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1* Introduction* In a previous communication [2] we established
the existence of a class of free boundary flows of an incompressible
inviscid fluid in a uniform gravitational field, having plane projections
as illustrated in Figure 1. The flow domain is bounded on the right

by an infinite line L inclined at an angle a with the horizontal, and
below and on the left by a semi-infinite horizontal line H and a free
boundary arc Γ joined to H. The flow is downward through the slot
between H and L into a jet bounded by L and Γ. The physical
parameters include the boundary inclination a, the acceleration of
gravity g, the solt width Z), the area flow rate (flux) A, and the flow
speed at the slot edge, q. It is shown in [2] that there exists a
similarity class of such flows for each choice of the dimensionless pair
a, gA\qz such that 0 < a < π, 0 < gA\q* < oo. The flows established
there have convex free boundaries in the sense that their inclinations
decrease monotonically from zero at the slot edge to — π + a at infinity,
where they are asymptotic to the fixed boundaries L.

In this paper we shall establish the uniqueness of these similarity
classes, find the ranges of the dimensionless products

(1.1) K = qD/A , λ = gA/q*, μ = gD/q2, v = gD'/A2

and determine the continuity and monotonicity relations between these
products and other similarity invariants. (The products tc, λ, μ, v are
singled out since each involves only three of the four quantities g, D,
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A, q. Notice that λ has been changed by the factor τr/6 from its
value in [2] this change does not affect our qualitative results.) The
uniqueness and monotonicity theorems are independent of the existence
theorems of reference [2]. They are based on the Lavrentieff-Serrin
theorems summarized in §2. They also depend on the asymptotic jet
behavior established in [4], although only on the "asymptotic free
boundary shape" as expressed by equation (1.3) below.

We assume specifically that
(a) each flow occupies a simply-connected schlicht domain bounded

by L and H+ Γ
(b) the complex velocity potential W = U + ίV maps this domain

conformally onto the infinite strip 0 < V < A so that H + Γ goes
into V = 0 and L goes into V = A

(c) the flow velocity exists on Γ, including the endpoint on H,
as a limit from within the flow domain

(d) Γ extends downward to infinity in the sense that the vertical
depth h below H tends to +°° on this curve

(e) the condition of constant pressure, relating the flow speed v
and depth h, is satisfied on Γ:

(1.2) v2 = q2 + 2gh

Stronger explicit restrictions than (c) and (d) on the asymptotic jet
behavior are unnecessary because, as shown in [4], the conditions
(a)—(e) together fix this behavior very closely. In particular the
asymptotic shape of Γ, in terms of rectangular coordinates with
positive x-ax is downward along L, is given by

(1.3) xf ~ A2/2g cos a .

The class of flows satisfying these conditions is invariant under a
group of plane Euclidean motions as well as a dimensional similarity
group (homotheties of the length and time scales). We eliminate the
Euclidean motions by fixing once and for all the direction of gravity
and position of the point 0 on the slot at L.

Let J?~ denote the family of all flows so determined, satisfying
conditions (a)—(β). This family remains invariant under the dimen-
sional similarity group, which decomposes ά?~ into minimal invariant
subsets—the similarity classes. A general form of the uniqueness
theorem, established in § 4, is

THEOREM 1.1. There is at most one similarity class in j ^ ~ having
prescribed values of a and any one of the four products fc, λ, μ, v.

As a direct corollary we have
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THEOREM 1.2. There is at most one flow in J?~ having prescribed
values of a and any three of the four quantities g, D, A, q. All
such flows belong to the class established in [2].

For each value of a the products tc, λ, μ, v are shown in § 4 to
be continuous monotonic functions of one another such that tc decreases
as λ, μ, v increase. The ranges of λ, μ, v are all (0, <χ>) while tc is
restricted to an interval (Λ;̂ , Λr0), 0 < tc^ < tc0 < oo, whose limits depend
on a. These bounds on tc, and the limiting flows to which they corre-
spond, are determined in § 5.

The fact that for fixed a the ranges of μ and v are both (0, °o)
implies the existence, as well as the uniqueness, of a flow in j^~ having
arbitrarily given geometric parameters a, D, as well as g and either
A or q. Not all these flows can be expected to be stable. It is intui-
tively very plausible that they are stable for small, but unstable for
high, values of λ, μ, v. (Thus let a, D, g be fixed. When A and q are
large the fluid is forced rapidly through the solt and small disturbances
wash quickly downstream into the jet. When A and q are small the
flow proceeds slowly across the slot, where Γ is almost horizontal
before turning abruptly as it nears L (see § 5) the limiting flow has a
stationary horizontal free boundary which is certainly unstable.)

For the proofs we shall work entirely with families of dimensionless
flows. Except as otherwise noted in §§ 4, 5, all flows are assumed to
belong to the family ^[ obtained from ^ by taking D and D2[A as
units of length and time, respectively. The members of̂ ~[ are in 1:1
correspondence with the similarity classes in ^ 7 They are defined in
terms of the parameters a, tc, v alone, for the substitution A = D = 1
in (1.1) yields q — tc, g — v, (in view of Theorem 1.1 only one of the
parameters tc and v is actually needed to determine the flow, but until
this is proved we may think of both tc and v together as defining the
flow). With the above normalizations, the constant pressure condition
{1.2) becomes

(1.4) v2 = tc2 + 2vh

while the asymptotic free boundary shape (1.3) reduces to

(1.5) xy2 - (2v cos a)-1.

The other products are determined by the identities

(1.6) λ = vjtc\ μ = v\κ2 .

2* Comparison theorems* Here we collect several Lavrentieff-
Serrin comparison theorems needed in the proofs. The terminology is
as follows: A strip flow is one in which the complex velocity potential
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W = U + i V is onto an infinite strip 0 < V < A a half-plane flow is
one in which T7 is onto the half-plane 0 < V < °o. A regular boundary
point is a boundary point of the flow domain at which the flow velocity
u = lim W exists as a limit from the interior and does not vanish.

THEOREM 2.1. Consider two flows with complex velocity potentials
Wτ, W2, respectively, such that the domain of the second flow is
contained in that of the first. Suppose that the streamlines Vt — 0,
V2 — 0 have a common point M at which the velocities of both flows
exist as limits from within their domains. If either

(a) both are half-plane flows such that WfK00) — W^i00) = oo,
having °° as a regular boundary point and having equal velocities
at oo, or

(b) both are strip flows of equal flux A, and the streamline
V2 — A is part of the streamline VΊ = A,
then the respective flow speeds v1M, vm at M satisfy

VIM ^ Vm .

Equality holds if and only if the flows are identical or v1M — 0.

THEOREM 2.2. Consider two strip or half-plane flows with complex
velocity potentials Wl9 W2, respectively. Suppose that the flow domains
contain a common simply-connected domain !3$ having distinct boundary
points M, N which are regular boundary points of both flows. If
either

(a) the boundary of & consists of a simple closed curve QMNQ,
positively oriented around &, (Q may be at infinity) such that QMN
is part of the streamline VΊ — 0 and MNQ is part of the streamline
V2 = 0, or

(b) both are strip flows of flux Alf A2, respectively, and the
boundary of 3? consists of a simple closed curve QMNPQ, positively
oriented around 3f, (P or Q may be at infinity) such that QMN is
part of the streamline Vx = 0, MNP is part of the streamline V2 = 0,
and PQ is a common part of the streamlines V1 = Al9 V2 — A2,
then the respective flow speeds at M and N satisfy

Equality holds if and only if the flows are geometrically similar {in
the sense that W2 = aWx + b).

Theorem 2.1 is essentially Theorem 1 of [7] combined with the
first Comparison Theorem of [9] (Appendix), while Theorem 2.2 combines
Serrin's "under-over theorems" [7, 8]. Theorem 2.2 (a) is stated so
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as to allow the simultaneous comparison of a strip flow with a half-
plane flow as needed is % 3 the proof is the same as that of Theorem
2 of [7].

3* Qualitative features* In preparation for the uniqueness proof
we shall establish some qualitative flow features, including the fact
that the free boundary cannot rise above the horizontal fixed boundary.
Although proved for the "dimensionless family" ^ 7 , these results hold
equally for

LEMMA 3.1. There are no stagnation points on Γ.

Proof. To obtain a lower bound on the flow speed on Γ note, in
view of the constant pressure condition (1.2), that a point of minimum
speed is also a point of minimum depth (i.e., maximum height above
H). Let N be any point of maximum height on Γ and P be the point
on L at the same height as N (see Figure 2). Then the infinite sector

N

(

H

Fig. 2

to the left of L and above the horizontal line through N and P lies
inside the flow domain. Comparison with the "wedge flow" of unit
flux in this sector, having a source at oo and a sink at P, using Theorem
2.1 (b), shows that the speed vN at N satisfies

(3.1) VjrXπ- a)/d

where d is the distance from N to P.

LEMMA 3.2. Γ is an analytic arc except at the slot edge, where
it is tangent to H.

Proof. Lewy has shown [5] that the free boundary is analytic
except at endpoints and stagnation points. Moreover the boundary
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has a tangent wherever the flow velocity is defined and not zero.
Thus the lemma follows by Lemma 3.1 and condition (c) on j^~m (For
further information on the flow behavior near the slot edge, see [3]).

LEMMA 3.3. Except at the slot edge, Γ lies entirely below H.

Proof. Let the points N and P be as in the proof of Lemma 3.1
and M be a point of minimum height on that part of L joining H to
N. We are to show that N is at the slot edge, but it is sufficient to
show that M is at the same height as N. For then they are both
level with H, and if N is not at the slot edge, Γ is initially an ex-
tension of the line H. Since Γ is analytic (Lemma 3.2) it must itself
be an extension of H, contradicting condition (d) on J^.

Suppose N lies above M. We will show that the speeds vMf vN

at these points satisfy vN > vM9 which contradicts the constant pressure
condition (1.2). Consider two cases according as the inclination 7 of
the segment joining M and N, 0 < 7 < π, does or does not exceed a.
If 7 > a, let 1/χ be a line parallel to L lying sufficiently far to the
left so as to intersect H but not Γ (see Figure 3). Consider a half-

Fig. 3

plane flow in the domain ^ * having as positively oriented boundary
that part of Lx below H, the segment of H between Lx and the slot
edge, that part of Γ between the slot edge and N, the horizontal
segment NP, and the part of L above P, whose complex velocity
potential TF* satisfies TF*(°o) = oo. Each of the three boundary points
My N, oo, is a regular boundary point since the boundary is piece-
wise analytic with continuous inclination [6]. If vi9 ^ are the speeds
of this flow at ikf, N, then it follows from Theorem 2.2 (a), with
Q = oo, that

(3.2)



UNIQUENESS OF A CLASS OF STEADY PLANE GRAVITY FLOWS 1179

Ttfow let this half-plane flow in ^ * be translated along the segment
MN so that M is brought into coincidence with N. Since 7 > a the
translated domain &** is inside ^ * , and Theorem 2.1 (a) yields
v% > vi; hence vN > v*.

If 7 ^ tf, let ^ * be the domain whose positively oriented boundary
consists of H, the part of Γ between the slot-edge and JV, the segment
NP, and the part of Lx above P. Let vi9 v% be the flow speeds at
M, N of a strip flow in ^ * with source at infinity and sink at P.
The inequality (3.2) now follows on taking Q = 00 in Theorem 2.2 (b).
Finally let ^ * * be the domain inside 22* obtained by translating ϋ ^ *
upward along L until M is raised to the same height as N, then
contracting uniformly with respect to P to bring the image of M into
coincidence with N. The flow in &** clearly has a complex potential
of the form W**{z) = W*{az + 6), | α | ^ 1. It follows from Theorem
2.1 (b) that v% > | a\ v% ^ v^; hence vN > vM in this case also.

4* Uniqueness, monotonicity, and continuity* The proof of
uniqueness hinges on

LEMMA 4.1. Consider two flows belonging to the family J?\ and
having equal values of a. Let the parameters ιc, v have the values
£1, Vi for one of these flows and κ39 v2 for the other. If vx ^ v2 then
-&i ^ ιc*9 and equality holds only if the flows are identical.

Proof. Consider first a single flow in <β^. In terms of polar
coordinates (r, θ) with origin at 0 and polar axis downward along L
the asymptotic free boundary shape (1.5) becomes

(4.1) 0 V ~ (2i;cosα)- 1.

For each value of θ, — a <; θ < 0, the polar ray of inclination θ inter-
sects Γ at least once. Let rmin(θ) and rm a x(#) be the least and greatest
distances, respectively, of such intersections from O. As functions of
θ, rm i n and rm a x are respectively lower and upper semi-continuous, and
rmin has a positive lower bound. By Lemma 3.3,

Both functions satisfy (4.1) near 0 = 0.
Now consider two flows in J^l with vx *> v2. Let p = rm a x l/rm i n 2

be the ratio of rm a x for the first flow to rm i n for the second. Then p
is upper semi-continuous, is equal to 1 at θ = — a, and approaches
(vJVi)11* S 1 as θ approaches 0. Therefore p attains its supremum pQ

at some point θ0, — a ^ θ0 < 0. Let JWi, N2 be the boundary points
), θo)f (rmin2(#0), θ0) of the respective flows, and vlf v2 be the
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corresponding flow speeds at these points. Since Nt either coincides
with iV2 or lies below it, and vx ^ v2, the constant pressure condition.
(1.4) implies

v\ — tz\ ̂  v\ — tcl.

Now let the first flow be contracted uniformly about 0 by the factor
ρ0 (its complex potential Wλ{z) replaced by W1(ρoz)). The contracted
domain is then inside that of the second flow, the boundaries being:
tangent at JVa; hence by Theorem 2.1 (b),

It follows that κλ ig κ2. Equality holds only if p0 — 1 and the flows
are identical.

(Notice that the above proof yields ft = 1 if the flows are identical..
Hence each flow domain is star-shaped with respect to the origin—a
fact which also follows once uniqueness has been proved, since the
solutions established in [2] have this property.)

THEOREM 4.1. There is a unique member of ^ for each choice
of the pair a,X, 0 < a < π, 0 < λ < oo. For fixed a the product K
is a continuous strictly decreasing function of λ while μ and v are
continuous strictly increasing functions of λ.

Proof. Existence of at least one member of ^[ for given α, λ
has been established in [2]. Suppose there are two such flows having
values ιcl9 vlf κ2f v2 of tc, v, respectively. We may suppose vx ^ v2. By
Lemma 4.1, ιcx < £*. But equation (1.6) yields

x — uj/cl :> v2\κ\ — λ .

Hence equality holds and the flows are identical by Lemma 4.1.
A similar argument shows that v is a strictly increasing function

of λ, while it is strictly decreasing. These functions are continuous
since any discontinuity in v or K is reflected in a corresponding discon-
tinuity in λ — vJK?. Hence μ = v//c2 is also continuous and strictly
increasing with λ.

Theorem 1.1 and its corollary Theorem 1.2 now follow directly
from Theorem 4.1, as does the fact that fc, λ, μ, v are continuous
monotonic functions of one another.

Not only are these particular parameters continuous functions of
each other; in a sense the flow as a whole depends continuously upon
any one of them. To make this assertion precise, recall that in [21
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the flows are expressed in terms of functions u(t) defined on the first
quadrant of the unit disk. In units for which A — D — 1, the functions

(4.2a) w(t) = κuβ(t)

(4.2b) z(t) = - 1 + \\w'(s)/w(s)]ds

where

<4.3) β = 2{π- a)/π, W'(s) = (2/ττβ)(l - s2)/(l + s2)

map this quarter-disk onto the hodograph and flow domains, respectively.
The solutions u(t) are obtained in [2], §§ 10, 11 as limits of locally
uniformly bounded sequences of auxiliary functions. The same argu-
ments may be used to show that the sequence {un} corresponding to
any bounded sequence {Xn} is locally uniformly bounded. Since the
solution u corresponding to each value of λ is unique, it follows that
if {λj converges to λ then {un} converges to u uniformly on closed
.subsets of the quarter-disk excluding t = i. This yields

THEOREM 4.2. For fixed a the functions w(t), z(t) of equations
(4.2) are continuous with respect to the parameter λ in the topology
of uniform convergence on compact subsets of the quarter-circle with
t = 0, i excluded.

With regard to monotonicity of the flows in the large we confine
our remarks to monotonicity of the flow domain. This is best described
in terms of the family ^ obtained by taking Ajq and Ajq2 as units
of length and time, respectively, so that A = q — 1, Ό — K, g — λ,
and equations (1.2), (1.3) become

(4.4) v2 = 1 + 2Xh

(4.5) xy2 ~ (2λ cos a)'1 .

THEOREM 4.3. For fixed a the domains of flows in ^l decrease,
•in the sense of set inclusion, with increasing λ.

Proof. Consider two flows in ^\ having equal values of α, free
boundaries Γ19 Γ2, and parameter values κly tc2, λx, λ2, respectively, where
λx > λ2. Let r = rx{Θ), r = r2(θ), —a^θ<0 be the polar equations
of Γlf Γ2. We are to show that the ratio ρ{θ) = rλ{θ)lr2{θ) satisfies
p(θ) < 1 for all values of θ. This is true for the limits θ = — α, 0
since p(—a) = fcj/c2 < 1 by Lemma 4.1, and by equation (4.5) p(θ)—>
<W^i)1/3 < 1 as θ —> 0. Finally one shows, by an argument paralleling
the proof of Lemma 4.1, that p0 = sup ρ{θ) satisfies >̂0 < l
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5. Parameter ranges; limiting flows* The principal result of
[2] is that the parameters a, λ for flows in &~ range independently
over the respective intervals (0, π) and (0, <*>). For fixed a the ranges
of K, μ, v must also be intervals, possibly depending on α, since by
Theorem 4.1 these products are continuous monotonic functions of λ..
We now prove

THEOREM 5.1. For fixed a the parameters λ, μ, v all have the

range (0, ©o), while K is limited to the interval (%„, ιc0), 0 < κ*> < κ0 < oo,.

given by

(5.1) /Too = (TΓ - a)-1

(5.2) *0 = (sin α)-^l + - | J ^ tan 0 sin (α +

/3 = 2(π - α)/π .

ΓΛe m ^ e s Λ:̂ , Λ:0 correspond to limiting flows as follows: tc^ is the
value of K for the "wedge flows" in the infinite sector lying above
H and to the left of L, having sources at infinity and sinks at 0,
while κ0 corresponds to the class of Helmholtz flows (constant free
boundary speed) satisfying conditions (α)-(d) of § 1.

Proof. Consider first the behavior for small values of λ. The
Helmholtz flows satisfying (a)-(d) form a similarity class having circular
sector hodographs [1]. In units for which A = D=1, they are repre-
sented by the dimensionless flow obtained by taking u(t) =. uo(t) = t
in equations (4.2), i.e., by

(5.3a) wo(t) = κot
β

(5.3b) φ) = -1 +

Here κ0 is determined by the condition that z0 maps the positive im-

aginary radius onto L. Since the normal distance from the slot-edge-

to L is sin a, we have

fco=- ( s in a ) ' 1 I

where C is any path in the quarter-disk from t = l . to the imaginary
radius, avoiding t = 0, i. The expression (5.2) is obtained by deforming
C to run up the unit circumference.

Now the function uo(t) == t is clearly the solution of the reduced
problem in [2] for the limiting case λ = 0. Moreover one may show
as in the proof of Theorem 4.2 that as λ approaches zero the solution.
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u approaches u0 uniformly on the quarter-disk, excluding ί = i. Hence
κy which is given by

λ [W'(s)/uβ(s)]ds\

approaches tc0 as λ —»0, and (5.3) represents the limiting flow for
small λ.

Turning now to the case of large λ, recall the proof of Lemma
3.1, where flows in ^ were compared with the wedge flow of unit
flux. Since the point of maximum height of Γ lies at the slot edge,
we may set v = tc, d = 1 in (3.1) to obtain

tc> tc~,

To show that tc^ is in fact the lower limit on tc, and to study the
limiting flow shape for large λ, consider again the family JFl of §4,
consisting of dimensionless flows with A — q — 1 and slot widths K.
We shall exhibit special flows which "approach" the wedge flow of
unit flux, and use them to show that the members of &\ are equally
close to this limiting flow when λ is large.

In units for which A = q — 1 the Helmholtz flow (5.3) becomes

Wl(t) = tβ

^ ( t ) = - £ „ + [ W'(s)s-βds .
J l

Let this flow be contracted uniformly about 0 by the factor a > 1,
so wx and z1 are replaced by

Wa(t) - at?

za(t) = -κ,arλ + a-λ* W'(8)8~βd8 .

Let z = — tca be the point at which this contracted flow has velocity 1,
corresponding to ta = a~1/β. Evaluating κa — —za(ta) asymptotically
as α—> oo9 using (4.3), we find

Finally we perturb this contracted Helmholtz flow by removing from
its hodograph a half-disk of radius ε < 1 with center at 1 + ε. Let
ws(t) map the unit quarter-disk conf ormally onto this perturbed hodograph
domain so that wz agrees with wa at t = 0,1, i. Then wz approaches
wa uniformly on the quarter-disk as ε —• 0 (as may be seen by applying
Rado's theorem, [2] § 7, after extending w\lβ by reflection onto the
whole disk.) The function
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= - * . + Γ [W'(s)/wε(s)]ds
Jtε

maps the quarter-disk unto this flow, where tε is the real point at
which wε(tε) — 1 and κε is determined so that zs maps the imaginary
segment onto L. The hodograph and flow domains are illustrated in
Figure 4. The dip in the horizontal boundary corresponds to the

Fig. 4

indentation in the hodograph. Following this dip is a horizontal segment
extending almost to L (to z = — fco/a approximately). This joins the
free boundary of constant flow speed α, which is asymptotic to the
line parallel to and on the left of L, at a distance a"1 from it. Clearly
κε—>/ca as ε —>0, so that

fcs — fCoo + o(l) a s ε —> 0, a —• oo .

Furthermore the domain J^ of this flow "approaches" that of the
wedge flow, as a set-theoretic limit, as ε —> 0, a —> oo.

Let this special flow be denoted by Fε, and let F denote a flow
in &\ corresponding to a large value of λ. We assert that if λ is
sufficiently large, the domain 3? of F is contained in the domain
&* of Fε. Hence the slot-width tt of F satisfies fcε^ /c > K^, and K
is as close to tc^ as κs.

Actually we will show, for every real number r > 1, that if λ is
sufficiently large the domain obtained by contracting 3F about 0 by
the factor r lies in &s. The assertion then follows by applying this
result to a second flow FB> corresponding to a larger value of a and
a smaller value of ε, taking r to be the greatest number for which
the expansion of 2fz, about 0 by the factor r remains inside 3fz.

Suppose 2f is not already inside ^ 8 . Then there is a number
p > 1 such that when F is contracted by the factor p the contracted
domain is inside 3ίz, the two curved boundaries being tangent at some
point Nm Let v, h be the speed of F and depth, respectively, at the
point on Γ which goes into N under the contraction, and ve, hε be the
speed of Fz and depth at N. By Theorem 2.1 (b), vε > pv. Combining



UNIQUENESS OF A CLASS OF STEADY PLANE GRAVITY FLOWS 1185

with (4.4) and vs ^ α, h = phε, p > 1, we obtain feε < a2/X. This
implies that N is near the slot edge of F2 when λ is large, so that
vs is near the value 1. Since v > 1 we also have p < vB—>l. Hence
p < r when λ is sufficiently large, and the assertion follows.

The proof of Theorem 5.1 is completed with the observation that
μ and v share with λ the range (0, ©o), in view of the above bounds
on K and the identities μ = /cX, v — £3λ.
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