1 driX )]
= FIXONX© - 87,
since
QB) = [X() — & = [X(8) — &'
by (3.7). Therefore
[ sIxO160 = f1x@1 - | 6o rriXel-dxe
= FIX®1 - | reixel-dee)
= fX@ - | rAXOl-dxe - & 2 Q)
by Lemma 8.2. This completes the proof of the theorem.

In each of the following corollaries, Corollary 3.1 and Corollary
3.2, it is assumed that X is a nondecreasing map, continuous from the
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right, from [«, B) into a k-dimensional interval I containing the origin
0=(,---,0); that f is a continuous function from I into the reals
which has nondecreasing increments; that G is a real-valued function of
bounded variation on [«, 8), continuous from the left, and that G(8) = 1.

COROLLARY 3.1. If X(a)=0=(0, --+,0), if f(0) <0, if G(o) =
0, and if (3.3) holds, then

3.1 | sixenae = 4| x@dew |
(a,8) (o)
The case k = 1 of this corollary appears in [1].
Proof. Set Gi(t) = G(t) fort > «, G(a) = 0. Then by Theorem 3.1,

[ sxoraee z | xedeo).
But

S X(t) dG(t) = S X(t) dG(t)
[@,B) [@,B)

since X(a) = 0. Also

|1, TIXO1AG0) = FOG@ + | 7X@ dGG)

{o,

and (3.1) follows.

COROLLARY 3.2. If either
(i) Gla)=0 or
(ii) X(a) =0, f(0) =0, and if
i) 022G =1 fora=s=t<§p,
then

@3.1) SM FIX®)] dG(t) = f[gw’ﬂ)X(t) dG(t)] .

Proof. By Lemma 3.1, (iii) implies (3.3) so that under hypotheses
(i) and (iii), (3.1) is immediate from Theorem 8.1. If (ii) and (iii) hold,
choose a* < a, set X*(a*) =0, X*(t) = X(@t) for a« <t < B, and let
X* be linear for a* <t = a. Set G*(@*) =0, G*(t) = G(a) for a* <
t=a,G*E) =GE) for a =t < B. Then G*(B) =1, G*(@*) =0, and
0=G*=<1. From Lemma 3.1 and Theorem 3.1 it follows that

| fxeenen =] xwdro).

[

But
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| Xwdee =] xode),
@*B) [a,8)

and

| SIXTO16*0) = F0G@ + | rixiNd6e),
Since f(0) < 0 and G(a) = 0, conclusion (3.1) follows.

REMARKS ON COROLLARY 8.2. The case k=1 of Corollary 3.2
appears in [1] with the hypothesis X(a) = 0. With a change of variable
in Corollary 8.2 we obtain the following theorem.

Let 'Y be a montncreasing map, continuous from the left, from
0, 1] into I < R*, with Y(1) = 0. Let H be continuous from the right
and of bounded variation on (0,1], and suppose H(0) = 0, H(t) = 0 on

{0, 1], S [dH(t)| > 0. If f is continuous with nondecreasing incre-
ments on I, and if £(0) <0, then
|, snaaf]
(0,11

\dH | >f<g YdH/S(M]\dHD.

(0,1] (0,11

It suffices to set X(t) = Y(L— ), G(®) =1 — [H1 - /| dH®] on
{0,1) in Corollary 8.2. Cases k =1 and % = 2 of this latter theorem,
for discrete and for continuous H, appear in [2], with additional
hypotheses: for k =1, that f’ is convex; and for k = 2, that the first
partial derivatives are convex along positively oriented lines.
Ciesielski points out (in the two-dimensional case) that setting
S(@, x;) = xx, yields a generalization of an inequality of Chebyshev
[3, page 438]: if Y,, Y, are nonincreasing, nonnegative and continuous
Srom the left on (0,1], if H is continuous from the right and of
bounded variation on (0, 1], and if H(0) =0, H(t) = 0 on (0, 1], then

S YlYgdHS |dH|gS YldHS Y,dH .
(0,1] (0,11 (0,11

(0,1]

COROLLARY 3.3. Let f be a continuous map from a k-dimensional
anterval I containing the origin into the reals, with nondecreasing
wncrements, such that f(0) <0. Let m be a positive integer, and
let¢ 1=2h,=zh=-+++=2h,=0. Let a,el,j=1,2 +--,m, with
(1,"‘,1)>a1§a/2%"‘%dmg(o,“’,o). Then

@) S (~Dhaf@) 2 7] 5 (D]

For inequality (3.1) becomes (8.8) if ¢« =0,8 =1, if G has saltus
(=1)7h;atl —j/m,(5=1,2, -+, m) with G(1) = 1, and if X(1 — j/m) =
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a’j(j: 1,2, ..., m).

The one-dimensional case appears in [1], and was proved independently
by Olkin [5]. For references to earlier special cases by Szego,
Weinberger, and Bellman, cf. [5].

4, An inequality of Levin and Steckin.
THEOREM 4.1. Let I denote an interval in R*; let X be a
nondecreasing map from [a,B) into I, continuous from the right.

Let H be continuous from the left and of bounded variation on [, B),
with H(a) = 0. Then,

4.1) Swyﬂ)f[X(t)] dH(t) = 0

Jor every continuous function f from I into R with mondecreasing
increments, if and only if

(4.2) Hp)=0,

4.3) S[w’ﬁ)H(u) dX(u) =0,

and

(4.4) S[M)H(u) dXw) =0 for [a,t}cla,B).

Proof of mecessity. The validity of (4.1) for f =1 and for f = —1
implies (4.2). Further, (4.1) for f(x) = x;, where ¢ = (2,, +++, 2;), and
for f(x) = —w;(j=1,2 -+, k), implies SHX(u) dH@w) = 0,7 =
1,2 -+, k or, equivalently, S( H(uw)dX(w) = 0, which is (4.3).
Inequahty (4.4) results from (4.1) after integration by parts, on setting,.
for fixed (7 =1,2, -+, k) and fixed t, &« < t < B, f(x) = [X,;(t*) — =;]*
or [X,;(t) — =]

Proof of sufficiency. Since, as remarked in §2, f may be approx-
imated uniformly on I by functions with continuous nonnegative second
partial derivatives, we may assume that the second partials f;; exist
and are continuous and nonnegative. We then have

|, fIXOVH® = = HO PFIX®)-dX0)

Il

- pixen HY dx0)

=5 raxenaxo| Hwdxw,

J=111=1
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by (4.2) and (4.3). But by (4.4) each term in the last sum is nonnegative,.
so that (4.1) is verified.

The one-dimensional (¢ = 1) version of Theorem 4.1 appears as.
Theorem D.1 in [4], and indeed the proof of Theorem 4.1 is the natural
extension of the proof given in [4].

Sufficiency in the one-dimensional (k¥ = 1) version of Theorem 3.1
was proved in [1] as a consequence of Theorem 249 in [3]; it is exhibited
below for continuous X as a consequence also of Levin and Steckin’s.
Theorem D.1 (Theorem 4.1 above, with k¥ =1). Choose = so that
X(z)=¢= S X(@) dG(t). Set H(t) = G(t) fora =t < 7, H(t) = G(t) —
for r <t <. Then H(a) =0, H(8) = 0. Also

S H(w) dX(w) = S Gl(w) dX(w) — S dX(u)
[a:B) [@,B) [%,B)
=XB —£&—[X(B) —X(0)]=0;

and
S[w'”H(u) dX(u) = SMG(u) dX(u) =0
if @« <t <7, while
S H(w) dX(w) = S Glw) d X (w) — S d.X(w)
[@,t} [@,t} [z,¢}
= | 6w dX@w — [X¢) — & =)0

for 7 <t < B. From (4.1) it then follows that

| FIXOIHG = | fIXO]d60) - @) 20,

which is (3.1).
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A RESULT CONCERNING INTEGRAL BINARY
QUADRATIC FORMS

WILLIAM EDWARD CHRISTILLES

This paper contains an extension of an earlier work by Dickson
([1], p. 95), in which the following theorem was proven:

THEOREM 1. (Dickson’s Theorem). If a number 1is represented
properly by a form la, b, c] of discriminant D = 4ac — b, then any
divisor of that nwmber is represented by some form of the same
discriminant D.

DEFINITION. ([1], p. 68). A positive form [a, b, ¢] is called reduced
if —a<b=a,cza, with b=0 if ¢ =a.

As a consequence of the above definition it follows that 4a¢® < 4ac =
D+ b8 <D+ a? 3= D, and finally a < 1/ (1/3) D

THEOREM 2. Let M be properly represented by the integral positve
definite quadratic form aa® + bay + ¢7v* of discriminant D = 4ac — b,
If M <3D/16 and (D, M) =1, then in every factorization of M one
of the factors is a;, one of the minimal values of a primitive quadratic
form of discriminant D. In other words, M = M,M, where M, is a
unit or a prime and M, is the product of no more than two a,.

Proof. According to the remark following the definition a; < V/D/3,
where equality for a primitive reduced form is possible only if a; =
b,=¢;, =1 and hence D =3 so that the inequality 0 < M < 3D/16
cannot be satisfied. Thus a; < V' DJ3.

Now assume M = »,7,. Then aceording to Theorm 1 it follows that

o= a0 + by, +evi, 1= a0+ by + e
where the two quadratic forms are primitive reduced forms of diseriminant
D. Hence
(4a,r) (da;1y) = [(2a,; + byy:)* + D7l [(2a005 + byv)* + Dvi]

= (B} + D7} (B; + Dv}) = 16a,a;M

< 16(D/3)M = (16D/3) (8D/16) = D*,
where B8, = Qa;a; + b/y,) and B; = (2a,a; + b;v;). This implies that
v7v; =0, say v; = 0, and therefore », = a,.

To prove the final statement of the theorem, assume M = a; and

Received November 21, 1963. The author is indebted to the referee for the suggested
revision of both the statement and the proof of Theorem 2.
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let 7, be a minimal factor of M so that r, # a;. If M, is any prime
factor of 7, then M = M, M, where M, = (M|r,) (r,/M,)) = a;a;.
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REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS
OF ALGEBRAIC SYSTEMS

PETER CRAWLEY AND BJARNI JONSSON

Introduction. An operator group with a principal series can
obviously be written as a direct product of finitely many directly
indecomposable admissible subgroups, and the classical Wedderburn-
Remak-Krull-Schmidt Theorem asserts that this representation is
unique up to isomorphism. Numerous generalizations of this theorem
are known in the literature.! Thus it follows from results in Baer
[1, 2] that if the admissible center of an operator group G satisfies
the minimal and the local maximal conditions, then any two direct
decompositions of G (with arbitrarily many factors) have isomorphic
refinements. In a different direction, it is shown in Crawley [4] that
if an operator group G has a direct decomposition each factor of which
has a principal series, then any two direct decompositions of G have
isomorphic refinements.

The results of this paper yield sufficient conditions for a group
(with or without operators) to have the isomorphic refinement property.
For operator groups a common generalization of the theorems mentioned
above is obtained: If an operator group G has a direct decomposition
such that the admissible center of each factor satisfies the minimal
and local maximal conditions, then any two direct decompositions of
G have centrally isomorphic refinements. For groups without operators
we obtain the following result which eliminates any assumption of
chain conditions: If a group G (without operators) has a direct de-
composition such that the center of each factor is countable and the
reduced part of the center of each factor is a torsion group with
primary components of bounded order, then any two direct decom-
positions of G have centrally isomorphic refinements.

Actually our results hold for a much wider class of algebraic
structures, namely for algebras in the sense of Jonsson-Tarski [6], and
it is in this more general framework that the theory is developed.
The terminology from general algebra used in this preliminary discussion
will be explained in §1.

Our techniques are based on an exchange property defined as
follows: An algebra B is said to have the exchange property if, for

Received August 27, 1963. This work was supported in part by NSF Grants G-17957
and G-19673. A summary of the results presented here has appeared in Bull. Amer.
Math. Soc 69 (1963), 541-547.

1 For a fairly complete list of references see Baer [1, 2] or Specht [8], p. 449.
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any algebras A, C and D; (¢ € I), the condition
A=BxC=1[D,

1€T
implies that there exist subalgebras E;,< D, (¢ € I) such that
A = B X H Ei .

1€

The principal result relating this notion to the isomorphic refinement
problem is Theorem 7.1, which asserts that if an algebra A is a direct
product of subalgebras each of which has the exchange property and
has a countable generated center, then any two direct decompositions
of A have centrally isomorphic refinements. Two related results are
obtained where no cardinality conditions are imposed on the centers,
but the decompositions involved are of a more special nature. First
4.2), if A=By X BiXx B, X +++ =0Cy, x C, x Cy+--, with countably
many factors, and if all the subalgebras B; and C; have the exchange
property, then these two direct decompositions have centrally isomorphic
refinements. Second (5.3), if A is a direct product of subalgebras each
having the exchange property, then any two direct decompositions of
A into indecomposable factors are centrally isomorphic.

In §§8-11 sufficient conditions are given in order for an algebra
B to have the exchange property. In §8 it is shown that if the center
B¢ of B has the exchange property, then so does B. There it is also
shown that in proving the exchange property for an algebra B we may
assume that the factors D, are isomorphic to subalgebras of B. In §9
we prove that if B¢ satisfies the minimal and local maximal conditions,
then B has the exchange property and B° is countably generated.
Sections 10 and 11 are devoted to the study of binary algebras (algebras
with just one operation, the binary operation +). The main result
here (11.5) asserts that if the reduced part of the abelian group B°is
a torsion group all of whose primary components are torsion-complete,
then B has the exchange property. In the twelfth and final section
some counterexamples and open problems are discussed.

1. Fundamental concepts. Our terminology is largely the same
as that in Jonsson-Tarski [6], and it will therefore be described very
briefly. By an algebra we shall mean a system consisting of a set A4,
a binary operation + called addition, a distinguished element 0 called
the zero element of the algebra, and operations F, (t € T') each of which
is of some finite? rank o(t), subject only to the following conditions:

2 In Jénsson-Tarski [6] the operations are not required to be of finite rank. The
main reason for this restriction is that it insures that the center of an algebra is a central
subalgebra.
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(i) Aisclosed under the operation + and the operations F,(t e T');

(ii) for all xcA,c+0=0+ o =u2x;

(iii)) #,0,0, +--,0) =0 for all teT.

The set T and the function p are assumed to be the same for all the
algebras under consideration. We shall identify the algebras with the
sets of all their elements, and shall in general use the same symbols,
+, F, and 0, to denote the operations and the zero elements of all the
algebras. If no auxiliary operations F, are present, i.e, if T = &,
then we refer to A as a binary algebra.

An obvious example of an algebra is an operator group, i.e. an
algebra for which addition is associative, each element has an additive
inverse, and each F,(t€ T) is a unary operation which distributes with
respect to +. Similarly, an ordinary group without operators is a
binary algebra.

If A is an algebra, then the sum of finitely many elements

Xy, Xy, 00, Xy, - €A is defined recursively by
Sx, =0 S e, = D, + o, n=01,--9).
k<0 k<n+1 k<n

It is convenient to define also the (un-ordered) sum of certain special
systems of elements x,€ A(2€I). This sum is defined if and only if
there exist finitely many distinct elements 4,, %, +--, %,—; € I such that
2; = 0 whenever 7€ I — {4, %, -+, t,—,} and such that

Z Xy = kqui(o(k)

k<n

for every permutation @ of the integers 0,1, ---,7n — 1. Under these
conditions we let

2T =
1€l

M

T, .

&
A

n

For brevity, a system of elements x, € A (¢t € I) will be said to be finitely
nonzero if there are only finitely . many indices 7 € I such that x; # 0.

The notions of subalgebra, homomorphism, isomorphism, and con-
gruence relation are assumed to be known. If # is a congruence
relation over an algebra A, then for x € A we let /6 be the congruence
class to which x belongs, and for XS A we let X/0 = {x/0 |x e X}.
In particular, A/6 is the quotient algebra of A modulo 6. Observe
also that if B is a subalgebra of A, then B/ is a subalgebra of A/6.
It should be noted that if ¢’ is the restriction of # to B, then B/#
and B/#" are in general distinct algebras although they are isomorphic.

A subalgebra B of an algebra A is called a subtractive subalgebra
of A if it satisfies the following condition: If @€ A and be B, and if
either a +beB or b + ac B, then a e B.

By a central subalgebra of A we mean a subalgebra C of A4
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satisfying the following conditions:
(i) for each ce C there exists ¢ e C such that ¢ + ¢ = 0;
(ii) if ceC and z,y€ A, then x+(y+c¢) = (x+e)+y = (x+y)+c;
(i) if ceC,teT, k< p(t), and %y, @, *+*, Xouy-1 €A, then

Fy(x, @1y <+, By, Ty + €, Tprsy =+ Lpry—)
= Fy(®, X1, ** ) Bpogy Tpy Tpotay *** Toiy—1)
+ F,0,0,---,0,¢,0,--+,0) .
kth -

It is easy to see that the family of all central subalgebras of an algebra
A is a complete sublattice of the lattice of all subalgebras of A. In
particular, the union of all the central subalgebras of A is a central
subalgebra of A. This largest central subalgebra of A is called the
center of A, and is denoted by A°. It is clear that if A is an operator
group, then A° is the usual group-theoretic admissible center of A.®
For a binary algebra A we can alternatively define the center of A
as the set of all those elements of A that have an additive inverse
and that commute and associate with all the elements of A. If an
algebra A is such that A° = A, then we say that A is abelian.

Given two subalgebras B and C of an algebra A, a function f is
called a central isomorphism of B onto C,—in symbols f: B =¢C,—if
f is an isomorphism of B onto C and for each x € B there exists ¢ e A°
such that f(x) = ¢ + ¢. We say that B and C are centrally isomorphic,
—in symbols B =°(C,—if there exists a central isomorphism of B
onto C,

By the outer direct product* of a system of algebras A;(tel),—
in symbols

—we mean the algebra consisting of all functions = such that the
domain of « is I, (i) e A; for all 2 e I, and 2(¢) = 0 for all but finitely
many 7€ I. The operations in this algebra are defined componentwise,

(@ + y)(3) = %(3) + y(1) and
Fy(20, @1y + ) Tpiy-a)(2) = Fy(xy(2), ®,(3), ++-, Loy-1(7))
and its zero element is the function that associates with each index %

3 C.f., Specht [8], p. 118; here it is called the Q-center.

4+ Sometimes the outer direct products are referred to as weak outer direct products,
and the Cartesian products (which are used only incidentally in this paper) are called
strong outer direct products. In other cases, especially in the theory of abelian groups,
outer direct products are called direct sums and Cartesian products are called direct

products.
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‘the zero element of the corresponding algebra A,.

The concept of an algebra is designed to make it possible to
introduce the notion of an inmer direct product of subalgebras of an
algebra A, and to reduce the study of (isomorphic) representations of
subalgebras B of A as outer direct products to considerations involving
this new concept. Since the notions of outer and inner direct products
.are often confused in the literature, and in other cases the connection
between the two concepts is not clearly stated, it is perhaps worthwhile
to formulate this relationship in some detail. The basic idea is, of
course, that given a representation

fiB=TIC;,
€T

we can associate with each index 7 eI a subalgebra B; of B that is
‘isomorphic to C;. By definition, this subalgebra consists of all those
-elements « € B such that f()(j) =0 for all jeI— {i}. If a system
.of subalgebras B; (¢ € I) of B corresponds in this manner to a represen-
tation of B as an outer direct product, then we say that B is an inner
-direct product of the subalgebras B; (¢ € I). To complete the transition
from outer direct products to inner direct products we must find out
to what extent the subalgebras determine the representation, and we
‘must formulate intrinsic necessary and sufficient conditions for B to
be an inner direct product of a given system of subalgebras.

The solution of the first problem is easy: two representations,

fiB=C= _eﬁlci and f:B=( = Ef[lc;

‘yield the same system of subalgebras B;(i € I) if and only if there
-exist isomorphisms g¢;: C; = C}, for all ¢ €I, such that f' = gf where
the isomorphism ¢: C = C’ is induced by the isomorphisms ¢;(¢ € I) in
the sense that g(x)(7) = gi(x(¢)) for all x€C and t€l.

Regarding the second problem, we first observe that B is an inner
direct product of subalgebras B;(tc€I) of A if and only if, for every
element x of the algebra

the sum >;e; 2(7) exists, and the mapping x— >ie; 2(7) is an iso-
morphism of B onto B.

Consider now a system of subalgebras B; (i€ I) of A, and define B
.as above. In order for the indicated map to be everywhere defined
and to be an isomorphism of B into A it is obviously necessary and
.sufficient that the following four conditions be satisfied:
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(I) For any finitely nonzero system of elements @, € B; (¢ € I), the sum
Slier @; exists,

(II) For any two finitely nonzero systems of elements a;, b; € B; (1 € I),
if ZiEI a; = ZiEI bi’ then a,; = b@ fOI‘ all 'i € I.

(III) For any two finitely nonzero systems of elements a,, b, € B; (¢ € I),

2@ +b)=Xa+ 2.
1€I k124 1€I

(IV) For any te T, and for any finitely nonzero systems of elements
a’k,ieBi(ieI)’ k= 07 19 ] p(t) - 1’

Ft(Z Qo,55 **° Z a’p(t)—m') = Z Ft(a'o,iy M) ap(t)—-l,i) .
i€l i€r i€1

Consequently, in order that there exists a subalgebra B of A such that
B is an inner direct product of the algebras B; (i€ I), it is necessary
and sufficient that (I)-(IV) hold. Furthermore, if such an algebra B
exists, then it is unique and can be characterized by either one of the
following conditions:

(V) B is the set of all elements be A such that b = >;¢; a; for some
finitely nonzero system of elements a; € B; (i€ I).

(V') B is the subalgebra of A generated by the union of all the
algebras B;(1e1).

The conditions (I)—(V) or (I)-(IV) and (V') are often taken as the
definition of the phrase “the subalgebra B of A is the inner direct
product of the subalgebra B;(ieI) of A.”

Since we shall henceforth be concerned exclusively with inner
direct products we will refer to these simply as direct products. The
direct product of a system of subalgebras B;(1€I) of an algebra A
will be denoted by

HBi’

and the direct product of finitely many subalgebras B, B, -+, B,_,
will also be written

By, X B, X «++ X B,_; .

In the finite case our notion obviously coincides with the direct product
in Jonsson-Tarski [6], where this notion is defined recursively in terms
of the binary operation x.

A subalgebra C of an algebra B is called a factor of Bif B=CXx D
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for some algebra D. B is said to be indecomposable if it has at least.
two elements and the only factors of B are B and {0}. By a direct
decomposition or, briefly, a decomposition of B we mean a represen-
tation of B as a direct product of subalgebras. The direct decompositions.
of B,
B=11C;=11D;,
1€1 JEJ

are said to be (centrally) isomorphic if there exists a one-to-one
mapping f of I onto J such that, for each 4el, C; and Dy, are
(centrally) isomorphic. Finally, the second decomposition is said to be
a refinement of the first if for each je€J there exists 7€ I such that
D;=C..

2. Elementary properties of direct products. In this section several
simple properties of direct products are listed. Since many of these
results are already known from the literature (c.f. Jonsson-Tarski [6]),
and the derivations of the remaining ones offer no difficulty, all proofs

will be omitted.
We assume throughout this section that A is an algebra.

LemMA 2.1. If B and C are subalgebras of A such that B x C
exists, then for all b, e B and ceC,

b+c=c+b and O+b)+c=0+@ +c)=0b+c)+0.
LEmMMA 2.2. Ewvery factor of A is a subtractive subalgebra of A.

LemMMA 2.3. (The modular law) Suppose B and C are sub-
algebras of A such that B x C ewxists, and suppose D is a subtractive
subalgebra of A. If BED, then (Bx C)ND=Bx(CND). In
particular, if BEDE B X C, then D= B x (CN D).

LeMMA 2.4. If, for each i€ 1, B; and B) are subalgebras of A
such that B;<S B;, and if the direct product
B =1] B;

1€I

exists, then

(i) the direct product
B’ =1] B;

1€I

ewists and is a subalgebra of B.
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(ii) B = B if and only tf B} = B, for all 1¢l.

(iii) B’ is a subtractive subalgedbra of B if and only if, for each
vel, B, is a subtractive subalgebra of B;.

(iv) B' is a central subalgebra of A if and only if, for each i¢cl,
B; is a central subalgebra of B,.

LemMmA 2.5. Suppose B; (i e I) are subalgebras of A. Then
A = H B,,;

1€
if and only if there exist homomorphisms f; of A onto B,, for all
4 eI, such that for each ac A

a=Sfa), and fifi{a)=0 whenever t,5¢l and ©=+7.
i€X

T hese homomorphisms f;, if they exist, are unique and have the
property that f;f; = f; for all 1e 1,

DEFINITION 2.6. Assuming that
A=1]B;,

i€l
the homomorphisms f; characterized by the conditions in Lemma 2.5
are called the projections of A onto the algebras B, induced by the
given decomposition of A.

LemMMA 2.7. Suppose B; (i€ l) are subalgebras of A. Then the
direct product

11 B

1€l
exists if and only if for each finite subset J of I the direct product
Il B;

€T

exsts,

LeMMA 2.8. Suppose that B;(t e I) are subalgebras of A, that
I = Usex Ji, and that the sets J,(ke K) are patrwise disjoint. If
either the direct product

B =11 B;

t€I
exists, or if the direct products
C.= 11 Bi(kecK) and B =1]IC,

iE€Jg kex

exists, then all these direct products exist, and B = B’,
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LEMMA 2.9. Givern two direct decompositions of A,

A=1IB, and A=T11C,;,

1ET 1€J

the second decomposition of A is a refinement of the first if and
only if for each t el there exists a subset J; of J such that

B.,;: HCj.

JEJT;

LEMMA 2.10. If B;(ieI) are subalgebras of A, if the direct
product

Il B;

i€I

exists, and if J and K are subsets of I, then

(12)0 (15) = 3.5

1€J 1EK i€EJNK

LeEMmA 2.11. Suppose B;(ieI) are subalgebras of A, and for
each 1 ¢ I let B; be the subalgebra of A that is generated by the union
of all the algebras B; with jeI and 1 % j. Then the direct product

11 B;

1€1

exists if and only if B; X B, exists for all iel.

LEmMMA 2.12. If C is a central subalgebra of A, them for all
a,a’' €A and ceC,
a+c=c+a, and a+c=a +c¢ implies a =a'.
LeMMA 2.13. If C is a central subalgebra of A, then C is a

subtractive subalgebra of A, and C is an abelian group under the
operation .

LemmA 2.14. If B is a subtractive subalgebra of A, and if C 18
a central subalgebra of A, then

(i) BN C ts a central subalgebra of A.
(ii) B x C ewists iof and only if BN C = {0}.
Lemma 2.15. Suppose C,, Cy, -+, C,_, are central subalgebras of

A, and for k=1,2,++-,n — 1 let C, be the subalgebra of A that s
generated by the union of the algebras C,, C,, +++,C,_,. Then the
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direct product

II C,

k<n
exists if and only if C,NC,={0} for k=1,2, «++,n — 1.
LemmaA 2.16. If
A = H Bi ’
1€I
then
A°=T] B:.
1€I
LemMMmA 2.17. Suppose
A=1IB;=T11C;,
i€l JET

and for 1€l and jeJ let f; and g; be the projections of A onto B;
and onto C; that are induced by these two decompositions. If 1,4 €,
jed, and © = v, then f,9;f;, maps A into the center of B;.

Lemma 2.18. If
A=BxC=1]1]D;,

i€EX

then

B x C:E((BCX c)ynbh).

LEMMA 2.19. If B,C and D are subalgebras of A such that
B x C exists, then the conditions

BxC=BXD and B°XC=B"XxD

are equivalent.

LEMMA 2.20. Suppose A= B X C= B X D, and let f and g be
the projections of A onto C and onto D induced by these two decom-
positions, Then the restriction g’ of g to C is a central isomorphism

of C onto D, and the inverse of g’ is equal to the restriction of f
to D.

3. Exchange properties. The central concept of this paper, the
exchange property, was mentioned in the introduction. We now formu-
late this notion more precisely.
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DEFINITION 3.1. Given a cardinal m, an algebra B ts said to
have the m-exchange property if for any algebra A containing B as
o subalgebra, and for any subalgebras C and D,(tel) of A, where
the cardinal of I does not exceed m, the condition

A=BxC=]lD;

1E€T
implies that there exist subalgebras K, S D,(i € I) such that

tET
We say that B has the exchange property if it has the m-exchange
property for every cardinal m. We say that B has the finite ex-

change property if it has the m-exchange property for every finite
cardinal m.

It would be of some interest to know whether, for two given
.cardinals m and n with 1 < m < n, the m-exchange property implies
the n-exchange property. It will be shown later in this section that
this is the case whenever % is finite, whence it follows that the 2-ex-
.change property implies the finite exchange property. In all other
cases the answer is unknown. However, since every algebra that is
known to have the 2-exchange property is also known to have the
.exchange property, this question is not crucial at the present.

This section will be devoted to a series of lemmas involving or

relating to the exchange properties that will be used in the subsequent
.sections

DEFINITION 3.2. A congruence relation 6 over an algebra A is
.said to be consistent with a decomposition

A=TIB

ier
of A if, for all x,yc A and i¢el,
x0y implies fi(x)0f(y) ,
where f; 1s the projection of A- onto B, induced by the given de-

.composition.

If A is a group, then the congruence relation ¢ that corresponds

to a normal subgroup N of A is consistent with the above decomposition
of A if and only if

N=1I(B:NN).

el
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For an arbitrary algebra A, a congruence relation 6 over A is easily
seen to be consistent with a given decomposition of A if and only if
0 is generated (in an obvious sense that need not be made more precise
here) by its restrictions to the factors in the decomposition.

LeMMA 3.8, Suppose the congruence relation 6 over the algebra
A 1s consistent with the decomposition

A=1] B

1€1

of A. Then
Alf = 11611 (B;)6) .

More generally, for any system of subalgebras B; S B; (i€ 1),

Proof. For each 7€ let f; be the projection of A onto B; induced
by the given decomposition of A. The consistency of 6 is equivalent
to the assertion that for each ¢ eI there exists a map g, of A/f onto
B;/6 such that g.x/6) = fi(x)/6 for all xc A. It is obvious that g, is
a homomorphism. For each x¢ A,

r =2 fi),
1€
and therefore

w/0 = > (fu@)/0) = 2, 9.(/0) .

Finally, if ¢ and j are distinct members of I, then for all z€ A,
9:9,x/0) = f;fi(x)/§ = 0/6. Hence the first part of the conclusion
follows by 2.5. The second part of conclusion follows from the first
part together with the observation that the algebra

()

i€l

‘consists of all elements
(Zo)fo = 2 @i,
1€I 1€I
associated with finitely non-zero systems x; ¢ B; (i € I).

LeEMMA 3.4. Suppose the congruence relation 9 over the algebra
A 18 consistent with the decompositions
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A=BxC=1]lD

1€T

of A, and suppose the restriction of 0 to B is the identity relation.
If, for each ieI, E; is a subalgebra of D)6, and if

A0 =Blo x 11 E;,
i€I
then there exist subalgebras E;< D, (1€ I) such that E; = E;/0 for all
vel and

A=BX]lE,

1€I
Proof. For each t¢I let f; be the projection of A onto D; induced
by the second of the two given decompositions of 4. Letting
(1) A'=BxC,
we infer from 2.18 that

(2) A'=T11 D/ where D/ =A'"ND;(el).

i€I

Obviously (B/0)° = B°/8, since the restriction of ¢ to B is the identity
relation. It therefore follows by (1), (2), 3.3 and 2.19 that

(3) A'[0 = B°|0 x C0 = TI (Di[0) = (B/6) x I E;.
Next observe that
(4) D6 = (A'/6) N (Dy/6) .
To prove this we use the fact that
Al0 = (BJ6) x (C/6) = ] (D/6)

and that

A'l0 = (B°]0) x (C/0)
and we infer by 2.18 that
(5) A'/0 = 11 (A'/6) 0 (Dy/0)) .

Since in (4) the left hand side is obviously included in the right hand
side, the equality follows from (3) and (5) with the aid of 2.4 (ii).

It follows from (3) and (4), together with the hypothesis £; S D,/d,
that

(6) E; S Dijo .
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Letting

E,={x|xeD] and x/0c E},
we see that E,; is a subalgebra of D;, and we infer from (6) that
(7) E, = EjJ5 .

From the fact that D/ is a subtractive subalgebra of A’ and that E;
is a subtractive subalgebra of A’/6 it readily follows that E; is a sub-
tractive subalgebra of A’. Consequently,

1E€I

is also a subtractive subalgebra of A’. Furthermore, if be B°N E,
‘then

b/6 € (B°/0) N (E/6) = {0/6},

.and therefore b = 0. Thus B°N E = {0}, and we infer by 2.14 (ii) that
the direct product B° X E exists, and is a subalgebra of A’.

To complete the proof it suffices to show that DS B° x E for
every kel. Consider an element z € D). By (3) and (7) there exist
an element be B° and a finitely nonzero system of elements ¢;c¢ E;

such that
x0b + > e,

t€I
‘There exists an element b € B® such that b + b = 0. Hence

b+ x0Se;.

1€

‘Consequently f.(b) + xfe, and fi(d) = fi(b + «)fe; whenever k = iel,
Inasmuch as

beB<1I D!,

‘€I

we infer that f.(b) + v E, and that fi(b)c E; whenever k = iel,
‘Thus

Ji0) = b + kgelfi(g)eﬁ x K,

and hence
& = fib) + (fiuld) + ®)e B° x E,

as was to be shown.

LemMma 3.5. If B is a factor of an algebra A, then there exists
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a unique congruence relation 6 over A with the property that if C
is any subalgebra of A with A = B x C, and if g is the projection
of A onto C induced by this decomposition, then for all x,yc A the
conditions x0y and g(x) = g(y) are equivalent.

Proof. Since the projection g of A onto C induced by the de-
composition A = B x C is a homomorphism of A onto C, the condition

x0y if and only if g(x) = g(y)

defines a congruence relation 6 over A. To complete the proof it
therefore suffices to show that for any other decomposition A = B x C’,
and the induced projection ¢’ of A onto C’, the conditions g(x) = g(¥)
and ¢'(x) = ¢'(y) are equivalent. To see that this is true we simply
observe that for all xe A, ¢'(x) = ¢'9(x) and g(x) = gg'(x). In fact,
there exists be B such that x = b + g(x); hence

g'(®) = 9g'd) + 9'9(x) = g'g() .
The second formula is proved similarly
DerFINITION 3.6. If B ts a factor of an algebra A, then the

congruence relation 6 characterized by the conditions in Lemma 3.5
18 called the congruence relation over A induced by B.

COROLLARY 3.7. Suppose B and C are subalgebras of an algebra
A such that
(i) A=BxC,

and suppose 0 is the congruence relation over A induced by B. Then
0/6 = B, and the restriction of 6 to C is the identity relation over
C. Furthermore, 0 is consistent with any decomposition of A that
is a refinement of the decomposition (i).

LEmMmA 8.8. If B, C, D;(iel) and E are subalgebras of an algebra
A such that

(i) A=BxCxE=T1ID; x E,

1€I

and if 0 is the congruence relation over A induced by E, then for
any subalgebras F, < D;(1el) the condition

(ii) AJ0 = (B[0) x 11 (F/0)

amplies that
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(iii) A=BxIIF: xE.

i€r
Proof. Since E/0 is the one-element algebra {0/6}, we have

Al6 = (BJ0) % ie]_[I(Fi/ﬁ) X (E[0) .

Inasmuch as the restriction of ¢ to B is the identity relation over
B, we infer by 3.4 that there exist subalgebras F/ =S D;(1€l) and
E'S E such that
A=BX ] F, x E’
i€r

and such that F;/60 = F/0 for all eI, Since the restriction of 4 to
D, is the identity relation over D,, this last condition implies that
F! = F,, and by the modular law we have

E=E x E" where B" = En(B x E[F)
1€T
If xeE"”, then x =y + 2 for some yeB and z<][];c; F;. Hence
y/6 + 2/0 = x/0 = 0/0, and it follows by (ii) that /0 = z/0 = 0/6. Re-
calling that the restrictions of ¢ to B and to ]l.e; F; are the identity
relations over these algebras we infer that ¥y =z = 0, hence « = 0.
Thus E” = {0}, E' = E, and (iii) holds.

COROLLARY 3.9. If B,C,D;(tcl) and E are subalgebras of an
algebra A with
A=BxCx E=]1ID, x F,
i€I
and if B has the m-exchange property, where m is the cardinal of
I, then there exist subalgebras F,= D, (i cI) such that
A=BXx]|1F;, x E.

i€l

LEMMA 38.10. Suppose m s a cardinal and n s a positive
integer, and suppose B,, B, -+, B, are subalgebras of an algebra B
with B= B, X B, X --- X B,. Then B has the m-exchange property
iof and only if each of the algebras B,(k= 0,1, +-+,n) has the m-ex-
change property.

Proof. It suffices to consider the case n = 1. First suppose B,
and B, have the m-exchange property. If A is an algebra that contains
B as a subalgebra, if C and D, (4 € I) are subalgebras of A with
(1) A=B,x B x C=1]D;,

i€l
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and if the cardinal of I does not exceed m, then there exist subalgebras
E. =S D, (iel) such that
A = BO X H Ez .
i€l
From this and the first decomposition in (1) it follows by 3.9 that
there exist subalgebras F; S E; (i€ I) such that

A=B,x B, x [ F;.
. 1€l
Thus B has the m-exchange property.
Now suppose B has the m-exchange property. Consider an algebra
A containing B, as a subalgebra, and subalgebras C, D; (¢ e I) with
A=B,xC=1lID,,
[1=94
and assume that the cardinal of I does not exceed m. Replacing the
given algebras, if necessary, by isomorphic copies, we may assume
that there exists an algebra A’ such that both A and B, are sub-
algebras of A’, and such that A’ = A x B,. Then
A =BxC=B x]]D,.
1€l
If m is infinite. then we can apply the m-exchange property to these
two decompositions, but in order to accommodate also the finite cases
we choose an element ke, and let I'=1—{k} and E = B, x D,.
Then
A=BxXxC=ExIT]D,.

ier’
Hence there exist subalgebras E'S E and D/ < D;(teI’') such that

(2) A'=BxE x I D!.

iEI’

Since B x E' is a factor of A’, and hence a subtractive subalgebra of
A’, and since BE B X E'S< B x D,, it follows from the modular law
‘that B X E' = B x D] where D) = (B x E’)N D,. Substituting this
into (2) we obtain

A'=Bx 1l D.

i€T

Inasmuch as

A’:leA:le<Bo><HDi’>

i€l

and
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B, x I Di& A,

i€r
we conclude by 2.4 that
A= B, x [l D;.

i€
Thus B, has the m-exchange property.

LemmA 3.11. If an algebra B has the 2-exchange property, then
B has the finite exchange property.

Proof. It suffices to show, for an arbitrary integer m > 1, that
if B has the m-exchange property, then B has the (m + 1)-exchange
property. Assuming that

A=BxC=D,xD x -+ xD,,,

let E=D, X D, X +++ X Dyy. Then A=B x C=FK x D,, and since
B has the 2-exchange property, there exist algebras 'S K and D, S D,,
such that A = B x E’ x D,,. Letting

E"=EnNnBxD,) and D,)=D,N(B x E"),

we infer by the modular law that £ = E’ x E” and D, = D, x D).
From the decompositions

A= B X (E'"x D,)=(E" x D))y x (E'" x Dy})

we see by 2.19 that E” is isomorphic to a factor of B. Consequently
K" has the m-exchange property by 3.10. Since

E=FE XE"=Dyx D, x ++xD,_,,

it therefore follows that there exist subalgebras D/ D;,1=0,1, ---,
m — 1, such that

E=FE"x Dl xD/ x+++«x D, _,.

Inasmuch as E”S B x DS E" x (E' x D,), and application of the
modular law yields

B x D) =E" x E'" where £ =(B X D,)N(E' x D,),
and we conclude that

A=F" XE"xE"=EXE"=D] XD}/ x +«+«xD]_, xHE'"xE"”
=B XD/ XD/ X ++xD,.

Thus B has the (m + 1)-exchange property, as was to be shown.



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 815

LEemMMmA 3.12. Suppose m is a cardinal greater than 1, and
suppose B is an algebra whose center is generated by a set whose

cardinal does not exceed m. If B has the m-exchange property, then
B has the exchange property.

Proof. Assuming that
A=BxC=1]lD,,
i€l

write

D, =1ID, for J&I.

1€T

Then there exists as set J& I such that B°S D,, and such that J is
finite if m is finite, and the cardinal of J is at most m if m is infinite.
By hypothesis (and by 3.11 in case m is finite), there exist subalgebras
E. = D, for all 1¢J and a subalgebra ¥ of D,., such that

A=BX ]Il FE, x F.

i€J
Letting E; == FFN D, for 1e I — J, we shall show that
(1) F= 11 E;

ter—J
whence it follows that
A=BXxI]lE,.

i€l

Given a € F, there exists a finitely non-zero system of elements
d.,eD;(teI— J) such that

a:.Z di'

1€I—J

Considering a fixed index keI — J, we can find elements be B, ¢; € K,
(teJ) and feF such that

(2) dk:b""%ei’]"f-
By 2.17, be B°, hence be D,. Consequently the element
(3) r=0b+ e
1E€ES
belongs to D,. But the elements d, and f belong to the subtractive

subalgebra D, ; of A, and it follows by (2) and (3) that x e D,_;.

Thus ¢ =0,d, = f, and d, e FND, = E,. Since this last formula holds.
for all keI — J, we conclude that

ac [ E,;.

1€I—-J
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From this (1) easily follows.

4. Direct decompositions with countably many factors. The next
theorem and its simple proof are included primarily in order to show
why a similar argument fails to apply when we drop the assumption
that the set I be finite.

THEOREM 4.1. If the algebra A has the m-exchange property
(where m 1is some cardinal), and if

A=TB=1IC

1€I JEJ

where the set I is finite and the cardinal of J does mot exceed m,
then these two direct decompositions of A have centrally isomorphic
refinements.

Proof. For notational convenience we assume that I consists of
the integers 0,1, ---, 2. By 3.10, B,, B,, ---, B, have the m-exchange
property, and by successive applications of 3.9 we obtain, for each
jed, a sequence of subalgebras

Cj;Cé,j;C{,j; te 20;—1,jg C:z,j = {0}

such that
A=B,x ++ X B, X[ Ci; t=0,1, -+, m).

JEJ

Since all the subalgebras Cj; are factors of A, it follows by the
modular law that subalgebras C;;(¢ =0, ---, %, 7€ J) exist such that
for each jeJ,

C;=0C,; x Gy, and Ci,,; = Cj; x Cy; (t=1,+-+,m).
Consequently
C;=TC0 (GeJ)

and

A=1IB;x II TIC,,; p=0,1,+-,m+1).

i<p p<Sis=n jEJ

comparing the two decompositions obtained from this last formula by
taking two successive values of »,p =k and »p = k + 1, we infer by
2.20 that

B, =T Cyy (k=0,1,-,m);
j€
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and we conclude that B, has a decomposition

B, = I;IJBM with B,; =°C,,; all jeJ.
J
Attempting to extend the above argument to the case when both
I and J are infinite, one encounters difficulty in connection with the
“passage through limits.” For instance, in the simplest case, where [
is the set of all natural numbers, the above process yields subalgebras
C.;,Ci;(t=0,1---,5¢J) with

C;=Cii x I C; and B, =1l Cy;,

15k JET
but it may happen that the direct product
II C.,;

is a proper subalgebra of C;. It is not known how this difficulty can
be overcome in general, but we will show how it ecan be avoided in
certain situations. For the case when I and J are denumerable, this
is done below by a simple argument involving a diagonal process.

Observe that in the proof of 4.1 we did not make direct use of
the fact that A has the m-exchange property, but applied this property
to the factors B;. Because of the finiteness of I this distinction is
immaterial here, but in later results a significant generalization is
obtained by assuming the exchange properties for the factors in some
decomposition (or decompositions) rather than for the whole algebra.
Incidentally, 4.1 could actually be generalized by observing that no
use is made of the fact that B, has the m-exchange property.

THEOREM 4.2. If an algebra A has two direct decompositions
with countably many factors,
(i) A=B X B X B, X +++=Cy X C, X Cy X o0+,
where all the factors B, and C; have the W,-exchange property, then

these two direct decompositions have centrally isomorphic refinements.

Proof. Since B, has the W,-exchange property, there exist sub-
algebras C,,;, Ci,; with C; = C,,; x C;; for =0,1, 2, --- such that

(1) A=B, X Cly X Coy X Cha X ==,
and from this it follows by 2.20 that |
(2) By =°Chy X Cpy X Cpy X one

The factor C;, of C, has the ¥,exchange property by 3.10. Applying
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3.9 to (1) and the first decomposition in (i) we obtain subalgebras
B, B;, with B; = B;, X B}, for 1 =0,1,2, +-+ such that
(3) A=B, X Cj, X Bj, X B, X BjyX +++,
and it follows, again by 2.20, that
Cio =By, X By X Byg X 2.

Now, using the fact that B, has the W,exchange property, we apply
3.9 to (8) and (1). This yields subalgebras C,;, Ci,; with Cj; =
C,; X Ci,; for 7=1,2,8, --+ such that
(4) A=B; X Co,y X By X Cl,y Xx Cls X Cl s X +o+,
Bl =°Cpy X Cis X Cpy X «oe .,
Next, from (4) and (3) we obtain subalgebras B;,, Bi, with Bj,=
B, X B}, for ¢t = 2,8, --- such that
A=B X Cly, X B,y xCiy X By, X Bi; X Bj,, X ¢+,

Cli1=°B,; X B;; X By,; X +++

Continuing in this manner we obtain subalgebras B, ;, Bi; for ©>j

and C;,; for 17 =<j such that the following four conditions hold for
©+=1,2,8,---and 5=0,1,2, ++-:

(5) B;,=B;, X B;; X +++ X B;,;_, X B ;,,
(6) C;=0Cy; X C; X »++ X C;; X Cjj,
(7) Bl 1 =°Ci X Cisqr X Ciigg X 2o,

(8) Cli Z°Bji1,; X Bjya; X Bjygs X ooe .

From (2), (7) and (8) we infer that there exist algebras B;; for i <
and C;; for ¢ > j such that

(9) B, ;=°C,; fort,7=0,1,2, ¢+,

(10) By = B,y X By; X By X «¢+,

(11) B =B X B s X By j4g X +++ for 1=1,2,8, .+,
(12) Ci=Cii1,; X Ciza; X Ciyg,5 X ooo for 7=0,1,2-.- .

Together with (5) and (6) the last three formulas yield
Bi: Bi,o X Bi,l X Bi,z Xoeee,
Cj - Co,j X Cl,j X Cz,j X e

Thus the two original decompositions of .4 have the refinements
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A=1] HBi,j:H HCm‘,

1<e0 j<oo i<o0 j<oo

and according to (9) these are centrally isomorphic.

5. Decompositions into indecomposable factors. In order to prove
the existence of centrally isomorphic refinements for two decompositions
with countably many factors we had to assume that all the factors
involved had the Y{,-exchange property. In proving that two decom-
positions with indecomposable factors are centrally isomorphic we can
get by with a much weaker assumption. This is due to the next two
lemmas.

LemMmA 5.1. If an indecomposable algebra B has the 2-exchange
property, then B has the exchange property.

Proof. Suppose
A=BxC=11D;.

i€

Since each element of A is contained in the product of finitely many
factors D,, there exists a finite subset J of I such that

(1) BﬂiIeIJDi;t{O}.
Letting

b=45
we have

A=1ID, x E.

i€J

By 3.11 B has the finite exchange property, and there therefore exist
subalgebras D/ S D;(ieJ) and E'S E such that
(2) A=BxIID! x E'

1€J
By the modular law we can find subalgebras D! with D, = D] x D/’
for v€J, and E” with £ = E’ x E". By 2.20,

B=]1ID! x E".
1€J
But as B is indecomposable, only one of the factors in this last product
can be different from {0}. This cannot be the factor E", for then we
would have D/ = D, for all €7, and the product in (2) could not exist
because of (1). Thus E” = {0}, E' = E, and letting D/ = D, for all
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vrel — J we have

A=BXx]ID!.

€1

LEMMA 5.2. If an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then every indecomposable
factor of A has the exchange property.

Proof. Suppose
A=BxC=1]D,

i€r
where B is indecomposable and the algebras D, have the 2-exchange
property. By 5.1 it suffices to show that B has the 2-exchange prop-
erty. As in the preceding proof, we choose a finite subset J of I
with

(1) Bﬂil;[JDi;é{O}.

By 3.10 the algebra
E = H D;

€T
has the 2-exchange property, and there therefore exist subalgebras
B'S B and C'< C such that
A=FEX B x(C.

By the modular law, B’ is a factor of B, and because B' N K = {0} =
BN E, we have B’ = B. Therefore B'={0}. Thus A=B x C=
E x C'. Again by the modular law, C = C’' x (CN E’), and using
2.20 we infer that £ = B X (CN E’). Thus B is isomorphic to a factor
of E, and therefore has the 2-exchange property by 3.10.

THEOREM 5.8. If an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then any two direct de-
compositions of A into indecomposable factors are centrally isomorphic.,

Proof. Suppose
A=1IB;=[IC;

1€I J€J

where all the factors B; and C; are indecomposable and therefore, by
5.2, have the exchange property. For I'S I and J' & J let

B(I) =1l B; and C(J')=1IC;,
i€l jed’
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and recall that, by 3.10, B(I') and C(J’) have the exchange property
whenever the sets I’ and J' are finite. In particular, it follows from
this and the indecomposability of the factors C; that if I’ is any finite
subset of I, then A = B(I') x C(J — J') for some subset J' of J. More-
over, since B(I') =°(C(J’), we see with the aid of 4.1 that J’ must
also be finite and that, in fact, there must exist a one-to-one map ¢
of I' onto J’ such that B; =¢C,, for all 1€I’. Similarly, for each
finite subset J’ of J there exists a one-to-one map + of J’ into I such
that C; =° By;, whenever jeJ’.
For kel let

I.={i|1el and B; =° B}, Jy={jlijed and C; =°B,}.

From the above considerations we see that each member of J must
belong to at least one set J,, and that if J, is finite, then I, must
have at least as many elements as J,. To complete the proof it suffices
to show that this last statement also holds when .J, is infinite. To
prove this we consider, for each ¢ ¢ I, the set N, of all elements jeJ
such that A = B; X C(J — {j}), and show that

(1) N; 1s finite for each i¢e1,
(2) U Ni:J/c°
i€1g

From this our assertion follows, for since J, is assumed to be infinite,
(1) and (2) show that the number of elements in J, cannot exceed the
number of distinct sets N; with 7 € I, and hence cannot be larger than
the number of elements in I,.

Considering a fixed element 7€ I, choose a finite subset J’ of J
such that B; N C(J’) #+ {0}. Then the direct product B; x C(J — {5})
fails to exist whenever jeJ — J’, and N, must therefore be a subset
of J’. Thus N, is finite.

Considering a fixed element j €J,, choose a finite subset I’ of I
such that C; N B(I') + {0}. Then there exists a finite subset J’ of J
such that A= B(I') x C(J — J’). Observing that jeJ’, let J' =
J’" — {J7) and apply 3.9 to the direct decompositions

A=CJ")YxC; xCJ—J)V=1I B, x C(J — J) .
1€l
This yields and element % ¢ I’ such that
A=CJ") x B, x C(J—J'y= B, x C(J —{3}),

and therefore je N,. Since jeJ, and C; =°B;, we have i€ I,. Thus
(2) holds, and the proof is complete.
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6. Factors with countably generated centers: Preliminary lemmas.
As a result of Lemma 6.3 below the isomorphic refinement problem for
algebras

where the factors B; have countably generated centers, reduces to the
special case where I is countable, and A itself therefore has a countably
generated center.

LemMmA 6.1. If B,C and D;(t€l) are subalgebras of an algebra
A such that

A=BXxC=]lD; and B =]](B°ND),

i€l i€l
then there exist subalgebras E;(t € l) such that B°N D, E.<= D, and
11 = (7 X II lgi.

€I

Proof. By 2.16,
A°= B x C°= 1] Df ,

iE€T

and since each B°(N D; is a factor of A° and a subalgebra of Dy, it
follows from the modular law that there exist subalgebras D! with
D; = (B°N D) x D{ for all te€l. Thus

A° = B x C°= B x [1 D!,

1€l
and it follows from 2.19 and 2.18 that
B x C°=Bx][ID!=1ID)

1€l 1€EI

where D!’ = (B X C°) N D; for all 1el. Again using the modular law
we infer that, for each 1€ 1, D/ = D! x E; where

E:MW@XIIM»
1FEJET
Consequently

(1) BxC=]11D/ x]1lE.

1€l 1€l

Observing that

Bxc=5x(In)=(ne) (1),

1€I i€l 1€I
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and that

B = (B ND)S ] E: = (

i€l 1€l

we see with the aid of 2.4 that
B = (11;[1 E’) :

Consequently

cr(£9m>={m.
According to 2.14 this implies that the direct product
(2) A =C x 1l E;

i€l
exists. Furthermore, A’ contains B° X C° and therefore contains all
the algebras D!. Hence it follows by (1) and (2) that B x C°SA4'.
The opposite inclusion also holds, since all the algebras E; are contained
in Bx C°. Thus A’ = B x C°. Together with (2) and 2.19 this yields
the desired conclusion,
A=BxC=CXxIIE;.

1€T

LEMMA 6.2. Suppose B;(t€l),C;(jeJ) and D are subalgebras
of an algebra A such that
(i) A=]1IB;xD=1]IC; x D,
1€ JjET
and suppose B; is countably generated for each i€l. If kel, then

there exist a countable set K< I with ke K and subalgebras F; S C;
(7€) such that

(i) A= Tl B.xIIF;xD,
1€EI—K JEJT

(iii) I B: x D°= I F x D°.
iEK JjET

Proof. Since B; is countably generated there exist countably
generated subalgebras E;,S C;(je€J) such that E;, = {0} for all but
countably many j€J and such that

Bi< 11 E;,, x D°.

j€d

Since the algebra
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'F% = II lgjm

Jj€J

is countably generated, there exists a countable subset I, of I such
that keI, and

F,2 11 B; x D°.

i€l
Again, since the algebra

G, =11 B

j€r

is countable generated, there exist countably generated subalgebras
E;,=C;(jed) such that E; S E;, S C; for all jeJ, E;, = {0} for all
but countably many jeJ, and

G. &SIl E;, x D,

j€J

Continuing in this manner we obtain an ascending sequence of
countable sets [, = {k}S L& LS --- & I and, for each j € J, an ascend-
ing sequence of subalgebras E; S E;, S F;,< -+ S C; such that

IIB:<1l E;. x DS [l B; x D¢
ier

i€, i€1g 11

for n=20,1,2, ---. Letting K=LULU--- and E; = E; ,UE;,U---
for all 7 eJ we therefore have

(1) 1l B; x D°= ]l E; x D°.

1EK JET

Letting 6 be the congruence relation over A induced by D we
have

a0 = (( I, B)fe) x ((1LB)Jo) = IL o
by 3.3 and 3.7. Letting

A=((ma)fo)

we see by (1) that
A =TI (E;9),
JEJT

and it readily follows that E,/0 = AN (C;/6) for all je.J. We there-
fore infer by 6.1 that there exist subalgebras F;(jeJ) with E; &
F; = C; such that

apo=((J1_ B)[1) 1 (#0)
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and we conclude by 3.8 that (ii) holds. Finally, E; S F; for all jeJ,
so that by (1)
Il Bi x D°& ]I F;y x D°.

1EK JET

Since, by (i) and (ii),
A= Tl Bix I B;x D°= I B;x [l Fy x D°,

i€I—K 1EK i€I—-K je€d

we conclude with the aid of 2.4 that (iii) holds.

LeMMA 6.3. If B;(tel) and C;(jeJ) are subalgebras of an
algebra A such that

A=]11B;=1]] C;,
1€l jEeJ
and if B is countably generated for each iel, then there exist a
(possibly transfinite) sequence of countable pairwise disjoint subsets
I, (@ <)) of I and subalgebras C;,=C;(7e€d,a <\) of A such that
I=U.c L, and, for all B8 <\,
A= 11 TI B:x Il II Cja.

BSa<A i€I, JE€J w<B

Proof. Letting Us = Unp L, we can write this last formula in
the form

(1) A= I B;x ]I IICja-
'LGI—UB JET w<P

Since this condition involves only sets I, and algebras C;, with a < 3,
it can be used as an induction hypothesis. To secure the convergence
of our construction process we impose as a second induction hypothesis
the condition
(2) I BT IC;.a.

zeUB JEJ a<lp

First observe that this last condition does in fact permit the

passage through the limit ordinals. More precisely, suppose 7 is a
limit ordinal, and suppose the sets I, and algebras C;, have been
chosen for all &« < 7 in such a way that (1) and (2) hold for all B8 < 7.
We wish to show that in this case (1) and (2) also hold for B8 =1.
From the fact that the condition (2) holds for 8 < 7 it follows that
this condition also holds for 8 = 7. Furthermore, since the direct
product

. H B@ X H H Cj,w

’LE[—U77 JEJ w<B

exists for all B < 7, we readily see that the direct product
A= T B:x ]I 11 Cja

i€I-Uy JeT a<n
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also exists. In order to prove that A’ = A, and hence that (1) holds
for B =), it suffices to show that B, & A’ whenever he U,. For each
such index h there exists an ordinal v <7 with he U,. Using (1)
with 8 =1, (2) with 8 =7, and 2.19 we conclude that

B, Il Bix I B;i= Il Bix 1[I Cia
i€I-Ty i€Ty 1€I-Ty JET &<y
S I BixILIICiuSA .
i€I-Uy JET w<n

Now consider an arbitrary ordinal % and suppose the sets I, and
algebras C;,, S C; (7 € J) have been defined for all &« < 7 in such a way
that (1) and (2) hold whenever 8 = 7. If U, = I, then we take » = 7.
Assuming that U, # I, let

D, = 11 Cia (5€d),
Dn = II Djm .
je€J

For each jedJ, D;, is a factor of A and a subalgebra of C;, hence
C; = D,,, x C}, for some subalgebra C;,. It follows that
A= 1l B, xD,=11C;, x D, .
i€I-U, j€J
Choosing keI — U, we infer by 6.2 that there exist a countable set
I, with keI, = I — U, and subalgebras C;,<C;,(jeJ) such that
(3) A= II EL X II Cgm X l% = II lﬁ X II II C&a y

P€I-Uy |1 jer i€1-Uniq JET @<ni1

(4) Il Bi x Dy = II C5,, x Dy .

i€ly j€s
Here, in accordance with our earlier notation,

Uyn= U L=UUI.
a<pt+1
By (8), (1) holds for 8 =7 + 1, and from (4) and the fact that (2)
holds for B =7 we infer that (2) holds for 8 =7 + 1.
Since all the sets I, are nonempty, there must exist an ordinal A
such that U, = I, and the corresponding sets I, and algebras C;,,
(@ <\, jeJ) clearly have the properties required by the lemma.

7. TFactors with countably generated centers: Fundamental theo-
rem, We are now ready to prove the fundamental theorem relating
the exchange property to the isomorphic refinement property.

THEOREM 7.1. If an algebra A is a direct product of subalgebras
each of which has the exchange property and has a countably gener-
ated center, them any two direct decompositions of A have centrally
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isomorphic refinements.

Proof. Suppose
(1) A=1]] B,

i€r
where, for each ¢ € I, B; has the exchange property and B¢ is countably
generated. Since every factor of B; (and hence every algebra isomorphic
to such a factor) has the exchange property and has a countably gen-
erated center, it is enough to show that the decomposition (1) and any
other decomposition
(2) A= II C;

ji€d
have centrally isomorphic refinements.

‘Consider first the case when I is countable. For convenience

suppose I consists of the integers 0,1, 2, ---. In this case the center
of A is generated by a countable set

Z = {am Uy, Qgy "'} .

We shall construct an increasing sequence of finite subsets I, I, I, - - -
of I and, for each j € J, two sequences of subalgebras D,,, D, ., D;,, «+-
and D/, = C;, D}, D}, +-- such that the following conditions hold for
k=0,1,2,«--:

(3) kel, .
(4) i = Dj X Dj 11 for all jeJ.
(5) A= 11 B: x T Dfyis -
1€l 1E€J
(6) a’keHHDj,L-
JET Isk

By (2) there exists a finitely nonzero system of elements c¢},e C;
(7 €J) such that

. ’
Ay = Z Cio s
J€J

and by (1) there exists a finite subset I, of I such that 0 € [, and such
that all the elements ¢}, belong to the algebra

B, =1l B; .

i€,

Since B} has the exchange property, there exist subalgebras D), S C;
(7 ed) such that (5) holds for ¥ = 0, and letting
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Dyo=C;n (B x TI Di)
J#hEJS
for all jeJ, we see that (4) and (6) also hold for k = 0. In the case
of (6) this is true because ¢;,e C; N ByS D;,, for all jeJ.

Now consider an integer # > 0, and assume that the finite sub-
gets TS LS -« &1,, of I and the subalgebras D,,, D;., *++, D;n,
Dy=0C;, D], +++,D/,(5€J) have been so chosen that (3)-(6) hold
for k=0,1,+.-+,n — 1. For each jeJ we have have

Cb:: II-L%J X CUm!
k<n

and there exist finitely non-zero systems of elements

(7) ¢;n€ll Dy and ¢j,eDj, (jel)
k<n

such that
@, = > Ci + Cin -

1€J €S

There exists a finite subset I, of I such that I, ,& I, and nel,, and
such that all the elements ¢, belong to the algebra
B, =1l B;.

i€T,
Since B, has the exchange property, and since

A:HB.LX HB.,: H BiXHDJ"yn7
i€, t€ET—1I, 1€1, 1 JjE€J
there exist subalgebras D/, S D/,(j€J) such that (5) holds with
k = n, and letting

Dy = Dju(By X T Diis)
j#hed
for all jeJ, we see that (4) and (6) also hold for £ = n. In the case
of (6) this is true because of the first formula in (7) and because of
the fact that ¢, ,e D], N B, &S D;,, for all jeJ. Thus we see that the
sets I, and algebras D;, and D, can be so chosen that (3)-(6) hold
for k=0,1,2, ---.
It follows from (4) that the direct products
Cir=1I D;, (jed) and A*=1]] C}
k<oo JEJ
exist, and from (6) we infer that A°S A*. Moreover, for any natural
number 7,
A=1I11I Dj,. x Il Dj.,
JE€J

jE€J k=mn
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and using this together with (3) and (5) we see by 2.19 that

B,S I B x (I D}.) = I I D}, x (I D}..) S 4* .

i€, JET JEJ ksn jer

Consequently A* = A, and we infer by 2.4 that C¥ = C; foralljeJ.
- From (4) and (5) we see that

A = H Bz X H Dim X ]___[ DJ",n+1

€I, J€J =
= 3 H Bz X H B X H DJ nt+1 9y
€I, 4 {€I,~Ty_1

whence it follows that

I Bi=*ll D, .

P€I,~T,_1 jeJ

Consequently, by 4.1, there exist subalgebras B,,; and C;,;, v eI, — I,_,,
je€J) such that

B, = 11 B;,; for all tel, — I, ,,
JEJS
D;,,= 1II C.; for all jeJ,
€Ty ~Ip—1
B;; =°C,,; for all 1el, — I,_, and jeJ.

Inasmuch as this holds for every natural number n (with I, = @),
we conclude that
A:_HHBMZH II Cis s
1€l 3€JT 1€l €T
and that these two decompositions of A are centrally isomorphic and
are refinements of the decompositions (1) and (2), respectively.

We now drop the assumption that I is denumerable. By 6.3 there
exist a sequence of countable, pairwise disjoint subsets I, (¢ < \) of I,
and for each jeJ a sequence of subalgebras D;,(a <)) of C; such
that I = U, I, and

(8) ‘ A= I II B; x Il II D
BSo<A i€Iy . JET w<B
for all B =< \. For B =\ this yields
A=1I 1II D;.,
JET w<A

and using 2.4 we infer that

C;=11 D, for all jed.

<A

Taking in (8) two successive values for 53, say 8 =7 and B=17 + 1,
and comparing the resulting formulas, we see that
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(9) I B;=°11 D, .
I€ly i€J

Since I, is countable, it follows from the first part of the proof that
the two decompositions in (9) have centrally isomorphic refinements,
and inasmuch as this holds for every v <\, we conclude that the de-
compositions (1) and (2) have centrally isomorphic refinements.

The preceding theorem can also be stated in the following,
apparently more general, form.

THEOREM 7.2. If an algebra A has two direct decompositions,

A=]IB;=11C;,
€T JET
such that each of the factors B; (it € I} has a countably generated center
and each of the factors C;(jeJ) has the Wyrexchange property, then
any two direct decompositions of A have centrally isomorphic re-
Jinements.

Proof. Choosing the ordinal A, subsets I,(a < ) of I, and sub-
algebras C;,(jeJ, a < \) according to 6.3, we have

(1) C; = H}\Cj,,, for each jeJ,
a<
(2) Il B; =11 Cja for each @ <\ .
ieT, j€T

Since, by hypothesis, each of the sets I, is countable, the first direct
product in (2) has a countably generated center, and hence so does the
second product. Consequently each of the factors C; , has a countably
generated center. Furthermore, by (1) and 3.10, each of the algebras
C;~ has the YW,-exchange property. Hence, by 3.12, all the algebras
C,.» have the exchange property. Since

A:H ch.w’

JET o<

the conclusion now follows from 7.1.

8. Sufficient conditions for an algebra to have the m-exchange
property. So far we have been primarily concerned with consequences
of the exchange property, but in the remainder of this paper we shall
investigate conditions that imply that a given algebra has the exchange
property. In the present section it will be shown that this problem
reduces to considerations that involve only abelian algebras.

THEOREM 8.1. For any cardinal m, if the center of an algebra
B has the m-exchange property, then B has the m-exchange property.
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Proof. Suppose
A=BxC=1lD,,
terl
where the cardinal of I is at most m. Then by 2.18,
Bc X C = H .D,;’
1) 4

where D! = (B° x C) N D, for each © € I. Hence there exist subalgebras
E, =S D/(ie€I) such that

BBxC=B x1lE,;,

1€1
and we conclude by 2.19 that

el

THEOREM 8.2. For any cardinal m, in order for an algebra B
to have the m-exchange property it is sufficient (and obviously mneces-
sary) that the following condition be satisfied: For any algebra A
containing B as a factor, and for any subalgebras C and D;(ie )
of A, if

A=BxC=11D,,
1€l
if the cardinal of I does not exceed m, and if each of the algebras
D;(iel) s isomorphic to a subalgebra of B, then there exist sub-
algebras E; = D;(t € I) such that
A=BXx]lE,.

i€l
Proof. Assume that the above condition is satisfied. Suppose

(i) A:BXC:_I;[ID“
where the cardinal of I does not exceed m. Let f and g be the
projections of A onto B and C induced by the first decomposition of
A, and for 1€ let h; be the projection of A onto D; induced by the
second decomposition.

Let 6 be the congruence relation over A defined by the condition
that, for all z,yc A,

20y if and only if fh,(x) = fh(y) whenever te 1.
We shall show that

(1) 0 is consistent with the decompositions (i) of A .
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(2) The restriction of § to B is the identity relation over B .

Suppose x,y€ A and x6y. Then
F@ = f(Sh@) = 5 fha)
= S @) = 1S W) = @) -

In particular f(2)df(y). Moreover, this shows that for z,ye B the
condition 20y implies that « = f(x) = f(y) =y, so that (2) holds.
Again assuming that «0y, if keI then

fhih(x) =0 = fhh(y) whenever k #1¢el,
fhih(®) = fhi(®) = fhi(y) = fluh(y) ,

so that h,(x)0h,(y). From the equations

Shif (@) + flg(@) = fh(f(x) + 9(x)) = fh(x) = fh(y)
= fh(f () + 9(¥) = fhif (W) + fhi9(y)

we infer that
(3) hifhef () + hiflig(@) = hifh, f(y) + hifhig(y)
for all ¢,kel. Since f(x) = f(y), we have

hifhif (@) = hifh f(y)

for all 7, keI, and if ¢ + k, then this element belongs to A°. There-
fore, by (3),

(4) hifh.9(x) = h;fh,9(y) whenever i,kcl and t#k.
Considering now a fixed index % € I, observe that

3 hafhug@) = hif (S hio(®)) = hfo@ = h(©) =0,

with the corresponding formula holding with x replaced by y. Hence,
in particular,

kEe:'I hifh,g(x) = % hifhig(y) .

Furthermore, all the summands in these two sums belong to A° because
fh9(x) and fh,g(y) always belong to A°. Since, by (4),

i#Ek:éI hifhg(x) = i;&%” hifh9(y) ,

this implies that
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hifhig(®) = h;fh,g(y) .

Thus in (4) we can omit the condition that ¢ # %k, and we conclude
that, for all keI,

Jhig(@) = @%‘1‘ hifhg(x) = ig; hifhg(y) = fh9(y) ,

so that g(x)fg(y). This completes the proof of (1).
From (1) it follows that

Aj0 = (B/0) x (C[0) = 11 (Di/9) .

Notice that if kel and x, y € D, then the conditions %0y and f(x) =
f(y) are equivalent, and therefore the mapping

x/0 — f(x) (xeD,)

is an isomorphism of D,/# into B. Since B = B/6, it follows that there
exist subalgebras E; < D,/6 (i€ I) such that

Alo = (B/6) x T1 E; .

Consequently, by 3.4 there exist subalgebras E;S D;(¢t€I) such that
A=BXxTIE;.

1€l
Because of 8.1, we may apply the criterion in 8.2 to B° in place
of B, and thus consider decompositions
A=BxC=11D,
i€I
where the algebras D, are isomorphic to subalgebras of B°. However,
the algebras D, need not be central subalgebras of A, and A there-
fore is not necessarily abelian. We shall now show that it is actually
sufficient to consider the case when A is abelian, in which case the
factors C and D;(iel) of A are of course also abelian.

THEOREM 8.3. For any cardinal m, in order for an algebra B
to have the m-exchamge property it is sufficient that the following
condition be satisfied: For any abelian algebra A containing B° as
a factor, and for any subalgebras C and D;(1cI) of A, if
(1) A=BxC=]lD,

i€l
if the cardinal of I does mot ewceed m, and if each of the algebras

D;(iel) is isomorphic to a subalgebra of B°, then there exist sub-
algebras E,= D, (1€ I) such that
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(ii) A=B X1l E;.

i€r

Proof. By 8.1 it suffices to show that B° has the m-exchange
property, and by 8.2 it is therefore enough to show that the condition
in our theorem implies the property obtained from it by deleting the
word “abelian.” Assume therefore that (i) holds, that the cardinal of
I does not exceed m, and that each of the algebras D;(tecl) is iso~
morphic to a subalgebra of B¢, Under the operation + each of the
algebras D, is therefore a commutative cancellation semigroup, and
hence so is A. Consequently A can be embedded in an Abelian group
A in such a way that each element of A is the difference of two
elements of A. This extension of A is unique up to isomorphism.
Furthermore, there is a unique way of extending the operations
F,(teT) to A in such a way that the resulting algebra is abelian:
If a, = a}, — a with a;,a/ €A for £ =0,1, ---, p(t) — 1, then we let

— ’ ’ ! n 14 n
Fag, @y, * ) Qo) = Fylag, @y <+, agigy—) — Flad, ary +++, ai-1) «

That this definition is unambiguous and actually does yield an abelian
algebra is an easy consequence of the fact that the equation

F (0, 4 Yo, X1 + Y1y =5 Toity—1 T Yorn+1)
= Fy(®@, @1y +++, Toy—1) + Fo(Yo, Y1y =+ *, Yorr—1)
holds whenever the elements x,, ¥, (_lc =0,1, ---, o(t) — 1) belong to A.
For any subalgebra X of A let X be the smallest abelian subalgebra

of A that contains X. Then X consists of all elements of the form
x — ' with z, ' e X. It is easy to check the condition

A:HX]

JET

implies that

In particular, since B°® = B¢,

For each 1€ 1, D, is_isomorphic to a subalgebra of B° and the same
is therefore true of D;. Hence, by hypothesis, there exist subalgebras
F, = D;(iel) such that

A=B xT1]F;.

1€l

Given an element a € A, there exist an element b € B° and a finitely
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nonzero system of elements f; e F); (¢ € I) such that

a=b+3f.

1€l

Since —be A, the element

a—b=2>f

1€l

belongs to A, and there exists a finitely nonzero system of elements
d;€ D;(t € I) such that

a — b = Z di .
1E€T
Inasmuch as d,, f; € D; for all i¢ I, we infer that d; = f, e D, N F, for
all 7¢I, and therefore
a=b+SdeB x[(DnF).
i€l

1€1

It is now easy to show that (ii) holds with E, = D, N F; for all 1¢ I.

9. Factors with central chain conditions. In this section we will
show that algebras satisfying certain central chain conditions have the
exchange property and have countably generated centers, and these
results will be applied to obtain the principal isomorphic refinement
theorem for general algebras. The chain conditions involved are made
precise in the following two definitions.

DEFINITION 9.1. An algebra A is said to satisfy the minimal
condition if every monempty family of subtractive subalgebras of A
has a minimal member. Similarly, A satisfies the maximal condition

if every nonempty family of subtractive subalgebras has a maximal
member.

DEFINITION 9.2. An algebra A is said to satisfy the local maximal

condition if every finitely generated subtractive subalgebra of A
satisfies the maximal condition.

It should be noted that the minimal and (local) maximal conditions
as defined above involve only subtractive subalgebras of an algebra A.
In particular, since the subtractive subalgebras of an operator group
are precisely its admissible subgroups, for groups the minimal and
maximal conditions as defined in 9.1 and 9.2 are just the usual group-
theoretic chain conditions.

The first theorem of this section makes use of the following lemma
which is a consequence of the results of Baer [1].
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LemmA 9.3. ([1]; Theorem D p. 96 and Theorem 8 p. 93 Let G
be an operator group which satisfies the minimal and local maximal
conditions. If G =B X C =D x E where B is indecomposable, then
there exist factors D'S D and E’'S E such that G =B x D' x E’.

Suppose now that A is an abelian algebra with auxiliary operations
F,(teT). Foreachte T and each k < o(t) define the unary operation
F,. by

Fk,t(a):Ft(()y'"’O:aroy"';0) for all ac A .
kth

Since A is abelian, it follows that for each teT and elements
Gy, *+*, Toy—1 € A we have
Fyag, <=+, Gu—) = >, Fi(ay) .
k<p(t)

Consequently the (subtractive) subalgebras of A and the direct decom-
positions of A remain unchanged if we replace the operations F,(te T')
by the operations F,(k < po(t),te T). Moreover, this new system so
obtained is obviously an abelian operator group. Hence the following
lemma is immediate by 9.3.

LEvMMA 9.4. If A is an abelian algebra which satisfies the
minimal condition and the local maximal condition, and if A=
B X C=D x K where B is indecomposable, then there exist factors
D'SD and E'S E such that A= B x D' x E’,

THEOREM 9.5. If the center B° of an algebra B satisfies the
minimal condition and the local maximal condition, then B has the
exchange property.

Proof. By 8.1 we may assume that B = B°. Since B satisfies
the minimal condition, it is a direct product of finitely many inde-
composable subalgebras, and therefore by 3.10 and 5.1 it is sufficient
to show that B has the 2-exchange property.

Consider an abelian algebra A containing B as a subalgebra, and
algebras C, D, and D, such that D, and D, are isomorphic to subalgebras
of B and such that A= B x C =D, X D,., Then both D, and D,
satisfy the minimal and local maximal conditions, and it readily follows
that the same is true of A. Therefore by 9.4 there exist subalgebras
E,=D, and E,= D, such that A = B X E, X E,, and we conclude by
8.3 that B has the exchange property.

5 See also Specht |8)], pp. 250, 259 and 260.



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 837

In order to apply the preceding theorem in conjunction with 7.1,
we must further show that under the given hypothesis B° is countably
generated. This observation is based on the following lattice-theoretic
lemma. The terminology and simple facts from lattice theory used
below can be found in Birkhoff [3].

LEMMA 9.6. If L is an upper continuous modular lattice, if
every decreasing sequence of elements of L is countable, and if every
element of L is a join of finite dimensional elements, then every
element of L 1is a join of countably many finite dimensional elements.

Proof. First consider an element a € L that is a join of atoms.
Then there exists an independence sequence Dy, Dy, **+, D¢, <+ + (£ < N\)
of atoms of L such that

a = Z pe .

£<A

Since the elements

N=E<SA pf (v < >\I)
form a strictly decreasing sequence, » must be countable, and there-
fore a is the join of countably many atoms.

Now consider an arbitrary element a€ L. For each n =1,2, -
let P, be the set of all the elements « € L with # < a whose dimension
does not exceed 7, and let a, = >, P,. Then

a=>a,.
n<oo
By the first part of the proof there is a countable set Q,< P, such
that @, = >, Q,. Suppose # >1 and x€ P,. Then either x < a,_, or
x + a,_, covers a,_,, since each member of P, — P,_, covers at least
one member of P,_,. Consequently a, is the join of atoms in the
quotient sublattice a/a,.,. Since the hypothesis of the lemma is
satisfied with L replaced by this sublattice, we again use the first
part of the proof to infer that

a’ﬂ = a’n—l + ZQ”

where @, is a countable subset of P, — P,_,. It follows that each a,
is a join of countably many finite dimensional elements, and therefore
a is also a join of countably many such element,

COROLLARY 9.7. If B 1is an abelian algebra that satisfies the
minimal condition and the local maximal condition, then B is counta-
bly generated.
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Proof. The lattice L of all subtractive subalgebras of B is modular
and upper continuous, and, by hypothesis, every decreasing sequence
of elements of L is finite. Also, if C is a finitely generated subtractive
subalgebra of B, then the lattice L(C) of all subtractive subalgebras
of C satisfies the double chain condition. Consequently L(C) is finite
dimensional, i.e., C is a finite dimensional element of L. Since every
subtractive subalgebra of B is the lattice join of finitely generated
subtractive subalgebras, L satisfies the hypothesis of 9.6. Hence B is
the lattice join of countably many finite dimensional elements of L;
equivalently, B is generated by the set-union of countably many sub-
tractive subalgebras C such that L(C) is finite dimensional. But if
L(C) is finite dimensional, then C is clearly finitely generated. Thus
it follows that B is countably generated.

Combining 9.5, 9.7 and 7.1 we obtain our principal isomorphic
refinement theorem for algebras with auxiliary operations.

THEOREM 9.8. If an algebra A has a direct decomposition

A =1] B;
1€I
such that, for each tc I, B; satisfies the minimal condition and the
local maximal condition, then any two direct decompositions of A
have centrally isomorphic refinements.

10. Lemmas on abelian groups. When applied to algebras with-
out auxiliary operations F,, Theorem 9.8 can be stated in the following
equivalent form: If a binary algebra A is a direct product of sub-
algebras B;(teI) such that, for each i€ I, B is a direct product of
finitely many primary cyclic and quasi-cyclic groups, then any two
direct decompositions of A have centrally isomorphic refinements.
For every abelian group satisfied the local maximal condition, and the
condition imposed on the abelian groups B: above is equivalent to the
assertion that they satisfy the minimal condition. In the next section
we shall obtain a result that is considerably more general than the
one stated above. Here we list a number of known results and prove
five lemmas concerning abelian groups that will be used in the proof
of this more general theorem.

If G is an abelian group and » is an integer, then the subgroups
nG and G[n] are defined by

nG = {nx |G},
Gln] ={r|x€G and nx = 0}.

As usual, we say that an abelian group G is divisible if nG = G for
every integer n # 0, and we say that G is of bounded order if there
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exists an integer n # 0 such that #G = {0}. An abelian group is said
to be reduced if it has no nonzero divisible subgroup, and by the
reduced part of an abelian group G we mean the quotient group G/D
where D) is the maximal divisible subgroup of G. If X is a subset
of a group @, then [X] denotes the subgroup of G generated by X;
in particular, if £ € @G, then the cyclic subgroup of G generated by =
is denoted by [x].

Let G be an abelian p-group (p some prime). By the height of
an element x € G we mean the largest integer 7 such that z e p'G, if
a largest such integer r exists, otherwise the height of x is «. Thus
height * = o if xep"G for n =1,2, ---, and height © =r < o if
xePG but x¢p*tG. Obviously the zero element of G has infinite
height; if this is the only element in G of infinite height, then we
say that G has no elements of infintte height. Thus G has no ele-
ments of infinite height if and only if MN.<. »"G = {0}.

If G is an abelian p-group with no elements of infinite height,
then a topology can be introduced in G by taking as a neighborhood
basis for 0 the subgroup »"G(n = 1,2, +--). This topology is called
the p-adic topology of G. G can be completed in its p-adic topology,
and the torsion subgroup G of the topological completion of G is also
an abelian p-group without elements of infinite height.®

An abelian p-group G is said to be torsion-complete if G has no
elements of infinite height, and G is equal to the torsion subgroup of
the topological completion of G, G = G. Alternatively, G is torsion-
complete if and only if G has no elements of infinite height, and every
Cauchy sequence {%,};<. 0of G, for which the orders of the elements
x, are bounded, converges to a limit in G." For convenience we will
call a Cauchy sequence {%.},<., for which the orders of the x, are
bounded, a bounded Cauchy sequence.

An explicit representation of torsion-complete abelian p-groups can
be given as follows. Let U, U, U, --- be a sequence of p-groups
such that U, is a direct product of cyclic groups of order p™ for each
n=1,2 +--. Let I be the Cartesian product of the groups U, U,,
U, ---, that is, I" is the set of all functions f defined on the positive
integers such that f(n)e U,, with addition defined component-wise.
Then the torsion subgroup of I' is torsion-complete. Conversely, if G
is a torsion-complete abelian p-group, then there exists a sequence of

6 This is essentially given by Kaplansky [7], p. 50.

7 Fuchs [5], p. 114, calls these groups closed. However, we have adopted the
terminology of Kaplansky -[7], p. 54, in order to remain consistent with topological
terminology. Fuchs’ definition of Cauchy sequence also differs somewhat from ours in
that he requires a Cauchy sequence to be bounded and converge at a specified rate.
Again we have followed Kaplansky [7] in using the usual topological concept of Cauchy
Sequence.
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groups U, U,, U, ---, where U, is a direct product of cyclic groups
of order p* for each n =1,2, ---, such that G is isomorphic to the
torsion subgroup of the Cartesian product of U, U,, U,, ---.* In par-
ticular, every primary abelian group of bounded order is torsion-
complete, and every countable torsion-complete primary abelian group
is necessarily of bounded order.

By a pure subgroup of an abelian p-group G we mean a subgroup
S of G such that SN »"G=»"S forall n=1,2, ... It is easily
seen that the p-adic topology of a pure subgroup of an abelian p-group
G with no elements of infinite height is the same as the topology
induced by the p-adic topology of G. A subgroup U of a p-group G
is called a basic subgroup if U has the following properties:

(i) U is a direct product of cyclic groups;

(ii) U is a pure subgroup of G;

(iii) the quotient group G/U is divisible. A subset XSG is
independent if the subgroup [X] generated by X is the direct product
of the cyclic subgroups [x] generated by the elements xe X. If in
addition, [X] is a pure subgroup of G, then X is called a pure inde-
pendent subset.

The following ten lemmas are well known; proofs and references
to the original sources can be found in Fuchs [5] as indicated in each
case.

LEMMA 10.1. ([5], p. 62) If a subgroup S of an abelian group
G is divisible, then S is a factor of G.

LemMmA 10.2. ([5], p. 64) A divisible abelian group is a direct
product of subgroups each of which is isomorphic to either the additive
group of rationals or a Primary quasi-cyclic group.

LeEmmA 10.3. ([5], p. 78) If S is a subgroup of an abelian p-
group G, and if every element of S[p] has the same height in S as
it does wn @G, i.e., if S[p]N "G = S[pINp*S(n=1,2,--.), then S is
a pure subgroup of G.

LeEmMMA 10.4. ([5], p. 78) If S is a pure subgroup of an abelian
p-group G, and if S[p] = G[p], then S = G.

LeEmMA 10.5. ([5], p. 97) A subgroup U of a primary abelian
group G is a basic subgroup if and only if U is generated by a
maximal pure independent subset of G.

LemmA 10.6. ([5], pp. 98 and 104) A primary abelian group G
8 Fuchs [5], p. 114.
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has at least one basic subgroup, and all the basic subgroups of G are
isomorphic.

LEMMA 10.7. ([5], p. 104) If a primary abelian group G is of
bounded order, then the only basic subgroup of G is G itself.

LemmA 10.8. ([5], pp. 98-99) Let G be an abelian p-group, and
suppose that a subgroup U is a direct product U = U, x U, x U, X +-+,
where U, is a direct product of cyclic groups of order p* for each
=12, ---. Then the following conditions are equivalent:

(i) U s a basic subgroup of G;

(i) G=U, X «-+ x U, X [p"G U Us>. U] for each n =1,2, +--;

i) U, x +-- x U, is a maximal factor of G of bounded order
p* for each n=1,2,+--,

LemMMA 10.9. ([5], p. 112) If G is a primary abelian group
with no elements of infinite height, then there exists a torsion-complete
primary abelian group containing G as a pure subgroup.

LEMMA 10.10. ([5], p. 117) If S ¢s a pure subgroup of a primary
abelian group G, and if S ilself is torsiom-complete, then S is a
factor of G.

LEMMA 10.11. If U=V X W is a basic subgroup of an abelian
p-group G, and if V is of bounded order, then there is a subgroup
H of G such that G =V x H and WS H.

Proof. Since U is a direct product of cyclic p-groups, there is
an integer m such that

V=V,X e xV, and W=W, X «+e x W, x Wy,

where V, and W, are direct products of cyelic groups of order p* (k =
1, ---,m), and W,, is a direct product of cyclic groups of orders greater
than p™. Then

U=(Vix W) X oo X (V, X W,) X W,,
and hence by 10.8,
G=VXW,X o+ XxXW, X [p"GUW,].
Consequently the subgroup H = [p™G U W] has the required properties.

LemMmA 10.12. If X is a maximal pure independent subset of an
abelian p-group G, and if Y is a pure independent subset of G, then
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there exists a maximal pure independent subset Z of G such that
YSZSXUY.

Proof. By Zorn’s Lemma there exists a pure independent subset
Z of G which is maximal with respect to the property YS ZS X U Y.
Suppose Z is not a maximal pure independent subset of G. Then there
exists a maximal pure independent subset Z’ such that Zc< Z’. Choose
any deZ’' — Z. 1If the order of d is p", let

X, ={x|xeX and p"x = 0} .

By 10.5 and 10.11 there exist subgroups H, and H, of G such that
Z< H, and

G=[d x H=Hx II [«].

Then there exist an element ¢ € H, and a finite subset {x,, -+, ¢, } &
X, such that

dele] X [x] X ++« X [Xni] .

Observe that if # €G is an element of order at most p»™ such that
" w ¢ H,, then w has order exactly p", and [«u] N H, = {0}; therefore,
as H, has index " in G, we must have G = [u] X H,. Consequently,
since H, contains no factor of order »* by 10.8 (iii), it follows that
p"ec H,, On the other hand, since p"'d ¢ H,, there exists k < m
such that p*'x, ¢ H,. But then G = [z,] X H,, and this implies that
Z U {x,} is a pure subset of G with YSZc ZU{x,}SXUY. Since
this contradicts the choice of Z, it follows that Z is a maximal pure
independent subset of G.

Consider now a torsion-complete primary abelian group G and a
pure subgroup S of G. Define S to be the subgroup consisting of all
those elements x € G which are limits in G of bounded Cauchy sequences
of S. It is easy to see, and is implicit in the proof of the next lemma,
that S is just the topological closure of S in G. Moreover, if T is a
pure torsion-complete subgroup of G containing S, then T25S; in
particular if S itself is torsion-complete, then S = S.

LemMMA 10.13. If S is a pure subgroup of a torsiom-complete
abelian p-group G, then S is a pure torsion-complete subgroup of G.

Proof. First observe that if {s;},... is a Cauchy sequence of S
converging to an element z, and if p™x = 0, then there is a bounded
Cauchy sequence {t,},<. of S which converges to « such that p™t, =0
for all k. By picking an appropriate subsequence, if necessary, we
may assume that
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X — 8, € PG k=12 +-+).

Since p™x = 0, we have p™s, € p**™G. Thus, since S is pure, there is
an element s, €S such that p™s, = p**™s, for each k =1,2, ---. Let
t, =8, —0's.(k=1,2,-++). Then clearly p™t, =0, and

x_tk:(x——sk)+pkskeka (k:1,2,---),

i.e., {t,}¢<~ is a bounded Cauchy sequence of S, bounded by p™, which
converges to .

Let {x.},.. be a bounded Cauchy sequence of S. Since G is
torsion-complete, there is an element x € G which is the limit of {%.};co
in G. By picking an appropriate subsequence, if necessary, we may
assume that

x — x, € PG k=1,2,++).

Since {x,};<.. is bounded, there is an integer m such that p™z, =0
(k=1,2, ---). Moreover, since each x, € S, there are Cauchy sequences
{St,ntn<e such that {s;,,}... converges to «, for each £k = 1,2, ---. And,
as observed above, we can choose the s;,, such that

P8y, =0 and 2, — 8., €0"G
for all n,k=1,2, ---. Let t, =s,,;. Then
r—t, = (x — x,) + (0, — 5,,.) €P*G,

and hence {¢;},<.. is a bounded Cauchy sequence of S which converges
to #. Therefore xc S, and S is torsion-complete.

To see that S is pure, let €S, and suppose that e p'G. Then
there is a bounded Cauchy sequence {s;};.. of S such that

T — 8, € PG
and hence that
Spi1 — S, €P'G

forallk =1,2, ---. Consequently s,,, € p"G, and therefore, since S is
pure, there exist elements ¢, €S and s, e S(k =1, 2, ---) such that

pt, =84, and S, — 8, = P's} forall k=1,2, «.-.

Define elements t, € S(k =1, 2, ---) recursively by t,.. =¢t, + p*s..,.
Then clearly {tf}k@, is a bounded Cauchy sequence of S which converges
to a limit ¢t € S. Moreover, if p"t, = s,.,, then

_ kol
Dl = Dl + D77 800y = S+ (Spinsr — Spir) = Spipr

hence p't, =s,,, for all £ =1,2, ---, It follows that p't = , whence
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zep'S. Thus S is a pure subgroup of G.

COROLLARY 10.14. If U 1is a basic subgroup of a torsion-complete
primary abelian group G, then U = G.

Proof. By 10.10, 10.8 and 10.13.

LEmMMA 10.15. If R=S x T z_s a pure subgroup of a torsion-
complete abelian p-group G, then R =S x T.

Proof. Suppose xeSNT and x +# 0. Then there are bounded
Cauchy sequences {s;};<. and {t,},<.. of S and T, respectively, such
that

X — 8, — t, e p*G k=1,2,-).

Since = # 0, x has height r for some integer ». It follows that s, and
t, must also have height » for each &k > r. And, as s,€S,t, €T, and
R =S8 X T is a pure subgroup of G, it readily follows that s, — t,
has height r for each k£ > ». But this is a contradiction since

S —b=@—1t)—(@—s)ep'G (k>r).

Consequently SN T = {0}. On the other hand, if {%,},<.. is a bounded
Cauchy sequence of R converging to a limit « € R, then {f(«,)}i<.. and
{9(%:)}1 <. are bounded Cauchy sequences of S and T, respectively, where
f is the projection of R onto S, and ¢ is the projection of R onto 7.
Hence there are elements e S and ve T which are the limits of
{f(@)}i<o and {g(x,)}i<., respectively. Since

x, = f(x,) + g(x) for each £ =1,2, .-,
it follows that # = w + v, and we conclude that R =S x T.
11. Exchange and isomorphic refinement theorems for binary
algebras. In the present section conditions are found in order for a
binary algebra B to have the exchange property, and these conditions

are combined with the results of preceeding sections to obtain unique-
ness and isomorphic refinement theorems for binary algebras.

The center B° of a binary algebra B can be written as a direct
product

B =Px QxR

where P is a divisible torsion-free abelian group, Q is a divisible torsion
abelian group, and R is a reduced abelian group. The groups @ and
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P x @ are unique, and P X @ is the maximal divisible subgroup of
B¢, Therefore R is isomorphic to the reduced part of B°. By 3.10,
B¢ has the exchange property if and only if each of the factors P, @
and R has this property. In the case of P the exchange property
readily follows from 8.3 and some elementary properties of vector
spaces. Since a torsion abelian group is uniquely a direct product of
its primary components, it is clear that a torsion abelian group has
the exchange property if and only if each of its primary components
has the exchange property. In the case of divisible primary groups,
and hence for @, the exchange property again follows essentially from
vector space properties. As for reduced groups, the main lemma of
this section asserts that a torsion-complete primary abelian group has
the exchange property. Consequently every torsion abelian group with
torsion-complete primary components has the exchange property.

LEMMA 11.1. Ewvery torsion-free divisible abelian group G has
the exchange property.

Proof. Using the criterion of 8.3, suppose

1€1
where each of the factors D,;(i e I) is isomorphic to a subgroup of G.
If A, C' and D/(ieI) are the maximal divisible subgroups of A4, C
and D, (1 € 1), respectively, then
A=@xC=11D/.
1€T
Furthermore, for each ¢ €I there is a subgroup D;” such that D, =
D! x D/!", and thus
A=A xTIID/.
i€l
Regarding A’ as a vector space over the field of rational numbers, we
can choose a basis X for G and extend it to a basis Y for A’ in such
a way that every element of ¥ — X belongs to one of the factors D;.
Letting E. be the vector space spanned by D/ N (Y — X), we conclude
that
A =GxTIIE!.

1€T
Therefore

1€

where E; = E] X D;”(ieI), and hence G has the exchange property.
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LeMMA 11.2. Ewvery primary abelian group G of bounded order
has the exchange property.

Proof. Suppose
A=GxC=1]]D;
t€I
where each of the factors D, is isomorphic to a subgroup of G. Then
A is a primary abelian group of bounded order. Let Y be a maximal
pure independent subset of (G, and for each 1€ let X; be a maximal
pure independent subset of D;. Then X = U.e; X; is a maximal pure
independent subset of A, and it follows by 10.12 that there exists a
maximal pure independent subset Z of A such that YEZES X UY.
By 10.5 and 10.7, A is generated by Z, and G is generated by Y.
Consequently, if E; is the subgroup generated by the set D, N (Y — X)
for each ¢¢el, it follows that
A = G X H E¢ .

i€

Thus G has the exchange property.

LemMmA 11.3. Every divisible abelian p-group G has the exchange
property.

Proof. Suppose
A=G x C=1]D,

i€l

where each D; is isomorphic to a subgroup of G. If A’, C’ and D/ (¢ € I)
are the maximal divisible subgroups of A, C and D, (i € I), respectively,
then

A'=GxC x[ID/.

=34
Furthermore, if D, is such that D, = D] x D] for each ©¢ 1, then
A=A xTID".

Clearly
A'lpl = Glp] x C'lpl = 1 Dilp] ,

and since G[p] is of bounded order p, there exist subgroups U, &
D{[p] (¢ € I) such that

(1) A'lp] = G[p] X };II U;.
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For each %€l there exists a divisible subgroup E! of D, such that
E![p] = U, and it follows from (1) that the direct product
A" =G x Il E}
1€l
exists. Moreover, since A” is divisible, it is a pure subgroup of A’,

and using the fact that A'[p] S A” we infer by 10.4 that A’ = A".
Thus

A=GXx]lE

i€l

where E; = E! x D,’, and G has the exchange property.

LEMMA 11.4. Ewery torsion-complete abelian p-group G has the
exchange property.

Proof. We first prove that G has the 2-exchange property and
hence the finite exchange property. Thus suppose

A=GxC=D, x D,

where D, and D, are isomorphic to subgroups of G. Then A is an
abelian p-group without elements of infinite height, and hence by 10.9
there is a torsion-complete abelian p-group A’ containing A as a pure
subgroup. By 10.13 we may assume that A’ is the closure of A, A’ = A,
and in this case it follows by 10.15 that

A:GXC':DOXDI.

Choose maximal pure independent subsets X,, X, and Y of D,, D, and
G respectively. Then X = X, U X, is a maximal pure independent
subset of A, and by 10.12 there is a maximal pure independent subset
Z of A such that YSEZS X U Y. Since every subset of Z generates
a factor of [Z], the subgroups generated by D,N Z and D,N Z are
pure in A. Let E, and E, be the closures of the subgroups generated
by D,N Z and D, N Z, respectively. Then by 10.14 and 10.15,

A=G x E, x E, .

Since E, X (G X E)2D, x D,2G x E, we infer from the modular
law that

D, x D, = (E,N (D, x D)) x G x E, =G x (D,NE,) x E, .

Therefore E, X (G X (D,NE))2 D, x D,2G % (D,N E,), and a second
application of the modular law yields
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A=Dy X D, =(ENWD x D)) xGx (DN E)
=GxX(D,NE)x(DNE).

Consequently G has the 2-exchange property.
Now suppose
(1) A=GxC=11D
i€r
where each of the factors D, is isomorphic to a subgroup of G. A is
therefore an abelian p-group with no elements of infinite height. For
each 7¢I let f; be the project of A onto D, induced by the second
decomposition in (1). We begin by proving the following statement:

(S) There exist a finite set JS I and subgroups G, and G, such
that G = G, X Gy, G, is of bounded order, and

(2) GIPISTLD: .

Assume that (S) is false. Then for every finite subset J < I and every
decomposition G = G, X G, where G, is of bounded order, there is an
element = € G,[p] and an index <€l — J such that fi(x) + 0. Using
this we shall construct a sequence of elements x,, x,, «,, -« € G[p] and
a sequence of indices %, 4y, %, + -+ € I such that the following conditions
hold for every positive integer n:

(38) height x, > height fi(x,_,) whenever i€l and fi(x,.,) #0;
(4) Fi @) = fi,(®) = -+« = fi (%) = 0 # f; (x,) .

Pick any element x,e€ G[p]. Suppose the elements z,, -- -, z,, € G[p] and
the indices %,, »++, ¢,, € [ have been so chosen that (3) and (4) hold for
n=1,+-+,m. Then the set

J.={t|1el and fi(z,) # 0 for some n < m}
is finite, and we can choose a positive integer = such that
r = height fi(x,) whenever i€J,,n <m and fi(x,) #0.

By 10.8, G has a decomposition G = G, X G, such that p""'G, = {0} and
such that G, has no factor of order less that p"™2. Therefore there
exists and element z,.,€G[p] and an index ¢,.,€I— J, such that
Sip®Bnsr) # 0. Since the height of «,., is necessarily larger than 7,
we infer from the choice of r that (3) holds for n = m + 1. Also,
since 7,41 € J,, it follows that (4) also holds with » = m + 1. Thus
the existence of the sequences of elements x, € G[p] and of indices
1, € I satisfying (8) and (4) follows by induction.
For each m =0, 1,2, .-+ let
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Yn =Fg+ =+« + Tp
If m > m, then it follows from (4) that

fzn(ym) = fwn(x'n) + e+ fin(xm) .

From (3) we infer that the height of f; («,) is less than the height of
fi, (@) for k =mn + 1, ---, m. Consequently

(5) height f; (¥.) = height f; (x,) whenever m > n .

Notice that (3) also implies that the height of @, is at least m.
Therefore

ym+1'—ym:xm+lepmG (m:O) 15 2’ ”')’

and since each ¥, has order p, the sequence {¥.}m<. IS a bounded
Cauchy sequence of G which must converge to a limit ¥y € G. Further-
more, for each 7€ I, the sequence {fi(¥.)lm<. 18 a bounded Cauchy
sequence of D; which converges to fi(y). Now fi(y) = 0 for all but
finitely many ¢ <, and therefore there is a positive integer % such
that f; (y) = 0. But the sequence {f; (¥.)}n<. cannot converge to 0,
since according to (5) the heights of the elements f; (v,),f: (),
fi,(¥s), -+ are bounded. Thus we have a contradiction, and hence (S)
must be true.

Choose J, G, and G, according to (S). Considering the decom-
position

A=1I1D;x 1II D;,
1E€J 1€I—J
let f be the projection of A onto the factor [[:c; D;, and let G* be
the image of G, under f. It follows from (2) that f maps G, iso-
morphically onto G*, and that

(6) G*[p] = Gilp] .

In particular, G* is torsion-complete. Furthermore, if e G*[p], then
¢ = f(x), and the height of # in G* is at least as large as the height
of x in G,. Since G, is a pure subgroup of A, it follows by 10.3 that

G* is a pure subgroup of A. Thus, by 10.10, G* is a factor of A,
and consequently

IID,=G*x H
1€EJ
for some subgroup H. By the first part of the proof, G* has the

finite exchange property, and thus there exist subgroups E; S D; (1 € J)
such that
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II IL = G* X II Eh.

1EJ eJ

Therefore

A=G x G xC=G*x [l E;
1€l
where E; = D, if tel —J. From (6) and this last decomposition we
see that the direct product
A=G x1lE,,
1€l
exists. Moreover, if ¥ € G* then there is an element x € G, such that
y = f(x). Hence x =y + 2z for some element z€ [[;e;—y D; = [lie;—s E;,
and we conclude that ¥y =2 —2e€ A’. This shows that G*S A4’, and
therefore A’ = A. Finally, G, is of bounded order and thus has the ex-
change property by 11.2. According to 3.9 we can therefore find
subalgebras F, < E; (i € I) such that
A=G xG X ][IF;=G x ][] F;.

1€l 1€I

Hence G has the exchange property, and the proof of 11.4 is complete.

THEOREM 11.5. If B is a binary algebra such that the reduced
part of B° is a torsion group each primary component of which is
torsion-complete, then B has the exchange property.

Proof. This is an immediate consequence of 8.1, 11.1, 11.3 and
11.4, together with the introductory remarks of this section.

Combining 11.5 with 4.2, 5.8 and 7.1, respectively, we obtain the
following principal uniqueness and isomorphic refinement theorems for

binary algebras.

THEOREM 11.6. If a binary algebra A has two direct decompo-
sitions with countably many factors,

A=B X B X By, X +++ =Cy; Xx C;, X Cy X +++,

where the reduced parts of all the groups B; and C:; are torsion
groups with torsion-complete primary components, them these two
direct decompositions of A have centrally isomorphic refinements.

COROLLARY 11.7. If A is a binary algebra such that the reduced
part of A° is a torsion group with torsion-complste primary com-
ponents, then any two countable direct decompositions of A have
centrally isomorphic refinements.



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 851

THEOREM 11.8. If a binary algebra A has a direct decomposition

A=1][ B,
1€7
where, for each i eI, the reduced part of B is a torsion group with
torsion-complete primary components, then any two direct decom-
positions of A into indecomposable factors are centrally isomorphic.

THEOREM 11.9. If a binary algebra A has a direct decomposition

A =11 B;
1€
where, for each 1 €I, B is countable and the reduced part of B 1is
a torsion group each primary component of which is of bounded order,
then any two direct decompositions of A have centrally isomorphic
refinements.

A final theorem describes a class of binary algebras with uncountable
centers having the isomorphic refinement property.

THEOREM 11.10. If A s a binary algebra such that the maximal
divisible subgroup of A° is countable and the reduced part of A° s
a torston group each primary component of which is a torston-com-
plete group with countable basic subgroups, then any two direct
decompositions of A have centrally isomorphic refinements.

Proof. Suppose
(1) A=]1B,=]1IC;.

(234 1€J
Since the maximal divisible subgroup of A° is countable and the basic
subgroups of each primary component of the reduced part of A° are
countable, it follows that there exists a countable subset I’ of I such
that B¢ = {0} foreachic I — I’. The factor [l;c;— B; has the exchange
property, and hence there are subalgebras D;, D} (jeJ) such that
C; =D; x D; and

A= TI Bix11D;.

it€I—-I’ JjET
Consequently

(2) 11 B, =11 Dj,

i€I—I’ JjeJ
and, as l.e;— Bf = {0}, we infer by 2.19 that
(3) Il B,=11D;.

1€’ JEJ
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Repeating the argument above for the factor [];e;D;, there is a
countable subset J’ of J such that D: = {0} for each jeJ — J’, and
there are subalgebras E;, E/ (4 €I’') such that B; = E; X E/! and

(4) 11 D;=°]11 Ey,
JET-T' i€er’

(5) Il D; =11 E;.
JjET! i€I’

The pairs of decompositions (2) and (4) each have centrally isomorphic
refinements by 11.9, and the decompositions (5) have centrally isomorphic
refinements by 11.7. Therefore the original decompositions (1) have
centrally isomorphic refinements, and the proof is complete.

12. Counterexamples and open problems. This final section con-
tains two examples that yield negative answers to some questions
related to the results in this paper. A number of unsolved problems
suggested by our investigations are also mentioned.

In 3.10 it was shown that if an algebra B is a direct product of
finitely many subalgebras each of which has the exchange property,
then B has the exchange property. The first example shows that this
result cannot be extended to products of infinitely many subalgebras.
In fact, the example shows that if B is an abelian p-group such that

B=B, X B, X B, X «+-

where, for £k =1,2,83-.--, B, is a cyclic group of order p*, then B
does not have the 2-exchange property. Thus the simplest unbounded
abelian p-group fails to have the exchange property.

Let

8

A =TT lwl x II (0]

k

where, for £k =1,2,3, ---, [u,] and |v,] are cyclic groups of order p*.
Also, let

B = ]L[l [we + Pl , C= /]c’i [ve] s
D =TLlo + pwenl, D= wl

It is easy to check that
A=BxC=D, xD,,

and in order to prove that B does not have the 2-exchange property
it is sufficient to show that the assumption that
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(1) A:BXE1><E27 Elng; Ezgpz

leads to a contradiction.

Assume that (1) holds. Since A is a direct product of finite groups,
it and all its direct factors have the-unique factorization property.
Inasmuch as C = E, x K, this implies that for each positive integer
k only one of the groups E, and FE, has a cyclic factor of order p*.
Observing that

Bx E,= Bx D,=B x pC,

we have v, = b + pc +e¢ where be B, ceC, b+pce Bx E,, and ec E,.
Using the fact that B x C exists we see that, for r =1,2,8, ---, k — 1,
the element p"(v, — b) = p""'¢c + p"e has height », and hence the height
of pe is also . Since p'e = 0, this shows that [e¢] is a pure subgroup
of E,, and hence a factor of E,, of order p*. Consequently K, cannot
have a direct factor of order p*, and since this is true for every
positive integer k, we infer that E, = {0}, and hence A= B X E, < B x D,.
But it is easy to see that neither u, nor v, belongs to B x D,, and
we have thus arrived at a contradiction.

In 8.1 it was shown that if the center of an algebra B has the
exchange property, then B has the exchange property. Our second
example shows that the converse of this result is false. For this
purpose we construct a group B such that

(i) B°is an infinite cyclic group.
(ii) The commutator subgroup of B equals B, |B, B] == B.

First observe that this does in fact imply that B has the required
properties. In fact, suppose B° = [u] and let A = B° x C where C = [v]
is also an infinite eyclic group. Also let D, = [2u + 8v] and D, = [3u + 5v].
Then A=D,xD,. Since B°xD,=B¢x[3v]sA and B°x D,=B°x[5v]+# A,
we see that B° does not have the 2-exchange property. On the other
hand, suppose A is any algebra containing B as a subalgebra, and
suppose C and D; (i€ 1) are subalgebras of A such that

A=BxC=1lD,.
(131
Let g and &; be the projections of A onto C and D, induced by these
two direct decompositions of A. Then gh; maps B homomorphically
into the center of C, whence it follows by (ii) that, for each be B,
ghi(b) = 0 or, equivalently, h,(b) € B. Thus, for each ¢¢I, h; maps B
into B D;, and we infer that
B = H (B n Di) .

i€l
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It follows by the modular law that for each 7 eI there exists a sub-
algebra E; & D; such that D, = (BN D;) X E;, and we conclude that
A=BX]lE;.

i€l
Hence B has the exchange property.

In order to construct a group having the properties (i) and (ii)
we proceed as follows. For » =2,8,4, .-+ let H, be the group of all
n by n matrices of determinant 1 over a field of characteristic 0 that
contains a primitive nth root of unity. Then the center of H, contains
a cyclic group of order %, and the commutator subgroup of H, equals
H,. The Cartesian product H of H,, H,;, H, --- therefore has the
properties that its center contains an infinite cyclic group and that the
commutator subgroup of H is equal to H. We now take for B a free
amalgamated product of two isomorphic copies B, and B, of H, with
amalgamated subgroup Z = B, B, an infinite cyclic group contained
in the centers of both B, and B,. It is known that B°= B:N B, so
that B° is in this case the infinite cyclic group Z. Thus (i) holds,
and it is obvious that (ii) is also satisfied.

The most interesting unsolved problem suggested by the results
in this paper is whether in Theorem 7.1 the assumption of countably
generated centers is needed. Specifically, is it true that if an algebra
A 18 a direct product of subalgebras each of which has the exchange
property, then any two direct decompositions of A have isomorphic
refinements? Even if the answer is negative, one might hope for an
affirmative answer in special cases, such as for groups whose centers
are of bounded order. Of course, if the answer should turn out to
be affirmative, then this would include Theorems 4.2, 5.3 and 7.1 as
special cases.

Another problem concerns the relation of the finite exchange prop-
erty and the exchange property: Is the exchange property always
implied by the finite exchange property? In connection with Theorem
7.1 it would be particularly interesting to know whether for an algebra
B with a countable generated center the finite exchange property
implies the W,-exchange property (and therefore the exchange property).
It is not hard to show that for such an algebra B the condition

A=BXC=Dy XD XD, x +--
implies that
A=BX E, X E, X E, X +--

where each of the factors E, is a subalgebra of the finite product
D, x D, X +++ X D,, but we do not know whether the factors E, can
be replaced by subalgebras of the factors D,.
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Theorem 8.3 raises the problem of determining those abelian
operator groups that have the exchange property. In this regard the
following question seems particularly relevant: Is it true that if an
abelian operator group satisfies the minimal condition, then it has
the exchange property? For ordinary reduced abelian groups the
results in § 11 apply only to groups with no elements of infinite height.
It would be of interest to know whether the class of all reduced
primary abelian groups having the exchange property contains any
groups with (nonzero) elements of infinite height.
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ON CONTINUOUS MATRIX-VALUED FUNCTIONS
ON A STONIAN SPACE

DoN DECKARD AND CARL PEARCY

1. Introduction. In this paper the authors continue the study
(begun in [9] and carried on in [3] and [10]) of matrices with entries
from the algebra C(¥) of all continuous complex-valued functions on
an extremely disconnected, compact Hausdorff space X. (Such spaces
are sometimes called Stonian after M. H. Stone, who considered them
in [14].) One of the authors has shown ([10], Theorem 3) that if A
and B are » X n matrices over C(¥) such that A(«) is unitarily equivalent
to B(x) for each x X, then A and B are unitarily equivalent in the
algebra M,(X) of all n X n matrices over C(X). It is thus natural to
ask whether the similarity of A(x) and B(x) for each x € X is sufficient
to guarantee the similarity of A and B in M, (¥). We show by example
in §2 that the answer is no; however, we also show that if the
hypothesis is strengthened by the addition of a uniform boundedness
requirement, then the similarity of A and B in M, (%) does indeed follow.
As a by-product of the technique introduced to give this result, we
obtain a new short proof of Theorem 3 of [10].

In §3 we show that a certain class of entire functions maps M, (%)
onto itself; this is a generalization (with a different proof) of a result
of Kurepa [8] for n X % matrices, and adds to the information obtained
by Brown [1] on the question of which entire functions map which
Banach algebras onto themselves. As a corollary, we learn that every
invertible element of M,(X) has a logarithm. Section 4 is devoted to
proving that an element of M,(¥) has an identically vanishing trace if
and only if it is a commutator in M,(%X). (See Remark 2, §4, for a
paraphrase of this result cast in the terminology of operator theory
on Hilbert space.) Finally, in § 5 the authors give two examples which
indicate that it is probably fruitless to pursue the structure theory of
matrices over C(X) where X is a more general topological space than a
Stonian space.

2. Similarity in M,(¥). The most convenient definition of M, (%)
is as follows. Let M, denote the full ring of # X » complex matrices
under the operator norm, and let ¥ be any Stonian space. Denote by
M, (%) the *-algebra of continuous functions from ¥ to M,, where the
algebraic operations in M,(¥X) are defined pointwise. Under the norm
|| All = sup,ey || A(x) ||, M,(X) is a C*-algebra identifiable with the C*-
algebra of all n X n matrices over C(X). Moreover, M,(X) is an

Received July 12, 1963.
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AW*-algebra [7], and this fact is used briefly in this section.

We first show that pointwise similarity of A(x) and B(x) on % is
not sufficient to ensure that A and B be similar in M,(X). For this
purpose, let .&” be the Stone-Czech compactification of the natural
numbers 4. Then & is a Stonian space. (See, for example, the
discussion on page 295 of [12].) Consider elements A and B of M,(.s")
defined by:

2
Aw) = (O I/x) ’

(0 1z
00 B(x)ﬁ( )

0 0

for each natural number 2 € _#7 Then A(x) = B(x) = 0 for x € &— ¥
and it is obvious that A(x) and B(x) are similar for each x € .2 Suppose
that S=(s;;) is an invertible element in M,(.$”) satisfying SA = BS.
Calculation yields s,(x) = 0 for x € _+#" so that s, = 0. Furthermore,
S(%) = xsu(x) for x € 47 and the invertibility of S guarantees that
S;; never vanishes. Thus s;, is unbounded, contradicting s, e C(.&”),
and it follows that A and B are not similar in M,(.5”).

The following theorem gives necessary and sufficient conditions
for A and B to be similar in M, (%).

THEOREM 1. Let X be any Stonian space, and let A, Be M,(%).
Suppose that there is a dense subset <7 X and a positive number M
such that for x € Z, there is an inverttble matrix S(x) satisfying
S(x)A(x)S™(x) = B(x), || S(x) || < M, and [[S7(x)|| < M. Then there
18 an invertible element T e M,(X) satisfying TAT' =B, || T|| < M,
and || T'|| < M.

Proof. We consider collections {Z;} of nonempty, disjoint, compact
open sets #; CX with the property that if 7/ €{%"}, then there is
an invertible element T;e M, (%) satisfying T (x)A(x)T;*(x) = B(x),
|| Ti(x) || < M, and || T:'(x) || < M for each e %;. Let {Z}ic; be a
maximal such collection, and denote 2 = U:e;%;. Then Z/ is compact
open, and it follows from Lemma 2.1 of [3] that the function T defined
on Uie;%; so as to extend each of the T; can be extended to an
element Te M,(%’). Similarly, there is a function Ze M,(Z’) which
extends each of the T;* It is clear from continuity considerations
that Z = T-', and that T has all the desired properties on 7%, so that
it suffices to prove % = %X. Suppose, to the contrary, that ¥ — 7 + 4.
To obtain a contradiction, it suffices to find a compact open set
2<% — 2/ and an invertible element Ve M, (") such that for x € ¥,
V(®)A(x) = Bx)V(), || V(z)|| < M, and || V(z)|| <M. To do this,
we regard the equation VA = BV as a system of linear equations
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65
Cpi¥V1 + Cps¥s + o0 + Cpuly = 0

where

(1) the unknown functions v, are the entries, in some prescribed
order, of the matrix V

(2) the coefficients ¢,;; € C(X — #Z’) are the appropriate combinations
of the entries of the matrices A and B

@) m = n.

For xeX — 7/, consider the corresponding system (L(x)) of linear
equations, and let x,€%X¥ — 7 be a point such that the rank »(x) of
the system (L(x)) assumes its maximum 7, at x,. (The case r,=0
leads trivially to a contradiction of X — %/ # ¢, and we ignore it. The
case 7, = m cannot occur.) Then there is some 7, X 7, minor N of the
coefficient determinant of the system (L(x,)) which is nonzero, and by
continuity there exists a compact open neighborhood ;X — % of x,
such that for x € 77;, the same minor N remains a nonzero minor of
maximum size. According to the hypothesis, there is a point 2, € %77 and
an invertible matrix S(x,) such that S(x,)A(x,) = B(x,)S(x,), || S(x) || < M,
and || S7(x,) || < M. Let the corresponding nontrivial solution of the system
(L(x,)) be denoted by (g, s *-+, ttn) (i.e., the g, are the entries of
the matrix S(x,)). We wish to define an m-tuple (v,(x), vy(2), « -+, V,.(x))
at each point of %4 in such a way that

(1) the m-tuple is a solution of (L(x)) for each x e 77,

2) v,€eC(%) for 1 <1 =m, and

B) wvi(x) =p; for 1 <+ <m. This is accomplished as follows.
Since for x¢ ¥#;, N is a nonzero minor of maximum size, it suffices
to solve (continuously on <77) the r, equations affiliated with N. Thus
for the appropriate m — 7, values of ¢ (the values not affiliated with
N), define v(x) = pt; on 77; then for xe 77 the other », numbers
v;(x) are determined by Cramer’s rule, and since the functions ¢;; are
continuous it follows that (1), (2), and (3) above are satisfied. Next
place the resulting functions v; e C( 777) in their appropriate positions
in the matrix V, and shrink the neighborhood <7 of x, to a compact
open neighborhood 97" < %77 of 2, such that for xe /] the matrix
V(x) is invertible and the inequalities || V(x) || < M and || V() || < M
remain valid. The existence of the compact open set % contradicts
the maximality of the collection {Z;}.c;, and thus the proof is complete.

We can prove Theorem 3 of [10] in a similar fashion,
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THEOREM 2. If X s Stonian and A, Be M,(%X) are such that A(x)
and B(x) are unitarily equivalent at each point of a demse subset of
X, then A and B are unitarily equivalent in M, (%X).

Proof. We consider collections {Z;} of nonempty, disjoint, compact
open subsets Z; C ¥ with the property that if %, e{%;}, then there
is a unitary element U, e M, (%) satisfying U, (x)A(x) U (x) = B(x) for
each xe %,;. As before, we choose a maximal collection {Z}ic;, and
define 22 = Uier ;. Again it suffices to prove 2 = X. The argument
then proceeds exactly as above, except that the system of linear equations
to be considered is the system equivalent to the pair of equations
VA=BV and VA*=B*V. (Thus the system consists of 2n’ equations
in %° unknowns, but it is clear that this has no effect on the argument.)
Then, proceeding essentially as above, we obtain a compact open subset
7" C ¥ — %/ and an invertible (not necessarily unitary) element Ve M, (#")
such that for xe 7, V(x)A(x) = B(x)V(x) and V(x)A*(x) = B*(x) V(x).
One knows from ([14], Lemma 2.1) that we can write V in polar form
V = UP where U is a unitary element of M,(?*"). A standard calculation
shows that for x € 7] U(x)A(x) U*(x) = B(x); thus the existence of &~ con-
tradicts the maximality of the collection {Z;}.e;, and the proof is complete.

REMARK. One would naturally like to have a collections of global
objects to attach to an element Ae M,(X) which would serve as a
complete set of similarity invariants for A. In this connection, it is
easy to see that one cannot always obtain an element Je M,(¥X) such
that A is similar to J in M,(X) and such that J(x) is in Jordan form
for each xeX.

3. Entire functions on M,(X). We say that an entire function
f has property (K) if, for every complex number {, there is a complex
number z satisfying f(z) = and f’(z) == 0. In [8] Kurepa showed that
an entire function f maps M, onto itself if and only if f has property
(K). The study was then taken up by Brown [1] who characterized
the class of entire functions f which map the algebra .&7(57°) of all
bounded operators on an infinite dimensional Hilbert space 5% onto
itself. Brown showed that such an f maps every Banach algebra onto
itself, and we say that such an f has property (B). Since certain
W *-algebras of operators on Hilbert space have faithful C*-represen-
tations as an M,(¥X) (see [9]), one has, in a sense, & (5#) D M, (%) D> M,.
Thus it is of interest to discover which entire functions map M, (%)
onto itself, and the answer is given by

THEOREM 3. If f is an entire function and X is a Stonian space,
then f maps M,(X) onto itself if and only if f has property (K).
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Proof. Since for each « € X, [p(A)](x) = p(A(x)) for every polynomial
p»(z), and since f is the uniform limit of polynomials on compact sets
of the z-plane, [f(4)l(x) = f(A(x)) for each xzeX. Thus, if f maps
M, (%) onto itself, then f must map M, onto itself, so that by Kurepa’s
theorem [8], f has property (K). Now suppose that f has property
(K), and let Ae M,(X). We look for Be M,(X) such that f(B) A.
Let x, be an arbitrary point of ¥ and let ¢, ---,, be the distinct
eigenvalues of A(x,). Choose 2z, ---, 2, to be complex numbers with
the properties that f(z;) = (; and f'(z;) 0. For i =1, ---, p, let &;
be a (non-degenerate) closed disc about z; such that f is Schlicht on
;, and arrange it so that the sets f(<2;) are mutually disjoint. Let
g denote the inverse of the restriction of f to 'U.;’,,,1 .. Then ¢ is
defined and continuous on & = UZ,f(<) and is analytic at each
interior point of 7. It follows from Lemma 2.2 of [3] that there
exists a compact open neighborhood .75 = 7 (x,) of x, such that for
x e .15, the spectrum of A(x) (denoted hereafter A[A(x)]) is a subset
of the interior of &, If A, denotes the restriction of A to .#;, then
A, is an element of the C*-algebra . M,(..#;), and it is clear that the
spectrum of A, is U.e,, 4[A(®)]. As usual, following Dunford [5],
9(4) e M, (_7;) can be defined as the sum of the p integrals

1/271 | g(\)(4, — M)t dNn, where I'; is the boundary of the set f(<=;).

If we denote B, = g(4,), it follows from Theorem 2.10 of [5] that
f(B,) = A,. Since this construction was carried out about an arbitrary
point z,€%, we can apply the compactness of X to obtain points
%, +++, 2. €X and compact open neighborhoods .77 of the x; such that
Uisi #; =% and such that the above construction has been carried
out to yield a corresponding B; on each .#;. Furthermore, we can
assume that the ./ are pairwise disjoint. The element Be M, (%)
defined by B(x) = B.(x) for x € _#7 is such that f(B) = A, and the proof
is complete.

COROLLARY 3.1. If X 1s a totally disconnected, compact Hausdorff
space, then each invertible element of M,(X) has a logarithm in M, (%),
and thus has roots of all orders in M, (%).

Proof. Observe first that the proof of Theorem 3 above goes
through word for word in the case that X is only compact Hausdorff
and totally disconnected. Then observe that if A e M,(¥X) and an entire
function f are given, in order to carry out the construction in the
above proof to obtain a B such that f(B) = A, it suffices to know that
for each ¢ in the spectrum of A, there is a complex number z such that
f(®) = and f'(z) # 0. These observations complete the proof.

It results easily from Theorem 3 that if
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oA =3 @ M, E)

is any finite C*-sum of algebras M, (%,) where the X, are Stonian spaces,
then the entire functions which map 2 onto itself are exactly those
with property (K). However, if one considers algebras

B=3 & M,®%)

which are C*-sums of infinitely many M, (¥,) where n,— o and the
%, are only assumed to be compact Hausdorff spaces, then the situation
is different, as is demonstrated by the following theorem.

THEOREM 4. If B is any algebra of the form
B =3 @M, &)
where n, — o and each %X, is a compact Hausdorff space, then the

entire functions which map B onto itself are exactly those with
property (B)

The proof of this theorem is patterned after an argument of
Brown [1], and depends on the following lemma.

LEMMA 3.2. Let f be any entire function, let g(z) be the polynomial

n—1
g(Z) = % agt,

and let Ac M, be the “analytic Toeplitz” matrix

Qy
a, Qy
Qy a, a,

Apey = = ¢ Oy Oy

Then f(A) is an “analytic Toeplitz” matric

b, )
b, b,
b, b b,

fA) =
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and the entire function h(z) = f(g(z)) has a power series expansion
We) = 3B

where B; =b; for 0 =1 =< n — 1.

Proof. If f is any positive integral power of z, or more generally
any polynomial, an inductive computation shows that the result is
valid. For an arbitrary entire function f, let p,(2) be a sequence of
polynomials which converges uniformly to f on every compact subset
of the z-plane. Then, since 79,.(9(z)) converges uniformly to h(z) on
compact subsets of the plane, the coefficients in the power series
expansions of the p,(g9(2)) must converge to the corresponding coefficients
in the power series expansion of h(z). (See, for example, ([2], §211))
Furthermore, since p,(4) converges to f(4) in the norm topology of
M,, the entries of p,(A) must converge to the corresponding entires
of f(A), and the result follows.

Proof of Theorem 4. For convenience we take m, = n. It will
be clear that this does not affect the argument. Let

B = (é@Bﬂ)e%

be defined by setting

L 10

for each positive integer n. Let f be an entire function which maps
onto B, and suppose that

A=2DA,

satisfies f(A) = rB where r is some fixed positive real number. Since
for any central projection E e B, f(EA) = Ef(A), it is clear that for
each positive integer =, f(4,) = rB,. Now choose an arbitrary «,cX,
for each integer n. The fact that f|A4,(x,)] = rB,(x,) follows just as
in the proof of Theorem 3. Since A,(x,) commutes with B,(x,) =
1/r f|A.(x,)] and B, is identically constant on X,, a matrix calculation
shows that for each positive integer %, the matrix A,(x,) has the form
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ar }
ay  ag

a;  al @}

Au(,) =

Qe = * = QY Of ]

where the aj are of course complex numbers. Define the sequence
9.(2) of polynomials by

n--1
9.(2) = 5_5 aizt,

and let h,(2) = f(9.(z)). Since f[A.(x,)] = rB,(x,), it follows from
Lemma 3.2 that for each positive integer =, &,(2) is an entire function
having a power series expansion

h,(2) = rz + >, Biz" .
k=n

Since A= Y, A, is a bounded operator, it follows that there exists

a positive number M such that
n—1
SlarP< M
=0

for each n. Let <7 denote the disc = = {#:]2]| < 1/2} and observe
that it follows from the above inequality that the sequence ¢,(z) is
uniformly bounded on < by the number 21V"M. It follows from
Montel’s theorem ([2], § 416) that one can extract a subsequence 9., (2)
which converges uniformly on < to a function g(z) which is analytic
on 7. It follows that hnk(z) = f(¢.,()) converges uniformly to f(g(2))
on =7, and by virtue of the form of the power series expansion of
each %, (2), we must have f(g9(2)) =72 on &. It is now clear that
9(2) is a Schlicht mapping of the interior &2° of <& onto some bounded
domain g(=°) and that f is a Schlicht mapping of ¢g(=2°) onto the
open dise {#:|z| < r/2}. Since r was arbitrary, it follows from ([1],
Theorem 2) that f has property (B), and the proof is complete.

4. Commutators in M,(X). We introduce the notation o(B) for
the trace in the usual sense of an # X % complex matrix B. In this
section, we generalize another result known for M,, and thereby set
forth a class of operators on Hilbert space which are commutators.
(See Remark 2 at the end of this section.) More precisely, we establish

THEOREM 5. If X is a Stontan space and Aec M,(%X), then A
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satisfies o[A(x)] = 0 iof and only if there are elements B and C in
M, (%) such that A = BC — CB.

One half of the theorem is trivial; to prove the other half we use
an idea suggested by Halmos in [6]. The crucial lemma is the following.

LemMmA 4.1. If X is any Stontan space and Ae M,(X) is such
that o[A(x)] =0, then there is an invertible Se M, (X) such that
SAS™ = D = (d;;) satisfies d,, = 0.

Proof. We consider collections {Z;} of disjoint, nonempty, compact
open sets 7z; € ¥ with the property that if Z; € {%/}, then there is an
invertible S; e M, (%) such that ||S;||, || Si*|| =6 and such that for
each x ¢ %, the matrix S;AS,"(x) has a zero in the upper left hand
corner. Let {#/}ie; be a maximal such collection, and define 7 =
Uie: ;. It follows from Lemma 2.1 of [3] that to complete the proof,
it suffices to establish 7 = X. Thus, suppose to the contrary that
X — 7 #+ ¢. According to Theorem 1 of [3] there exist functions
My ** 0y N, € C(X — Z7) such that for © € £ — 77, the numbers A, (), « -+, N, ()
are exactly the eigenvalues of A(x). Furthermore, there must be at
least one point x,€ X — %/ such that some M\;(x,) # 0. (Otherwise, we
could apply Theorem 2 of [3] to obtain a unitary Ue M,(X — %) such
that UAU*(x) is in upper triangular form for each x € X — Z. Then the
diagonal entries of UAU*(x) would be identically zero, and the maximality
of the collection {Z/;};e; would be contradicted.) Since we know from
the hypothesis that

it

in -0)
i=1

there must be at least two distinet ¢ such that A(x,) = 0. In fact, a
little thought convinces one that there exist \; and ), (5 # k) such that

0 < (@) | = [l | < INlae) — Njeeo) |

It follows from the circle of ideas connected with the proof of Theorem
2 of [3] that there is a unitary element Ue M, (X) — %) such that
UAU*(x) = (a;;(x)) is in upper triangular form for each x€¥ — % and
such that a; =X, and ap=x; on X — Z. Thus 0 <|aulx)| =
[au(x,) | < | an(2,) — an(®,)|, and by clever choice of U (i.e., by applying
an additional rotation, and then changing notation) one can arrange
things so that | @, (%)) — @u(®,) | < | anu(®,) — [a@u(®) — aun(x)]|. It follows
that for some 0,0 < d < 1, there is a compact open neighborhood
7 X — 7 of x, such that for xe 7,0 < |aun®)| =1 + 0)|ay(x)] <
lay(x) — [an(®) — an(x)]|. The argument now splits into two cases.
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Case 1. For every x € 7, |a,(x)| = |a,(x)|. In this case we define
an invertible S = (s;;)e M, (7") to be the direct sum of the 2 X 2
matrix (s;;: 1,7 < 2) and the identity element of M, ("), where for
€ 7, su(®) = 8u(®) = 1, 84(w) = 0, and syu(x) = a1(T)/au(®). An easy
calculation shows that || S|, || S™|| = 4, and another calculation shows
that for xe ¥/, the matrix SUAU*S~'(x) has a zero in the upper left
hand corner. The existence of &  thus contradicts the maximality of
the collection { 7;}.c;, and we proceed to

Case 1I. There is a compact open subset #~ < %~ such that for
xe %, lap(x)| < lay(x)|. As before we define an invertible S =
(s;)e M, ( 2#7) to be the direct sum of the 2 x 2 matrix (s;;:¢,7 = 2)
and the identity element of M, _,( %#7). This time for x € %7 we take
$u(®) = 8(%) = su(%) = [an(@){an(x) — [an(®) — ax(@)]}]* and su(x) =
su(®) [{awu(®) + an(x)}/a,(x)], where the exponent 1/2 denotes any square
root taken in such a way that s, € C(2#7). (Theorem 1 of [3] enables
us to take continuous square roots.) As a result of the inequalities
which are valid on 97, one has |su(2)| <1 and |su(x)| = 2 + 0 for
each x € 977 furthermore, s,8,, — 8,8, = 1 on %, and it follows that
IS, || S*|] £ 6. Calculation shows that for xze %, SUAU*S (x)
has a zero for its upper left hand entry, and thus the proof is complete.

The following corollary follows easily by induction on 7, and we
omit its proof.

COROLLARY 4.2, If Ae M, (%) is such that o|A(x)] = 0, then there
1s an 1nvertible S € M, (X) such that SAS™ = (a;;) satisfies a; = 0 for
1< =mn.

Proof of Theorem 5. We are given that o|A(x)] = 0. Choose
S e M, (%) according to Corollary 4.2 so that SAS™ = (a,,) satisfies a;; = 0
for 1 =7 =<mn. Define B,=(;;))e M,(¥) by b;; =4 for 1 =<7=n and
b;; =0 for ¢+ j. Also define C, = (¢;;) € M, (%) by ¢;; = a;;/(b;; — b;;)
for v+ 7 and ¢,; = 0 for ¢ = 5. If B and C are defined by B = S~*C.,S,
then it is easy to see that B,C, — C,B, = SAS™, or, what is the same
thing, BC — CB = A.

REMARKS.

(1) A stronger version of Lemma 4.1, obtained from the present
version by requiring S to be unitary, actually holds. The proof, however,
uses a completely different idea and is much longer than the above
proof.

(2) A bounded operator B on Hilbert space is called n-normal [9]
if the W™-algebra which B generates satisfies a polynomial identity
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of the form
2 (8gn M) Xy Xey v Xogy =0,

where the sum is taken over all permutations 7w on 2n objects. It is
known that such a W*-algebra is a finite direct sum of algebras each
of which has a faithful C*-representation as some M,(%X,) with ¥, Stonian
and £ < n. Furthermore such a W*-algebra has a well-behaved center-
valued trace function, so that Theorem 5 can be paraphrased: Any
n-normal operator with trace zero is the commutator of a pair of
n-normal operators.

(8) There are at least two classes of operators on Hilbert space
which possess well-behaved numerical traces. These are operators in
the trace-class [13], and operators in W *-algebras which are factors
of type II,. Is it true that every operator with trace zero in one of
these classes is a commutator?

5. Two examples. In this section we set forth two examples
which show that Theorem 2 of [3] and Theorems 1 and 2 of the present
paper cannot be extended to the setting in which ¥ is assumed only
to be a compact HausdorfT, totally disconnected space. In these examples
we take 7 to be the compact Hausdorff, totally disconnected space
consisting of the set {a, a,, +--, a,, -+, 0} with the relative topology,
where the real sequence {a,} is strictly decreasing to zero and satisfies
cos (1/a,) = sin (1/a,) = 1/v/ 2 for n odd and cos (1/a,) = 1, sin (1/a,) = 0
for n even.

ExampPLE 1. (This example is essentially due to Rellich [11].)
Define Ae M, (9") by

Ala,) = (1 — a, cos (2/a,) —a, sin (2/a,)
@)=\ _a,sin(2a,) 1+ a,cos (2/%)) ;
10
w7

Then, even though A is Hermitian, there exists mno wunitary
Ue M(.97) such that UAU*(t) is in upper triangular form for each
te 7.

Proof. Assume that such a U = (u,;) exists, and let UAU*(t) =
(b,5(t)). Then the b;;€ C(.97), and the vector (&t,(t), #.,(t)) = V(f) has
length one at each te.Z7” and has entries which are elements of
C(.77). Futhermore, it is easy to see that [A(¥) — b.(t)I]V(f) =0. In
other words, the vector V{(¢) is a continuous eigenvector for A(t) cor-
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responding to the eigenvalue b,(f). An easy calculation shows that
the eigenvalues of A(a,) are 1 — a, and 1 + a,, so that for each =,
b.(a,) =1—a, or by(a,) =1+ a,. Furthermore, it is easy to see that
the vector (cos (1/a,), sin (1/a,)) is an eigenvector for A(a,) corresponding
to the eigenvalue 1 — a,, and the vector (sin (1/a,), —cos (1/a,)) is an
eigenvector for A(a,) corresponding to the eigenvalue 1 + a,. It
follows that for » odd, we must have |#%,(a,)| = 1/v2, and for n
even, we must have |#,(a,)| =0 or 1. This contradicts u,<c C(9),
and completes the proof.

ExAMPLE 2. Define A, Be M,(.9") by A(0) = B(0) = 0 and

0 a, 0 (=Da,
ey =g w), Bea=(g U,

Then A(t) is unitarily equivalent to B(t) for each te .7, but there
exists no tnvertible S e M(7") such that SAS™ = B.

Proof. Suppose such an invertible S = (s;;) e M, (9) does exist.
Then SA = BS, and -calculation shows that s, = 0. Furthermore,
su(a,) = (—1)"s,(a,) for each n, and since S is invertible and s, =0,
s; and s, are bounded away from zero. It follows that s, and s,
cannot both be continuous at zero, a contradiction.

REMARK. While the theory of elements Ae M, (%X) is not very
satisfactory for X only totally disconnected, it is nevertheless true that
A has continuous eigenvalues [4].
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ANOTHER CHARACTERIZATION OF THE »-SPHERE
AND RELATED RESULTS

R. F. DickmaN, L. R. RuBIN AND P. M. SWINGLE

In [5] we defined an irreducible B(J)-cartesian membrane and an
excluded middle membrane property EM, and used these to characterize
the n-sphere. There the class B(J) was of (n — 1)-spheres contained
in a compact metric space S. Since part of the proof does not depend
upon the fact that elements of B(J) are (n — 1)-spheres, we consider
the possibility of other entries in the class B(J). Recent developments
in this direction have been made by Bing in [2] and by Andrews and
Curtis in [1]. In [3] and [4] Bing constructed a space B not homeo-
morphie with £, which has been called the dogbone space. By Theorem
6 of [2], the sum of two cones over the one point compactification B
of B is homeomorphic with S* This sum of two cones over a common
base X is called the suspension of X.

In [1] Andrews and Curtis showed that if « is a wild arc in S*
that the decomposition space S™/a is not homeomorphic with S*. They
proved, however, that the suspension of S*/a is always homeomorphic
with S** for any arc a« < S*. The reader will easily see that a class
B or of S*/a as described will satisfy the conditions for a class B(J)
for which an n-sphere will have property EM.

The results below were obtained in considering such spaces, and
Theorem 1 below is a weaker characterization of the n-sphere than is
Theorem 2 of [5]. We find it difficult to determine the properties
Je B(J) must have for S to have Property EM, as is shown by our
Theorem 4 below.

I. Definition and basic properties. Let S always be a compact
metric space and let B(J) be a class of mutually homeomorphie
subcontinua of S. We put conditions on this general class B(J) in
our theorems below.

We define a B(J)-cartesian membrane as we did in [5] and [6].
Let F' be a compact subset of S containing Je B(J). Let M be a
subcontinuum of F,be M and C be homeomorphic to J. Denote by
(C X M, b) the decomposition space [10: pp 273-274] of the upper semi-
continuous decomposition of the cartesian product C x M, where the
only nondegenerate element is taken to be C x b (intuitively the
decomposition space is a sort of generalized cone with vertex at the
point C x b). With this notation we give:

Received September 18, 1963. This work was done under National Science Foundation
Grant G 19672.
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DerFINITION 1. We say that F' is a B(J)-cartesian membrane from
b to J (or for brevity with base J) if and only if there is a homeo-
morphism % from (C x M, b) onto F' for some M such that:

(i) for some ae M — b, J = h(C X a),

(ii) for all ge M — b, h(C X q)e B(J), and

(iii) A(C x b) = b.

If M is irreducible from a to b, then we prefix the above definition
by trreductble. Whenever F' is a B(J)-cartesian membrane and F =
h(C X m, b), h is assumed to be a homeomorphism from (C x M, b)
onto F' with properties (i), (ii) and (iii). We say b is the vertex of F
and J is the base of F.

The definition of B(J)-cartesian membrane is rather general; for
example, a point or any continuum can be taken as a B(J)-cartesian
membrane. We shall place restrictions on the space S to limit possi-
bilities such as these when the need arises. The excluded middle
membrane property of Theorem 2 in [5] is the following:

Property EM. We say that the space S has Property EM with
respect to the class B(J) if the following hold:

(1) The class B(J) is not empty;

(2) For each Je B(J), S = F, + F, where F, and F; are irreduci-
ble B(J)-cartesian membranes with base J, such that F,¢ F, and
F,z F, and whenever S is such a union and F, is any other B(J)-
cartesian membrane containing J, then F} contains F), or F, but not
both; and

(8) If JeB(J) and pe S — J, then there exists a B(J)-cartesian
membrane from p to J.

Below F, F',F, and F, are always irreducible B(J)-cartesian
membranes.

We proved in [5] that when B(J) is a class of (» — 1)-spheres
and n > 1 that:

(A) A necessary and sufficient condition that S be an mn-sphere
is that S have Property EM.

We observed in our proof of (A) that if S had Property EM with
respect to a class of mutually homeomorphic continua, we were able
to prove:

(B) That whenever S = F, + F, where F, and F, have base
J, F.-F,=J,

(C) If F=h(C x M,b) was an irreducible B(J)-cartesian membrane,
then M was always a simple continuous are with b as endpoint; and

(D) If S=F,+ F, where F, and F, have base J and F} is any
other irreducible B(J)-cartesian membrane with base J, then F, = F,
or F, = F,.
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In the first paragraph of the proof of Theorem 2 of [5], (D)
appeared easily as result (R,)); then by a long proof we showed that
F,.nF,=J, which is (B) above, and we note this long proof only
depends upon J being a continuum, not on J being an (n — 1)-sphere.
Finally, the following argument show that (C) holds. Let S=F,+ F},
where F, and F;, are irreducible B(J)-cartesian membranes with base
J. By (B) F,-F,=J, and so every element of B(J) separates S.
Then if F, = h(C x M, b) where M is irreducible from a to b, and if
zeM—a —0b, (C x 2)e B(J) by (ii) of Definition 1 above. Hence
h(C X z) separates S, and therefore separates F,. This implies =z
separates M, and so M is a simple continuous arc, as desired in (C).

II. Characterization of the m-sphere, for n >1. We give now
gseveral lemmas that will enable us to characterize the nm-sphere.

NoraTioN. For a subset K of S, we will use ¢l(K) to denote the
closure of K in S, and for an open subset U of S, we will use Fr(U)
to denote the set ¢l(U) — U.

LemmA 1. If S has Property EM, then S is homogeneous.

Proof. Let x,yc S, x +* y, and let J be an element of B(J) such
that J< S — 2 — y. By (8) of Property EM there exists an irreducible
B(J)-cartesian membrane F' = h(C x M, x) from = to J and by (D)
and (2) of Property EM, S = F + F’, where F’ has base J. Now
by (B) each J’' e B(J) separates S, hence by (ii) of Definition 1, some
Jy = h(C X q) separates « from y. Then by (2) of Property EM, S=
F, + F, where F| and F, have base J,. From (D) and (8) of Property
EM there exists h, and h, such that F, = h(C x M,,x) and F, =
hy(C x M,, ). From (C) M, and M, are simple continuous arcs and x
Y are endpoints of M, and M, respectively. Hence from (B) there
exists a homeomorphism from S onto S that carries « onto y; therefore
S is homogeneous [10: p 378].

A topological space X is inwvertible [7] if for each nonempty open
set U in X there is a homeomorphism 2 of X onto itself such that
MX — U) lies in U.

LemMMA 2. If S has Property EM then S is invertible.

Proof. For any open set U in S and any point xze U, some
J € B(J) separates x from Fr(U); then if S = F, + F, where F| and
F, have base J, we can find a homeomorphism as in Lemma 1, that
maps S onto S such that F, maps onto F, and F, maps onto F}, hence
(S — U) into U.
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THEOREM 1. Let n > 1 and let each element of B(J) contain a
point at which it is locally euclidean of dimension (n — 1). Then S
ts an n-sphere if and only if S has Property EM.

Proof of the sufficiency. Let Je B(J) and let # be an element
of J at which J is locally euclidean of dimension (n — 1). Let U be
an open (n — 1)-cell neighborhood of = in J. Let F = h(C X M, b)
have base J. By (C), M is an are, and if V is an open subinterval
of M containing a point y, A(U x V) is an open mn-cell neighborhood
of h(x,y) in F. Since (U x V) misses J, h(U x V) is open in F —J,
and hence in S. By Lemma 1, S is homogeneous; hence every element
of S has an open 7-cell neighborhood, and so S is wm-manifold. Doyle
and Hocking in Theorem 1 of [7], have shown that if S is an invertible,
n-manifold, then S is an m-sphere; hence by Lemma 2, S is an n-sphere.

The proof of the necessity is identical to that of Theorem 2 in [5].

Because 0-spheres are not connected the above proof does not hold
for » = 1. We refer the reader to Theorem 1 of [5] for a character-
ization of the l-sphere by an excluded middle membrane principle.

ITI. Related results.

LEMMA 8. If S has Property EM then S is locally connected.

Proof. We note that if F is an irreducible B(J)-cartesian
membrane with base J, then F'— J is an open connected set in S,
and proceed as in the proof of Lemma 2.

LemMA 4. If S has Property EM and Je B(J) then J is locally
connected.

Proof. Let S = F,+ F where F, and F' have base J and F =
h(C x M,b), where M is an are from a to b; and A(C X a) =J as in
(1) of Definition 1. Since S is locally connected, the open set
F — J — b is locally connected. We define f(k(¢c, m)) = h(c, a), where
h(c, m) is a point in F' — J — b; then f is a projection onto J and can
easily be proved to be continuous and open. Since F —J — b is
locally connected and local connectedness is preserved under open,
continuous mappings, J is locally connected.

THEOREM 2. If S has Property EM and J e B(J), then J contains
a 1-sphere.

Proof. Let Je B(J), and F = h(C X M,b) have vertex b = h(C xb)
and base J. Since J is locally connected, C must contain an arc I;
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and by (C), M is an arc. Then the set E' = h(I X M, b) is a closed
2-cell contained in F. Let E be any subset of £’ that is homeomorphic
to euclidean 2-space E°*.

Let b, 1 =1,2, ---) be a sequence converging to b in M. Then
the half open intervals M; = bb, — b, form a basis of open sets in M
at b, and the sets U,(b) = h(C X M;, b) form a basis of open sets in
F at b. These open sets have the property that Fr(U;(b)) is homeo-
morphic to J.

Choose 2z ¢ E, then x¢J. By the homogeneity of S there exists
a basis of open sets U;(x) which have the property that their boundaries
are homeomorphic to J. Now fix ¢ such that U= Uy(x)-E has a
compact closure in E. Let V be the component of U that contains z.
Since E is locally connected, V is open in E. Also Fr(V)c Fr(U/(x));
therefore without loss of generality we can think of Fr(V) as being
a subset of J. Let V' be a component of E — c¢l(V). Then V' is an
open connected subset of E and Fr(V')cC Fr(V). Since Fr(V’) is
closed and Fr(V) compact, Fr(V’) is compact. By Theorem 25 of
[10: p 176], Fr(V’) is a continuum. Then by Theorem 28 of [10: p
178], Fr(V') is not disconnected by the omission of any point.

Let r,s€ Fr(V’), and let ¥ be an are from » to s in J. Let
ge Y — r —s; now ¢ does not separate r from s in Fr(V’); hence ¢
does not separate r from s in J; then there exists an are Y’ from 7
to s in J that does not contain ¢, and Y + Y’ must contain a 1l-sphere.

REMARK. Since J is locally connected, J is arcwise connected and
as such cannot be an indecomposable continuum; by Theorem 2, J
cannot be hereditarily unicoherent. A simple proof using the Brouwer
Invariance of Domain Theorem [9: p. 95] will show that J cannot be
a closed n-cell.

LemMA 5. Let S be an n-sphere having Property EM with respect
to some B(J). Q) If G is an (n — 2)-sphere in J< B(J), then J — G
s not connected; (2) if E is a closed (n — 2)-cell in J, then J — E
ts connected.

Proof. (1) Suppose J — G is connected. Let S = F, + F, where
F, and F, have base J; by (B) and (C) we can find &, and h, such that
F, = h(J X My, b)), Fy="hy(J x M,, b)) and h, | (J X a) =h, | (J X a) where
M, and M, are arcs from a to b, and a to b, respectively. Then K =
h((J — @) <X (M; — b)) + ho((J — G) X (M, — b)) is connected. But
S — K="hG x M,b) + h(G X M, b)) is an (n — 1)-sphere is S and
must disconnect S by the Jordan Separation Theorem [9: p. 101].

The proof of (2) is similar to that of (1).
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THEOREM 3. A mecessary and sufficient condition that S be a
3-sphere 1s that S have Property EM if and only if B(J) is o
collection of 2-spheres.

Proof. The sufficiency follows from Theorem 2 of [5].

By Theorem 2, every Je B(J) contains a 1-sphere, and by (1) of
Lemma 5 every 1-sphere in J separates J. By (2) of Lemma 5 no proper
subcontinuum of a 1-sphere in J separates J; and by Lemma 4, J is
locally connected; therefore by Zippin’s Characterization in [11: p. 88}
J is a 2-sphere. The rest follows from Theorem 2 of [5].

We need Hypothesis:

(H1) If F, F,and F" are irreducible B(J,)-cartesian membranes
with base J, then F, + F, + F" is contained in some E°

H2) If S,=7F,+ F" is a 2-sphere in E? =z is vertex of B(J,)-
cartesian membrane F, and t, = h,(c, X M", ) (c, € C) is a projecting
arc from x to J through a point y €int(S,, E®), (the interior of S, in
E®), then t, — x C int(S,, E°); if ¢ €int(S,, E°) - J=J', thenq ¢ cl (J — J').

THEOREM 4. Let S have Property EM, let (H1) and (H2) hold
and let there exist a region R in S such that J - R contains a 1-sphere
J, and R-J 1s embedded in the euclidean E*; let there exist g€ J —R.
Then J contains a closed 2-cell with J, as boundary.

Proof. By (2) of Property EM there exist irreducible B(J)-cartesian
membranes such that S=h(CxX M, b)+h'(CxM', b') where h|(Cxa)=
B |(C x a) and M, M’ are arcs from a to b and a to b respectively;
since J O J,, there exists C,c C homeomorphic to Jy; let A(C, X M, b) =
F, and B (C, x M',¥’) = F"”, where then F, and F" are irreducible
B(J,)-cartesian membranes from J, to b and b" respectively. Let S, =
F, + F"; by Theorem 2 of [5], S, is a 2-sphere.

By hypothesis there exists g eJ — R; thus g¢.S,, and so by (H 2)
the projecting arec from b to ¢ does not contain a point of int (S,, E°);
let ¢ be an element of this projecting arc. By (3) of Property EM,
there exists an irreducible B(J,)-cartesian membrane F', = h,(C, X M,,c)
with base J,, a subset of an irreducible B(J)-cartesian membrane
h(C X M,, ¢) from ¢ to J; by the choice of ¢, h(C X M,, ¢) = h(C X M, b)
and thus S, = F, + F" is a 2-sphere.

Since ¢ ¢ int (S,, E°), there exists a region R’ about c¢ such that
cl(R")+ S, = ¢; then by Lemma 3 of [6] there exists an irreducible
B(J)-cartesian membrane F,, = h(C X M/, ¢), for M/ M,, such that
F,.R' D F,.

Let {t..} be the class of all projecting subarcs from ¢ to J which
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are contained in (S, — (F},, — J))) -+ int (S,, E®) — (F,, — J!), where
J; is the base of F,,; that is ¢, is an arc from J to Fi, in and on S,.

Let Z/ = Ut,, and let Z = Z'.J. Suppose Z’ = Z] + Z] separate
[11: p. 8]. Since each ?,, is connected, each is contained wholly in
Z!{ or in Z); this is also true of J, and so of F, — F,,; so let Z/ D F, —
F,,oJ,.

By Theorem 5.37 of [11: p. 66] S, is arcwise accessible from the
embedding FE3; hence there exists an arc ¢b’ such that ¢b —c¢ —
b cint(S,, £®). But ¢b’ contains a point of int(S,, £*) and a point ¢
of S —int(S,, E® — S,; hence c¢b' contains some veS,, because by
the Jordan-Brouwer Separation Theorem [11: Theorem 5.23, p. 63] S,
separates E* into two domains. Hence by (2) of Property EM there
exists a projecting arc from ¢ to J through v, and so some t,. D v and
Z'Dty. Let Z,=Z!-Z(1 =1, 2), where by agreement Z, DJ, By
hypothesis J- R is contained in some euclidean E® and so let E be
the 2-cell bounded by ., in this E?. Thus J, + E > Z, and because
of v above E-Z # ¢. If jeJ-E, by (H2) the projecting arc c¢j is
such that ¢j —ccint(S,, E®). Thus jeZ, and so Z=J,+J-E =
Z, + Z, separate., Hence J = (4, + (J — E)) + Z, separate, which is a
contradiction, since J is a continuum. Therefore Z and Z’ are connected.
By Lemma 4 J is locally connected, and so by (H2) Z is also.

Since Z is closed, Z contains all of its boundary points in the space
J. By the Torhorst Theorem [10: p. 191, Theorem 42], the boundary
of any complementary domain of Z in E must be a 1-sphere J;. Using
J; in place of J, one obtains a 2-sphere S. with poles ¢ and & and
with J; as a base in S;. Thus an arc bc¢’ above exists such that
e — ¢ — b Cint(S/, E®) and there exists a point ve S, - ¢b’; also there
exists t,, as above, now contained in the int(S/, E%; hence an endpoint
of t,, is an element of int (J§, £?); thus a point of Z is in the comple-
mentary domain above of Z in E, which is a contradiction. Therefore
Z = K, and so J contains a closed 2-cell.

If (H1) and (H2) hold, J cannot be a plane universal curve.
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A NOTE ON REFLEXIVE MODULES

E. E. ENocHs

For any ring A and left (resp. right) A-module £ we let E* denote
the right (resp. left) A-module Hom (¥, A,) (resp. Hom, (¥, A,)) where
A, (resp. A;) denotes A considered as a left (resp. right) A-module,
Then the mapping E— E** guch that x< £ is mapped onto the map-
ping @ — @(x) is linear.

Specker [3] has shown that if E is a free Z-module with a denu-
merable base (where Z denotes the ring of integers) then E is reflexive,
i.e. the canonical homomorphism E — E** is a bijection. In this paper
it is shown that a free module E with a denumerable base over a dis-
crete valuation ring A is reflexive if and only if A is not complete
and if and only if £ is complete when given the topology having finite
intersections of the kernels of the linear forms as a fundamental system
of neighborhoods of O. Specker’s result can be deduced from these re-
sults. We note that this topology has been used and studied by Nunke
[2] and Chase [1].

THEOREM 1. Let A be a discrete valuation ring with prime II
and let KB be a free A-module with a denumerable base. Then E 1is
reflexive if and only if A 1is not complete.

Proof. Let (@,);ey (IN the set of natural numbers) be a base of
E and let E;={p|pekE* @@)=0 t=0,1,2 ---,5—1. Let
ai€ E* be such that aj(a;) =1, a(a,) =0 if 5 # k. Then clearly a,
aj, «++ &, generate a supplement of E; in £*. For each x € K the can-
onical image of x in E** annihilates some E; and conversely if v e E**
annihilates E; then 4 is the canonical image of 3,_.,...,;—1 Yv(ai)as.
Hence E — E** is a surjection if and only if each + ¢ E** annihilates
gsome E;. If E— E** is not a surjection let ¢ E** be such that
V(E;) # 0 for each je N and let ®;€ E; be such that 4(®;) = 0. We
can suppose that @;e II'E; and that (@) e ITA but y(p;) ¢ I™+HA
where m,;,, > m; for all i€ N. To show A complete it suffices to show
that every series > ey 8;/1™, B;€ A converges. We can find a scalar
multiple of @; say ®; such that (@}) = B8;1I7. Then let e E* be
such that @(x) = Jey @i(x) for all xe E. This sum is defined since
for a fixed xe ¥ and M sufficiently large positive integer we have
Pu+i(x) = 0 for all e N. Furthermore, since @} e [I'E; it is clear that
the series Y @; converges to ® when E* is given the topology having

Received December 6, 1963.
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the submodules II"E*, ne N as a fundamental system of neighborhoods
of 0. Under this topology +: E* — A is continuous. Hence

PIICAE W

converges to J(®). Thus A is complete.

Conversely if A is complete let (a});ey as defined above be a sub-
family of the family (a))iex,, Ni D N where (a] + [IE*);ey, is a base
of the A/Il A module E*/II E*. Then if E’ is the submodule of E*
generated by the family (ai);cy, it is easy to see that E’ is free with
base (a)icy, and that E’ is a dense pure submodule of E*, i.e. E*/E’
is divisible and torsion free. Then, since A is complete the map E** —
E'* which maps an element of E** onto its restriction to E’ is a
bijection. But this clearly implies the existence of a € E** such
that +(a;) = 0 for all 1€ N, and hence for all 7€ N. Thus E— E**
is not a surjection.

COROLLARY. If A is an integral domain with a prime I such
that the discrete valuation ring A, is not complete then free A-modules
with denumerable bases are reflexive.

Proof. There exist canonical injections of E, E* and E** in E,,
E*, and E}* and furthermore if for x€ E, @< E*, and <€ E** we
let Z, @, and + denote the image of z, @, and + in E,, EY, and EX*
then @(x) = &) and (@) = (®). Then if (a,);ey is a base of E,
(@;)iey 18 a base of E, and if (@));c » is defined as above we get @i(a@;) = 1,
ai@;) =0 if 4 #j. Then if ¢ € E** is such that y(&;) = 0 for each
J then + is not in the image E, under the canonical homomorphism
since ¥((¥,);) # 0 where E; and (E,); are defined as above.

THEOREM 2. If A is a left Noethrian hereditary ring, then a
left A module E is reflexive 1f and only if E is complete when
endowed with the topology having the finite intersections of the kernels
of the linear forms as a fundamental system mneighborhoods of 0.

Proof. Clearly E is separated with the topology described in the
theorem if and only if the map E— E** is an injection hence we
suppose that F is separated. For each finite subset X of E* consider
the subset X° of E** consisting of all 4 € E** such that +(X) = 0.
Let E** be endowed with the topology having the submodules X° as
a fundamental system of neighborhoods of 0 where X ranges through
all finite subsets of E*. Then it is immediate that E** is complete
with this topology. If we can establish that the canonical map F —
E** maps E isomorphically onto a dense subset of E** then it will



A NOTE ON REFLEXIVE MODULES 881

follow immediately that E is complete if and only if E is reflexive.

Let X be a finite subset of E*. Then clearly the intersection of
the kernels of the elements in X is mapped onto the intersection of
X° with the canonical image of E in E** hence E is mapped isomor-
phically onto a subset of E**. Thus it only remains to prove that
the image of Ein E** isdense in E**, If v € E** and X = {@,, p,, « -+ @,}
is a finite set of elements of E* consider the map EF— [[;-,,..... 4;
such that z — (9;());=y,...,, where A, = A,. Since A is left hereditary
the kernel of this map FE, = Ni-y....., ?7(0) is a direct summand of
E so let E = E, + E, (direct). Then since A is left Noetherian E, is
a finitely generated projective module so it is relfexive. Now E* =
E? + EP (direct) and E** = EP°° + EP° (direct). Clearly EP° is
isomorphic to E,;** and the restriction of the canonical homomorphism
E — E** maps E, isomorphically onto EP°. If + = 4, + 4, where
4, € EP°° let x e E, be such that * — 4, under the map £ — E**, Then
since - — 4r,€ EP° and since X = {p, @, -+, P} C E° we get
A — 4, € X°, This completes the proof,
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ON THE REFLECTION OF HARMONIC FUNCTIONS
AND OF SOLUTIONS OF THE WAVE EQUATION

VLADIMIR FILIPPENKO

Introduction. While the analytic extension of a harmonic function
across analytic differential boundary conditions is always possible for
the case of two independent variables [3], no comparable global theorem
exists for harmonic functions in N > 2 variables.

This work is concerned with the problem of global extension of a
harmonic function Ulz, y,z) across a plane on which U satisfies a
linear differential boundary condition of the form

B =20 4 pw, U= -
== (2, U =0 on a(z = 0),
where P,(x,¥) is a polynomial of degree n. It is assumed here that
the given function U is C' in the closure of a cylindrical domain
R:{o*+y"<p’,, =l <2<0}

The possibility of harmonic reflection is obvious for w =0, P, =
const. as B(U) itself is harmonic. Since it vanishes on z = 0, it can
be extended harmonically, and the harmonic extension of U can then
be found by integrating with respect to z. But such procedure is no
longer available in our case. We shall show, how our problem can be
reduced to that of solving an initial value problem of a certain hyper-
bolic differential equation (1.22) of order 2n with distinct characteristic
surfaces (of normal type).

Classical considerations yield the analyticity of U on ¢ and, there-
fore, its harmonic extensibility across ¢ into a neighborhood of ¢. Our
result asserts that this neighborhood is the whole of the mirror image
of R, denoted by R.

Our method consists of constructing a new function V(z, ¥, 2)
from U and a differential expression in V (see (1.6) and (1.18)), which
is harmonic in R and vanishes on 2 = 0. Thus, this expression in V
can be first extended into R U o U R as a harmonic function ¢(z, ¥, 2).
The solution of the differential equation thus obtained for V in R is
impeded by its degeneracy. To remove this degeneracy we add to the
differential equation the Laplacian of V and its higher derivatives in
such a way as to obtain a normal hyperbolic problem (1.22), whose
solution is guaranteed by a result of I. G. Petrovsky. This modifica-
tion of the differential equation can be done in infinitely many ways,
in particular, so as to make the characteristic surfaces close down on

Received February 20, 1964. This work was supported by the Office of Naval Re-
search, #222 (62)
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parallels to the z-axis. Local extensibility of U, together with the
solution of the modified equation, then yields the global extension of
U. We note, that this method works equally well for N > 3 independ-
ent variables.

The above described method, however, seems to fail in the case
of the wave equation when o is part of the tilmelike plane z = 0, and
the boundary condition on it is as simple as U, + «U = 0.

On the other hand, the oblique derivative problem for the wave
equation U,, + U,, — U,, = 0, whose solution satisfies the boundary
condition

BU)=U,+aU,+ Ay + BU=0 onx=0,

yields to a similarly motivated, yet formally different attack. The
domain of extension in this case depends on « =+ 0.

I would like to take this opportunity to express my gratitude to
professor H. Lewy who suggested this problem and offered advice
during its investigation.

1. Amnalytic extension of harmonic functions. We consider an
open cylindrical domain R: {2* 4+ y* < 0*, —1 < 2 < 0} and the plane
region o:{x* + ¥* < 0%, 2 = 0}. Denote by R the mirror image of R
with respect to the 2z = 0 plane.

Let there be given a real function U(x, y, 2), Ue C* in the closure
of R, such that:

(L.1) U,+U,+U,=dU=0 inR
(1.2) —%ii + P, y)U=0 ono

where P,(x, ) is a polynomial in @, y of degree », given in the form
n k

(1.9) Py, v) = 3 3 Aun @,

the coefficients A,, being real.

LEMMA 1. If Ulx,y,?2) is harmonic in R, UeC' in RUOR,
and satisfies condition (1.2) on o, then U can be harmonically extended
into RU o UG, where G is the portion z >0 of some neighborhood
of o.

Proof. Since U is C* in RU R, we have by Green’s formula

B 1 0U0) _ gl 1
1.4 4”U(X)_Sgaa{(X—rl on U(T)"m‘X“T'}dT
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where X = (z, 4, 2), 7 = (& 1,{), » is the outer normal, and integra-
tion is over the surface of the ecylinder € 4+ %' =p% { = —I, {=0.
By (1.2) this becomes

—ax) — ([ {BOUO | gy d 1
17 U(X) = 4 — || [HET 4 ve)g e

where A(X) stands for the integral in (1.4) taken over the lateral
surface and the lower base of the cylinder. By passage to the limit
as X tends to X’ eo, one obtains in a manner familiar in potential
theory,

PUE) 40

2 U(X") = AX") — SSG e

where A(X’') is an analytic function on ¢. This integral equation is
an especially simple case of E. Hopf’s equation (6.1) ([2], page 220),
and his method yields immediately the result, that U(z, v, 0) is analytic
on the open disc o.

Since, due to condition (1.2), U,(x, v, 0) is also analytic, we obtain
from the Cauchy-Kowalewski theorem, that there exists an analytic
solution U of Cauchy’s problem with U=U, U, = U, on o for 4T =
0 in some neighborhood G of o.

If we continue U, given in RU o, as U in G — R — o, this new
function is, according to well known arguments, harmonic in RUo UG.

We now introduce the symbolic notation

(1.5 D f@, v, = | f@, u, 0L,
and define an analytic function V(z, y, 2) for (x,y,?) € R U o:
(1.6) V@, y,7) = Do U@, 0,9 + 5 2 Fy(w, v),

=0 !

where the functions Fi(x,y) (0 <k < 2n — 2) are solutions of the
following equations on o:

0’ 0’
. Dy F2n~2 2\ I =
(1.7) (Z+ 6y2) + U, 9, 0) = 0
® , 3
.9 (2 + —a?)Fm_s + U, y,0) = 0
62 62
(L.9) (Gt Z)F+ Fua=0 @=rs2n—4

with, say, boundary values zero on z* + y* = p?,
The choice of these functions is motivated by the requirements
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(1.10) 4V =0 in R
(1.11) szn + Pn(x, '}/) V,2n~1 =0 on o

s

which are easily verified.
Let s stand for either = or for y, and denote

H,=s2 — 29 | Hr=@H, ).

We then have the identities:

2m+1 Zm A g 0PI "
(1.12) Hi™ = =0 jgloajks ’ Bsipzk—rH (m=0,1,2,+-4) ¥
2m 2 & m 2k— 62k—j
(1013) Hs,o = kzz Z:| ]_———asjaz%_zj (’m, = 1, 2, - .)

where the coefficients a}, and b7, are real numbers, and af, = by, = 1.7

Proof. Introducing new variables t = s -+ 42, T = s — 12, we may
write, with 8/t = 1/2[(9/0s) — 1(8/8z)] and 8/t = 1/2[(6/ds) + (6/02)]

H,, = z(ti — T—@-—> .

ot ot
Hence,
e —Dp 6 D]
(1.14) sO =1 Z( 1) ( >( 8t ) (T—a;-> =0 .
Now, for any variable & (real or complex)
o"
o —_— b
( agz) h; Big g

where the coefficients Bj are nonnegative integers. Since 87/0t = 9t/or =

0, and for z = 0 we have { =7 = s, each term in (1.14) is, but for a
constant coefficient, of the form

torh 0+E
ot¥ock

= g¥tB ov+P
2=0 ot¥oct

l=a+B=n).

Since 9*/6toT = 1/4[(6%/0s®) -+ (8%/62%)], each term in (1.14) is, but for a con-
stant coefficient, either of the form

o? o° min @,8 0 \'*—8l
ot ol ()
0s* + 0z? ot

62 62 mine,8 0 la—B1
ol T T (2)
0s’ + 02* ot

or of the form
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Now, for any positive integer ¢, [(8/0s) £ i(9/92)]* has terms with
imaginary coefficients only of the form 8+*/9s*9z*, where g is odd,
and terms with real coefficients only of the form 8**/0s*8z“, where n
is even (A 4+ ¢t = q). Consequently, as H, must have real coefficients,
it will consist of terms s***(9***/9s*092*), where ¢ is odd when 7 is odd,
and /¢ is even when % is even, which implies identities (1.12) and (1.13).

LeMMA 2. There exist differential operators

r or
D; = i h—————
;:,‘OC Y ost o

where C,., are real constants, such that

2p—1
(1.15) 0" _ S Hi DI forz=0
2 =

Proof. Starting from the definition of H;, we see, that the above
statement holds for p =1 and p = 2, with D) =1, D} = §/8s and D; =
0/0z. Assuming, that the statement holds for » < 2n, we prove by
induction, that it also holds for p = 2n + 1 and p = 2n + 2.

Since, by assumption, the lemma holds for » < 2n, we have for
any nonnegative integers « and 5, and any positive integer q < 2n

a2q-—1+oﬂ+ﬁ

(1.16) 8¢ — Eq_“ Hi Dy-v+a+s
=1

0s®0z 1B i

But identity (1.12) yields

aML-)—l 6211. n am—-j+1
241 = [+ _ n Q2n—j+1
8 —_— = 5,0 Z ;.S —_—
8z4n+1 azim 1 asgaz4n——21+1
n—1 k " 2hgid 62n+2k—j+1
— (9 A St
kzzl‘ojg{) ik Psipzintrk—am+1

‘We now observe, that all terms on the right hand side of the above
expression are of the form (1.16), where ¢=2n—J5+1 (1 =275 = n,
ie. ¢ =2n), a =3, 8=0, for terms contained in the simple sum, and
q=2k—7+1 0=j<k 0Zk=n-—1, ie. ¢=2n—1), a=yj,
B =2n — 2k, for terms contained in the double sum. Hence, the above
lemma holds for p = 2n + 1.

A similar argument, which utilizes identity (1.13) instead of (1.12),

shows that this lemma holds also for » = 2n + 2, and thus completes
the proof.

We now introduce the differential voperator of order 2p — 1

(1'17) ;),z = éHsi,z-Diy—l (p g 1)
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where the D/~ are those of (1.15). Note that, for 2 =0, Q?, =
sp(aZp—l/az2p—-l) .
Define an analytic function @(x, ¥, 2) for (x, ¥, 2) € RUo:

(1°18) @(ﬂ}', Y, Z) = szn(m’ Y, Z) + NV(x! Y, Z) .

Here V(x, y, 2) is the function defined in (1.6), and N = N(x, y, ) is
a differential operator of order 2n — 1 defined by:

6n —2k

a 2n—2k

N@, y,?) = m§m1+zmmm+m&m

+ﬁzmm np,

=2m=1

(1.19)

a2n—2k +1

a 2n—2k+1

where the coefficients A,, are the coefficients of the polynomial P,(x, y)
defined in (1.3).

LEMMA 3. 49 =0 in R, and o(x,y, 0) = 0.

Proof. Note, that 4H,,= H,,4 and 4H,,= H,,4d. Thus, by
(1.17) and (1.19), the operators 4 and N commute. Therefore, opera-
ting on both sides of (1.18) by 4, and making use of (1.10), we obtain

dp = (_69-2-+N>AV 0 inR.

Making use of (1.17) and (1.15) we may write, for z = 0,
Nz, y, 2) V(2, ¥, 2)|.=

27 —1 k 1 2k —1 2n—2k
= {Aooa—' + Z <Ak0x + Auy” 0 > 0

ozt = oz pyrrmy 022k—1 / ppn—2k
n k1 ; pPh—2m—1 fim—1 G2kl
-—m 3
+ kE:sz:IA’””x p2l—rm—1 Y zim—l  Gan—2htl }V(x’ Y, Z) L=0 ’

which becomes
" k
(1'20) N(wy Y, Z) V(x) Y, Z) |z=0 = kZ:DEoAkmxk_mym szn"l (x, Y, 0) .

Thus, setting # = 0 in (1.18) and making use of (1.20) and (1.11) we
obtain @ (z, y, 0) = 0. ~
Hence, if we set for (z,y,2)ceRUo

(L.21) oz, 9,2) = —o@, 9, —2) = [ oc + N(z, v, C)]V(x Y, C)’

then @ is harmonic in RUo U R.

Since @(x, ¥y, —z) is known for (x,¥,2)e R Uo, we shall seek a
function V(z,y,2) for (x,y,2)c R U o, which satisfies the following
overdetermined system (S) for V on z > 0:
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~[722’”(:”; Y, Z) + N(w; Y, Z) V(xy Y, z) = —<,D(90, Y, —Z)
AV(x, y,2) =0
. (x, ¥, 2) . )
%V =F(x,y) 0=r=2n—2 V(¥ 0) = Ux,vy,0)
z'r 2=0

where the functions F,(v, y) are defined by the equations (1. 7, (1.8)
and (1.9).

Since, by Lemma 1, U can be continued into RUcg UG as an
analytic function, the formula (1.6) can be used to define a function
V*(x, ¥, 2) as an analytic function in RU ¢ U G’, where G’ consists of
all those points of G, which can be joined in G to points of ¢ by
parallels to the z-axis. This, so defined function V* is harmonic in
RUo UG, satisfies the initial conditions of (8S), and

VA 92 + NV = —| o4 Ny, 0| V2,0 e,
== —¢(x7 Y, —Z) in G’ .

Thus, a solution V*(z, y, 2) of system (S) exists for (z, y, 2) e G’ U o.
To investigate the size of the domain into which V{(x, y, 2) can be
continued, consider the solution of the following Cauchy problem:

i

(L22) MV, 0,2 =11 [_@Z_ - ai(—%; + gy_)]v + BN, y, 2)V

= —B@(% Y, ——Z)

v

(1.23) o7 oo = =F(x,y) 0=r=2n-—2), Vil y, 0) = Ulx, y, 0)

where @;(v =1, 2, ---, n) are distinct positive real numbers, and 8 =
(1 + a,).

Now, for distinct positive a;, M is a normal hyperbolic operator
with the distinct characteristic sheets through a point (z°, %°, 2°) of the
form (& — 2" + (¥ — ¥°)’ = ai(z — 2. It is a result of I, G. Petrovsky
(see [1]), that the Cauchy problem (1.22), (1.23) has the unique C=
solution V(z, y, ?) in that part R} (@ = (@, @, ««- «,)) of the domain
of influence of the initial surface ¢ for the equation MV(x,y,2) =
—BP(x, ¥, —2), which lies in R, so that o(x, y, —z) is defined.

In view of the identity

H(1+a)6m ~H[az ,-(aa—g;—k:—;ﬂzp(m

where P is a polynomial in 8/6x, 8/8y, 8/6z the function V*(, vy, 2),
which solves system (S) in G’ satisfies the above Cauchy problem (1.22),
(1.23) in the neighborhood of the initial surface o, and by uniqueness,
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the solution V(x, ¥, 2) e R must coincide with V*(x, ¥, 2) in that
neighborhood. Consequently, 4V and all its derivatives vanish on o.

Since the operators M and 4 commute, operating on equation (1.22)
by 4 we obtain M(4V) = 0. Therefore, by uniqueness of the solution
of Cauchy’s problem for M(4V) =0 with homogeneous initial condi-
tions, we conclude that V(x, ¥, 2z), which solves (1.22), (1.23), is har-
monic in R* and solves system (S) in this domain.

Putting Uz, v, 2) = (6™ '/02™7) V(x, y, z) for (z,y, 2) € R¥ we have
constructed the harmonic extension of U into RUoc U R}. We now
observe, that as «;—0 (4 =1, 2, ---, n) the characteristic surfaces of
M close down on parallels to the z-axis. It follows, that every point
of R is in some R} for «; sufficiently small. In view of the simple
connectedness of RU ¢ U R, the harmonic extension of U at any point
of R cannot depend on «, and it follows that U can be harmonically
extended into all of RUo UR. Thus,

THEOREM 1. If U(x, y, 2) s harmonic in R, UeC' in R UOR,
and satisfies condition (1.2) on o, then U can be harmonically ex-
tended into RU o U R.

REMARK The construction of the extension of U depended on the
solution of a hyperbolic problem whose order is twice the degree of
the polynomial P,(x, ¥), the coefficient in the first order boundary con-
dition. This illustrates the difficulty of extending our result to the
case of, say, a coefficient f(x, ), which is an entire function.

2. Extension of solutions of the wave equation. We consider an
open domain D:{—m <z <0, -l <y<l, —l<t<Il} and the plane
region ¢:{x =0, -l <y <!, =l <t<I. Denote, for any domain
&7, the mirror image of & with respect to the 2 = 0 plane by Z.

Let there be given a real function U(z,w,t), Ue C* in the closure
of D, such that:

(2.1) Lv=u0v0,+U,—U,=0 in D
(2.2) U,+aU,+ Ay +B)YU=0 on ¢

‘where «, A, B are real constants; « == 0.
Define a function V{(x, 9, t) for (z, ¥, t)e DU o:

@3) Vi, v, = | UE v, i + 6, 9

where G(y, t) is the C* solution of the Cauchy problem:

GWI - Gtt + Uz(oy y’t) =0

@4 G, 0) = Gy, 0) = 0
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Let P be the parallelepiped bounded by the planes ¢+ y = I,
=0, x = —m. Then, V(x,y,t)cC{V,c(C" is defined in PN DU o,
and we have the relations: '

(2.5) LV =0 in PnDUg,
(2.6) Ve +aV,, + (Ay + B)V, =10 on Pno,
which are easily verified.

We now define for (x,y,t)e PN D U o the function:

@0 o@yt) =V, +aV,, + A(yi — w_""_) V + BV, .
ox Oy

Since the operators L and {y(0/dx) — x(6/0y)} commute, operating
on both sides of (2.7) by L, and making use of (2.5), we obtain:

P & 9 9
I :{_ 4 B._—A—}LV=0.
? = Vog T Yougy T AT Blgy — e (LY

Setting « =0 in (2.7), and makin_g use of (2.6) we have @(0, v, t) = 0.
If we now set for (x,y,t)e PN DUo

P(x, Y, t) = —p(—2x, ¥y, t)

it follows, that Lo =0 in PN DUoc U PN D, and @e C-.

Since ¢(—=x, ¥, t) is known for (z,y,t)e PN DU o, we now seek
a function V(x, y, t) for (x,y,t)e PN DU o, which solves the follow-
ing Cauchy problem:

‘(2'8) MV(x, Y, t) = Vx:c + avxy + (Ay + B)Vz - Axvy = —Q(—xy Y, t)
{2.9) VO, y,t) =Gy, t)y, V.0,y,t)=U0,qy,t) on Pno.

It is well known, that the function V(z, v, t) € C*, which satisfies (2.8),
(2.9), exists in a domain Q. Here @ is that domain, each of whose
sections by a plane t = K(—I < K < [) is a right triangle bounded by
2=0,y=1l—|K|landy —ax =|K|—~1lif a >0, or by 2 =0, y =
|K|—land y —ax=10—| K| if o <0, Note that @ does not depend
on U, and is a subdomain of PN DU 0.

LEMMA 4. If V(x,y,t) € C* in Q 1is the solution of the Cauchy
problem (2.8), (2.9), then LV =0 in Q.

Proof. We operate on both sides of (2.8) by L. Since the operators
L and {y(8/6x) — 2(0/0y)} commute, and Lp(—z, ¥, t) = 0, we obtain:

MLV)=0.
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setting « = 0 in (2.8) we have,
V.0, 4, 1) = —aV,,(0, y, t) — (Ay + B)V,(0, y, t)
and hence, making use of (2.9) and (2.2), we obtain:
(2.10) V.0, 4,t) = U0, 9,1) .
Thus, due to equations (2.9) and (2.4)
LV|=0.
From (2.3) and (2.7) we have:

@(—xv y) t) = (/D(Sy y? t) |$=~z = UE(S’ y’ t) [E=—x + aUy("_x’ y, t)
+ (4y + BYU(—a, 3, §) + AsG,(v, 1) + Av | "UL(E, v, g

0
and therefore,
o

(2 11) o1 ¢(—ﬁx’ Y, t) |x=0 = - U:m(O’ Y, t) - aUa,y(O, Y, t)

_(Ay + B) Uw((), Y, t) + AG?I(yy t) .

Differentiating (2.8) with respect to », and setting ® = 0 we obtain
Vaws + @Vosy + Ay + BYV., — AV, = =L p(—2,9,) .oy on =0,

which after substituting (2.9), (2.10) and (2.11) becomes:
waa}(oi y! t) = Ua:a:(oi y! t) .

Hence, by (2.9) and (2.1),

ﬂLle:o =0,
ox

Consequently, by uniqueness of the solution of Cauchy’s problem
for M(LV) =0 with homogeneous initial conditions, we have that
LV =01in Q.

We thus have:

THEOREM 2. If Uz, y,t)e C* in the closure of D solves the wave
equation (2.1) and satisfies the boundary condition (2.2) on a, then
there exists a function U= V,e C® in the subdomain Q of D, which
extends U across o as C° solution of the wave equation.
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MAPPINGS OF BOUNDED CHARACTERISTIC INTO
ARBITRARY RIEMANN SURFACES

D. J. H. FULLER

Introduction. Throughout this paper we consider analytic mappings
f(@) of an arbitrary open Riemann surface R into an arbitrary Riemann
surface S. Heins [3] introduced the class of Lindelofian maps when E
is hyperbolic, and defined them in terms of Green’s functions; further
contributions have been made by Rao [4],[5]. In the case of planar
regions these maps are the classical functions of bounded characteristic.

Sario [6],[7], has utilized principal functions [1] on the range
surface to obtain generalizations of the main theorems for mappings
of R into S. In this paper a different first main theorem is obtained
in which the proximity function is a generalization of Nevanlinna’s
proximity function by means of the substitution of a principal function
for the logarithmic function. It is shown that the resulting class of
functions of bounded characteristic are the Lindelofian maps, and that
an extremal decomposition characterization of these functions can be
obtained as in the classical case.

1. An auxiliary family of functions. Analytic mappings from
an arbitrary open surface R into an arbitrary surface S can be considered
in terms of families .~ of LH functions, i.e., harmonic functions,
with isolated logarithmic singularities having integral coefficients. For
the purposes of this paper we slightly generalize the term, parametric
disk: 4 = (Q, ) is a parametric disk if Q is a classical parametric disk,
and there is defined on it a metric ¢ that is a real scalar multiple of
the induced metric.

We let £ be the local variable on S, and fix ¢S and a parametric
disk at o. If S is closed we define t({, g, @) for a ¢ S\o (set difference)
as the LH function on S which has singularities log |{ — a| and
—log |{ — ¢ | and is normalised by

lim (¢(¢, 0, @) + log |{ —0 ) =0

in terms of the fixed parametric disk. At « a parametric disk is
fixed such that

Received September 19, 1963. This paper represents part of a thesis submitted to
the faculty of the University of California, Los Angeles, in partial fulfillment of the
requirements for the Ph. D. degree. The author is indebted to Professor L. Sario for
his guidance and to Dr. K. V. R. Rao for his advice and help.
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in terms of it. We define successively

t(Cr a, 6) = _t(C, g, a) ’ CKES\O' ’
W, a,d) =, a,0) + UL, 0, 0), a,0eS\o .

These functions form the family .7~

If S is open, more than one family can usually be formed. We
consider an exhaustion of S by regular regions £ that contain o and
«, and define on Q2 the funection ¢,({, o, @) which satisfies the above
conditions for ¢, o, a) as well as one of the following:

(a) the normal derivative of ¢,(, o, @) vanishes on the boundary
92 of 2,

(b) a consistent partition of the boundaries of the regions 2 is

given, and £.({, o, @) has constant value and vanishing flux over each
part of 82 (J1] pp. 87-90).
By the theory of normal operators ([1] pp. 152 ff.) t(, o, @) is defined
as the directed limit of £,{, o, &) as S is exhausted by the regions
2. U a,0) and (¢, @, 0) are then defined as in the case of closed
surfaces S. Each condition in (a) and (b) determines a family .7. It
will be represented by .7, if (a) is satisfied and by 7(P) if (b) is
satisfied for a partition P; if P is the identity partition I, we write
7).

Since each function ¢ is a principal function ([1] p. 169), a family
.7 will be called a principal family. We note that a change in the
fixed parametric disk at o changes every function ¢, o, &) by the same
constant but leaves ¢(, @, 0) unaltered. Further, in view of our
definition of parametric digsk, for any given .7~ and constant k there
exists a family .77’ such that for all m,

{1, 0,0) =m} = {{[t'(,0,0) =m + k}, te 7,1’ e T .

We consider functions belonging to any principal family. If
«, 6 € S\o, these functions have the following four obvious properties.

t(c’ a’ a) = 0 b
t(C’ a’ 5) + t(C7 37 a) = O ?

D lim (HC, 3, @) + log | — 3| = 10,0, @) ,
to,a,d)=0.

LEmMMA 1.1. #a, 7, d) + (7, 6, @) + (0, a,v) = 0 when «a, v, are
distinct points in S.

Proof. If S is open we let 2 & S be a regular region containing
a,v, and 6, and consider functions ¢, defined on 2. We remove small
closed disks in £ that contain «,,d and apply Green’s formula to
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toC, @, v) and £,(,0,7) over the remaining region. On letting the
disks shrink to points we obtain

—'t!)(a! 67 7) + tﬂ(67 C(, ,Y) + R(ry) = 0
where
R('Y) = 1}}}} (tﬂ(C’ 5’ ’7) - t!Z(C? «, 7) = tﬂ(,\/v 57 a))

and the lemma follows by letting 2 — S.
If S is closed the same method is applied to S instead of to Q.

COROLLARY 1.2, ¥«, 9, 0) =t(0, , 0), @, € S\o.

Proof. This is obvious when a and ¢ are identical; if they are
distinct it follows from replacing v by ¢ in the lemma and applying (1).

COROLLARY 1.3. If « is distinct from o and v, then t(«, {, 7) is
of class LH on S\o with singularities at a and o.

Proof. If v = o this is implied by Corollary 1.2. Otherwise

Ha, L, ) +UE, 0,0) = Ua, 0,7),

which is constant.

LEMMA 1.4. +:S\o X S\o — [— 0, o] |¥(7, @) = (9, 7, &) s con-
tinuous for every fixed 0.

Proof. If 6 = o then + is identically zero; if not,

¥(71, a) = 19, 7, 0) + t(0, 0, @)

and each term is continuous by Corollary 1.2.

Sario [8] proves that if < S\o is compact and @ is an open set
containing E and o, then t(v,«,0)e .7, is uniformly bounded for
acKE,veS\Q. The same proof holds for ¢(v, «, 6) € 77(P). From the
harmonicity of t(v, @, ) in v and in &, and from its uniform boundedness,
it follows by a lemma of Heins ([2] p. 445) that

Lemma 1.5. If 8 =S x S\((o, o) U{(o, O} U{(L, o)} U{(C, O)}), then
6. 8" — (—o0, )| é(7, a) = t(v, &, 0) is continuous.

LeEMMA 1.6. IFf S =S x S\(o, 0) then ¢: S’ — [—co, o] |d(v, @) =
(v, @, 0) s continuous.

Proof. It suffices to consider the continuity at points (v, &), ¥, =
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a, =+ 0, and (0, ), &+ 0. For the first we let 4 be a parametric
disk at a, such that o¢ 4, and F be a closed connected neighborhood
of «, that does not intersect 4. For every (v, @) € F' X F there exists
7 € 84 such that i(v, «, o) > (9, «, 6), which is bounded by Sario’s lemma.
for all e 04, e F, No generality is lost by taking t(%, «, ¢) > 0 for
all neod,acF.

Let 4 be a homeomorphism of 4 onto a closed disk in the plane,
and g the Green’s function on this disk. By its extremal property

1, @, 0) — g(¥(©), ¥(a)) = 0

for {,ae F. Since for any =, there exists a neighborhood E, of the
origin of the disk such that g(z, @) = n for 2z, a € E,,, we have t(v, @, 0) > n
for v,aey'(&,) N F, and ¢ is continuous at (v, a,).

For the second case we let 04 be the boundary of a parametric
disk at a;, and F' and G be compact connected neighborhoods of ¢ and
a, that do not intersect d4. For { e F, ae (@, there exists e 04 such
that

t(C; a; ao) < t(77, a, aO) - t(77, a’ O') + t(77, 09 a’o) ’
which, by Sario’s lemma, is bounded above, say by M. Hence
t(c’ a’ O-) < M + t(c’ ao’ 0) ’

and the lemma follows, since for any =, t({, a, 6) < » in some neigh-
borhood of o.

We conclude this section by noting that the limits of ¢(, %, o),
t,0,v) and ¢&,v,v) as vy— o0 are o, — and 0 respectively, and
that £(¢, o, 0) is not defined.

2. Jensen’s formula. The main tool used in this paper is Jensen’s:
formula generalized for Riemann surfaces. We let 2 be a regularly
imbedded relatively compact region on the surface K and let v(2) be
an LH function on 2. The positive singularities of v(z) in 2 will be
designated by a;,,9=1, ---,m, and the negative singularities by
b;,5 =1, ++-, n; their multiplicities will be given by f; and v; respectively..

We obtain the formula from the following proposition:

LemMmA 2.1. If r is not a singularity of v(z), then

(2) o) == | 0@ pe, ) + 3 ol 1) — S0, 1)

where p(z, r) and g(z, r) are the capacity and Green’s functions defined
on 2 with singularities at the point r, and 02 is oriented counter-
clockwise about r.
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Proof. We first take the case when v(2) has no singularities on
2. Let 4= 2 be a small closed disk that contains . On applying
Green’s formula to p(z, ) and v(z) over 2\4, and letting 4 shrink to
r we obtain

~

o) = o= | 9@d"p( ) .

We next take the case when #(2) has a singularity vlog|z — a|,
o €02, but has none in Q. Let p(z, ) have the value k on 82; there exists
an € > 0 such that the boundary components of 2, = {z|p(z, r) < k — ¢},
have a natural one-to-one mapping on those of 92.

Let the components of 82 be {v},t=1, -+, n, with a€v, and
the corresponding components of 902. be {v.}. For % # 1, we apply
Green’s formula to v(z) and p(z, r) over each component of Q2\2. and
obtain

[ vpe,n =] dn).

For i =1, we let £ be the double of 2\2,. If ¢ is the total flux
of p(z, r) along 7v,, the function

W) = exo| £ ot 1) — b+ imte, )|

maps the first component of 0 conformally onto an annulus, such that
v, is mapped onto the unit circle B, and v, onto B,.={w||w]| =
exp [—(27/q)e]}. We may assume that the point ¢ is mapped on w = 1.
Consequentl‘zy do = 2r/q d*p(z, 7).

Since S i log|e® — 1| = 0, it follows that
1]

| v@dper =L @hre) —vlog|re® —1)ds.

Bl_BlS

By applying Green’s formula to the last integrand and to log|7e®|
over the annulus between the circles, we find

Sy _ w@d 0, 1) = sgmd*v(z) .

Summing over all the components of 82 we obtain

(3) o= | @ 1 = | v@dp 1) = o).

For the general case we note that

'U(Z) - ;I /’tig(a’i’ z) + %‘4 ng(bjy Z)
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‘is a harmonic function on 2. The application of (3) to this function
myields (2). We immediately obtain

COROLLARY 2.2, (Generalized Jensen’s formula). If f s an
-analytic mapping of R into a Riemann surface S on which is defined
@& function (¢, a, 0) belonging to a principal family, and if f(r), &
.and 8 are distinct, then,

@ HIW), @, 0) = = | 476, @ 0)d*pe, )
+ ; ﬂig(aiy ’l") - ]E ujg(djr ’l') .

‘where {a;} and {b;} are the inverse images in 2 of « and o respectively,
and p;, v; are their multiplicities.

If 7(r) is a singularity of #({, «, 0) the following proposition holds:

LEMMA 2.3. If f(r)=«a, and if the Laurent expansion of f(2) in
the neighborhood of r s f(2) = >\ ¢z, with respect to the parametric
disks at r and a fixed by p(z, r) and €, o, @) respectively, then

(5) lim (Np(e, 7) + Hf@), 0, @) = log | 1| .
2T N
If f(z) = 0, then, with the above expansion,

(6) lim (—~Np(z, 1) + UG, 0, ) = log |1 .

Proof. We shall use the same symbol z for an arbitrary point on
the surface and for its image under the mapping associated with the
parametric disk under consideration. £(f(z)) and p(z) will represent
(f(2), 0, @) and p(z, r), and I;, ete., constant coefficients. We set

4(2) = exp [t(f(2)) + it*(f(2)] ;

-this is single-valued in a neighborhood of 7.
If f(r) = o, the expansion in that neighborhood is

‘ q(z):clz—N+ — Sl

N N+1
‘Similarly, there is a neighborhood of 7 in which
7(2) = exp [p(z) + ip*(2)]

can be expanded as
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r) =z + imizi .
Hence

L~ lim () (r@)”

CN 27T

which yields the first conclusion. The second is proved in the same
‘way. This concludes the proof.
If we let N equal N or —N according as f(r) is ¢ or «, then the

function
tf(R) + Ap(x) — 3V 1:9(s4, 2) + }J:‘/ v,;9(a;, 2)
is harmonic on 2, when the summations are over the inverse images

in 2\r. On applying Jensen’s formula (4) and substituting from (5)
-or (6) we obtain the alternative expression

tog |[-L-| = L { #7@)ap@ + fon + 3V oo, m) — S vi06as 1)
Cy 2w Jog 7 7
We shall need the following property of subharmonic functions:

LEMMA 2.4. Let u be an u.s.c. function on a region W.
(i) If w is subharmonic on W, then for every regular 2 whose
closure is in W, and every ze Q,

1) u@) S | ww)d*pow, 2) .

(i) If for every ze W, there is a regular Q such that
uz) = 1 S w(w)d*po(w, z)
o2 Jon
over every level line 0h of po(w, 2), then w is subharmonic on W.

Proof. To prove (i) we take an arbitrary 2 and ze¢ 2, and let
{v,} be a descending sequence of continuous functions on 92 tending
to w. For any wedfR, we have by (2)

lim u(z) < lim 1 S v, (w)d*p(w, 2)
2w zsw 27 Joe
for all v,. By applying the monotone convergence theorem and the
maximum principle we obtain the desired result.

For (ii) we let 2, be an arbitrary point in the region, and choose
a parametric disk about z,, In terms of the associated unit disk the
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hypothesis yields
1 2x .
w(zy) = —S w(z, + re®) do
2r Jo

for 0 < r =1. The subharmonicity of u follows from the theory of
functions on the plane,.

We immediately obtain

COROLLARY 2.5. If u(z) s subharmonic on 2, and z2€ 2, < 92,
then

(8) [, w)dn 0,2 = | wwdpw,2),

where p,(w, z), 1 =1, 2, is the capacity function on £,.

3. Argument principle. Using the same notation as before we
let 2 be a relatively compact regularly imbedded open set in the surface
R, and n(%2, «), n(2, 6) the number of inverse images (with multiplicities)
in 2 of points a and ¢ in S that are not on the image of 82. We
have

(9) | @@, @, 0) = n(@,8) — w2, @)
2w Joa

where 0 is oriented counter-clockwise, and ¢ belongs to any principal
family.

This statement follows from removing small disks at each of the
inverse images of a and 0, applying Green’s formula to t(f(2), «, 0)
over the remainder of 2, and taking the limit as the disks shrink to
points.

We choose re Q. If p(z, r) is the capacity function on £, and k

is its value on 002, we let 2, ={zc2|p{, r) < h} and 8h be the
boundary of 2,.

THEOREM 3.1. If a and 0 are not in the image of 0h, and if
a, 0 and f(r) are distinct, then

1) L @), @, 0 1) = 0, 8) — nih, @)

where n(h, 6) and n(h, @) are the number of inverse images (with
multiplicities) of 0 and a in 2,, and t belongs to any principal family.

Proof. We let t(f(2)) and p(z) represent t(f(2), @, d) and »(z, r),
{a;} and {d;} be the finite number of inverse images of & and ¢ in 2,.
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There is a finite A’ such that 2, does not contain any of these inverse
images. We remove small disks about the ais and ds and apply Green’s
formula to ¢(f(2)) and p(z) over the remainder of 2,\2,.. After evaluating
and letting the disks shrink to points we obtain

gah_ah,t(f (2))d*p(z) + 27‘6[; po(a;) — % p].p(dj)]
=, ) - W ause,

since p(2) is the capacity function on both 2, and 2,.. In this relation-
ship #; and v; are the multiplicities of the corresponding inverse images.
The differentiation of this equation yields

% |, tF@*pe = % [hgahd*t(f(z»]

~lim Lo @*t(7@) — @t ¢

g

a"t(@) |

9(h—e)—0h

Since the last term vanishes for sufficiently small ¢, we substitute
from (9) and obtain the required relationship.
We note that (10) is an invariant property of principal families.

4. Logarithmic capacities. A logarithmic capacity of a compact
set K properly contained in an arbitrary surface S can be defined in
relation to any principal family .7~ if o€ S\E. We let ¢ be a regular
positive unit mass distribution on E. Since #({, %, ¢) is l.s.c. on E, we
define the logarithmic potential of /¢ relative to & as

pu) = | ¥, 7, 0) i)

on S\o. The following proposition carries over from the plane:

LEMMA 4.1. The logarithmic potential p.(4)) ts harmonic on
S\(EUo) and superharmonic on S\o. In the neighborhood of
g, p(n) —log |n — a| is bounded.

Proof. We let
., 1, 0) = min {n, (L, 1, 0)},

and

Pul) = | 46,7, 0) dpx(0) .

By Lemmas 1.5 and 1.6, ¢,(Z, %, 0) is continuous in (£, ), { € E, ne S\,
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and as E is compact there is for any arbitrary point 7, € S\¢ and ¢ > 0,
a neighborhood 4 of 7, such that

16(C, 1, 0) — 6L, 7 0) | <&, e E,ned,

It follows that ».,(%) is continuous and p.(%) l.s.c. on S\c.

Let I" be a disk about %, such that 81" is a leve!l line of £({, 7,, o).
We orient 81" clockwise about 7,. Since t({, 7, 6) is bounded below for
all (e E,nedl’, and —i(, %, o) is the capacity function on I', we
have by Corollary 1.2 and (2),

£, 1,7 0) | 1.7, 0) @) = | 467 0) (o)
7T Jer B E

where for each ¢, £,(C, v, o) is the harmonic function in » on I’ with
boundary values t,.(C, , 0). Further, by superharmonicity, ,.(C, %, 0) <
t(&, %, 6) for each { and for all n. We substitute in the above equation
and apply the monotonic convergence theorem as n— «., We obtain

| @t o) | 467 0 e = | e 7 0) de©
o Jor B B
and p.(%) is superharmonic by (7).

If 7,¢ E U 0, I" can be chosen such that I' £ S\(E U ¢). Since £, 7, o)
is harmonic on I’, the same method establishes the harmonicity of
p.(m) on S\(EF U o) by (2) and the maximum principle.

To establish the final part of the lemma we need only note that
by Lemmas 1.5 and 1.6 there is a neighborhood 4 of ¢ such that

tC,n0)=tmL,o)=log|n—o|+ h®L),lcE necdo,

where A7, {) is bounded.
We deduce the following proposition:

COROLLARY 4.2, If p is as above and f: B — 8 is analytic, then,
for a regular 2C R,

an | dro | 1@, 0 a6 = | a6 n | 1@, ¢ o) ap©) -

where t belongs to any principal family & and p ic the capacity
function on 2. The iterated integral is either finite or + oo,

Proof. There exists a closed disk D & S about ¢ such that

(a) DN E is void,

Mb) ta,l,0)<0,aeD,{eckK by 1.6,

(¢) the intersection of D and the image of 82 consists of a finite
number (possibly zero) of Jordan arcs B;, %=1, -+, n, each of which
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passes through o.

We divide 82 into the inverse images v;,, ¢ =1, «++, n, of B;, and
the remainder 7.

On 7 the funetion t(f(z), , 0) is uniformly bounded below for { e E
and we may apply Fubini’s theorem to

[,am@ | tr@, & o) d*piz, ).

The integral is either finite or -+ oo.

For each ¢, we exhaust 8,\c by a sequence of compact sets F;.
By (¢) the restriction of d*p(z, v) to f(F;) N 7v; induces a positive
mass function on F; & D\o. Its logarithmic potential

P =\, U@, 0) 0 )

fUFE
is harmonic on S\D by 4.1. By (b) the functions p,;; form a decreasing’
sequence; by Harnack’s principle its limit

Pu(© = | 470, £, ) d"p(z, 1)

is either — oo, or harmonic on S\D.

We may assume that p(z, 7) is zero on 02; then exp {p(z, ) + 1p*(z, r)}
(choosing any branch of p*) maps 7, onto an arc of the unit circle.
For any {,€ E we have

D.(C0) = SB log |e® —1|df + ¢

where ¢ is some finite constant. Since this integral is bounded with
respect to « and B, p.:({,) is finite, and p.;({) is bounded on E.
Consequently, by (b), we may apply Fubini’s theorem to

|20 | 850, €, 0) @0t m)

for each 4, and the integral is finite. Summing over 7 and 7v,;, we
obtain the required relation.

5. First main theorem. To develop a first main theorem for
analytic mappings f: R— S where R and S are arbitrary Riemann
surfaces, we fix a point 6 € S and define a principal family 7; we
then select points 7€ S and r<€ R such that o, 7 and f(r) are distinct.
A parametric disk is selected at r.

Let ¢ = max {t,0}. For a regular region 2 = R such that re £,

the proximity function m(®2, ), the counting function N(%2, f) and the
characteristic function T(2, f) of f on Q are defined as
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m(@, £) = | 1@, 0,7 &0, 1),
N@,f) = L7, {8} =008,
T(@, /) = m(2, ) + N@, ),

where p and g are the capacity and Green’s functions on 2, and s; is
repeated in accordance with its multiplicity.

The proximity m(R2, @) and the counting functions N(2, a) at the
point & are defined as m(%2, f) and N(2, f) when a = o; otherwise we
define

m(@2, @) =L | (@), @ 0)d"pe, 1),

N@, )= 29,7, H{a}=F"(@)ng.

where a; is repeated in accordance with its multiplicity.
The first main theorem reads:

THEOREM 5.1. For every ac S\f(r),
m(2, a) + N, a) = T(2, 1) + 01) ,

where O(1) s a bounded function with respect to Q.

Proof. When a = ¢ it is trivial; when « == 0, Jensen’s formula
{4) is

Hfr), @, 0) = 2 | 17@), @, 0) d*pla, ) + S olas, )

_ 1 S HF(@), 0, @) d*plz, ) — 3 9(s:, 7) ,
2 Joe '

which is
12) m(2, @) + N2, @) = | #(f@), 0,0 d*pz, 1)
+ N, f) + 0Q1) .
For £ e S we define
¢ = ¢, 0, @) — 1, 9, 7) -

There is a neighborhood 4 of ¢ in which both ¥, o, &) and ¥, o, 7)
are positive. Hence in 4,

Q(C) = t(C; o, a) - t(C9 g, 7'-) = t(c; T, a) ’
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which is bounded. Outside 4, q({) is obviously bounded. It follows
that

HF@), 7, @) = Hf(@), 7, 7) + O(1) .

We conclude the proof by substituting this in (12).

We note that if 7 and .97"” are principal families defined with
respect to the same point ¢, then the functions ¢'(¢, o, 7) and t"(, o, 7)
belonging to these families differ by a bounded harmonic function.
Consequently the corresponding characteristic functtions 7, and 7, are
related by TW(Q, )= T«(2, f) + OQ1) where O(1) is bounded with respect
to 2.

Before defining functions of bounded characteristic we shall develop
an alternative representation of the characteristic function. For this
purpose we prove the following lemma.

LEMMA 5.2. N(2, () is continuous on S\f(r).

Proof. Let a be an arbitrary point in S\f(r), and let a,, -+, q,
with multiplicities v,, +--, v, be the inverse images of «a in 2.

We can construct open connected neighborhoods D’, D of «a in
S\f(r), and E}, E; of a; in Q\r for every j, such that the following
properties hold:

(a) Each neighborhood lies in a parametric disk about its associated
point.

(b) Every inverse image of { € D'\« is simple and { has v; inverse
images in #j.

(¢) Every ze E}\a; is simple.

(d E;,cE.

(e) Every ¢ e D\« has y; roots in E;, and D & D',

(E)\a;, £) is a smooth covering surface of S. If () is an arc in
D from an arbitrary d e D to «, its path of determination 7'(t) from
an inverse image of ¢ in E; cannot intersect EJ\E; and must tend to a;,.
Similarly if the inverse image is not in an £/, ¥'(f) must tend to 02.
Hence every component of the inverse image of D that intersects Q
is either a neighborhood of some a; or intersects 0£.

Let D,={£]|{ — a| < p)} be a disk in D in terms of the local
coordinates. Let F;, be the component of the inverse image of D, that
contains a;, let G4, 5 =1, --+, n be the components that intersect the
inverse images b;, j =1, ---,n, of @ on 82, and let Hy, 7 =1, -+, m,
be the other components that intersect 2. The number of components
is finite since 82 and 0D, are analytic curves.

We define a real-valued function 2;(z) on H;, by h;(z) = |f(z) — «|.
For each H;, there exists r; > 0 such that hyz) > r; for 2z H;,N 2,
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and there exists a positive r, < r; for all j. Let Dy = {{ || — a| < .

Let M be a uniform bound of the number of inverse images in 2
of e S. TFore >0 and every j, there exist neighborhoods 4(b;) & G,
of b; such that

L9z, 7) — gla;, 7)| < % ,  zeday),
and
lg(z, 7) | < % ,  zedd,)

where ¢(z, r) is the Green’s function on £ and vanishes outside £.
Then | N(2, {) — N(2, o) | < ¢ in the intersection of D, and the images
of 4(a;) and 4(b;) for all j. This completes the proof.

LEMMA 5.8. If pis a regular positive unit measure on a compact
set E < S\, and if p.(0) =\ t(, {, 0) dp() 1s the logarithmic potential
B
with respect to any family 7, then

(13) =P ) = = || PUS@) 00, )

+ N@, f) — SEN(Q, 0)dm) .

Proof. By Lemmas 1.5 and 5.2 we may integrate Jensen’s formula
(4) over E and obtain

[ #5), 0,0 @) = = | (@) |, 1/G@), 0,0 d*pe, )

+ M@, ) — | M@0 -

We apply (11) and obtain the required result, which is the natural
generalization of Frostman’s formula.

The characterization of T(f, f) that we need is a consequence of
the next theorem.

For a fixed 0,7€ S and 7€ R such that o, 7 and f(7) are distinct,
we shall write () for (¢, o, 7), t.(() for max{m, t({)} and p(z) for

»(z, 7).

THEOREM 5.4. If E, ={{|t(() = m} where m s finite and ¢t
belongs to the principal family 7 (I) with respect to the identity
partition, then



MAPPINGS OF BOUNDED CHARACTERISTIC 909

(14) (f) = = | ta(£@) d*p(@)

- N@f) - o= | N2 0 dHo .

Proof. We first prove this theorem for the case in which some
extra hypotheses hold, and then remove the restrictions.

We assume that either S is closed or that S is a regular region
containing the image of 2 and that m = lim#() as {—£€8S. We
choose a unit mass distribution on the compact set E,, (oriented clockwise
about o) such that dy = 1/27 d*¢({). Its logarithmic potential is

(15) puT) = 5= | E, 7, 0) dHO)

E,, divides S into two components, one containing o and the cother
7; we shall call them the o,- and 7,-components. If S is a regular
region one of these components is a neighborhood of the ideal boundary;
we suppose that it is the o,-component.

If m < €(n) < oo, then the flux of £, %, ) is zero over the boundary,
E, U088, of the o,-component and is also zero over the boundary, S,
of S; since E, N 0S is void, it follows that the flux over E, is zero.
As t({) is constant on E,, it follows from (15) that

—p) = — o | 8, 0) d7HO) — U A HE, 7, 0)]

The application of Green’s formula to #({, %, o) and () over the
T,-component proves that the right-hand side equals —i(z, 7, 0) = t,.(7).

If —eo <tm) <m, we write U, 7, 0)=1H 7,0)+ L n 7) in
(15). The flux of #({, 7, 0) iz 27 and the flux of ¢, 7, ) is zero over
the boundary, E,, of the 7,-component. The first integral equals —m.
We add a zero term and obtain

—p) = m = = |6 7,9 dHE) — 60 dHE, 7, )

from (15). We apply Green’s formula to ({, 7, 7) and #({) over the
o,-component, and it follows that —p.(9) = m — (0,9, 7) = m = ¢,.(0)
by (1).

We obtain the same results if we suppose that the t,-component
is a neighborhood of the ideal boundary.

Since the application of Lemma 4.1 to (15) shows that p.(%) is
continuous at 7, we conclude that —p.(c) = £,.(7).

If » € E,, we note that ¢({, 7, 0) is superharmonic in the neighborhood
of E,. We consider the level lines £,,_. and E,,,., ¢ > 0. For sufficiently
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small ¢, either t¢({) is the capacity function on the 7, ., T,- and T,
components or —t({) is the capacity function on the corresponding
g-components. In either case we apply (8) to (15) and obtain

tm—s(y]) é _p,u.(yi) é tm+8(77) ’

which yields —p.(n) = t,.(7).

We substitute in (13) and obtain (14).

To remove the restrictions we shall denote the intersection of FE,
and the image of 2 by E.. Then E/ is compact and

|, M@, 0 d*i0) = || N2, 0)d*i(0).

If S is a regular region and m = lim £({) as { —£&€dS, we take
& > 0 sufficiently small that

{Clgradt@) =0 and m +e <) = m} S E, .

For ¢, > ¢ >0 we map E, .. into E, along the level lines of &*({).
These are well defined as the different branches of t*({) differ by an
additive constant. The mapping is one-to-one except that onto each of
the finite number of zeros of grad #({) on E, is mapped a finite number
(one more than the order of the zero) of points on £ ..

On the image of O we set the measures dy. = 1/2x d*t() on
E) .., 0<e<e. By Helly’s theorem there exists a limiting measure
that is obviously on E,. By the continuity of the normal derivative
of #({) it is, under the above mapping, d*¢({), a.e. Hence, if N, =
min (N, q), we obtain

lim S
’

g0

N2, 0 d"HO) = | M@, D) a*HQ) .

Em+e

The opposite inequality is obtained by Fatou’s lemma. Consequently,

lim| M@0 = | N© OO .
g m+e m

We now establish (14) for m by applying it to m -+ ¢, which is permissible,
and letting ¢ — 0.

If S is arbitrary we consider an exhaustion of S by regular regions
W such that W contains 0,7 and the image of 2. We denote by
t7(C) = tw(, 0, 7) the function in the .7(I) family defined with respect
to W, and we set E,, = {{e W|t, () = m}.

Let W, be a regular region containing the image of 2. We first
consider m such that E, N W, contains no zeros of grad ¢(), and cover
it with a finite number of parametric disks. We select ¢, > 0, such
that the set
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F:{Cleoét(C)ém‘l“@o}n I/T/vo

is contained in these disks and does not contain any zeros of grad ¢({).
On each disk we use t() and any branch of ¢*({) as local variables.

Since E, and 0 W, are analytic manifolds, their intersection consists
of a finite number of components. Consequently there exists a compact
F’ S F such that the intersection of E,, and the image of 2 is contained
in the interior of F”, and that 8F" intersects K, at a finite number
of points, each of which has a neighborhood in which 8F’ lies on a
level line of t*({). We set Ef = E, N F’

Since t,() and its normal derivative tend uniformly on compact
sets to #({) and its normal derivative, there is for any ¢ > 0, a W, such
that

ErpnS{lim—e<UD) <m+enNF,

and that the maximum angle between E,,, and E, is less than 7n/2,
for W 2 W,.. For sufficiently small ¢ we can map K}, univalently onto
E¥ along the level lines of £*({).

We have set up the set we need for the proof. We apply (14) to
the region W and let W— S. It is only necessary to examine the
convergence of the last term. On W, we choose a set of measures
Aty = 1/2r d*¢,(C) on Ef,. For sufficiently large W,

| N2, 080 = | N©2,0d" 0 .

We apply Helly’s theorem as before and obtain the necessary convergence.
Consequently, the theorem holds for open S if there is no zero of grad
() on E,,.

If grad ¢({) has a zero on E,, we apply (14) to E, .. and take the
limit as e — 0. To obtain the convergence of the last term, we choose
the set of measures dyt. = 1/27 d*4({) on K., and apply Helly’s theorem.
This completes the proof.

By taking m = 0 in (14) we immediately obtain a generalization
of Cartan’s formula:

COROLLARY 5.5. If the characteristic T(2, f) is defined in terms
of a principal family 7(I), then

(16) T(@, /) = UFm) + o= | N2, 00 .

or

As a side issue we shall strengthen Lemma 5.2,

LEMMA 5.6. If f(02) is the image of 82, then N(R,() is LP on
S\f(69).
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Proof. Let ae S\(f(02) U f(r)). We take 0 at «, a parametric
disk 4 at «, and an arbitrary 7. Let ¢() = ¢, g, 7)€ 9(I). There
exists m, such that {{|H{) = m} & AN\(F(OR) U f(r)).

For m = m,, (14) yields

m=——| mape) + N@,@)— | NMe0@H,
T JEp
which is
N@ @) = = | N@,0 Q) .
T JE,

Since —#({) is the capacity function on the neighborhood of & bounded
by m = m,, the funetion N(£, {) is harmonic on S\(f(@2) U f(r).

Let the multiplicity of  be k. By the construction used in Lemma
5.2 there is for any %, a neighborhood of f(r) such that each { therein
has & inverse images In

{zlg(z, r) > n},

and a uniformly bounded number of other inverse images, for all of
which ¢(z, ) is uniformly bounded above. Hence N(£, ) has a loga-
rithmie singularity with coefficient k. This completes the proof.

6. Functions of bounded characteristicc. The remark after
‘Theorem 5.1 shows that if the characteristic function T(£, f) is bounded
with respect to £ when it is defined in terms of one principal family
7, then it is also bounded when defined in terms of another family.
We shall show that this property is also independent of the points o, 7, 7,
provided that o, 7 and f(r) are distinct.

For a fixed family 7(I) and a fixed z, we define

2(2,0) = o= |, #5@, 0, 9 &"pule, 0),

y(‘Q; Q) = ; gﬁ(siy Q) ’ {sz} = f—l(a) n ‘Q ’

#(@,9) = = | 1@, 7, 0)*pifz 0),

Y (2,9 = Z 9,9, {}=r"@ne,

and w =2+ y,% =2 + ¥y, where 2 is a regular region in R, and s,,
t; are repeated in accordance with their multiplicities.

LemmA 6.1, If Q exhausts R, then the limits of ¥(2,q) and
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w2, q) are either L P (harmonic with positive logarithmic singularities)
Sunctions or -+-oo; if the limit of w(2, q) s LP, then the limit of
(2, 9) is harmonic.

Proof. The classical method is employed. We first prove that
2, & 2, implies u(2,, q) < u(2,, q). Let ze Q,. We write £() for ¢, o, 7).

If t( f(z)) >0, then t( (@) = t(f(2)) = w(2,, 2) — u'(2,,2) by Jensen’s
formula (14). Hence t( f(2)) < u(2,, 2) for all ze 2,. Consequently,
1

E;‘L'— Sbalz(f(z)) d*pl(z’ 9= ziﬂ' Sfml I:u(‘Qm Z) - %:4 9:(s;, Z)] d*p(z, q) ,

which is, by transposition,
w2y, @) = w2, 9) .

For any fixed 2, we exhaust B by £ 2 2,. By the application of
Harnack’s principle to w(2, q) — u(2,, 9) over 2,, we find that the limit
of (2, q) is LP or + o over 2, and hence over R.

By the maximum principle, ¥(2,, @) < %¥(2,, ¢) when 2, < 2,, and
the same proof carries through.

If the limit of (2, q) is LP, so is that of y(2, q): further, both
functions have the same singularities. By taking the limit of (2, q) =
w(2, ) — y(2, ¢), we obtain the harmonicity of the limit of (2, q).
'This completes the proof.

THEOREM 6.2. If T(2,f) is bounded with respect to 2, then it
18 bounded for any choice of r, 7,0 if f(r), 0 and v are distinct.

Proof. A subscript indicates functions defined in terms of the new
parameters.

(a) If r is changed to 7, such that f(r) % g, then T«(Q,f) =
(82, ) is bounded since the limit of (2, q) is LP.

(b) If 7 is changed to 7,, we have

| 7402, f) = 1@, £ = o= | |66 — H@)|dpie, 7).

The integrand is bounded since the function ¢(¢) in the proof of
‘Theorem 5.1 is bounded.
(¢) If o is changed to o,, we may by (b) take o, as 7 in defining
T(2, f). From the definitions of the terms
TR, f) — (m(2, 0) + N(£, 0))

is a constant function. It follows from Theorem 5.1 that T(2,f) —
T«(2, ) = 0.
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We have established the fact that the following class of functions
is well-defined.

DEFINITION. An analytic function f: R— S, where R 1is an
arbitrary open surface and S an arbitrary surface, is of bounded
characteristic, fe MS, if T(Q, f) is bounded with respect to 2 = R,

It follows from Lemma 6.1 that if f € MB, then the limit of (2, q)
is a positive superharmonic function on E. Consequently R is hyperbolic
and we set

N(R; C7 ’I") = -lol_'ng N(‘Q: C) = E{%;gﬁ(zw Ir) ’ {z’b} :f—l(C) ﬂ Q .

Since ([3] p. 429) N(R, ¢, r) = >.; 9(z;, 7), {z;} = F ), where g is Green’s
function on R, it follows ([3] p. 418) that the class MB is identical
with the Lindelofian maps. We are able to obtain a characterization
in terms of N(R,, q).

THEOREM 6.3. If f: R— S is analytic, the following statements
are equivalent:

(a) feMB

(b) there exists se R and open U S S such that N(R,(, s) < o«
for Le U,

(¢) N(R,C )< o,seR, {eS\f(r).

Proof. To prove that (b) implies (a) we select ae U\f(s) and a
parametric disk 4 at « such that 4 & U\f(s).

Set 4, ={Ced,|N(R,, s) <n} then by Lemma 5.2 N(R,(,s) is
lower semi-continuous and 4, is closed. Also 4 = U 4,. By Baire’s
category theorem there exists M such that 4, has an interior point.

Let @ < 4, be an open region, and e Q\(g U f(s)). We define a
family .7 (I) at 0; ¢(¢, 0, 7) has a level line F'in Q. There is a principal
family .7,'(I) such that E = {{|t'() = 0}, t' € 77'(I). Substitution in
(16) yields

T(9, /) £ P(f6) + | MIHQ) <

for all 2. Hence fc MB.

(¢c) implies (b) trivially. To show that (a) implies (c) we note that
by Lemma 6.1, N(2, {) is bounded above for s€ R, { € S\ f(s), whenever
fe€ MB. This completes the proof.

An extremal decomposition characterization of MB functions is
given by the following:

THEOREM 6.4. An analytic f: R— S is of class MB if and only
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if t(f(z)) is the difference between two LP functions, where t may
be from any principal family 7.

Proof. From the proof of Lemma 6.1,
8f(2) = u(2, z) — u'(2, 2)

for all 2. If fe MB, then the limits of % and % are LP functions.
This proves the necessity.

For the sufficiency we assume t(f(z)) = v(z) — w(z), v, we LP.

The singularities of u(2, ) are positive singularities of #(f(z)), and
so among the singularities of v(z). Hence v(z) — u(2, 2) is superharmonic
on 2 and attains its minimum on 02,

Let wed2. By (2), (2, 2) is the harmonic function on 2 with
boundary values t(f(w)) and

lim (0, 2) = t(f(w))

for any approach to w; also y(2,2)— 0 as z— w, and v(w) = t(f(w)).
Consequently v(z) — (2, 2) = 0 on 2.
Since w(z)e LP, there exists re€ £ such that v(r) < «. Hence
w(2, r) is bounded for all £, and fe€ MB. This concludes the proof.
The integrand of the proximity function used by Sario [8] is

s, ) = UL, o, 0) + log (1 + €*9) (1 + €*@), @~ 0
= log (1 + €*¥), a=o0.

where t€ .7, and () = t(, 0, 7). A comparison of the characteristic
functions, evaluated at o, shows that the functions of bounded char-
acteristic with respect to Sario’s characteristic function are the same
as those treated above.
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CLIFFORD VECTORS

CURTIS M. FULTON

In this paper we present a generalization of parallel vector fields
in a Riemannian space. As it turns out, such fields exist in spaces of
constant positive curvature.

Restricting ourselves to a Riemannian 3-space throughout, we need
the oriented third-order tensor [3, p. 249]

Niin = [sgn(9)g] %50 .

whose covariant derivative vanishes [3, pp. 251-252]. The latter fact
is best ascertained by the use of geodesic coordinates. If we write
the determinant of the metric tensor with the aid of permutation
symbols we also find without difficulty

(1) 9" i500kna = 9ni9se — Inidix -

DEFINITION. Let the direction of a wvector field at any point be
that of the wnit vector V. The field is said to consist of Clifford
vectors if

(2) ' Vi,j:Lr]ithh, L:#O.

THEOREM. If the Riemannian curvature K is constant and equal
to L?, the system of equations (2) is completely integrable. If, at
any point, solutions of (2) exist in all directions, then K = L* = const.

It is known that integrability conditions for (2) are obtained using
covariant differentiation. Hence, on account of a Rieci identity [3,
p. 83] and (1) we have

(3)  Lumin V" — L VP 4+ LX94i9in — 918:) V* = Ry V.
If the Riemannian curvature is constant [3, p. 112],
(4) Ry = K(94i9ix — 9119:5)

and conditions (3) are identically satisfied. This proves the first part
of our theorem.
For proof of the second part we multiply (8) by Wi V?/WP* and get

L9139 — 9u9:)) VI WIVIW?* = Ry, VEWIVIW™ |
Thus L* is the Riemannian curvature associated with the unit vectors
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VvV, W [3, p. 95]. Assume now that W is a solution of (2) and M the
corresponding scalar factor. Then the above curvature is also equal
to M?* Continuing this process we conclude from Schur’s theorem
[3, p. 112] that the curvature is constant and because of (4) that K = L’.

To conclude, we demonstrate a geometric property of Clifford
vectors justifying the name chosen for them. Let # be the unit tangent
to a geodesic and U a unit vector which undergoes a parallel displace-
ment along the geodesic. Hence U’ ;t = 0 and U remains in a plane
passing through the geodesic [1, p. 161]. On the other hand, because
of (2), V.t =0 which shows that a Clifford vector, propagaged
along the geodesic, is inclined at a constant angle to it. Letting
cosd = U'V,, we see that

— 8in 0d,0 = L, UV V",

We now make the simplifying assumption that both U and V are
perpendicular to £. In this case the vector 7,;,U*V"* has the direction
of t and using (1) we find its length to be sin . Thus df = = L
and the Clifford vector rotates about the geodesic in either sense through
an angle proportional to the displacement. This property may be used
to define the Clifford parallels or paratactic lines in elliptic 3-space [2,
p. 108].

REFERENCES

1. A. Duschek, W. Mayer, Lehrbuch der Differentialgeometrie, Band II, Teubner,
Leipzig und Berlin, 1930.

2. D. M. Y. Sommerville, The elements of non-Euclidean geometry, Dover, New York,
1958.

3. J. L. Synge, A. Schild, Tensor calculus, University of Toronto Press, Toronto, 1959.

UNIVERSITY OF CALIFORNIA, DAVIS



MAXIMAL ALGEBRAS AND A THEOREM OF RADO

I. GLICKSBERG

1. A theorem of Raddé [1, 4, 6, 9] asserts that a function f,
continuous on the closed disc D ={z:[z] =<1}, and analytic at all
points of the interior of D where f doesn’t vanish, is analytic on all
the interior. One can of course take this as a statement about the
uniformly closed algebra A,—the disc algebra—~formed by those f in
C(D) analytic on the interior of D, and in fact it is easy to restate
the result in a form which makes sense for any function algebra. For
let T*={z:|z| =1}, and call f locally approximable at z if f can be
uniformly approximated by elements of A, on some neighborhood of z.
Then it is clear that the result asserts that any f in C(D), locally
approximable at all z in D\(T* U £7(0)), is in A,.

Now since D can be viewed as the maximal ideal space of A4,, and
T' as the Silov boundary, we can formulate such an assertion for any
uniformly closed algebra of functions—and, needless to say, it will
fail in general." But under appropriate maximality conditions the result
does hold; in particular we shall show it holds for any uniformly closed
function algebra A maximal on its Silov boundary, provided the boundary
is not all the maximal ideal space of A, and for intersections of such
algebras.

This result holds as a consequence of two facts: Rossi’s local
maximum modulus prineciple [11], and a quite elementary lemma (2.1)
which a:llows one to eliminate certain points-as candidates for elements
of the Silov boundary of an algebra. In the original setting, where
the elementary local maximum modulus principle for analytic functions
can be used, our proof requires (beyond this lemma) only the fact that
the disc algebra A, is a maximal subalgebra of C(T*) [7, 12]; no doubt
it is no simpler than the proof given in [6]. However our arguments
do establish some nontrivial variants of the result in the general setting
(3.5, 3.6, 4.9), and, in particular, for functions analytic on polycylinders
in C"; deflated to the disc algebra almost all of these follow rather
easily from Radé’s result due to the topological simplicity of the one
(complex) dimensional situation and the fact that there Radé’s result
can be applied locally.

One consequence of Radd’s theorem is the fact that A, is integrally
closed in C(D), i.e., any f in C(D) satisfying a polynomial equation

Received September 26, 1963. Work supported in part by the National Science
Foundation through Grant GP 1876.

1 For example, for the subalgebra of A; of those f with f/(0) = 0; f(2) =z is locally
approximable off f—1(0), but not in the subalgebra.
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f”+an_1f”—1+...+a0:0

with coefficients in A, must lie in A,. This extends to our maximal
algebras (§5), and, as a consequence, for every uniformly closed sub-
algebra A of C(_#), where _#, the maximal ideal space of A, properly
contains the Silov boundary of A, we have a larger subalgebra a C (A”)
with the same Silov boundary which is integrally closed in C(_#).

Another consequence of one of our variants of Radd’s theorem is
the analogue, for intersections of maximal algebras, of the elementary
removably singularity theorem for analytic functions (§6); from this
one also has an analogue of the elementary facts on the behavior of
analytic functions near isolated singularities, valid for functions locally
approximable on .#Z less a point.

Finally, the main portion of our argument can be applied to yield
an abstract version of Schwarz’s lemma: for any algebra A, if f,gc A
and f/g is bounded on _#\g~(0) then it is bounded by its supremum
over the Silov boundary. Various consequences of this are given in § 4.

The author is indebted to Kenneth Hoffman and John Wermer for
many helpful comments; in particular it was Wermer who observed
that the author’s original version of 2.2 could be used to prove Radd’s
theorem, and suggested its use to obtain integral closure.

We shall use C for the complex numbers, R for the reals, and F°
for the interior of a set F.

2. In all that follows C(X) will denote the Banach space of all
bounded complex continucus functions on the space X, and A will
denote a closed separating subalgebra of some C(X), containing the
constants. In general we shall view any such algebra A as a closed
subalgebra of C(_#"), where _# is the maximal ideal space of 4; when
there is any necessity we may write _#, for _.#Z. A closed subset X
of 7 is a boundary for A if every f in A assumes its maximum
modulus over .#Z on X; any boundary is just a superset of the Silov
boundary 9 of A.

Let X be a boundary for A, and let F' be a closed non-void subset
of X. An f in A will be said to peak within X on F if f(F)=1
while |f| <1 on X\F. As is easily seen a point m of X lies in the
Silov boundary & of A if and only if for every open neighborhood V
of m in X there is an f in A which peaks within X on a nonvoid
subset of V. The following lemma is fundamental to our considerations.

LeEMMA 2.1. Let X< . # be a boundary for A, and V a (rela-
tively) open subset of X. Suppose gc A peaks within X on a nonvoid
subset of V, and let a =sup|g(X\V)| (which is mnecessarily <1).
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Then any fe A vanishing on V also vanishes on the monvoid open
subset U= {me _# :|g(m)| > a} of #.

Proof. Suppose |g(m)| > a and f(m) = 0. Let ¢ be a (normalized,
nonnegative, regular Borel) measure on X representing m, so h(m) =
Shd/z for all » in A [7, p. 181]. Let v be the complex measure (1/f(m))f¢
(the ordinary product of function and measure), which again represents
m since

1 1
Shdv_ o Shfd;z_ iy MmFm) e 4.

Now set & = (1/g(m))-g e A; since |g(m)| > « = sup| g(X\V)| we have
h(m) =1 > sup | W(X\V)|. Replacing % by a sufficiently high power
of itself we can suppose sup |A(X\V)| < 1/2[|v]|]), where [|v]|| is the
total variation norm of v, while h(m) is still 1.

Since (V) = 0 the measure v = (1/f(m))f¢t is carried by X\V, so

1= him) = [y = | ndv < vl =+,

_1
21 vl
the desired contradiction.

Our main applications of 2.1 will be made via the following corol-
lary, and usually with the set & a singleton.

COROLLARY 2.2. Let X C Y C._# be boundaries for A, V a
relatively open subset of X, and & any subset of A. If V 14s con-
taitned in the topological boundary in Y of Nresf(0), then V N0 = ¢.

Suppose VN0 +# ¢, so some g in A peaks within X on a nonvoid
subset F' of V. Then each f in % must vanish on the open subset
Uof # given in 2.1, and F'C U, so F lies in the interior of ;e f(0)
in Y, not in its boundary.

For a boundary X for A, A is called analytic on X if every f in
A vanishing on a nonvoid relatively open subset of X vanishes identi-
cally (on X, hence on 9, hence on all of _#Z). In [5] an example was
given of an algebra A analytic on & but not on _#; the original
purpose of 2.1 was to prove

COROLLARY 2.3. If A s analytic on #, A is analytic on .

Indeed if fe A vanishes on a relatively open subset V of & then
some ¢ in A must peak within @ on a nonvoid subset of V, so that f
vanishes on a nonvoid open subset of _#Z by 2.1. Thus we have the
more general assertion of
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COROLLARY 2.4. For any algebra A, an f in A vanishing on o
nonvoid relatively open subset of 8 vanmishes on a nonvoid open subset

of .

In particular if £-%0) is nowhere dense in .# then f(0)N & is
nowhere dense in 6. Both 2.3 and 2.4 remain valid if _# is replaced
by any boundary for A, but neither need hold if @ is enlarged to an
arbitrary boundary; for example both fail for the disc algebra A,
with 0 replaced by X = T'U {0}, and {0} the relatively open subset

of X.

As we shall see later (4.2), 2.1 yields some further information
on zero sets of elements of algebras with _# =+ @.

Some simple variants of 2.1 are of interest, but will not be needed
in what follows. For example

COROLLARY 2.5, Let U and V be as in 2.1. Then any bounded
sequence {f.} tn A converging pointwise to zero on V converges
pointwise to zero on U.

For 0 >1 let Uy={me _# :|g(m)| = 0a}. Then any bounded
sequence {f,} in A converging uniformly to zero on V converges
uniformly to zero on U,.

Proof. For the first part, suppose f,(m)-4 0 for some m in U;
replacing {f,} by a subsequence we can assume f,(m)—c¢ #= 0. Let p
again represent m, and let f be any weak* cluster point of {f,} in
L.(¢). Since a subnet of {f,} converges weak* to f we have

h(m)Sfd# - Shfdg . hed,

while ¢ = lim f,(m) = lim andpe = Sfd/!. So for h = g/g(m) we have,
for all =,

¢ = h(m)”g fdp = Sh"fd/z .

But by dominated convergence, for any f' in L.(z) vanishing off
V we have Sf’fdp = lim Sf,,f’d;t =0, and thus f=0 a.e. g on V.
So, sinee sup |M(X\V)| < 1,

c——-limg Wrfdp =0,
X\V
our contradiction.

The second assertion is entirely elementary. With me U, and p
and » as before, we have |h| < 1/|g(m)| < 1/ on X, and = a/fa =
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1/60 on X\V. Thus

umy| = [{nsde| =] |+

b1+

= (=) sup £V + = | £l

since ¢ > 1 the last term will be <¢/2 for some large k, and choosing
n = N will then force the sum below ¢.

We might note that there are trivial variants of this second
assertion which allow {f,} to be unbounded, provided the sequence
{sup|f.(V)|} approaches zero rapidly enough. For example, if

sup | fu(V) | = o(]] f, |72 0/87)

as is easily verified.

3. Let X be a boundary for A. We shall call a function f,
defined on part of X, locally approximable (within® X by A) at xe€ X
if, for some neighborhood U of 2 im X, f is defined on U and is
uniformly approximable there by elements of A; alternatively?®
FlUe(A|U), the closure in C(U) of A| U. We shall say f is locally
approximable on Y < X if f is locally approximable at each point of
Y; note that by definition the set of points of X at which a given
funetion is locally approximable is open in X.

We have 0, c X< _#,. Call A relatively maximal in C(X) if
A| X # C(X) and no closed proper subalgebra B of C(X) containing
A| X has 8; = 0,. (Since 0, C 8, necessarily, we are requiring properly
larger subalgebras of C(X) to have properly larger Silov boundaries.)
Note that A is relatively maximal in C(®,) if and only if 4|9, is a
maximal closed subalgebra of C(d,); on the other hand if X 0, it
follows quite simply from Zorn’s lemma that there is a (necessarily
proper) closed subalgebra B> A of C(X) with the same Silov boundary
which is relatively maximal in C(X). (As we shall see later, an example
of an algebra which is relatively maximal in C(_#") but not maximal is
the algebra of functions in C(D"), analytic on the interior of D*, the
unit polyeylinder in C™.)

The following simple observation will extend the range of our
results.

LEMMA 3.1. If A is relatively maximal in C(X) and XY C _#Z,
then A s relatively maximal in C(Y).

2 We shall omit these terms when the algebra and boundary are clear.

8 £l U is the restriction of f to U, A|U={g|U:ge A}. Trivially the uniform
closure (A|U)~ of A|U in C(U) is isometrically isomorphic to the closure of A| U~
in C{(U-), and at times we may write (A| U)~ where (4| U~)~ might also be used.
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Suppose B is a larger subalgebra of C(Y) with 0,4, so that
0, =0, X. Then B|X is closed in C(X), and since we can assume
X =Y, B|X = C(X) since each point of Y\X provides a multiplicative
linear functional on B|X. But A is relatively maximal in C(X), so
A|X = B| X, and each f in B coincides on 9, =8, with a g in A4;
since Y can clearly be viewed as a subset of _#;, and f — g € B must
vanish on all of _#; since it vanishes on @,, f =g on Y, and B = A.

The following is our direct extension of Radd’s theorem.

THEOREM 3.2. Suppose A s relatively maximal in C(_#,) with
My # 0,4, or, more generally, is an intersection of closed subalgebras
of C(#,) each having a Silov boundary which s a proper subset of
A, and each relatively maximal in C(_#Z,).

Then any f in C(.#;) which s locally approximable on
AN U f70) 1s in A

Proof. Consider first the special case in which A is relatively
maximal in C(_#,), and let us write _#, & for _#,, 8,. Let B be
the closed subalgebra of C(_#") generated by A and f.

For each m in U= _#Z\(@U f~(0)) we have an open neighborhood
U, of m contained in U for which f|U,ec(4|U,)", so clearly
h|U,e(A|U,) for any h in B. As a consequence m & 0,; for other-
wise some & in B must peak within _# on a subset of the open set
U,, so for some m’' in U,

| i(m')| > sup | M(U\U,) | .

Since #| U, €(A| U,)~ this contradicts Rossi’s local maximum modulus
principle [11] (which asserts that 8, )~ < U~\U for any open U C_#\0).

Similarly for any m in f~(0)°, the interior of f%(0), m¢0, we
have a neighborhood U, < ._#\® on which f|U, =0e(4|U,)", and
we again conclude that m ¢ 8,. So 8, 8 U F, where F'is the topological
boundary of f~(0) in _#.

Now F\@ is a relatively open subset of the boundary X = FU®
for B, and F\0 lies in the topological boundary F' of f~*(0) in the
subspace Y = _# of _#; so 2.2 applies, showing (F\0) N0z = ¢,
whence 0;C 9. Since 8 & .#, B is proper in C(_#), and since A is
relatively maximal in C(_#), B= A. Thus fc A as desired.’

For the more general case® let A = [ A,, where 04, A, and
each A4, is relatively maximal in C(_#). Clearly 69 4,y and 7 is

¢ Actually A| X # C(X) is redundant if X + 04, as will usually be the case.

5 Radé’s theorem for A; now follows from Wermer’s maximality theorem [7, 12].

6 Qur discussion here (and in later sections) would be considerably simplified if one
had a positive answer to the following open question, raised some time ago by Kenneth
Hoffman: if ACBcC(#4) and 85 = 84, must #p = # 4?
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a subspace of _# properly containing 04,, 80 0, %+ #4,. Let
Ou: A4, — # be the map dual to the injection of A into A4,, which
we can of course view as a retraction of // onto its subspace _7;
finally let % — % denote the Gelfand representatlon of A,— for h in
A, in particular, h= hoO,.

Now trivially fop,e C(.#,) is locally approximable (by Ao p,,
hence) by A, on _Z\NOU(fop,)'(0)), so certainly on
A \N04, U (fo04)7'(0)). Since A; is relatively maximal in C(.#,,) by
3.1, fop,€A, by our special case, whence f = (fop,)| # 1is in
A; | # = A,: since this holds for every a, f € A, completing the proof
of 3.2.

The argument of the special case of 3.2 is central to all that
follows (and will be needed again). There, in distinction to the more
general case, the only property of _# that is used is the local maximum
modulus principle; _#Z could just as well be any boundary X fo which

3.1) 0. 0- < U\U, for all relatively open U in X\(@ U F'),

where F' is the boundary of f~'(0) in X. Moreover 3.2 evidently yields
a positive assertion about any algebra A with _# = @; it will be
worthwhile later to combine these observations in the following corollary
to our proof, in which _# can be taken as X.

COROLLARY 3.3. Let fe C(X), where X s a boundary for A for
which (3.1) holds. Let f be locally approximable (within X) on
X\@U f0)) and let B be the closed subalgebra of C(X) generated -
by A and f. Then

(a) 8; =10 (so that B= A if A s relatively maximal in C(X)),
and

(b) local maximum modulus applies to B on X, i.e., for an open
Uc X\o,

0o~ U\U.

If X =0 the assertions of 3.3 are of course vacuous. (a) is of
course proved in 3.2, and also follows from (b), whose proof is simply
a modification of that of 3.2. For if e U is not in F, the boundary
in X of £7%0), then = has a neighborhood U, with U, < U\F for
which f|U,e(A|U,), so h|U,c(A|U,)~ for any & in (B| U)~; thus
&0, as in 3.2. On the other hand if « is in F then 2¢0; 4 -
by 2.2, so (b) follows.

3.3 has the following consequences.

THEOREM 3.4. Let _#, + 0,. Then there is a closed subalgebra
B of C(.#,) containing A, with 05 = 8,, for which any f in C(.#,),
locally approximable by B on _Z)\@,U f7(0)), must lie in B.
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Consider any chain of closed subalgebras B of C(_#,) which have
the same Silov boundary as A and to which local maximum modulus
applies on _#, : 0y~ U\U, for U open in _#,\0,. By just the
argument used in 3.2, if B, denotes the closure of the union of the
elements of the chain then 9),-C U\U for any open UcC _#,\d,,
50 83, = 0, and local maximum modulus applies to B, on .#;. By
Zorn’s lemma then we have a closed subalgebra B of C(_#,) maximal
with respect to these properties, with A B. But now for an f in
C(_#;) which 1is locally approximable (within _#,) by B on
A\@, U fF%0)) we have by 3.3 precisely the same properties for the
algebra generated by B and f; thus the latter coincided with B, and
feB.

The following extension of 3.2, which allows us to replace 0 by
a countable subset of C, merely adds a category argument to that of
3.2. In the original setting of Radd’s theorem it can be obtained by
a local application of that result (and category).

THEOREM 3.5. Let A be wrelatively maximal in C(#Z) with
A # 0. Let E be a countable subset of C, and {F,} a sequence of
nowhere dense hull-kernel closed” subsets of #Z. If feC(#) 1is
locally approximable on

(3.2) ANO U SfTHE) U (UFL)

then fe A.

If A is only an intersection of relatively maximal subalgebras
of C(.#'), each having its Silov boundary proper in _#, then the
same assertion holds if UF, is closed, in particular if {F,} is finite.

Proof. Suppose first that A is relatively maximal, and let B be
the closed subalgebra of C(_#") generated by A and f. Actually f is
locally approximable on an open subset W of _#\@ which contains
{3.2), and also contains the open sets f~'(e)"\0, ec E, as well; and so
for each me W we have a neighborhood U, of m, U, c._#Z\0, for
which f|U,e(A|U,)~, whence h|U,€(A|U,)" for all kin B. Since
W is open we can conclude from the local maximum modulus principle
that 8, N W = ¢ as before.

Suppose m €8,\8, so medz\(0 UW). Since W contains (3.2) and
each set f(e)\d, such an m must lie in U F,, or in f(ENU.cxf'(e)’,
which is contained in the union of the boundaries of the sets f~'(e).
Thus 8;\@ is contained in a countable union of closed subsets of
#, and, by category, if 0,0 # ¢ one of the sets F, N (0;\0) or

7 Recall that a subset of «# — 4 is hull-kernel closed if and <;n1y if it is of the
form N¢€ 5 g=%0), where FCA.
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(boundary f—(e))N(0;\@) has nonvoid interior V in the locally compact
space 9;\0, hence in 8;.

Now if V c (boundary f-'(e)) N (83\0) then ¢ — f is an element of
B which vanishes on the relatively open subset V of 0z while V
lies in the boundary in _# of (e — f)~'(0), so that 2.2 implies VN 0,= ¢,
our contradiction. Similarly if VC F, N (8;\0), then since F, is hull-
kernel closed it has just the form of the intersection in 2.2; since F',
is nowhere dense in _#Z, V lies in boundary F, = F,, so 2.2 again
yields a contradiction, and we conclude that 6,8, whence B= A
and fe A.

For the final assertion of 3.5 we consider .# as a subspace of
Ay, as in 3.2, with o, our retraction of _#, onto _#Z. Since now
©.'F, need not be nowhere dense in .7, , we let ¥ = ., \U 02(F.)’,
and let B, be the closed subalgebra of C(Y) generated by (the re-
strictions of) A, and fop,.

Our hypothesis that F, is nowhere dense implies .# C Y since
OHNE) N A4 < F) = ¢. And our hypothesis that |J F), is closed implies
K=Up:*F,=p;*(UF,) is closed so that

U= )0, UK)

is an open subset of //Am\@Am contained in the subspace Y of /7.
Trivially fop, is locally approximable by A, on an open subset of Y
which contains all points of U except (possibly) those lying in the
boundaries of (fop,)(e),ec E. But now any m in U at which fop,
is locally approximable has an open neighborhood U, in .# \0,, with
U, c U for which h|U,e(A,|U,)", heB; since U, is open in 7,
we know m ¢ 0, by just the argument of 3.2.

Thus m € 8;\0,, implies m lies in the boundary in Y of some
(fopa)7X(e), or in K\U 0z'(F.)' cU {0z (F)\0Z'(F,)’}, i.e., in the boundary
of one of the sets o;(F,)NY in Y; and now the argument of the
special case shows 0, Cd,,. By 3.1 Aj is relatively maximal in C(Y),
so B, = A, |Y, and since .Z CY, B,| # = A, | . # = A,, and feA,.
Hence fe A, completing the proof of 3.5.

As noted, the only point in the proof of the special case of 3.2
in which _# had to be the fullvmaximal ideal space of A, rather than
a subset properly larger than the Silov boundary, was in the application
of local maximum modulus. In some special situations classical local
maximum modulus can be applied, and we can then avoid using all of
the maximal ideal space. For example, for x € X, a boundary for A4,
call a non-constant map P, of the open disc D° onto a subset of X
containing 2 an analytic disc through x if gop, is analytic for each
g in A. Then
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THEOREM 3.6. Let X == 6 be a boundary for A, and suppose A
18 relatively maximal inm C(X). Let feC(X) and let F be the
topological boundary of f=(0) in X.

Suppose that for every x in U = X\(@ U F) there is an analytic
disc p, through x for which fop, is analytic on D°. Then fe A.

As before, define B to be the closed subalgebra of C(X) generated
by A and f; for every disc o, in our hypothesis we have hop, analytic
on D° for he B as a uniform limit of analytic functions.

Now if 8, N U is nonvoid then [10, p. 138] the open set U must
contain a strong boundary point x of B, and since p, is non-constant
some ¢ in B must peak within 0,(D" on a proper subset containing x.
So gop, assumes its maximum modulus at a point of D°, yet is non-
constant and analytic on D° we conclude that UNd, is void, and
0, 08U F. Now the remainder of the proof of 3.2 applies.

Other variations of this sort can be obtained. We have pointed
out 3.6 mainly to note an apparently nontrivial variation of Radd’s
theorem which it yields for the polycylinder algebra—the algebra A, of
all functions continuous on the polyeylinder D” in C* and analytic on
its interior. Recall that for A,, .#Z = D™ and 8 = T™; moreover if
X is any closed subset of D™ containing the topological boundary of
D™ in C™ (and thus a boundary for A4,) then® A, | X is relatively maximal
in C(X).

COROLLARY 3.7. Suppose X is a closed subset of D™ containing
the topological boundary of D™ in C™. Suppose fe C(X), and through
each point of X\T™ where f does not vanish we have an analytic disc
wn X on which f is analytic.

Then f is an element of the polycylinder algebra A, restricted
to X.

(Note that we of course have analytic discs on which f is analytic
through points of F~*(0)’. Here an analytic dise is simply an analytic
map of D° into X, which need not be (1 — 1), let alone bianalytic.)

Finally we should note that something slightly weaker than local

8 This is no doubt well known; the proof for n = 2 is as follows, with 4 = A4;| X.
Suppose AcBcC(X), and 85 = 84 = T'2. Each disc Dy = {(z, wo): | z| < 1} with |wo|=1
lies in X and is a peak set of A (hence of B), since (2, w) = (1/2)(1 + Wow) peaks there.
Consequently [8, p. 227] B| Dy is closed in C(Do) and 83p,C88NDo=T2NDo=084p,.
Since A| D, is the relatively maximal disc algebra and we now have dp Dy = 041D, We
conclude that A| Do = B| Do; thus z — b(z, wo) is analyticon |2z| < 1 for be B, |wo| = 1.
Similarly w - b(20, ©) is analytic for | z| =1. But now

SSei('m0+n¢)b(ei9’ ¢itYydode = 0

for n or m >0, so b=g€ A on 85 = T2, whence b — g must vanish on Xc#p.
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approximability can be used in its stead in 3.2-3.5: rather than insisting
that f be uniformly approximable by elements of A on U, (hence
necessarily on U,) as we have done, we need only insist on uniform
approximation on

(3.3) K ={m} U (U;\U,) = {m} U boundary U,,.

For example, in 3.2, f|U,c€(A|U,)~ was used only to show
(Z\OUF(0)) N0 = ¢, and since [10, p. 138] strong boundary points
are dense in 0, while _Z\(@ U f(0)) is open, it suffices to show
me _#Z\(@U f7(0)) cannot be a strong boundary point. But if m is
a strong boundary point and f is uniformly approximable on (3.3) then
h|Ke(A|K)™ for all » in B while some 2 in B must have

(3.4) | i(m) | > sup | (U \U.,) |

since m is a strong boundary point not in U,\U,. Now some &’ in
A satisfies (3.4) (since h|Ke(A|K)™), contradicting local maximum
modulus again.

It may be worthwhile to note what this yields for the disc algebra
A if feC(D), and for each z in D\(T* U £7%(0)) thereis an r,, 0<r, =
dist (2, T* U f%0)) for which f can be approximated uniformly by
polynomials on {2} U {z": |2 —z|=1r,}, then fe A, (Deleting f(0)
everywhere, we have here simply a corollary to Wermer’s maximality
theorem for A, and the density of strong boundary points in &; from
this the more general statement follows by Radd’s theorem. Actually
we can limit our 2’s to a dense countable set in D\(T" U f(0)) if we
also assume that », > k dist (2, T* U f(0)) for some fixed k£ > 0.)

4, Schwarz’s lemama. Our argument can also be applied to certain
functions defined and continuous only on part of _#, for any algebra
A. In particular, we have the following generalization of Schwarz’s
lemma (for A = A,, take ¢g(z) = 2), which has several consequences.

THEOREM 4.1. Let f and g be in A and suppose flg is bounded
on #Z\g70). Then

@1 sup| L(2\g7(0)| = sup| L @\g~0))

(In fact the assertion applies to the Gelfand representatives of any
commutative Banach algebra.)

Proof. For each m in U=_2Z\(6Ug™0)) let U, be an open
neighborhood of m with compact closure contained in U, chosen so
small that 0e C does not lie in the closed convex hull of g(U,;). Then
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we have polynomials P, for which P,(2) — 2z~ uniformly on g(U.,), so
that (P,cg9)| U, — (1/9)| U, in C(U,), and thus (f/g)| U, (A|U,)".

Letting B, be the uniformly closed subalgebra of C(_#\g~*(0))
generated by 4, = A|(_#\¢g7*(0)) and f/g, we have

(4.2) h|Une(AlU,)"

for all # in B, and m in U.

Now let X be the closure of _#\g7(0) in _#;, so that X is a
boundary for the algebra B, of Gelfand representatives of B,. Set
B = B{|X; B of course contains a continuous extension to X of each
h in A4, and of f/g, and we shall let A* denote the extension of
h{ (#\g7%(0)), for he A.

g* cannot vanish on _#\g~(0). On the other hand ¢g* must vanish
on X\_#: for since .#Z\g7*(0) is dense in X, |g*(x)| = ¢ > 0 implies
x is in the closure of {me _#:|g(m)| = ¢}, which is already compact,
so x€.#. Consequently g*(0) = X\_#. Again since _#Z\g7*(0) is
dense in X, g*(0) = X\.# must coincide with its boundary in X.

Now _Z\g7(0) = X\g**(0) is open in X; on the other hand the
imbedding of _#\¢g7'(0) intoc X is a homeomorphism,’ so that the rela-
tively open subset U = _Z\(0 U g7*(0)) of _#"\g7*(0) is in fact relatively
open (hence open) in X. Consequently each U, is open in X and (4.2)
suffices to show no m in U is in 0, as in 3.2. So

0 C X\UC(X\.Z) U 0\g7(0) c(X\”2)U F,

where F is the closure in X of 98\g7(0), and 9, < ¢g**(0) U F.

If the relatively open subset 8,\F of 8, were nonvoid, then, since
it lies in g*7%(0), hence in the boundary in X of this set, 2.2 would
imply 8z N (0\F) = ¢ = 0,\F; so 0,\F = ¢,0,C F and trivially (4.1)
follows. (Since the result applies to A”—with 1 adjoined if necessary—
for any commutative Banach algebra A, the final assertion follows.
easily.)

Our first corollary to 4.1 gives some information about zero-sets.
which is quite familiar for the disc algebra: a (non-void) zero set
97'(0) (g e A) disjoint from the Silov boundary has a smallest neighbor-
hood on which elements of A can vanish, while no f in A vanishing
on ¢g—*(0) can tend to zero faster than every power of g unless f vanishes.
on a neighborhood of ¢g=*(0).

We first observe that (4.1) can be trivially improved to have
A(F(0) Ug™'(0)) in place of 8\g~"(0) on the right side of (4.1) (since
f/g vanishes on f~(0)\g~*(0)).
my BocC(-#\g~40)) implies the map of #\g—1(0) into €, is continuous,

while the map of 5, into «# dual to the injection of A into Bo-restricted to the image
of «#\g—%(0) in «#p-provides a continuous inverse.
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COROLLARY 4.2. Let f and g be in A, with ¢ % g7 (0) Cf(0),
and suppose inf | g@\f(0))| = 0o > 0 (which will of course be the case
if g 0YN D = ¢). If flg~ 1s bounded on _Z\g7(0) for every m=1
then f vanishes on

(4.3) g'(Dy) ,

where Df is the open disc about 0 of radius o.

In particular, if ¢g7*(0) is nonvoid and disjoint from the Silov
boundary, then any f in A vanishing on a meighborhood of g¢g~'(0)
vanishes on (4.3) with 6 = inf|g(@)|.

By (4.1), modified as indicated,

L@\ = L1
g 0

‘—fn—\ = SUP‘ —j;T(a \(F O u 9*1(0)))1 = sup’
g g
on . \g~0) so that

[ Flmy| = tim 1) [ 292" = 0

if 0~ |g(m)| < d. By hypothesis f(m) = 0 if g(m) = 0, so f vanishes
on all of (4.3).
For convenience let us say gc A divides fe A if f = gh, he A.

COROLLARY 4.3. Suppose A 1is analytic on 2 (§2), and ge A
has g7 (0) nonvoid and disjoint from the Silov boundary. Then if
g divides a monzero element f of A there is a largest integer m for
which g" divides f.

Otherwise f/g™ is bounded for every %, and f must vanish on (4.3),
hence on all of .#.

COROLLARY 4.4. Suppose A |8 is an intersection of maximal closed
subalgebras of C0), f and g are in A, and® 7 =0 Ug0). If flg
18 bounded on _Z\g7X(0), and on 8 has an extension in C(0), then
f = gh for some h wn A.

10 This hypothesis is superfluous if g does not vanish anywhere on 9, but in general
is essential to the result. For let «# be the subset ({0} xD)U{(r,2):0=r <1,|z| =1}
of R x C, and A all functions continuous on +# and analytic on {0} X D°. Then «# 4 =
“#, 8, = #\({0} X D% and setting f(r, 2) = %, g(r, ) = r we have flg(r, 2) = Z so flg ¢ A.
(If 0¢ g(8) and «# = 8Ug~4(0) then each of the complementary sets 8 and g—1(0) is open
and closed; by a result of vSilov, or in fact by 3.2, the characteristic function of g—1(0)
is an element of A. Since it vanishes on 8 we conclude that g—1(0) = ¢ and the assertion
of 4.4 is vacuous.)
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We shall only sketch the proof, which is quite similar to that of
4.1. Suppose first that 4|0 is actually maximal. Let %, be an extension
of flg to Y =0U (#Z\g7%0)) with h,|9cC(d); we now let B, be the
uniformly closed algebra of bounded functions on Y generated by A|Y
and h,. Of course we have 2|@ and &|(_#\9g7%0)) continuous for
he B, and this implies the (1 — 1) map of Y into _#; is continuous
when restricted to 8 or _Z\g7(0): we can view Y as a subset of
A5, 0 as a compact subspace.

As in 4.1 we let X be the closure of Y in Ay B= By X, and
h* the element of B corresponding to ke B,. If g*(x) # 0 then for
some ¢ > 0, x lies in the closure in X of {me_#:|g(m)| = ¢}, which
is already compact in X as the continuous image of a compact subset
of . #Z\g7(0). So X\g*7'(0), an open subset of X, is contained in Y;
thus (X\g*7'(0))\0 is another subset of Y which is open in X. This
last set is clearly the open subset U= Y\0 = _#\(@U g7'(0)) of Y,
and U is open in X.

Now the imbedding of U into X is a homeomorphism (exactly as
before; see footnote 9)), so any subset of U, open in ., is open in X.

Consequently if we select, for m e U, an open neighborhood U,
of m in _# with U, < U (as in 4.1) for which »*|U,=h| U, € (A|U,)",
he B, then since U, is in fact open in X the argument of 3.2 and
local maximum modulus show 8, N U, = ¢.

Thus 0, < X\U = X\(Y\9), so 9,0 X\Y. But X\Y < g**0), as
we have seen, so X\Y cCg**(0)\d, and 8,\0 < g*-'(0)\@. Since Y\d =
AZ\(@ U ¢g7(0)) is dense in X\0 while g* cannot vanish on this set,
we clearly have g*'(0)\0 contained in its boundary in X. So 2.2 applies
to show 0;\0 = ¢, whence 0, <@ and B|d is closed in C ().

By hypothesis _2Z\(0 U g7(0)) = 4, so 8, <0 is proper in .#;; thus
Alac B|0 & C@®), and by maximality A|9 = B|9. Hence h,=h on
0 for some h in A, whence f = gh on 8, hence on all of _~Z.

Now if A|0 = (A,|0) where each A, |0 is maximal in C(3), then
the preceding argument applied to A, (with f and g taken in C(.#,,))
shows h,|0ec A,|0; thus h,|0 = h|0 for some h in A, whence f = gh
on .# as before.

COROLLARY 4.5. Let A|0 be an intersection of maximal closed
subalgebras of C(0), and let g be an element of A with 7 + 8 U g~*(0).
Then any f in C(#Z) with fge A coincides on _#\g~(0) with an
element of A.

For fg/g is bounded on _#\g~(0) and on @ has the extension f|@
in C(@), so that fg = gh for some & in A by 4.4.

(If A is analytic on _# (see §2), fe A; for then g~*(0) is nowhere
dense in .Z.)



MAXIMAL ALGEBRAS AND A THEOREM OF RADO 933

Bishop [3, § 2, Lemma 3] has recently shown that (for any A) a
point m in _Z\0 is represented by a (not necessarily unique) Jensen
measure on 9, i.e., there is a probability measure f¢ carried by @ for
which Jensen’s inequality holds:

log |f(m)| < [log |£1die, fed.

(Applied to f =e*?, gec A, this yields Reg(m) = SRe gdyt so that p
represents m on A.) As a consequence the argument of 4.4 yields

COROLLARY 4.5. Suppose f,gec A and f/g is bounded on _7\g*(0)
and on 0 has an extension h, in C(0). Then for each m n
~AZ\@ U g7(0) U £74(0)) there is a Jensen measure [t on 8 representing
m for which

Slog|g|d# —log|g(m)| = Slogiftd/l — log|f(m)| .

When (as in 4.4) f/g is actually the restriction of an element h of
A, 4.5 follows trivially from Jensen’s inequality for any Jensen measure
1t representing m; for

Jiog171dp — log | £(m)| = [log| gh | dg: — log | gh(m)|
~ ({rogig1ds — 10g 190m)1)
- <Slog | h|de -- log | h(m) {)
while the last term is nonnegative. In general we can construct the
algebra B of 4.4, obtaining 8, = @ as there. Thus me _~2Z\(@ U g~*(0)),
which provides an element of ._.7;\0;, is represented on B by a Jensen
measure ¢ on 0, = 0 by Bishop’s result. So
1og’§(m)] = Sloglho!d#
and
— o< log [ gm) | = loglg|de.
From the last we have @ N ¢g~'(0) a p-null set so

log [f(m)| — log |g(m)| = log]%(m)‘ = Slog'—g—!d#

= |log|71dp — |log 9] dr
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yielding 4.6.

If A|d is not an intersection of maximal subalgebras of C(6) and
f, 9 are as in 4.4 one would not in general expect f/g to have an
extension in C(.#)— or even an extension to _# continuous at all
points of 8. However this is the case if A has unique representing
measures.”

COROLLARY 4.7. Suppose each me _# 1is represented by a unique
(probability) measure on 0. Let f,geA, with f/g bounded on
A\g7(0), and suppose that, on 0, flg has an extension in C(d).
Finally, suppose # + 8 U g~ (0).

Then flg has an extension in C(_#').

Exactly as in 4.4 we form the closed subalgebra B of C(X); X
contains (a homeomorph of) & and a continuous (1 — 1) image of
A#\g~(0) as before. Again we obtain 8,9, so that each me_#;
is represented by a probability measure p, on 8, which is necessarily
multiplicative on A C B, hence represents an element m’ of _#; the
map m— m’ is of course nothing but the continuous map on _#; into
_# dual to the injection of A into B. But since representing measures
for A are unique m—m’ is 1 — 1: for if m,, m, both map into m’
then f,, = ft,,, whence m, = m,.

Thus .#; is homeomorphic to a compact subset of _~# which
necessarily contains (_Z"\g*(0)) U 8, so that %, (see 4.4) has a continuous
extension to the closure of this set, hence to _#.

Actually in 4.1, 4.4 and 4.7 various other combinations of f and
g (e.g., f exp(1/9)) could be used in place of f/g. More generally f/g
could be replaced by any A in C(_#\g~'(0)) which is locally approximable
on .#Z\(@Ug(0)), as is clear from their proofs. Thus

THEOREM 4.8. Let ge A and suppose he C(_Z\g7*(0)) is locally
approximadble on Z\@ U g7(0)). Then

sup [(2Z\97'(0)) | = sup [ h(B\g~(0)) | .

Suppose that 7 + 8 U g~(0), while k|8 has an extension in C(d).
Then
(i) If A|@ is an intersection of maximal subalgebras of C(0),

11 More generally we could insist on uniqueness of the Jensen measure for each m
(see [3, 82, Lemma 3]). An example where the assertion of 4.4 fails is the following
which was pointed out by Wermer. Let X = {(z,w)€C%:|2z| =1=|w|}, and A the
closed subalgebra of C(X) generated by the coordinate functions 2z, w, and all the
functions wm/z» with m >n >0. Then « = {(z, w)eC?:|w| £} 2| £1}, the coordinate
function g =z vanishes only at (0,0) in «#, and w/z is bounded on -#\g—1(0), but has
no continuous extension to «#,
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h is the restriction of an element of A.
(i) If each m in _#Z has a unique representing measure on 0
then h has an extension in C(.#).

With sufficiently strong hypotheses we can also obtain an analogue
of Radd’s theorem in which continuity need not be assumed everywhere.

THEOREM 4.9. Suppose A|0 is maximal in C@®), # # 6. Let
F be a relatively closed subset of .#\0, E a countable subset of C,
and K a countable wunion of hull-kernel closed sets (for example,
points) contained in F. Suppose fe C(#Z\F), f is locally approxi-
mable on _#Z\(0 U F), f7(e) is nowhere dense in _Z\F for each ¢ in
E, and for every m in the boundary Fyof F in _#, m ¢ K, the cluster
values of f at m lie in E, t.e.,

NfV\F)cE

where the intersection is taken over all meighborhoods of m.
Then f is the restriction of an element of A.

Proof. Again for each m in U= _#\(@U F') we choose an open
neighborhood U, with f|U,€(A|U,)", and let B, be the closed
subalgebra of C(_#Z\F') generated by A|(_#Z\F) and f; thus

(4.4) hiU.e(A| U~

for all m in U and h in B,. We can again view Y =_#Z\F = 0U (. Z\F)
as a subset of _#;, and @ as a compact subset. Let B be the re-
striction of the Gelfand representatives By to the closure X of Y in
A5, and p the restriction to X of the map . — _# dual to A — B,.
Trivially o(X) is the closure, in .#, of Y,

Now pis 1 —1 on 07'Y, so lO‘IY:AY; for each 2 in B, is con-
tinuous on Y while for each ocAin X, h(x) is a cluster value of h at
o(x). Thus o(x) =ye Y implies n(x) = h(y) = h(y), and © = y. (Since
each U, is open in _#, hence in o(X), this implies U, = p7'U, is
open in X.)

Each m in o(X)\Y lies in the boundary F;, of F, clearly. Since
each U, is open in X, by local maximum modulus and (4.4) we have
3:NU=¢, so 9, X\U; since p'Y =Y and Y=0U U we have
0(05) cp(X)\Uc@ U@XN\Y)coUF, so 0,cdUp(F,). For each
@ in p7(F}), () is a cluster value of f at p(x), so that either f(z)e E
or p(z)e K = Uz, K; (where K, is hull-kernel closed). Thus the locally
compact space 95\0 < 07(K) U ( f “(E) N X), a countable union of closed
subsets of X. By category, one of the sets o7'(K))N (85\0) or
f ~(e) N (05\0), e € E, has a nonvoid relative interior V in 8,\0 if 9,\0+9,
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Suppose p7(K;) N (05\0) has nonvoid relative interior V. Then if
S={heA:K) =0}, Ki=ies h0), and since f = hop on X, we
have (K. = Nies #~(0). Trivially 0~(K;) is all boundary in X
(since o (K;)NY =¢ and Y is dense), so 2.2 applies to yield the
contradiction V=0,NV = 4.

Again if f~'(e) N (05\0) has nonvoid relative interior V in 8,\@, then
(¢ — £)(0) contains V, and coincides with its boundary in X since
(e — f)*l(O) NY is nowhere dense in Y = _#Z\F by hypothesis, hence
has a dense complement. Since this again yields V=V N6, =¢ by
2.2, we conclude that 8;\0 = ¢.

The remainder of the proof is now clear.

COROLLARY 4.10. Suppose that the hypotheses of 4.9 are satisfied
except for the requirement that A|0 be maximal in C(0). Then the
closed subalgebra of C(_.Z\F) generated by f and A|(.Z\F) has the
same Silov boundary as A.

5. Integral closure. For a boundary X of A we shall call A
integrally closed in C(X) if, when a,, a,, +-+, @, are in A and fe C(X)
then

(5.1) pf)=f"+apf"+ - +a =0 on X

implies fe A. We shall see that algebras to which 3.2 applies have
this property for? X = _# as a consequence of 3.2 and the implicit
function theorem for analytic functions on C™.

Recall that if F' is analytic near (2% w°) = (2%, ---, 2% w°) in C"",
F@, w) =0 and (0F/0w) = F, (2", w°) = 0 then, for some ¢ > 0 and
neighborhood V of 2° in C", there is a unique function @ on V for
which

Fiz,92)=0 and |[p() —w’|<J;
and @ is analytic on V. Consequently if
(5'2) F(a’ly “',a’nif):O

on a neighborhood of me_#~, where a,, ---,a,€A, feC(_#), and
a;(m) = zi, f(m) = w’, then

f: q)(a’ly "'yan)

near m. Thus f can be uniformly approximated by a power series in
@, +++, a, near m, and for some neighborhood U, of m, f| U, € (A| U,)".
So we have

12 The same argument, using 3.3, yields this for any boundary X for which local
maximum modulus applies to A on X, if A is relatively maximal in C(X).
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LemMmA 5.1. Let a, ---,a,€A,feC(.#), and suppose F 1s
analytic on a meighborhood of (a(m), -+, a,(m), f(m)) in C** while
(5.2) holds on a meighborhood of m. Then f is locally approximable
at m II’f Fn+1(a1(m)1 M) a’n(m)’ f(m)) #* 0.

We can now easily obtain the integral closure of the algebras in
3.2. Slightly more generally we have

THEOREM 5.2. Suppose A is an intersection of relatively maximal
subalgebras of C(.7Z) with Silov boundaries proper n #. If
FeC(.7) 1s locally approximable on _Z\0 outside the set where (5.1)
holds then fe A; wn particular A is integrally closed in C( 7).

Proof. f, and so p(f), is locally approximable on _#Z\@ except
where p(f) = 0, so that p(f) =acA by (3.2). Changing a, we can
thus assume

D) =F* 4ty f* A+ oo +a,=0

everywhere on .. But now f is locally approximable off the set
where

P(F) = nf™ 4 (0 — Dy f* 4 +ov + 0, =0

by 5.1, so p'(f) is locally approximable off »'(f)~(0), and »'(f)c A by
3.2. Continuing we finally have (n!)f + a€ A, and fe A.

COROLLARY 5.3. Suppose A satisfies the hypothesis of 5.2, while
fe A does not have an nth root in A for some n > 1. Then _#\f~(0)
is not simply connected (and if _# 1is locally connected, some com-
ponent of _#Z\f(0) is not simply connected.)

Finally, of A is also analytic on #, #\9g7*(0) is connected for
each g in A.

If _Z\f7(0) were simply connected we could find an & in
C(AZ\f0) with A" =f on Z\f7(0); setting # =0 on f(0) we
obtain an nth root of f in C(.#'), and he A by 5.2. (Similarly if the
components of _#Z\f(0) were simply connected we could find such an
h on each component, and, if the components are open, we can combine
these to again obtain an nth root in C(_#).)

Finally if A is also analytic on _#, and _Z\g7'(0) = UU V # ¢,
with U, V open and disjoint, then

(9 on U Ug™0)
“|l—=gon V

h
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defines an & in C(_#) which lies in A by 3.2; since A +¢g or h —g
vanishes on a nonvoid open set (V or U) one vanishes identically.
But h =g implies V=96, h = —g implies U = ¢, so .#Z\g7*(0) must
be connected.

Actually if A satisfies the hypothesis of 5.2 and is analytic on .#
then A is algebraically closed in C(_#) in the obvious sense. More
generally such an A is analytically closed in C(_#) in the following
sense.

Let a,, +++,a,€ A, feC(_#), and let F be a function analytic on
a neighborhood in C"*' of the range of the map

o:m— (al(m)! ) an(m)’ f(m)) ’

despite our earlier notation we now let F) = [(8/8z, ) F]op, k= 0.
Clearly F' is not “independent of z,,, on o(_#)’ if and only if F\(m) = 0
for some m and k = 1, and so we shall call A analytically closed in
C(.#) if, for such a,, f and F, with F,(m)+ 0 for some k=1 and m,

(5.3) F(a’h""amf):()
implies fe€ A.

THEOREM 5.4. If A 1is an intersection of relatively maximal
subalgebras A, of C(.#) each having its Silov boundary proper in
A, and A 1s analytic on _#, then A is analytically closed in C(_#7).

For f is locally approximable on _Z\(6 U F;*(0)) by 5.1, so that
F, is also, and F e A by 3.2. Of course we may have F, =0, but
even then we know j (and so F,) is locally approximable on
#Z\(0 U F;'(0)), so that F,e A by 3.1; since not every F, = 0 we have
some F), a nonzero element of A, and choosing k least, f is locally
approximable on _Z\(@ U F;*(0)).

But now the final portion of 3.5 applies, with E void and F;(0)
our (single) hull-kernel closed subset of _# (which is necessarily
nowhere dense since F, = 0 and A is analytic on _#).

For an algebra to which Radd’s theorem applies the preceding
argument shows (5.3) implies F,e A for all %k, and clearly we can
replace F;(0) in the proof by K = N, F;(0), with f locally approxi-
mable off this set; thus the hypothesis that K is nowhere dense is an
adequate replacement for the analyticity of A on _#, yielding the
first half of

THEOREM 5.5. Suppose (5.3) holds with F appropriately analytic
and feC(.#). Let K= YF;X0).

(1) If A satisfies the hypotheses of 5.2 and K 1is mowhere
dense, fe A,
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(2) If A|o is maximal wn C(0), and 7 + 8 U K, then f coin-
cides with an element of A off the interior of K.

Since F,e A for all k, and f is locally approximable off K, (2)
follows from 4.9 (with E void, and K the K of 4.9). Of course we
could assume, as in 5.2, that 5.3 holds wherever f is not known to be
locally approximable.

Actually any algebra A with _# = 0 is contained in a subalgebra
B of C(_#) given by 3.4 to which (1) applies, as is easily seen. In
particular, B provides an integral closure of A in C(_#).

THEOREM 5.6. Suppose 7, + 0,. Then A 1s contained in a
subalgebra B of C(.7#7,) which ts integrally closed in C(_,) and has
0, = 0,. Thus, in particular, if fe C(.#,) satisfies (5.1) for a; in
A, the subalgebra of C(./,) generated by A and f has 8, as its Silov
boundary.

With B given by 3.4, the proof is precisely that of 5.2, with B
in place of A.

Finally we should note that something stronger than integral
closure in C(_#) holds for our intersections of relatively maximal
algebra—we could require only that (5.1) holds locally on _#'\9, i.e.,
that each m in the (non-compact) space .Z\@ has a neighborhood on
which an equation of the form (5.1) holds. Then, rather than invoking
3.2, we could simply show that for B, the subalgebra of C(_#)
generated by A and f, one has 9, 9. (Indeed if m €9;\@ and we
choose p as in (5.1) of least possible degree with »(f) =0 on a
neighborhood U, of m, then f and p'(f) are locally approximable on
U,\p'(f)7(0), so m cannot lie in this open set—mnor in its boundary by
2.2. Thus m is interior to p'(f)~'(0), so p'(f) vanishes near m, contra-
dicting the assumption that p had least degree.)

6. Removable singularities. We next note an analogue of the
elementary removable singularities theorem for analytic functions.

THEOREM 6.1. Suppose A|0 is an intersection of maximal
subalgebras A, of C(@), me_#Z\0, and f is a bounded continuous
function on _Z\{m} which s locally approximable by A on
A\NOU{m}). Then fe Al(AZ\{m}).

For each «, f° 0, is locally approximable by A, on ., \(0,'(m) U d),
while 0;'(m) is a hull-kernel closed set” contained in ., \3,, = -4, \0.

13 For {m} is hull-kernel closed in # and pq: “#4,—> % is continuous even when
hull-kernel topologies are used,
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Thus by 4.9 (with E = ¢, F = K = p;(m)), fo p. € A, | (#Z\05(m)), so
feA,|(7Z\{m}) and fe Al(Z\{m}).

Trivially {m} could just as well be any hull-kernel closed set in
#\0. The result yields immediately an (imperfect) analogue of the
elementary facts on behavior of analytic functions near isolated singu-
larities.

COROLLARY 6.2. Suppose A|0 is an intersection of maximal
subalgebras of C(®) and f is a contimuous function on _7\{m},
which 1s locally approximable on _2Z\(@ U (m}). Then either

(@) feAl(~2Z\(m})

(b) f =const. + 1/g,g€ A, and g7'(0) = {m},
or

(¢) for each (deleted) open neighborhood V of m there is a compact
K wn C for which f(V) is dense in C\K.

Suppose (a) fails, so f cannot be bounded by 6.1. Let V be as in
(¢) and take K = f(_.2Z\(V U {m})) which is compact. If (c) fails for
this K then for some ze€ C\K, z — f is bounded away from zero on V;
gince it is also bounded away from zero on _Z\(V U{m}) (by the
distance from z to K), g = 1/(z — f) e C(.#\{m}), and is locally
approximable on _Z\(@ U {m}), so we can take g to be an element of
A by 6.1. But now to obtain (b) we need only see that g7(0) = {m};
evidently ¢ cannot vanish elsewhere, and if g(m) % 0 then g has a
bounded inverse, whence f is bounded, contradicting our hypothesis
that (a) fails.

Remark (Added in proof.) Wermer has pointed out the following
completely elementary proof of 2.2, which actually applies if A is
merely a multiplicative subsemigroup of C(X). (For simplicity we
shall suppose .# = {f}, a singleton):

For ze V we have a net {ys} in Y converging to =, with f(y;) = 0
for each 6. Fixing 0, for g€ A we have

| f9(ys) | = sup | f9(X)| = sup|fg(X\V)|
< sup | AX\V)|-sup|g(X\V)]

80 |g(¥s)| = cssup | g(X\V)], all ¢ in A. Replacing g by its kth power
and taking kth roots

l9(ys) | = ¢i/* sup [g(X\ V)|
whenee |9(¥;) | = sup |g(X\V)|. Since this holds for any 9,
|9(x) | = sup [g(X\V)|, 94,
so X\V is a boundary, and VN o= g,
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An even shorter (but nonelementary) proof can be obtained using
Bishop’s result on the existence of Jensen (representing) measures [3],
as Bishop observes in his forthcoming paper “Conditions for analyticity
of certain sets” (§3).
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MINIMUM PROBLEMS OF PLATEAU TYPE IN THE
BERGMAN METRIC SPACE

Kyong T. HAHN
Dedicated to my teacher Professor C. Loewmner on his seventieth birthday

1. Introduction. In this paper we are concerned with the
existence of minimal surfaces with respect to the B-area (see §4)
and related problems in a bounded domain D in the space C* of two
complex variables z,, 2,.

Let K,(2,%),2 = (2, +++, 2,), be the Bergman kernel function of a
bounded domain D in the space C™ of % complex variables. Through-
out this paper, we assume K,(z, Z) has the boundary value infinity at
every point on the boundary of D. The kernel K,(z,%) enables us
to define the Bergman metric

(L.1) dsh(®) = 3 Ts(z, B)d2,da,, T,; — 2108 Ky
Hy=1 02,07,

which is invariant with respect to pseudo-conformal mappings [4,
pp. 51-53]. Using (1.1) we construct (see §2) the complete Bergman
metric space (D, d) over D and state a theorem for complete Riemannian
spaces that for any two points in D, there exists a minimal curve
with respect to d which connects the two points.

In § 3 we show that, if D is a plane domain bounded by finitely
many boundary components b, b,, ---,b,, then there exists a minimal
closed curve with respect to d among those curves which are homotopic
to a fixed inner boundary component, say b, in D(b,) (see §3 for
notation). If D is doubly connected, there exists a unique minimal
closed curve in D. Furthermore, we prove a distortion theorem which
gives bounds for the Bergman lengths of the minimal closed curves.

Analogous results are obtained in the case of two complex variables
replacing the length by the B-area.

For a closed Jordan curve [” in a complete metric space (D, d),
we ask whether there exists a minimal surface with respect to the
B-area which spans I'. Answers to this question which constitute
the main result of this paper are given in §4.

As a generalization of §3, we consider a domain D which is
topologically equivalent to a product domain of the form D, x D,,

Received July 5, 1963. This paper represents the essential contents of the author’s
doctor thesis at Stanford University. The author wishes to express his thanks to
Professor S. Bergman and Professor C. Loewner for their pertinent criticism in the

preparation of this paper. This research was supported by Navy Contract Nonr-225(11)
and NSF Grant 21344.

943



944 KYONG T. HAHN

where D, is a bounded domain as considered in §3. When does there
exist a minimal closed surface with respect to the B-area among
those surfaces which are homotopic to T; in D(T)) (see §5 for nota-
tion)?

Answers are given in §5. Distortion theorems for the minimal
surfaces are given in §6.

2. The Bergman metric space. A (continuous) curve ¢ in D is
said to be regular if it admits a regular (parametric) representation,
i.e., there exists a continuously differentiable representation

(2.1) G Lz, =G((t),k=1,2,+-+,n,tecl=]a,b],

and dG,/dt never vanish simultaneously at any tel. A curve ¢ in D
is said to be precewise regular if it admits a piecewise regular re-
presentation, i.e., there exists a partition 4: @ = ¢, <t, < v t,  <t, =
b such that G|[t,—y, ] is regular for k =1,2, ---, m.

For a piecewise regular curve ¢ given by (2.1), we define

2.2 L) = || 5 TtGee), G2 4G, 1%y

Ly(c) is independent of the choice of piecewise regular representa-
tions of ¢. Ly(c) will be called the Bergman length of c.

For any two points 2' and 2° in D, we define a distance function
d by

(2.3) d(z', 2’y = inf L(c) ,

where ¢ runs over all piecewise regular curves which connect z' and
z'. Then the following theorem holds [15, § 16].

THEOREM 2.1. d satisfies all the axioms for a metric and the
metric space (D, d) is topologically equivalent to the metric space
(D, p) with the FEuclidean metric p. Moreover, the metric space
(D, d) 1s finitely comnected in the semse that every pair of points in
D can be connected by a curve of finite Bergman length.

The metric space (D, d) will be called the Bergman metric space
over D. The significance of this metric space is that all metric
properties are invariant under pseudo-conformal mappings.

We define the length (generalized) of a continuous curve ¢ in
D in the following way: For a partition A4(I) ={I, L, ---, L.}, I, =
[ten tel, k=1,2, ---, m, of I, we define
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o(G; 4(I)) = é‘l o(G; 1), o(G; 1) = d(G(t,), G(t,-)) .

Further, we define

(c) = sup a(G; 4(1)) ,

where 4 runs over all possible partitions of I. Then _$(c) is in-
dependent of the choice of continuous representations of ¢. Clearly,
the functional .&, is lower semi-continuous, i.e.,

F(e) £ liminf .7 (c,), if ¢, —c.
k— oo

Further, for every piecewise regular curve ¢, L,(c) = .&5(c) |15, §16].

If %7(¢) < oo, ¢ is said to be rectifiable. A curve is said to be
completely degenerated if there is a representation G|I such that G
is constant on I. A representation G|I is said to be wmormal if
LG Y] = — ¢, for t,t' et <t.

Let ¢ be a rectifiable curve which is not completely degenerated.
Then ¢ admits a normal representation G |[0, . (c)], If we set F(t)=
Git.e(e), tel, I, =]0,1], then F'|I, is also a representation of c.
Such a representation F'|I, is called a reduced representation of c.
For a closed curve, F' is defined on (— oo, ) and is periodic of period
1. It is, therefore, enough to consider F' on [,. If F'| I, is a reduced
representation of a curve ¢, then the inequality

(2.4 AUE@), F(t) = 3(c) [t 1]

holds for every t,t €1,

A metric space is called complete if every bounded infinite subset
contains a limit point in the metric space. If D is homogeneous,
(D, d) is always complete. Further, for every bounded generalized
analytic polyhedron D, (D,d) is complete. This is a result of
S. Kobayashi (see [11] for details). For domains D in the space C»,
n < 2, Bergman has shown that the distance from a point in D to
the boundary becomes infinite under certain hypothesis on the
boundary of D |1}, [6, Chap. III]. 1t is clear, in this case, that the
metric space (D, d) is complete. Without going into great details in
this direction, we shall assume in the sequel that the metric space
(D, d) is always complete.

A curve K in (D,d) which connects z' and z* in D is called a
mintmal curve between z' and 2* if &7 (K) = <(c) for all curves ¢
connecting 2 and z°.

THEOREM 2.2. For any two points 2" and 2%, 2' +# z,, wn (D, d),
there exists a minimal curve K between z2' and 2'. Further, the
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minimal curves are analytic (see [10] or [15, §17]).

3. The existence of a minimal closed curve in a plane domain
and its distortion theorem. We consider a multiply connected bounded
domain D in the space C* bounded by N Jordan closed curves
b, by, -+, b,, where b, is the outer boundary component. Let (D, d)
be the Bergman metric space derived from the Bergman metric

3.1) dsi(z) = Ky(2,%) | dz|*.

It is assumed that (D, d) is complete. Then all the previous con-
siderations, lemmas and theorems can be carried over to this case.
We fix an inner boundary component of D, say b,. Without loss of
generality, we may assume b, to be a circle.

Let &(D; b)) be the class of all closed continuous curves ¢ in D
which are homotopic to b, in D(b,), where D(b,) is a ring domain
bounded by b, and b, which contains the domain D, and D(b,) is the
closure of D(b). A curve K(D;b) in R(D;b,) which satisfies the
condition .Z5(K(D; b)) < .<(¢c) for all ce R(D;b,), will be called a
minimal closed curve of D with respect to b,. Due to the complete-
ness of (D; d) and the behavior of K,(z, Z) (described on page 943) on
the boundary of D, we have

THEOREM 3.1. There exists a minimal closed curve K(D;b,) of
the domain D with respect to b,. Further, it ts analytic.

Proof. Let v =inf, 27 (c), where ¢ runs over the class &(D;b,).
Then 0 < v < o, There exists a minimizing sequence {c,} of rectifiable
curves in R(D; b). Let G,|I, be the reduced representation of c,.
By (2.4), we have

d(Gi(t), G(t)) = Z(e,) | t—t'| for each k,

and {<%(c,)} has an upper bound é which is finite. We choose an M
such that M* > §/l(b,), (b)) is the Euclidean length of b,. Then no
¢, lies completely in D — Dy, D,, = |21 K,(2,7) < M]. Let

© = max d(z, 2) ,
21 29€D
then for every pair of positive integers » and ¢, we have
d(G(1), Gt)) <o +20,0=t=<1. Hence, we can select a sub-
sequence {G,} of {G;} which converges uniformly to a continuous
function G° on I,. Let K be the closed curve whose representation is
given by G°|I,. Since c,,— K, and by the lower semi-continuity of
%, we obtain &5(K) = v. The analyticity of K is obvious.
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THEOREM 3.2. FEvery doubly connected domain has a wunique
minimal closed curve. It is analytic.

Proof. We shall show first that annulus @ = [z|r < |z| < 1] has
a unique minimal closed curve given by ¢, = [2]|2| = 7]. Let P, =
lr<lz|<r?], P,=[z|r*<|z|<1]. If en P, = ¢, it is immediate
that Lgy(c,) = Ly(c), since the kernel function Kz, zZ)' assumes its
minimum on ¢, IfeN P, = ¢, by the conformal mapping { = /2, we:
have €N P, = ¢, where ¢ is the image curve of ¢ under { = 7/z.
Since Ly(€) = Ly(c), Ly(c,) < Ly(c) follows. If ¢cN P, = ¢ and c N P, + ¢,
we obtain two closed curves ¢, ¢, consisting of the subares of ¢ and
¢, and such that ¢, N P, = ¢, ¢, P, = ¢. By the previous arguments,
Ly(e)) = Ly(c,), ©=1,2. Since Ly(c;) + Ly(c;) = Ly(c) + Ly(c,), we
have L(c,) < Ly(c). Let D be a doubly connected domain. Then D
can be mapped by a univalent analytic function f(z) onto Q. It is
clear that f~(¢,) is the unique minimal closed curve of D with respect.
to the inner boundary component by the univalency of f(z).

We consider a domain D in the 2z-plane which is bounded by
b =[z||z|=7], by =[z||2] =1], and (N — 2) closed Jordan curves.
by +++,by_,. The curves b,, -+-, b,_; lie in the domain bounded by b,
and b,.

Let A, =[z|r<l|z|<1], A, =[z||z—a|<p,|2]| > 7], be exterior
and interior domains of comparison for D, respectively, i.e., A, DDDA,.
Then

(3.2) L, (K(A)) = L(K(D)) = L, (K(4y)) ,

where K(A,), K(A4,) and K(D) are minimal closed curves of A4,, 4, and
D with respect to b,, respectively. It is an immediate consequence
of the fact that if BCA, then Ky(2,7) = K,(2,%Z) for z¢ B. The:
linear transformation

_ 2= (a+ pd) -
(3.3) W= e ) 0<lal=p0—r,

maps A onto Q, = [2| R < |z| < 1], where R is given by

t A simple computation shows that the kernel function of Q,
1 ((xt; —2log 7, Zni)]
at

7| 2|2

Koz, 2)= [513(2 log|z|; —2logr, 2mi)+

(see [9], [18]), where P and ¢ are the Weierstrass elliptic functions, assumes its:
minimum on co.

2 Here we choose a and p in such a way that |2 — a| < p contains b; but no other
b, k=2, ---, N, and A to be the largest among such domains.
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_ [ (@ + pdy "
E= [(p + ad)® — 'rde] ’
d— r— qd— (02 4 [(,',.2 —q? — 102)2 . 4azp2]1/z
2a0 )

(3.4)

Since L, (K(A,)) = L, (K(Qz)), using (3.2), we obtain

THEOREM 3.3. E(r) < (1/2)L,(K(D)) < E(R),
where R is given by (3.4) and

E(r) = |7 (log r; —21log 7, 271) — i{(we; —2 log 7, 2ma) [V,

B and  are the Weierstrass elliptic functions.

The estimation of the bounds for the Bergman lengths of the
minimal closed curves in Theorem 3.3 seems to be done only for a
special domain. However, every multiply connected domain can always
be mapped onto such a domain by a conformal mapping. Therefore,
if we know the geometry of a given domain D, combining the various
distortion theorems in the theory of conformal mappings and the
result in Theorem 3.3, we can obtain various bounds for the Bergman
lengths of the minimal curves for quite general domains.

4, The existence of a minimal surface which spans a given closed
curve in (D, d). A surface S in the space C? is said to be continuously
differentiable if it admits a continuously differentiable representation

G ) Qo PRy = Gk(uu %2), k= 1; 27 (uu uz) € Qo :[O = Uy Uy S 1] .

A surface S is said to be piecewise continuously differentiable if it
admits a piecewise continuously differentiable representation G | Q,, i.e.,
there exists a partition 4 = {4, 4,, -- -, 4,,} of @, by rectilinear triangles
4, such that G| 4, is continuously differentiable, k1 =1,2, ---, m.
The ordinary B-area element at a point (z,, 2,) on a piecewise con-
tinuously differentiable surface S is defined by the equation [6,
Chap. XIJ

“.1) dbg(z) = | 2Gu G g au.
0y, us) |

The ordinary area element of S is given by the equation

dag(z) = [gu9: — (Re 912)2]1/2du1du2 ’

(4.2) 2 0G. G,
ng:_Z G‘b Gl a,,6’=1,2.

= 0u, oug’

Further (4.1) can also be written in the following form,
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4.1y dbS(Z) = [gng22 - }glz |2]1"2 du,du, .

Therefore, das(z) = dbs(z) at every point z e S; the equality holds if

and only if Img,, = 0.
For a piecewise continuously differentiable surface S, the ordinary

B-area is defined and given by the equation

(G, G)
0y, u,)

(4.3) b(S) = m dudu, .

Q
b(S) is independent of the choice of piecewise continuously differenti-
able representations G |Q, of S. A surface S is said to be analytic
if it admits an analytic representation G| @, i.e., 0G,/0w = 0,k =1, 2,
w = U, + U
For an analytic or an anti-analytic surface S, b(S) =0. It is
also clear that 6(S) = 0 if and only if the tangent plane of S at
every point is an analytic plane. A simple computation shows the
following lemma:

LEMMA 4.1. The following three conditions are equivalent:
1) u(S) =a(S),

2) 946G, G) + Gy, G) _ 0 at each point on S,
0wy, Us) 0y, Us)

3) § G AdG, + G, dG, = 0 for every closed curve ¢ on S.

Let D be a bounded domain in the space C? on which (D, d) is
complete. The quantity

(4.4) dBp(z) = [Ku(z, 2)]"* dby(2), 2 = (2, 22) ,

is invariant with respect to pseudo-conformal mappings and a monotone
decreasing functional of D [6]. dBy(2) is called the invariant B-area
element of S. For a piecewise continuously differentiable surface S
in D, the invariant B-area of S is defined and given by the equation

Gy, Gy)
! a(uly u2)

.5) B,(3) = ||1Kx(G, &1 dudu,

[

and is independent of the choice of piecewise continuously differenti-
able representations G| Q, of S.

A surface S in D is said to satisfy the condition (L) with respect
to the metric d if there exists a representation G| Q, of S for which
there exists a constant L(S) > 0 depending only on S and satisfying
the inequality

{(4.6) 20(G; o(w,, wy)) = L(S) [ w, — w, |
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for every pair of points w., w, in Q,; here o(w,, w,) is the line segment
that joins w, and w, in Q,, w, = u{¥ + w, k=1, 2.

It is clear that G |98(Q,), where 8(Q,) is the boundary of @, is a
representation of the boundary curve I" of S and that I" is rectifiable.

It is also clear that every continuously differentiable surface S
satisfies the condition (L) with respect to d.

We shall say that a surface S is of class C'S(L, N,I') if S
admits a continuously differentiable representation

GIQU:zk:Gk(w)9 k:]-yz!wery

which satisfies the following conditions:

(a) for a fixed positive constant L, L(S) < L,
(b) for a fixed positive constant N,

0G(w,)  0G(w
ou; ou;

2)}gle1~w21, i=1,2G=Gy,G),

for every pair of points w,, w, in Q,,
(¢c) S spans a preassigned closed Jordan curve I" in D in such a
way that G is a one-to-one mapping on 8(Q,).

A surface S, is called minimal surface of the class C'S(L, N, I')
if By(S,) < B,(S) for all SeC'&L, N, I').

THEOREM 4.1.° For each L and N for which the class C'S(L, N, I')
18 not empty, there exists a minimal surface S, in the class.

Proof. Let infy B,(S) =<, where S runs over all surfaces in
C'S(L, N,I'). Then 0 <Y < . Hence, there exists a minimizing
sequence {S,}. Let G"|Q, be a representation of S, which satisfies

conditions (a), (b) and (¢). From (a) it follows that for any pair of
positive integers », ¢,

(G (w), G'(w)) < 2-2° L .

Therefore, {G"(w)} is equi-bounded. The equi-continuity of {G"(w)}
follows from the inequality

4.7  dG"(w), G (W) =L|w—w'| for any w, w' €Q, and all n.

Hence, we can select a subsequence {G™(w)} of {G"(w)} which con-
verges uniformly to a continuous function G°(w) defined in @, Let
G°| Q, define a surface S,. Then it is clear that S, spans I in such
a way that G° is a one-to-one mapping on 9(Q,). The family {6G™/0u;}

8 Replacing (a) by the condition (a’) on page 951, a result similar to Theorem 4.1
can be given (see Corollary 2).
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of continuous functions 8G™/0u; is equi-bounded and equi-continuous
by (b) for j = 1,2, Therefore, we can select a subsequence {G™i(w)}
of {G™(w)} which converges uniformly to G°(w) and such that {8G™i/ou,}
converges uniformly to a continuous function 8G°/ou; for j =1, 2.
This implies that S, is a continuously differentiable surface. In order
to show S,e C'&(L, N, I'), let ¢,, and ¢, be the image curves of a
line segment o(w,, w,) which connects two points w, and w, in @,
under G™(w) and G°(w), respectively. Then ¢,, converges to ¢, and,
hence, lim L,(c,,) = L,(¢,) by the lower semi-continuity of L,. Since
Ly(en,) <1 | w, — w,| for all m;, Ly(c)) = L |w, —w,|. It is clear that
G*(w) satisfies (b). Since the functional B, is lower semi-continuous in
C'®(L, N, I') and S, e C'&L, N, ), we have B,(S; =7. Thus S, is
a minimal surface in the class C'S(L, N, I').

REMARK. In the case that [” lies on an analytic plane 7 and
the portion T of w N D enclosed by I" is simply connected, T is a
minimal surface of C’'R(L, N, I') with some L and N, and By(S,) = 0.
In general, if there exists an analytic surface S in D which spans [,
then S is a minimal surface with some L and N, and ByS) = 0.

Let C'&(N, I') be the class of continuously differentiable surfaces
in the space C* which span a preassigned Jordan closed curve [” in (?
and satisfy the condition (b). Then (b) implies condition (a) with
respect to the Euclidean metric 0 for every surface in C'S(N, I).
Since C* is complete with respect to o, the following corollary follows
by the same procedure as in Theorem 4.1,

COROLLARY 1. In the class C'S(N, '), there exists a minimal
surface S, in the sense that

b(S,) = b(S) for all SeC'&(N, ).

Let C’'R,(N, I') be the class of continuously differentiable surfaces
S in D which satisfy conditions (b), (¢) and
(a’) for a preassigned real number a, 0 < a = 1,

(4.8) dbs(2) = « at every point ze S .
das(z)

We notice that the class C'R,(N, I') is motone decreasing with
respect to «.

COROLLARY 2. For a fived a >0 and N for which C'., (N, I
is mot empty there exists a minimal surface in the class.

Proof. The B-areas B,(S,) of S, which belong to a minimizing
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sequence {S,} have a fixed uppper bound. Therefore, condition (a")
ensures the existence of an M > 0 such that every S, lies completely
in Dy, Dy = [2| Ky(2,2) = M]. This implies condition (a) with some
L, which depends on o and N. Hence, the corollary follows from
the theorem.

5. The existence of minimal closed surfaces in (D, d). Let D,
be a domain in the space of one complex variable z, bounded by =,
closed curves b{¥, b, -+, by"). Here b is the outer boundary com-
ponent of D, and b{® is an inner boundary component, which is a
circle, i.e., ¥ =[z,]]2,| = 7).

Let D be a domain in the space C* which is topologically equivalent
to the product domain D = D, x D,, and T, the topological image of
T, =b" x b®, A surface S in D which is homotopic to T, in D(1}),
where D(T,) is the topological image of D(T)) = Dy(b{®) x D,(b{) (see
§ 3 for notation), is a closed surface of the torus type and, hence,
admits a doubly periodic representation

GIRZ:zk :Gk(uly 7/62),]13 = 17 2’ (uU u2)€R2,
R = (—c0 <y ty < +00),

of periods 1. For our purposes, therefore, it is enough to consider G
on the unit square @, as a representation of S.

We shall say that a closed surface S is of class C'&,(N, T,) if S
is homotopic to T, in D(T,) and admits a continuously differentiable
representation G | Q, satisfying condition (a’) and (b) in §4. By the
same procedure as in Corollary 2 of Theorem 4.1, we can prove the
following theorem for any fixed & > 0.

THEOREM 5.1. For each N for which the class C'&,(N, T,) is
not empty, there exists a minimal closed surface S,(D) in the class.

Let D'R(D, T,) be the class of all closed surfaces S of the form
S =¢ X ¢ in D, where ¢, is a piecewise continuously differentiable
closed curve in D, which is homotopic to b{* in D,(b{*). For each
SeD'SD, T), we have By(S) = Ly (c) « Lp(c;). It follows from the
fact that K3(2, 2) = K, (2, ;) * K;,(2,, 2,) [7]. Therefore, the following
is an immediate consequence of Theorem 3.1.

THEOREM 5.2. There exists a minimal surface S.(D) of the
class D'D, T). It is given by K(D,) x K(D,), where K(D,) is

minimal closed curve of D, with respect to b*.

Let A=A, X A,, where A, is a doubly connected plane domain in
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the z,-plane. Let D'®,(A, T) be the class of piecewise continuously
diﬁ'erentiable_closed surfaces S in A which are homotopic to T =
b X b in A, where b is the inner boundary component of 4,, and

satisfy the condition dag(z) = dbs(2).* Then the following theorem
holds:

THEOREM 5.3. There exists a unique minitmal closed surface in
the class D'®(A, T). It is given by K(A) x K(A,), where K(A,) is
a minimal closed curve of A, with respect to b,

Proof. Let A=Q=@Q, X Q, Q. = [2:.|7: < |2 ] <1]. We shall
show S,(Q) = K(Q,) x K(Q,) is a unique minimal closed surface of
D'R(Q, T). Let Py =[z,]7 < |2:| <1, Pu =1z, | 7= 2] <1].
If SeP, x P, it is immediate that ByS)= By(S.). For any
SeD'®(Q, T), S can be replaced by a surface SeD'S(Q, T) with
By(S) = By(S) and lying in P, x P, by the pseudo-conformal mapping
2 = 14/, bk =1,2. Thus, ByS) = B,(S,) for every SeD'&(Q, T).
There exists a univalent analytic function f.(z,) which maps A4, onto
Q. Therefore, the pseudo-conformal mapping w, = fi'(z,) maps A
onto @ and, hence, S,.(Q) onto S,(4), S.(4) = K(4,) X K(A,). The
uniqueness of S,.(4) is clear.

6. Bounds for the B-areas of minimal closed surfaces in the
space (D, d). Using the method of exterior and interior domains of
comparison, various bounds for the B-areas of minimal surfaces can
be obtained. As we have considered in §38, let D, be bounded by
b = [z ||z | = 7], b® =]z ||z =1], and (n, —2) closed Jordan
curves b, «--, b, which lie in the domain bounded by bi" and b}).
Let Ay = [2e|7 <2l < 1l, Au = [2]l2e — @] < 00 2] > 7],
0<]|a,| £ p, — 7, be exterior and interior domains of comparison for
D,, respectively. Then A; = A; X A;, can be used as exterior and
interior domains of comparison of D = D, X D, i.e., AljDZNDANZ. Let
S,.(D) and S,(A4;) be minimal surfaces of the classes D'R(D, T.) and
D'R(A;, T), respectively. Then B, (S.(A) = By(S.(D)) = B.(S.(4s)).
Using this inequality, we have the following distortion theorem for
minimal surfaces of the class D'S(D, T).

THEOREM 6.1. [[3.,E(r)) = (1/4)B3(S.(D, T\)) = [1i- E(R,), where
R, is given in (3.4) with the corresponding subscript k and E(r) s
given in Theorem 8.3.

By a construction of an interior domain of comparison for D in

4 This is the case a = 1 in (a’) (see (4.8) and Lemma 4.1).
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Theorem 5.1, we can also obtain a distortion theorem for minimal sur-
faces S,(D) in Theorem 5.1 which gives us an upper bound. Suppose
an interior domain of comparison for D is given by A,,, then we
have

THEOREM 6.2. By(S.(D)) < 4 IIi-, E(R,), where R, and E(r) are
gtven as in Theorem 6.1.

REMARK. For the product domain @ = @, X @, of two annuli @,
and @, K(Q,) X K(Q,) is not necessarily a minimal surface for the
class D'8,(Q, T) for a fixed o, 0 < a < 1.
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A REPRESENTATION THEORY FOR A CLASS
OF PARTIALLY ORDERED RINGS

ALLAN HAYES

The lattice ordered rings known as f-rings, introduced by Birkhoff
and Pierce in [1], have been studied very intensively in the last few
vears. In particular Pierce has shown in [4] that the f-rings without
nonzero nilpotents are precisely the (isomorphic images of) lattice
ordered subdirect unions of totally ordered rings with integrity, and
Johngon in [2] has gone on to prove that any Archimedean f-ring with
no nonzero nilpotents can be represented as a lattice ordered ring of
continuous extended realvalued functions on a locally compact Hausdorff
space.

Since many commonly occurring examples of partially ordered rings
are not lattice ordered it is natural to ask whether these two results
can be generalised so as to be independent of the lattice structure.
Such a generalisation is given here when multiplication is assumed
commutative,

Theorem 1 characterises the subdirect unions of totally ordered
commutative rings with integrity; Theorem 2 sharpens this result and
Theorem 3 completes the programme by extending Johnson’s represen-
tation.

The plan of the paper is as follows:

Section 1 is an introduction to the subject matter and methods of
the paper; the succeeding three sections contain proefs of Theorems
1, 2 and 8 respectively and §5 shows that for f-rings the represen-
tations given preserve the lattice structure.

1. Introduction. Throughout this paper “ring” will be an abbrevi-
ation for “commutative associative ring”.

A partially ordered (or po-) rimng is a ring whose elements are
partially ordered in such a way that if ¢« = b then ¢ + ¢ =b + ¢ for
all ¢ and ac = be for all ¢ = 0. Among the po-rings those with in-
tegrity (i.e. without divisors of zero) and a total ordering (the toi-rings)
are particularly simple and it is our first aim to find out when a po-
ring can suitably be built up from toi-rings. To make this more precise:

If {R}ic; is a nonempty family of toi-rings their direct union,
SV R;, is formed by taking the class of all functions a: I— U R; with
a(?) € R; for all 4, and defining addition by (a + b)) = a{3) + b(z) for
all %; multiplication by (ab)(7) = a(#)b(¢) for all 4, and order by a = b

Received September 16, 1963. This work was supported by N.S.F. Grant 3639-50-
8476.
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when a(?) = b(2) for all ¢©. >\ R, is then a po-ring (in fact it is an
Sring). A subdirect union of the family {R;},.; is a subring, R, of
>, R, satisfying R(i) = R, for all 4, together with the partial ordering
induced on it by the partial ordering of >, R;. If in addition, whenever
R contains a it contains a*, defined by a*(7) = a(i) vV 0 for all 4, it
is called a lattice ordered subdirect union of {R;};c; (and is an f-ring).

A mapping, h, from one po-ring to another is called a homo-
morphism if it is a ring homomorphism such that h(a) = h(b) when
a = b: it is called an isomorphism if it is a ring isomorphism with
h(a) = k() if and only if a = b.

Suppose R is a po-ring and O is a nonempty class of homomorphisms,
h, of R onto toi-rings R, respectively. Suppose further that if a e R
and @ £ 0 then there is an h € with h(a) < 0. For any a € R let @
be the function on © defined by @(k) = h(a) for all he . Then R =
{@: @ € R}, with the natural induced structure, is a subdirect union of
S\ R,, and the map ¢ — @ is an isomorphism of R onto E.

To generate the homomorphisms needed we look at the semirings
in K (i.e. the nonempty subsets, S, of B with SSU(S + S)c S).
Under conditions stated in the next section, if @, 2 0 then maximal-
isation by Zorn’s Lemma yields a semiring P, with q,¢ P and
P'P'c —P’,' which contains all ¢ =0 and all squares in R. From
this a homomorphism onto a toi-ring arises as follows:

I=Pn —Pis a prime ring ideal in R. For,

(i) if a,bel then clearly o — be I,

(ii) if ael and ce R then ce Por ce — P (otherwise —((—c¢)c) =
c’e P') and in either case ace I

(iii) ifaeI’andbel’thenaec P'or —ac P' andbe P’ or —be P';
whence abe P’ or —abe P’ and certainly abe I’. Let h be the canonical
homomorphism of R onto R/I, which is a ring with integrity. A simple
calculation shows that k(P) is a semiring, A(h(P)) = P, (P)U —h(P)=
h(R) and R(P) N —h(P) = {0}. So if we define i{a) = h(b) to mean
ra) — k() e h(P), (i.e. @ — be P) then this is a total ordering making
R/I into a toi-ring which is called the quotient ring of B by P and
is denoted by R/P. Since P contains all a =0, a,€ P’ and A ™(hP) =
P, h is a homomorphism of R onto R/P and h(a,) < 0.

It is convenient to write a(P) for h(a) and to use abbreviations
similar to writing a = b, (P) for a(P) = b(P).

The representation of a po-ring as a ring of real valued functions
on some set would be very useful. Unfortunately it seems difficult
to find a simple general condition permitting this, which does not
make all the functions used bounded. Nevertheless, a po-ring of the
type here considered which is also Archimedean (that is na <0, n =

L P = R\P.
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1,2, --- implies @ =< 0) can be represented using functions with values
in the extended real numbers. The possibility of this is suggested by
the observation that in a toi-ring R if ab =0 and @ > 0 then ¢b = 0
for all ¢ = 0 so that if

a = inf {m/n: m and n are integers, » > 0, and
mb = nab for all b > 0}

(= sup{m/n: m and » are integers, » > 0, and
mb < nab for all b > 0})

it follows by routine calculations that @ =0 when ¢ =0, ab = ab
unless @ =0 and b = + or vice versa, and @ + b =a + b unless @
and b are infinite and of opposite sign. Here the infimum is taken in
the extended reals and the infimum of the empty set is +oo. The
main problem is to guarantee that the substitution of @ for @, which
is usually far from being (1 — 1), still leaves enough information for
reconstruction of the original po-ring; it is here that the assumption
that the ring is Archimedean is required.

The following notation will be standard for the rest of the paper:

If R is a po-ring then R* = {x: x = 0} is the class of quasi positive
elements of R and R+ = {x:« > 0} is the class of positive elements
of R,

Z is the po-ring of integers.

R is the po-ring of real numbers and R the “quasi po-ring” of
the extended real numbers with the usual topology of the two point
compactification.

If a set X is fixed in some context and Y © X then Y’ will denote
X\Y. The empty set is denoted by ¢. The set with « as its only
element will sometimes be denoted simply by «.

If A and B are subsets of a partially ordered set then A < B

means that every element of A is less than or equal to every element
in B,

2. f*rings. Lemma 1 below, on the semirings in a ring, is the
key to the rest of the paper. It is used in this section to produce a
characterisation of the isomorphic images of subdirect sums of fot-rings
(Theorem 1).

A semiring S in a ring R is said to be normal with respect to a
nonempty subset H of R if no expression of the form

N
(1) Sj{ (=1)"iM8,00, 05,0 = 2+ Qippy — Qully =0 Gy — 8
iz
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is zero, where each « is in H, each s is in S, each n is in Z**, ¢ is
in Z** and N is in Z*.

If S contains all squares in R and H = {a} then S is normal with
respect to H if and only if sa — a™e S’ for all s€ S and all ne Z*+,

Normality of S with respect to H implies HC S’. Forif ac HN S
then (—1)""aa + (—1)'"'ac — ae — aa = 0.

A semiring P in a ring R is called prime if P'P'c —P’.

The usefulness of normality is due to the following result:

LEMMA. If S is a semiring containing all squares im a ring
R, and H s a nonempty subset of R then there is a prime semiring
Pin R with P> S and P' D H if and only if S ts normal with
respect to H.

Proof. (i) If such a P exists then for any aj,a, :--,a,€ P’
and any se S, (—1)""'saa, +--a, =0, (P) (see §1 for this notation);
and if » is even —a,a,+--a, <0, (P). So any expression of the form
(1) is <0, (P) and cannot be equal to zero.

(ii) Conversely, if S is normal with respect to H then Zorn’s
lemma shows that there is a maximal semiring, P, among the semi-
rings containing S which are normal with respect to H. It will be
proved that P is as required.

Since P contains all squares in R, if ¢ R then the semiring, P,,
generated by PU {x} is Z*x + P + P. So if x€ P’ and y e P’, since
neither P, nor P, is normal with respect to H, there are identities of
the form

K]

(1)t + 8 20 Gy — Qully =22 Oy — (8" +8) = 0

=1

Il

and

i (_1)mj+1(t;‘ + tf)bj,l ce bj,mj — bbb, e-+ b, — (t’ + t) =0,

j=1

where every « and b is in H, every » and m is in Z**, q and r are
in Z*+*, M and N are in Z*, every s and ¢ is in P, every & is in
Z*tx + «P and every t' is in Z*y + yP.

Collection of the terms involving x, ¥ respectively to one side of
the equations (taking the rest to the other side) followed by multipli-
cation of the new equalities yields, after rearrangement, the following,
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N
> (Hl)ni—l—Mj—FZS;t;.a,i,l oo a’i,nibj,l .o bj,mj + st

i=1j=1

N M
3 (D e o 3 (DD by

NM
> ) (=Dmetmitig b, <o v Qinbin 0 Bjm,
J

+
b

-,
i

Il

™M=

+ ] (D)8 1@y <+ + B,
?

_I_
'MZ

—

(1) ig0iy + o+ @aby + oo by

-

B

-+ JZ=,1 (—‘1)mj+1tjsbj,1 e bj,mj

M
+ Z‘l (—1)ma+ a3 hy, v e bj,mjal ooy (=1)7H8h, o v e by,
7=

+ (1) g v e @y — SE— Uyly + v v Aoghiby oo by, =0,

If xye —P this would contradict the hypothesis that P is normal
with respect to H.
It is clear that P> S and P’ D H, so the proof is complete.

COROLLARY. If H has only one element, a, then there is a P as
required if and only if sa — a™e S’ for all se€ S and all ne Z++.

The full force of Lemma 1 is not required until §4; up to that
point the corollary will be sufficient.

From now on A will always denote a po-ring, & the class of all
gemirings in A which contain A* and < the class of prime semirings
in A which contain A*. If < is a subset of <2 such that for any
a¢ A" there is a De &7 with a(D) < 0 then & will be said to be
distinguishing.

A is called an f*-ring if A contains all squares in A and is
normal with respect to every single point set {a¢} with a¢ A*.

We have:

THEOREM 1. A is isomorphic to a subdirect union of toi-rings
if and only if it is an f*-ring.

Proof. (i) If A is an f*-ring then the Corollary to Lemma 1
shows that &7 is distinguishing, so that from the discussion in the
previous section, A is isomorphic to a subdirect union of toi-rings {4/P}pe g.

(ii) If A can be identified with a subdirect union B of toi-rings
{R:}ic; then ae A\A+ implies a(i) < 0 for some iel, say a(i) < 0.
Consequently, if se A* and ne Z**, (sa — a™)(%)) < 0 and sa — a** ¢ A*,
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Thus A is normal with respect to {a}. Also, for any ae A, (a°)() =
a(t)» = 0 for all i€ 1, so a*’c A*. Thus A is an f*-ring.

3. Ring Archimedean f*-rings. In this section a class of f*-
rings is introduced which includes the Archimedean f*-rings and for
which a considerable sharpening of Theorem 1 is possible (see Theorem
2 below).

A po-ring R is called ring (or r-) Archimedean if Z*a + R*a < b
implies @ =< 0. An Archimedean po-ring is necessarily 7-Archimedean,
but the converse is not true, since every totally ordered field is »-
Archimedean.

The following two measures of size will be used.

In any toi-ring R an element, a, is called a ring (r—) order unit
if Z*a + R*a — R* =R, and is called ring (r-) infinitesimal if
Za’+ R*a*=<|a|. Notice that if for some ¢ >0, (Z¥|a| -+ R'|a)g=q
then @ is r-infinitesimal and (Z*|a |+ R*|a)p<p for all p=0. A
toi-ring is r-Archimedean if and only if every positive element is an
r-order wunit.

The main result to be proved is:

THEOREM 2. A necessary and sufficient condition that A be an
r-Archimedean f*-ring is that it be isomorphic to a subdirect union
of r-Archimedean toi-rings with no nonzero r-infinitesimal elements.

It will be convenient to divide up the proof into a number of
lemmas.

Lemma 2. Let A be an r-Archimedean f*-ring and & o dis-
tinguishing subclass of 7. If a (D) is r-infinitesimal in A/D for
all De &7 such that a¢ D then a = 0.

Proof. For each De & either (1) a =0 or (i) a < 0, (D) and
[ZH(—a) + A*(—a)](—a) < (—a), (D). In either case [Z'(—a) +
A*(—a)]a? < a¥(D). Therefore, since &7 is distinguishing, [Z*(—a) +
A*(—a)]e’ < a* whence, A being r-Archimedean, (—a)®* <0, and in an
f*-ring this implies —a <0, i.e. a = 0.

LemMA 8. In any toi-ring R if a is not r-infinitesimal then
la| is an r-order unit.

Proof. If Z*|a|+ R*|a| =<b while (n|a|+ pla))|a|>|a]
with n,e Z* and p,eR*, then b >0 and (n,|a|+ p|al)b>b=
(nd + pd) |a| = (my|a| + Dy a])b, which is impossible.
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Let _# be the class of maximal elements in <&” (under set
inclusion).

LemmaA 4, If Pe &?, ac P’ and |a(P)| is an r-order unit in
A/P then no Qe P can contain P U {a}, therefore there is an Me _#Z
with a ¢ M> P.

Proof. Suppose such a @ does exist and take g€ Q'. Since —a(P)
is an 7r-order unit in A/P there are neZ* and pe P such that
n[(—a) + p(—a)] = q(P). Son(—a) + p(—a) —qge P and g€ P + na +
pa C Q, contrary to the hypothesis that ¢c @Q'.

The three previous lemmas show that _# is distinguishing for
r-Archimedean f*-rings. However, a stronger result is needed to prove
the Theorem.

LemMmA 5. In any toi-ring R the class, I, of r-infinitesimal
elements is a prime ring ideal such that if |¢] = |a| and acI then
cel.

Proof. If acl and |¢| < |a|, then for any ne Z+ and p,qge R™,
mlel+plehg=mla]+plag=q, socel.

If a,bel, neZ* and p,geR*, 2nla—>b|+ 2pla—>b)g =
(2n|al+2p|al)g+(2n|b|+2p|b[)g=2¢, whence (n|a—b|+pla—b))g=q
and a —bel.

If ael and ec R then aec I, for if not then, by Lemma 3, there
are ne€ Z* and pe R* such that n|ae| + p|ae] > 2|e|. But, since
acl, |ej=n|ae| + p|ae|, and these two inequalities together yield
the contradiction, 0 > |e]|.

I has now been proved to be an ideal: it remains to prove that it
is prime.

If a,be I’ there are m,ne Z* and p,ge R* such that for any
§>0, m|la|+pla))s>sand (n|b] + q|b|)s > s, whence, by multi-
plication (mmn|ab| + (mp + ng + pg) |ab|)s® > s> > 0, and so abe I’.

Let #*={Me_»:A/M -contains no nonzero r-infinitesimal
elements}.

Then we have:

LEMMA 6. If Me _#\_#* then every element of A/M is r-infinite-
simal.

Proof. Let I, = {x e A: (M) is r-infinitesimal} and let P = I,+ M.
Lemma 5 shows immediately that P is a semiring containing A.
Furthermore if a,bc P’ then —a(M) and —b(M) are positive and non-
r-infinitesimal in A/M. So a(M)b(M) is positive and non-r-infinitesimal
in A/M, and —abe P’'.
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The maximality of M and the supposition that M¢_~Z* imply
therefore that P = A. So if ac€ A there is a bel, with |d(M)| =
la(M) ], whence a(M) is r-infinitesimal.

The following simple result proves to be important.

LemMMA 7. If a is a non-r-infinitesimal positive element of a
tot-ring R then there is a be R* such that b* > a

Proof. If a®* = a there is nothing to prove. If a* < a then, since
@ is not r-infinitesimal, there are € Z* and p€ R* with (na + pa)a>a;
whenece (na + pa)a® > a® > d’, (na + pa)Ya® > a® and (na + pa) > a.
So na + pa may be taken for b.

Proof of Theorem 2.

(i) Necessity. _#* is a distinguishing subset of <?; for if
@ %2 0 Lemma 2 shows that there is a Pe.&” with ae P' and a(P)
not r-infinitesimal and by Lemma 4 there is an Me _# containing A*
with a ¢ M, so _# is distinguishing. Lemma 6 and a second application
©of Lemma 4 show that _#Z* is distinguishing.

Reference to the introduction completes the proof.

(ii) Sufficiency. Suppose A is identified with a subdirect union
‘of a family {R;};c; of toi-rings without nonzero r-infinitesimal elements.
If ac A satisfies ZTa + aA" < b and a(?) >0 for some 4€l then
Zraf1) + p(D)eft) = b(7) for all pe A*; and by Lemma 7, Z‘a(i) +
Ria(i) = b(¢). So, since R, is 7r-Archimedean, a(¢) <0, contrary to
hypothesis. Thus @ = 0 and A is r-Archimedean.

4. Archimedean f*-rings. A ring of R-valued functions on a
nonempty set X is a nonempty class, B, of R-valued functions on X
such that

(i) If {f}ic; is any finite subclags of R there is at least one
point 2 in X where every fi(x) is finite.

(ii) If f,9 and h are in R and f(x) = g(x) for all ®* where h(x)
is finite then f(x) = g(x) for all « in X,

(iii) If f and ¢ are in R then there are functions s, » and n in
R such that s(z) = f(x) + g(x) whenever f(x) and g(x) are not infinite
and of opposite sign, p(x) = f(x)g(x) unless f(x) =0 and g(x) = * oo
or vice versa, and n(x) = —f(x) for all z in X.

Condition (ii) shows that such s, »p and n are unique, so they may
be denoted by f + ¢, fg and —f respectively.

Subsets of X of the form {x:f(x) = o} are called nul-sets (a
name suggested by integration theory and Condition (ii)).

It is easily seen that any ring of R-valued functions on a set X
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is an Archimedean f*-ring. Conversely, if A is an Archimedean f*-ring,
and for each a € A @ denotes the function P— a(P) defined on & (a(P)
was defined in the Introduction), then Lemma 8 below and the remarks
in the Introduction show that for any distinguishing subset <& of
P AT ={a| Z:ac A} is a ring of R-valued functions on =, and
the map @ — & | < is an isomorphism of A onto A| <.

If & is any subset of &7, a,bec A and e R it is convenient to
adopt conventions similar to <@ =\) for {De &:a(D) = \} and
Z(a = b) for {De =: a(D) = b(D)}.

Lemma 8. If A is an Archimedean f*-ring and & is a dis-
tinguishing subset of < amd if (@ < b) is a nul-set then a = b,

def

Proof. There is a cc A" with (€ = «)DZ@<b); so e=
¢+ a* + b* satisfies 2 (a = 0) U 2(b = 0)c (e = 0)and (@< b)U
G@=*oo)U D(b = too)C (@ = ).

Consider the following three situations which may occur for a
De <.

(i) b>a,(D) and &(D) = ; whence Z7(b — a) =< e(b — a), (D)
and so Z*(b — a)2e < et + (b — a)?, (D).

(ii) b>a,(D), and &D) < c; whence a(D) and b(D) are finite,
b —a)D) =0, and so Z+(b — a)2¢ < 2¢, (D).

(i) b = a, (D).

In all cases Z*(b —a) e+ (b —a)* + 2¢, (D). So Z7(b — a)e =
e+ (b —a) + 2 and, A being Archimedean, (b — a)e = 0. This, in
an f*-ring with e as here defined, implies &6 — ¢ =< 0, that is ¢ = b.

COROLLARY. No nul-set can contain a nonempty set of the form
(@ > 0).

Let #** ={Me _~*:3aec A with @(M) nonzero}.

Lemma 8 shows that .#** is distinguishing and so the mapping
.@— & | _** is an isomorphism of A onto A|_#Z**,

Two natural topologies for _#Z**, &, with the sets of the form
A (@ > 0) as a subbase, and .9, with the sets of the form
A (@ > 0) as a subbase, turn out to be the same.

LEMMA 9. 9, = 9= .9 say). 7 is Hausdorff and is the
weak topology induced on 7 ** by A.

Proof. 7,D.9,, for if Me _#**(a > 0) there is a be A with
b(M) > 0, and since a(M) is an r-order unit, there are, using Lemma
M, neZ" and ecA* such that mna + éa > b, (M). So
Me #Z**(na + e'a > 0) C #Z**(na + e’a > 0) C _Z**(a > 0). Con-
versely, 972°.9,, for if Me_=z**(@ > 0) then for some neZ**,
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Me _z**@ > 1/n); so ne®>a*, (M) and Me _#Z**(na*—a*>0)C
A @zl n)yc 2@ > 0). 7 is Hausdorff. If M, M,e #**
and M, =+ M, there are a,€ M\M, and a,€ M,\M,. Whence a = a, —
a, € (—M))N M;, that is M,e _#**(a < 0) and M, e _#Z**(a > 0).

Finally, .7~ is the weak topology induced by A on .Z**. For,
by definition, .7~ is coarser than this weak topology. Conversely, if
N> —co K@ = N) = N{ A **(sae’ = re?): r/s <\, s > 0and ec A},
and so is closed with respect to .7 .

Next it is shown that .Z**(@ = ¢) is compact for all ¢ > 0 and
all a € A.

It is sufficient to prove the following result.

LemMmA 10. If ac A then Z**(@ = —1) is compact.

Proof. Alexander’s Theorem (3] p. 139) shows that it is sufficient.
to prove that any cover of . Z***(@ < —1) by sets of the form
A **(e < 0), ce A, has a finite subcover.

Accordingly, suppose C is a subset of A such that {_ Z**(c < 0):
ce C} covers .Z**(@ = —1) and contains no finite subcover. A contra-
diction will be derived from this.

Consider any Me _#zZ**(@ =< —1) and any rational number m/n
with >0, m>2 and 2/3<m/n<1. Since a(M)=—1, naa*< —mat, (M)
so naet + (m — 2)at < —2a* < —a?, (M), that is [na-a®+ (m — 2)a’]a’ +
a*< 0, (M). Thus [ra-a*+ (m—2)0a%e’ + a’e N = n{M" aM) £ —1}.

Let K={na-a*+ (m — 2)a* > m =2,n >0 and 2/83 < m/n < 1}.

If {c¢;}i.,c C there is an Me _7Z**(@ < —1) with {¢}i.,Cc M. So
the semiring, S, generated by A" U C is normal with respect to N
and there is a Pe &” with PO>S and PN N=¢. For any keK,
ka* + a* < 0, (P), .so k(P) is not r-infinitesimal in A/P. There is there-
fore an M,e _# with M,N K =¢. Now for any element na-a® 4+
(m —2)a’ of K na-a* + (m — 2)a* < 0, (M,); whenece a(M,) < —(m—2)/n.
Consequently a(M,) £ —1, so M,e_#**, while M,>C, which ig
contrary to the hypothesis on C.

#** may include semirings M such that A(M)c {0, +}. Lemma
8 shows that these are not algebraically significant (i.e. _Z*** &
{Me _#**:3a¢c A with a(M) ¢ {0, =c}} is distinguishing). Considered
as a subspace of the topological space {_#Z**, .77}, .#Z*** is a Hausdorff
space. Further, since for all ac€ A and all \,ee RY, _Z**(A = a = ¢)
is a closed, and therefore compact, subset of {_#** 7} which is
contained in _Z***. So .Z*** is a locally compact Hausdorff space;
for if De _#Z*** and De _Z**(@>0) there is a b€ A with « >b(D)>0,
so #Z**@=1/2a(D) A1) N .2Z**2b(D) = b = 1/2b(D)) is a compact.
neighbourhood of D in _#Z***,
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The following analogue of [2] Theorem 4.1 has now been proved.

THEOREM 3. If A 1is an Archimedean f*-ring the mapping a—
& | A *** 45 an isomorphism of A onto a ring A|_#*** of extended
real valued functions on .z ***. The weak topology induced on 7 ***
by A|_z*** 48 Hausdor(f and locally compact and relative to it each
set A ***(WZz=azce) withac Aand \,ec R™ is compact. No function
@8 imfinite at every point of a nonempty set of the form 2 ***@ > 0).

The rest of Johnson’s theorem seems to require that A be an
f-ring.

5. f-rings. A commutative f-ring is a po-ring A which is lattice
ordered in such a way that if « A b =0 thenac A b =0 for all cec A",

An f-ring without nonzero nilpotents is an f*-ring. Forif b,cec 4
and b A ¢ =0 then b¢c A bc = 0, that is bc = 0. So for any a¢ A*,
scAtand ne Z*F, sa — o™ = sat — sa” — (@T)" — (@7)" = saT — (a7)*,
And the latter expression is not in A" since a* Aa~ =0 yields
sat A (@) = 0; whence (sa* — (a7)")” = (¢~)" % 0. Furthermore if
A is an f*-ring which is lattice ordered and such that ¢ Ab=0
implies ab = 0 then for any Pe &7, (a A\ b)(P) = a(P) A\ b(P). For if
aANb=c then (@—c)A®D-—-¢)=0, so (@ —c)b—¢)=0; whence
(@ — ¢)(P)(b — ¢)(P)=0. But A/Pis a ring with integrity, so (@ — ¢)(P) =0
or (b—¢)P)=0. Therefore, since (@ —c¢)=0 and (b —¢)=0,
(@ —c)P) A (b—c)P) =0 and a(P) A b(P) = ¢(P) = (a Ab)(P). Conse-
quently the isomorphisms set up in Theorems 1 and 2 are isomorphisms
onto a lattice ordered subdirect union of foi-rings which preserve
lattice relations.

As for Theorem 3, it follows that for any a,bcA and any
Me _7*** a(M)ANb(M)=aAb(M). Whence the sets {_Z***(@>0)},e4
form a basis for .77 and so does the class of sets {_Z***(@ > 0)},cu.
So each function a is finite on a dense subset of _Z*** (i.e. it is an
extended function in the sense of [2]). Finally, Lemma 2.6 (ii) of [2]
may be used to prove that the topology of _Z*** is precisely the
weak topology induced by the bounded functions in A|_#Z***,

Note added in proof. Lemma 3, together with the remark at
the end of the fourth paragraph of § 3, shows that for any toi ring,
R, the following three properties are equivalent:

(i) R is r-Archimedean,

(ii) R has no nonzero 7-infinitesimal elements,

(iii) Every element of E** is an r-order unit.

So Theorem 2 can be sharpened. For example, we may omit
“‘with no nonzero r-infinitesimal elements’.
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ON A GENERALIZED STIELTJES TRANSFORM
J. M. C. JosHI

1. Introduction. In a series of recent papers [1-4] I have dis-
cussed various properties and inversion theorems ete. for the transform

_ _IB+n+1)
(.3 F(x)*l‘(a+6+77+1)

x [ewpree +0+1 at8+7+1 —wsey

where f(y) € I(0, ), =0, 7> 0.
F(o) = A\ @u?F o, f @)y

where, for convenience, we denote I'(8 + %+ 1)/[I'"a + B+ 1+ 1) by
A and Fia;b; — 2y) by F(z,9), ¢« and b standing respectively for
B+7+1and a +a. For a=p8=0 (1.1) reduces to the well known
Laplace Transform

(1.2) F@) = | ey .

The transform (1.1), which may be called a generalization of Laplace
Transform, arises when we apply Kober’s [5] operators of Fractional
Integration [6] to xzPe~",

The object of the present paper is to give a generalization of
Stieltjes Transform, to give an inversion theorem for it and to use
that inversion theorem to obtain an inversion theorem for the transform
(1.1). In another paper (to appear elsewhere) I have found out inver-
sion operators directly for (1.1).

2. Generalized Stieltjes transform. We prove

THEOREM 2.1. If
(2.1) 3s) = | e F@da
where F'(x) is given by the convergeni integral (1.1), then
(2.2) #(s) = ﬂ%ﬂ S:(%)BF@ B+ 1;b; — %) Fy)dy
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provided that 8= 0, 7 > 0 and f(y) € L(0, ).
Proof. We have
#(s) = Al e=da| (wu)Fi(a; b — an)f W)y
= Al vr@dy| e F(a; b; — ay)da

on changing the order of integration, which is easily seen to be
justified under the conditions stated, since [7, page 59]

R () L o
B b — o) = Ot 4 0l 2)7) (% — o0)

and
Fi(a; b; — x) = 0(1) (*x— 0).

Therefore [7, page 43]

o) = ALEED (LY F(a, 6 + 16 — L)y

0

under the conditions stated.

COROLLARY 2.1(a). When B =0, n=2m, a = —m — k + (1/2),
&(s) reduces to the generalization of Stieltjes Transform

Ir'2m + 1)
[’(m —k+ %)

(2.3) #(s) =

X lS""I’*"<2'm +1,1;m—Fk + i; ———y—>f(y)dy
s Jo 2 s

introduced by Varma [8]

COROLLARY 2.1(b). When a =8 =0, then ¢(s) reduces to the
well known Stieltjes Transform [9, page 323]

@4 66) = | s + vy sy

COROLLARY 2.1(c). When 8=0, a= —n=1— 0, #(s) reduces
to another generalization of Stieltjes Tramnsform [9, page 328]
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3. Generalized Stieltjes transform as convolution transform. In
this section we will find out an inversion operator for the generalized
Stieltjes Transform (2.2) by putting it into the form of Convolution

Transform. The Convolution Transform with kernel G(x) of the
function ¢(x) into f(x) is defined as [10, page 4]

3.1 f(@) = Sl(;(m — Byt .

The corresponding inversion function FE(x), which serves to invert
the transform, is defined by the equation

@ = | cwedy .
If ¢(s) be defined as in (2.2), we have
~¢(s) = AEXD["p(a, 5+ 25 — L)(sw)s )iy

SCH-Z

because, by Euler’s theorem on homogeneous functions,

L (ORCEEELES)
NSO

or
(2N(L) - Lr(as+ue-L))
- _33+z<5%>[y*’“1“(a, B+1;b; — %)]
and
<%>[y-BHF(“’ B+ 1;b;9)] = v*F(a, B + 2; b; ) .

Therefore

~e(e) = AL(B + | eI E @ 8 255 ¢ @)y
or

§) = AL + 1) e ONF(, 6 + 22 )WY

where
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&(s) = —e'¢'(e)
and
L) =f(e) .
Therefore the inversion function E(x) is given by the equation

_1_ — ©yEtetD v he o=y
T = ATE + 1)8_“’@ F(a, B+ 2; b — e)dy
_I'(m—o)'B+a+ HI'Q — x)
I'a+n—x)

provided that
b+#0,—1,—2,++«,Re(l —x) >0, Re() —x) >0
and
Re(B+x+1)>0
since [11, page 79]

e e _ I'(@)I(a + 8)I'(b + s)['(—s)
goz Fla, b; d; — 2)dz ROROCET)

if
Res < 0, Re(a 4+ 8) > 0, Re(b + s) > 0,

and d #= 0 or a negative integer.
Therefore,

E(D)E)} = L(s)

or

I'e+7n—D) e A _
FErirDra—o fen=7, D

o=

and we shall give definite meaning to the operations involved. Now

i = m e fl (1 - )

and

L@ +7— ) i W D=y =D+ EA L)

F(f)—n)F(B+x+1)_mr(nqtz)k_o D—a—7—Fk)

Also we have [10, page 66]
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(e D’ z z\] — (__)n—-l na 7l (n—1( oo
I (1 - L) Fee = @)
and
IﬁO(D/ +a + k)[e—-(a+n)wF(ez)] — e—(a—l)zF(n+1)(ez)

(D/ + a — k)[e—ao:F(ex)] — e(n+1—a)xF(n+1)(ew)

0

(DI + o — k)—l[e(n+1-—a)zF(ez)] - e—axF(——n—-l)(ex)

e s

£
il

0

where F'""(x) denotes a function ¥(x) such that

(L) " wen=re, p=L.

Using the above relations,

E(D){—e¢'(e')}

= (__ )nnw——Be(aH-n)le—n—le-—wsDI;+1e——(n+ﬁ)s

X Dytig@ntBtusgm)(ge) = £(gf) D, = -di’ (n— ).
es

Returning to original variables, we have.

(3.2) lim (—)— (@ + @)
nmee (0 A B)[(n) (0 + 2)

X Sw+qD—n—ls—a,Dan—(n-kB)Dn+ls2n+ﬂ+1¢(n)(s) .

We thus have.

THEOREM 3.1. f(s)eC-B on 0 < s < o and if the integral (2.2)1
converges, then (3.2) holds for s > 0.

COROLLARY 3.1(a). When B=0, a=—m —k+ (1/2), 7=2m
we have the corresponding result for Varma’s Transform.

COROLLARY 3.1(b). When a =8 =0 we have the Theorem 9.4
of Hirschman and Widder [10, page 69].

COROLLARY 3.1(c). Similarly for a = —n=1—0cand 8 =0 we
have a theorem for (2.5).

4. Application. to generalized Laplace transform. We may now
use inversion formula derived above to obtain a new inversion of
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the Generalized Laplace Transform (1.1). For we have, as above
o B
@n g = ALEEDF(L Y plap + 15— L)@y -
s o\'s s
Therefore if we invert the integral (4.1) we get f(y). But
é(s) = g o Fx)ds
Therefore
¢(n—1)(s) — (_)n—lgme—szxn—lF(x)dx
0
— (_)n — g —Ypn—1
a s” y F( >dy

by a simple change of variable. But the repeated use of the theorem

Gl ()= -Gl (2]

gives
LAY AP Te’s ]: (2. ”[x*‘" Y ]
<ax> [y“ﬂf(x) =) (81/) yP f(fx;) )
Therefore,
Drgnt3-lpn-b(g) = (——)“*‘s”*“ﬂre—”D”[xﬂF(x)]dx .
0
Similarly,

Drg—+8) DrgintB-ign-1(g)
_ (—)”S:G_S’S“(”J’”fl(w)dx
where, for convenience, we write
fi(x) = g DImgn BRI DI (B F(20))
Then
D——ns-—anS—(n+ﬂ)Dn82n+B——1¢(n—l)(s)

— Sme—snsn—l(sn)—-n—-w—lDV—n{xn+w+1—-nf1(x)}dx .
0

Therefore finally we have,
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oo I'm—1+8)0(n+ DI'(n — 1)
X Sw—l—ﬂD—ns—ans—(n+ﬁ)Dns2n+ﬂ—1¢(n—1)(s)
oo I'n—1+8)I(n+ )I(n—1)

X S me—sxsn—lx~n—~w—Dl—nxw
0

X D'mgrtEram D'l F (elde = f(s) -+ (A) .
We have thus proved

THEOREM 4.1. If f(x)e L in 0<ae <o and if F(x) is definea
by the convergent integral (1.1) then the result (A) holds for almost
all positive values of s.

COROLLARY 4.1. When a=8=0 we have Theorem 25(a) of
Widder |9, page 385].

I am indebted to Dr. K. M. Saksena for guidance and help in
the preparation of the paper.
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INVERSION AND REPRESENTATION THEOREMS FOR
A GENERALIZED LAPLACE TRANSFORM

J. M. C. JosHI

1. Introduction. In a series of recent papers I have discussed
various properties and inversion theorems ete. for the transform

. I'B4+n+1) (= .
Fle) = P F, 1;

a+B+n+1; —xy)fydy .

‘where f(y)e L0, ©),8=0,7> 0.

_ Ag;"(xyw(x, ¥)f W)dy

‘where for convenience we denote I'(B 4+ % + 1)/« + B8 + % + 1) by
A and Fi(a; b; —xy) by (xy); a and b standing respectively for 5 +
7+ 1 and a +@. For a =B =0 (1.1) reduces to the wellknown
Laplace transform

1.2) Fw) = | ey .

'The transform (1.1), which may be called a generalization of the
Laplace transform, arises if we apply Kober’s operators of fractional
integration {2] to the function xfe~*[1].

The object of the present paper is to obtain an inversion and a
representation theorem for the transform (1.1) by using properties of
Kober’s operators defined below.

2. Definition of operations. The operators given by Kober are
defined as follows.

L f@) = o o s
Kl @) = Fs ot | — o usoes

where f(x)e L,(0, ), 1/p+1/g=1, if 1 <p <o and 1/p or 1/g O
if por g=1,a>0,8> —(/p), 7 > —1/q).

The Mellin transform Mf(x) of a function f(x) € L,(0, o) is defined
as
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Wf@) = | @wdu (0 =1)

and

indexV Sx

= lim / F(xyit=dm (»>1).
1/

22—

The inverse Mellin transform M ~¢(t) of a function #(t) € L(— oo, o)
is defined by

2.1) M-¢(t) = -1_S°° b(t)r-itdt (@=1)
27 J—o
and
1 in?exp T X
= — lim S Pty dt @>1).
2T 7o J-r

If Mellin transform is applied to Kober’s operators and the orders
of integrations are interchanged we obtain, under certain conditions

1“(77 + 1 it)

M{L;of ()} = g Mf ()

r(a+{n+ —;-—it}]

and

r(g + L z't)
M{Kz.f@)} = i Mf) .

s+ 24 4))

But
(o) = |Teorioido = (g +it + 1), it Re(B+1)>0.
0 4 D

Therefore
r[(v + % — it)]l‘(,é’ + % + it)

T pred ]

M{L}(afe®)} =

and
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(s + it + %>P<§ + it + —115-)

M{Kz(aPe")} = F[a + {z; + —;-—l— zt}]

By (2.1) we then have

F<77 +_;-— it)r([-} +% + it)

2.2) Ir;':w(xﬁe—x) = __1_ Sw I p—it=Urdt
2 S F[(x + (7; o @t)]
and
r(g + 1 it)F(B + Ly 'it)

- F[a + (t + Ly zt>]
p
provided that 1/p > 0,7 + 1/¢ > 0 and ¢ + 1/p > 0.

3. Inversion theorem. We now define an inversion operator which
will serve to invert (1.1).
An operator is defined for integral values of #n by the relations

WlG@)] = G@) ,
WIG@) = (—rn (LY e 6@), (0 = 1,2, -+)

1

Q6@ = Fo—r s

[WlG@)]]ams(n = 1,2, -+) .

THEOREM 3.1. If f(t) is bounded in (0 <t < o) then, provided
that the integral (1.1) converges, 7 >0, 8= 0

£ = 1im @, [F@)]
for almost all positive t.

Proof. Let x be any number greater than zero. Then, since the
integral (1.1) converges, we can differentiate under the integral sign.
Also (2.2) gives
(3.1) (L a@e )] = &Lyt~

Using this relation we get
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WAF®) = (=) w4 | a2y Loy of@yfe )5 )y
ILB+n+n+1)

@+ B+7n+n+1)

a+B+n+n+1—azy)fly)dy.

[JvnF@+n+n+1;

Therefore

Q.. {F(2)}
_ _I'+7n+1) <_71L>5+”+1 1
I'ae+B+7+1) I'm+B+1—a)

X S:y‘”ﬂﬂ(n +B+n+La+B+0+1+n; —ay)fy)dy

_ 1 <ﬁ>ﬁ+n+1 F(a)
I'n+8+1—a I'(b)

X S:yf’*"lFl(a + n; b 4+ n; —ay) f(y)dy

in the notation of §1.

_ F(a + ’l’b) (ﬁ>n+3+1
rod+n)lm+pL+1—a)

X r(tv)“f‘lﬁ’l(a + n; b + n; —nw) f({Ev)dt
0

F((I, + ,n) (£>n+3+1
ro6+n»nlm+p+1—a

X g:v“ﬁlFl(ﬁ +74+n+La+B+7n+n4+1; —nv)ftv)de

by a simple change of variable. Now by using a result of Slater [4]
we have

F(a/—l_n) . P ~ a—b ,—nv —s 0
—————F(b ) Fila + n; b+ n; —v) ~ (nv)*te (n ).

Therefore

ppHnti—o

lim @, {F(n)} = lim I'n+B8+1—a)

S VVHE—Semf (to)dw .

But [3] we have for almost all positive ¢

,nB+n+1—-

lim
neeo]“(fn+,8—l—1—a)

|, v ptw) ~ fO)y = 0

and so we have our theorem.
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5. Representation theorem. In this section we propose to give

a set of necessary and sufficient conditions for the representation of a

function as an integral of the form (1.1). We shall need a lemma
which we now prove.

LEMMA 4.1. If n is a positive integer and x and t are positive
variables then

e (o K e G S

Proof. It is plain that

(Gpondzyen)

is a homogeneous function of zero order. Therefore applying Euler’s
theorem we get

(Gl n(G) e+ G Gy n(F) et =0
or
e SO e ()]
or
sl g Pl e ] = i L (3 ]
= (o (2 e )]
L
Proceeding in the same manner we have

o tﬂ-l—'n——l 2 8 —nlt ]-_‘ tﬁ—-n-—l X [:] ot
i L el () o] = S (3 ]

using (3.1).

THEOREM 4.1. The mecessary and sufficient conditions that a
given fumction F(x) may have the representation (1.1) with f(y)
bounded and Ren > 0 ReB = 0 are that
(i) F(x) has derivatives of all orders in 0 < x < oo,
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(ii) F(x) tends to zero as x tends to infinity and
(iii)) | Q. {F @)} | < M for all integral » (0 <t < oo).

Proof. First let us suppose that F'(x) has the representation (1.1).
Under the conditions of the theorem it is obvious that all the derivatives
of F(x) exist. Also

, TB+7+1)
<M
F@) =M 7+ 1)

x| FE + g+ Lat g+ 0+ 1 —epdy

__Mrompre +1
xl(a + 7)

since f(y) is bounded. So F'(x) tends to zero as x tends to infinity.
To prove the necessity of (iii) we see, as in Theorem 3.1, that

0 2 {2 i ol .

To prove the sufficiency let us suppose that the conditions are satisfied..
If we now set

Iy = | L@ )QuF @)y

we have

N N Lt
- [ (Y e &) e

It will be seen in the course of the arguement that this integral exists..
Integrating by parts we have

T T ns v} A (- K+ M0

+ I'(n -ﬁ_l)fl—— I,Z — ) S: (%)nnl{t_BF(t) ) (%)WHMI maf}dt

where
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Now
Ly =0@")  (E—0)
=01) B=00— =)
=01) B> 0(— )
for [1]

_ I'B+n+1) (nz\° . . onw
Iw —_ e 1F1 1) ]-r_’—" .
() F(a+3+77+1)‘<t> <B+7/+ a+B+n+ t)

Also the hypotheses of the theorem by implications mean that
F(z) = 0(x™)
and in general
F™(x) = 0(@—™")
and

(&) rra)

={(=)"7BB + 1)+ (B +n — 2t P F (@) + -« tPF"I(QD)}
‘Therefore the integrated part
= [t {AF@) + - "' F"I(t)}]—0 as t—0.
Also it is
= 0[A,F(t) + ++- tF" ()] — 0 as t— oo,
‘Therefore the integrated part is zero and integrating by parts again

= g e e ]

(=) = A\ B pnip
T(n+pB+1—a |, (&) e POy i

Now
(%—>{tﬁ+n_11mw¢} = [(n - 1)tﬂ+n—21’n’w¢ T+ e+ nntﬁ+n_3In+1,m(w)]

and

(&) "eerey

={(=)BB + 1)+ (B+n — 3t PB"2F({t) + +-- tPF" ()} .
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Therefore as before the integrated part again approaches zero when ¢t
tends to zero and ¢ tends to infinity. Proceeding in the same manner
we obtain

J, = n ”t—ﬁF t _a_n_ sy IR/
F(n+3+1—a) So ()at”{ In,¢}
s e (na)”
— t ﬁF t tB d
['(’)’L + B + 1-— 0() So ( ) et In+n,w(¢) t

by the Lemma 4.1. Hence

_ nn+5+1nn+ﬁf(a) Smt_p_n—l F . b- _ﬂ F t
g T e} 11<a,, t> (t)dt .

It is clear that this integral exists under the hypotheses of the theorem
and therefore all the previous integrals exist. By a simple substitution
this gives on using the asymptotic expansion of Fi(a; b; x) [4]

Jn _ nBtntipnts Smuﬁ+n_1e—nmuF<l>du .
I(n+B+1—a)b ¢
Let
u
Now

A/w)F(ju) = 0(1) (u— o) and F(%) —0(1) (w—0).

Hence it is easily seen
(i) Y(uwyeL (1/R=t < R) for every E > 1.

(ii) rajr(u)e“““du converges for any fixed ¢ > 0, and
1

(iii) Smp(u)du also converges. Therefore [3]
0

lim J, = l«y(%) — F(u) .

n—oo u

Now if

I'(a) B8
x, y) = —— (axy)’, Fi(a; b; —xy) .
1z, v) () (2y)P Fy( Y)
Then Y(xy)e L in 0 =y < - under the conditions assumed for the
convergence of (1.1). Therefore by a theorem on weak compactness
of a set of functions [5] the inequalities in the hypothesis (iii) of the
theorem imply the existence of a subset {n;} of the positive integers
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and a bounded function f(y) such that

tim | 1Qu o F @M@, 9) = | 260, s @)y -

Hence

F@ = | 2@, 1)@y

and the theorem is established.
I am indebted to Dr. K. M. Saksena for guidance and help in the
preparation of the paper.
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EXTREMAL ELEMENTS OF THE CONVEX
CONE B, OF FUNCTIONS

E. K. MCLACHLAN

Let B, be the set of nonnegative real continuous on [0, 1], let B,
be the set of functions belonging to B, such that 4;f(x) = f(x + k) —
fl)y= 0,k >0, for [x,2 + ] <][0,1], and let B,,n > 1 be the set of
functions belonging to B,-, such that 4;f(x) = 0 for [#, x + nh]C [0, 1]
[1]. Since the sum of two functions in B, belongs to B, and since
a nonnegative real multiple of a B, function is a B, function, the set
of B, functions form a convex cone. It is the purpose of this paper
to give the extremal elements [2] of this cone, to prove that they are
not dense in a compact convex set that does not contain the origin but
meets every ray of the cone, and to show that for the functions of
the cone an integral representation in terms of extremal elements is
possible. The intersection of the B, cones is the well-known class of
functions, the absolutely monotonic functions. Thus the set of these
functions form a convex cone also. The extremal elements for this
convex cone are given too.

In some correspondence with the author relative to the convex cone
B,, Professor F. F. Bonsall noted that the extremal elements of B,
were the indefinite integrals of the characteristic functions that are
extremal elements of the weak closure of B,. Professor Bonsall guessed
that successive integration would give the extremal elements of B,. This
proved to be a very good guess, and the author gratefully acknowledges
the assistance of these comments.

In the following discussion the vertex of the convex cone is not
considered as an extremal element.

1. The convex cone B,. For fe B, then take fi(x) = « f(x) and
f: =F — fi. Then f is the sum of functions in B, that are not proportional
to f. Therefore, B, has no extremal elements.

2. The convex cone B,. For f=¢ >0 and f=f, + f, where
fi1 and f,€ B, then 0 = 4, f(x) = 4, fi(x) + 4ifo(x) implies 4;fi(x) =0
for 1 =1,2 and [,z + k] C[0,1]. Therefore f; =c¢;,¢;>0,1=1,2,
where ¢, + ¢, = ¢. Hence f is an extremal element of B,. Now f =
¢ >0 belongs also to B, for n >1. The set B, is a subcone of B,
and hence f = ¢ is again an extremal element of B,.

If 7 is not constant then f(0) = m and f(1) = M and a non-propor-
tional decomposition can be given by taking fi(x) = min (f(x), (1/2)(M + m))

Received October 23, 1963.
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and f, = f — fu.

3. The convex cone B,. The functions of B, are exactly the
non-negative, nondecreasing and convex functions on [0, 1] [5].

Again the positive constant functions are extremal functions. If
f e B, fis not constant and f(0) > 0 then take f; = f(0) and f, = f — f..
In so doing f, and f,€ B, and f, and f, are not proportional to f. Since
this same technique still can be used for B,, n > 2, the only extremal
elements of B, such that f(0) > 0 are the positive constant functions.

If flx)=0,2€[0,&] and m(x — &) for xe (¢, 1] where 0 =& <1
and m > 0, then for f = f; + f. it follows that f; and f, are zero where
f is zero and f, and f, are linear where f is linear. Thus f; and f,
are proportional to f and f is therefore extremal.

If f(®) =0,z€[0, &), mx — &) for e (éy, &, -,

for xe€(&,,1] where 0 < &, <& < ++- <&, <1 and m; >0 for ¢ =
1,2, ---,k, for £ > 1 then fe B, Let fi(x) =0, for x€]0, &], fi(x) =
my(x — &) for (&, 1] and f, = f — fi. Then f; and f,€ B, and both are
not proportional to f.

Finally, if f is not any of the above functions, but f belongs to
B, let &, = inf {x: f(x) > 0}. Then 0 <& < 1. On [§,1], f is convex,
f(&) = 0 and f(1) is finite. Furthermore, the right-hand derivative at
&, fi(&) is finite and in [£, 1] /7, the left-hand derivative, must take
on more than a finite number of values since f is not polygonal on
[, 1]. Thus there exist &, & < & =<1 such that on [&, &] f] is not
piecewise linear on three or more non-overlapping segments whose
union is [£, &,] and f'(&) is finite. By Lemma 4 of a paper by the
author [4], there exist convex, nonnegative and nondecreasing functions
fi and f, different from f on [£, &) such that f; and f, have the same
values and the same derivatives at the end-points as f and f = af, +
(1 — a)f, for some a, 0 < a < 1. Thus define f; and f, equal to f on
the complement of [£,, &,] relative to [0, 1] and then af; and (1 — a)f,
belong to B, and both are not proportional to f.

Thus the extremal elements of B, are positive constant functions
and those f such that f(x) = 0, x € [0, &] and f(x) = m(x — &) for x € [£, 1]
where 0 < £ <1 and m > 0. Designate this latter function by f(&, 1;)
for m = 1.

4. The convex cone B,, n > 2. The function f, such that f(z) =
0,2€[0,&], fle)=m(x — &) xels1,0=&<1 and m > 0, that is
m f(&, » — 1;) belongs to B, and is an extremal element of B,.
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Already m f(¢, 1;) belongs to B,. Now by induction it shall be
shown that m f(§, » — 1;) € B, for n > 2. In fact, it is true in general
that if fe B,_, and if

F@) = | e,
[
then Fe B,” For if 4¢f(x)= 0 for k=0, ---,n — 1 then
z+h
(P = 47 |7 dt = 47 @) > 0
where t < &<« —h and k=0, ---, n. Thus since
mfEn =L ="~ m s, n— 20 at
0

and since by the induction hypothesis (n — 2)m f(&, n — 2;) € B,,, it
follows that m f(¢§,n — 1;)€ B,.

Similarly, by induction it shall be shown that f = m f(&, — 1;) is
an extremal element of B, It has already been shown that m f(§, 1;)
is an extremal element of B,_, for any m > 0 and for 0 < & < 1. Now
let f=mfg,n—1;)=f + f, where f; and f, belong to B,. For
n > 2, functions in B, have derivatives, f7 and f, on [0, 1) (See [5]
Chapter IV) and the functions f; and f; belong to B,_, on [0,d] for
any 0,0< 0 <1, Take 6 <1 such that &£ < §, then by the induction
hypothesis it follows that f{ and f; are proportional to f' = (n — 1)m
S, n—2;) on [0,0]. Hence fi(x)=Nf(&)+¢c;,xzel0,0],0=n,,
where ¢; is a constant for ¢ =1,2. Since fi(0) = f,(0) =(n — )m
f(&, n — 2;0) = 0 it follows that ¢;, =0,¢ = 1,2 and hence f, and f,
are proportional to f on [0, o] for any 4,0 < 6 < 1. However, since
f, f1 and f, are continuous on [0, 1], it follows then that f, and f, are
proportional to f on [0, 1]. Therefore, m f(¢§, n — 1;) is an extremal
element of B,.

Notice that like the positive constant functions these functions
m f(&,n — 1;) for £ = 0, that is the functions m f(0, n — 1;) belong to
B, for all n since its derivatives of all orders exist and are nonnegative
on [0,1]. However, if £ >0, let s and & be integers such that s >k
and let « and 2 be such that * + (s —2h =& 0= <w +sh = 1.
Then

dim f(€, k; @) = m[(2h)* — s(h)*] = mh*(2" —s) .

Hence, if s > 2%, then the expression on the right is negative and thus
m f(&, k;) ¢ B,. This means that whereas m f(¢, n — 1;) € B, it does not
belong to B; for j > 2",

It remains only to show that the functions of B, other than the
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positive constant functions of the form m f(&, k;), 0 <& <1, m >0,
k=1,2,..-,n — 1 that belong to B, are not extremal elements of B,.

It is known that f’ exists and is a continuous function on [0, 1).
If ' can be extended to be a continuous function on [0, 1], that is, if
lim f(x) as  — 1~ exists and is finite, then f'e B,_,. By assuming
the induction hypothesis on n, there exist functions g, and g, belonging
to B,_, such that f' = g, + ¢, and g, and g, are not proportional to f’.
Let fi(x) = S 9:)dt, 1 =1,2. Thus f; and f, belong to B, and they

0
are not proportional to f. For if f, = Nf, M = 0, then f/ =N\ f = g..
This clearly violates what is known about g,. Hence such a function
f is not an extremal element of B,.

Finally, suppose that f€ B, and lim f'(x) = + o as ® —1-. Then
the following must be true: f7, f”, «--, f*® and f{* Y, the right-hand
derivative of "~ are defined on [0, 1), each of them approaches + 0
as @ approaches one from the left; and 4 f9(x) =0 for 0 =2 <1,
1,2, ,n—1, (with the special understanding for 7 =% = 1),
k 0,1, 2 , % — 7. Denote by B,_;0,1) the set of real functions
¢ of [0,1)A" (x)20,0§x<1,k=0,1, eee,m—g for j=1,2, -+,
7 — 1 such that ¢(x) — +o as £ —1-. The funections B,_;[0, 1) form
a convex cone and f e B, ;[0,1) forj =1, --+,n — 1. By an argument
similar to the one given earlier, the indefinite integral of a function
F in B,[0,1) belongs to B,..[0, 1) if S F(tydt — + o as w— 1~. Also

0
if g, 9, and ¢g,.€ B,b[0,1),9 =g, + ¢,, and g, and g, are not proportional
to g, then the indefinite integrals of g, and g, are not proportional to g.
1—
Not that if g =9, + g, as above and if S S(t) dt is finite, then the
1—
same will be true of S g:8)dt for ¢ =1,2. If the lim g(t) = 4+ as
1— 0
t-—1- and S 9;(t)dt = + oo then the same will be true of S g;(t) dt
for 2 =1, 2 if there exists constants v, > 0,% =1, 2 such that g,(t) =
v; g(t) for some 9,0 < B < 1. For the case when S g;(t) dt is finite
then f; where fi(x) = gz(t) dt, 7 =1, 2 can be extended into a function
that is continuous on [0, 1]. Hence f; and f, will belong to B,...

Thus the object is to find two functions ¢, and g, that belong to
BJ0,1), such that f{** =9, 4+ ¢, ¢, and g, are not proportional to
Si»Y and such that ¢,(&) = N\, f"(#),0 <t< 1,8 >0. Then f, given
by

H

fil@) = S S S S gi(t) dt dt, -+ dt,_,

4 =1, 2 belong to B, and give a nonproportional decomposition of f.
The lemma below shows how the functions g, and g, with the desired
properties can be constructed.
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LeMMA. Given f on [0, 1) such that f is right continuous, non-
neqative, nondecreasing and f(x)— +o as x — 1 . There exist two
Sunctions f, and f, on [0, 1) that are right continuous, nonnegative
and nondecreasing, f = fi+ fi, fi and f, are not proportional to f,
and f;(x) = v, f(x) on [0,1) for some 0 <o <1 and v;>0,2=1,2,

Proof. All the discontinuities of f must be jump discontinuities.
If the point * = 1 is an accumulation point of the discontinuities of f,
then there exist ¢, ¢, and ¢;, 0 < ¢, <e¢, < ¢, <1 such that f has a
jump of 6; at ¢;, 0, >0,¢=1,2,3. Take 6 = (1/2) min (4, 6,6,). Let
J1 be such that fi(x) = (1/2) (f(®) — 6), ¢; = @ < ¢, fi(®) = (1/2) (f(x) + 0),
6=z <¢ and fi(x) = (1/2) f(x) otherwise. Take f,=f— f.. Then
fi and f, have the required properties.

If the point « = 1 is not an accumulation point of the discontinuities
then there exists 4, 0 < 0 < 1 such that f is continuous on [d, 1). Let
& be a point such that f(&) = f(6) + 1, then §d =< & < 1. Take f; such
that fi(®) = (1/2)f(®), 0 = <& and fi(x) = (1/3) (f(®) — f(0) — 1) +
1/2)(f®) +1,¢=x<1. Let f,=f— fi. Then again f; and f, have
the required properties.

5. Absolutely monotonic functions. The continuous functions
f on [0,1] such that f®(x) =0 for 0<2<1,k=0,1,2, --- were
called absolutely monotonic functions by Bernstein. These functions
clearly form a convex cone of functions on [0, 1]. Since the functions
f belonging to B,, n > 2, have f*(x) =20,k =0,1, ---, n — 2, it follows
that No., B, is contained in the set of absolutely monotonic functions.
Since the continuous functions f on [0, 1] such that f*(x) =0,k =n
on (0, 1) have 4} f(x) = 0 for k < n, then N, B, is the set of absolutely
monotonic functions. Denote this set by B.

From the earlier remarks it is clear that ¢, ¢, ¢, ¢, %% -+ - belong to
B, for ¢, >0,7=20,1,2, --- and they are indeed extremal elements
of B.. Since any f¢ B, is absolutely monotonic on [0, 1) it follows that

oo

Sy =2 ™0 @/nl), 0=2<1.

n=0

Consequently, if as many as two terms are nonzero in the series
expansion, then take f; equal to one of the two nonzero terms and
f: = f — fi. Then clearly f, and f, belong to B.. and f has a nonpropor-
tional decomposition. Hence the only extremal elements of B, are the
functions ¢; 2%, ¢; >0,2=0,1,2, +--.

The following theorem summarizes all of the results up to this
point.

THEOREM. The convex cone B, has no extremal elements. The
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Sunctions f = ¢ > 0, where ¢ is a constant, are extremal elements of
B,n=1,2,8,+--. The function mf(,n — 1;2) =0 for 0 <&
and m(x — &) forE<ax=1,m>0,0=<&<1are extremal elements
of B,,n=2,8,+--. The only other extremal elements of B,,n =
2,8, -+ are those functions m f(&, k;), k=1,2, -+, n — 2 that belong
to B,. The extremal elements of the convex cone B., the absolutely
monotonic functions, are the fumctions of the form c;x', ¢, > 0,1 =
0,1,2, ---..

6. Integral representations. The set of functions B, — B,, n =
1, form a linear space containing the convex cone B,. Using the
topology of simple convergence B, — B, becomes a lecally convex space.
Let C, be the set of functions f of B, such that f(1) =1. Clearly,
C, meets every ray of C, once and only once and does not meet the
origin in B, — B,, that is the zero function. Furthermore, C, is convex.
Each function f of C, is such that 0 < f(x) <1 for all 0 < 2 < 1 since
f is nonnegative and nondecreasing. It follows by use of the Tychonoff
theorem that C, is contained in a compact set in B, — B,, namely
{f:feB,— B, 0= f(x) 1,0 =2 =£1}. Thus C, is compact, if it can
be shown that C, is closed. This will be done by showing the complement

of C, is open.
If ge B,\C, then g(1) # 1. The set

VL;6) + g ={f:feB, — B, |f(1) —g(1)| < ¢}

where ¢ = (1/2) |1 — g(1) | is an open set about g that fails to meet C,.
If g¢ B, then there exists «,, & and h such that 4 g(x,) = 6 < 0. Now

a9y = 3 (<19 (B) gt + (6~ 1)

Consider

V= V(xO;xo—'—h; "')x0+kh;8)+g
={f:feB, — B, | f(x, + jh) — 9(w, + jh) | <&, j=0,1, ---, k} .

where ¢ = 2=%+(—§). Then V does not meet C, since for if fe V

45 flx)) = Ai(f(@o) — 9(x,)) + dig()
< [ Ah(f(@)) — g(@y)) | + 4ig(e,)

<3 (5)150+ o = i) — a(es + 6 = )| + 0
<e(5)+0

=e2+0
—(1/2)5<0.
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Hence f¢ B,.
Thus by Theorem 39.4 of Choquet [3], it follows that for any
function f; in C, there exists a nonnegative measure f, on the closure

of the extreme points of C, such that fi(x) S ap, = g flx)dp,. Since

C, meets every ray of the cone B, and does not contain the origin,
it follows that each funection of B, is a scalar multiple of such a
representation.

If the set of extremal elements of C, are dense in C,, then the
above result would be of no interest, but this is not the case. Consider
gox) = (1/2) 4+ 22 f(1/2, » — 1; ). Then g, belongs to B, since it is
the sum of two funections in B,. Notice further that g¢,1) =1 and
hence g,€ C,. The neighborhood of g,

Ve = V(0, 1;1/8) + g,
={f:feB,— B, |f(v) — a()| < (1/8),% =0, 1},

does not meet any extreme point of C,. Any positive constant function
of C, is f(x) = 1 for all # and hence f(0) > 5/8 at x = 0. Any function
of the form m f(&, k;) that belongs to zero at # = 0 and hence does
not belong to V..

7. Remarks. Choquet [3] discusses convex cones of functions
related to the cones discussed here. The main difference is that the
differences, 4ff(x), alternate in sign as k takes on successive integral
values in the cones that Choquet considered.
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CONTRIBUTIONS TO BOOLEAN GEOMETRY OF p-RINGS

RoBERT A. MELTER

1. Introduction. In a paper in this journal |7], J. L. Zemmer
proposed two problems relating to the geometry of the Boolean metric
space of a p-ring. (A p-ring is a ring R in which px =0 and a? =«
for some positive prime p, and all x € B. The axioms of a p-ring im-
ply its commutativity.) The first problem asked for necessary and
sufficient conditions in order that a subset of such a space (hereafter
called a p-space) be a metric basis; the second problem was the deter-
mination of congruence indices for p-spaces, with respect to the class
of Boolean metric spaces. The present paper contains solutions to
these questions as well as a brief discussion of certain properties of
the group of motions of a p-space, and an introduction to analytic
geometry in a p-space. The reader is referred to Zemmer’s paper for
definitions not contained herein.

2. Metric bases for p-spaces. Let us recall the following defini-
tion.

DerFINITION 2.1. A subset S of a Boolean metric space M is called
a metric basis, if and only if «,%¥ in M and d{(x, s) = d(y, s) for all
se S imply « = y.

Let R be a p-space and B its Boolean ring of idempotents. It is
well known that B is a subdirect sum of GF'(2) |6]. Denote by B*
the complete direct sum of these same rings.

Associate with every subset S of R a subset S of B* defined as
follows:

Let S, be the subring of B* consisting of those elements z of
B* having the property

2SN — 9 (s—ky
SES
for 7,k=0,1,2,---,p— 1, 7% k.
Let
S=US.uli<kjk=012--p—1].

THEOREM 2.1. Let R be a p-space with Boolean ring of idem-
potents B. If S is a subset of R then S is a metric basis for R if

Received August 12, 1963. The contents of this paper formed a part of the author’s
University of Missouri Doctoral Dissertation, written under the direction of Professor
Joseph L. Zemmer.
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and only if SN B =0, where N indicates set intersection.

Proof. A sequence of lemmas will be established, followed by the
.demonstration of the theorem itself.

LEMMA 2.2, Let w,s, b, d be elements of a p-ring such that w* =
w, and w S (s — b N (s — d)*, then (s — dw)’™ = (s — bw)*™".

Proof. By the binomial expansion
(s — dw)r*
=" — (p — 1)s*"dw + =1 1)2-(20—; 2) st 4 een o+ dr e

=" — (p — 1)s*dw + p=1X 1)2(1)__— 2) Gwsr= + v + drw
= w(s — d)* — ws? 4 g7,

‘Similarly (s — bw)?™* = w(s — b)*~* — ws*™* + s*~'. Hence (s — dw)>™* —
(s—bwyr*=wls—d* —(s—5b"". Butw&S(s—b"N(s—d)yr*
implies w(s — b)*~' = w(s — d)*~* = w and hence w[(s —b)* ' — (s —d)* '] =
w— w =0, and thus (s — dw)>™ = (s — bw)?*™!, which establishes the
lemma.

LemMMA 2.3. Let x, y, s, f, g be elements of a p-ring such that
(x—sypt=W—9sP and (f— gy =1, then (x — ) (y — 9 &
(s — f) s — g)** where the bar over an tidempotent indicates its
complement tn the Boolean ring of idempotents.

Proof. Let

a=(x—s" t=(U—g"
b=@—sy" u=(@6—fy"
r=(@—fy"  v=(06-—g9""

and recall that 1 = (f — g)*~'. By hypothesis ¢ = b and using the fact
that the mapping « — «*~* is a strong Boolean valuation the following
inequalities are obtained:

aSruu b=aZStUw l1&suUw
usSrla vEbDUt=a Ut

but 1 £« U v implies u U v = 1, or equivalently
* u+t+tvt+uv=1,

the addition taking place in the Boolean ring of idempotents.
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But then,

l=uUvSruadt=1
l=uwUvESrytUurv=1
l=uUvErvutuu=1.

Let ¢=(rUt), then cUu=1 and cUv=1 or ¢c+u+uc=1
and ¢ + v + cv =1. Adding the two last equalities it follows that
u+v) A +e)=0,(u+v)1L+7r+t+7rt)=0,0r(w+v)L+r(l+i)=
0. But by * (u + v) = (1 + uv) so that (1 + wv)(1 + 7)1 + ¢t) = 0, and
in turn (1 + wv)¥t = 0 or 7tuv = ¥t. Returning to the original sym-
bols, this is equivalent to

@—fr'y—g's@E—fris—9"

which establishes the lemma.

LEMMA 2.4. Let xz, y be elements of a p-ring such that
(x — y)*t % 0. Then elements f, g, can be selected from the summands
of the identity, 0,1,2, ---, p — 1 such that

(i) (f—9r*=1, and

(i) (@ —f)"y—9r"+0.

Proof. From the hypothesis it is clear that x == y. If the p-ring
is considered as a subring of the ring of all functions on a set X
with values in GF'(p), then there is some element ¢, of X such that
x(t,) = y(t,). Let f and g correspond to the functions f(¢t) = x(¢,) for
all te X and g(t) = y(t,) for all te X. It will be shown that f and
g satisfy the conditions set forth by the conclusion of the lemma.
Clearly f and ¢ are distinct for every ¢, and hence (f — g)' ' = 1.
But (x — f)(t) = (¥ — 9)(t) = 0, so that (x — f)" () = (¥ — 9)"7(t) =
1, and (x — f)" ' (y — g)>* = 0.

Proof of Theorem 2.1,

Necessity. Suppose S is a metric basis and SN Bow = 0. Then
w is an element of some S,,, say S,,. Consider bw and dw. Since
b and d are distinct and at least one is a unit in the p-ring, bw # dw.
But then by Lemma 2.2 (s — dw)*™* = (s — bw)*?, that is bw and dw
have the same distances from every element of S contradicting the
assertion that S was a metric basis.

Sufficiency. Suppose SN B =0 and S is not a metric basis. Then
there are elements «, y, of R such that d(zx, s) = d(y, s) for all se S,
and @ # y. By Lemma 2.4 there are summands of the identity f, g,
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such that

(f—9'=1 and (z—f) ' (y—9gr*t=0.
But by Lemma 2.3

@—=f)y Yy -9 =wsl—fyis—g

for all se S, that is we S;, or weS, so that 0+ we SN B. This
contradiction terminates the proof of Theorem 2.1.

An examination of the proof of Theorem 2.1 reveals that the role
played by the set of summands of the identity can be taken by any
equilateral p-tuple with side 1. Further, if SN B = 0 with respect to
a given equilateral p-tuple with side 1, then SN B =0 with respect
to every equilateral p-tuple with side 1.

A restatement of the theorem can be given which exposes its
content of a metric characterization of metric bases.

THEOREM 2.5. Let R be a p-space with distance algebra B. A
subset S of R is a metric basis for R if and only if there exists an
equilateral p-tuple with side 1, {v, v, ---,v,}, such that the dis-
tance algebra does mot contain a monzero element w such that
wS N d(s, v)d(s,v) [t£ 7,15 =1,2, -+, pl. (The intersection is to
be formed in the Boolean completion of the distance algebra).

The statement of Theorem 2.5 can be somewhat simplified in a
p-space for which the distance algebra is a complete Boolean algebra.

THEOREM 2.6. Let R be a p-space with complete distance algebra
B. A subset S of R is a metric basis jfor R if and only if there
exists an equilateral p-tuple with side 1, {v, v, +--,v,}, such that
Nsd(s, v,)d(s, v;) = 0,7 + J.

A similar result obtains if S is any finite subset of an arbitrary
p-space.

THEOREM 2.7. Let R be a p-space and S a finite subset. Then
S is a metric basis for R if and only if there exists an equilateral
p-tuple with side 1, {v, v, -+-, v,} such that [)sd(s, v,)d(s, v;) =0
[¢ = J].

A useful algebraic interpretation of Theorem 2.7 is incorporated
in the following Theorem 2.8.

THEOREM 2.8. Let R be a p-space. Consider the p-ring B as a
subdirect sum of GF(p), that is as a set of “sequences” with terms:
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an GE(p). Then if S is a finite subset of R, S is a metric basis
for R if and only if the set of kth terms of elements of S contains
at least p — 1 distinet elements of GF(p), for every k.

COROLLARY 1. A set of »p — 1 elements of a p-space forms a
metric basts if and only if it is equilateral of side 1.

COROLLARY 2. A metric basis for a p-space contains at least
» — 1 elements.

COROLLARY 3. Fvery element of an autometrized Boolean algebra
forms a metric basis.

Corollary 3 was originally discovered by Ellis [1].

Ellis |2] quotes a conjecture due to J. Gaddum that 1n a metric
space any equilateral set containing the maximal number of elements
forms a metric base provided the space is complete and convex.

In a p-space the maximal equilateral sets have exactly p-elements.
These sets are metric bases if and only if they have side 1, that is
that they are maximal with respect both to number of sides and to
common distance.

It is interesting to note that in a p-space even though every
metric basis must contain at least » — 1 points, there are infinite
minimal metric bases, that is infinite metric bases such that no proper
subset is also a metric basis. The following example illustrates such
a case.

Example 2.1. Let R be a 3-space in which the distance algebra
B is the complete direct sum of countably many copies of GF'(2). Let
S be the set of atoms in B. Then S is a metric basis for R, but no
proper subset of S has this property.

We concluded this section with a brief study of superposability
propertiez of metric bases in p-spaces.

It is known that every congruence between two finite subsets of
a p-space can be extended to a motion. The following example illustrates
that this conclusion cannot be extended to metric bases.

EXAMPLE 2.2. Let [0, 1) be the right open interval on the real
line. Let B denote the class of all subsets of |0, 1) that are unions
of finitely many right open intervals je, ), 0 <a <1, 0 < b <1, where
a and b are rattonal numbers. Then B is an atom-free Boolean algebra
whose Boolean operations are the usual set operations [4]. Further-
more, B is not a complete Boolean algebra. For example, the set X
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V2
of open intervals of the form [0, @) where a < "2 has no least upper
bound.

Represent this Boolean algebra as “sequences” of zeros and ones
indexed by the continuum from 0 to 1. Then a typical element of X
will appear as follows:
vz

2

(1,1,1,1, cee1,+-0,0,0,0,0, - .+0,0,0,0,0, >

A typical element of the set X* of upper bounds of X will appear as
v
(1,1,1,1,1, ------- L,1,1, .- 2 --1,1,0,0,0,---).

and a typical element of the set Y of complements of elements of X*
will appear as
Va2
<0,0,0, ........... 0,0,-- 2 ..(),0,1,1,1,...>.

It is clear that the sets X and Y have the same cardinality since
they are both infinite subsets of a countable set.

Let # — f(x) be any one-to-one correspondence between X and Y.
Zemmer [7] has shown that in a p-space with B as Boolean algebra
of idempotents there is a congruence which cannot be extended to a
motion, between the sets A and C defined as follows: A contains 0,
and for each 2 in X the element « + f(x). C contains 0, and for each
¢ in X the element  + 2f(x). The congruence F' between A and C
takes 0 into 0 and x -+ f(x) into = + 2f(x). It will be shown, more-
over, that in the 3-ring with B as Boolean algebra of idempotents the
sets 4 and B are metric bases. Theorem 2.1 can be applied. Since
0e A4, it is clear that N.eqd(a, 0)d(a, 2) and N.es d(a, 0)d(a, 1) are
both equal to zero. However, since for any coordinate less than the
12 /2th there is a 1 in « for some x in X and for any coordinate
greater than the 17 2/2th there is a 1 in some ¥ in Y and since xy =
=0, MNiesd(a, 1) (in the complete direct sum) is the atom with a 1 in
the 12 /2th coordinate, but since B itself is atom free, this implies
that there are no elements z of B such that z & N.es d(a, 1)d(a, 2)
and hence by Theorem 2.1 A is a metric basis. A similar argument.
shows that C is also a metric basis, which establishes the example.

3. Imbedding and characterization theorems.

DerINITION 3.1. Let {S} be a class of Boolean metric spaces.
Then a Boolean metric space R is said to have congruence indices:
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(n, k) with respect to {S} provided evey member of {S} containing
more than % + k distinet points, is congruently imbeddable in R, when-
ever every 1 of its poinits are imbeddable in E.

DEFINITION 3.2. A space R is said to have congruence order n
with respect to {S} provided it has congruence indices (n, 0) with re-
spect to {S}.

(It is understood that the distance algebras of members of the
comparison class are isomorphic with the distance algebra of the space
R.)

The following series of theorems will establish that a p-space with
Boolean algebra of idempotents B where B is a complete direct sum
of GF(2) has best congruence order p + 1 with respect to the class

of all Boolean metric spaces (S, B,d). Theorem 3.4 generalizes a
theorem due to Ellis [1].

LemmA 3.1. If A and B are congruent metric bases for a
Boolean metric p-space R and if f: A— B 18 a congruence between

the two sets, which can be extended to a motion, then the extension
1S unique.

Proof. Suppose f and g are distinct motions which agree on A;
then there is an x € R such that f(x) = g(x). But for all ac A4,

d(f(z), f(a)) = d(z, a) = d(g(x), 9(a)) ,
= d(g(x), f(@)) ,

which contradicts the assumption that B is a metric basis.

LEMMA 3.2. If A is a metric basis, for a Boolean metric p-space,
and A and B are superposable then B is also a metric basis.

Proof. Let f be a motion which takes A onto B. Suppose B is
not a metric basis, then there are elements «, y, of R such that
x # vy, and d(x, b) = d(y, b) for all be B. But then d(f (), f~(b)) =
d(f(y), £74(b)) for all f7(b) in A, and since f* is, in particular, one-
to-one, this contradicts the assertion that A is a metric basis.

COROLLARY. If A is a finite metric basis for a Boolean metric
p-space, and A and B are congruent, then B is also a metric basts.

Proof. This follows immediately from the lemma and the corol-
lary to Theorem 5 of [7].

If {S, S, -+, S;} and {t, t,, ---, t,} are subsets of a Boolean metric
space the statement
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S, Sy, -0, Sy~ t, by, -+, t, is to indicate that the mapping which
takes S; into ¢, (1 =1, 2, ---, k) is a congruence.

LEmMMA 3.3, If {ri, 7}, ---, ¥} s @ metric basis for a Boolean
metric space and

" ’

0y 0 nr r ’ ’
Ty Pay ooy Vo, & ARV, Ty =00y Tp1y &

o " " P ’ ’
Ty, Pe gy ooy Yoy Y RV, Ty ooy Tp1y Y

then

TN ) "e "eo 0 Pl et ’ oyt
Py P2y Ty ooy Tpgy @ Y AV, Py Ty 2y Vo, TY

Proof. Consider the unique motion which takes

{ry, ry, oo, Ty, @'} into {r, v’y oo, i, 2}

Such a motion exists since by the corollary to Theorem 5 of [7]
any congruence between two finite sets can be extended to a motion.
If Ac B and A is a metric basis, then B is also a metric basis. Hence
{rl, v, <<, rp—y, @'} and {1, "', -+, ry.,, "'} are superposable, and by
the corollary to Lemma 3.2, {/", ), -+, 3, '’} also forms a metric
basis and then by Lemma 3.2 the congruence

" " " Pt ’ ’
Tiy Tyt Vpogy 20, & AT, Py 20y Tpyy, X

can be uniquely extended to a motion. Suppose that this motion takes
Y’ into y* where y* #« y"”’. Then

" nr " 44 174 1144 1244 3
TiyTe s Vpy Y ARV, 1y oy Tpy Y

which contradicts the fact that {r;”, »)’, ---, 7y}, being congruent
to a metric basis are themselves a metric basis by the corollary to
Lemma 3.2.

THOREM 3.4. A Boolean metric space S with distance algebra B
1s congruently imbeddable in the p-space R with Boolean algebra of
iwdempotents B if:

(i) S contains p — 1 points congruent with a metric basts of R,

(i) Every p + 1 points of S are congruently imbeddable in R.

Proof. Let {0, 0, -, p,—} be a p — 1 tuple of S congruent with
{ry 7y -+, r,—1} a metric basis in R, that is

(1) plrpZy°"ylop-—1N7'1;/r2’°"7/rp—1-

Let p, be another point of S. Then there exists {r, 7} -+, 7)_,, 7'}
in S, such that
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(2) Pl,Pz,Psy“',PpN"'f,"”é,"',7';

and by the corollary to Lemma 3.2 {r], 7, ---, 7,_,} is a metric basis.
Let {eS. Then again there exists {r{,r/, ---, 7}, 2"} € R such
that

” ”

(3) p17p29 "'7[()p’CNT;’;T;,;"'y/rp,x
and therefore
(4) ’i";,’)"é,"',’I”Z,,N’/'{,,’)";’,"',’r;’.

Let #’ be the image of 2" under the unique motion which preserves
congruence (4). Thus there is defined a single-valued mapping ¢’ = 2'({)
of S into R, and

(5) pl?(oz"°'!{OWCNT{77‘;’"'y’r;’x"

It remains to show that distances are preserved.
Let ,7e S and let x, ¥y be the corresponding elements in K. Now

"

(6) 01, O3y =7y Pp1, §, 1) A v, e, v, 0" Y e R

for some p + 1 tuple {»{", ¥}, «--, )7, ", y""}e R. Then using
Lemma 3.3, (5), (6) and the fact that =i, 7}, ««+, 75, ¥ &~ 0y, 0 ***, 0, ¥
it follows that

e r

oy .
01y Oy =+ Pp—1, nyjw,rl sy Tay o0y 'rprilyx

and hence d(C, ) = d{x’, ¥').

rer ’ I W )
Y RN Ty oy T, Y

THEOREM 3.5. Let S be a DBoolean metric space with distance
algebra B, then every op-tuple of S is tmbeddable in the p-space R
with Boolean ring of tdempotents B.

COROLLARY. FEwery fintte Boolean meiric space ts imbeddable in
a p-space, for some prime P.

Proof. Let{s, s, ---,s,} be a p-tuple in S. Let ¢,; denote d(s;, s;).
Consider the following set of » — 1-tuples of elements of B:

s = (0, 0, , 0)
s, = (¢u, 0, , 0)
8; = (¢1%2r 4159, 0, , 0)
8; = (GG €1924T51, 91924030 0, , 0)

85 = (Q13G2r G15923%s3 1159295913 ***» Qilai = ** Cimtyip Dillas =+ * im0 05+ ++, 0)
S; = (Q1pq—2py qlqu]?q—S;y ccy QipQap 00 Qp—1,p5 G1pQap * ** Qp—l,p) .
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It is clear that the s} are p — 1-tuples of pairwise orthogonal elements
of B and therefore by Theorem 1 of [7] correspond to elements of R.
It remains to show that the mapping \:s;—s] is an isometry. Let
q"iJ’ = d(S;, 8;‘)-

Consider the rings B and R in their subdirect sum representations.
In order to show that )\ is an isometry it is sufficient to show that
qi; has a zero in a given component if and only if ¢,; has a zero in
that same component. Let Q;; and @Q;; represent the ath component
of q;; and qi; respectively. Let S, represent the entry in the ath
component of the subdirect sum representation of sj.

Assertion. Q,; = 0 if and only if Q}; = 0.

It is clear that @Q,; =0 if and only if Q;=0, [7=1,2,---, p].
Suppose, therefore, that ¢, 5 = 1.

Suppose that Q;; = 0 and assume without loss of generality that
7 is less than 5. Then S; is equal to & where 0 <z <4 — 1. But
if S;=2 ~1 where 1< <% then Q,; =1 for t=1,2 ---, & — 1,
and @,; = 0 which implies that @Q,;, =1 for n =1,2, ---, 2 — 1. (For
if @, =0 for some #,[n=1,2,--+, 0 — 1] then by the triangle
inequality @,; =0, Q;; =0 imply Q,; =0 which is a contradiction.)
But then since Q,; =0, @Q; =0 imply Q,, =0, S;=2—1, and
Qi; = 0.

Now, still under the hypothesis that @;; = 0 it remains to show,
in order to complete the proof of the necessity of the assertion that
if S;=0, then S;=0. Butif S; =0, Q;=0. (For suppose S; =0
and @,; = 1, then there must be an », [r = 2,8, -..,5 — 1] such that
Q,; = 0. But then by examining the term in s; involving @,; it is
seen that there must be a » strictly less than » such that @,; = 0,
and proceeding by induttion @Q; = 0, contrary to hypothesis). But
Q,; = 0 and Q;; = 0 imply by the triangle inequality that @,; = 0 and
hence S, = 0 which completes the proof of the necessity of the assertion.

To demonstrate the sufficiency of the assertion it must be shown
that if @;; = 0, then @,; = 0.

If Q,; =0, then S; = S; = «, where « is an integer mod p. Assume
without loss of generality that ¢ < 7 and suppose = 0, ¢ — 1. Then
Q.;, =0, Q,_.; = 0 which together imply that Q;; = 0. Ifx =14 —1,
it is clear from examining the term in S, involving @;; that Q;; =0,
and lastly if =0, @, =0, and @, = 0; hence by the triangle ine-
quality @;; = 0. This completes the proof of the theorem.

To clarify the proof, it seems worthwhile to establish the theorem
without using the subdirect sum formulation, in a particular instance.
Thus let {s, s,, s;} be a Boolean metric triple. Then
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s1=1(0,0),
S; = (q127 0) ’
, —
8; = (Q13q23, Q13q23) .

Since the sum of the coordinates in a Boolean vector representation is
the distance from the origin it is clear that ¢, = q,,. By the same
token

q{3 = Q13(q23 + _‘E) = Q3 .

Lastly qi; = d(s; — s;, 0). The Boolean vector representation of s; — s;
is (a,, a,) where

0y = Q115955 + Q159251
0y = Q15135 + Q12q1221:3 + Q03

so that qi, = a, + a,, which upon simplification gives

q;3 = iy T Qi T 201G
= (s

since in any Boolean metric space the product of the lengths of the
sides of a triangle is equal to their sum.

Before indicating the procedure for imbedding » + 1-tuples, a defini-
tion of a chain of integers and some lemmas concerning these chains
will be presented.

DEFINITION 3.3. Let ¢, 7 be positive integers such that « < j. An
(¢, 7) chain is any finite sequence of positive integers such that

(1) The sequence has exactly j terms,

(2) The first element in the sequence is 1, and the last is ¢,

(3) The terms in the sequence are selected from the integers
1,2, -+, 74,

(4) If r and s are integers which occur in the sequence and »
is less than s, then the first occurrence of r precedes the first occur-
rence of s. Every integer between r and s must occur if » and s
occur.

Let «,, x,, +++, z; be an (7, 5) chain. Define a metric on this chain
by letting d(x,, x,) = 7., = 1 if x, * x, and d(x,, 2,) = 7, = 0 if x, =
x,.

LeMMma 3.6. Let s, s, -+, 8, be a v-tuple in a Boolean metric
space. Let t;; = d(s;, s;) and let T;; denote the ath component in the
subdirect sum representation of t;;. Then there exists a unique (i, v)
chain I' such that vy, = Ty, a,b=1,2, -+, v,
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Proof. By induction on 9. For v =1 the theorem is trivially
satisfied. Suppose then that {s,, s,, -+, s,} is a Boolean metric % tuple
and x,, &,, -+, x, is the unique chain such that r,, = T,;. If T, ., =1
for w=1,2, .-+, k, let z,., be the next integer not already used in
the chain. This integer is uniquely determined and 7,, = T,, @, b =
1,2, ---, %k + 1. On the other hand if T5,,, =0 where 1wk + 1,
let 2, = ®3. 2, is uniquely determined, for if 7T5,., =0 and
T=.... = 0, then by the triangle inequality 7%z = 0 and so o5 = 25 =
2y, and hence 73,.,=0. If r,,.=0, then x, = %, = 23, hence,
T.7 =0, which with the hypothesis 75, ., =0, yields 7,,... = 0, which
completes the proof.

DEFINITION 3.4. Let {p, »,, ---, 0} be a finite subset of a Boolean
metric space. Then the distance product of this subset is defined to
be

11 d(p;, p;) .

THEOREM 3.7. Let S be a Boolean metric space with distance
algebra B. Ap + 1-tuple K of S is imbeddable in the p-space R with
Boolean ring of tdempotents B if and only if the distance product
of K 1is zero.

Proof. The necessity is easily established. Let {t, ¢, «+-, ¢4}
be points of a p-space. In the ath component of the subdirect sum
representation, each of the ¢, must contain one of the elements of GF(p).
Thus in this ath component, for some ¢, d, ¢, and ¢, have the same
element of GF(p), and hence the distance product has a zero in the
ath component. Since this is true for every «, the distance product
of {t, %, -+, t,.1} is zero.

To establish the sufficiency of the condition, let {s;, s, ---, s,} be
a Boolean metric j-tuple and let C;; be an arbitrary (i, 5) chain. De-
note by ¢,, the distance d(s,, s,) and let Cj; be the product

a];I;_jg(qab)
where ¢(q,,) = Q.,, if the ath and bth terms in C;; are identical;
9(Q.) = qay, if the ath and bth terms in C,; differ. Let {s, s,, s, -+,
8,1} be a Boolean metric p + 1 tuple with distance product zero.
Define a set of » — 1-tuples of B as follows:

by = (Cy, th, ooy Uy oo ey 857) J=1,2-,p+1)

where t is equal to zero if I > J — 1, otherwise ¢’ is the Boolean
algebra union of all the elements of B of the form Cf,, ;.
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Let T? denote the ath component in the subdirect sum repregenta-
tion of 1.

In order to show that the mapping s, —t, is a mapping into a
p-ring, it is sufficient to establish that 7Ty = 0, if n = m. But
this follows at once frem the fact that 7 = 1 if and only if there is
an (n +1,J) chain x,x,, ---, 2, such that the «th component of
d(s,, s,) ig equal to d(x,, x,) [¢,b=1,2,---,J], for it follows from
Lemma 3.6 that two (7,7) chains are isometric if and only if they
are identical. ,

Since T7 =1 if and only if t, has an I in the ath component and
also if and only if {s, s,, -, 8,} is such that for 2 unique (I + 1,.J)
chain ¥y, ¥, <+, ¥y, d{¥y., ¥,) 13 equal to the ath component of d(s,, s;),
(@,b6=1,2,...,J), it follows that {R, + 1, R, + 1,---, B,, + 1}, where
R, is the ath component of ¢,, is the unique chain such that d(R, + 1,
R, + 1) is equal to the ath component of d(s,, s,) (m,n =1,2,-++,p+1)
and hence the ath component of d{f,, t,) = 0 if and only if the ath
component of d(s,, s,) = 0. This completes the proof of the theorem.

Recall that if B is a Boolean ring, B* designates the complete

direct sum of those GF(2) used in the subdirect sum representation
of B.

LemMA 3.8. Let S be Boolean metric space with distance algebra
B, wm which the distance product of every p -+ 1 paints is zero.
Then S is congruent with a subset of a Boolean metric space S*
with distance algebra B*, such that B is 1somorphic with a sub-
algebra of B*, the distance product of every p + 1 points of S* is
zero, and S* contains an equilateral p — 1-tuple of side 1.

Proof. Let {t, t, ---, t,} be a maximal equilateral set of side 1
in S. If »=p—1, no further proof is needed. If n < » — 1, con-
sider B in its subdirect sum representation and let B* be the complete
direct sum of the GF'(2) used to represent B. Let S* be the set union
of S and an element . Define a distance d’ in S* as follows: if
x,ye S, d(z,y)=dx,y), d{c,c)=0. For xecs, define d'(x, 0) = ¢’
by giving its ath component Q.. as follows: If for all we S, the ath
component of d(w,t,) =0 for some ©=1,2, ---, n then @Q., =1 for
all xe€ S. If there is a w, such that the «th component of d{w,, t;) =
1 forall t=1,2, .-, n, then let Q,, = 0 if and only if d(x, w,) has
a zcro in the ath component.

‘To show that S* is a Boolean metric space, observe that it is
clear that if 7, s are elements of S* with » = s, then d'(r, s) = 0.
If d'(r,s) =0, it is evident that » = s if » and s are both elements
of S. Suppose then that d'(x, 6) = 0 where € S. But then in the
ath component d(x,w,) has a zero, where w, is such that the ath
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component of d(w,,t,) =1 for ¢ =1, 2, -+, n, by the triangle inequal-
ity. Since this is true for every «, {t, t,, +--, t,, €} is an equilateral
set of side 1, contrary to hypothesis. The symmetry of d’ follows at
once from its definition. For the triangle inequality the only triples
which need be studied are those of the form (x, ¥, o). But, referring
now to the ath component, if d(x, y) = 0, d(y, ) = 0 then d(y, w,) =
0, hence d(x, w,) =0 and d(x,0) =0 and if d(x,0) =0, d(y,0) =0
then d(x, w,) = 0, d(y, w,) =0, and d(x,y) = 0. In all other cases
d(x, v), d(z, g), d(y, o) clearly form a metric triple, because z, ¥, o0, is a
Boolean metric triple unless in some component two of d(x, o), d(y, 0), d(x, y)
are equal to zero and the third is equal to one.

To show that {t,t, ---,t,} form an equilateral set of side 1,
suppose this is not the case, then in some ath component, for some
1, d{o, t;) = 0, but then d(o, w,) = 0, hence d(w,, t;) = 0, contrary to
the definition of w,.

In verifying that the distance product of every p -+ 1 points of
S* is zero, it is sufficient to consider p + 1 tuples {r,, v, -+, 7,, 0},
[r; € S] where in some ath component, the distance products of the 7’s
is one. But if the ath component of d'(r;, ) is one for 1 =1,2, -+, p,
then either there is for every ¢, a4, [ =1,2, -+, n] where n < p — 1,
such that d'(r,, t;) has a zero in the ath component (which implies
that for some ¢, j, k, d'(r,, t,), d'(r;, t,) have zeros in the ath com-
ponent and so d'(r;, ;) has a zero in the ath component, contrary to
hypothesis). On the other hand, if there exists a w, such that in the
ath component d'(w,, t;) =1 for all 7, [/ =1,2,--+,n], and d'(o, 7))
has a 1 in the ath component, then d'(w,, ;) has a 1 in the ath com-
ponent. But then {7, 7y, ++-, 7,, w,} is a »p + 1 tuple in S with distance
product different from zero.

Continuing in this manner a space containing an equilateral p — 1
tuple of side 1 is obtained.

THEOREM 3.9. Let S be a Boolean metric space with distance
algebra B and let B* be the p-space with Boolean ring of idempotents
B*., The space S is congruently imbeddable in R* if and only if
the distance product of every p -+ 1 points of S is equal to zero.

Proof. By hypothesis the distance product of every » + 1 points
of S is zero. Then by Lemma 3.8, S is congruently contained in a
Boolean metric space S*, with distance algebra B*, containing an
equilateral » — 1 tuple of side 1, and in which the distance product
of every p + 1 points is zero. By Lemma 3.7, every p + 1 points of
S are imbeddable in R*, and by Theorem 3.4, S* is congruently im-
beddable in R*, and hence S is congruently imbeddable in R*. This
establishes the sufficiency of the condition and the necessity follows
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immediately from Theorem 3.7.

COROLLARY 1. S is congruently imbeddable in R* if and only if
every p + 1 points of S are congruently imbeddable in the p-space
R, with Boolean ring of idempotents B.

COROLLARY 2. R* has congruence order p -+ 1 with vrespect to
the class of all Boolean metric spaces (S, B*, d).

LEMMA 3.10. A p-space does not have congruence order p.

Proof. Let M be a Boolean metric space of any cardinality in
which the distance of every two distinect points is one. Then M has
every p points imbeddable in a given p-space, but M itself need not be.

THEOREM 3.11. A p-space R*, with distance algebra B* has best
congruence order p + 1 with respect to the class of all Boolean metric
spaces.

Proof. By Corollary 2 of Theorem 3.9 the best congruence order
of R* is less than or equal to p + 1, but by Lemma 3.10 the con-
gruence order is greater than p.

Another topic of interest in distance geometry is psuedo sets.

DeEFiNITION 3.5. A » + 1 tuple T in a Boolean metric space is
said to be a wpseudo-p-space p + 1 tuple if every p points of T are
imbeddable in a p-space but T is not.

THEOREM 3.12. A Boolean metric p + 1 tuple s either imbeddable
m a p-space or is a pseudo-p-space p + 1 tuple.

Theorem 3.9 gives a solution to the congruent imbedding problem
of determining necessary and sufficient conditions in order that a
Boolean metric space be isometric with a subspace of a p-space. In
order to obtain a characterization of Boolean metric spaces themselves
one method is to first categorize those subspaces of a given p-space
which are themselves p-spaces among the class of all subspaces of the
p-space. This is accomplished in the following two theorems.

THEOREM 3.13. Let R be a Boolean metric p-space with distance
algebra B. Let S be a subspace of R. Then a necessary and suffi-
cient condition that S be a p-space is that:

(1) There exists a subalgebra B of B such that S contains an
equilateral p — 1 tuple with side 1 of B:{t, ty +--, ty_},
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(2) There is a one-te-one correspondence between the elements
of S, and the set of pairwise orthogonal p — 1 tuples: {c,, ¢,y +++, Cp}
of elements of B, such that for xe S, d(,t;) =¢,.

Proof. The necessity is clear, since for any sub-p-space, {t,, &y, * -,
t,.} can be taken as summands of the identity and the ¢; are then
the “coordinates” in a Boolean vector representation.

Sufficiency. If the conditions of the theorem are satisfied the set
of p — 1 tuples of ¢’s form a p-ring, which is a subring of the original
ring.

THEOREM 3.14. Let S be a Boolean metric space with distance
algebra B. A mecssary and sufficient condition that S be a p-space
18 that:

(1) The distance product of every p + 1 points of S is zero
and for some subalgebra B of B

(2) S contains an equilateral p — 1 tuple of side 1 in B

(3) There is a one-to-one correspondence between the elements
of S, and the set of pairwise orthogonal p — 1 tuples: {¢,, ¢, =+, C,—1}
of elements of B, such that for xe S, d(x,t;) = c,.

Proof. By Theorem 3.9, S is a subspace of a p-space, but by
Theorem 3.13, S is then a p-space.

4. Properties of the group of motions. This section is devoted
to developing certain properties of the group of motion of p-spaces.

THEOREM 4.1. In a p-space every rotation about the origin is a
product of a finite number of involutions.

Proof. Let R be a p-space and B its distance algebra. Let z—
f(x) be a rotation about the origin on R, and M the matrix corresponding
to f. Then M = (a;;) is a (p — 1) X (p — 1) matrix with elements in
B satisfying a;,a;; =0, 7 #k, and «;0,; =0, 4+ k, and MM = I,
where a;; € B.

For be B, denote by 6", the rth component of b in the subdirect
sum representation of B, and define M = (aj;).

Then the set {M™}, € .22, consists of at most (p — 1)! different.
matrices each of which is a permutation matrix. Clearly

" — (r). ()
M™ = M" M ««« M,

where the elements on the right are transposition matrices.
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Whence M can be transformed into M.” by a certain permuta-
tion of its columns.

Let M,, be the matrix which results from applying these same
column operations to M.

Let Z, be the product of those elements in M corresponding to
the U's in M. Let Z!® be the sth component of Z,, and note that
Z!* =1 if and only if M = M®,

Let M7 be the matrix obtained from M,, by multiplying every
element by 2, and then adding Z, to the elements along the main di-
agonal, i.e., M} = Z,M,, + Z,I.

Denote the matrix of ¢th components of M} by Mjx™.

It follows that:

Mx® = M it MO = MY
MY =1 if M+ M.

(From the definition of M3, if M™ = M™®, M3® = M\, and
from the definition of M,,, MY = M);, which is equal to M" by the
definition of M/, that is, MX® = M").

Thus

H M:;c(t) — M(r) if M(T) — M(t)
k
]_;IM::Z,(H':I if M(T)iM(t) (k:l’ 2, -o-,p~—2).

Now select a minimal set of 7's, L = (v, 7, +++,r,) such that
each M™ = M~ for some r;€ L. Then
M:HMrtk (k:172;"'7p_277'jeL)'
To show this, observe that '
M(M:HM:;,(%M (k:1,2,---,p——2,7'jeL) .
Let rge L be such that M"Y = M“, Then
T Mx» = (11 M:;p))(ﬂ% M)
= Me.1
= M = MW

COROLLARY. FEwvery motion which leaves zero fixed in a 3-space
1s a reflection. Ewvery reflection in a 3-space therefore has determi-
nant equal to —1.

The proof of Theorem 4.1. suggests that there is a close relation-
ship between the group of motions of a p-space, and permutation
groups. Indeed it is the case that the group of motions is a subgroup
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of the direct product of permutation groups on p — 1 letters. This
will be made precise in the following two theorems.

DErFiniTION 4.1. Let B be a Boolean ring. Consider B as a sub-
direct sum of GF(2). Let @ be a group of permutations on p-symbols
and G, the full direct product of @ of the same cardinality and num-
ber of summands as B. For be B, and Pec o, let g(P, b) be the element
of G, which effects the permutation P where b has 1’s and the
identity permutation elsewhere. Denote by G.(B) the subgroup of
‘G, generated by the set of elements g(P, b), Pep, be B.

THEOREM 4.2. Let R be a p-space with Boolean ring of idem-
potents B. Then the group of motions of R which leave zero fixed
18 Gp(B) where T is the symmetric group on p — 1 symbols.

Proof. Let M be a motion matrix for B. In the proof of Theo-
rem 4.1 it was shown that M can be written as a product of matrices
M;‘;.,c, but these matrices correspond to motions of the form g(¢, b)
where ¢ is a transposition.

COROLLARY. Let R be a p-space. Then the group of motions of
R is G«(B), where S is the group of permutations on p symbols.

Proof. Let f(x) be a motion, then f(x) =M + b. It has been
Shown in the theorem that the rotation is an element of Gy(B) and
hence of Gg(B). Consider now the translation ¢(x) =« + ¢t. It can
be written as the product of translations as &,(x)-ty(x)- «--, -f,4(2)
‘where t(x) = 2 + ¢(1 — (¢ — %))** which are elements of G(B).

On the other hand it must be shown that every element of G B
is a motion. It suffices to show that every ¢g(P, b) is a motion. Thus
let g(P, b) be given. If P fixes zero, the result follows from the
theorem. If P does not fix zero, let 0’ be the image of zero under P.
‘Congider the permutation ¢: #—x — 0’ of the integers mod ». Then
g(pg, b) is a motion and has a matrix M, and f(x) =aM + 0'b cor-
responds to g(p, b).

THEOREM 4.3. Let R be a 3-space with Boolean ring of idem-
potents B. Then every motion f on R which leaves 0 fixed is of the
Jorm f(x) = ax where a is a unit in the 3-ring.

Proof. It follows from Theorem 4 of [7] that f(x) = xM where
M= (a;;) 1,7 =1, 2,and a;;€ B. Further

M=( a 1+a)
l1+a a
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Suppose then that x = (v, ,), and so

f@) = (ax, + (1 + a)x,, (1 + a)x, + ax,)
= (xly xz)'(a; 1+ a’)
where (@,1 + a)a,1+ a) =(1,0) =1,

5. Amnalytic geometry in p-spaces. If a rectangular coordinate
system is introduced in a Euclidean plane E, a point P can be repre-
sented as a pair (x,y) of real numbers. One then seeks to describe
geometrically the loci of equations of the form ¥ = f(x), and conversely,
given a geometric description of a plane set, to find the equation of
which it is the corresponding locus. But a point P in the Euclidean
plane may also be considered to be represented by the single complex
number z = x + 7y. Here the question is not so much the investiga-
tion of the loci of equations of the from f(z) =0; a study is rather
made of the way in which geometric properties change or remain in-
variant under transformations w = f(z) of the plane into itself. It is
the purpose of the following remarks to exhibit theorems which illus-
trate that an analytic geometry for p-spaces may be developed in a
manner analogous with both of the methods discussed above for
Euclidean plane geometry.

Suppose, therefore, that B is a p-space. Since the elements of
the p-ring R are in one-to-one correspondence with the points of the
p-space R, every function f(x) defined for all  in the p-ring R and
having values in the p-ring R induces a mapping of the p-space R into
itself. This mapping need not of course preserve distances, and in
general will not even be one-to-one. Theorem 5.2 establishes necessary
and sufficient conditions that a polynomial function defined on a p-ring
R induce a motion on the corresponding p-space.

The following theorem, which was first established in 1882 is needed

for the proof.

THEOREM 5.1. Raussnitz [6]. Let f(x)=a_x"" + ax? " +ax*°+
~so + a,_, be a polynomial where a; e GF(p), i = —1,0,1,2, -+, p—1).
Then a necessary and sufficient condition that f(0), f(1), ++-, f(p — 1)
be distinct is that (i) the determinant R(k) be equal to zero for k =
0,10, ,—1,a,,+1, -+, p— 1 where

a, A, Ay **° Qpg Qpy — k

ay Ay Oy Qpy— K @
Rk)=]+eee-

ap—Fk a, a, Cps Qps
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and (i) a_, = 0.

THEOREM 5.2. Let R be a p-space. Then a mnecessary and suffi-
cient condition that the polynomial

P(x) = a_x" ™ + a@e®? + a2 + «o0 + apy,

where the a; (1 = —1,0,1, «--, p — 1) are elements of the p-ring R,
induce a motion on the p-space R is that

(i) a,=0
and

(i) Re)=0 (k=0,1,2 -+, p— 1) where

a, QG Ay v Qg Qpy — Cp
a, Ay, Qs Qp—y — C; Qg
Rley) =|veeen
Qpy — €, Gy Oy Ups ey

and ¢, = —(@,—y — k)** + k + 1. (Note that R(k) has integer argu-
ments wheréas the arguments of R(c,) are elements of a p-ring).

Proof. Suppose that the polynomial P(x) corresponds to a motion
M on the p-space R, and consider the p-ring R as a subdirect sum of
GF(p). Then the elements of R may be represented as (7, 7, *°*,
Ty, +++) Where the r,€ GF(p). Clearly M induces a permutation p, on
the components »,, for every t. If for ;€ R and x,€ R, 7} =7} and
M(r}) = M(r}), then d(x, @) will have a zero in its ¢th component
while d(M(x,), M(x,) will have a one in the tth component contradict-
ing the assumption that M is distance preserving. The uniqueness of
P, is a consequence of the fact that the motion M is a well defined
mapping. Let a;, be the tth component of a; in the subdirect sum
representation of R. Then the polynomial

Pyx) = @y, @7 4 €, 8777 + @, @770+ e oy,

must represent the permutation p, on the elements of GF(p). Hence
by Theorem 5.1, a_;,, = 0, for all ¢, so that a_, = 0. Also, R(k) =0
for all ¢, and k=0,1,2,--+,a, ,—1,a,,,+ 1, .-+, p— 1. Notice
however that ¢, ranges over 0,1,2, «:-, ap,—1,,0,5,+ 1, ==,
p — 1 as k takes on the values 0,1, ---,» — 1. Thus R(¢,) =0, for
k=0,1,2, ---,p—1, and the necessity of conditions (i) and (ii) is
established.

On the other hand, suppose that conditions (i) and (ii) are satis-
fied by P(x). It will first be shown that the polynomial P*(x) where
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P*(x) = P(x) — a,_, also satisfies conditions (i) and (ii). For each ¢,
the polynomial P,(x) satisfies the conditions of Theorem 5.1 and hence
P(x) induces a permutation p, on the ¢th component of the subdirect
sum representation of the p-ring K. But in each component P*(x) also
induces a permutation and since conditions (i) and (ii) of Theorem 5.1
are necessary conditions, P*(x) satisfies conditions (i) and (ii) of Theorem
5.2. It is clear that if P*(x) is a motion, so also is P(x), and thus it
is sufficient to consider polynomials P(x) for which a,_, = 0.

Since there are only a finite number of different permutations on
the elements of GF'(p), it is possible to choose a finite set of distinet
permutations

{Qh qz * qs} =TI

in such a way that for each ¢, p, is equal to one of the ¢;. Note
that 1 < s < pl. Now, with each permutation g;, there is associated
at most a finite number of polynomials

Qi) = ™" + A" + e [b=1,2 -, w

in GF(p) [«#] which satisfy the conditions of Theorem 5.1 and such
that ¢;(1) = Q,,(%), 1 = 0,1, «+-, 0 — 1, k=1,2 «++, w,.

Define b;,, an element in the Boolean ring of idempotents, as
follows:

bjk = (ao - 7:«(){;)1)#1 U (al - ii{;c)p_l Ueee U (a’zws - 7;(pj—):,k)pﬁl .
This element has a zero in those components ¢ of the subdirect sum
representation of the Boolean ring of idempotents, where
Ay,: = 7’2],)/ [h/ - 0! 1: cr, D — 3]

and has a 1 in the other components. Let

and note that b; has a 1 in those components ¢ where the permutation
q; = p, and zeros elsewhere.
Define a matrix M = (m,;) as follows:

Mi; = by, + by, + -+ + by,

where ¢;, ¢, *+*, 4, ***, ¢;, are those elements of /" which satisfy
q;(¥) = j, and m;; = 0 if there are no such permutations in /". It can
be seen that m;; has a 1 in the ¢th component if and only if P,(7) =
J. Since the b; are pairwise orthogonal and a permutation is a one-to-
one onto map, it is clear that M satisfies the conditions for a motion
matrix and P(x) = 2M.
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To illustrate the second point of view in analytic geometry refer-
ence will be made to the particular instance of a 3-space, although
similar results could be obtained for larger primes.

It follows from the Boolean vector representation of p-rings that
a 3-ring can be represented as the set of all pairwise orthogonal ordered
pairs (x, y) of elements from its Boolean ring of idempotents. Thus
the pair (z, ¥) can be considered as coordinates for points in the 3-space.
The locus of all points of the 3-space, whose coordinates satisfy an
equation of the form Ax + By + C =0, where AU B =1, is called a
linear set. (The indicated operations are those of the Boolean ring of

idempotents).

THEOREM 5.3. A linear set is a circle of radius A + B+ C.
Proof. Denote by £ the linear set associated with the equation
Ax + By + C = 0. Then if (x,y)e 2,
di(z,y), 1+ B,1+A4A)]=A+B+C.
For

di(x, ), 1 + B, 1 + A)] = d[((1 + B,1 + 4) — (=, v)), 0]
=d[(¢,d), 0] =c+d

where

c=(1+Ar+yl+A+1+B+1D)+A+B1L+z+v)
d=@0+By+zs1+A+1+B+1)+ 1A+ A1+2z+y)

hence
c+d=Ax+By+A+B=A+B+C.

Also if d[(1 + B,1 + A), (z, y)] = A + B + C then from the above
[d(@, ), (1 + B,1+ A)] = Az + By + A + B

and hence Ax + By + C = 0.

COROLLARY. The form A + B + C is a complete set of invariants
for linear sets under motions.

The following theorem illustrates a connection between the geom-
etry of a p-space and the geometry of its Boolean ring of idempotents.

THEOREM 5.4. If R is a p-space and B the corresponding
Boolean ring of idempotents, then B itself is a Boolean metric space
and is isometric to the set of idempotents of R, considered as a sub-
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space of R. Further, any motion on B, can be extended to a motion
on R.

Proof. In an autometrized Boolean ring, the distance between
two elements is the ring sum. But if # and y are idempotents in a
ring their sum in the Boolean ring of idempotents is « + y — 2xy.
But it is easy to see that if x and y are idempotents in a p-ring
x4+ y— 22y = (x — y)**. Hence the distance between two idempotents
is the same, whether the set of idempotents is considered as a sub-
space of the p-space, or as forming a Boolean ring itself.

If f is a motion on B, then the motion f*(x) =M + f(0) is a
motion on E which coincides with f on B, where the matrix M = (m;;)
is defined as:

My = Mp—y,p—1 = fTO) , Mg,y = My, = f(0),

m;; =1 for ¢ %= 1, »p — 1, and all other elements in the matrix equal
to zero..
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BASIC SEQUENCES AND THE PALEY-WIENER
CRITERION

JAMES R. RETHERFORD

1. Introduction. Throughout the paper X will denote a complete
metric linear space (i.e., a complete topological linear space with topology
derived from a metric d with the property that d(x, ¥) = d(xz — ¥, 0),
for all «, ye X) or some specialization thereof over the real or complex
field; ||« || will denote d(x, 0); and if {x,} is a sequence in X, [x,] will
denote the closed linear span of the elements {x,}.c..

A sequence {x,} is said to be a basic sequence of wectors if {x,}
is a basis of vectors of the space [w,], i.e., for each xe[x,] there
corresponds a unique sequence of scalars {a;} such that

1.1 T = i a;x; ,
b

the convergence being in the topology of X. We say that the basis
is unconditional if the convergence in (1.1) is unconditional. It is well
known that if {x,} is a basic sequence of vectors, then every «xe[x,]
can be represented in the form = = 3\, fi(®)x; where {f;} is the
sequence of continuous coefficient functionals biorthogonal to {x;} (Arsove
[1, p. 368], Dunford and Schwartz [4, p. 71]).

Similarly, we say that a sequence {M;} of nontrivial subspaces of
a complete metric linear space X is a basis of subspaces of X, if for
each x ¢ X, there corresponds a unique sequence {z;}, ;€ M; for each
%, such that

(1.2) x = éx@ .

This concept has been studied by Fage [5], Markus [9], and others in
separable Hilbert space and by Grimblyum [6] and McArthur [10] in
complete metric linear spaces. We say that the basis of subspaces is
unconditional if the convergence in (1.2) is unconditional.

If {M;} is a basis of subspaces for X, for each 7ew define E;
from X into X by E(x) =, where >\, «; is the unique representation
of xeX. E,is a projection (linear and idempotent); E.E; = 0 if ¢ == j;
the range of E; is M;; for each z€ X, z = 32, E(x) and if E;(x) =0
for each %, then z =0. {M;} will be called a Schauder basis of
subspaces if each E; is continuous.

September 24, 1962, This research was supported by the Air Force Office of Scien-
tific Research.
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A sequence {M;} of non-trivial subspaces of X is a (unconditional)
basic sequence of subspaces if {M;} is a (unconditional) basis of subspaces
of [M;], the closed linear span of U;e. M;. If {M} is a basic sequence
of subspaces and « e [M;] then z = 3.3, E(x), where E; is now defined
on [M].

The classical Paley-Wiener theorem can be formulated in X as
follows.

1.3. THEOREM. Let {x,} and {y,} be sequences tn X and let
be a real number (0 < N < 1) such that

(1.3a) H >, Q@0 — )

=\

holds for arbitrary scalars a,, +++, a,. Then (1) if {x,} is a basis
so 18 {¥.}; (2) if {x,} is fundamental (i.e., [x,] = X) so is {¥.}.

Recently Arsove [1] showed that Theorem 1.3 is valid in a complete
metric linear space. It is the purpose of this paper to show that this
result and results similar to those of Pollard [13], Hilding [7], and
Nagy [11] (all of which generalize condition 1.3a) are valid for basic
sequences of subspaces in X. As a corollary to Theorem 4.3 we obtain
a new version of the Paley-Wiener theorem.

The author wishes to express his gratitude to Professor C. W.
McArthur for his help and encouragement in the preparation of this
paper.

2. Basic sequences of subspaces. Special cases of the following
lemma have been used by Hilding [7, p. 93], Nagy [11, p. 76], and
others to prove theorems similar to Theorems 2.3 and 2.4.

2.1. LeMMA. Let {M;} and {N;} be sequences of mnontrivial
subspaces of the complete metric linear space X. Suppose that for
each icw there exists a one-to-one linear tramsformation T, of M,
onto N; and suppose further that there are positive numbers m, M
such that

P
2

(2.12) m;

holds for arbitrary x,e M;, 1 =1, -+, 0. Then
(i) there is a linear homeomorphism T of [M;] onto [N;] such that
the restriction of T to M, equals T; for each tcw and such that

(2.1b) milz|| = | T(@)|| = M{[2||, for all xe[M].
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(ii) {M;} is a (unconditional) basic sequence of subspaces if and only
if {N;} is a (unconditional) basic sequence of subspaces.

Proof. Let X, denote the space of finite linear combinations of
Uieo M;. These, of course, are reducible to the form >7, x;, ;e M,.
If o,2;eM,2=1,+--,p and >, @, = >, «! then from 2.1a it
follows that >7., Ti(x;) = >3, Ti(x)). Thus we may define a linear
transformation S from X, into [N;] by SCi,z,) = >2, Ti(x;) and
have mijz|| = ||S()|| = M|/ z]|, for all xeX,. It is clear that S
restricted to M, is equal to T, and that S is continuous. Thus defined
on a dense subset of [M;], S has a unique linear extension T to [M;]
satisfying 2.1b. From 2.1b it follows that T is one-to-one and T*
is continuous. We show 7 is onto [N.].

Let ye[N;]. Then y =lim, g, where g, is of the form g,= >.2% y®,
yPeN,v=1, -+, n(k). For each such ¥{* there is a unique x*’ ¢ M,
such that Ty(2®)=y*. Let h,= 2% x®. Then from 2.1b,
Nk, — k|| = U/m) ||l g, — g,]l, so {k,} is Cauchy and there is an x, € [M;]
such that {h,} — x,. Clearly, T(x,) = ¥.

To verify (il) suppose {M;} is basic, i.e., a basic sequence of
subspaces. Let y<[N;]. Then v = T(x) for some xc[M;]. = has a
unique expansion « = >,2.a;, ®; €M, and ¥ = 3.2, T(x;), T(x;)e N,.
Now if ¥y = >2.9;, ¥;€N,;, then y, = T(x}) for some unique z;c M,.
Hence 0 = T(C\ ®; — i) which implies x;, = «{. Since the expansion
for ¥ is unique, it follows that {N,} is basic. The converse follows.
from (i) in the same way. If in the preceding argument {M;} had
been assumed an unconditional basis of subspaces for [M;] then the
series >\, «; would have been unconditionally convergent to = and
since T is a linear homeomorphism it follows that >, T(x;) would
be unconditionally convergent.

2.2. DEFINITION. Two sequences {x;} and {y;} (in the given order)
wm X are said to have the property:

(P-W) (for Paley-Wiener) if there is a real number N (0 < A < 1)
such that || S, alx; —¥) || £ M| 2k a2, |} holds for arbitrary scalars
Ay Qgy =00y Ay

(P-H) (for Pollard-Hilding) if for each positive real number k,
there are real numbers A, (0 =< \; < min [1; 2'Y*], ¢ = 1, 2) such that

n n n ki k
Z{ a;(x; — Y;) Z{ a;x; Zi aY; ]
= = 1=

holds for arbitrary scalars a,, ««-, a,;
(N) (for Nagy) if there are real numbers N, v 0=V <1, 0
v<1, 0= p, 12 <[1 — N]]1— v]) such that

k

+ A,

< [M
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3

25 a;

t=1

2

2+# .

Hé%(%"‘%)“zéwj + v

n
2% 0
=1

n
2L aY;
4=1

’ ; a:Y;

holds for arbitrary scalars a,, +--, a,.
If X =1 and )\, =\, property P-H reduces to

(2.2a) ( 4

é a(x; — ?/z)!‘ = 7\4[

n
Z aY;
7=1

n
Z a;x;
7=1

]

where A =\, = A,

2.3. LemMmA. If {z,} and {y,} are sequences in X with property
P-W, P-H or N then 2.2a holds, with » (0 <X\ <1) an appropriately
chosen constant.

Proof. That property P-W implies 2.2a is obvious. If {x,}, {v.}
have property P-H, let A = [max (\, M)J%; if {x,}, {¥.} have property
N let N = [max (N, g, v)[2.

2.4. THEOREM. Suppose {M;} and {N,} are sequences of nontrivial
subspaces of X and suppose that for each icw, T; is a one-to-one
linear tramsformation of M; onto N,. Suppose further that there
s @ M0 < A < 1) such that

= )

holds for arbitrary x,e M;,i =1, -+, n. Then
(i) there is a linear homeomorphism T of [M;] onto [N;] such that
T yrestricted to M; equals T, for each 1 and such that

2.4b)  [A =M/A+M]z[=[IT@)][ =T +MN/A =Mz

for each xe[M];
(ii) {M;} is a (unconditional) basic sequence of subspaces if and only
if {N;} s a (unconditional) basic sequence of subspaces.

(2.4a) +

5 @ — Ti(@)

n
PITA
1=1

3 Ti(w)

Proof.
3 1w 2| 5 () — 20| + | S
=a+n|Sa|+r S e,
ie.,
5T | 2 1A+ v -1 S




BASIC SEQUENCES AND THE PALEY-WIENER CRITERION 1023

Similarly,

=1+ M/ =)

b

Thus

n

P

1=1

[ =/ + ]|

n
2
=1

=|| 5 7w

= [@ 4+ 2N/ =]

The conclusions follow from Lemma 2.1.

2.5. COROLLARY. Suppose {M;} and {N;} are sequences of mnon-
trivial subspaces of X and suppose that for each tcw, T; is a one-
to-one linear tramsformation of M; onto N;. Suppose further that
{x;} and {T(x;,)} have property P-W, P-H or N, for arbitrary x;,c M;
(observe that since x; € M; is arbitrary, x; and Ti(z;) include the scalar
a; for each 1) then the conclusions of Theorem 2.4 hold. In particular,

1f Property P-W holds and {M;} is a basis of subspaces for X, sois
{N}.

Proof. The first part of the corollary follows from Lemma 2.3.
Arsove [1, p. 367] has shown how to prove the other assertion of the
corollary. We repeat the proof for completeness.

Since Property P-W holds there exists a linear operator T from
X into X satisfying || — T(®)|| = \||#|l,x€ X and such that T
restricted to M; equals T;,. Let A = T — I, where I is the identity
operator. A is continuous at each x e X and furthermore || A"(x)| =
A ||| for each x e X and positive integer n. Thus a linear operator
U of X onto X may be defined by U(x) = S (—A*x)), xe X. It
follows that || Ux) || =@ — N {|x]|, so U is continuous. Given y e X,
let x = U(y). Then y =+ A)x = T(x) so T is onto X. Thus {N;}
is a basis of subspaces for X.

3. Basic sequences of vectors. If X hasg a basis of vectors {x,},
then {x,} induces in a natural way a basis of subspaces {M;} for X.
We have only to define M; to be the span of the single element z;
(denoted by sp(x;)). From the remarks in the introduction we have
x = >, fi@)x; for each x e X, so E(x) = fi(x)x;. Since h(a) = ax; is
a linear homeomorphism of the scalar field into X and fi(x) is a con-
tinuous linear functional it follows that E; is continuous for each 7 € @
and so {M;} is a Schauder basis of subspaces for X. Thus, for

Schauder bases of vectors, we obtain the following theorems as corol-
laries to the theorems of § 2.
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3.1. THEOREM. Suppose {x;} and {y;} are nontrivial (i.e., x;#0,
Y; =0, for each icw) sequences im X and suppose there is a
MO < N < 1) such that

(3.1a) E: a(x; — yz)'l = 7\'< 2 a;x; ’ + nZl (M’/@H)
holds for arbitrary scalars a,, -+, a,. Then,

(1) there exists a linear homeomorphism T of |x;] onto [y;] such
that T(x,) = y; for each i€ w, and

(i) {=:} is a (unconditional) basic sequence of wvectors if and only
of {y;} ts a (unconditional) basic sequence of vectors.

Proof. Let M; = sp(x;) and N, = sp(¥;). Define a linear operator
T; from M; onto N; by Ti(ax;) = ay; where a is an arbitrary scalar.
Clearly, T, is one-to-one and continuous. 3.1a can be rewritten

)

for arbitrary ;e M;,©=1, ---,n. The conclusions follow from Theorem
2.4.

R N G I ERY{SEA R PR IED

Thus in particular, if {x,} and {y,} are nontrivial sequences in X
with property P-W, P-H or N, the conclusions of 3.1 are valid.

We have remarked that if {x,} and {y,} have property P-W and
{x,} is a basis of vectors for X, then {y,} is a basis of vectors for X.
From 3.1 it follows that if {x,} is an unconditional basis of vectors
for X, then {y,} is an unconditional basis of vectors for X.

4. Basic sequences in Banach spaces. From Grinblyum [6] the
following can be derived (a proof is given in [10]).

4.1, LemMmA. Let {]M}be sequence a of nontrivial closed subspaces
wn o Banach space X. {M;} is a Schauder basis of subspace for [M;]
of and only if there is a K =1 such that for arbitrary p,qco,
p=<q we have ||DF. ;|| £ K|| XL, for arbitrary x,c M;,t =
]_’ cee, g,

4.2. LEMMA. Let {M.} be a sequence of nontrivial closed subspaces
of @ Banach space X. {M;} is an unconditional Schauder basis of
subspaces of [M;] if and only if there is a K =1 such that for
arbitrary finite sets of positive integers F, F' with FC F' we have
| Zier #: |l = K| Xier @], for arbitrary «; e M,

4.3. THEOREM. Suppose {M;} and {N;} are sequences of closed
nontrivial subspaces of a Banach space X.
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(1) If there is a M0 < N < 1) such that for an arbitrary finite set
of wntegers F' and arbitrary y,c N, 1€ F’, there exists x,€¢ M, i¢ F’

such thaot
= ]

holds for arbitrary F C F’' then {N;} is an unconditional (Schauder)
basic sequence of subspaces if {M.} is an wunconditional (Schauder)
basic sequence of subspaces;
(2) if there is a M0 <X < 1) such that for arbitrary qecw® and
arbitrary Y, o+, Y, Y;€N;,,t =1, .-+, q there exist x,, -+, x,, x;€ M,
t=1,---,q such that

=2 |

holds for all p <q then {N,;} is a (Schauder) basic sequence of
subspaces if {M;} is a (Schauder) basic sequence of subspaces.

(4.33) +

> Y

1EF

1% (y; — @)

2

1EF

(4.3b) +

p
2 s
i=t1

P
E Y;
=1

é (y; — ;)

Proof. We prove (2). The proof of (1) is analogous using Lemma
4.2 instead of 4.1.

Suppose {M;} be a basis of subspaces for [M;]. By Lemma 4.1
there is a K = 1 such that

ixi =K ixi y,eM,p=q.
4=1 =1
‘We have
¥4 P »
izzlyi = ZZﬂ(yi—xw)H ;x
and from (4.4b) it follows that
2, 1402
< )
éy =1 Ezllw
Also
q 1—|—7\, q
|l < .
a%|=1xliaY
Thus we have
2 1+x]2 g
< X
2 =[1—x K| > v

Thus by Lemma 4.1, {N;} is a basis of subspaces for [N;].
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4.4. COROLLARY. Let {x;} and {y;} be non-trivial sequences in a
Banach space X.
(1) If there is a M0 < N < 1) such that for an arbitrary finite set
of wndices F' and arbitrary scalars {a;}, 1€ F’, there exist scalars
{b;}, 1€ F”', such that
= |

holds for arbitrary F C F' then {y;} is an unconditional (Schauder)
basic sequence of wvectors if {x;} is an unconditional (Schauder) basic

sequence of wvectors;
(2) if there is a M0 <\ < 1) such that for arbitrary gco and
arbitrary scalars a,, -+, a, there are scalars b, -+, b, such that

]

holds for all p < q then {y;} is a (Schauder) basic sequence of vectors
if {x;} s a(Schauder) basic sequence of vectors.

+

> aY;

1EF

Z b,

1EF

(4.4a)

> (@Y — bywy)

1EF

-+

P
,Z a;Y;
=1

@y 5@ - bad | = b

Proof. Let M, = sp(x;), N; = sp(y,) and apply the preceeding
theorem.

4.4 is a new form of the Paley-Wiener theorem for we no longer
require the coefficients of «; and ¥, to be the same. We could now
define properties similar to properties P-W, P-H and N by merely
asserting the existence of a scalar b, to replace the coefficient of «;
in each of the properties defined in 2.2. It is easy to see that these
new forms of properties P-W, P-H and N imply the hypotheses of

corollary 4.5.
It is unknownZito the author whether [«,] is linearly homeomorphic

to [y,] or not.
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QUASI-POSITIVE OPERATORS
D. W. SASSER

1. Introduction. The classical results of Perron and Frobenius
{[6], [7], [12]) assert that a finite dimensional, nonnegative, non-nilpotent
matrix has a positive eigenvalue which is not exceeded in absolute
value by any other eigenvalue and the matrix has a nonnegative
eigenvector corresponding to this positive eigenvalue. If the matrix
has strictly positive entries, then there is a positive eigenvalue which
‘exceeds every other eigenvalue in absolute value, and the correspond-
ing space of eigenvectors is one-dimensional and is spanned by a vector
with strictly positive coordinates. Numerous generalizations of these
results to order-preserving linear operators acting in ordered linear
spaces have appeared in recent years; a short bibliography is included
at the end of this paper. In this paper a generalization in a different
-direction is obtained which reduces, in the finite dimensional case, to
the assertion that the Perron-Frobenius theorems hold if it is only
required that all but a finite number of the powers of the matrix
satisfy the given conditions. The principal results are theorems of the
Perron-Frobenius type which are applicable to any compact linear
operator (the compactness condition is weakened somewhat), acting in
.an ordered real Banach space B, which satisfies a condition weaker
than order-preserving. In addition, the results apply to the case when
the “cone” of positive elements in B has no interior.

2. Preliminaries. Throughout the sequel, B will denote a real
Banach space with norm ||-||. The complex extension of B, B, is the
complex Banach space B = {& + iy | x, ¥ € B} with the obvious definitions
of addition and complex scalar multiplication and the norm in B is
|l + 1y || = supy|lcos@-x + sinf-y|. If T is a (real) linear operator
on B into B, the (corplex) linear operator 7 on B into B is defined
by T(x + ty) = Tx + iTy. T is bounded if and only if 7 is bounded,
in which case || T|| = || T|l. The spectrum, o(T), and the resolvent,
o(T), are defined to be the corresponding sets associated with the
operator T. We denote the spectral radius of T by 7, 7=
lim,.. || T"||"* = SuPresr) | M| (provided || T|| < o).

In all of our results there will be a basic assumption that the
linear operator under consideration is quasi-compact, a notion which
we will now define. A bounded linear operator 7T is compact (also
called completely continuous) if each sequence Tx,, T4, ---, with

Received September 13, 1962. This work was performed under the auspices of the
TInited States Atomic Energy Commission.
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le;1l =1, +=1,2, ---, has a convergent subsequence. T is quasi-
compact if there exists a positive integer n and a bounded linear oper-
ator V such that 7" — V is compact and 7, < %' There are a number
of properties possessed by quasi-compact operators some of which we
state now without proof.” If N\ eod(T) and |A,| = 77, then X\, is an
isolated point in o(T) and is in the point spectrum, i.e., (A — T) is
not one-to-one. The resolvent operator, R\, T) = A\ — T)™", exists
in a neighborhood of X\, (excluding A,) and, in this neighborhood,
R(\, T) has a Laurent series expansion of the form

n(Ag) A\ E—1 oo
R %P(M, T) + 3 00— M) A, T)
where A,(\, T) is a bounded linear operator and the series on the
right is convergent in the uniform operator topology. The integer
n(\,) is the index of A\, i.e., m(\,) is the smallest integer » such that
(@] Wl — Ty =0} = {x| (I — T)x=0}. P(n, T) is a projection
onto the finite dimensional space {x| (A — T)**2 = 0}. The minimal
property of n(\,) implies that (\J — T)***P(x,, T) = 0.

We recall that for an arbitrary bounded linear operator, the resolv-
ent R\, T) = (W] — T)~' is an analytic function of % for » € p(T) and
the expansion R(\, T) = S\, (1/A)**T* is valid for | N | > 74

3. Quasi-positive operators. A cone in B is a convex set K
which contains Az for all » = 0 if it contains xz. K is a proper cone
if te K and —xe K imply 2 = 0. A cone K induces an ordering = in
B with =y if and only if # —ye K. This transitive ordering
satisfies

(1) if x =y, u=w, then 2 +u =y + v,

(2) if x=y and A» = 0, then Ax = My, and

(83) z=zy if and only if —y = —x.

If the cone is proper, then the ordering satisfies, in addition,

(4) if =y and ¥y = 2, then x = .

We will use the notation x >y to denote x = y, x == y. Associated
with a cone K is a closed cone K+ in the conjugate space B* of con-
tinuous, real-valued, linear functions on B, consisting of those 2* ¢ B*
with the property that z*(x) = 0 for all xe K. K™* is a proper cone
if and only if the linear space spanned by K is dense in B (a set with
this property is called fundamental). This is an easy consequence of
the Hahn-Banach theorem on the extension of linear functionals. We
will use the notations #* = y* and «* > y* to denote z* — y*c K+
mat a compact operator is quasi-compact if and only if it has a positive
spectral radius.

2 For details, see Yu. L. Smvl’yan, Completely continuous perturbations of operators,.
Amer. Math. Soc. Translations 10, 341-344,
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and 2* — y*e K*, «* £ y*, respectively. An element z >0 (z* > 0)
will be called strictly positive if x*(x) > 0 for all z* > 0 (x*(x) > 0
for all z > 0).

The following theorem is a characterization of a closed cone and
its interior (when the latter is nonvoid) in terms of K*. The proof
may be found, for example, in [11] (Theorem 1.3 and its corollaries,
pg. 16).

THEOREM 1. Let K be a closed cone in B. Then xc K if and
only if x*(x) = 0 for all x* = 0. If K has a nonvoid interior, then

(1) =z s in the interior of K if and only if x s strictly
positive and

(2) for each x on the boundary of K there exists an x* > 0
such that x*(x) = 0.

COROLLARY. If K is a closed proper cone, K+ is a total set of
Sunctionals, i.e., for each x + 0, x € B, there exists x* > 0 such that
x*(x) = 0.

Proof. Since either x¢ K or —x¢ K if « = 0, this follows im-
mediately from Theorem 1.

A linear operator T on B into B will be called positive with re-
spect to a cone K if TK S K. In the absence of ambiguity we will
simply say T is positive. In our applications K will be a closed cone
and in this case, in view of Theorem 1, T is positive if and only if
*(Tx) = 0 for all =0, 2*=0. Since Tx =0 if =0, we have
2*(T*) = 0 and, in general, 2*(T"x) = 0 for all » and all x = 0, z* = 0.
We define T to be quasi-positive if for each pair x = 0, x* = 0, there
exists an integer n(x, £*) = 1 such that «*(T"x) = 0 if n = n(z, «*).
We define T to be strictly quasi-positive if for each pair x > 0, 2* > 0,
there exists an integer n(x, 2*) =1 such that z*(T"x) >0 if n =
n(x, £*). Finally we define T to be strongly quasi-positive if it is not
nilpotent® and for each pair # > 0, * > 0, lim inf,__&*(T"x)/|| T"|| > 0.

4. Spectral properties. Throughout this section, K will denote a
closed proper cone in B and K will be assumed to be fundamental. T
will denote a quasi-compact bounded linear operator with spectral
radius 1. This restriction on the spectral radius is for convenience
only and the results given may be interpreted for a general (quasi-
compact) bounded linear operator S with spectral radius 7y > 0 by
considering the operator T = (1/rs) S which has spectral radius 1.

3 An operator T is nilpotent if 7» = 0 for some n.
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THEOREM 2. If T s quasi-positive and quasi-compact with-
spectral radius 1, then 1eo(T) and the index of 1 is not exceeded-
by the index of any other point nea(T), | M| = 1.

Proof. Assume that 1€ po(T). Since o(T) is open and R(\, T)
is analytic in N for Aep(T), it follows that the function g(\) =
2*(R@A/\, T)x), > 0, «* > 0, is analytic for 1/x € p(T'), in particular
for A in some neighborhood of 1. Moreover, R(\, T) = S\ ,(1/\)c+1 T
if [A|>1, hence g(\) = SN a* (T x) if [N < 1. A theorem of
Pringsheim states that if a power series has nonnegative coefficients
and converges in the open unit disk, either 1 is a singularity of the
series or the series has radius of convergence greater than 1.* Clearly
it is sufficient to assume that all but a finite number of the coeflicients
are nonnegative. Since z*(7"x) = 0 if » = n(x, *), and g(\) is analytic
in a neighborhood of 1, we conclude that the series >y A*"a*(T*x)
converges in |A| <1 4+ ¢ for some 0 > 0. By assumption 7, = 1, hence
R(\, T) has a singularity somewhere on |A| =1, say at A,. Since T'
is quasi-compact, the expansion

8 Ol — Ty o0 ?
R(, T) = 35 S0P O, 1) 35,00 = W Auln, )

is valid for 0 < [N — \,| < ¢, where n = n(\,) is the index of X,
and (o — T)"'P(\,, T) #0. We may choose « >0 such that
(NI — T)'P(Ny, T)x = y # 0 since K is fundamental and by Theorem 1
we may choose x* > 0 such that z*(y) = 0. It follows easily that

gO) = (M) (/A — M)AV, 1/ = N[ <0,

where h(\) is analytic and h(1/x,) = 2*(y) = 0. Thus g has a pole at
1/», which contradicts the fact that g has a Taylor’s series about the
origin with radius of convergence greater than 1. Our assumption
that 1€ p(T) leads to a contradiction, hence 1co(T).

Now let the index of 1 be =n. It is easy to see that
lim, (" — D*R(\, T) =0 if k>mn. It follows that for |A| > 1,
Hmy, v — 1) S (/N a*(T™x) = 0 for every pair >0, z* >0
and clearly this implies lim,.,, (M — 1)* 3o ; @/\)™Pa*(T™x) = 0 if
kE>n and 7=0. If jeo(T), |N|=1 and ), has index [, then
limy_,, (M — N)'R(A, T) = 0. We may choose # >0 and z* > 0 such
that lim,.,, (v — M) 2*(B(\, T)x) # 0 and it follows that for |A| > 1,
Lm0 — X)) 200=; A" HPa*(T™x) # 0. Let Ay=e€", A= pe”?, p>1. If
Jzn@,x*), |(M—N)* Zn= (A (T )| < (0—1) 2=/ o) 'a*(T ™).
The expression on the right in this last inequality tends to zero as

¢+ See Titchmarsh, Theory of Functions, pg. 214. Acknowledgement is due here to
S. Karlin for the essence of the proof in Theorem 2 (see [10], Theorem 4).
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0 tends to 1 if I > n, hence ! < n. This completes the proof.

THEOREM 3. If T is quasi-positive and quasi-compact with
spectral radius 1, there exist elements w > 0 and u* > 0 such that
Tuw = u, T*u* = u*>

Proof. By Theorem 2, 1e€0(T). We have

RO\, T) = ﬁlw

1 (A — 1) P, T) + kZ:‘O(X — 1*A, 1, T)

where P(1, T) is a projection onto the finite-dimensional space
{o|(I — T)yx =0}and I — T)P(1, T)#0. Let I'=I— T)*PQ,T).
It is easy to see that RO\, T)BS B for ) real. Since I'=
lim,_. (v — 1)"R(\, T), it follows that ’'BS B. Also TI'=IT=1T.
Let =0, 2* = 0 be arbitrary and let N = n(x, z*). If x> 1, we
have 2*(TYR(\, T)x) = oo AN 2*(TV™)e = 0. It follows that
for x > 1, a*(TYIx) = lim,, (v — 1)" S, /A" Fa*(TY¥+™x) = 0. Since
T = [', I' is a positive operator. We choose v > 0 such that /v =
% £ 0, Then v >0 and Tu = TI'v = I'v = u. We choose v* > 0 such
that v*(u) > 0. Letting w* = I"v*, we see that for * = 0, u*(v) =
I v*)xy = v*(I'x) = 0 since »* >0 and [" is a positive operator..
Hence u* = 0, and since u*(v) = (I™*v*)(v) = v*(Iv) = v*(w) > 0, u* > 0.
Finally, we have I'T = I" which implies T*I'* = I'*, hence T*u* =
T*(I"*v*) = IM™v* = u* which completes the proof.

For strictly quasi-positive operators we obtain stronger results in
the next two theorems.

THEOREM 4. If T s strictly quasi-positive and quasi-compact
with spectral radius 1, then 1eo(T), 1 has index one and T has a
representation of the form T = S\ \;P; + S where v, = 1, |\;| = 1,
P:=P, SP,=P,S=0, j=1,2,+++,m, PP,=0 if @+ 75, and
r, < 1.

Proof. By Theorem 2, leo(T). By Theorem 3, there exists
#* > 0 such that T*u* = u* and for = >0, w*(x) = u*(T"x) >0 if
n = n(x, u*), hence u* is strictly positive. Let the index of 1 be n.
Then I" = lim, ,(» — 1)"R(\, T) # 0. For A >1 and arbitrary = we
have

wX(l'w) = lim (\ — 1)" ki (AN u*(The) = lim w* (@) — 1) ki @A)+

= w*(@) lim (A — 1" = 0
A—1

5 T* is the adjoint of 7T, defined on B* by (T*z*)(x) = z*(Tx).
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unless » = 1. In proving Theorem 3 we showed that I” is a positive
operator, hence there exists x>0 such that I'vr >0 and therfore
w*(I'w) > 0. It follows that n = 1. By Theorem 2, every X\,ca(T),
[ A | = 1, has index 1 and hence P(\,, T) = lim,.,, (A — X)E(x, T) exists
and is a projection onto the finite dimensional space {x | (A — T)x = 0}.
Let v, =1,%\; -+, \,, be an enumeration of the points in o¢(T) with
absolute value 1 and let P; = P(\;, T'). Since T commutes with R(\, T')
and P; = lim,.,,(» — M)E(\, T), it follows that T commutes with P;.
For © # j we have \,P,P; = TP,P;, = P,;TP; = \;P,P;, hence P,P; = 0.
Define the bounded linear operator S by the equation T = 37, \;P; + S.
Since TP; = P,T =;,P;, P}=P; and P,P; =0 if i3, it follows
that P;S = SP; = 0. This implies 7" = 3", \P; + S". Suppose 7y =
1. T is quasi-compact, hence 7" = U+ V for some n where U is
compact and 7, < 1. The operator U’ defined by U'x = Ux — 37\ P;x
is compact® and S* = U’ + V. Therefore S is quasi-compact. Let
reo(S), IN]| =7rs=1. Then Sx = Az for some xeB, 0. Since
P,S = SP; =0, it follows that Ta = and therefore for some j, A = N
and P;x = x. This implies Sx = SP,x = 0, a contradiction. Therefore

r¢ < 1 and the proof is complete.
Before stating our next result, we state the following lemma

which is easily proved.

LEMMA 1. If E is a finite dimensional real Bamach space, K
is a cone in E and K is fundamental, then K contains an open set.

THEOREM 5. If T is strictly quasi-positive and quasi-compact
with spectral radius 1, the eigenspace for T corresponding to the
eigenvalue 1 18 one-dimensional.

Proof. By Theorem 4 we have T = '™, \;P; + S where P, is a
projection onto the eigenspace corresponding to A;, N\, =1, [N\;| =1,
P,S=8SP;=0,5=1,2,---,m and P,P; =0 if © = j. By a theorem
of Kronecker, there exists a sequence m, m, -+ of positive integers
such that lim, .A¥ =1, 7=1,2 .-, m.” Since ry <1, it follows
that lim, ..||S*|| =0. This implies lim,.. 7" = 3", P;. Let P =
S5, P;. For xe B we have Pr = lim,_.. T"x, hence PBS B. For
=0 and «* =0, 2*(Px) = lim,_.. 2*(T™x) = 0, hence P is a positive
operator. Consider the finite dimensional real Banach space PB with
closed proper cone PK. Since K is fundamental in B, it is clear that
PK is fundamental in PB. Therefore, by Lemma 1, PK contains an
open set (open relative to PB). Since T is strictly quasi-positive, every

¢ The compact operators from an ideal in the algebra of bounded linear operators

and any bounded operator with a finite dimensional range is compact.
7 See, for example, Hardy & Wright, The Theory of Numbers, Oxford Univ. Press.
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non-trivial fixed vector of T in K is strictly positive. By Theorem 3,
there exists # > 0 such that Tu = u. Let Tx = x,2 =+ 0. We wish
to show % and x are linearly dependent and for this purpose we may
assume 2 ¢ K (otherwise replace x by —=«). It is clear that uwe PK
and x€ PB. Let t, =sup{t|u + tx € PK}. Since w is in the interior
of PK and x¢ PK, it is easy to see that 0 < t, < o and that u + ¢,
is on the boundary of PK. Hence, by Theorem 1, there exists 2* € (PK)*
such that 2*(u + tx) = 0. We extend x* to y* € B* by defining y*(y) =
2*(Py). Since PK < K, it follows that y* € K*. We have P(u+t,x) =
% + tye, hence y*(u + t@) = *(u, + ti@) = 0. Now u + tx is a fixed
vector of T which is not strictly positive, hence w + ¢, = 0, which
completes the proof.

Our next result is a characterization of strongly quasi-positive
operators.

THEOREM 6. If T is quasi-compact with spectral radius 1, then
T 1is strongly quasi-positive tf and only if the following conditions
are satisfied:

(1) 1eoa(T) and 1 is the only point in a(T) with absolute value
one,

(2) the eigenspace for T corresponding to the eigenvalue 1 1is
one-demensional and is spanned by a strictly positive element u,

(8) there exists a strictly positive element u* such that T*u* =
u*.

Proof. In Theorems 3, 4, 5 we have seen that if T is strictly
quasi-positive (in particular, if it is strongly quasi-positive), then
1eo(T) and (2) and (3) hold. There remains to show 1 is the only
point in o(T) with absolute value one. We define the operator P =
Sy, P; as in Theorem 5 and recall that PB is a finite dimensional
real Banach space with closed proper cone PK containing interior ele-
ments. Let A = ¢* be a point in o(T) and let T(x + iy) = e(x + iy)
for some x, y in B, not both zero. It is easy to see that Pxr = x and
Py =y, hence xc PB and y< PB. At least one of the four elements
x+y, x—y, y—o, —x —y must be not in PK since otherwise
2+y=0, c —y=0, hence * =y = 0. Therefore ax + by ¢ PK for
some choice of @ = =1 and b = +1. Now choose ¢ > 0 such that
% -+ t(ax 4+ by) = v is on the boundary of PK. By Theorem 1, there
exists x*e(PK)", z* # 0, such that 2*(v) =0. We extend z* to
y*e K :y*(y) = «*(Py). Now choose a sequence of positive integers
Ny, Ny, +++ such that lim,_. e"® =1, It follows that lim,.. T"v = v,
Since r» =1, we have || T"|| = 1 for all » and hence if v > 0,

lim inf y*(T"v) = lim inf y*(T™)/|| T"|] > 0 .

n—oo
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This is impossible since lim,_.. ¥*(T™v) = y*(v) = 0. Therefore v = 0,
i.e., ax + by = —(1/t)u. Since T(x + iy) = ¢*(x + iy), it follows that
w*(x) -+ w*(y) = e®(w*(x) + wu*(y)). This implies either e =1 or
u*(x) = u*(y) = 0. The second alternative is incompatible with
ax + by = —(1/t)u since u*(u) > 0. Therefore ¢ = 1 and the necessity
of (1), (2), (3) is proved.

Now let T satisfy conditions (1), (2), (3). We assume without
loss of generality that «* is normalized so that w*(u) = 1. Define the
bounded linear operator S by T« = w*(x)u + Sx. As in Theorem 4, it
can be shown that r¢<1. We have Su=Tu —u*uw)u =u —u =10
and it follows that T x = w*(x)u + S"». Since rs <1, || S*|| = M for
all » and hence || T*|| < |[|u*||||w|| + || S*|| £ M’ for all n. Moreover,
Sz — 0 as n— oo for all «. Hence if z > 0 and z* > 0,

lim i{lf *(Trx)/|| T" || = lim 1£1°fo w* ey (u) + x*(S*x))/ M’
= w* (@ (u)/ M >0 .

Therefore T is strongly quasi-positive and the theorem is proved.

THEOREM 7. Assume that B 1is a lattice® with respect to the
ordering given by K. Then Theorem 6 is true if “strongly quasi-
positive” is replaced by “strictly quasi-positive.”

Proof. Conditions (1), (2) and (3) in Theorem 6 imply T is strongly
quasi-positive, hence, a fortiori, T is strictly quasi-positive. Now
suppose 7T is strictly quasi-positive. Then 1e€a(7T) and (2), (3) hold.
It is easy to see from the representation of Thecrem 4, T = 3.7, \;P; +
S, that || T"|| is bounded independently of . Hence, by a theorem
of Krein-Rutman ([11], Theorem 8.1 and corollary), every A ecoa(T),
IA] =1, is a root of unity. It is easily verified that every power of
T is quasi-compact and strictly quasi-positive, hence the eigenspace for
T™ corresponding to the eigenvalue 1 is one-dimensional for all n. If
To =z, M =1, =1, then T"z = Nz =2 and it follows that
A = 1 which completes the proof.

An immediate consequence is the following corollary.

COROLLARY. If B is a lattice, every strictly quasi-positive and
quasi-compact operator is strongly quasi-positive.

The conclusion of this corollary is not true in general as we will
illustrate by an example. Let B be three-dimensional (real) Euclidean

8 I.e., each pair of elements in B has a greatest lower bound and a least upper
bound.
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space, B = {(x,, x,, 2.)}, and let K = {(x,, @, ®;) | 2> + ) < a3, 2, = 0}, If
we interpret “to the right” to mean any direction in which the z,
coordinate is increasing, each non-trivial element x* ¢ K+ is represented
by a plane through the origin whose unit normal at the origin directed
to the right lies in K. Let T be a rotation about the x, axis through
0 radians where 6 and 27 are incommensurable. It is clear that
| T*|] =1 for all » and that TK & K. To show that T is strictly
quasi-positive it suffices to consider x* € K+ which is represented by a
plane tangent to K. If p isin the interior of K, T"p is in the interior
for all %, hence x*(T"p) > 0. Now let » be on the boundary of K.
There exists exactly one point ¢ which has the same x, coordinate as
p and such that 2*(q) = 0. Since ¢ and 27 are incommensurable, there
is at most one value of » such that T"p = q. Therefore, x*(T™p) > 0
for all m sufficiently large and, hence, T is strictly quasi-positive. If
p is on the boundary of K, sois T"p for all n. We can pick a sequence
Ny, Ny, +++ such that T"f:p converges to a point ¢ on the boundary of
K and there exists x* ¢ K~ such that x*(q) = 0, * = 0. This shows
T is not strongly quasi-positive.
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ON THE STRUCTURE OF INFRAPOLYNOMIALS
WITH PRESCRIBED COEFFICIENTS

O. SHISHA

Introduction. The main result of this paper is Theorem 5 which
deals with the structure of infrapolynomials with prescribed coefficients.
This theorem was quoted (without proof) in a previous paper [Shisha
and Walsh, 1961], and was used there to prove a few results concerning
the geometrical location of the zeros of some infrapolynomials with
prescribed coefficients [loc. cit., Theorems 11, 12, 16, 17]. Two similar
results are given here in Theorem 6.

We refer the reader to the Introduction of the last mentioned
paper for'a review of the development of the concept of infrapolynomial.
Here we shall just mention two of the underlying definitions.

A. Let n and ¢ be natural numbers (¢ < n), n,, %y, * -+, n, integers
such that 0 <%, <%, -+ <m, < n, and S a set in the complex plane’.
An nth infrapolynomial on S with respect to (ny, N, «++,m,) is a
polynomial A(z) = >\"_,a,2” such that no B(z) = >\*, b2 exists, satisfy-
ing the following properties.

(1) B(z) # A(2),

(2) bnv:anv(”:]ﬂz;"',q)’

(3) |B()| <|A(2)| whenever zc S and A(z) = 0, and

(4) B(z) =0 whenever z€ S and A(z) = 0.

B. Let n be a natural number. A stmple n-sequence is a sequ-
ence having one of the forms

(071y""k;n_l’n—l_l—ly"'yn) [kzo,lzo,k+l+2£n]7
0,1, -, B[0<k<n],n—0l,n—-10l+1---,0) [0l <n].

Theorem 5 may yield information on the location of the zeros of
an nth infrapolynomial A(z) on a set S with respect to a simple n-
sequence ¢. For it allows (under quite general conditions) to set
A(z) = B(z) D(2) where D(z) is a polynomial all of whose zeros lie in S,
whereas B(z) is a divisor of a polynomial Q(z) whose structure is given
by the theorem. By studying the location of the zeros of Q(z), one
may get information on the location of the zeros of A(z). By this
method, Theorems 11, 12, 16, 17 [loc. cit.] were proved. (Compare

Received September 12, 1963. This research was supported (in part) by the U.S
Air Force through the Air Force Office of Scientific Research.

1 Dates in square brackets refer to the bibliography.

2 We deal throughout this paper with the open plane of complex numbers.
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also the proof of Theorem 6 below.)

Theorem 5 is a generalization of Fekete’s structure theorem [1951],
and we use his method of proof [ef. also Fekete 1955]. The concept
of a “juxtafunction” (Definition 1) is a generalization of Fekete’'s
“nearest polynomial” [1955], later termed “ juxtapolynomial” [Walsh
and Motzkin 1957]. Theorems 1-4 and Lemmas 1-4 are contained in
the author’s Ph. D. thesis [1958]; they are needed for the proof of
Theorem 5, and they generalize previous results of Fekete [1951, 1955].
The principal results of the present paper were published by the author
(without proof) in abstracts (1958a, 1959, 1961].

1. DEFINITION 1. Let S be a set in the complex plane and let
11 be a set of complex functions defined on® S such that whenever f, € 11,
fae Il and ¢, ¢, are complex numbers, then c,f, + c,fa€ Il. Let f be
a complex function defined on S. A juxtafunction to f on S with
respect to Il is an element p of Il having the property: there does
not exist a qe Il satisfying
(a) q(z) = f(?) for at least one z¢e S,
b)) 1/ —ak®) | < I|f() — p()| whenver ze S and p(z) # f(2),
©) q() = f(2) whenever ze S and p(2) = f(z).

ExampLES A. Let S(# @) be® a closed and bounded set in the com-
plex plane. Let f, p, 0y, -, D, * be complex functions with domain
S which are continuous on S, and assume, furthermore, that p4(z) = 0
throughout S. For every complex function « with domain S which
is continuous on S, let ||| = max [| (z)v(2) |, z on S]. It is known
that there exist complex numbers N}, A, ---, A* such that for every
complex A Ay cc0, Ay,

(1) |7 Enm

Consider the linear space /7 of all linear combinations (with complex
coefficients) of p, p,, +++, »,. Then p = " \¥p, is a juxtafunction
to f on S with respect to /7. Indeed, suppose that some ¢ = S\ \p,
satisfies (a), (b) and (¢) of Definition 1. Let £ be a point of S such
that

If = all =1 OAQ) — a1 -

Then by (a) q(€) # f({), and therefore, by (c), () # f(§). From (b)
we get [[f— A=~ all = O — Q) | < [ Of(©)

8 i.e. their domains include S.
¢ The domain of ¢if; + ¢ is the intersection of those of fi and fe.
5 @ denotes the empty set.
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=N <Nf —all = |If — 2N ||, contradieting (1).

B. Let f, p, D2 ---, D, be real functions with domain S = [0, 1],
continuous there, and assume furthermore that p, »,, ---, p, are or-
thonormal on [0,1]. Let Il be again the set of all linear combinations

N 1
(with complex coefficients) of p, Dy --- p,. Let A} = S f(@)p,(x)dx
0
=12 ---,n). Then p = >\".\¥p, is a juxtafunction to f on S with
respect to /1. Indeed, if p = f, then the last assertion follows from
Lemma 1 below. We thus assume that p(x,) = f(x,) for some x,€ [0, 1].
Suppose there exists a ¢ = 3" \p, satisfying (a), (b) and (c) of
Definition 1. Then |f(x) — q(x)| < |f(x) — p(x)| throughout [0, 1], and
| f(xe) — qoe) | < | f(ag) — p(5) |. Thus
1 n 2 1 n 2
[[7@ — £ Reowm@ [de < [[ @) — Sreme e,
contradicting the least squares property of the Fourier coefficients \F.

LemMma 1. Let S and II be as in Definition 1 and let f be an
element of II with domain S. Then f is the unique function with
domain S which is a juxtafunction to f on S with respect to II.

Proof. f is such a juxtafunction, since (a) and (c) of Definition
1 are mutually contradictory when p is f. If » (with domain S)

belongs to /I and p = f, then ¢ = —;—(p + f) belongs to /I and satis-

fies (a), (b) and (c), so that p is not a juxtafunction to f on S with
respect to I7.

THEOREM 1.
Hypotheses.

1. S(+©) is a closed and bounded set in the complex plane, f, p,,
Py +++, D, are complex functions defined and continuous on® S.

2. Il is the set of all complex functions defined on S which can
be represented throughout S as linear combinations (with complex
coefficients) of the pis.

3. P ts a juxtafunction to f on S with respect to II, and p(z)
# f(z) throughout S.

6 As the domain of f may properly include S, its continuity on S means that if
a€ S, and if (@57, is a sequence of points of S converging to @, them lim flay) = fa).
Jooo

Similarly for pi, pe, --+, pr and in Lemma 2.



1042 O. SHISHA

Concluston. There exist distinet points 2,2, +++, 2z, of SA < m
< 2n + 1) and positive A, Ay, = ++ , \,, Such that:

I). »(z) is a juxtafunction to f on s = {2, 2, ---, 2,} with re-
spect to 17,

(II). No complex b, b,, --- , b, exist such that | f(z) — 3"_.b,0,(2) | <
| f(z) - p(2)| throughout s,

(III)~ Zﬁzl)\wpv(z#)/{f(zn) - p(zu)} =0,v=12---,m.

REMARK 1. Observe that (I) is implied by (II).
For the proof of Theorem 1 we shall need two lemmas.

LEMMA 2. Let S(+@) be a closed and bounded set in the complex
plane, and Il a set of complex functions, defined and continuous on
S such that whenever f.cll, f,e Il, and ¢, and ¢, are complex num-
bers, then c,f, + c;f.€ll. Let f be a complex function defined and
continuous on S, and let p be an element of Il such that p(R) = f(2)
throughout S. A mecessary and sufficient condition for the existence
of a qe ll satisfying throughout S

(2) |f(2) — q2) | <|f(2) — ()|
18 the existence of an re Il, satisfying throughout S
(3) [f(2) — p(2) — (@) | < |f(R) — p(&) + r(@) ]| .

Proof of Lemma 2.

Necessity. Let r = q¢ — p. Then throughout S

|f(2) — p(2) — (@) | < |f(2) — P | <|f(&) — p@) [{2 — | f(&) — (@) | X
|f(2) — p(2) |7} < [2{f() — p(2)} — {f(2) — q(@)} | = |f(&) — (&) + 7(2) | .

Sufficiency. We use the fact that if a,b are arbitrary complex
numbers, the inequalities |a — b| < |a 4 b|, Re(b@) > 0, are equivalent.
Since throughout S

Relr(2)/[{f(z) — p()}] = | f(2) — p(2) |7 Re[r(2){f(2) — p(2)}] >0,

we have there a |7(2)/{f(z) — p(@)}|* < 2Re[r(z)/{f(2) — p(2)}]
where a = min [|{f(z) — p()}/7(2) |*"Re(r(2)/{ f(2) — p(2)}), # on S].
Let ¢ = p + ar. Then throughout S,

() — (@) | = |f() — p(2) | |1 — ar@){f(z) — @)} | = [f(z) — p@)] %
[1+ & r@)/(f(2) — p(2) |' — 2aRe{r()(f(2) — p() " < [f(2) — p(2) | .
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LeMMA 3. Let the Hypotheses 1, 2 of Theorem 1 hold, and let p
be an element of II such that p(z) = f(z) throughout S. For every
ze S, let F(z) denote the point (x.(2), ¥.(2), £:(2), ¥,(2), ++ - , £.(2), ¥.(2))
of the (real) Euclidean 2n-space E,,, where x(2) s the real part and
¥,(2) the tmaginary part of p,2) {f(z) — p(z)}. A necessary and suf-
Jicient condition for the existence of a qe Il satisfying (2) through-
out S, 1s that the point 2,, = (0,0, --- 0) of F,, does mnot belong to
the convex hull H of" F(s).

Proof of Lemma 3.

Necessity. By Lemma 2 there exists an re IT such that (3), i.e.
the inequality

(3a) Re[r(2){ f(2) — p()}] > 0

holds throughout S. Let s,t,8,6, ***,8,, %, be reals such that
throughout S, r(z) = S r_.(s, — it,)p,(?). Then throughout S we have

(4) 5 80,(0) + L0E) > 0
and thus F(s) is a subset of the half-space

(5) 8%y + By + e oo A+ Sapey + Ly, >0

Therefore H is also a subset of this half-space, and consequently 2,, ¢ H.

Su fliciency. Since H is compact and 2,,¢ H, we can find a half-
space (5) containing F(S). Thus (4) holds for every ze S. Setting
r = >." s, — it,)p,, we have throughout S, (3a), and therefore (3).
Thus, by Lemma 2, there exists a g€ Il satisfying (2) throughout S.

Proof of Theorem 1. f cannot belong to I, for otherwise, by
Lemma 1, the restrictions of f and of » to S would coincide, con-
tradicting Hypothesis 3. By Definition 1, there does not exist a ge Il
satisfying (2) throughout S. Using notations of the last lemma, it
follows that 2,,€ H. By a well known theorem of Carathéodory there
exist in F(S) distinct points A, A, «++, 4, (m < 2n + 1) and there
exist positive 4,, 4,, +-+, 4, such that

(6) an:%AMAM.

Let

7 F(s) is, as usual, the set of all F(z), z€ S.
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(7) A, =F@), z.€8 (=12 - ,m).

Then the z, are distinet, and from (6) we get by taking components,

(8) éIAMpV(zM){m} =0 (y - ]_’ 2, eee, n) .
"Thus
glkupv(zﬁ)/{f(zu) — ()} =0 =12 +--,n)

where A, = A.]f(z)) — pR)[*>0 (=12, .-+ ,m). Let s={z,2,

-+, 2.}, and let = be the set of all functions defined on s which can
be represented throughout s as linear combinations (with complex coef-
ficients) of the »,. Obviously pen, since pell. From (6) and (7)
it follows that £2,, belongs to the convex hull of F'(s) and therefore,
by Lemma 3 (taking there s in place of S and 7 in place of II) there
does not exist a qerm satisfying (2) throughout s. This concludes the
proof.

REMARK 2. Suppose that one of the p, in Theorem 1 equals
throughout S a constant ¢(#£0). Then from (8) we obtain >\, 4,{f(z.)
— p(z)} = 0. Thus 0 belongs to the convex hull of the image of s
(and a fortiori of S) under f — p. [Compare Motzkin and Walsh 1953,
§2, and Fekete 1955, §18].

REMARK 3. Let 8" = {2, 2, -+-, 24} be a finite set in the complex
plane and suppose that f, p,, v, -« , », are complex functions defined on
.8’. Let 7’ be the set of all complex functions representable through-
out s’ as a linear combination with complex coefficients of p,, p,, +--,
P,. Let p be an element of 7#’ such that () # f(z) throughout ¢,
.and suppose there exist nonnegative reals Ay, +--, Ny (not all zero)

such that
élxﬁpv(zu)/{f(z#) P =0 (v =1,2, -, m).

‘'Then there does not exist a ¢ €z’ such that (2) holds throughout s'.
Indeed, we have

,éALPV(Z“)M} =0(=12 :--,m)

where 4, are nonnegative reals, not all zero. Therefore (using nota-
tions of Lemma 3) £,, belongs to the convex hull of F(s'). By Lemma
3, there does not exist a gen’ satisfying (2) throughout s’. Conse-

«quently, p is a juxtafunction to f on s’ with respect to 7'.
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THEOREM 2. Let the hypotheses of Theorem 1 hold and suppose
furthermore that f — , ., Dy, -+ ; D, are real valued throughout S.
Then the inequality 1 < m < 2n + 1 in the conclusion of Theorem 1
can be replaced by 1 < m < n + 1.

Theorem 2 is proved with the aid of the following lemma, in the
same way that Theorem 1 was proved with the aid of Lemma 3.

LEMMA 4. Let the hypotheses 1, 2 of Theorem 1 hold, let p be
an element of II such that f(z) #= p(z) throughout S, and suppose that
f— 0,0, Doy =+, D, are real throughout S. For every ze€ S, let F\(z)
denote the point (p)R}f(2) — p(2)}, PLIS(R) — PR}, -+, PRI Sf(2) —
p(2)}) of the (real) Euclidean m-space E,. A mecessary and suffictent
condition for the existence of a qe€ Il satisfying (2) throughout S, is
that the point 2, = (0,0, ---,0) of K, does not belong to the convex
hull of F(S).

The proof of the last lemma is analogous to that of Lemma 3.

We shall make frequent use of the concept of unisolvence. We
mention therefore the following

DEFINITION 2. Let S be a set in the complex plane, and (p,(2))r—,
a finite sequence of complex functions defined on S. The sequence
will be called unisolvent on S if and only if for every complex
€1, Cyy oo, €, (ot all zero) the set of all z€ S for which >,—.c,p,(z) = 0,
contains less than n points.

REMARK 4. Thus (p,(2))7-, is unisolvent on S if and only if this
sequence is linearly independent on every m-point subset of S. A
simple example is the sequence (2*~);-,, which is unisolvent on every
subset of the complex plane. A unisolvent sequence has been termed
also (for an important particular case) a “Tchebycheff system”. Other
terms used in this connection are “ Haar system” and “interpolational
system ”.

THEOREM 3. Let the hypotheses of Theorem 1 hold and suppose
that each of the sequences (p(2))i_.(j =1,2, ---,n) is unisolvent on
S. Then the inequalities

(9) 1<m<2n+1

wn Theorem 1, can be replaced by the sharper estimate n +1 < m <
2n + 1. Furthermore, if the additional hypothesis of Theorem 2 is
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made too, (9) can be replaced by m = n + 1.

Proof. Choose distinct points 2, 2, «++, 2, of S and positive \,,
g *** 5 Ay such that (I), (II) and (III) of Theorem 1 hold, where 1 <
m < 2n + 1 and where, furthermore, 1 < m < n + 1 in case the addi-
tional hypothesis of Theorem 2 holds. We shall prove that » +1 < m.
Indeed: suppose m < n. Then since (p,(?))7~, is unisolvent on S, the
determinant whose jth row is p,(2;) p«%;) +++ 0,.(2;) is different from
zero. Therefore there exist constants ¢, .-+, ¢, such that f(z) =
Suie,p(2) throughout s. Let m have the same meaning as in the
proof of Theorem 1; then few. By Theorem 1, (II), p is a juxtafunc-
tion to f on s with respect to 7. By Lemma 1 (with S replaced by
s, I by 7, and f by the restriction of our f to s) we have f(z) = p(?)
throughout s, contradicting hypothesis 3 of Theorem 1.

2. We apply now Theorems 1, 2 and 3 to nth infrapolynomials
(cf. the Introduction).

THEOREM 4. Let n and q be matural mumbers (q < m), n,, N,
«vo, N, tntegers such that 0 < n, < My+er < m, <n, and S a closed
and bounded set im the complex plane. Let A(z) (0 throughout S)
be an nth infrapolynomial on S with respect to (n,, ++-,n,). Then®

there exist distinct points 2z, 2, <<+, 2, of S,
(10) 1<m<2n—q)+3

and positive Ay, Ny, * =+, A SUch that A(z) is an nth infrapolynomial
on s = {2, 2, ***, Zn} With respect to (N, Ny +++, n,) and such that

(11) SN2/ A,) = 0 W=1,2--,n+1—q)
=1

where 1,1y <o+ lyg (<o <l are the elements of {0,1,

o, )} — My, N, o+, M} If the polynomials A(z), 2", «-- , 2"~ qre
real valued throughout S, then (10) can be replaced by 1 < m < n +
2 —q. If each of the sequences (27)i_, (j=1,2, -+, n+1—¢q) is
unisolvent on S, then (10) can be replaced by

12) n—q+2<m<2n—q)+ 3.

If the polynmomials A(z), 2%, -, 21 qre real valued throughout
S and each of the sequences (2™)i_, (j=1,2, -+, n+1—q) is un-
1solvent on S, then (10) can be replaced by m = n — q + 2.

REMARK 5. If (ny, my, +-+, n,) of Theorem 4 is a simple 7n-sequ-

8 As is easily seen, S cannot be empty. [Cf. Shisha and Walsh, 1961, footnote 7
on p. 117].
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ence (cf. the Introduction) and if, in case n, = 0, 0¢ S, then as is
easily seen, the sequences (2)i_, (j =1,2, +++,n + 1 — q) are unisol-
vent on S.

Proof of Theorem 4. Let II be the set of all complex functions
defined on S which are expressible throughout S as linear combinations
of 2", 2", «.v 2"~ with complex coefficients, and let f(z) = S .a, 2",
piR) = — Z‘i‘%“’alvzl”. It is easily seen that p(z) is a juxtafunction to f
on S with respect to [I. Therefore, by Theorem 1 there exist distinet
points 2, +++, 2, (M < 2(n +1—¢q) +1=2(n — ¢g) + 3) of S and positive
Aiy Ny, to+, N, such that (11) holds, and such that no complex
b, by, +++, b, , exist satisfying

q n1—q
Sa,z -5 e <] 4@
v=1 vl

]
throughout s = {2,, 2,, *+- , 2,.}. Thus A(2)is an nth infrapolymial on s
with respect to (n,, %y -+, n,). The rest of Theorem 4 follews from
Theorems 2 and 3.

REMARK 6. Let %, n,, %, -+, %, be integers (¢ < n, 0 < n, < n,
coe < my < m), AR) = S a,2” a polynomial, z, 2, <+, %y points of
the complex plane, and A, A}, «--, My (AL > 0) nonnegative reals
such that A(z,) =0 (#=1,2, -+-, M), and such that > Mz A(z.)
=0 (v=1,2,---,n+1—q), where the [, have the same meaning
as in Theorem 4. Then A(z) is an #th infrapolynomial on s = {z, z,,
e+, 2y} with respect to (n, %, +--,n,). Indeed: let f and p be as in
the last proof, and let 7’ be the set of all complex functions repre-
sentable throughout s’ as a linear combination (with complex coefficients)
of 2,2, «v. 2'*=1 The asserted conclusion follows from Remark 3.

We give now the following structure theorem which is the main
result of this paper.

THEOREM 5. Let n and q¢ (1 < q < n) be integers, and o a simple
n-sequence of q elements. Let S be a closed and bounded set in the
complex plame, and in case 0€ o, assume that 0¢ S. Let A(z) (#£0)
be an nth infrapolynomial on S with respect to o, and let B(z) (+0
throughout S) be a divisor of A(z). Assume also that the degree’ r
of B(z) ts > q. Then B(z) is a divisor of some

—q+2
%)

(13) Q) = P + 2~

=1

Mg (R)/ (2 — 2,)

9 By degree of a polynomial (#0) we mean its exact degree. The polynomial 0 is
assigned the degree-1.



1048 O. SHISHA

Here M is an integer satisfying r < M < 2r — q + 1, the z, are dis-
tinct points of S, g(z) = [1%7"%(z — 2,.), the N, are positive reals with
S, =1, PR) is a polynomial of degree < q— 1 such that
P(2)g(z) + 25+ 4s of degree < M, and K ismin|v,v¢o,v=0,1,2,.-.],

REMARK 7. As will be seen from the proof of Theorem 5, if S
and the coefficients of B(z) are real, the inequality r < M < 2r —qg + 1
of the theorem can be replaced by the equality M = r.

In the proof of Theorem 5 use will be made of the following

LeMMA 5. Let n, q, 0 and K be as in the last theorem, let S be
a set in the complex plane, and let A(z) (£0) be an nth infrapoly-
nomial on S with respect to ¢. Let B(z) be a polynomial of degree
r(>q) dividing A(z). Then B() ts an rth infrapolynomial on S
with respect to o, where g, is that stmple r-sequence of q elements
for which K =min[v,vé¢o,v=20,1,2, «--].

The proof of Lemma 5 is straightforward and may be omitted.

Proof of Theorem 5. By Lemma 5, B(2) in an rth infrapolynomial
on S with respect to the sequence o, defined there. We choose (cf.
Theorem 4 and Remark 5) distinet points 2y, 2,, *+-, %2, of S and posi-
tive Ny, Ny, +-¢ , A, such that >\ A, =1 and

(14) MZ;leﬁ/B(zﬂ) =0
for every integer p satisfying 0 < o <7, p¢o,. Here m is an integer

satisfying » — ¢ + 2 < 2(r — @)+ 3, and in case S and the coefficients
of B(z) are real we may take m =7 — ¢ + 2. Set

15 0@ =1 —2), NE) = 5 Mg 9@/ (Bl — 2 -

If ¢ and v are integers, 1< p<m, 0 <y <r—q+ K, then
i g (@) {B(2u) (@ — 2,12 = — ,2':o Nz HETI(G) 51 g7 7(0)/B(2.)
(the equality is obvious if 2z, =0, and otherwise it is obtained by
Leibnitz’s rule for differentiating a produect). Therefore, from (15)

we get

(16) NOO) == 35003 070) S nzi /B
(UZO,]_, Sty Ir—q"i_K)'
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Since {0,1, «+-, r} — {0} ={r — ¢ + K — 5};Zi, therefore (16) and (14) yield
N”0)=0,v=0,1, .-, r — q. Hence we can write N(z) = 2"~ M,(2)
where M,(z) is a polynomial (of degree < m — 2). Let

Mi@) = S\ Mal0@)/(BE)E — 2} -

By (14),

M=

NMZ,IE/B(Z,,‘) =0

1

b
It

and therefore the degree of My(z) is <m — 2. For every z; different
from zero we have by (15), Mi(z;) = z;"""'N(z;) = \z%g'(2;)/B(z;) =
My(z;). Since there are at least m — 1 such z;, we have M,(z) =
M,(z). Consider now the polynomial

B(@) = BRI — 50006~ 7) -

Forj=1,2, ---, mwehave R(z;) = B(z;)My(z;) — 7\;zfg'(z;) = 0. There-
fore we can write R(z) = g(r)U(z), where U(z) is some polynomial.
Algo, the relation N(z) = 27" M,(2) and the definition of R(z) imply
that the degree of the latter is < m + ¢ — 2. Therefore the degree
of U(z) is at most ¢ — 2. If K > 1, then the relation

B&M(?) = 60 UR) + 30250/ — 2)

yields, upon putting 2% = [z + (2, — 2)]* and developing the last right
member,

BRMR) = 0@IUE) + Asmi@)] + 7 S 000G — 7).,

where Az ,(2) is a polynomial of degree K — 1. The last relation (with
Ag_(2) = 0) holds also when K = 0. We set now P(z) = U(z) + Ag-.(?),
and get that B(z) is a divisor of

Q) = PR)g(z) + 25 gl)»,hg(z)/(z —2).

The degree of Q(z), i. e. of B(z)M,y(z), is < m + q — 2. Thus the degree
of P(z)is < q — 1, and that of P(2)g(z) + 25" "' is <m 4+ q— 2. We
set now M =m + q — 2, and observe that the conclusions of the
theorem are all satisfied.

REMARK 8. The polynomial Q(z) of (13) is an Mth infrapolynomial
on {2, 2, *++, %y 412} With respect to o0,, where o, is that simple:
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M-sequence of ¢ elements for which min|y,v¢0,v=0,1,2, .--]= K.
This follows from Theorem 1 of Shisha and Walsh [1961].

THEOREM 6. Let S be a closed and bounded set im the complex
plane, A@R) = 3*0.2" (n > 1, a, # 0) an nth infrapolynomial on S
with respect to (n — 1), and suppose that A(z) #= 0 throughout S. Then :

(@) Every zero { of A(2) is of the form

QA7) (@) — MOtas/a,}

where ¢(C) belongs to the convex hull of S and where 0 < N () < 1.0

(b) Suppose that S lies in a closed disc C: |z —a| < r (=0).
Then all zeros of A(z) belong to CUC, where C, is the closed disc
1z —le — (@,—fe)l| < r. If C and C, are disjoint then A(z) has at
least m — 1 zeros belonging to C. [Multlplicities are always being
counted].

Proof. We choose distinet points 2, 2., *-+, 2, 0f S and positive
My Ny o0 0, Ay (< 20 4 1) such that Simn, =1 and >0 \20/ARR) =0
for all integers p with 0 < p<n, p#xn—1. Thenl = SN A(z)/
Azy) = SN, 127 AR, and so

S M AR = 1ay

We set () = [1i-z — 2, N@) = 2z 9@)/AAR) (2 — 2.)) =
a;tz™t + «+.. We follow the proof of Theorem 5 from the sentence
following (15). Again we have N™(0) = 0 for every v satisfying 0 <
y < n — 2. Thus we may set N(z) = 2" M,(z), where M,(z) = a; 2™ ™"+«
is some polynomial. Let M, (2) = >r Mg@/{AR)Z —2z)}. If =1,
then My(2) = N(z) = M,(z). If = > 1 then for each z; different from
zero, Mi(z;) = N.9'(2;)] A(z;) = My(z;), and since there are at least m — 1
such z; and M (2) and M,(z) are of degrees < m — 2, we have again
My(2) = M (z). Congider now the polynomial R(z) = A(R)M,(z) —
Zlﬂl}zlx}bg(z)/(z - zﬂ-) = (a'n/a/n——l)zm + --+ For .7 = 17 2; s, M, R(zﬂ) = 0’
and therefore R(z) = (a,/a,-)9(z). Thus, A(z) is a divisor of Q(z) =
@/, —)g() + Srng(®)/(z — 2,). Let { be a zero of A(2). Then
9(0) # 0, and thus a,/a,, + /(€ — 2,) = 0. Since 2/ (€ — 24)
can be written [Shisha and Walsh 1961, Lemma on p. 127] as M()/
(€ — e(@)) where ¢({) and A({) are as required in (a) of our theorem,
{ is of the form (17). Suppose now that S lies in a closed disc C: |z —a |
< r(=0). Then by a theorem due to J.L. Walsh [ef. 1922, Theorem
VI; see also Shisha and Walsh 1961, p. 147] all zeros of Q(z) lie in

1 Thus ¢ belongs to the set swept by the convex hull of S while being displaced,
the displacement being given by the vector —an—1i/as.
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CUC, and if C and C, are disjoint, the number of zeros of Q(z) in
them is, respectively, m — 1 and 1. From this follow the conclusions
of part (b) of our theorem.,
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ON COMPARABLE MEANS

O. SHiSHA AND G. T. CARGO

1. Let —ow < a<b< o, and let @ denote the set of all functions,
continuous and strictly monotone in [a,b]. For every @@, every
positive integer =, every «,, @, +--, %, of [a,b], and every positive
qi, Qs+, q, With 337, ¢, = 1, we consider the mean

M@y, @y v o0, Tl @1y Qo+ 0, @) = P P(T)) &
Let +» and % be elements of @. We write
(1) M, < M,

if and only if the inequality My(x, @, -, @, | Q, G ==+, ¢.) =
M ey, ®yy v+, €1 Q1, Gy +++, q,) holds for every n = 1, every x, @,, + -+,
x, of [a,b], and every positive ¢y, @5, *--, ¢, with >, q, = 1.

A well-known necessary and sufficient condition for (1) to hold is
that (v '(x)) be convex in [y{a), ¥(b)] (or [4(b), ¥(a)]) if X is increas-
ing, and that ¥(+"%x)) be concave there if ¥ is decreasing.

It is not difficult to see that (1) holds if and only if My(x,, %,|q, ¢,) <
M, ] ¢, q,) for every x,, x, of [a, b] and every positive q,, ¢, with
¢, + ¢, =1, which in turn holds if and only if Mu(x, x,][1/2,1/2) <
M. (x,, 2,11/2, 1/2) for every x,, %, of [a, b].

Similarly, we write

(2) M, < M,
if and only if the inequality
]Wﬂ//(xu Loy 200y Wy . G, 4y c e, qﬂ) < Mx(xl! Xgy 00, Xy ’ Q1 Qs * e, Qn)

holds for every n = 2, every &, @, +++, 2, (not all equal) of [a, b], and
every positive ¢y, G +-+,q, wWith >, q, = 1. A necessary and suffi-
cient condition for (2) to hold is that y(y+'(x)) be strictly convex in
[¥(a), v(b)] (or [(b), ¥(a)]) if ¥ is increasing, and that ¥(y(x)) be
strictly concave there if ) is decreasing. Also, (2) holds if and only
if My, @] ¢, ¢.) < M2, ©,] ¢,y ¢.) for every @, x, (# ) of [a, b] and
every positive ¢,, ¢, with ¢, + ¢, = 1, which in turn holds if and only
if My(x, x,]1/2,1/2) < M, (2, 2,]1/2, 1/2) for every x, and =, (= x,) of
[, b].

2. In this paper we give simple criteria for the wvalidity of (1)

Received December 30, 1963. The work of the second author was supported by the
National Science Foundation through grant NSF-GP 1086.
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1054 0. SHISHA AND G. T. CARGO
and of (2), and then we give a few applications.

THEOREM 1. Let « and % be elements of @ differentiable in (a, b),
and let 4" == 0 there. A mecessary and suffictent condition for (1) to
hold is that Y’/ be nondecreasing n (a, b) if + and Y are monotone
in the same sense, and that X'/’ be nonincreasing there if + and ¥
are monotone in 0ppPosite senses.

Proof. Consider the function u(x) = x(y(z)). Let J denote the
open interval joining ++(a) to +(b), and let J be the closure of J. For
every £e.J, we have

(3) w'(€) = L (FEN (&) .

Suppose that + and y are monotone in the same sense. Then (1) holds
if and only if w(x) is convex in J in case J increases, and if and only
if u(x) is concave there in case ¥ decreases. So (1) holds if and only
if %/(xz) is nondecreasing in J in case + increases, and if and only if
#’(x) is nonincreasing there in case + decreases. From this, with the
aid of (8), one easily infers that (1) is equivalent to ¥'/4+" being non-
decreasing in (a, b). Similariy one shows that (1) is equivalent to
Y'[¥' being nonincreasing in (a, b), if + and ) are monotone in opposite
senses.

One can modify Theorem 1 by replacing in it (1) by (2), “non-
decreasing” by “strictly increasing,” and “nonincreasing” by “strictly
decreasing.”

3. Given a function 4, one may construct by means of Riemann-
Stieltjes integrals functions ¥ such that M, < M,. In fact, we have
the following

THEOREM 2. Let + be a real function, continuous in [a, b] and
differentiable in (a, b). Let m(x) be nondecreasing or nonincreasing
in [a, b}, continuous n (a, d), and suppose m(x)y'(x) = 0 throughout
(a,b). Let C be a real constant, and for every x¢c|a, b] let

y(@) = C + S:m(t)ow(t) X

Then + and ¥ belong to @. If m(x) is positive in (a,d) and non-
decreasing in [a, b], or negative in (a, b) and nonincreasing in [a, b],
then My = M,. Otherwise, M, < My.

Proof. Since 4’ = 0 in (@, b), by a well known property of the
derivative, «’ is either positive throughout (e, b), or negative through-
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out (a, b). Thus + is strictly monotone in [, b]. Also, by well-known
properties of the Riemann-Stieltjes integral, ¥ is continuous in [a,b],
and ¥'(x) = m(x)¥'(x) throughout (a, b) (and so ¥ is strictly monotone
in [a, b]). If m(x) is positive in (a, b) and nondecreasing in [e, b], then
< and ¥ are monotone in the same sense in [a, b], ¥'/4’ is nondecreas-
ing in (a, b), and hence by Theorem 1, M, < M,. Similarly the rest
of Theorem 2 follows.

Theorem 2 can be modified by replacing in it “nondecreasing”
by “strictly increasing,” ‘“nonincreasing” by “strictly decreasing,’
“My < M,” by “My < M,,” and “M, < My’ by “M, < My.”

be

4. A converse of Theorem 2 is the following

THEOREM 3. Let + and ) be elements of @ differentiable in (a,b),
and suppose ' = 0 there. Suppose, furthermore, that My < M,.
Then there extists a function m(x), nondecreasing in (a, b) if + and
Y are monotone in the same sense, and nonincreasing there if + and
X are monotone 1n opposite senses, such that throughout [a, b]

(4) 2z = x(a) + Sxm(t)n[f'(t)dt (a Lebesgue integral) .

Proof. For every x e (a,b), let m(x) = y'(x)/+'(x). By Theorem 1,
m(x) has the monotonicity property steated in Theorem 3. Now for
every « € [a, b]

1) — @ = |7 wat = | ‘myoar
(ef. [5], Theorems 269 (p. 188) and 264 (p. 183)).

REMARK. Observe that the integral in (4) can be written, under
appropriate conditions, as a Riemman-Stieltjes integral: Vm(t)dq;r(t).
[CE. loc. cit, Theorem 322.1 (p. 254), and 322 (p. 253)].

Theorem 3 remains valid if we replace in it “My < M,” by

“My < M,,” “nondecreasing” by “strictly increasing,” and “nonincreas-
ing” by “strictly decreasing.”

5. It is known that if the end-point @ is positive and r <s,
rs # 0, then M, < M,s, and M,- < M, < M, . Consequently, if
a > 0 then for every real 7 (+# 0, 1), M, < M., and Moy < Miogs-
The question thus arises: Under what conditions on a function @
does one have M, < M, (or M, < M,)?

THEOREM 4. A mnecessary and sufficient condition for o real
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Sfunction @ to fulfill the conditions (@)—(v) below is that p(x) should
be (throughout [a,b]) of ome of the forms A + rexp Cit)dt, A —
Sexp Cldt, A + rexp{ Ctydt, A — g exp{—C(t)}d}, where A is a
real number, and C(t) is a function, continuous and convex in [a, b],
differentiable in (a, b), and satisfying there C'(x) < 0.

(a) @ is twice differentiable in (a, d), @'(a) and P'(b) exist as right
and left hand derivatives, respectively, @' (a)@'(b) # 0, and ¢’ is con-
tinuous in |a, b].

(B) @'¢" 0 throughout (a,b) (and hence @ and @' are strictly
monotone in [a, b]).

(v) M, = M,.
Proof.

Necessity. By Theorem 1, ¢'/¢” is either positive and nondecreas-
ing in (a,b), or negative and nonincreasing there. Thus, ¢"/¢' is
either positive and nonnincreasing in (a, b), or negative and non-
decreasing there. In the first case we set C(zx) = —log | ®'(x)| (in [a, b]).
Then C(z) is continuous in [a, b] and C’'(x) < 0 in (a, b). Also C'(x) is
nondecreasing in (a, b), and, therefore, C(x) is convex in [a, b]. Either
for every « € [a, b], (x) = @(a) + Yexp {—C(®)}dt, or for every x € [a, 0],
(%) = p(a) — Szexp{—C(t)}dt. In the second case, we set C(x) =
log |9'(x)| (in [&, b]). Then C(x) is continuous in [a, d], C'(x) <0 in
(@, b), and, again, C(x) is convex in [a, b]. Either for every x¢€|a, b],
o(x) = P(a) + acexp C@)dt, of for every z¢cla,bd], o(x)= @(a) —
rexp C(t)dt. ’

Sufficiency. (a) and (B) clearly hold. Also, by the convexity of
C(t), C'(t) is nondecreasing in (a,b). Now, either throughout (a,b),
@' |o" = {C'(t)}?, or throughout (a, ), @'/¢"” = —{C'(t)}*. In the first
case, ' and @ are monotone in opposite senses, and ¢'/@" is non-
increasing in (@, b). In the second case, ' and @ are monotone in the
same sense, and @'/9” is nondecreasing in (a,bd). In either case, by
Theorem 1, M, < M,.

Theorem 4 can be modified by replacing in it “convex” by “strictly
convex,” and “M, < M, by “M, < M,.”

THEOREM 5. Let @ be strictly monotone in [a, b] and three-times
differentiable in (a,b). Let @' be continuous in [a,b] (where @'(a)
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and @'(b) are right and left hand derivatives, respectively). Let
@" £ 0 throughout (a,b). A mecessary and sufficient condition for
M, < M, to hold is that @' = @'¢" throughout (a, b) if @' and @
are monotone im the same sense, and that @ < @'¢" throughout
(a, b) if @ and @ are monotone in opposite senses.

Theorem 5 follows easily from Theorem 1 by considering the de-
rivative of ¢'/¢".

Similarly, under the hypotheses of Theorem 5, M, < M, holds,
if ¢ > @'¢" throughout (a,b) and 9 and ¢’ are monotone in the
same sense, and also if @ < ¢'¢” throughout (a,b) and ® and ¢’
are monotone in opposite senses.

As an example, let a =0, b =7/2, o(x) =cosx. @ and @' are
monotone in the same sense in [0, 7/2], and @"* = cos’x > —sin’zx =
@'¢"" throughout (0, 7/2). Therefore, M_q., < My, i.€., My, < Moo,

6. In a previous paper [3] the authors studied, for given positive
Gy Qay ***, 4, (With Z?=1 q, = 1); the ratio

F(xly Loy ¢ *y xn)

(5)
= Mx(xly Loy =2, xnl(]lv G "'an)/MV(xly Loy o2y mn|(I1y Gz **°y Qn)

where 0 < a, J(x) = 27, yx) = x° (r < s, rs = 0).
Their purpose was to find an upper bound for F' in

I:{(xhx% "';xn): aéxkéb, k:1,2, "'77/1’}'

A crucial step was to show that if X* is a point of I such that
F(X*) =max {F(X): Xel}, then X* is necessarily a vertex of I. In
particular, X* cannot be an interior point of I. This last property
holds under quite general conditions:

THEOREM 6. Let v and X be elements of @, differentiable in
(@, b), and satisfying 'y == 0 there. Assume 0¢][a,b], My < M,.
Let q, «++, q, (n > 1) be given positive numbers with >, q, = 1, and
let I be as in the last paragraph. Let F of (5) attain its maximum
w I at a point X* = (xf, ---, 2}) of I. Then X* is not an interior
point of I.

Proof. Suppose that some xf satisfies o < xf < b. Then
(aF/awj)mv:x* = 0, i.e.,

v
v=1,2,-, 0

[«W‘(éqﬂlr(xé‘))]—Z[ij’(x?‘)«lf*l(é qy«lr(xi*)> / x’(x"l(g qm@f)))
— e @ (Saa@n) /v (Zave))] = o.
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Thus
x@)v@n) = [1(S e (1S aren))]

< [ (Zer@)w(v(Sav@))] -

Let C denote the right hand side of the last equality. If both x¥ and
xy are interior points of [a,d], then ¥'(x})/v'(x}) = C = Y'(x¥)/+'(xF),
and hence, by the strict monotonicity of %'/’ [see the end of §2],
2f = af. Thus, if X* were an interior point of I, we would have
xf = oxf = .. = ¥, and therefore

1= F(zf, zf, «--, ) =max {F(X): Xel} >1.
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A CHARACTERIZATION OF WEAK* CONVERGENCE

MAURICE SioN

1. Introduction. Let X be a locally compact, Hausdorff space
and {¢;;1€D} be a net of Radon measures on X (in the sense of
Caratheodory). The weak* or vague limit of this net is the Radon
measure ¥ such that

lim g fdp, = S fdy

for every continuous function f vanishing outside some compact set.
In this paper, we construct in § 3 a Radon measure ¢* from a given
base <z for the topology of X and liminf; ¢; and then, in §4, we
give necessary and sufficient conditions for ¢* to be the weak* limit
of the p,. In particular, if the latter exists then it is the ®* gener-
ated when <# is the family of all open sets.

The measure @* is obtained from another measure ¢ by a standard
regularizing process. The definition of ¢ easily extends to abstract
spaces but that of @* makes essential use of the topology. Thus, it
is of some importance to know when @ = @*, that is, when a measure
constructed through an abstract process from the p; turns out to be,
in the topological situation, the weak* limit of the z,. In Theorem 3.3
we give a condition for ¢ = @* and in § 5 we give an example to show
that the condition cannot be eliminated.

We refer to standard texts such as Halmos [1], Kelley [2], and
Munroe [3] for the elementary properties and concepts of topology and
measure theory used in this paper.

2. Notation.
2.1  denotes the set of natural numbers.
2.2 0 denotes both the empty set and the smallest number in w.
2.3 p is a Caratheodory (outer) measure on X if and only if ¢ is a
function on the family of all subsets of X such that #0 =0 and
0= pA <> pB, < oo whenever ACUB,CX.

nEw nEw

2.4 For p a Caratheodory measure on X, A is p-measurable if and
only if AC X and for evey TC X

pT=muTNA + T~ 4).

2.5 For X a topological space, /¢ is a Radon measure on X if and

Received September 26, 1963. This work was supported by the U. S. Air Force
Office of Scientific Research.
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only if ¢ is a Caratheodory measure on X such that:
(i) open sets are g-measurable,
(ii) if C is compact then pC < o,
(iii) if a is open then pa = sup{uC; C compact, C C a},
(iv) if AcC X then pA = inf {#a; a open, A C a}.
2.6 For X a topological space, Cy(X) is the family of all real-valued
continuous functions on X vanishing outside some compact set.
2.7 (D, <) is a directed set if and only if D=0, D is partially
ordered by < so that for any %, 5€ D there exists ke D with ¢ <k
and 7 < k.
2.8 A net is a function on a directed set.
2.9 A denotes the closure of A.

3. The lim inf measure. Let X be a regular topologiecal space;
<% be a base for the topology of X, closed under finite unions and
intersections; (D, <) be a directed set and, for each ¢2e D, y; be a
Radon measure on X.

For each ac «#, let

ga = lim p,a (=sup inf p,a) < oo
ZE€D JjED Jg)

and let @ be the Caratheodory measure on X generated by g and <#
{(see method I of Munroe [3]), i.e. for each A X,

PA = inf{zga; H countable, HC <7, Ac U a} :
a€H oEH
As we show in §5, @ need not be a Radon measure even when
X is compact and Hausdorff. For this reason, for any A C X let
p*A = inf sup @C.

@ open ¢ compact
ACw (a7

‘We then have the following:

3.1 THEOREM. @ is a Caratheodory measure on X such that:

(i) <f A and B are disjoint, closed, compact sets then (AU B) =
pA + ¢B.

(ii) if AcC X then @A = inf {pa; a open, A C a}.

(iiiy if C is compact and for every aec #, ga = lim; p,& then

oC = inf {ga; ae &, Ccal.
3.2 THEOREM. @* 1s a Radon measure on X such that:

(i) p*=o.
(ii) if C is compact then ¢*C = @C.
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3.3 THEOREM. If every open set in X is the countable union
of compacta then @* = @,

Proofs

Proof of 3.1

(i) Let A, B be closed, compact and ANB=0. Since X is
regular and <7# is closed to finite unions, there exist «, Be€ <# such
that Aca, BB and anB =0. Given ¢ > 0, choose v,c <# for
new so that AUBcC U,e.”V, and

> 97. =P(AUB) +¢.

n€w

Let v,=7v.,Naand 7. =v.NB. Then ~,,vie#, ACU.coTr,
Bc U.c.”, and hence

¢A+¢B§%(g%+gv£f)éggvnéq)(AUB)+8-

Since ¢ is arbitrary and @ is a Caratheodory measure we have (AU B) =
PA + ¢B.

(ii) Let AcX. If A = o then the conclusion is trivial. So,
let A < o and &> 0. Then there exists a countable HC <& such
that A C ez and

Sgas=pA+e

o€ H

and therefore

o€EH

p(Ua) =S pa s> gae=pA+e.,
wEH ®EH

(iii) Suppose for every a € &%, ga = lim, #,&«. Then for «,, «- -, «,
in &% we have

> ga;, = lim 3 (e,
k=0 it k=0
i k=0
= g(U“k) .
=0

Hence for any compact C,

oC =inf{ga;aec <z, Cca}l.

Proof of 3.2
(i) Clearly, for any compact C, C < o and, for any open «,
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o*a = sup {¢C; C compact, CCa} < oo .
Thus, for any AC X, using 3.1 (ii) we have

p*A = inf {p*a ; @ open, A C a}
< inf {pa ; @ open, A C a}
= @A .

(ii) For any compact C and open aDC, we have oC = p*a,
hence #C =< »*C. By (i) then o*C = @C.

(iii) To see that @* is a Radon measure, we now only need to
check that open sets are @*-measurable. Let & be open, T X and
€>0. Let T' be open, TC T’ and ¢*T’' < @*T -+ ¢. Note that if
C is compact, B is open and C C B then, by regularity, C = 8. Thus,
since T’ N « is open, there exists a closed, compact C,cC T' N« with
o*(T'Na) £ @C, +¢&. Also, since T' — C, is open, there exists a
closed compact C,c T’ — C, with *(T' — C) < @C, + ¢. Then

P (TNna)+ (T —a) = pX(T' N &) + ¢*(T" — C)
= 9C, + @G, + 2¢
= @(C,UCy) + 2¢ (by 3.1(3))
ST + 2¢
= o*T + 3¢

Proof of 3.3. We need only show that ¢*4 = @A for open A.
Given such A, by assumption, A = U,e.C. where the C, are compact
and C,CC,,,. Because of regularity, we may assume that the C,
are closed compact. We shall show that A = lim, »C,. To this end,
let ¢ > 0 and define a, and C, by recursion as follows: let C' = C,
and, for any n<€®, let a, be open, C, C«,, pa, < oC, + /2" and

’

n
w1 = Con — U ;.
i=0

Then the C. are closed compact, mutually disjoint and A CU,co@..
Thus,

PA <X pa, = > 9C, +¢
nEw®

nE€Ew

= limi@C; + &= lim@(ﬂCﬁL)Jr €
N =0

N =0

< lim@Cy + €.
N

4, Weak™* convergence. Let X be a locally compact, Hausdorff
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space, .7 be the family of Radon measures on X, ¢ be a netin 7.
It is well known that . can be identified with the set of positive
linear functionals on Cy(X) so that the weak* or vague limit of the
H; is defined by

4.1. DEFINITION. (W*)-lim,; ¢, = v if and only if v _# and, for
every fe Cy(X),

limgfdyi - Sfdv.
‘On the other hand, for any base <% for the topology of X, let

4.2. DEFINITION. ZZ-Lim; pt; be the measure »* defined in §3. If
% is the family of all open sets then we simply write Lim; /; instead
of .27 -Lim,; .

We then have the following:

4.3. THEOREM. (W™*)-lim,p; exists if and only if there exists a

base # for the topology of X, closed under finite unions and inter-
sections, such that, for every a e &, lim;pa < «, in which case,

(W*)lim pt; = 27-Lim pt; = Lim p; .

The proof of this theorem is given in Lemmas A, B, C, D, E below.
A restricted version of Lemma B was proved by Wulfsohn [4].

LEMMA A. Let ve # and
Z ={a: a is open, @ s compact and v (boundary «) = 0} .

Then <7# is a base for the topology of X and is closed under finite
unions and intersections.

Proof. Let A be open and ac€ A. Then there exists fe C(X)
such that: 0 =<f(x) £1 for ze X, fle) =1 and f(x) =0 for x¢A.
Since S fdy < oo, there exists 0 < ¢t < 1 such that v(f*{t}) =0. Let
a = {x: f(x) >t}. Then « is open, a €« C A and boundary a = f~'{t}
go that «e <#. Thus, &Z is a base. It is closed to finite unions
and intersections since boundary (a U 8) U boundary (&« ( 8) C boundary
.« U boundary £ for any open «, 3.

LEMMA B. (W*)-lim;g; = v if and only if ve _# and lim; pt,a =
va for every open o with & compact and v (boundary «) = 0.

Proof. Let (W*)-lim,;zt; = v, @ be open, & compact, ¥ (boundary
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@) = 0. For any compact CCa, let feC(X), 0= f(x) <1 for all
zeX, f(®) =1 for xeC, f(x) =0 for x¢a. Then

vC = | v = lim | fdps, < lim .
Hence

va < lim pa .
k3

Now, since v (boundary «) = 0, given ¢ > 0, let 8 be open, @ C 5 and
vB<va+e=va+e Let feCyx), 0=f(x)=1 for ze X, flx) =1
for xea, f(#) =0 for x¢B. Then

mpiagli_mﬁfdp,-: Sfduévﬁgua-}-a.
Thus,

i

Conversely, suppose v € .# and lim; ¢, = va for every open a with
@& compact and v (boundary &) = 0. Let f€Cy(X), € > 0. Then there
exist ¢, %0 for k=0, .-+, % such that ¢, <t,., & =f)=t, for
ze X, v(ft,}) =0 and

Etkﬂuak —&= Sfdv _§n2—1tkvak + e

k=0 k=0

where
a, ={x: t, < flw) < e}

so that a, is open, &, is compact and v (boundary «,) = 0. Then
limi [uiak = V&, and

S fdv < lim g,lt,,yiak te
= 1_11_11_ Sfdﬂi +e.

Now, let 8, be open, B, be compact, v (boundary B,) =0, @,C S8,

lim Sfd#i < lim nz_ultkﬂﬂsﬁk
[ i E=0
= > LB
k=0
n—1

= D v, + ¢
=

§Sfdv+25.
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LemMMA C. If (W*)-lim;p; =v and
F ={a: a is open, & is compact, v (boundary @) = 0}

then
V= »@'Lin Ei -

Proof. Let ga = lim; 1, for any a € &Z, ® be the measure gener-
ated by g and <Z (see §3). Then, in view of Lemma B and 3.1 (iii),
for any compact C C X,

oC =inf{gB;Be # ; CC B} .

Now, for any open @ > C there exists, by Lemma A, B8e<# with
Cc B ca. Therefore, using Lemma B, and the outer regularity of v,
we have

yC = inf {va ; a open, CC a}
=inf {pB; Be F, Cc B}
=inf{98; Be =, Cc B}
=oC.

Hence, for any Ac X,
vA = inf sup vC

@ open (O compact
Acew Oco

= inf sup oC = <Z-Lim p,A.
@ open (O compact -
Aca OcCw

LEMMA D. Let <& be a base for the topology of X, closed under
JSinite unions and intersections, such that for any a e <Z, lim; o < oo.
Then

.@‘-;Ln ;= (W*)lim g, .
Proof. For ae #, let ga = lim; ;& = lim,; pt,cx, P be the measure
generated by ¢ and & and ¢* = ZF-Lim;y, (see §3). Then, by

Theorem 3.2, ¢*e _#. Let a be open, & compact, @*(boundary «) = 0.
By 3.2 (ii), we have

P*a = P*A = pa
and by 3.1 (iii),
pd = inf {gB; Be F#, aCB}.
Given € >0, let Be <#, ac B and g8 =p*a +¢e. Then
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lim pa < lim 8 = gf < P*a + €.

‘On the other hand, let C be compact, CCca and p*a < *C + ¢ =
@C + ¢. Then there exists v€ & such that C v« and therefore

»C < g7 = lim v < lim g0 .

Thus,

im pa < p*a < lim o
so that lim; ;¢ = *a. By Lemma B then @* = (W*)-lim, ..

LeMMA E. Let <& be a base for the topology of X, closed under
finite unions and for every o€ <#, lim,; .o < oo. Then

~@'I‘_im_ﬂi: I_‘i__m_#i .

Proof. For any open «, let ga = lim, pr;,r, @, be the measure
generated by ¢ and <& and @, be the measure generated by g and the
family of all open sets. We have to show that for any compact C,
9,C = ¢,C. Now, clearly @,C =< ¢,C. Suppose ®,C < e« and ¢ > 0.
Let a; be open for 2 =0, --+,n, CC U%,x; and

ﬁ,gai =p,C+e.
=1

For each x e C there exists 8¢ .<Z such that xe 8ca; for some ¢ =
0, «++,n. Since C is compact, there is a finite family H < <& which
covers C and is a refinement of {a,, .-+, @,}. For each 4, let B; be
the union of all those elements in H which are contained in «;. Then
Bie#, B,ca; and CU;=B;. Thus,

%Céz_og&é%gaié%cﬂ%.

5. Remarks. Let &7, g, ® be as in §3. The following example
shows that ¢ need not be a Radon measure.
- Let X be the set of all ordinals up to and including the first
uncountable ordinal 2. Then, in the order-topology, X is compact
Hausdorff. For each 7 < 2, let x, be the point mass at 4, that is,
pa=1if tea and pa =0 if 1¢a. Let

Z ={a; o is open and 2¢ (@ — a)}.

For any a € &, if 2 ¢ a then « is countable and hence ga = lim, p, = 0;
if e« then goa = 1. Let A= X — {Q}.. Then A is open and, being
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uncountable, for any countable family H <. <Z which covers A there
exists aec H with ga = 1. Thus, 4 =1. On the other hand, if C
is eompact C < A then C is countable and hence ®C = 0. Thus,

PA # sup {pC; C compact, C A} .

Note, however, that if, instead of taking <Z as above, we let <&
be the family of all open sets in X then there exist uncountable, dis-
joint a, Be % with A=a UB. Then ga = gB = 0 so that @A = 0.
In this case, ¢ is the point mass at 2 and @ = ¢*.

We are unable to determine if this holds true in general for com-
pact or locally compact Hausdorff spaces, i.e. if @ = @* whenever <%
is the family of all open sets in X.
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A PERMANENT INEQUALITY FOR POSITIVE
FUNCTIONS ON THE UNIT SQUARE

MoRTON L. SLATER AND RoBERT J. THOMPSON

Introduction. During the past few years the van der Waerden
conjecture on the minimum of the permanent of a doubly stochastic
matrix has received considerable attention. (See Marcus and Newman
[1] and [2], Marcus and Mine [1], among others.) This conjecture
states that if A is a doubly stochastic matrix, i.e. if

a;;

v

n n
O,Za”:z‘aﬁsl,
2=1 J=1

then the permanent of A is =n! n™™. (The permanent of A is > I] ¢;s0),
where the summation is taken over all permutations ¢ in the symmetric
group.) Despite the seemingly elementary character of the conjecture,
it is, so far as the present authors are aware, still unresolved in
general, although it has been settled in some special cases. (See the
above references.)

An implication of the conjecture is that some term of the permanent
expansion must be greater than or equal to n". This was established
by Marcus and Minc [1] in 1962. Specifically they showed that if
II @;; is not exceeded by any other term in the permanent expansion,
then

(1) Siloga; = 3, > a;;loga;; =Znlogn™.

The second inequality above is a simple application of Jensen’s inequality
using the convex function x log x; the first inequality is the key to the
problem. It is the extension of this inequality to functions defined on
the unit square that is referred to in the title of this paper. We will
show in §4 that under suitable hypotheses

(2) o> S:l"gf(x’ z) dw = S S:f(x, v) log f(&, ¥) dady = 0 .

The proof of (2) (and incidentally a new proof of (1)) is based
ultimately on the following theorem:

THEOREM 1. Let S be an arbitrary set and f(p, q) a real-valued
Sunction defined on S X S with the following property:

©C) f py -+, D, 18 any finite sequence of points in S, mnot
necessarily distinct, then

Received September 12, 1963. This work was performed under the auspices of the
United States Atomic Energy Commission.
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f(pn pz) + f(pm pa) doeee + f(pn-—ly p’n) + f(pm p1) =0.

Then there exists a real valued function ¢ defined on S such that
for all (p,9)e S x S

S, 9) = P(p) — 2(9) .

Furthermore, given any s€ S, we may determine @(p) so that for
all peS

f(p,8) = p(p) £ —f(s,p), and p(s) =0,

This theorem for finite sets S is essentially contained in a paper
by S. N. Afriat [1] which appeared in 1963 in connection with a study
-of empirical preference analysis in economics. Theorem 1 was discovered
independently by the authors in their study of the van der Waerden
conjecture; it is very closely related to the linear programming dual
of a theorem proved by Garret Birkhoff [1], which states that the
doubly stochastic matrices are the convex hull of the permutation
matrices. Indeed it was this last fact which persuaded us that Theorem
1 could be applied directly to the van der Waerden conjecture. In §1
we will give a proof of this theorem which differs essentially from
that for the finite case given by Afriat; it is certainly much shorter.

The proof of (2) to be given in §§3 and 4 will depend on Theorem
1 and on the following “Arzela type” compactness result proved by
M. Riesz. We state it, for reference, in the form that we shall use it.
It is also convenient to state here a partial converse of the Fubini
theorem proved by L. Tonelli.

THEOREM A (M. Riesz). Let M be a set of functions in L (0, 1),
If .
1°  there exists a constant K such that for all x(t)e M
[Jawyat = &,
0

and if

2°  for every ¢ >0, there is a 6 > 0 such that for all x(t)e M
and all h for which |h| <o

1ot + ) — )|t <,

then the set M 1is conditionally compact in the sense of the metric
of L. A proof of the above result can be found in Nemyeckii [1].

THEOREM B (Fubini converse: L. Tonelli). Let f(x, y) be measurable
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on the unit square. If for almost all x, |f(x,y)| is summable as a.
Sunction of y, and if

| dz || 7@ ) dy

exists as an iterated integral and is finite, then f(x,y) is summable
on the unit square.

A proof of this theorem is in McShane [1].

1. Proof of theorem 1. Define g(p, ¢) = f(p, q) for » +# q and
g(p, p) = 0. Then g satisfies condition (C) and f = g. Choose a fixed
se S and define

P(p) = lub{g(p, q.) + 9(q1, @) + +++ + 9(Q,—, 0.) + 9(q,, )}

where the least upper bound is taken over all finite sequences q,, + -+, q,.
selected from S. Since g satisfies (C) the finite sum is always < —g(s, D),
and so the least upper bound is finite. Now fix ¢, = ¢ and let the
remaining ¢, range unrestricted. The definition of @ yields at once
P(p) = 9(p, q) + P(q) so that f(p, ) = 9(p, @) = P(p) — P(q) as claimed.
Finally f(p, s) < g(p, s) = (p) = —9(s, p) £ —f(s, p), which completes.
the proof.

It may be worth remarking that if the range of f is any conditionally
complete lattice ordered group, the proof goes through unchanged.

2. Proof of the matrix theorem. In this section we give a proof
of inequality (1) based on Theorem 1. Suppose as stated in the introdue-
tion that the » X n matrix A4 is doubly stochastic and that [[a;; =
11 @issy for all permutations o. It is technically convenient to assume
for the moment also that a;; > 0.

Let b;; = log a;; — loga,;; then b;; as a function on S X §, S =
{1,2, ---, n}, is easily seen to satisfy condition (C). (This follows.
readily from b,; = 0 and > b;,;, = 0 for all 0.) Hence there exists a
vector ¢; such that b;; < ¢; —¢;. Thus

loga;; < loga;; + ¢, —c¢;, =1, n,
so that
a;;loga; = a;;loga;; + a6, — ai;c; .

If we now sum first with respect to 5 and then with respect to <, the
vector ¢; drops out and we have

Z Z a;; log a;; é Z log [ 27
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The positivity restriction of the a,; is easily removed by a simple
continuity argument.

3. Functions on the unit square. In this and the following
section we shift our attention from the discrete matrix situation of § 2
and study an analogous situation on the unit square.

Let I denote the half open unit interval [0, 1) and .7~ the class
of one-to-one measure preserving transformations of I onto I. We will
prove the following theorem:

THEOREM 2, Let f(x,y) be a measurable function on I X I which
satisfies

1° for all Te 7, f(z, Tw)e L(I) and Sl f(z, Trydw < 0,
and '

2° the limit as d — 0 of Sllf(ac,x -+ 0)|dx = 0.
(The function f(x, y) is defined (;utside I x I to be periodic of period
one in x and y.) Then there exists a function @€ L (I) such that
Jor almost all (x,y)el x I

S, y) = p(x) — P(y) .

The proof of Theorem 2 requires two lemmas. (Throughout this
section we will assume that 1° and 2° above hold.)

LEMMA 1. Let EC T be the union of a finite number of disjoint
intervals and let Te 7 be such that TE = E. Then

(3) SEf(x, Tx)de < 0.

Proof. We may assume that the intervals of E are semi-open
(open on the right), so that the same is true of the finite set of non-
continuous intervals that compose I — E. Let J = [a, b) be one such
interval of I — K. Define a measure preserving transformation U, on
J as follows: set 4, = (b — a)/2n and

Ux=2+96,, a+2k—10,=x<a+ 2k — 1)), ;
Uxt=x—9d,, o+ @k -1y, =x<a-+2ko,,
E=1,..-,m.

Then

I S,f(x» U, x) dw’ = So | fl, @ + 8,) | dw + go | fx, & — 8,) | da

—0 as n-— o by 2° of Theorem 2.
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If we define U, similarly on each of the finite set of J< I — E, and
U, = Tx for xe E, then U,c.9 and

Sz-mﬂx’ U, x)dz + Syf(x, Tx)dx <0,

by 1° of Theorem 2. Since S f(z, U, x)de — 0, the result follows.

I-E

LemMMA 2. Let f(x, y) be as in T heorem 2. Define for 0 <x <1

(4) fa ) == |+t y+tde.

Then f(x, y; \) satisfies condition (C) of Theorem 1 on I X I,

Proof. We prove the lemma for the function \f(x, y; ). Define
F(x;, Xy = oy Tp; N) = N JF (2, oy N) + 200 + M f(2, 25 0) = F(x;N). We
will show that given any ordered set = = (xy, +--, z,), Fi(x;\) = 0 for
all 0 <x < 1. The following two easily verified properties of F'(x; \)
will be required:

(ba) given any finite ordered set x, there are finite ordered sets x®,
each of which has distinct components, and elements z;, such that
identically in A

F(x;\) = F(®; N) + -+« + F(x';)\)
+ F(x, o5 \) + <« + F(x,, 2,50 ;
(5b) identically in «
Fa,N)y=F@;N) +F@+A;N) F coe +F@ 4+ 4 ooe 0N M),

where M = N, + ++¢ + A,
{We leave to the reader the verification of the above.)

As a consequence of Lemma 1 (F(x;, z;; M) = 0) and (5a), it will
guffice to prove F'(x;\) =<0 when the components of x are distinct.
Suppose then that « = (x,, -+, 2,), 2, # x; for ¢ #75,0=2,<1, and
congider for the moment the «; rearranged in increasing order, say
Y ***y Yoo We define Ny =Min{y, — ¥, ¥ — ¥ ***, Yn — Yur, o +
1 — v,}, and note that \, > 0 by our conditions on the x;,. Suppose
first that 0 < A = A, and let & be the set of points «;, +t (1 =1, ---, n;
0 =t < \) reduced modulo 1. For 0 < ¢t < Mdefine T(x; + t) = 2,4, + ¢,
t=1,+++,n—1 and T(x, + t) = x, + ¢, where again all numbers are
reduced modulo 1. Since M = \,, T is well defined on F and TE = E.
For x €I — E, define Tx = x, and we have Te &, By the periodicity

of f,
F(a;\) = g f(z, Tx)dx, which is < 0 by Lemma 1.
E
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We have shown, then, that
(6) for0<xv=n,, Fl; )0,

Finally, since for 0 < A < 1 we may write N\ = k\, + r where k is
a nonnegative integer and 0 < 7 < A,, we see that (5b) and (6) complete:
the proof. (This is equivalent to iterating T %k times with A =\,
and then using T with » = 7.)

Before staring the proof of Theorem 2 we make a heuristic remark
about hypothesis 2°. If f(z, ¥) < o(x) — ¢(y), f(x, ) = 0, and all the
functions are smoothly differentiable, then the surfaces z = f(, ¥) and
z = @(x) — @(y) are tangent along ¥y = 2, and so @(x) is determined
(up to an additive constant) by @'(x) = fi(x, ). This suggests strongly
that the “nature” of @ in general is determined by the behavior of
f(x,y) in the neighborhood of y = . This will become clear in the:
proof that follows; later we will mention some consequences to ¢ of
altering 2°.

We proceed now to the proof of Theorem 2. By Theorem 1 and
Lemma 2 we know that for each A, 0 <X < 1, and for any se I, we
can find a function @(x; s, ) such that for all (x,y)el x I

(7) S, y; ) = @z 8, \) — @(y; 8, \),
f(xy S5 >") é QD(.’XP, 8, 7\‘) é _'f(sy x5 >") ’

and
P(s; 8, 1) = 0.

The remainder of the proof will be devoted to analyzing the (conditional)
compactness of the family {p(x; s, N)} in L (I).

Theorem A (Riesz-Arzela) tells us that conditional compactness is
implied by equicontinuity and uniform boundedness. We have from (7)

(8) f@, ;N = (@5 8, M) — 2y 8, M) = —f(Y, 2N,

so that

(9) o +0;8 N — @@ s, M| = |+ 0,20 | + [flw, ® + 5; N |
é%g:{lf(x—{—ﬁ,x)l + 1 f@, @+ 0} dw o

Thus by 2°, @(x; s, \) is continuous and hence measurable. Furthermore.
from the first inequality of (9) and Theorem B we have easily

0) |, 12 + 05 8,%) — p(a; 8,3) | da

= | (1@ +5,9)| + |7, = + D)} o,
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so that the entire family {p(x; s, A)} is equicontinuous (L).

Uniform boundedness (L) is more of a problem. We have found
it necessary to choose an appropriate sub-family, and this will be done
in the following paragraphs.

Since f(x,¥) is measurable on I X I we conclude from 2° and
Theorem B that there exists a number a > 0 such that f is summable
on the set P bounded by the linesx = 0,2 = 1,y = x + a. . We define
f(z, y) = f(=, ¥) on P and all points in the plane congruent to P modulo
one in « and y; elsewhere we set f(x, y) = 0.

We will choose s, €1 so that 0 = s, <, and both (11) and (12)
are satisfied:

(11) as A — 0
s1-FA 1 — 1 .

tim = ("o |/ Fw, ) 1y = | 1 7s ) dy < oo,
and

. 1 (etr 1 Lo

tim =" ay || 1@, 91 de = | 17, ) do < o ;
and
12) as n— oo, for almost all ze T,

lim f,(s,, ) = f(s;, @) , and lim f.(2, 8,) = f(, s,) ,
where f.(¢, ) = f(x, y; n7) .

For almost all sel (11) holds since fe L(P) and so €L (I x I).
Similarly, (12) is valid for almost all s I by the fundamental theorem
of calculus. (We introduce f, in (12) to avoid some possible measurability
difficulties.) Thus s, can certainly be chosen as required.

We will now show that the family {p(x;s, n?)} is uniformly
bounded (L). We choose s,, ++-, s, so that

(13) 31<32<"’<3k<1,
Sin—8;<2 fori=1,+--,k—1, and1—3s,<a;

(14) s, satisfies (11) when s, is replaced by s;, 7 = 2, -+, k; and finally
(15) as n— o ,
lim f.(sy, 8;) = f(s4, 85) »
and
lim £,(s:, 8) = f(s., ), P2 ek
Now define [a,, b)) = |0, s, + @), (@, b)) = (s — a, 1), and (a;, b;) =
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(s; —a,s; +a),i=2,+++,k—1. The union of these intervals covers
I. Write @,(x; s;) for o(x; s, n™"). Then by (8)

(16) | Pu(®; 81) | = [ ful, 8) | + [fulsiy @) | 4+ [ Palsis 8D
for xel and t=1, .-+, k.

Hence
an  [Mipdwislds

b; bj
< ("1 50 1da + {17050 9) [ da + 00— ad [ @405 5|
%4 e
<A, + B;+ C;, where,
for 1=1 =k, by (14)

A, = lub {ngdy [ 17 e} <
s;+n1 1

Bo=tub{n ™" do [ 17, )| dy} < e 5
(1

C, =0, by (7),

and for 2=t <k, by (15)
Ci = (b; — a;) b {| fulsi, 8) | + | fulSn 8) [} < o

Since

bi

(18) NEXCEMECED W EXCNIES

we have established uniform boundedness (I.) and Theorem A applies.
We have then that some subsequence {9, (x;s,)} converges to ®(x)
(say) in L and f,(x, y) converges to f(»,y) for almostall (x, y)e I x I,
Since for all (x, ¥), f.(®, ¥) =< @.(x; s,) — P.(¥; 81), Theorem 2 follows.

We now return to our remark preceding the proof of the theorem.
We have just seen that the fact that ¢ is in L(I) has been determined
by condition 2°. It is reasonable to expect that a strengthening of 2°
should lead to a “smoothing” of @, and this is indeed the case. If 2°
is replaced by

“29 for fixed p(1 = p < o) the limit as 6§ — 0 of
1
[ 17@ o+ o) dz =0,
0
then @ € L,(I). The modification of the proof consists of invoking the

L, version of Theorem A, which is also to be found in Nemyeckii [1].
Finally if we replace 2° by
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“22  the limit as 6 — 0 of ess sup, |f(x, x +0)| = 0",

then @ e C(I). (The classical Arzela or Ascoli theorem is used.)

4. The permanent theorem in L(I X I). In this section we
state and prove the L(I x I) analog of the discrete theorem of § 2.

THEOREM 3. Suppose that f(x,y) defined and measurable on
I x I has the following properties:
1° f@,9) >0 and | f,y)do = | f@,v)dy = 1, for all v, y;

2° for all Te 7, f(x, Tx) is measurable,

Tx)
log £ 1) ¢ 17y,
flx, )
and
1
log L@ T 4 < o ;
&%ﬂ%@%”
and
90 l] i(__—__x’x_{_a) dl——>0 0 —> .
3 Sulog . ) @ , as 0—0

Then flogfe L(l » I) and
(19) o > [ logfw, @y dw = || @, ) log S, y) dady = 0 .
0 0Jo
Proof. Conditions 2° and 3° above suffice for the application of

Theorem 2 to the function log | f(x, ¥)/f(x, x)|: there exists @(x) e L(I)
such that for almost all =,y

(20) log L&Y < o) — o) .

Sfla, @) —

If we multiply by f(¢, ¥) and rearrange, we find

(21) —%éMwmwmw

where the first inequality is a consequence of —1/e = glbxlog 2 for
x > 0. Now, as functions of y, f(x,y)log f(x, ) and @(x)f(x, ¥) both
¢L by 1° above. Again, if we apply Theorem B to o(y)f(z, v),
integrating first with respect to =, we see that @(y)f(x, ¥) € L(I x I),
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and so for almost all «, that function is summable as a function of .
Thus by (21), f(x, ¥) log f(x, ¥) is summable ¥ for almost all x,
and integrating gives

(22) 0= | @, v)log f@, ) dy

< log f(z, %) + 9(@) - | PW)f@, 1) dy -

The first inequality above is Jensen: w(gl f dy) = Slq/r( f)dy, where
0 0
Pr(x) = x log oc) Hence

(23) log /@, @) = || PW)f@, ¥) dy — #(@)

and so log f(x, x) is bounded below by a summable function. Now,
gince by 1° and Theorem B fe L(I x I), it follows that for almost
all 6, f(x,x + d)e L(I). We choose ¢ so that f(x,x + 0)e L(I).
Since log f(x, © + 0) < f(x, * + 0), and since by 2° logf(x,x + 0) —
log f(x, ) € L(I), we see that

(24) log f(x, ) = f(&, © 4 0) + log [f(x, x)/f(x, x + d)]

and so log f(«x, x) is also bounded above by a summable function; hence
log f(x, ®) € L(I). Returning to (21) we apply Theorem B and have
flog fe L(I x I); then integrating both sides of (22) ¢ drops out and
we have (19) as asserted.
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ON FIXED POINTS OF AUTOMORPHISMS OF
CLASSICAL LIE ALGEBRAS

Davip A. SmITH

1. Introduction. Let A be the automorphism group of a semi-sim-
ple Lie algebra & over an algebraically closed field of characteristic zero.
Let n(A,) denote the minimal multiplicity of 1 as characteristic root
for elements of a connected (algebraic) component A, of A, and let
m(A,) denote the minimal dimension of fixed point spaces for elements
of A,. Jacobson showed in [3] that n(4;) = m(A4,), and determined these
numbers. It is the purpose of this paper to extend these results to
automorphisms of classical Lie algebras over essentially arbitrary fields,
using the method of Chevalley [1], as extended by Steinberg [10], for
associating such algebras with semi-simple complex Lie algebras.

Throughout the paper fields of characteristics 2 and 3 will be ex-
cluded without further mention. The results obtained here are valid
in some cases in characteristics 2 and 3, but exclusion of these cases
permits considerable simplification of the exposition. All vector spaces
in this paper are finite dimensional.

2. Lie algebras and automorphism groups. Let £, be a semi-
simple Lie algebra over the complex field C. Let £, be a Cartan
subalgebra of &,, and let e, f;, h; (1 =4 =1) be a canonical set of
generators; i.e. the h; form a basis for 9, and

[A:s] =0,

[esfil = Oiihi s
[ehs] = Ajie:
Lfihi] = —Asfi,

where (4;;) is the Cartan matrix of ¥,. Let ayh;) = A;; for 4,5 =
1,2, +--,l. Then 7 = {a,, a,, -+-, a;} is a fundamental system of roots
(of &, with respect to Oy), and the e; (respectively, f;) are root vectors
for the «a; (respectively, —a,).

For each (nonzero) root «, let ¥, denote the root space of «, and
let &, be the unique element of [&,,%_,] such that a(h,) = 2. In
particular, h,, = h;, 1 = 1< 1.

(1)

THEOREM (Chevalley [1]). %, contains a complete set {e,} of root
vectors for the (nonzero) roots « such that

Received October 10, 1963. The research reported here formed part of a disserta-
tion presented for the degree of Doctor of Philosophy in Yale University. The author
wishes to thank Professor Nathan Jacobson, who directed this research,
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(2) [eseu] = P for all a;
(3) [eweﬁ] = i(’)” + 1)6w+B ’

for all roots «, B such that a + 8 is a root, where r 1is the largest
integer q such that B — qa s a root.

It is easily seen from Chevalley’s proof of this theorem that the
set {e,} may be taken to contain the ¢; and f;, 1 < ¢ = [. Furthermore,
the h, are integral linear combinations of the £; and the roots are
integral linear combinations of the a;, so theset {h; |1 <t =1} U{e,|
a nonzero root} is a basis for ¥, with an integral multiplication table
eontained in (1)~(3) and the relations

(4) leahi] = a(e, .

Such a basis {k;, ¢,} (containing the e; and f;) will be called a Cheval-
ley basis for 2y. Henceforth a particular Chevalley basis will be
assumed fixed. When it is convenient to do so, linear transformations
in 8, will be identified with their matrices relative to this basis.

Let K be an arbitrary field, and form a Lie algebra ¥ over K,
related to &, as in [1]: R is the tensor product (over the integers) of
the additive group of K with the additive group generated by the
Chevalley basis {h;, e,} of £; & is equipped with the multiplication
table (1)-(4) after identifying 1 & e, with e,, ete. Thus the h,, ¢,,
ete., are now thought of as elements of £, but observe that the sub-
seripts still refer to roots of %,.

Let © = 3! Kh;,. 9 is an abelian subalgebra of €, and the roots
of  relative to © are the linear functions & defined by a@(hg) = the
class modulo the characteristic of K of a(h,).

We follow the approach of Steinberg [10] in relating the Lie alge-
bras € of Chevalley with the Lie algebras of classical type of Millg
and Seligman [4]. First let £, be simple. Then we have [10, 2.6]:
(a) No h, is in the center 3 of 2.

(b)Y B=1{heH|ah) =0 for all roots a of .
(¢) If €=2/R, and 9=9/3, then & is simple and 9 is a Cartan sub-
algebra of €.

More generally, if & is only semi-simple, then £,=%2,,P --- P L, ,,
where the £;, are (non-abelian) simple ideals in £,. Thus =8,
oo P&, where the &; are the Lie algebras of Chevalley corresponding
to the &, and are non-abelian ideals in 8. The center 3, of &, is as
described in (b), and the center 3 of Lis 3, P --- P 3,. Furthermore,
Q8= (/2D - B (L/3,). Every such algebra £ =2/3 will be
called a classical Lie algebra. (These are essentially the Lie algebras
of classical type of Mills and Seligman, although some additional alge-
bras over fields of characteristics 2 and 3 can be obtained by the
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process described here.)

If R, is simple, 8 == 0 if and only if ¥, is of type A, and the
characteristic p of K divides I + 1. In this case, 3 is one-dimensional
I8, §1].

Let A, denote the automorphism group of £,. As an algebraic
group, A, has a decomposition

(5) AUZAOUA1U"'UAT—1

into connected (algebraic) components, where A, is the component of
the identity automorphism. (The terminology of algebraic groups will
be seen to be more natural here than that of topological groups.)

An automorphism of the Cartan matric (A;;) of ¥, is a permuta-
tion s of the numbers 1,2, ---, 1 such that A;; = A, . for all %, j.
Associated with such a permutation s is a unique automorphism ¢ of
Q, such that e/ = ¢,,), fF =foe, 2=1,2, -++, 1 [2, p.280]. Following
Steinberg, we call ¢ a graph automorphism of ¥,. The set F' of graph
automorphisms is a finite group, and the elements of F={1,0, --,
o, form a system of coset representatives of 4, in A, [2, Chapter
IX; 38, Corollary to Theorem 6]:

(6) A, = A U0 AU -+ Uo,LA4,.

This decomposition coincides with (5), and the number » of algebraic
components is also the order of F.

For each root « and each complex number ¢, let x,(f) denote the
automorphism exp (¢t ad e,) of £,. The significance of the Chevalley
basis for automorphisms is that the matrix of every x,(¢) has entries
which are polynomials in ¢ with integer coefficients [1]. Let x,(§)
denote the matrix obtained from «,(f) by replacing the complex para-
meter ¢ by an indeterminate £&. We can then replace & by an arbitrary
element ¢ of K to obtain a matrix over K, again denoted «,(t). Con-
sidered as a linear transformation of ¥ relative to the Chevalley basis,
2,(t) is an automorphism.

We also introduce certain diagonal (relative to the Chevalley basis)
automorphisms of £. Let k£ be any homomorphism of the additive
group generated by the roots of ¥, into the multiplicative group K*.
We associate with k& the automorphism 7(k) of & defined by An(k) = h
for he®, e k) = k(a)e, for e a root of ,. In particular, we can
associate a homomorphism % with each ¢ e K* and each root « of &,
by defining k(B) = t#"«’ for each root B. The corresponding auto-
morphism will be denoted z,(t). .

Next we associate automorphisms of £ with the graph automor-
phisms of ¥,. Let o be a graph automorphism with associated
permutation s, We have k7 = [e], /7] = [€.4), for] = Iy, 50 0 permutes
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the h;’s. For an arbitrary root v = >\ ka;, let v/ = S ka ;. 7 isa
root [2, p. 122, XVI] and one can show that e = +e,. This is done
by induction on the level (i.e. >\ |k;|) of v. Hence, relative to the
Chevalley basis, the matrix of ¢ has only the numbers 0, 1, —1 as
entries (and in fact, exactly one nonzero entry in each row and column).
Thus the matrix of o defines an automorphism o of & over K. These
automorphisms will also be called graph automorphisms.

The automorphism group of £ is isomorphic to the automorphism
group of £ [10, p. 1122]. We will therefore identify automorphisms
of € with their induced automorphisms in £, but all references to
matrices will mean relative to the Chevalley basis in 2.

The group G of Chevalley is the group of automorphisms of & (or
Q) generated by the ,(t) for all roots @ and te€ K and the %(k) for
all homomorphisms %4 of the additive group generated by the roots into
K*,

THEOREM (Steinberg). If A is the automorphism group of L (or
Q), G the Chevalley group, and F = {1,a,, -+, 5,_} the group of graph
automorphisms, then G is normal in A, and

(7) A=GUoGU---Uo, G

18 the coset decomposition of A over G.

Steinberg proves this theorem in [10] only for the case of ¥,
simple, but the extension to the semi-simple case is straightforward if
one considers the action of A in €. The analogy between equations
(7) and (6) is clear; in fact, they coincide if K is an algebraically
closed field of characteristic zero. However (7) is also analogous to
(5) by the following result.

THEOREM (Ono [5, Theorem 3]). If K is infinite, and the Killing
form of 2, is mondegenerate modulo the characteristic of K, then G
18 the algebraic component of 1 in A, and (7) is the decomposition
of A into connected algebraic components.

3. Indices of automorphism groups. For each component (or
coset) A; of A, define the index n(A4;) to be the minimal multiplicity
of the characteristic root 1 for elements of A;. For each 7e A, let
%)) denote the subspace of £, of 7-fixed points. Define another index
m(A4;) to be the minimal dim F()), ne€ A;. We have [3, Theorem 6
and Corollary, Theorem 10]:

THEOREM (Jacobson). Let o; be the unique element of F im A,
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and let s; be the associated automorphism of the Cartan matrix.
Then n(A;) = m(A;) = the number of cycles in the decomposition of
s; into disjoint cycles.

"COROLLARY. (4, =1 =dim 9y, and 0 < n(A) <!l if © # 0.

In view of Steinberg’s theorem in the previous section, it is rea-
sonable to ask for the relationship between n(A;) and both the minimal
multiplicity n(o,G) of 1 as characteristic root and the minimal dimen-
sion m(0;G) of fixed point spaces for elements of ¢,G in the automor-
phism group A of 8. (Obviously a distinction between € and ¥ must
be maintained here; we will consider £ in §4.)

In the sequel we will make use of the subgroup G’ of G generated
by the automorphisms x.(t) for « a root of ¥, and te K. For each
root « and each tec K*, z,t)eG’, and if K is algebraically closed,
G =G 1, §1IV].

THEOREM 1. Let %, A, A, K, 8, A, G, and o; be as defined
above. Then n(o,G) = m(c,G) = n(4,).

Proof. The first inequality is clear. We first assume K is alge-
braically closed, so that G is generated by the x,(f). We have seen
that an arbitrary element 7 of A can be written as a product of
exactly one o;¢ F' and certain z,(¢;)’s in some order. Thinking now
of matrices, 7 is then a specialization of a corresponding product 7(&)
of matrices o;, z,(£;), where the £s are indeterminates, one for each
x-type factor. Since the entries of x,(&;) are polynomials in &; with
integer coefficients, 7(£) is a matrix whose entries are polynomials in
certain indeterminates &, &, ---, &, with integer coefficients.

The number m of indeterminates appearing in a matrix 7(§) depends
not only on the automorphism 7 but on the choice of a representation
of 7 as a product of the generators; this number plays no special role
here, but it must not be assumed to be constant.

The integer coefficients of the polynomial entries of 7(§) may be
chosen so that specialization of the &; to complex numbers ¢; gives an
element 7(t) of A,, and the choice of o, determines the component in
which 7(t) lies.

Let o; be fixed, and let [; = n(A4;). The fact that [; < dim ()
for ne A; can be expressed as follows: for every specialization & —
t;eC, rank (Y(t)—I) =n — l;, where n =dim&; =dim&. A similar
statement can be made for 7(&), for if n(§) — I had a nonzero minor
of size > n — l;, that minor would be a polynomial and would remain
nonzero under some specialization &, —t;€ C. Hence we see that for
every 7(€) corresponding to o; (i.e. for every element 7€ o,G and for
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every representation of 7 as a product of o; and certain of the other
generators) we have rank (& —1I) < n — [,. But then specializing
&, —t;e K, the rank of such a matrix certainly cannot increase. Hence
rank (9 — I) < n —1; for every 7€ o,G, or in other words m(c,G) = I,.

Now drop the assumption of algebraic closure on K, and let £ be
the algebraic closure of K. If 7 is an arbitrary element of 0,G, then
the extension of 7 to an automorphism of £, is still in the component
of A(8;) corresponding to ¢;. This is clear, because 7 = 0,7, T€G,
and ¢ can be expressed as a product of the generators of G, whose
extensions to £, are elements of G(8,). Hence dim ¥(7) = dim F(%,) =
l; for yeo,G. This completes the proof of Theorem 1.

THEOREM 2. Let %, A, A, K, 8, A, G, and o; be as in Theo-
rem 1, and suppose further that K is infinite. Then m(c,G) = m(4A;).
For ¢ =0, n(G) =n(4,) =1. If, in addition, the characteristic of
K does not divide the length of any cycle in the permutation as-
sociated with o;, then n(0,G) = n(A;). In particular, this is the case
1f &y is simple.

Proof. For the Chevalley group itself, we consider the diagonal
automorphisms (or matrices) 2z,(¢) =diag{l,1, «--,1, +--, tF ...}
where each of the first [ elements is 1, and the following entries are
of the form ¢+’ where B runs through all the roots of £,. For some
selection of ¢,,,, - -+,?, € K, to be determined presently, let 7 = []}z,,(t).
The diagonal entries of 7 after the lth one are of the form [[!¢8%?,
For each root B, some B(h;) = 0. Thus each of these entries is a
rational expression in the ¢, which is not identically 1. Since K is
infinite, we can choose t,, -+, ¢, so that none of the diagonal entries
of 7 after the Ith one is 1. (This can be expressed as a polynomial
condition of degree = 3(n — l), where n = dim &, since |B(k;)| < 3.)
Thus 7 is an element of G for which [ = dim (1) = the multiplicity
of 1 as characteristic root.

Now consider an element 0 == 1 in F. ¢ maps  into itself, and
also maps the subspace & spanned by the root vectors {eg} into itself.
In , o acts as a permutation of the k;, and in & (as noted above)
the matrix of ¢ has only 0, +1 as entries, and exactly one nonzero
entry in each row and column. If % is chosen as in the previous
paragraph, we have 07|9 = 0|9 (where the bar denotes restriction),
and 07| has nonzero entries where o|& does and each of these
entries will be *+ one of the entries of #|&. If K is infinite, then
the t; selected to define 7 can be chosen to satisfy not only the con-
ditions imposed above, but also the condition that 1 not be a charac-
teristic root of 07|&.

Next consider the permutation matrix o|$. For a suitable
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arrangement of the basis h, ---, h, of O, this matrix consists of
diagonal blocks, where each block is the matrix of a cyclic permuta-
tion. Let T be a linear transformation in a k-dimensional space which
cyclically permutes a basis u,, Uy, +++, 4. Then the fixed point space
of T is spanned by w, + %, + -+ + u,. The characteristic polynomial
of T (up to sign) is (v — DOV + N2 oo 4N+ 1). 1 is a root
of the second factor if and only if k-1,=0. Thus the multiplicity of
1 as characteristic root of 7T is 1 if and only if the characteristic of
K does not divide k.

We have demonstrated that each cycle of s contributes exactly
one dimension to the fixed point space of ¢]9, and, if the charac-
teristic does not divide the length of the cyecle, exactly 1 to the multi-
plicity of 1 as characteristic root. If &, is simple, only cyecles of
lengths =< 3 occur, which completes the proof of Theorem 2.

COROLLARY. Let & be a split semi-simple Lie algebra over an
arbitrary field of characteristic zero, and let A = GUo,GU -+ U0,,G
be the automorphism group of . Then m(o,G) = n(o,G) = the num-
ber 1; of cycles in the decomposition of the permutation s;. For G
itself, 1, = 1, the dimension of a Cartan subalgebra, and for v =+ 0,
0< ;<.

REMARKS. (a) The corollary extends the results of Jacobson [3]
beyond the algebraically closed case. Part of this is essentially con-
tained in [3] in remarks following Theorem 10.

(b) The decomposition of A in the corollary is also the decom-
position into connected algebraic components, by Ono’s theorem in § 2.

We will consider in the remaining sections the extent to which
the exclusion of small fields is necessary to obtain the conclusions of
Theorem 2. In particular, we will answer this explicity for the
Chevalley group for algebras of types A, B, C, and D.

There is also the question of how these results may be extended
to the algebras &, in the case where one or more components are of
type A;,, |l +1. In the following section we will obtain explicit
results in the case where ¥, itself is simple of type A, »|l + 1.

4, Algebras of type A. Let &, be simple of type A,. Then &
can be taken to be the Lie algebra of all (I + 1) x (I + 1) matrices of
trace 0 over K. If A is any nonsingular (I + 1) x (I + 1) matrix, then
the mapping X — A7'XA is an automorphism 7 of ¥. This automor-
phism is in G, by [9, 82] and the last paragraph of the proof of
Theorem 1.

THEOREM 3. If ¥, is of type A, and K is any field (of charac-
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teristic + 2, 3), then m(G) =1. If |K|> 1+ 1, then n(@) =1.

Proof. Let 7 be an automorphism given by conjugation by a
cyclic matrix A. The space of all matrices commuting with A4 (i.e.
all polynomials in A) has dimension ! + 1, since the minimum poly-
nomial of A has degree [ + 1. (%) is the intersection of this space
with &, and has dimension [.

An alternate approach to selecting an 7€ G gives a slightly weaker
result, but also gives an automorphism having 1 as characteristic
root with multiplicity [. Let 7: X — A7 XA where A = diag {a,, @, -+,
a,1.}, the a; being all distinct and all different from 0. This requires
| K| >1+ 1. Take as basis for € the matrix units e;;, 7 + 7, and the
diagonal matrices h; = €;,1,;11 — €5, 1 =4 = 1. Then h? =h,, and ¢}; =
a;'ae;. Since a;i'a; = 1 for ¢ = j, we have [ = dim () = the multi-
plicity of 1 as characteristic root, which completes the proof.

Now suppose the characteristic p of K divides I + 1. Then & has
one-dimensional center 3 consisting of scalar multiples of the identity
matrix. A more convenient basis than the one listed above is obtained
by replacing h, by I =1h, + (1 — Dhy+ «-- +2h,_, + h,, and taking
this to be the first basis vector. The cosets of the remaining basis
vectors then form a basis for & = 2/3.

Since [ > 1, we have one nontrivial graph automorphism ¢ with
associated permutation (1, )(2,1 — 1) ---, in which the number of cycles
is [ + 1)/2]. We will denote by #(G) the minimal multiplicity of 1
as characteristic root for elements of G acting in &, and similarly
define 7(c@), m(G), m(oG).

THEOREM 4. Let & be a (simple) classical Lie algebra of type A,
over a field K of characteristic p, where p|l +1. Let A =G U oG
be the automorphism group of L. Then #(G) = mG)=1—1, and
(oG =z m(oG@) = [0 + 1)/2]. If |K]|>1+1, then #(G) = m(G) =1 —1,
and if K is infinite, then n(cG) = m(cG@) = [(I + 1)/2].

Proof. We observe first that I = (lh, + ({ — V) by + +-- + 2k, +
h)y =1lh, + 0 —1Dhyy+ <<+ +2hy + h, = —1. Every element of the
subgroup G’ of G acts by a conjugation in & [6, (3.5)], so I is a fixed
point of every element of G’. G is generated by G’ and certain auto-
morphisms leaving © = >, Kh; pointwise fixed, so I is fixed under
every element of G. On the other hand, if » = o7, 7€@G, then I" =
(—I) = —1, so I is not fixed under 7.

Relative to the bases chosen above for € and ¥, every automor-
phism 7 of £ has a matrix of the form
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(8) A=|%

where B is the matrix of the induced automorphism 7 in & We
have just seen that a, =1 if e G and a, = —1 if yeoG. For any
7, the characteristic polynomial of A is

(9) SO =N —a)f(h;7),

where f(:; 77) is the characteristic polynomial of B. Thus for 7eg@,
the multiplicity of 1 as characteristic root of 7 is exactly 1 less than
that for n. In particular, if |K|>1+4+1, #(G) £1 — 1.

Now for 7eG, 8=F(®), hence dim F()) = dim F()) — 1 (where
the bar denotes image under £ — 8). Clearly IS F(7), so | —1 <
m(G) £ WG). Again, if | K| >1+1, #(G)=1—1.

On the other hand, if 7€ 0G, 8 N F() = 0, so dimF()) = dimF) <
dim F(7), and m(6G) = [(! + 1)/2). By (9), the multiplicity of 1 as
characteristic root must be the same for » and 7. Hence if K is in-
finite, then 7(cG) = m(cG) = [(I + 1)/2].

5. Simple algebras of types B, C, D. Let ¥, be simple of type
B,, C,, or D,. Then ¥ can be taken to be the Lie algebra of n x n
matrices X over K (n = 2l or 2l 4+ 1) such that X = —S™'X'S, where
X' is the transpose of X, and S is

0
(];((:I 0 Il:l r {0 Il}
, 0
gk —~I, 0 I, 0
0 I, 0

in the respective cases B, C, or D. If A is any matrix such that
ASA’ = S, then X — A7 XA is an automorphism of £, and, as for type
A, is in the Chevalley group. We will select in each case a diagonal
matrix A which defines an automorphism of £ having I-dimensional
fixed point space, after discarding a suitable number of small fields.
The orthogonality condition requires that A be of the form diag {a,,
Qyy +ovy Qa7 a7 <o+, a7’} in cases C and D and of the form diag {1,
Qg O, = *y Gypyy A3, oo, A4} In case B.

THEOREM 5. Let & be a simple classical Lie algebra of type B,
C,, or D, over a field K, and let G be its Chevalley group. Then
(@) =m(@G) =11 |K|>2l 2l +1, or 2l — 1 @n the respective cases
Bl’ Cl, DL'
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Proof. TFirst consider case C. Denoting matrix units by e,;;, a
basis for 2 [7, § XVII] is

h; = € — €4y, iy H
Civi) = € — €y it VFEJ;
Cimiy—iy = i ghr T €4 a0, T < J;
Civiy = €yt T €1, 1<J;
€2y T €51 H
€2i) = €1, H

where in all cases 9,5 = 1,2, ---,1. If we choose A as above, then
conjugation by A acts diagonally, leaving the A; fixed, and the re-
maining diagonal elements have the forms a;'a;, a;'a;!, a,a; (¢ # j),
a;?, ai. Hence we wish to choose the a; so that no a; is 0, 1, —1, or
a¥* for j +#+ ¢; in other words, so that

Hiaai — 1) Iici(a; — a)aa; — 1) £ 0.

The left-hand side of this inequality is a polynomial of degree 21 + 1
in each of the a;,. Thus there exist such elements in K if | K| > 2] + 1.

The details for types B and D are similar, and appropriate bases
are given in [7, § XVII]. For type B the same conditions are obtained
except that some a; may be —1. Hence | K| > 2] suffices. For type
D, both 1 and —1 are allowed, so | K| > 2] — 1 suffices.

REMARK. Professor G. B. Seligman has communicated to the
author a proof that m(G) =1 when 2 is of type B,, C,, or D,, over
any field K of characteristic == 2 or 3. His proof is a natural analog
of the first part of the proof of Theorem 3, although the details are
naturally more complicated. As in Theorem 3, this approach does not
yield n(G) = [.
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HOMOGENEOUS QUASIGROUPS

SHERMAN K. STEIN

A mathematical system whose group of automorphisms is transitive
we will eall homogeneous. If the group of automorphisms is doubly
transitive, then we will call the system doubly homogeneous. We ex-
amine here homogeneous and doubly homogeneous finite quasigroups.

We prove that there are no homogeneous quasigroups whose order
is twice an odd number (Theorem 1.1). As the quasigroups satisfying
the identity X(YZ) = XY-XZ show, there are homogeneous quasi-
groups of all other orders ([5], p. 236).

We then examine doubly homogeneous quasigroups and show that
they are intimately connected with nearfields (Theorem 2.2). Since all
finite nearfields are known, we thus have a complete description of
the doubly homogeneous quasigroups.

In the last two sections we obtain various equivalent descriptions
of double homogeneity and apply them to the construction of block
designs and models for certain identities.

1. Homogeneous quasigroups. In this section two theorems are
obtained that generalize results concerning distributive quasigroups.

THEOREM 1.1. There is mo homogeneous quasigroup of order
4k + 2.

Proof. Let (Q, o) be a homogeneous quasigroup of order 4k + 2.
We first construct out of this quasigroup an idempotent homogeneous
quasigroup of order 4k 4+ 2.

Define f: @ — Q by f(x) = xox, We assert that f is onto @, and
hence a bijection. Indeed, let a be a fixed element of @, b = aca, ¢
an arbitrary element of @, ¢ an automorphism of (Q, o) such that g(b)
=¢. We then have

¢ = g(b) = g(aca) = g(a)og(a) = f(9(a)) .

Thus f is onto Q.

We thus can define a quasigroup (@, ), isotopic to (Q, o), by
f@)Of(y) = woy. Since f(x) O f(x) = xox = f(), (Q, ®) is idempotent.
Moreover, if ¢ is an automorphism of (Q, o), it is also an automorphism

of (@, (), since

Received January 11, 1963, and in revised form September 5, 1963.
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9 (@) Of W) = 9@ oy) = g(x)° g(y)

and

9(f(@) O 9(f(¥) = (9(xox)) O (g(yoy)) = (g(x) o g(x)) D (9(y) o 9(¥))
= fl9(x)) Of(9(y) = 9(x)o9(¥) .

Thus (@, ©®) is an idempotent homogeneous quasigroup of order 4k + 2.
By ([5], p. 237), such quasigroups do not exist, and the theorem is
proved.

As was shown in [6], if @ is a left-distributive quasigroup, then
there is a quasigroup A’ orthogonal to it. The next theorem gener-
ralizes this fact. The proof makes use of the notion of transversal
for a quasigroup, (Q, o), of order ». A transversal for (@, o) is a set
Tc@xQ, T={x,v), -+, (x,, ¥,)} such that x, ==, implies 7 = ¢,
y; =y, implies j =J', and «;0¥y; = x;0y; implies ¢ = j. It is easily
seen that there is a quasigroup orthogonal to (@, o) if and only if
there are n disjoint transversals for Q.

THEOREM 1.2. If (Q, °) s a quasigroup of order n possessing o
transitive set of n automorphisms, then there is a quasigroup or-
thogonal to 4t.

Proof. Let ¢, ¢,, -+, ¢, be a transitive set of » automorphisms
of (@, 0) and @ = {b,, b,, +--, b,}. We shall define % disjoint transversals
for Q, T(1), T(2), +++, T(n), where T(k) C @ X Q, k=1,2, -+, n. Select
a €@ and let

T(k) = {($:(a), 0 |1 = ¢ = m} .

The first coordinates of the 7 elements of T(k) are distinet and so are
the second coordinates; also T(:)N T(5) = ¢ if 4 5= 7.

It must be shown that ¢,(a)o ¢.(b,) = ¢;(a)o ¢,(b,) implies that 7 = j.
From the assumed equation it follows that ¢,(aob,) =¢,(acb,). Since
the » automorphisms ¢, ---, ¢, are transitive on a set of % elements, it
follows that if ¢, and ¢; agree on a single element of @ then ¢,=¢;;
thus ¢, = ¢;, and the theorem is proved.

2. Relations between doubly homogeneous quasigroups and
nearfields. Consider a finite doubly homogeneous groupoid (G, o). For
any order » the two groupoids defined by 2oy =& or xoy = y are
doubly homogeneous (in fact any bijection of G is an automorphism of
(G, ©)). Also the groupoid of order 2 given by 1ol =2, 202 =1,
lo2=2, 201 =1, and its transpose are doubly homogeneous. We will
show that the only other doubly homogeneous groupoids are quasigroups
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THEOREM 2.1. A doubly homogeneous groupoid (G, o) is either:
(i) The groupoid defined by xoy = x, for all x,y<c@G,

(i) The groupoid defined by xzoy =y for all x,ye @,

(iii) An idempotent doubly homogeneous quasigroup, or

(iv) A groupoid isomorphic to the groupoid defined above.

Proof. First let us show that if the order of G is at least 3,
then (G, o) is idempotent. To do so, let ¢,deG, ¢+~ d, coc =d. Let
e€@G, e+ c, d, and ¢ be an automorphism of (G, o) such that

#(e) = ¢, ¢(d) = e .
Then we have
coc=d and coc = ¢(c)od(c) = d(coc) = ¢(d) = e,

a contradiction that implies coc = c.

Assume that a,be @, a b, If aob = a, then the double homo-
geneity of (G, o) implies that zoy = x for all z, y€G. Similarly, if
aob =10, then xoy =y for all z,yeG.

Consider finally the case, aob = ¢, ¢ a,b. Double homogeneity
implies that the equations Ao Y = C and Xo B = C have solutions, X,
Yif A= C, B+ C. Combining this with the idempotency of (G, o),
we see that if (G, o) has order at least 3, then it is a quasigroup.

The case of order 2 is left to the reader.

In view of Theorem 2.1, we will examine doubly homogeneous
quasigroups.

In the rest of this paper we will generally assume that all quasi-
groups are idempotent. An idempotent quasigroup that can be gen-
erated by two elements will be called a two-generated quasigroup. A
two-quasigroup is a doubly homogeneous two-generated quasigroup. We
will show that two-quasigroups and finite nearfields are closely related.

A finite near field, S, consists of a finite set S and two binary
operations, + and ., defined on all of S. The operation + is an abelian
group, the operation ., restricted to S — {0} is a group, and left dis-
tributivity holds, a(b + ¢) = ab + ac. From these conditions it follows
that a0 = 0 = 0a and (—1)a =— a = a(—1) (see [8, pp. 188-190]), and
that the equation ax + bx = ¢ has a unique solution if a + b %= 0. More-
over, it is implicit in [8] that a finite nearfield has a primitive element.

THEOREM 2.2. If (S, o) is a two-quasigroup, then there is a near-
Jield (S, +, .) and primitive element k such that xoy = 2 + (y — z)k.
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The automorphisms of (S, o) are of the form ¢(x) = a + bx.

Proof. The group G of automorphisms of (S, o) is doubly transi-
tive and only the identity automorphism fixes two elements of S. Such
a group of permutations on a finite set determines a near field as fol-
lows ([9], p. 25, [2], pp. 385-388).

The elements of G leaving no elements fixed, together with the
identity transformation, form an abelian, simply transitive normal sub-
group N of G. Select an element 0 S. We define x 4+ y as follows.
There is a unique o € N, such that 0(0) = x; define # + ¥ to be d(¥).

We define = - y as follows. Select 1€S, 1 # 0. Define z-y to
be 7(y) where 7(0) =0, z(1) = x. Then (S, +, .) is a nearfield. More-
over, since o(x) =« + b and 7z(x) = ax (a # 0) are automorphisms of
(S, o), then so is ¢(x) = ax + b. Since there are (n) (n — 1) such ¢’s,
where n is the cardinality of S, it follows that every automorphism
of (S, o) has the form ¢(x) = ax + b.

Next, we express the quasigroup (S, o) in terms of the nearfield
(S, +,.) just constructed. Let 0ol =4%. If ,yeS, € £y, let ¢ be
the automorphism of (S, 0) such thar ¢(0) = z, ¢(1) = y, that is, #(u)
=2 + (y — x)u for all e S. Then we have

xoy = ¢(0)od(l) = ¢(0e1) = (k) =2 + (y — )k, (v + ¥).

Since zox = x + (x — x)k, (S, o) is of the asserted form.

COROLLARY 2.3. A commutative two-quasigroup (Q, o) is of (odd)
prime order, p, and is expressible in terms of GF(p), the Galois
field of p elements, by the formula zoy = (x + y)/2.

Proof. (Q, o) is expressible in terms of a nearfield (@, +,.) by
the formula oy = o + (y — ®)k. Since (@, ¢) is commutative, 0ol =
100. Thus

k2001:100:1'—‘k,
hence
k+k=1.

By left distributivity k-2 = 1. Now, the element 1 in any finite
nearfield generates a Galois field with a prime number of elements, say
p elements. The equation k-2 = 1 shows that p # 2 and that k is an
element of that Galois field. Since k is a primitive element of (Q,
+,.), we see that (@, +,.) is the Galois field with » elements, and
oy = + (¥ — 2)(1/2) = (x + y)/2.

The next corollary relates doubly -homogeneity to the identity
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(xoy)o(zow) = (xoz)o(yow), which has several names, including “the
medial law ”.

COROLLARY 2.4. A two-generated quasigroup (S, o) of prime
order p, is medial if and only if it is doubly homogeneous.

Proof. If (S, o) is doubly homogeneous, then it is of the form
¢ 4+ (y — )k, for some nearfield. But the only near fields of prime
order are the Galois fields. Thus zoy = (1 — k)x + ky and a simple
computation shows that satisfies theidentity (€ oy)o (zow) = (xo2) o (yow)
Hence (S, ) is medial.

Conversely, if (S,o) is medial, it is of the form xoy = A(x) + B(y)
where (S, +) is an abelian group on » elements, and A and B are
automorphisms of (S, +) such that A(x) + B(x) = «, for all x€ S (see
[4]). But (S, +) can be imbedded in the larger structure (S, -+, .),
the Galois field of p elements, in such a way that every automorphism,
¢, of (S, +) is of the form ¢x = ax for some aeS. Thus A(x) =
(1 — k)x and B(x) = kx for some k. Hence we have zoy = & + (y — 2)k
and so (S, o) is doubly homogeneous.

THEOREM 2.5. Let (S, +,.) be a finite nearfield and ke S, k +
0,1. Define a binary operation o on S by xoy = x + (y — x)k. Then
(S, o) is a doubly homogeneous quasigroup. (S, o) is a two-quasigroup
iof and only iof k is a primitive element of S.

Proof. It is easy to see that (S, o) is a quasigroup. For example,
if xoy = a’oy, then

r+ @y —ok=a + @y — 2k
and so
(¢ —a)=(@ -k +(y—a)k.
But we also have
x—a)Y=(@—y1-+(y—aH1.
By the definition of a nearfield and the fact that k£ +# 1, we obtain
x =2,

For a,be S, a+ 0, define ¢: S— S by ¢x) =ax +b. Each ¢
is an automorphism of (S, o) and the collection of all such ¢’s is doubly
transitive on S. Thus (S, o) is a doubly homogeneous quasigroup.

If (S, o) is a two-quasigroup, it is generated, as a quasigroup, by

any two of its elements, in particularly by {0, 1}. Now, the nearfield
in (S, +,.) generated by k contains 0 and 1; thus k is a primitive
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element of (S, +,.) Finally, we must show that if £ is a primitive
element of (S, -, .), then {0, 1} generates the quasigroup (S,c). To
do so, let (T, o) be the subquasigroup of (S, o) generated by {0, 1}.
We will show that T = S.

First of all, (7, o) is doubly homogeneous. Indeed, if a,be T,
a # b, and ¢ is an automorphism of (S, o) such that ¢(0) = a, ¢(1) = b,
then ¢(T) is contained in the quasigroup generated by {a, b}. Since
T and #(T) have the same cardinality, ¢(T) = T, and ¢| T is an auto-
morphism of (7, o), taking 0 into a, and 1 into b.

Thus, by Theorem 2.2, (T, o) is related to a nearfield (T, &, ®)
by the formula zoy =2@P Y S x) Ok, where (T, B, () can be chosen
to have the same 0 and 1 as (S, +,.) [© denotes subtraction in (T,
@D, ). We will show that @ and () are restrictions of + and .,
and thus (T, @ ) is a subnearfield of (S, +, .).

Note first that since 0P (1 S0 Ok =01=0+ (1 — 0k, we
have k =k and thus ke T. Next we will show that tPy=x+y and
c&y = -y for all x,ye T.

For * =0, it is obvious that t Py =2 +vy. Let xe T, 2+ 0,
and ¢: S— S be the automorphism of (S, o) given by d¢(y) = + ¥.
Then ¢| T is an automorphism of (7, o) without fixed points. Thus
G| TYy=uPy for some fixedue T'and all ye T. Since u=(¢|T) (0) =
#(0) =2, we have u =x. Thus cPy=(|T)yy =¢(y) =2 + y for
all z,ye T.

To show Oy =« -y for all z, ye T, we proceed similarly. For
=0 or 1 the statement is trivial. Letx 0,1, 2 T. Let¢:S— S
be defined by ¢(y) =« -y. Then ¢|T is an automorphism of (7, o)
with the one fixed element, 0. Thus (¢| TXy) =u Oy for some wu.
Since u =u®1=(|T)1)=¢(1)=2-1=2, we have w = x. Hence
tOQYy=(|Ty=9¢y) =u-y, for all x,yeT.

Thus (T, P, @) is a subnearfield of (S, +,.) and contains the
element k. Since k is a primitive element of the nearfield S, we must
have S= T. Thus (S, o) is generated by {0,1} and therefore is a
two-quasigroup.

COROLLARY 2.6. If k 18 a primitive element of a mearfield S,
then {0, k} gemerates S by the single bimary operation xoy = x +
(y — k.

The relation between quasigroups and near fields is shown further
in the following theorems. For simplicity if k& is an element of a
nearfield (@, +, .), then the quasigroup (Q, ) defined by xoy = +
(y — )k we denote Q(k).

THEOREM 2.7. If (Q, +,.) is a nearfield, k, kK cQand ¢: Q — @
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is an automorphism of (Q, +,.) such that ¢(k) =k, then ¢ is an
1somorphism between Q(k) and Q(K').

Proof. Let o denote multiplication in Q(k) and (- denote multi-
plication in Q(k'). Then d¢(xoy) = d(x + (¥ — 2)k) = ¢(x) + (¢(y) —
d(xNk’ = ¢(x) ©é(y). Thus ¢ is an isomorphism of Q(k) onto Q(K').

The next theorem is the converse of Theorem 2.7.

THEOREM 2.8. If (Q, +,.) s a nearfield, k, k' are primitive
elements of (Q, +,.), and Q(k) s isomorphic to Q(k'), then there 1is
an automorphism ¢ of (Q, +,.) such that ¢(k) = k.

Proof. Let a: Q(k)— Q(k’) be an isomorphism between the quasi-
groups Q(k) and Q(k’). Let o and () be the operations in Q(k), Q(k')
respectively. Since Q(k) is doubly homogeneous, we may assume that
a(0) =0 and a(l) =1. Then

ak)=a(0-1)=a(0) Dal) =001 =F

We will show that « is an automorphism of (Q, -+, .).

Let ¢ be an antomorphism of Q%) defined by o(x) =« + b, b = 0.
Then, aca™, being an automorphism of Q(k’) and having no fixed ele-
ments, is of the form x—x + ¢ for some fixed ¢. Thus ao(t) =a(t) + ¢
for all te Q; equivalently, a(t + b) = a(t) + ¢. In particular, a(b) =
a(0 + b) = a(0) + ¢ = ¢, and we have a(t + b) = a(t) + a(b). That is,
« is an automorphism of (@, +).

Similarly, let o: Q(k) — Q(k) be given by o(x) = ax. Since o is
an automorphism of Q(k) with ¢(0) = 0, aoa™ is an automorphism 7
of Q') with 7(0) = 0. Thus 7(x) = a’x for some a'c Q. We have
ao(r) = ta(x), or equivalently, a(ax) = a'a(x). But a(l) = 1; hence
a(a) =a(e 1) =adall) =a' -1 =4a'. Thus a(ar) = a(a)o(x), and « is
an automorphism of (@, ). This ends the proof.

As another application of Theorem 2.2 we have

THEOREM 2.9. A’left-distributive two-quasigroup is medial (hence
right-distributive),

Proof. Let (Q,°) be a left-distributive two-quasigroup. By
Theorem 2.2, xoy =« + (y — ®)k for some nearfield (Q, +,.). Since
left translation by 0 is an automorphism of (@, o), there exist a,be @
such that

Qox =a + bx for all z€ Q.
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Thus 2k = a + bx for all x € Q.

It is easy to see that ¢« = 0 and b = k, by letting x = 0, 1. Thus
2k = kx for all x€ Q. Since k is a primitive element of (@, +, .), the
nearfield in question is commutative, hence a field. The theorem follows
immediately.

It might be remarked that a quasigroup and its conjugates [5]
have the same automorphisms. Thus the conjugate of a two-quasigroup
is a two-quasigroup. If oy = z then two of the six conjugate opera-
tions, a and B, are defined by zaz =y and y582 = x. Here @ and B
denote division on the left and right respectively. It turns out that
« and B are easily expressed in terms of the nearfield describing o.
For if 2oy = + (y — x)k =2, then y = ¢ + (z —2)k™. Also, it can
be shown that if woy = 2z then © =y + (¢ — ¥)(L — k)™

3. Two-homogeneity and identities. Let @ be a finite idem-
potent quasigroup and @(Q) be the identities valid on Q [7]. Let F be
the free groupoid on two generators z, ¥ and F(Q) be the homomorphie
image of F obtained from F' through factoring F' by @(Q). That is,
define an equivalence relation, ~, on F as follows: If U, Ve F and
U=V is an identity valid on @, write U~ V. Then F(Q) is F/~.
It is easily seen that F(Q) is a finite idempotent quasigroup. Note
also that if Ue F and a, be @, then replacement of « and ¥ in U by
a and b defines an element in Q; we denote this element, U(a, b).
We may denote U itself as U(x,y). If Ue F, then U determines a
unique element of F(Q), denoted U.

THEOREM 3.1. Let Q be a quasigroup gemerated by {a, b}, and
assume that for all U, VeF such that Ula, b) = V(a,b), one also
has the identity Uz, y) = V(z, y) valid on Q. Then Q is isomorphic
to F(Q). The converse holds.

Proof. Since Q satisfies all the identities that F(Q) satisfies, there
is a homomorphism A : F(Q) — @ such that W(®%) =a, h(y) =0b. Also
we can define a function k: Q@ — F(Q) by setting k(a) = % and k(b) = ¥,
and extending this assignment to a homomorphism. (The possibility
of defining this %k is equivalent to the hypothesis made on a and b.)
Clearly h and k are inverse to each other, hence isomorphisms.

Conversely, assume that 2: F(Q)— @ is an isomorphism. Let

a =@, b=h@). I Uab) = Via,b), then WUz, ] =MV, ).

Since k is an injection, U(r, 9) = V(z, ). Thus U~ V, which was
to be proved.

COROLLARY 3.2. A two-quasigroup @ is isomorphic to F(Q).
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It should be noted that for a quasigroup @, F(Q) is doubly homo-
geneous if and only if it is generated by any pair of elements. And
when F(Q) is a two-quasigroup, any two elements of @ generate a quasi-
group isomophic to F(Q).

COROLLARY 3.3. Two two-quasigroups are tsomorphic if and only
if they have the same identities in two variables.

COROLLARY 38.4. A two-generated quasigroup @ is doubly homo-
geneous if and only if for all distinct a,bec @ and all distinct c,
de @, U, b) = V(a, d) is equivalent to Ule, d) = Ve, d) for all terms
U, V in two variables.

Proof. Clearly, if {a, b} generates @, so does {¢,d}. Then apply
Theorem 3.1 and the remarks preceding Corollary 38.3.

As already mentioned, a two-quasigroup is defined by its identities
in two variables. In fact, if @ is a two-quasigroup of order =, then
@ can be defined by #n* — n + 1 identities, namely the identity X2 = X
and an identity corresponding to each product u;(a, b) - u;(a, b) = u,(a, b),
4 # j, where each element of @ is represented in the form wu,(a, b) for
some term in a and b. Let us consider, for example, the only two-
quasigroup of order four, @, given by:

a b ab ba

al a ab ba b
b| ba b a ab
ab| b ba ab a
ba | ab a b ba

Since a - ab = ba and ab - ba = a, @ satisfies the identities:

(i) X.-XY =YX and

(il) XY.-YX=X. We will show that (i) and (ii) are sufficient
to reconstruct the multiplication table for @. This will be useful in § 4.

THEOREM 3.5. A finite groupoid Q satisfying the identities (i),
X XY =XY and (ii), XY - YX =X is a quasigroup. Moreover
any two distinct element a,bec @ generate a quasigroup Q" described
by the preceding multiplication table.

Proof. Let L and R be a left-and right translation in @ by
the same element. By (i), LL = R. We prove that L is an injection.
Let ¢,d,ec @ and c¢d = ce. We will show that d =e. We have
c-cd=c-ce and, by (i), d¢c =ec. Thus dc-cd =ec-ce. By (i),
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d =e. Thus @ is a quasigroup.

Since @' satisfies X - XY = YX, it satisfies X - XX = XX. Since .
@' is a quasigroup it must therefore satisfy XX = X; thus @' is
idempotent.

We next show that distinct elements of @ do not commute. As-
sume that ¢,de @, c¢d =dc. Then, by (i) we have ¢ =cd .dc =
de - ¢d = d.

Now let us examine the quasigroup @’ generated by a and b.
First of all, Q” is an idempotent quasigroup and ab = ba. Thus Q"
has at least the four distinct elements a, b, ab, ba. We will show that
@” has no more elements.

From (i) and (ii) we obtain XY(XY - YX) = XY - X, hence YX -
XY=XY.-X and thus Y=XY.X. From Y=XY.X follows
Y=X.-YX [7]. Also, XY -Y=XYXY -X)=X-XY=7YX.

From these identities follow: aa = a, bb = b, ab-ab = ab, ba - ba
=ba; a-ab=0bba, a-ba=0b, b-ab=a, b-ba=ab; ab-a=>0, ab-b
=ba, ab-ba =a; ba-a=ab, ba-b=a, ba-ab=>b. Thus @ has
only the four elements a, b, ab, ba. Moreover its multiplication table
is the one already given.

4. Block designs and quasigroups. By a pairwse balanced in-
complete block design on a set S we will mean a family of subsets
B,B, ---,B, of S, each containing the same number of elements,
k >3, such that each pair of elements of S is a subset of exactly
one of the B’s. If (S, o) is a doubly homogeneous quasigroup, then
the two-generated subquasigroups of S form a pairwise balanced in-
complete block design (for brevity, block design). Calling the card-
inality of S, v, we then have a doubly transitive block design B(k, v)
where k, incidentally, is a power of a prime. The following theorems
show various relations between block designs and algebraic aspects of
quasigroups.

THEOREM 4.1. A two-generated quasigroup Q ts doubly homo-
geneous (hence a two-quasigroup) if and only if the two-generated
subquastgroups of Q X @ all have the same order.

Proof. Assume that @ is a two-quasigroup of cardinality ¢. Con-
sider the quasigroup Q* C @ X @ generated by {(a, c), (b, d)}, where
@, b, c, and d are distinct. Let w: @ X @ — Q be the projection defined
by 7(q,, ¢;) = ¢;. Then 7w(Q*) = @ since @ is generated by any two of
its elements, in particular, ¢ and b. Now, for any U and V, terms
in the variables x and ¥, U((a, ¢), (b, d)) = V((a, ¢), (b, d)) if and only
if, Ula, b) = V(a, b) and Ul(c, d) = V(e,d). By Corollary 3.4, U(a,b)
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= Vi(a, b) if and only if Ulc, d) = V(e,d). Thus 7 is an isomorphism
onto @, and {(a, ¢), (b, d)} generates a quasigroup of order ¢q. Special
cases such as {(a, b), (b, b)}, {(a, d), (@, b)} or {(a, b), (c, a)} are easily
disposed of.

Conversely, assume that @*, of order ¢, is two-generated and that
every two elements of @ X @ generate a quasigroup of the same order,
necessarily ¢. We will show that @ is doubly homogeneous. Let {a,,
a,} and {b,, b,} be two distinct pairs of elements of Q, a, # a,, b, # b,.
Then a = (a,, a;) and ¢ = (b, a,) generate a quasigroup of order ¢;
thus o and b = (b, b,) generate a quasigroup @* such that 7(Q*) = Q.
This implies that two elements of Q* are equal if their first coordinates
are equal. Thus U{e,, b)) = V(a, b)) is equivalent to Ula,, b,) = V(a,, b,).
By Corollary 3.4, @ is a two-quasigroup.

The notion of two-quasigroup can be used to give a simple proof
of the following combinatorial theorem due to Skolem [1, p. 183].

THEOREM 4.2 If k is a prime power and Bk, v) and Bk, v,)
exist, then B(k, v,v,) exists.

Proof. Let B(k,v;) be a block design on the set S;, 1=1, 2. Select
a two-quasigroup @ of order k. On each block of B(k, v,) and B(k, v,)
define a quasigroup isomorphic to @. This defines on S; a quasigroup
Q;, © = 1, 2, such that every two elements of S; generate a quasigroup
isomorphic to @. Every two elements of @, X @, generate a quasigroup
R satisfying all the identities that @ satisfies. Since Q = F(Q), R is
a homomorphic image of @. As a two-quasigroup contains no proper
subquasigroups, (other than those with one element), R is isomorphic
to @. This shows that on S; X S, there is a B(k, v,v,).

THEOREM 4.3. There is a quasigroup of order v satisfying the
tdentities X - XY =YX and XY .- YX =X if and only if v=12n+1
or v=12n + 4.

Proof. Recalling the example at the end of j; 3 and the argument

in the proof of Theorem 4.2, we see that such quasigroups exist if and
only if there is a B(4, v). As Hanani proved in [3], a B(4, v) exists
if and only if v =120 + 1 or v = 12n + 4.

Similar reasoning shows that if an identity in two letters has a
two-quasigroup model of order %, and there is a B(k, v), then the
identity has a model of order v. In particular, since X- XY =YX
has a two-quasigroup model of order 5, it has, by [3], models of all
orders of the form 20n + 1 or 20n + 5 (except possibly 141).
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ON THE LOCATION OF THE ZEROS OF
SOME INFRAPOLYNOMIALS
WITH PRESCRIBED COEFFICIENTS

J. L. WALSH AND O. SHISHA

1. Various results have been obtained regarding the zeros of infra-
polynomials with prescribed coefficients. (See e.g. [Walsh, 1958], [Walsh
and Zedek, 1956], [Fekete and Walsh, 1957], [Shisha and Walsh, 1961,
1963], and [Shisha, 1962]). Our purpose in the present note is twofold:

(i) to contribute more deeply to that study, making use of some
properties of polynomials and rational functions, and

(ii) conversely, further to show how results concerning infra-
polynomials can be used in the investigation of some rational functions
and in particular some combinations of a polynomial and its derivative.

2. We repeat here the underlying definition. Lt » and ¢ be
natural numbers (¢ =< n), Ny, Ny -+, B, integers such that 0 =<
N, < MNyvr <M, =n, and S a pointset in the (open) complex plane. An
wth infrapolynomial on S with respect to (%, %y, <+-, n,) is a polynomial
A(z) = 3\'_,a,2" having the property: There does not exist a polynomial
B() = > r_b,2* such that B(z) = A(z), bw, =an, (¥v=1,2, -+, 0q),
| B(z)| < | A(z)| whenever z€ S and A(z) = 0, and B(z) = 0 whenever
ze S and A(z) = 0.

3. Of special importance among the above sequences (%,, f,, * + +, %,),
are “simple m-sequences” [Shisha and Walsh, 1961]. Given a natural
number %, we define a “simple nm-sequence” to be a sequence having
one of the forms (0,1,--+,k,n—Il,n—10+1,.-+,n) [k=0,1l=0,
E+i+2=n]; 0,1,.---,k) [0Zk<n]; ®—lL,n—-1+1,---, 1)
[0 =I1< n]. We shall consider nth infrapolynomials on some special
sets S with respect to simple n-sequences 0. The sets S will consist
of m — s -- 2 points, where s is the number of elements of ¢, and S
will be required not to contain the origin, in case o contains zero.
As explained in the Introduction to the last mentioned paper, this
particular situation is of special importance, as the general case is to
a large extent reducible to it, and as these particular #th infrapolynomials
are closely related to certain combinations of a polynomial and its
derivative. Numerous results on such combinations exist in the litera-
ture.

Received May 2, 1963. This research was supported (in part) by the U.S. Air Force
through the Air Force Office of Scientific Research.
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4. THEOREM. Let n be a natural number, ¢ a simple n-sequence,
s its nmumber of elements. Let S = {2, 2, *++, 212} be a set of
n — s + 2 (distinct) points of the (open) complex plane, and set
9() = 115 (z —2,). In case 0 =(0,1,:+,k) or 0 =(0,1, ---, K,
nwn—1 n—10+1,++,m) set K=k+1. In case 0¢o, set K=0.
(Thus K =min[y,v¢o, v=20,1,2, ---]). Also, in case 0ca, assume
0¢S. Let AR) = >"_,a,2" be an nth infrapolynomial on S with
respect to o.

Then [by Theorem 1, Shisha and Walsh, 1961] one can set

(1) A@) = P@YR) + a3, Mg — 2) .

Here My Ny, =y My—yry QTe nonmegative reals with S°=it2n, =1, « 18
a complex number, and P(2) is a polynomial of degreet < s — 1 such
that P(2)g(z) + azZ*™"=**! 48 of degree = n.?

I. Let S be contained in a disc C:|z—c|<=r. Then every
zero (¢ C) of A(z) satisfies

(2) PO+ C—-coal*{|[{—cl =} =r[alfIf[{—c' —r7}.

If K=0, and if a zero { of A(z) satisfies r <o, =|{ —c| = 0y
then |a|/{o. + 1} < |PQ)| = |al/(o, — r) i.e. (in case a = 0 and P(z)
48 not a constant) { lies tn the closed interior of the lemmiscate
| P)| =|al|/(o, — 1), and tn the closed exterior of the lemmiscate
| P(z)| = |a|/{py + 7}

II. Let P(z) = Bz' + v+ -« (t =0, B+ 0), and suppose that
S and all the zeros of P(z) lie in some closed disc C, and that o + 0,
K=0. Let wy,w, «++, w,, be distinct solutions of w'*'= —a/B.
Then every zero (¢ C) of A(z) lies in UL (w, + C).2

III. Suppose that A(z) is a real polynomial,® and that o + 0.
Assume, furthermore, that P(z)/(az%) is of the form A+ 372 A2’ +
S, B,z with all Re(A,) <0 and all Re(B,) = 0. Let z, be a non-real
zero of A(z) satisfying |arg z,| < min (7/p, /q)." Then z, belongs to
at least one (Jensen) disc

(3) z—%m+z>§§m—zu

1 Degree of a polynomial means its exact degree. The polynomial 0 is assigned the
degree —1.

2 One can show that « and P(2) are uniquely determined, and in case a # 0, so are
Ay A2y v 00y An—st2.

3 wy + C denotes the closed disc consisting of all points wy + 2, z€C.

4 i.e. the coefficients of A(z) are real.

5 arg denotes the principal value of the argument.
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In particular, if » = q =1, every non-real zero of A(z) belongs to at
least one of these discs.

IV. Suppose that A(z) is a real polynomial, a + 0, and that
P(»)/(az®) is of the form > Az + 331, B2 (p=0, ¢ = 2) with
all Re(A,) <0 and all Re(B,) = 0. Suppose furthermore that n, > 0
implies Re(z,) >0 (v=1,2, -+, —s+2). Let 2z, be a non-real
zero of A(z) satisfying |argz,| < min {n/(p + 1), n/(¢ — 1)}. Then:

A. There exists a v, 1=v=n—s+ 2, Im(z,) + 0, such that z,
belongs to the closed imterior of the circle passing through z, and 2z,
and tangent to the line 0z,.

B. If neither z, nor %z, belongs to S, one can choose v so that
N, > 0, and therefore Re(z,) > 0.

V. Suppose that S is a real set contained in a finite interval
Jiw, = = x, that AR) is a real polynomial, and that K = 0.
Suppose P(z) 18 of the form Bz' + v&*' 4+ «+« (t = 0,8 # 0), and that
all zeros of P(z) lte in the above interval. Then every real zero (¢ J)
of A(z) s of the form & + @ where £cJ and w is a real number
satisfying @' = —a/B. Thus, if t is odd and af >0, all real
zeros of A(z) lie in J.

5. Proof of Part I. Let { (¢ C) be a zero of A(z). " Then by (1),

P + als 5 ME - 2) =0,

By a result due to Walsh [ef. 1950, §1.5.1, Lemma 1]
n—s+2
(4) 17»»/(C—Zv)=1/(C—Z'), ZeC.

y=

By an elementary mapping property of the function 1/z we have

1YEC—2)—C =l —cP =} =r{ll—cl— 7},
from which (2) follows. The rest of part I is easily obtained from (2).

Proof of Part II., Let £ (¢ C) be a zero of A(z). Again we have
a relation (4), which implies P({)}{{ — 2z') = —a. Furthermore, the last
left hand side can be written [Walsh, 1922] B8 — n)*** with neC.
Hence e Uit (w, + C).

___Pfroof of Part III. We may assume ¢(z) = 0, g¢(%) == 0. Since
A(z)) = A(z) = 0, we have by (1),
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0 = PEYfm) + 3% Ml — B)

n—s+2

A+ 344+ 3 Ba + 5 M@ —7)
Y4 q n—s+2

= A+ 245+ 2B + 5 M(w—2)
V= v= v=1

= 2Re(4) + 3, 2Re(A)% + > 2Re(B)zi

n—s+2

+ y2=1 )‘"v{(zo - zv)_1 + (zo - —z—v)_l} .

By theorem 21 [Shisha and Walsh, 1961], there exists a v (with \, > 0) |
such that 2z, lies in (8).
Similarly, using Theorem 22 [loc. cit.] one proves Part IV.°

Proof of Part V. Let { (¢J) be a real zero of A(z). Then
P@Q) + a>pze\/(C —2)=0. Now, >»=*\,/({ — 2,) can be written
as 1/ — o), 2’ eJ. Also, since all zeros of P(2) lie in J, one can
gset PO — ') =B — &Y, £ed. Setting w ={ — &, we have { =
§+ o, 0= —afB.

6. We apply now our results to some special cases. We continue
to assume the contents of the first paragraph of the Theorem. Thus,
the contents of the second paragraph of the Theorem hold, too.

(a) Suppose ¢ = (n). If a, =0 then A(z) = 0, for otherwise the
polynomial B(z) = 0 would fulfill the properties stated at the end of
§ 2. We thus assume that a, # 0. Then a;*A(z) is an infrapolynomial
(“Extremalpolynom”) on S in the sense of Fekete and von Neumann
[1922]. Also one easily sees that P(z) =0, « = a,. By a known result
[loc. cit., p. 1388, cf. also Fejér 1922] all zeros of A(z) belong to the
convex hull of S. Thus Parts I, II and V of the Theorem do not
apply. Parts III and IV do apply; but they can be derived from known
results [Fekete and von Neumann 1922 p. 138, and Walsh 1958 p. 305].
Thus, if 2, is a non-real zero of A(z), and if A(z) is a real polynomial,
then z, belongs to at least one of the dises (1). If, in addition, A, > 0
implies Re(z,) >0(v =1,2, ---, n + 1), then A and B of Part IV hold.

(b) Suppose ¢ = (n — 1,n). Then s =2, K =0 and [Shisha and
Walsh 1961, p. 146]

6 Observe that if (i) A(z) is a real polynomial, (ii) @ # 0, and (iii) S is symmetric in
the axis of reals, then (i) « is real, (ii) 2y = Au if 2y = Zu, and (iii) g() and P(z) are real
polynomials. Indeed, suppose 2y =2zu.. Then (1) yields azEAg'(2)) = A(z)) = Alzw) =
&zfz#g’(zy). Thus, if « is real, 2y = 2«. To prove that « is real, choose vy, o so that
Ay > 0 and 2y; = Zg,. Then (dy, + up)Im(a) = 0, and therefore Im(a) =0. From (1) we
see now that P(z)g(2) is a real polynomial; therefore, so is P(z).
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Alz)

Il

a,9(2) + (an_l +a, ; z); M9(R)(2 — 2)

»z0, Drn,=1. Thus, P =a, and a =a,_, + a, >,*-, 2,. One
can apply Part I. Part II implies that if a,# 0 and if S lies in a
closed disc C, then every zero (¢ C) of A(z) lies in —(afa,) + C.
This, however, is a known result [loc. cit. Theorem 14, cf. also Walsh
1922 Theorem VI]. Again, the information we obtain from Part III
follows from known results [Fekete and Walsh 1957 Theorem X,
Fekete and von Neumann 1922 p. 138]. Assume that A(z) is a real
polynomial, a == 0, A\, >0 implies Re(z,) >0 (v=1,2, ---, n), and
Re(a,/a) <0 (i.e. if a, # 0 then 3", Re(z,) < —a,_,/a,). By Part IV
if 2z, is an arbitrary non-real zero of A(z), then the conclusions A and
B there hold. Finally, one can apply also Part V.

(¢) Suppose 6 =(n—2, n—1,n)., Then s=3, K=0. We set
P(z) = p + 72, so that (1) yields

n—1

—1
a, =17, a’n—lzp—TZZV; a’n—2:—p2llzv+z-
Y=

v=1

2%, +
1£j<ksn—1

Thus, setting 0, = 32212, 0y = Du<jch<n-1%i%, W€ have

n—1
A(@) = (0 + 72)9(2) + a 2, Mg()/(z — 2,)
where
P =a,0, + Uy T=0,, O =qy, + ol(anol + a’n-—l) - a,0, .

We may apply Parts I-V. For example, suppose that A(z) is a real
polynomial, that a = 0, and that either @, =0, or a, = 0 and

(@0s/@,) + (@4/a,) Re(o,) + Re(o? — 0;) =0 .

Then Re(r/a) < 0, and therefore, by Part III, every non-real zero of
A(z) belongs to at least one of the dises (3).

(d) Suppose 6 =(n—3, n —2, n —1,n). Here s=4, K=0.
We set P(z) = p + 0,2 + 2%, and from (1) we get

—2 n—2
Uy =T, Ouy=07—7T>,%, an_z=p—ao<zzv>+f 2% ,
y=1 v=1 1S7<k<n—2

n—2
@, = —p(E zv) + 0'0< > zjzk> — z‘( N z]-z,,zm> +a.
y=1 1 j<k<m=n—-2

1S§<k=n—2

Thus, setting o, = Z;L;z Zyy O3 = Zl§j<k§n—2 RjRpy O3 = Zl§j<k<m§n—2 iR %my
we have’

A@) = (0 + 02 + )0 + @ S 00D — 2)

" Observe that if n =4, Yi<j<h<msn—r 2s2r2m i zero, being an empty sum:
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where

T =0y, Oy = Qp—y + a,0, , P = Qp—y + (a'n—-l + a’nol)ol — a,0,,

a=a,3+ (U + G0, + @,0] — 20,0,)0, — @, 05 + @, 05 .

Here again we can use I-V of the Theorem. For example, suppose S
is contained in a disc C:|z —c¢| < r. By I, if a zero { of A(z) satis-
fies r< 0, £ —¢| £ P, then

lalf(o, + 1) = [P+ o + 72'| = |a|f(0, — 7).

By II, if ar # 0, if C contains also the zeros of P(z) = p + 0,2 + 77,
and if w, w, w, are distinet zeros of w® + /7, then every zero (¢ C)
of A(z) lies in Ui, (w, + C).

7. The following theorem is due to Marden [contained in his
Theorem (1,1), 1949]. Let z, 2, *++, 2, be (distinct) points of the
(open) complex plane, let tr, fo, ++ -, tt, be positive numbers, and let
Ay Ay, o0, A, (D= 1) be arbitrary complex numbers. Let

Fe) = 542 + Bl — =),

and set S = {z,, 2y, *++,2,}. Let T be the set of those zeros of F'(z)
at which S subtends an angle < 7w/(p + 1). Then the number of
points of T (each counted according to its multiplicity) is = p.
From this follows a result on the zeros of combinations of the form
Q) = P()f(z) + f'(z) where f(2) and P(z) are polynomials. (See loc.
cit. Theorem (4.3)).

Using known results on infrapolynomials, we can derive Marden’s
theorem very easily. For the theorem is obviously true if all the A,
are zero. Furthermore, one obviously may assume that 4,_, = 0, m > 1.
Set g(z) = H;n=1 (z - zv)r ©= Z:’;l Hvs Ay = /’tv/)u (V = 1; 27 c m)- Con-
sider the polynomial

A®) = 41 9DFE) = (T (4)4,-)2)0) + 1Az S 0g@)(z — 2)

= zm+p—1 + cee

which by Theorem 1 of [Shisha and Walsh, 1961] is an (m + p — 1)th
infrapolynomial on S with respect to (m — 1, m, -+, m + p — 1). By
a theorem due to Zedek [cf. Zedek 1955, Walsh and Zedek 1956, and
Fekete and Walsh 1957] the number of points of T (which is the
number of zeros of A(z), multiplicities taken into account, at which
S subtends an angle < 7/(p + 1)) is =< p.
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HOMOMORPHISMS OF 4-SIMPLE INVERSE
SEMIGROUPS WITH IDENTITY

R. J. WARNE

Munn determined all homomorphisms of a regular Rees matrix
semigroup S into a Rees matrix semigroup S* [3, 2]. This generalized
an earlier theorem due to Rees [7, 2].

We consider the homomorphism problem for an important class of
d-simple semigroups.

Let S be a d-simple inverse semigroup with identity. Such semi-
groups are characterized by the following conditions [1, 4, 2].

Al: S is d-simple.
A2: S has an identity element.
A3: Any two idempotents of S commute.

It is shown by Clifford [1] that the structure of S is determined
by that of its right unit semigroup P and that P has the following
properties :

Bl: The right cancellation law hold in P.

B2: P has an identity element.

B3: The intersection of two principal left ideals of P is a
principal left ideal of P.

Two elements of P are L-equivalent if and only if they generate
the same principal left ideal.

Since any homomorphic image of a d-simple inverse semigroup
with identity is a d-simple inverse simigroup with identity [5], we
may limit our discussion to homomorphisms of S into S* where S*,
as well as S, is of this type.

In §1, we consider two such semigroups S and S* with right
unit semigroups P and P* respectively. We determine the homomor-
phisms of S into S* in terms of certain homomorphism of P into P*,
and we show that S is isomorphic to S* if and only if P is isomorphic
to P*,

In §2, we show that if P is a semigroup satisfying Bl and B2
on which L is a congruence relation then P is a Schreier extension of
its group of units U by P/L and that P/L satisfies Bl, B2, and has
a trivial group of units. P satisfies B3 if and only if P/L satisfies
B3. The converse of this theorem is also given. In this case, we
determine the homomorphisms of P into P* in terms of the homomor-

Received June 25, 1963.
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phisms of U into U* and those of P/L into P*/L* and give the cor-
responding isomorphism theorem. In §3, some examples are given.

It is a pleasure to acknowledge several helpful conversations with
Professor A. H. Clifford.

Section 1. The correspondence between the homomorphism of S
and those of P.

We first summarize the construction of Clifford referred to in the
introduction.

Let S be any semigroup with identity element. We say that the
two elements are R-equivalent if they generate the same principal
right ideal: aS = bS. L-equivalent elements are defined analogously.
Two elements a and b are called d-equivalent if there exists an ele-
ment of S which is L-equivalent to @ and R- equivalent to b (This
implies the existence of an element of S which is R-equivalent to a
and L-equivalent to b.) We shall say that S is d-simple if it consists
of a single class of d-equivalent elements.

Now let P be any semigroup satisfying Bl, B2 and B3. From
each class of L-equivalent elements of P, let us pick a fixed repre-
sentative. B3 states that if ¢ and b are elements of P, there exists
¢ in P such that PanNPb = Pe. ¢ is determined by a and b to within
L-equivalence. We define avb to be the representative of the class
to which ¢ belongs. We observe also that

1.1 avb = bva .
We define a binary operation x by

(1.2) (axd)b = avb

for each pair of elements a, b of P.
Now let P~'oP denote the set of ordered pairs (a, b) of elements
of P with equality defined by

(1.3) (@,b) =(,b) if o/ = pa and V' = pb where p is
a unit in P (0 has a two sided inverse with
respect to 1, the identity of P).

We define product in P~'oP by
(1.4) (@, b)(c, d) = ((cxb)a, (bxc)d) .

Clifford’s main theorem states: Starting with a semigroup P satisfy-
wng Bl, 2, 3 equations (1.2), (1.3), and (1.4) define a semigroup P~'oP
satisfying Al, 2,3. P is isomorphic with the right unit subsemigroup
of P7'0P (the right unit subsemigroup of P~—'oP is the set of elements
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of PP having a right inverse with respect to 1. This set is easily
shown to be a semigroup). Conversely, if S is a semigroup satisfy-
wng Al, 2, 3 its right unit subsemigroup P satisfies Bl, 2,3 and S
18 tsomorphic with P 'oP,

The following results are also obtained :

The elements (1, @) of P~'oP constitute a subsemigroup thereof
isomorphic to P. We have

1.5) , a)d,d) = (1, adb) for a,b in P.
The ordered pair (1, 1) is the identify of P 'P, i.e.
(1.6) (a, b)1,1) = (1, 1)a, b) = (a, b) for a,b in P.

The right inverse of (1, @) is (a, 1), i.e.

a.mn 1, a)a,1) =(@1,1) for a in P.

1.8) (a, ¢) = (&, 1)1, ¢) for all @ and ¢ in P.
We identity S with PP and P with {(1,a): a in P}.

(1.9) (avb)c = p(acvbc) where a, b, and ¢ are in P and
0 is a unit in P,

(1.10) The idempotent elements of P~'oP are just those
elements of the form (a, @) where ¢ in P.

(1.11) (a, a)(b, b) = (avb, avb) for all a,b in P.

(1.12) aLb(a, b in P) if and only if ¢ = pb where p is
a unit in P.

Let P and P* be semigroups satisfying Bl, and B2 and B3. Let
v and u be the ‘join’ operations on P and P* respectively defined
on page 2. Let N be a homomorphism of P into P*. N is called a
semilattice homomorphism (or sl-homomorphism) if

(1.13) P*((avb)N) = P*(aN)NP*(bN)

i.e. (avb)N LaNubN in P*,

It is easily seen that we always have P*((avb)N) < P*(aN)N P*(bN).
However, the reverse inclusion is not generally valid. For example,
we might have P = G*, P* = G**, where G and G* are lattice-ordered
groups. An order-preserving homomorphism of G into G* need not
preserve the lattice operations.

THEOREM 1.1. Let S and S* be semigroups satifying Al, A2, and
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A3, and let P and P* be their right unit subsemigroups, Let N, be
a sl-homomorphism of P into P*, and let k be an element of P*.
For each element (a,b) of S, define

(1.14) (@, )M = [(aN)k, (bN)k]

the square brackets indicating an element of S*. Then M is a
homomorphism of S into S*. Conversely, every homomorphism of S
wnto S* is obtained in this fashion.

Proor. To show that M is single valued, let (e, d) = (o, ).
Then, ¢’ = pa and b = pb where p is a unit in P by (1.3). Thus,
&’'N = pNaN and Y'N = pNbON. Thus, since pN is a unit of P*,
(2, 0)M = (a/, )M by (1.3). To show that M is a homomorphism let
X and @ be the operations defined on P and P* respectively by (1.2).
Thus, using (1.2), (1.9), (1.13), and (1.12) obtain (rN)k Q (v N)k)(nN)k =
(rN)k w(nN)ke = wirNunN)k = wp* ((ron)N)k = we*(((r X n)n)N)k
= we*({(r x n)N)(nN)k where w and p* are units in P*. Thus, from
B1,

(1.15) (rNk @ (nN)k = wo*((r X n)N) .

Now, from (1.2), (1.1), and (1.15), we have (nN)k Q (rN)k) (rN)k =
(mNYk w(rN)k = (rN)k w(nN)k = wo* (rvn)N)k = wo* ((nvr)N)k =
wo* ((n x r)r)N)k = wo* (m X r)N) (rN) k. Therefore, by Bl,

(1.16) (nN)k @ (rN)k = wo* ((n X r)N) .

Thus, by (1.14), (1.4), (1.15), (1.16), and (1.3), (m, n)M(r, )M =
[(mN)k, (nN)k] [(rN)k, (sN)k] = [(rN)k @ (nN)k) (mN)k, (nN)k®
(rN)k) (sN)k] = [wo*((r X n)N) (mN)k, woe* ((n X r)N) (sN)k] =
[((r x n)ym)NE, (n x r)s)Nk] = ((r X n)m, (n X r)s)M = ((m, n) (r, s)) M.
Conversely, let M be a homomorphism of S into S*. Then, by (1.6)
and (1.10),

.17 1, DM = [k, k]

for some k in P*. Now suppose that (1, »)M = [a, b] and (n, )M =
[e,d] for n in P. It thus follows from (1.7) and (1.6) that [a, b]
[e, d]]a, b] = [a, b] and [e, d][a, b] [¢, d] = [c, d]. From (1.8) and (1.7),
it easily follows that [a, b][b, a][a, b] = [a, b] and [b, a] [a, b] [, a] =
[b, a]. Hence, [b, a] and [e¢, d] are inverses of [a, b] (2, p. 27). There-
fore, it follows from a theorem of Munn and Penrose (4; 2, p. 28,
Theorem 1.17) that [b, a] = [¢, d]. Thus

(1.18) (1, n)M = [a, b]
(n, 1)M = [b, a]
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Now, from (1.7), (1.17), and (1.18), [a, b} [b, ] = [k, k¥]. Thus, from
(1.8) and (1.7), we have [a, a] = [k, k]. Hence, by (1.3), a = pk where
0 is a unit of P*. Therefore, by (1.18) and (1.3),

(1.19) (1, n)M = [k, b] = [k, 07'b] = [k, ¢]

(n, YM = [b, pk] = [07*b, k] = [¢, k]
where ¢ = p7'b, Now, again using (1.8) and (1.7), [¢, k] [k, ¢] = [¢, ¢].
Thus, by (1.11), [k, k] [c, ¢] = [kuc, kuc] = [¢, ¢]. Therefore, by (1.3)
(1.12), P*(kuc) = P*c. Hence, by the definition of u, P*kNP*c =

P*c and P*¢ < P*k. Thus, we may write ¢ = B,k where B, in P*,
Thus, from (1.19), we have

(1.20) (1, m)M = [k, B,k]

(n, VM = [B,k, k] .
It follows easily from (1.8), (1.20) and (1.7) that
(1.21) (m, n)M = [B,k, B,k] .

Thus, to complete the proof, we must show that » — B, is a homo-
morphism of P into P* and that P* (B, % B,) & P*B,,,. It follows
from (1.20), (1.3), and (Bl1) that = — B, is single valued. To show
that » — B, is a homomorphism we first note that from (1.5) and (1.20),
|k, Bk} {k, B,k] = [k, B,.k]. Thus, by (1.4)

(1.22) [(k Q@ B,k)k, (B.k & k)B,k] = [k, B,..k] .
From (1.2), the definition of %, and (1.12)

(1.23) (k® B,k) B,k = ku (B,k) = wB,k
where w is a unit of P*. Thus, by (B1)

(1.24) EQ (Bk)=w.

By virtue of (1.2), (1.1), and (1.23), ((B.k Q k)k = (B,k) uk = ku
(B,k) = wB,k. Hence, by (Bl),

(1.25) (B, k) Qk = wB,, .

If we substitute (1.24) and (1.25) in (1.22), we obtain {wk, wB,B,k] =
[k, B,..k]. Hence, from (1.8) and (B1), we have B,B, = B,,. We now
show that P*(B,uB,) = P*B,,,. From (1.4), 4, m) (n,1) = n X m,
m X n). Henece, it follows from (1.21), (B1), and (B2) that [k, B,k]
[B.k, k] = [B.xwk, Bnx.k]. Thus, by virtue of (1.4), [((B.k) ® (B.k))k,
((B,k) Q (B, k)| = | Buxmk, Buxsk]. Hence, by (1.3) and (Bl), (B,k) X
(B,.k) = p*,B,» Where 0* is a unit of P*. Thus, by (1.2), B,kuB,k
= ((B.k) ® (B.k)) B,k = 0*\ByxnBuk = 0*:Biuxmunk = 0% Bumk. There-
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fore, by (Bl) and (1.9), 0’ (B,uB,) = 0*B,,. where 0’ is a unit of
P*, Hence P*(B,uB,) = P*B,,..

THEOREM 1.2. Let S, P, S*, and P* be as in Theorem 1.1. Let
2 be the set of isomorphisms of Ponto P*. Define (m, n)My=|mN, nN]
for N in Q2. Then {My: N in 2} is the complete set of isomorphisms
of S onto S*. Hence, N— M, 18 a one-to-one correspondence between
the tisomorphisms of P onto P* and those of S onto S* and S is
isomorphic to S* if and only if P is isomorphic to P*. The group
of automorphisms of P is isomorphic to the group of automorphisms
of S.

Proor. We first show that P* (¢NubN) & P* ((avb)N) for a,bd
in P and for any isomorphism N of P onto P*. It is easy to see that
Pa & Pb if and only if P*(aN) < P*(bN). Since aNubN = zN for
some z in P, P*2N = P*(aN) N P*(bN) < P*(aN), P*(bN) by the
definition of #. Thus, Pz & P(awb) by the definition of v and the
desired result follows. Therefore, by Theorem 1.1, M, is a homomor-
phism of S into S*. To show it is one-to-one let (m, n) M, = (p, )My,
i.e. [mN,nN] = [pN, gN]. Thus, using (1.3), we may show that
mN = (0’ p)N and nN = (0’ 9)N where 0 is a aunit of P. Thus, by
1.3), (m, n) = (p, q). Clearly, M, maps S onto S*. Conversely, let
M be an isomorphism of S onto S*. By Theorem 1.1, (m, n)M =
[(mN)Ek, (n N)k] where k in P* and N is a homomorphism of P into
P*, Now, it follows from (1.6), (Bl), and (B2) that (1,1) M = [k, k]
= [1*,1*] where 1* is the identity of P*. Thus, by (1.3), k is a
unit of P*. Now, let nA =k (nN)k for all » in P. It is easily
seen that A is a homomorphism of P into P*. Now, by (Bl), (B2),
and (1.3), we have

(1.26)  (m, VM = [(mN)k, k] = [k (mN)k, 1*] = [mA, 1*]
A, m)M = [k, (mN)k] = [17, k7 (mN)k] = [1*, mA] .

Thus, from (1.26) and (1.3), we have mA = nA implies m = n. Let
a be in P*. Then, by the remarks on page 3, it follows that [1*, a]
= (1, m)M for some m in P. Hence, by (1.26) and (1.3), a = mA.
Therefore A is an isomorphism of P onto P*. From (1.26) and (1.8),
we have (m, n)M = [mA, nA]. Thus, M = M,.

Section 2. A reduction of the homomorphism problem by an
application of Schreier extemsions.

We first will briefly review the work of Rédei [6] on the Schreier
extension theory for semigroups (we actually give the right-left dual
of his construction.). Let G be a semigroup with identity e. We con-
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sider a congruence relation » on G and call the corresponding division
of G into congruence classes a compatible class division of G. The
class H containing the identity is said to be the main class of the
division. H is easily shown to be a subsemigroup of G. The division
is called right normal it and only if the classes are of the form,

2.1) Ha,, Ha,, --- (a, = €)

and h, a; = h, a; with h,, h, in H implies h, = h,. The system (2.1)
is shown to be uniquely determined by H. H is then called a right
normal divisor of G and G/n is denoted by G/H.

Let G, H, and S be semigroups with identity. Then, if there
exists a right normal divisor H’ of G such that H = H' and S = G/H',
G is said to be a Schreier extension of H by S.

Now, let H and S be semigroups with identities E and e¢ respec-
tively. Consider H X S under the following multiplication :

(2.2) (4, a) (B, b) = (AB%}, ab) (A, Bin H; a,b in S)
in which
at, B* (in H)

designate functions of the arguments a, b and B, @ respectively, and
are subject to the conditions

(2.3) @ =FE ¢=F B =B E'=E.

We call H x S under this multiplication a Schreier product of H and
S and denote it by HoS.
Redéi’s main theorem states:

THEOREM 2.1 (Rédei). A Schreier product G = HoS is a semi-
group if and only if

(2.4) (AB) = A°B° (A, Bin H: ¢ in S)
(2.5) (B%°c* = ¢*B°* (B in H; a,c¢ in S)
(2.6) (a)c®® = c¢*ca)® (a, b, ¢ in S)

are valid. These semigroups (up to an tsomorphism) are all the
Schreier extensions of H by S and indeed the elements (A, e) form
a right normal divisor H' of G for which
2.7 G/H =S (H'(E, a)—a)

H' = H ((4, e)— A)

are valid.
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THEOREM 2.2 Let U be a group with identity K and let S be a
semigroup satisfying Bl and B2 (denote its identity by e) and suppose
S has a trivial group of units. Then every Schreier extension P =
UoS of U by S satisfies Bl and B2 (the identity is (E, e)) and the
group of units of Pis U ={(4,¢): A in U} = U. Furthermore L
is a congruence relation on P and P/L = S. P satisfies B3 if and
only if S satisfies B3,

Conversely, let P be a semigroup satisfying Bl and B2 on which L
is a congruence relation. Let U be the group of units of P. Then
U is a right normal divisor of P and P/U = P/L. Thus, P is a
Schreier extension of U by P/L. PJ/L satisfies Bl and B2 and has
a trivial group of umnits.

REMARK. Hence if P is any semigroup satisfying Bl and B2 with
group of units U such that L is a congruence relation on P, we will
write P = (U, P/L, a*, A% in conjunction with Theorem 2.1 and 2.2.
(We note that L is a right regular equivalence relation on any semi-
group) ab, A® will be called the function pair belonging to P.

REMARK. A theorem of Rees [8, Theorem 3.3] is a special case
of the above theorem.

Proof. It follows easily from (2.2) and (2.3) that P satisfies Bl
and has identity (X, e). From Theorem 2.1, U’ = U. Now, suppose
(4, a) is a unit of P. Then, (4, a) (B, b) = (¥, ¢) for some (B, b)
in P. Hence by (2.2), ab =e¢. Thus, by (B1), (B2), and the fact that
the group of units of S is ¢, a =b =¢, and (4, a) in U'. From (2.2)
and (2.3), every element of U’ is a unit of P.

Next, we determine the principal left ideals of P. From (2.2),
we have

(2.8) P(A, a) = {(BA%*, ba): Bin U, bin S}

={(C, ba): Cin U, b in S}.
Since P(A, a) just depends on a, we may write P(A, a) = P, for all
A in U.

Next, we show that

2.9) (4, a) L (B, b) if and only if a =0 .

Now, from (2.8), (4, a) L (B, b) implies b = za and @ = yb for some
z, y in S Thus, by Bl, 2y = yx = ¢, and since S has a trivial group
of units, x =y = e. Thus, a = b. The converse is evident from (2.8).
It follows easily from (2.9) and (2.2) that L is a congruence relation.
L., will denote the L-class of P containing (F, a). It is easily seen
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that the mapping L. — @ is an isomorphism of P/L onto S. Now
suppose S satisfies B3, i.e. a,b in S implies there exists ¢ in S such
that

(2.10) Sa N Sb= Se.
From (2.10) and (2.8),
(2.11) P,NP =P,

and P satisfies B3. If P satisfies B3, it follows from (2.8) and (2.11)
that S satisfies B3.

Now, let P be a semigroup satisfying Bl and B2 with group of
units U on which L is a congruence relation. By (1.12) (this is shown
without using B3) U is the congruence class mod L containing the
identity 1 of P, i.e. U is the main class of the compatible class divi-
sion of Pgiven by L. If a in P, L, = Ua from (1.12). If pa = o0
a where o, 0, in U, then p,=p, by Bl. Thus, U is a right
normal divisor of P and P/U = P/L. Hence, P is a Schreier extension
of U by P/L. By virtue of (1.12) and (B1), P/L satisfles Bl.

~ Let a—a be the natural homomorphism of P onto P/L. Then,
1 is the identity of P/L. Let @ be a unit of P. Then, by (1.12), (B1),
and (B2), a is in U. Hence, @ =1. Therefore, P/L has a trivial
group of units.

THEOREM 2.3. Let P= (U, P/L, a*, A% and P* =(U*, P*/L*,
b, B°) be semigroups satisfying Bl and B2 on which L and L* are
congruence relations. U and ab, A denote the unit group and func-
tton patr of P. U* and b°, B° denote the unit group and function
pair of P*. P/L 1s the factor semigroup of P mod L and P*/L*
18 the factor semigroup of P* mod L*. Let f be a homomorphism
of U into U*, g be a homomorphism of P/L into P*/L*, and h be
a function of P/L into U*. Suppose f, g and h are subject to the
following conditions :

(2.12) (ak) (bR)'“"(ag)*” = (a’f)(ab)h
(2.13) (R)A[L)®? = (A°f)(bh) .
For each (A, a) in P define

(2.14) (4, a)M = [(Af)(ah), ag]

where the square brackets demote elements of P*. Then M 1is a
homomorphism of P into P* Conversely, every homomorphism of P
into P* is obtained in this fashion. M 1is an 1isomorphism &f and
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only if f and g are isomorphisms.

Proof. Clearly, M is single valued. From (2.14), (2.2), (2.4),
(2.13) and (2.12), we have

(4, &) M (B, b)M = [Af)(ah), ag] [(Bf)Dbh), bg] =
= [(Af)ah)(Bf)(bh)*"(ag)*”,ag. bg] = [(Af)ah)(Bf)*(bh)**(ag)*’,(ab),]
= [(AFXB"f)ah)(bh)**(ag)", (ab),] = [(Af)Bf)a’f ) ab)h, (ab),]
[(AB%a®)f (ab)k, (ab),] = (AB%a’, ab)M = ((A, a)(B, b))M .

Thus, M is a homomorphism of P into P*. Conversely, let M be any
homomorphism of P into P*. It follows from Bl and B2 that UM <
U.* Thus, by Theorem 2.2, we may let

(2.15) (A, )M = [Af, e*]

where e and ¢* denote the identities of P/L and P*/L* respectively.
Clearly, f is a mapping of U into U*. It follows easily from (2.15),
(2.2) and (2.3) that f is a homomorphism of U into U*. Let E be
the identity of U. Then,

(2.16) (E, a)M = [ah, ag] .

Clearly, h is a function of P/L into U* and ¢ is a function of P/L
into P*/L*. From (2.2) and (2.3), (4, a) = (4, e)E,a). Thus, by
(2.15), (2.16), (2.2), and (2.3)

217 (A4, o)M = (A, )M (E, )M = [Af, e*lah, ag] = [(Af)(ah), ag] .

From (2.2) and (2.3), we have (&, a)(E, b) = (ab, ab). Thus, by (2.17),
we have [ah, ag] [bh, bg] = [(a’f)(ab)h, (ab)g]. Therefore, by (2.2)

(2.18) [(@h)(bh)**(ag)*, (ag)(bg)] = [(a’f ) ab)h, (ab)d] .

From (2.18), it follows that ¢ is a homomorphism and (2.12) is satisfied.
From (2.2) and (2.3), we have (F, b)(A, ¢) = (A%, b). Thus, from (2.17)
and (2.15), [bh, bg] [A S, ¢*] = [(A%f)(bh), bg]. Hence, (2.13) follows from
(2.2) and (2.3).

Suppose M is an isomorphism of P onto P*. Therefore, by (2.14)
(4, a)M = [(Af)(ah), ag] where f is a homomorphism of U into U*, h
is a single valued mapping of P/L into U* and ¢ is a homomorphism
P/L into P*/L*. It is easy to see that UM = U*. Thus, by virtue
of theorem 2.2, if B in U*, there exists A in U such that (4, e)M =
[B, e*]. Thus, by (2.15), Af = B and f maps U onto U*. By (2.15),
f is one-to-one and hence is an isomorphism of U onto U*. To show
g is one-to-one, let
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(2.19) ag = bg .
There exists ¢ in U* such that
(2.20) x2(bh) = ah .

Now, by (2.2) and (2.3), (xf 7, e)(¥, b) = (xf ", b). Hence, by (2.15),
(2.14), (2.2), (2.8), (2.19) and (2.20), (xf ™, b)M = [x, e*] [bh, bg] = [x(bh),
bg] = [ah, ag] = (K, a)M. Hence, a = b. It follows immediately from
(2.14) that g maps P/L onto P*/L* and hence g is an isomorphism of
P/L onto P*|L*.

Conversely, suppose there exists an isomorphism f of U onto U*,
an isomorphism g of P/L onto P*/L* and a single valued mapping &
of P/L into U* such that (2.12) and (2.13) are satisfied. Therefore,
by (2.14), (4, a)M = [(Af)(ah), ag] is a homomorphism of P into P*.
It is easily seen that M is one-to-one. Let [B, b] be in P*. Now there
exists @ in P/L such that b = ag and A in U such that (Af)(ah) =
B. Hence (4, a)M = [B, b] by (2.14).

REMARK., If ah = E*, where E* is the identity of U¥*, then
(2.12) and (2.13) simplify greatly :
(2.12y (ag)’’ = a'’f,
(2.13) (Af)r = A’f .

Professor Clifford remarks that we can bring this about by making a
new choice of representative elements in P or in P*, respectively, in
the following two cases: if the range of % is contained in the range
of f; or if ag = a'g (a, ¢’ in P/L) implies ah = a’h.

Section 3. Examples, We give some examples to illustrate the
theory.

ExaMPLE 1. The bicyelic semigroup “C?” [2, p. 43] consists of
all pairs of nonnegative integers with multiplication given by

3.1) (t, 5)k, 8) = (4 + k — min (4, k) j + s — min (5, k)) ,
A complete set of endomorphisms of “C” is given by
3.2) (4, )My, = (tt + k, t7 + k)4, j are nonnegative integers)

where (¢, k) runs through all ordered pairs of nonnegative integers.
The only automorphism of ‘C’ is the identity.

ExAMPLE 2. Let G be any group of order greater than or equal
to two with identity E. Let I, be the nonnegative integers under
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the usual addition. Consider P = GzI, under the following multiplication.
3.3) (A, a)(B, b) = (AB%, a + b)

where B*=Bif a=0
B*=FKEif a+0.

P is a semigroup satisfying (B1), (B2), (B3) which is not left cancella-
tive. Let S be the semigroup corresponding to P in Clifford’s main
theorem. Let % be a mapping of I, into G such that oh = E and ah
= (e + b)h for all ¢ = 0. Let f be an automorphism of G. Then,

(3.4) (4, a), (B, )M = (Af)ah), a), (Bf)(h), b)) where (4, a),

(B, b) in P is an automorphism of S. Conversely every automorphism
of S is obtained in this fashion.

One obtains similar results if I, is replaced by the positive part
of any lattice ordered group.

ExavpPLE 3. Let G* be the positive part of any lattice ordered
group G. Let S be the semigroup corresponding to G* in Clifford’s
main theorem. Then there exists a one-to-one correspondence between
the automorphisms M of S and the order preserving automorphisms
N of G. This correspondence is given by

(m, n)M = (mN, »N) (m and » in G*) .
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LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

R. WESTWICK

1. Let U denote an n-dimensional vector space over an algebraically
closed field F', and let G,, denote the set of nonzero pure r-vectors of
the Grassmann product space A" U. Let T be a linear transformation
of A" U which sends G,. into G,.. In this note we prove that T is
nonsingular, and then, by using the results of Wei-Liang Chow in [1],
we determine the structure of 7.

For eachz =, A --- A 2,.€G,,, we let [2] denote the -dimensional
subspace of U spanned by the vectors x,, ---, ,. By Lemma 5 of [1],
two independent elements z, and 2z, of (.. span a subspace all of whose
nonzero elements are in G,, if and only if dim (|z,] N [z.]) = » — 1; that
is, if and only if [z,] and [z,] are adjacent. If V< A" U is a subspace
such that each nonzero vector in V is in G,, and if V is maximal
(that is, not contained in a larger such subspace) then {[z]|z€ V, z == 0}
is a maximal set of pairwise adjacent #-dimensional subspaces of U.
These sets of subspaces are of two types; namely, the set of all
r-dimensional subspaces of U containing a common (r — 1)-dimensional
subspace, and the set of all 7-dimensional subspaces of an (v + 1)-
dimensional subspace of U. We adopt the usual convention of calling
these sets of subspaces maximal sets of the first and second Kkind
respectively. We will let A, denote the set of those maximal V which
determine a set of pairwise adjacint subspaces of the first kind, and
we will let B, denote the set of those maximal V which determine a
set of pairwise adjacent subspaces of the second kind.

2. In this section we prove that if T sends each member of B,
into a member of B, then T is nonsingular.

Let U, ---, U, be k-dimensional pairwise adjacent subspaces of U
and let z; € G, be such that [z;] = U, for4=1, -+«,¢t. Then {U,, ---, U}
is said to be independent if and only if {z, ---, 2} is an independent
subset of A* U. We note the following facts concerning an independent
set {U,, ---, U}. 1If it is of the first kind (in the sense of the previous
section) then there is an independent set of vectors {x,, -+, %oy, Y1, ***, Y}
of U such that for ¢ =1, ++-, ¢, U, = {&y, +++, @4y, Y;)+<+++> denotes
the linear subspace spanned by the vectors enclosed. If it is of the
second kind, then there is an independent set of vectors {x;, « -+, 2.1}
such that U, =<, -+, X;q, By, ==+, Tppr), for ¢t =1, <+, t. It is easily

Received July 2, 1963. The author is indebted to M. Marcus for his encouragement
and help.
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deduced from this that dim (A" U, + «++ + A" U,) is equal to t(ﬁ _ i) +
(k ; 1) or SV} <£ _ ;) according as the set of subspaces {U;} is of

the first or second kind. We adopt the usual convention that <:®n> =

0 if m < n. Finally, if the set {U, ---, U} is not independent, then

for some ¢, AU, S A"U, + -+ + A" U,.;7 In fact, the choice of ¢

such that {z,, :--, 2,_,} is independent and z; €<z, ---, 2;_» will do.
We require the

LEMMA 1. Let {U, ---, U,,,} be a set of pairwise adjacent k-
dimensional subspaces of U. Suppose further that the set is independent
and s of the second kwnd. Let V= AU, -+ + A" U, be a subspace

qu:z , where s=r =k. Then there is a set
{Vi, -+, V.} of pairwise adjacent k-dimensional subspaces of U such

that VO(A" Vi+ -+ + A" V) = {0}.

with dimension <

k—s

Proof, Let m = (r—s) and let {2, --+,2,} be a basis of V.

Choose an independent set of vectors {x,, -+, 2,1} of U such that for
1=1,+,8+ 1, U =&, *++, Timgy Ty, ***, Tpprp. We can write

2, =2 BN e ALy ATy A ZEF B A eoe ATy A Xyyy N 26

where

N r r 3 . r—8
e AU+ -+ AU, and 2,2ie A&y ***, Tprr)

fori =1, .-+, m. In the case that s = 1, we take ziec A"{&,, - -, Tyr1)-
In the case that s = », we take 2}, 2ic F. If {2}, -+, 27} or {2}, -+, 20"}
is dependent, then we can form a linear combination of z, ---, 2,, which
will bein AU+ - Vi + A"U,sor AU+« + AN U_.+ AU,
respectively. If, on the other hand, both sets are independent then
each is a basis of A™* <%, * -+, Tpiry since dim (A2 &, 40, =7, Tpyp) =
(ﬁ _ §> =m. Letzi=>7,a;2{,9=1, -+, m. Choose\ # 0andb; e F,
not all equal to zero, such that

)"bi:ibia’ﬁ’ j:1,---,m.
i=1
Then
0% 3 bz =3 el + 2w A voe Adiy A @ + N 0) A bigd
i= i= j=1

eEAU+ - +A U+ AV,

where V,=<® +++, %y, &, + N2, 1, Togs, =+, iy The subspaces
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U, -, U_, V, are pairwise adjacent and so the Lemma is proved.

The nonsingularity of T is now proved as follows. Let W be a
subspace of U. We prove, by induction on the dimension of W, that
T is one-to-one on A" W and that the image of A" W under T is
A” W' for some subspace W’ of U with dim (W) = dim (W’). When
dim (W) = » + 1 this is clear since we are assuming that B, is sent into
B, by T. Suppose that the statement has been proved for k-dimensional
subspaces, and consider a (k + 1)-dimensional subspace W of U. Let
s be the largest integer such that for any set {W,, -+, W} of pairwise
adjacent k-dimensional subspaces of W, T is one-to-one on A" W, +
oo+ A"W,. If s=Z 7+ 1 then T is one-to-one on A" W, since in
this case, for an independent set {W,, ---, W.} we must have A" W=
N W.+ -+ A" W,. Supposethenthatl <s=<randlet{U, -, U}
be any set of s + 1 pairwise adjacent k-dimensional subspaces of W.
If the set is dependent then T is one-to-one A" U, + --- + A" U,
since we may drop one of the terms. Therefore we assume that the
set is independent. Choose k-dimensional subspaecs U/, ---, U,,, such
that T(A"U,) = A" U/ for 1 =1, --+,8+ 1. For each 5 <s, T maps
ANU+ -« + A"U; onto AUy + -+ + A" U;. Therefore, since T
isone-to-oneon A* U, + -+- + A" U, theset {U], ---, U!} is independent.
Furthermore, the set {U/, ---, U/,,} is also independent. If not, then the
image under T of both A" U, + -« + A" U,and A" U, + -+ A" U,y is
AN Ul + --- + A" U!. But then the dimension of the null space of
Tin AU, + -+ + A" U,,, is at least as large as the difference in
the dimensions of AU, + -+ + A"U,y; and AU, + --- + A" U,
that is, <I; :z . We apply Lemma 1 to contradict the choice of s.
It follows that T is one-to-one on all of A" W. Finally, let {W,, -+, W4}
be an independent set of k-dimensional pairwise adjacent subspaces of
W (necessarily of the second kind). Let W, be chosen so that
TN W) = A" W.. 1t follows easily that {W{, --., W[} is of the
second kind also, so that the image of A" Wis A" W' where W’ is
the (k + 1)-dimensional subspace of U containing W/, ---, Wi,.. By
taking W = U we see that T is one-to-one on A" U.

3. It is necessary to investigate whether a general T does
necessarily send each element of B, into B,. For the cases n > 2r,
n < 2r, this is proved directly, using Lemma 2. The case n = 2r
requires a more delicate argument, given at the end of this section;
there it is shown that if some element of B, is sent into B, by T,
then T sends B, into B,.

LEMMA 2. Let r<n and let V. and V, be in A, such that
Vin Vo#1{0}. Then,if VS V,+ V, and dim (V) =n — r, we have
VnG@G,, = 3.
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Proof., Let U; be the (r — 1)-dimensional subspace of U determined
by V;forz =1, 2. Since V; N V,+ {0}, either U, = U, or dim (U, N U,) =
r — 2.

If U, = U, then V,=V,, so that in this case it is clear that
VNG, # 4.

Suppose that dim (U, N U,) = r — 2 and let {z,, -+, 2,_,} be a basis
of this intersection. Choose ¥%; such that U, =<w, ---, ®,_,, ¥,> for
t=1,2. Choose #; and »; in U, 1 =1, ---, » — 7, such that

fzi=m Ao AN AW AU+ Av)]i=1, -, n — 71}
forms a basis of V. If

{xb ooy Lpmgy Y1y Yoy Vyy 02y ’Un—r} or {xb oty Lpay Y1y Yoy Uy *°°, un—r}

is dependent, then there is a linear combination of the z; which is in
V, or V, respectively. If, on the other hand, both sets are independent,
then they are both bases for U and we may write

n—r
ui:wi_!‘ci'yg-{‘z;aij’vj, ’L:].,"',’n—-’r,
i=

where w; e &, -++, .-, Y and ¢;, a;;€ F. We note that det (a;;) = 0
so we can choose A = 0 and b; for 5 =1, ---, » — 7, not all zero, such
that M b; = 3'=rb,a;;. Then

0+ nz_lr bjzi =0 A e AT A (yl + 7\l-—ly2) AN [(g bjcj)y2 + N nz—’r bj'l)j]
i=t Jj= j=1

is an element of VN G,,. This proves the Lemma.

For n # 2r the image under T of an element of B, is an element
of B,. For n < 2r this is clearly so since the subspaces of A" U in B,
have dimension 7 -+ 1, which is greater than the dimension (n — r 4 1)
of the subspaces in A..

For n > 2r we proceed as follows. The image of an A, is an A4,.
Suppose that the image of a We B, is a subspace of a Ve A,. Choose
two elements V; and V, of A, such that V; N V,= {0} and dim (V; N W) =
dim (V,N W) = 2. One does this by choosing V, and V, so that the
(r — 1)-dimensional subspaces of U determined by them are adjacent sub-
spaces of the (7 + 1)-dimensional subspace determined by W. Now,
T(V) = T(V,) = V since each is in A, and each intersects V in at
least two dimensions. Therefore T(V; + V,) = V and so the null space
of Tin V, + V, has dimension equalto (@n —2r +1) —(n —r + 1) =
n — r. By Lemma 2, it follows that the null space of T intersects G,,
which contradicts the hypothesis that T sends G,, into G,,.
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In the case that » = 2r the image of a B, may be an A, since
the dimensions are equal. However, we prove that if some B, is sent
into a B, by T, then the image of each B, is a B,. Suppose not.
Then we can choose (7 + 1)-dimensional subspaces W, and W, of U
such that T(A" W)e A, and T(A" W,)e B,. Furthermore, we can
choose W, and W, adjacent, so that dim (W, N W,) = . Choose three
distinct elements V;, V,, and V, of A, such that the (» — 1)-dimensional
subspaces of U determined by these elements are contained in W, N W,.
Then dim (V;N A" W;) =2 for +=1,2,8 and j =1, 2, so that T(V))
intersects T(A"™ W;) in at least two dimensions for each %, j. This
implies that each T(V;) is equal to one of T(A" W) and so two of
them are equal. The argument of the previous paragraph now leads
to a contradiction.

4. By essentially the same argument as used by Chow in [1] to
prove his Theorem 1, we can prove that; if S is a nonsingular linear
transformation of A" U sending G,,. into G,,, and if the image of each
B.is a B,, then S is a compound. (By a compound we mean a linear
transformation of A" U which is induced by a linear transformation
of U.)

In the case that n = 2r it follows that T is necessarily a compound.
For m = 2r, T is a compound if some B, is sent into a B,. If we let
T, denote a linear transformation of A" U induced by a correlation of
the 7-dimensional subspaces of U, then T, is nonsingular and sends
G,, onto G,,. The image of each A, under T, is a B,. Therefore, if
a B, is sent by T into an A, the T,T is a compound. We have
proved the

THEOREM. Let U be an mn-dimensional wvector space over amn
algebraically closed field and let T be a linear tramsformation of
AN U which sends G,. into G,.. Then T is a compound except,
possibly, when n = 2r, in which case T may be the composite of a
compound and a linear transformation induced by a correlation of the
r-dimensional subspaces of U.
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