IDEMPOTENT SEMIGROUPS WITH DISTRIBUTIVE RIGHT CONGRUENCE LATTICES

RICHARD ALBERT DEAN AND ROBERT HARVEY OEHMKE
A great deal of effort in the study of semigroups has been spent in an attempt to adopt group theoretic methods to semigroups and to find suitable analogues for group concepts that will be significant in the general structure theory of semigroups. Of particular importance in the study of groups are the various relationships between a group and its subgroups. As is well-known each subgroup in a group induces a decomposition of the group into right cosets. In turn, this decomposition corresponds to an equivalence relation that is invariant under right multiplication. We call such an equivalence relation a right congruence. Since there is a one-to-one correspondence between the set of right congruences of a group and the set of subgroups of the group it is clear that any subgroup-group relationship can be translated into one involving these right congruences.

In semigroup theory the importance of the subsemigroup structure to the nature of the semigroup is not quite so clear. This is due primarily to the fact that there is very little relationship between the homomorphisms of a semigroup and the subsemigroups of the semigroup. Thus in studying lattices associated with semigroups we have chosen to study the right congruences of a semigroup rather than the more obvious analogue of subgroup, the subsemigroup, studied by Ego, et al, [3, 7, 8].

In § 1 we show that these right congruences form a complete lattice which is compactly generated in the sense of Crawley and Dilworth [2, p. 2]. It is natural to ask what are the implications for the semigroup of restraints which may be placed on this related lattice.

As a first problem in this area we seek a characterization of those semigroups whose lattice of right congruences is distributive. For groups this answer was determined by Ore [6, Theorem 4] to be the locally cyclic groups. It is shown in § 2 that the lattice of right congruences of a locally cyclic semigroup is distributive. (It should be noted here that Severin [7] has shown that the lattice of semigroups of a locally cyclic semigroup is not necessarily distributive.) However, as is seen, not all semigroups with distributive right congruence lattices need be locally cyclic. Thus the characterization problem remains. While we have no solution to this problem in general, we do give in §§ 3 and 4 necessary and sufficient conditions for an idempotent semigroup to have a distributive lattice of right congruences. § 3 treats

Received August 13, 1963.
commutative idempotent semigroups (semi-lattices) and § 4 treats arbitrary idempotent semigroups. In § 5 a necessary and sufficient condition for an idempotent semigroup to have both its lattice of right congruences and its lattice of left congruences distributive is given. Finally in § 6 idempotent semigroups with a distributive lattice of right congruences are characterized in terms of simpler structures.

1. Let \(\tau \) be an equivalence relation on a semigroup \(S \). We shall write either \(a \equiv b \pmod{\tau} \) if the ordered pair \((a, b) \) belongs to the relation \(\tau \).

An equivalence relation \(\tau \) on a semigroup \(S \) is a right (left) congruence if \(a, b, c \in S \) and \(a \equiv b \) implies \(ac \equiv bc \) (\(ca \equiv cb \)).

In this section we denote by \(\mathcal{L}_r(S) \) the set of all right congruences on the semigroup \(S \). We shall use Latin letters to denote elements of \(S \) and Greek letters to denote elements of \(\mathcal{L}_r(S) \). \(\mathcal{L}_r(S) \) is never empty since the relation \(\iota \) defined by \(a \equiv b \) if and only if \(a = b \) is trivially a right congruence as is the universal relation \(\nu \) in which \(a \nu b \) holds for all elements of \(S \). We impose the natural ordering on \(\mathcal{L}_r(S) \); namely, that \(\alpha \leq \beta \) if and only if \(a \alpha b \) implies \(a \beta b \) for all \(a, b \in S \). It is easy to see that if \(\Gamma \) is any set of right congruences then \(\cap \Gamma \) defined by \(a \equiv b \pmod{\cap \Gamma} \) if and only if \(a \gamma b \) for all \(\gamma \in \Gamma \) is a right congruence on \(S \), and is the greatest lower bound of \(\Gamma \) in \(\mathcal{L}_r(S) \) under the partial ordering \(\leq \). This, together with the fact that \(\nu \) is a maximal element in \(\mathcal{L}_r(S) \) guarantees that \(\mathcal{L}_r(S) \) is a complete lattice under \(\leq \).

It is important to obtain a better characterization of the least upper bound \(\bigcup \Gamma \) of a set \(\Gamma \) of right congruences. As is customary in such matters we have the following result whose proof we omit.

Lemma 1. Let \(a, b \in S \), and let \(\Gamma \) be a set of right congruences on \(S \). \(a \equiv b \pmod{\bigcup \Gamma} \) if and only if there is a finite sequence \(a = x_1, x_2, \ldots, x_n = b \) of elements in \(S \) and a sequence \(\gamma_1, \ldots, \gamma_{n-1} \) in \(\Gamma \) such that \(x_i \gamma_i x_{i+1} \) for \(i = 1, \ldots, n - 1 \).

As a consequence of this lemma and of the definition of \(\bigcup \Gamma \) it follows easily that \(\mathcal{L}_r(S) \) is a sublattice of the lattice \(\mathfrak{P}(S) \) of all partitions on \(S \) considered as an abstract set.

To prove that \(\mathcal{L}_r(S) \) is compactly generated we need to identify the minimal congruence \(\tau_{a,b} \) identifying \(a \) with \(b \). We have of course that \(\tau_{a,b} = \cap \{ \gamma \mid a \gamma b \} \). Of interest is the alternate description afforded by the next lemma.

Lemma 2. Let \(\rho \) be any partition of \(S \). Define \(\rho' \) by \(a \rho' b \) if and only if either \(a \rho b \) or there are elements \(r, s, t \) in \(S \) such that \(a = rt, b = st \) and \(r \rho s \). If \(\sigma \) is the transitive closure of \(\rho' \), then \(\sigma \)
is the smallest equivalent relation in $\mathcal{B}(S)$ which is a right congruence containing ρ, hence in $\mathcal{L}_r(S)$, $\sigma = \cap \{ \alpha \in \mathcal{L}_r(S) \mid a\rho b \Rightarrow a\alpha b \}$.

Proof. A straightforward calculation shows that σ is a right congruence containing ρ. Thus it remains to show that if τ is a right congruence containing ρ it must also contain σ. Certainly if $a\rho' b$ then $a\tau b$ since τ is a right congruence and so $r\tau s$ implies $(r\tau)(s\tau)$. From this it follows easily that if $a\alpha b$ then $a\tau b$ and thus $\sigma \leq \tau$.

This lemma gives the characterization of $\tau_{a,b}$ by taking ρ to be the partition which identifies a, b and no other distinct pair of elements of S. The σ of the lemma is then $\tau_{a,b}$.

Theorem 1. $\mathcal{L}_r(S)$ is a complete, compactly generated lattice.

Proof. We have already proved completeness. It is clear that if $a \not\geq \mathcal{L}_r(S)$ then $a = \cup \{ \gamma_{a,b} \mid a\alpha b \}$ and so it remains only to show that for each pair of elements $\tau_{a,b}$ is a compact element of $\mathcal{L}_r(S)$. Suppose that $\tau_{a,b} \leq \cup I$ where I is any set of right congruences on S. In particular we have that $a \equiv b \ (\text{mod } I)$ and by Lemma 1 there are sequences $a = x_1, \ldots, x_n = b$ and $\gamma_1, \ldots, \gamma_{n-1}$ such that $x_i \gamma_i x_{i+1}$. Thus $a \equiv b \ (\text{mod } (\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_n)$ and by Lemma 2 therefore $\tau_{a,b} \leq \gamma_1 \cup \cdots \cup \gamma_n$.

Another type of right congruence construction which we frequently employ is the following. Suppose that I is a right ideal of S. Let $\tau = \tau(I)$ be defined by $a\tau b$ if and only if $a = b$ or a and b are both members of I. τ is easily seen to be a right congruence which, following Clifford and Preston [1, p. 17], we call the Rees right congruence defined by I.

Theorem 2. If S is a semigroup having three mutually disjoint right ideals I_1, I_2, I_3 then $\mathcal{L}_r(S)$ is not distributive.

Proof. Clearly the set union of I_1 and I_2, denoted by $I_1 \cup I_2$, is a right ideal. We let $\tau_1 = \tau(I_1) \cup \tau(I_1 \cup I_2)$ and define τ_2 and τ_3 as cyclic variants. Because $I_1 \cap I_2 = \varnothing$ it follows that $\tau_1 \cap \tau_2 = \tau(I_1) \cup \tau(I_1 \cup I_2)$ while $\tau_1 \cup \tau_2 = \tau(I_1 \cup I_2)$ and so $\tau_1 \cap (\tau_2 \cup \tau_3) \neq (\tau_1 \cap \tau_2) \cup (\tau_1 \cap \tau_3)$.

2. Lemma 3. Let S be an arbitrary semigroup, τ and σ be right congruences on S and $x \in S$. Then

1. $A(\tau, x) = \{ n : x^i x^j \text{ and } n = i - j \}$ is an ideal in the ring of integers. If $A(\tau, x) = (d)$ we write $\alpha(\tau, x) = d$;
2. if $(0) \neq A(\tau, x) = d$, then there is a unique positive integer $\mu(\tau, x) = r$ such that $x^r x^a$ and if $x^a x^a$ with $1 \leq a < r$ then $a = s$;
3. for all $x \in S$, $A(\sigma \cap \tau, x) =$ l.c.m. $(\alpha(\sigma, x), \alpha(\tau, x))$ and $\mu(\sigma \cap \tau, x) = \max (\mu(\sigma, x), \mu(\tau, x))$;
(4) if S is the cyclic semigroup $\langle x \rangle$ then $\alpha(\sigma \cup \tau, x) = \text{g.c.d.} (\alpha(x), \alpha(\tau, x))$ and $\mu(\sigma \cup \tau, x) = \min (\mu(\sigma, x), \mu(\tau, x))$.

Proof. To prove (1), suppose that n and $m \in A(\tau, x)$, say $x^t x^{i+n}$ and $x^t x^{i+m}$. Hence $x^{t+1} x^{i+n}$ and $x^{t+1} x^{i+m}$ so that $x^{t+1} x^{i+n}$ and $x^{t+1} x^{i+m}$. Thus $n - m \in A(\tau, x)$ and so $A(\tau, x)$ is an ideal.

To prove (2), choose $\mu(\tau, x)$ to be the least positive integer r such that $x^t x^{r+d}$. Now suppose $x^t x^s$ with $1 \leq a < r$ and $a \neq s$. Without loss of generality we may assume $a < s$. Then we may conclude $x^{t+1} x^s$ where $t = s + (r - a) - 1$ and $r - 1 < t$. Now $d | (r - 1) - t$ so that $t = (r - 1) + kd = r + kd - 1 = r + (d - 1) + (k - 1)d$ with $k \geq 1$. From $x^{t+1} x^s$ we conclude $x^{t+1} x^{(d-1) + (k-1)d}$ and $x^{t+1} x^{s}$, but $x^{t+1} x^{s}$ and so $x^{t+1} x^{(r-1) + d}$, contrary to the choice of r.

In the proof of (3) and (4) we may suppose $A(\tau, x) \neq \emptyset$ and $A(\tau, x)$ since if $A(\tau, x) = \emptyset$ then clearly $A(\sigma \cap \tau, x) = A(\sigma \cup \tau, x) = A(\sigma, x)$. We let $A(\tau, x) = (p)$, $\mu(\tau, x) = r$, $A(\sigma, x) = (q)$, and $\mu(\sigma, x) = s$. Assume $r \leq s$.

To prove (3) let $m = \text{l.c.m.}(p, q)$ with $m = pp_1 = qq_1$. We have $x^t x^{r+1} x^{r+p_1}$ and so $x^{t+1} x^{r+p_1}$. Similarly $x^s x^{r+1}$ so that $m \in A(\sigma \cap \tau, x)$. Let $A(\sigma \cap \tau, x) = m_1$ and $\mu(\sigma \cap \tau, x) = t$. Thus $x^t(\sigma \cap \tau)x^{t+1}$ and in particular $x^s(\sigma \cap \tau)x^{t+1}$ so that $p | m_1$ and similarly $q | m_1$. Hence $m | m_1$ and since $m \in (m_1)$, we have $m = m_1$. From $x^t(\sigma \cap \tau)x^{t+1}$ it follows that $\mu(\sigma \cap \tau, x) \leq s$. On the other hand from $x^t(\sigma \cap \tau)x^{t+1}$ it follows that $x^t x^{t+1}$. Now (2) implies that either $m = 0$ or $s \leq t$.

To prove (4) let $d = \text{g.c.d.}(p, q)$. There is a solution w for the congruence $wp \equiv d \pmod{q}$ with w arbitrarily large. Indeed, if we choose v so that $r + d + wp > s$ then we may find a solution w so that for $u = w + v$ we have $r + up > s$. With these choices we have $wp \equiv d \pmod{q}$ and $x^t x^{r+wp}$ and $x^{s+wp} x^{r+wp}$ since $q | d + wp - up$ and $r + up > s$. But $x^{r+wp} x^{r+wp}$ and so $x^t(\sigma \cap \tau)x^{t+wp}$. This shows that $d \in A(\sigma \cup \tau, x)$.

Now let $t = \mu(\sigma \cup \tau, x)$ and $e = A(\sigma \cup \tau, x)$. Thus $e | d$. From $x^t(\sigma \cup \tau)x^{t+e}$ we know there are integers $t = a_0, a_1, \ldots, a_s = t + e$ so that $x^{a_i} x^{a_{i+1}}$ where $\delta = \sigma$ or τ and where $a_i \neq a_{i+1}$. For each i we have either that $p | a_{i+1} - a_i$ or $q | a_{i+1} - a_i$ and so for all i we have $d | a_{i+1} - a_i$. Hence $d | \Sigma_i (a_{i+1} - a_i)$ or $d | a_s - a_0 = e$. Hence $d = e$ and so $x^t(\sigma \cup \tau)x^{t+e}$ it follows that $\mu(\sigma \cup \tau, x) = t \leq r \leq s$. Now consider $x^{\delta} x^{a_1}$. Since $t = a_1$ it follows from (2) that $t \geq r$ if $\delta = \tau$ and $t \geq s \geq r$ if $\delta = \sigma$. In either event, $t \geq r$. Hence $t = r$ and the lemma is proved.

From this lemma the following theorem is easily established.

Theorem 3. If S is a locally cyclic semigroup then its lattice of right congruences is distributive. (The word “right” is superfluous.
IDEMPOTENT SEMIGROUPS WITH DISTRIBUTIVE 1191

since a locally cyclic semigroup is abelian.)

Proof. Let \(\rho, \sigma, \tau \) be congruences on \(S \). We are to show \(\rho \cap (\sigma \cup \tau) = (\rho \cap \sigma) \cup (\rho \cap \tau) \). To simplify notation let \(\phi = \rho \cap (\sigma \cup \tau) \) and \(\theta = (\rho \cap \sigma) \cup (\rho \cap \tau) \). As in any lattice \(\phi \supseteq \theta \) so we need only show \(\phi \subseteq \theta \).

Let \(a \phi \theta \). Then \(a \phi b \), \(a(\sigma \cup \tau) b \) and there is a sequence \(a = a_1, \ldots, a_n = b \) with \(a_i \delta a_{i+1} \) and \(\delta = \sigma \) or \(\tau \). Since \(S \) is locally cyclic there is a \(c \) with \(a = c^s \), \(b = c^t \) and \(a_i \in < c > \). Hence we can assume \(S = < c > \). By Lemma 3

\[
\alpha(\phi, c) = \text{l.c.m.} (\alpha(\rho, c), \text{g.c.d.} (\alpha(\sigma, c), \alpha(\tau, c)))
\]

\[
= \text{g.c.d.} (\text{l.c.m.} (\alpha(\rho, c), \alpha(\sigma, c))), \text{l.c.m.} (\alpha(\rho, c), \alpha(\tau, c)))
\]

\[
= \alpha(\theta, c)
\]

\[
\mu(\phi, c) = \max (\mu(\rho, c), \min (\mu(\sigma, c), \mu(\tau, c)))
\]

\[
= \min (\max (\mu(\rho, c), \mu(\sigma, c))), \max (\mu(\rho, c), \mu(\tau, c)))
\]

\[
= (\mu(\theta, c)).
\]

Let \(\alpha(\phi, c) = \alpha(\theta, c) = d \) and \(\mu(\phi, c) = \mu(\theta, c) = r \) and \(e = f \). Then either \(e = f \) or \(r \leq e < f \) and \(d \mid f - e \). Hence from \(c^s \phi c^t \) we easily get \(c^s \theta c^t \).

Corollary. If \(S \) is an infinite cyclic semigroup then its congruence lattice is the direct product of a countably infinite chain and the lattice of integers partially ordered by division. If \(S \) is a finite cyclic semigroup, \(\{a, a^2, \ldots, a^r, a^{r+1}, \ldots, a^{r+m} = a^r\} \) then its congruence lattice is the direct product of a chain of length \(r \) and the divisor lattice of \(m \).

Proof. It is easily verified that if \(S \) is a cyclic semigroup with generator \(a \), the mapping \(\phi \mapsto (\mu(\phi, a), \alpha(\phi, a)) \) is a one-to-one mapping of the congruence lattice onto the direct product of the lattices mentioned in the corollary. It is also easy to see that \(\phi \leq \theta \) in the congruence if and only if \(\mu(\phi, a) \geq \mu(\theta, a) \) and \(\alpha(\theta, a) \mid \alpha(\phi, a) \), so that the correspondence is a lattice isomorphism. Note that the ordering of the chain reverses the “natural” ordering.

3. A semilattice is a commutative idempotent semigroup \(S \). If we define

\[
(1) \quad a \leq b \text{ if and only if } ba = a
\]

then \(S \) is partially ordered by this relation and \(ab = a \cap b \) = greatest lower bound of \(a \) and \(b \).

Let \(S \) be a semilattice. Whenever \(a \geq b \) we let \(a/b = \{x \mid a \geq x \geq b\} \) which we call the quotient \(a \) over \(b \). We say that \(a/b \) projects down to \(c/d \) if \(a \geq c \geq d \geq bc \). We write \(a/b \rightarrow c/d \).
LEMMA 4. In the semilattice S, the following properties hold:

(i) $a/b \rightarrow c/d$ implies $a/b \rightarrow cx/dx$ for all $x \in S$;
(ii) $a/b \rightarrow c/d$ and $c \geq e \geq f \geq d$ imply $a/b \rightarrow e/f$;
(iii) $a/b \rightarrow c/d$ and $a/b \rightarrow d/e$ imply $a/b \rightarrow c/e$;
(iv) $a/b \rightarrow c/d$ and $c/d \rightarrow e/f$ imply $a/b \rightarrow e/f$.

Proof.

(i) We have $a \geq c \geq d \geq bc$. From $c \geq d \geq bc$ we conclude $c \geq cx \geq (bc)x \geq b(cx)$.

(ii) We have $a \geq c \geq e \geq f \geq d \geq be$. From $e \geq bc$ we conclude $be \geq be$ while from $e \geq bc$ we conclude $be \geq b(bc) = bc$. Hence $be = be$ and $a \geq e \geq f \geq be$.

(iii) We have $a \geq e \geq d \geq be$ and $a \geq d \geq e \geq bd$. From $d \geq be$ we have $bd \geq b(bc) = bc$ and thus $a \geq c \geq e \geq bd \geq bc$. Thus $a/b \rightarrow c/e$.

(iv) We have $a \geq e \geq f \geq be$ and $a \geq e \geq f \geq de$. From $d \geq be$ we have $de \geq (bc)e = b(ce)$. Now $c \geq e$ implies $e = ce$, hence $de \geq be$. Thus $a \geq e \geq f \geq de$, that is $a/b \rightarrow e/f$.

THEOREM 4. Let S be a semilattice. Let $a \geq b$ in S. The minimal congruence identifying a and b, $\tau_{a,b} = \tau$, is characterized by $x \equiv y$ if and only if $x = y$ or $a/b \rightarrow x/xy$ and $a/b \rightarrow y/xy$.

Proof. For brevity let us write $x \sim y$ if $x = y$ or if $a/b \rightarrow x/xy$ and $a/b \rightarrow y/xy$. The relation (\sim) is clearly reflexive and symmetric.

First we establish that $x \sim y$ implies $x \equiv y$. We suppose that $a/b \rightarrow x/xy$ and $a/b \rightarrow y/xy$. We shall show that $x \equiv y$ and, by symmetry, $y \equiv x$; whence $x \equiv y$ follows. Now $a/b \rightarrow x/xy$ means $a \geq x \geq xy \geq bx$. $a \geq x$ implies $ax = x$ and so $axy = xy$ and $x \geq xy \geq bx$ implies $bx \geq bxy \geq bx$, hence $bx = bxy$. On the other hand axb implies $axbxy$ and $axytbxy$; in other words $x \equiv bx$ and $y \equiv bx$. Thus $x \equiv y$.

We next show that (\sim) is a congruence relation on S and $a \sim b$. This completes the proof, since the above paragraph then shows that (\sim) $\leq \tau$ while $\tau \leq$ (\sim) by the minimal nature of τ.

(i) $a \sim b$ holds by the definition of a projection since $a = b$.

(ii) $x \sim y$ implies $xz \sim yz$ since if $a/b \rightarrow x/xy$, then $a/b \rightarrow xz/xyz$ by property (i) of Lemma 3.

(iii) To show that (\sim) is transitive suppose that $x \sim y$ and $y \sim z$. If $x = y$ or $y = z$ then clearly $x \sim z$. Thus we suppose that $a/b \rightarrow x/xy$, $a/b \rightarrow y/xy$, $a/b \rightarrow y/yz$, and $a/b \rightarrow z/yz$. By property (i) we have $a/b \rightarrow xy/xyz$ and thus by property (iii) $a/b \rightarrow x/xyz$. Finally, since $x \geq xy \geq (zx)y = xyz$ it follows from property (ii) that $a/b \rightarrow x/xx$. By symmetry $a/b \rightarrow x/xx$ and thus $x \sim y$.

COROLLARY. With the notation of the theorem, $a \tau x$ if and only
if \(a \geq x \geq b \).

Proof. If \(a \geq x \geq b \) then \(ax = x, bx = b \) and \(ax \tau bx \) implies \(x \tau b \) and hence \(axx \). Conversely, \(axx \) implies \(a/b \rightarrow ax/a \) and \(a/b \rightarrow x/xa \); hence \(a \geq a \geq xa \geq ba = b, a \geq x \geq xa \geq bx \) and \(a \geq x \geq b \).

Theorems. In a semilattice \(S \), for any two elements \(a, b \) it is true that \(\tau_{a,b} = \tau_{a,ab} \cup \tau_{b,ab} \).

Proof. \(a(\tau_{a,ab} \cup \tau_{b,ab})b \) since \(a\tau_{a,ab}ab \tau_{b,ab}b \). Hence \(\tau_{a,b} \leq \tau_{a,ab} \cup \tau_{b,ab} \).

On the other hand for any congruence \(\tau \), \(a \tau b \) implies \(a \tau ab \) and \(ab \tau b \).

Thus in particular \(\tau_{a,b} \leq \tau_{a,ab} \) and \(\tau_{a,b} \leq \tau_{b,ab} \) which implies \(\tau_{a,b} \leq \tau_{a,ab} \cup \tau_{b,ab} \).

For semilattices we need the concepts of an ideal and a dual ideal. A subset \(I \) of a semi-lattice is called an **ideal**, if when \(a \in I \) and \(x \leq a \) then \(x \in I \). It is clear, that this is but a reformulation of an ideal in a semigroup in the special case when the semigroup is a semilattice. A **dual ideal** is a subset \(J \) such that if (i) \(a \in J \) and \(a \leq x \) then \(x \in J \) and (ii) if \(a \in J \) and \(b \in J \) then \(ab \in J \).

Theorem 6. Let \(S \) be a semilattice containing three distinct elements \(a, b, c \) such that \(b \) and \(c \) are noncomparable but such that \(a > b \) and \(a > c \). Then the lattice of congruences on \(S \) is nonmodular.

Proof. Let \(\rho = \tau_{b,bc}, \sigma = \tau_{a,b} \) and \(\tau = \tau_{a,c} \). Clearly \(\rho \leq \tau \) as \(a/c \rightarrow b/bc \) and so \(b\tau bc \). We shall prove that while \(\rho \leq \tau \) it is false that \(\tau \cap (\rho \cup \sigma) = \rho \cup (\sigma \cap \tau) \).

First note that since \(a \geq b \) and \(a \geq c \) while \(b \geq c \) are non-comparable, the corollary to Theorem 4 implies that \(a \neq c \mod \rho \).

Second note that \(a/b \rightarrow c/bc \) and \(c \sigma bc \).

Thus we have \(c\sigma bc, b\sigma pb, \) and \(b\sigma a \); that is, \(c(\rho \cup \sigma)a \). Thus \(\tau \leq \rho \cup \sigma \) and \(\tau \cap (\rho \cup \sigma) = \tau \).

It now suffices to show that \(a \neq c \mod \rho \cup (\sigma \cap \tau) \).

To simplify matters we replace \(\rho \) by a possibly larger congruence \(\varphi \). \(\varphi \) is the Rees congruence generated by the ideal \(I = \{x : x \leq b\} \). Since \(b\varphi bc \) it follows that \(\rho \leq \varphi \). We claim in fact that \(a \neq c \mod (\varphi \cup (\sigma \cap \tau)) \).

Note that \(xpy \) and \(x > b \) imply \(x = y \) and in particular that \(a\varphi x \) implies \(a = x \). Also, from the corollary if \(a\varphi x \) and \(a\varphi x \) then \(a \geq x \geq b \) and \(a \geq x \geq c \). Suppose, then, that there is a sequence

\[
a = x_1, x_2, \ldots, x_n = c \quad (n > 2)
\]

so that \(x_i \varphi x_{i+1} \) or \(x_i(\sigma \cap \tau)x_{i+1} \). Without loss of generality we suppose that we have selected a sequence of minimal length. Now if \(a = x_i \varphi x_n \).
then $x_3 = a$ and x_3 could have been deleted from the sequence. Thus $a = x_3(\sigma \cap \tau)x_2$ and $a \geq x_2 \geq b$. In fact, since $a \equiv b \pmod{\tau}$ we have $x_3 > b$. Now if $n \geq 3$, and if $x_3(\sigma \cap \tau)x_2$, then $x_3(\sigma \cap \tau)x_3$ and x_3 could have been deleted. Thus if $n \geq 3$, it must be that $x_3 = a$. But $x_3 > b$ and hence $x_3 = x_2$ so that x_3 could have been deleted from the sequence. Thus it must be that $n = 2$ and that $a(\sigma \cap \tau)c$; the latter is a contradiction since $a \equiv c \pmod{\sigma}$.

Theorem 7. Let S be a semilattice. A congruence τ is uniquely determined by the set of quotients a/b such that $a \tau b$. That is if $Q(\sigma) = \{a/b \mid a \tau b\}$ then $Q(\sigma) = Q(\tau)$ implies $\sigma = \tau$. Moreover $\sigma \leq \tau$ if and only if $Q(\sigma) \subseteq Q(\tau)$.

Proof. It clearly suffices to prove the last conclusion of the theorem. If $\sigma \leq \tau$ then $Q(\sigma) \subseteq Q(\tau)$ holds trivially. Suppose then that $Q(\sigma) \subseteq Q(\tau)$ and that $x\sigma y$. Thus $x\sigma y$ and $y/x\sigma y$. Thus $x\sigma y$ and $y/x\sigma y$. Thus $x\sigma y$, whence $x\sigma y$, and consequently $\sigma \leq \tau$.

Theorem 8. Let S be a semilattice in which elements with a common upper bound are comparable i.e., for all $a, b, c \in S$, if $a \leq b$ and $a \leq c$ then either $b \leq c$ or $c \leq b$. The lattice of congruence relations on S form a distributive lattice.

Proof. Let ρ, σ, τ be three elements of $L(S)$. We are to show that $\rho \cap (\sigma \cup \tau) = (\rho \cap \sigma) \cup (\rho \cap \tau)$. Since $\rho \cap (\sigma \cup \tau) \geq (\rho \cap \sigma) \cup (\rho \cap \tau)$ in any lattice we need only establish the reverse relation and in view of Theorem 7 we need only show that $Q[\rho \cap (\sigma \cup \tau)] \subseteq Q[(\rho \cap \sigma) \cup (\rho \cap \tau)]$.

We shall first prove that under the conditions of the theorem if $a/b \in Q(\sigma \cup \tau)$ then there is a sequence $a = x_1 \geq x_2 \geq \ldots \geq x_n = b$ so that for each i, $x_i/x_{i+1} \in Q(\sigma) \cup Q(\tau)$. Now if $a/b \in Q(\sigma \cup \tau)$ we have $a(\sigma \cup \tau)b$ so that there is a sequence $a = y_1, y_2, \ldots, y_m = b$ with y_iy_{i+1} where $\alpha_i = \sigma$ or τ. From this sequence we construct the desired sequence by setting $x_i = y_1, y_2, \ldots, y_i$. Clearly $x_i \geq x_{i+1}$ and $x_i = y_1, \ldots, y_i, x_i, \ldots, y_{i+1}y_{i+1}$ so that $x_i/x_{i+1} \in Q(\sigma) \cup Q(\tau)$. Since $a \geq x_i$ and $a \geq b = y_m \geq x_m$, from the hypothesis it must be the case that x_i and b are comparable, for all i. If we choose n as the least integer such that $b \geq x_n$, then we may conclude that $a = x_1 \geq \ldots \geq x_{n-1} > b$ and thus x_1, \ldots, x_{n-1}, b is the desired chain.

Now suppose that $c/d \in Q[\rho \cap (\sigma \cup \tau)]$. Then $c\rho d$ and $c/d \in Q(\sigma \cup \tau)$. By the preceding paragraph there is a chain $c = x_1 \geq x_2 \geq \ldots \geq x_n = d$ with $x_i/x_{i+1} \in Q(\sigma) \cup Q(\tau)$. Since $c\rho d$ it follows from the Corollary to Theorem 4 that $x_i(\rho \cap \sigma)x_{i+1}$ and thus $x_i(\rho \cap \sigma)x_{i+1}$ or $x_i(\rho \cap \tau)x_{i+1}$; in any event $c \equiv d \pmod{\rho \cap \sigma}$.
We may now combine Theorems 6 and 8 to obtain an answer to our question in the case of semilattices.

COROLLARY. A semilattice has a distributive lattice of congruences if and only if every pair of elements with a common upper bound are comparable.

4. We define a relation R on the idempotent semigroup S by aRb if and only if
$$ab = b \quad \text{and} \quad ba = a$$
and a relation L by aLb if and only if
$$ab = a \quad \text{and} \quad ba = b$$

It has been shown by McLean [5, Lemma 4] that both R and L are equivalence relations. In fact R is a left congruence and L is a right congruence [5, Lemma 5]. We shall denote the equivalence class of a under R and L respectively by Ra and La.

Further, if W is the relation defined by aWb if and only if
$$aba = a \quad \text{and} \quad bab = b$$
then W is a two-sided congruence (homomorphism) on S, the homomorphic image of S under W is a semilattice S_W [5, Theorem 1] and W_a, the equivalence class of a under W, is the direct product of La and Ra [4, Lemma 1] and $W_a = LaRa$.

We shall use the notations W_aW_b for the multiplication in S_W and W_aW_b for ordinary complex multiplication. Also, we shall use the notation $W_a \leq W_b$ for the ordering defined in (1) on the semilattice S_W.

We prove the following elementary consequences of these results:

(2) $W_aW_b = W_aW_a = W_aW_a$.
(3) $W_{ab} \leq W_x$ and $W_{ab} \leq W_y$.
(4) $W_a \leq W_b$ implies $W_aW_b = W_a$ and $W_bW_b \cup W_aW_b \leq W_b$.
(5) $R_a \leq W_a$ and $L_a \leq W_a$.
(6) If $W_y = R_y$ and $W_y \leq W_a$ then $ay = y$.
(7) If $W_y = L_y$ and $W_y \leq W_a$ then $ya = y$.

The first three of these were obtained by McLean [5]. From $W_a = L_aR_a$, $aR_a = R_a$ and $L_a\alpha = L_a$ it follows that (5) holds. If $W_y = R_y$ and $W_y \leq W_a$ then $W_{ay} = W_y$ and $ay \in W_y = R_y$. Therefore $y(ay)y = y$.

But $y(ay) = ay$ and we have (6). We prove (7) in a similar manner.

THEOREM 9. If S is an idempotent semigroup such that the lattice $\mathcal{L}(S)$ is modular then for all $y \in S$ either $L_y = \{y\}$ or $R_y = \{y\}$.

Proof. Assume $z \in L_y$ and $z \neq y$. We shall consider three basic
right congruences, τ_1, τ_2 and L. L was defined above. τ_1 shall be the right congruence whose only possible nontrivial equivalence classes are R_y and the ideal $I = \{x | W_x < W_y\}$. τ_2 shall have only R_z and I as its possible nontrivial equivalence classes.

First we prove that τ_1 and (by symmetry) τ_2 are right congruences. Set $a \tau b$. We are to show $ac \tau bc$ for all $c \in S$. We have $W_a \leq W_s$ and $W_s \leq W_b$. Thus if $a, b \in I$ then $ac, bc \in I$ and thus $ac \tau bc$. If $a, b \in R_y$ then $a, b \in W_y$ and $W_{aa} = W_{bb}$. If $W_a \leq W_y$ then ac and hence $bc \in I$ so that $ac \tau bc$. If $W_a = W_y = W_b$ then $ac, bc \in R_y$ since W is an equivalence relation. Hence $ac \tau bc$.

Now, to complete the proof of the theorem, let $x \in R_y$. We will show $x = y$. We use the fact that modularity implies

$$ (\tau_1 \cup \tau_2) \cap (\tau_2 \cup L) = \tau_2 \cup [(\tau_1 \cup \tau_2) \cap L] . $$

By the definition of τ_1 we have $x \tau_1 y$ and hence $x(\tau_1 \cup \tau_2)y$. Next we show $x(\tau_2 \cup L)y$. First we note yLx and hence $yxLxx$. Since $x \in R_y$, $yx = x$, so that $xLxx$. Now $xz \in R_z$ since $z(xz) = xz$ and $(zx)x = z$ by the definition of W_y. Therefore $x \tau_2 x$. We now have

$$ xLxx; \quad z \tau_2 z; \quad zLy $$

and

$$ x(\tau_2 \cup L)y . $$

In summary $x = y \mod (\tau_1 \cup \tau_2) \cap (\tau_2 \cup L)$ and by modularity $x = y \mod \tau_1 \cup [(\tau_1 \cup \tau_2) \cap L]$. However both x and y are in trivial equivalence classes of τ_2. If $y = a \mod ((\tau_1 \cup \tau_2) \cap L)$ then yLa and $y(\tau_1 \cup \tau_2)a$. Thus we have $a \in L_y$. But $R_y \cap R_y = \varnothing$ for if $b \in R_y \cap R_y$ then $zb = b$, $by = y$ and $(zb)y = by = y$. However, $z(by) = zy = z$. It follows that the only possible nontrivial equivalence classes of $\tau_1 \cup \tau_2$ are R_y, R_z and I. Hence $a \in R_y$. We now have $a \in R_y \cap L_y = \{y\}$. Thus y lies in a trivial equivalence class under both τ_2 and $(\tau_1 \cup \tau_2) \cap L$ and hence under $\tau_2 \cup [(\tau_1 \cup \tau_2) \cap L]$. Therefore $y = x$ and $R_y = \{y\}$.

Theorem 10. Let S be an idempotent semigroup. $\mathcal{L}(S)$ is distributive if and only if

- (i) $\mathcal{Q}(\mathcal{B})$ is distributive.
- (ii) For all $a \in S$, W_a contains at most two elements.
- (iii) If $W_a = L_a \neq \{a\}$ then W_a is the smallest element of \mathcal{B}.
- (iv) If $W_x < W_y$ then either $W_x W_y = \{xy\}$ or $W_x = L_x$.

Proof. We first assume $\mathcal{L}(S)$ is distributive. If σ is a right congruence of \mathcal{B} define σ' by

$$ a \sigma' b \quad \text{if and only if} \quad W_a \sigma W_b . $$
A straightforward proof shows that the correspondence $\sigma \rightarrow \sigma f$ is a lattice isomorphism of $\mathcal{I}(\mathfrak{M})$ into $\mathcal{I}_r(S)$. Hence $\mathcal{I}(\mathfrak{M})$ is distributive.

By Theorem 9, $W_\gamma = L_\gamma$ or R_γ.

In order to prove that (iii) is necessary for $\mathcal{I}_r(S)$ to be distributive we assume y is an element of S such that $L_\gamma = W_\gamma \neq \{y\}$. Now let T be a subset of L_γ and I the right ideal defined by

$$I = \{x \mid W_x < W_\gamma\}.$$

If $a \in S$ and $z \in L_\gamma$ then by (3), $W_{za} \leq W_z = L_\gamma$. If $W_{za} = W_z$ then $W_z \leq W_a$ and by (7) we have $za = z$. This says that if T is any subset of L_γ then either

$$(8) \quad Ta \subseteq I \text{ or } Ta = T.$$

Now let \mathcal{X} be any decomposition of L_γ into disjoint subsets and let ρ be the equivalence relation defined by

$$a \rho b \text{ if and only if } a = b \text{ or } a, b \in I \text{ or } a, b \in T \text{ for some } T \in \mathcal{X}.$$

It follows from (8) that ρ is a right congruence. Now let $T_0 \in \mathcal{X}$ and define an equivalence relation ρ' by

$$a \rho' b \text{ if and only if } a = b \text{ or } a, b \in T_0 \cup I \text{ or } a, b \in T \text{ for some } T \in \mathcal{X}.$$

Again it follows from (8) that ρ' is a right congruence.

Now let $y \neq z \in L_\gamma$ and τ_1, τ_2 and τ_3 be the right congruences whose only possible nontrivial equivalence classes are

$$\tau_1 : \{y\} \cup I$$
$$\tau_2 : \{z\} \cup I$$
$$\tau_3 : \{z, y\}, I.$$

The only possible nontrivial equivalence class of either $\tau_1 \cap \tau_2$ or $\tau_1 \cap \tau_3$ is I. Therefore if $a \in I$ then

$$y \equiv a \pmod{\tau_1 \cap \tau_2 \cup (\tau_1 \cap \tau_3)}.$$

However $\tau_1 \leq \tau_2 \cup \tau_3$ and $a \tau_1 y$. Therefore

$$a \equiv y \pmod{\tau_1 \cap (\tau_3 \cup \tau_3)}$$

and

$$\tau_1 \cap (\tau_3 \cap \tau_3) \neq (\tau_1 \cap \tau_2) \cup (\tau_1 \cap \tau_3).$$

Hence if $\mathcal{I}_r(S)$ is distributive then we must assume I is empty and thus (iii) holds.

In the same way, if w is an element of L_γ distinct from y and z
we can show that the right congruences τ_1, τ_2, τ_3 whose nontrivial equivalence classes are

\[
\begin{align*}
\tau_1 & : \{y, z\} \\
\tau_2 & : \{y, w\} \\
\tau_3 & : \{w, z\}
\end{align*}
\]

fail to satisfy the distributive law. Therefore (ii) holds for all $W_y = L_y$.

To prove (ii) in the case $W_y = R_y$ we shall proceed as in the case $W_y = L_y$. However, to establish the necessary right congruence properties we need a weak form of (iv); namely, if $R_y < W_a$ then $R_y a = \{ya\}$. Assume $R_y < W_a$ and there is a pair x, x' in R_y such that

\[xa \neq x'a .\]

We let $xa = y$ and $x'a = y'$. Then $ya = y$ and $y'a = y'$. Let σ_y and $\sigma_{y'}$ be the right congruences defined by

\[
c\sigma_y b \text{ if and only if } yc = yb \\
c\sigma_{y'} b \text{ if and only if } y'c = y'b .
\]

We have

\[a\sigma_y y \text{ and } a\sigma_{y'} y'.\]

Therefore

\[y \equiv y' \text{ (mod } \sigma_y \cup \sigma_{y'}) .\]

Thus if $\tau_{y, y'}$ is the minimal right congruence relating y and y' we must have

\[\tau_{y, y'} \leq \sigma_y \cup \sigma_{y'} .\]

and

\[y \equiv y' \text{ (mod } \tau_{y, y'} \cap (\sigma_y \cup \sigma_{y'})) .\]

Now let $z \in R_y$ and $z \equiv z' \text{ (mod } \tau_{y, y'} \cap \sigma_y)$. Since $z\sigma_y z'$ we have $yz' = yz = z$ and $R_y = R_{yz} = W_{yz} \leq W_{z'}$. But we also have

\[(9) \quad z\tau_{y, z'} z' .\]

Let τ be the right congruence corresponding to the right ideal

\[J = \{x \mid W_x \leq R_y\} .\]

Since $y\tau y'$ we have $\tau_{y, y'} \leq \tau$. Therefore from $z \in R_y$ and (9) we have $z' \in J$ and $W_{z'} \leq R_y$. Thus $W_{z'} = R_y$ and $z' = yz' = yz = z$. We can now conclude that if $z \in R_y$ then z is in a trivial equivalence class of
(τ_y,y' ∩ σ_y') ∪ (τ_y,y' ∩ σ_y).

To avoid a contradiction to the assumption that \(S_r(S) \) is distributive we must assume that if \(W_a \supseteq R_y \) then \(y'a = ya \) for all \(y' \in R_y \) or \(R_ya = \{ya\} \).

We now have sufficient multiplicative properties for \(R_y \) to show, just as in the case \(W_y = L_y \), that if \(\mathcal{X} \) is any decomposition of \(R_y \) then the collection \(\mathcal{X} \cup \{I\} \), \(I = \{x : W_a < R_y\} \), can be extended in a trivial way to a decomposition of \(S \) and the corresponding relation is a right congruence. This follows chiefly from the fact proved above that if \(T \subseteq R_y \) then either \(T_a \) is a single element of \(R_y \) or \(Ta \subseteq I \). If \(x, y, z \) are distinct elements of \(R_y \) then the three right congruences \(\tau_1, \tau_2, \tau_3 \) corresponding to the decompositions of \(R_y \):

\[
\tau_1: \{x, y\}, \\
\tau_2: \{y, z\}, \\
\tau_3: \{x, z\},
\]

do not satisfy the distributive law since

\[
x \equiv y \pmod{\tau_1 \cap (\tau_2 \cup \tau_3)}
\]

and

\[
x \not\equiv y \pmod{(\tau_1 \cap \tau_2) \cup (\tau_1 \cap \tau_3)}.
\]

Therefore \(R_y \) contains at most two elements.

We can now prove a slightly stronger result on the multiplicative properties of the \(R_y \)'s and thus prove (iv). Assume \(R_y = \{y, z\} \) and \(W_a > R_y \). If \(W_a = \{a\} \) then from the above results we have \(R_yW_a = R_aya = \{ya\} \). We shall show that the same result holds if \(W_a = \{a, b\} \).

Since \(W_a > R_y \) we cannot have \(W_a = L_a \). Hence we must have \(W_a = R_a \). Let \(\rho \) and \(\delta \) be the right congruences defined by

\[
cod \rho \text{ if and only if } W_e = W_d \leq R_a \\
cod \delta \text{ if and only if } W_e = W_d < R_a.
\]

If \(S_r(S) \) is distributive then since \(\delta \leq \rho \) we have

\[
(10) \quad \rho \cap (\sigma_y \cup \delta) = (\rho \cap \sigma_y) \cup \delta
\]

where \(\sigma_y \) was defined above. Assume \(R_ya = \{y\} \). Then \(ya = y^2 \) and \(y \equiv a \pmod{\sigma_y} \). Multiplying by \(b \) we have \(yb \equiv ab \pmod{\sigma_y} \) and \(yb \equiv b \pmod{\sigma_y} \). Therefore

\[
ab_{\sigma_y}; y\sigma_yb; yb_{\sigma_y}b
\]

and
\[a \equiv b \pmod{\sigma_y \cup \delta} \]
\[a \equiv b \pmod{\rho \cap (\sigma_y \cup \delta)} . \]

On the other hand, by (10), there is a minimal sequence \(a = x_1, \ldots, x_n = b \) such that \(x_i \alpha_i x_{i+1} \) where \(\alpha_i \) is either \(\rho \cap \sigma_y \) or \(\delta \). Since \(a \) is in a trivial equivalence class of \(\delta \) and the sequence \(x_1, \ldots, x_n \) is minimal we have \(a \neq x_2 \) and \(a \equiv x_2 \pmod{\rho \cap \sigma_y} \). Therefore \(a \alpha x_2 \). But \(x_2 \in R_a \); thus \(x_2 = b, a \equiv b \pmod{\rho \cap \sigma_y} \) and \(a \equiv b \pmod{\sigma_y} \). Therefore \(y_\alpha = y_b \) and \(R_\alpha R_a = \{ya\} \).

We now prove the sufficiency of the four conditions of the theorem. Since each \(W_a \) contains at most two elements we must have either \(W_a = R_a \) or \(W_a = L_a \).

Lemma 5. If \(R_a = \{a, b\} \) and \(\sigma \) is a right congruence such that \(a \sigma x \) for \(x \neq a \) then \(a \sigma b \).

Proof. Since \(a b = b \) and \(a \sigma x \) we have
\[a \sigma (xa) \]
and
\[b \sigma (xb) . \]

Also, \(W_{a b} = W_{a a} \). If \(W_{a b} \) is a singleton then \(xb = xa \) and \(a \sigma b \). If \(W_{a b} = R_{a b} \subseteq W_b \) then \(xa \in W_{xb} \) and (iv) implies \((xa)a = (xa)b \) and \(xa = xb \). Thus \(a \sigma b \).

If \(W_{a b} = L_{a b} \) then \((xb)a = xb \) by (7). But \((xb)a = x(ba) = xa \). Then \(xb = xa \) and again \(a \sigma b \).

Lemma 6. If \(a \equiv b \pmod{\sigma \cup W} \) then either
1. \(a \sigma b \),
2. \(a W b \), or
3. there exist distinct elements \(y \) and \(z \) such that \(az = y, by = z, L_y = \{y, z\} \) and \(a \sigma y W \sigma b \).

Proof. Assume there is a minimal sequence \(x_1, \ldots, x_n \) such that \(a = x_1, b = x_n \) and \(x_i \alpha_i x_{i+1} \) where \(\alpha_i = \sigma \) or \(W \). If all \(\alpha_i \) are equal then, by transitivity either \(a \sigma b \) or \(a W b \). Also since the sequence of \(x \)'s is minimal we can assume \(\alpha_i \neq \alpha_{i+1} \). Therefore for some \(i \) we have either \(x_{i-1} \sigma x_i W x_{i+1} \) or \(x_{i-1} W x_i \sigma x_{i+1} \); say the first of these holds. By Lemma 5, if \(W_{\alpha_i} = R_{\alpha_i} \) then \(x_{i-1} \sigma x_{i+1} \). But then the minimality of the sequence is contradicted. Therefore we can assume that each \(x_i \neq a, b \) must be in \(W_y = L_y = \{y, z\} \). If \(i > 4 \) then either \(y \) or \(z \) is duplicated in the sequence, and hence it could be shortened. Therefore we must have either
If the first of these alternatives hold we have \(a, b \in L_y \), since \(x_2, x_3 \in L_y \), and \(W_a = W_b \). So assume the second alternative holds. Then

\[
ax_3x_2 = x_2 \quad \text{and} \quad x_3 = x_3x_2b_\sigma x_3.
\]

If either \(ax_3 = x_3 \) or \(bx_2 = x_3 \) then \(x_3x_2 \) and \(a_\sigma x_2W_\sigma \) implies \(a_\sigma b \) and the lemma is proved.

Lemma 7. If \(az = y, by = z \), \(L_y = \{y, z\} \), \(y \neq z \) and \(a_\sigma b \) then \(a, b, y \) and \(z \) are congruent under \(\sigma \).

Proof. Let \(c \in S \) such that \(W_c = R_c \). If \(cz = y \) then \(cy = c^2z = cz = y \). If \(d \in R \) then \(d = cd \) and \(dz = cDz = c(dx) = y \) since \(dx \in L_y \). Therefore \(RdL_y = \{y\} \). In the same way if \(cy = z \) we have \(RcL_y = \{z\} \). Now \(bab, aba \in W_{ab} \). Thus, if \(W_{ab} = R_{ab} \) then \(bab = abaz \). But by a direct calculation \(b(abz) = z \) and \(a(baz) = y \). Hence \(W_{ab} \neq R_{ab} \) and indeed \(bab \) and \(aba \) are distinct. Since \(bab = abaz \) we must have \(W_{ab} = L_y \); i.e., \(ab, ba \in L_y \). From \(abz = y \) and \(bay = z \) and the definition of \(L_y \) we have \(ab = y \) and \(ba = z \). We can now conclude that \(a_\sigma b \) implies \(a_\sigma ba, a_\sigma b^2 \) and consequently \(a_\sigma z \) and \(y_\sigma b \).

For any right congruence \(\delta \) we define \(\delta' \) as \(\delta' = \delta \cup W \). It is clear that \(\delta' \) is a right congruence on \(SS \) and \(\delta_1' \cup \delta_2' = (\delta_1 \cup \delta_2)' \). In addition we have

Lemma 8. \((\delta_1' \cap \delta_2') = (\delta_1 \cap \delta_2)' \).

Proof. It follows readily from the definition of \(\delta_i' \) and lattice-theoretical properties that

\[
\delta_1' \cap \delta_2' \geq (\delta_1 \cap \delta_2)';
\]

therefore we assume

\[
a \equiv b \mod \delta_1' \cap \delta_2';
\]

and show

\[
(11) \quad a \equiv b \mod (\delta_1 \cap \delta_2)'.
\]

Since \(a \equiv b \mod \delta_i' \) we can conclude that for each \(i \); (1), (2) or (3) of Lemma 6 holds. If the same case holds for both \(\delta_i \) then clearly (11) is satisfied. Again (11) is satisfied if for either \(\delta_i \) (2) holds. This
leaves a mixed case, say $a\delta_j$ and $a\delta_2 y W z \delta_2 b$ where $az = y$, and $by = z$. Applying Lemma 7 we have $a\delta_j y$, $z\delta b$ and $a\delta_j y W z \delta b$. Therefore $a(\delta_j \cap \delta_2) y W z (\delta_j \cap \delta_2) b$ and the proof is complete.

To prove the distributivity of $\mathfrak{L}_r(S)$ we consider three right congruences τ_1, τ_2 and τ_3. By lattice-theoretical properties we have

$$\tau_1 \cap (\tau_2 \cup \tau_3) \geq (\tau_1 \cap \tau_2) \cup (\tau_1 \cap \tau_3).$$

So assume

(12) \quad $a \equiv b \pmod {\tau_1 \cap (\tau_2 \cup \tau_3)}$.

If $W_a = W_b$ and $a \neq b$ then from (12) we have $a(\tau_2 \cup \tau_3)b$ and therefore there is an $x \neq a$ such that either $a x \tau_2 x$ or $a x \tau_3 x$. If $W_a = W_b = R_a$ then by Lemma 5 we have either $a x \tau_2 b$ or $a x \tau_3 b$. In either case $a \equiv b \pmod {\tau_1 \cap \tau_2 \cup (\tau_1 \cap \tau_3)}$. If $W_a = W_b = L_y = \{y, z\}$ then $y \equiv z \pmod {\tau_3 \cup \tau_2}$ and there is a sequence $y = x_1, \ldots, x_n = z$ such that

$$x_i \alpha x_{i+1}$$

for all $i = 1, \ldots, n$ and $\alpha_i = \tau_2$ or τ_3. Multiplying by y, we have $x_i y \alpha x_{i+1} y$. Since $x_i y = y$, $x_n y = z$ and $x_i y$ is either y or z there must be an i such that $y \alpha z$. Hence either $a x \tau_2 b$ or $a x \tau_3 b$ and

(13) \quad $a \equiv b \pmod {\tau_1 \cap \tau_2 \cup (\tau_1 \cap \tau_3)}$.

It remains to show (13) holds when $W_a \neq W_b$. From (12) we have

$$a \equiv b \pmod {\tau_1' \cap (\tau_1' \cup \tau_2')}.$$

By the distributivity of $\mathfrak{L}_r(S)$ we then have

$$a \equiv b \pmod {\tau_1' \cap \tau_1' \cup (\tau_1' \cap \tau_2')}.$$

But, by Lemma 8,

$$(\tau_1' \cap \tau_2') \cup (\tau_1' \cap \tau_3') = (\tau_1 \cap \tau_2)' \cup (\tau_1 \cap \tau_3)' = [(\tau_1 \cap \tau_2) \cup (\tau_1 \cap \tau_3)]' = \sigma'$$

and either (13) holds or (3) of Lemma 6 holds. However if (3) holds then from (12) and Lemma 7 a, b, y, z are related by $\tau_1 \cap (\tau_3 \cup \tau_3)$. Since $W_a = W_b = L_y$ then by the argument above $y \equiv z \pmod \sigma$. Also, from Lemma 6, we have

$$a \sigma y W z b.$$

Therefore $a \sigma y$; $y \sigma z$; $z \sigma b$ and $a \sigma b$. Hence (13) holds in all cases and

$$\tau_1 \cap (\tau_2 \cup \tau_3) = (\tau_1 \cap \tau_2) \cup (\tau_1 \cap \tau_3).$$

Thus $\mathfrak{L}_r(S)$ is distributive.
5. We now let $\mathcal{L}_r(S)$ be the lattice of right congruences of S and $\mathcal{L}_l(S)$ be the lattice of left congruences of S we have

Theorem 11. Let S be an idempotent semigroup. Then $\mathcal{L}_r(S)$ and $\mathcal{L}_l(S)$ are distributive if and only if S is a distributive semilattice or S is the union of two nonempty distributive semilattices Z_x and Z_y with zeros x and y respectively such that if $a \in Z_x$ and $b \in Z_y$ then

(1) $ab = x$ and $ba = y$

or

(2) $ab = y$ and $ba = x$.

Proof. We first assume $\mathcal{L}_r(S)$ and $\mathcal{L}_l(S)$ are distributive. While the results of the preceding theorem and proof were obtained for $\mathcal{L}_r(S)$ it can be seen that the dual results hold for $\mathcal{L}_l(S)$. Thus for example since any nontrivial L_y must satisfy $L_y \subseteq W_a$ for all a we have, by duality, that any nontrivial R_y must satisfy $R_y \subseteq W_a$ for all a. Hence if there is any nontrivial W_a we must have $W_y \subseteq W_a$ for all a.

We now prove one further result for a nontrivial $R_y = \{y, x\}$ using the distributivity of $\mathcal{L}_r(S)$. We let

$$Z_y = \{a \mid ya = y\} = \{a \mid xa = y\}$$

$$Z_x = \{a \mid xa = x\} = \{a \mid ya = x\}.$$

Since $R_y = \{ya\} \subseteq R_y$ we have $Z_y \cap Z_x = \emptyset$. If $W_a > R_y$, $ya = y$ and $b \in W_a$ then $yb = y$ since $R_y W_a = \{ya\}$, i.e., if $a \in Z_y$, $b \in W_a$ and $W_a > R_y$ then $b \in Z_y$. Similarly if $a \in Z_x$, $b \in W_a$ and $W_a > R_y$ then $b \in Z_x$. Let $a \in Z_y$, $b \in X_y$ then

$$y(ab) = (ya)b = xb = x.$$

Therefore $ab \in Z_y$. In this manner we show that both Z_y and Z_x are left ideals of S. Then $aba \in Z_x$. But $aba \in W_{ab}$ and $ab \in Z_y$. Therefore if $W_{ab} > R_y$ we have $aba \in Z_y$ and $ aba \in Z_x \cap Z_y$. Hence we must have $W_{ab} = R_y$. Since the only element of R_y in Z_y is y we have $ab = y$. Similarly $ba = x$.

Since $R_y = \{y, x\}$ must satisfy $R_y \subseteq W_a$ for all a we have $S = Z_y \cup Z_x$. Also, since there is only one nontrivial W_a then Z_y and Z_x must be semilattices.

Again using the duality principle, if $L_y = \{y, x\}$ then there are two disjoint semilattices Z_x and Z_y such that x is a zero of Z_x, y is a zero of Z_y and $a \in Z_x$ and $b \in Z_y$ implies

$$ab = x \text{ and } ba = y.$$

In this case let σ be a right congruence of S. Let σ_x and σ_y be
the right congruences induced by σ on Z_x and Z_y respectively. Also let δ be the congruence whose only nontrivial equivalence class is L_y.

Now, since Z_x is a right ideal any (right) congruence τ on Z_x may be extended to a (right) congruence τ' on S by defining $a\tau' b$ if and only if $a = b$ or $a, b \in Z_x$ and $a\tau b$. In this way we extend σ_x and σ_y to congruences σ'_x and σ'_y.

We claim that $\sigma = \sigma'_f$ where
$$\sigma'_f = \sigma'_x \cup \sigma'_y \cup \delta \quad \text{if} \quad x \equiv y \mod \sigma.$$

We note that if $a\sigma b$ with $a \in Z_x$, $b \in Z_y$ then $a\sigma a$, or $a\sigma y$ and $a\sigma b$ or $x\sigma b$; hence $a\sigma y$. Thus $\sigma \geq \sigma'$. Conversely, suppose $a\sigma b$. If $\{a, b\} \subseteq Z_x$ or Z_y then clearly $a\sigma b$. If for example $a \in Z_x$ and $b \in Z_y$ then, as above, $a\sigma y \sigma x \sigma b$, so that $a\sigma' y \sigma x \sigma b$, and we have $a\sigma b$. It now follows that
$$\mathcal{L}_r(S) = \mathcal{L}_r(Z_x) \times \mathcal{L}_r(Z_y) \times \{\iota, \delta\}.$$

Note that since Z_x and Z_y are semilattices then the congruences of $\mathcal{L}_r(Z_x)$ and $\mathcal{L}_r(Z_y)$ are two sided. Also both L and δ are two sided. Therefore $\mathcal{L}_r(S) = \mathcal{L}_r(S)$.

Using the duality once more we can conclude that we have the same result if $R_y = \{y, x\}$.

We have just shown that if $S = Z_x \cup Z_y$ with Z_x and Z_y defined as in the statement of the theorem then
$$\mathcal{L}_r(S) = \mathcal{L}(Z_x) \times \mathcal{L}(Z_y) \times \{\iota, \delta\}.$$

Since $\{\iota, \delta\}$ is a distributive lattice then a necessary and sufficient condition that $\mathcal{L}_r(S)$ be distributive is that both $\mathcal{L}(Z_x)$ and $\mathcal{L}(Z_y)$ be distributive. This concludes the proof of the theorem.

The following corollary is a consequence of one of the remarks made in the above proof.

Corollary. If $\mathcal{L}_r(S)$ and $\mathcal{L}_r(S)$ are both distributive then every congruence of S is two-sided.

6. In this section we give a more detailed description of an idempotent semigroup S whose right congruence lattice is distributive. Throughout this section we shall consider a semigroup satisfying conditions (i), (ii), (iii), and (iv) of Theorem 10. We denote by y and z the unique pair (if they exist) of elements such that $W_y = L_y = \{y, z\}$.

Definition. For $a \in S$ let $S_a = \{b \mid W_{ab} \neq L_y\}$.

In particular S_y is empty and if no y and z exist, $S_a = S$. Also, if $W_y \neq W_y$ then $a \in S_a$ so that $S_a \neq \phi$.
LEMMA 9. If \(W_a \geq W_b \neq W_y = L_y \) then \(S_a = S_b \). In particular if \(x \in S_a \), \(S_a = S_{ax} = S_x \).

Proof. Now \(W_a \geq W_b \) implies \(W_{ax} \geq W_{bx} \) for all \(x \in S \). Thus if \(W_{bx} \neq L_y \), then \(W_{ax} \neq L_y \) and so \(S_b \subseteq S_a \). On the other hand, suppose that \(x \in S_a \). Since \(W_a \geq W_{ax} \) and \(W_a \geq W_b \) from condition (i) we must have that \(W_{ax} \geq W_b \) or \(W_b \geq W_{ax} \). Hence \(W_{ax} \circ W_b = W_{axb} \) is either \(W_b \) or \(W_{ax} \), neither of which is \(L_y \). But \(W_{ax} \neq W_y \) and so \(W_{ax} \neq W_y \). Thus \(x \in S_b \) so that \(S_a \subseteq S_b \).

As an immediate consequence we have that if \(x \in S_a \), then \(S_a = S_{ax} = S_x \).

LEMMA 10. For all \(a, b, c \in S \), either \(S_a \cap S_b = \varnothing \) or \(S_a = S_b \).

Proof. If \(S_a \cap S_b = \varnothing \), let \(c \in S_a \cap S_b \). From Lemma 9, \(S_a = S_{ax} = S_c \) while \(S_b = S_{bx} = S_c \).

LEMMA 11. If \(S_a \) is nonempty, \(S_a \) is a sub-semigroup of \(S \) and \(S_a \cup W_y \) is a two-sided ideal.

Proof. Let \(b, c \in S_a \). From Lemma 9 we have \(S_a = S_b = S_{bc} \); in particular \(bc \in S_a \). The fact that \(S_a \cup W_y \) is a two-sided ideal follows easily from the observation that for all \(x \in S \), \(W_a \geq W_{ax} = W_y \geq W_y \).

LEMMA 12. If \(a, b \in L_y \) and \(W_a \circ W_b = L_y \) then \(aS_b = \{ab\} \).

Proof. Let \(b \) and \(b' \in S_b \). Thus \(W_{bb'} \neq L_y \) and so \(W_{bb'} = R_{bb'} \). By (6) we then have, since \(W_b > W_{bb'} \), that \(b(b'b) = b'b \). Again, since \(ab \) and \(ab' \in L_y \), and \(W_{b'b} > W_y \) it follows from (7) that \(ab = ab(b'b) \) and \((ab'b)b = (ab')b = ab' \). Thus \(ab = abb'b = ab'b = ab' \).

LEMMA 13. Let \(a \in L_y \). If \(x \in S_a \) and \(xx = xy \) then \(uy = uz = xz \) whenever \(u \in S_a \) and \(W_u \leq W_z \).

Proof. Without loss of generality suppose \(xy = xx = y \). Now \(W_u \leq W_x \) and \(W_u = R_u \) so that \(xu = u \). Also the hypothesis implies \(uxz = uy \).

If \(ux = u \), then \(uz = uy \) and it must follow that \(uz = uy = y \) for if it were the case that \(uz = uy = z \) then \(y = xx = x(uz) = (xu)z = uz = z \); a contradiction. Thus we may suppose that \(W_u = R_u = \{u, u'\} \) and that \(ux = u' \), hence that \(ux = u'x = u' \). On the other hand since \(u'x = u' \) we may replace \(u \) by \(u' \) in the above argument to conclude \(u'y = u'z = y \) and so \(uu'y = uy \). But \(uu' = u' \) so that \(uy = y \). Simi-
larly if \(uz = z \) it follows that \(u'u z = u'z \), or \(uz = u'z = z \), a contradiction. In this way we have \(y = uy = uz \).

Lemma 14. Let \(a \in L_y \). If \(az = y \) then for \(x \in S_a \), \(xy = y \).

Proof. We have \(az = ay = y \). Let \(x \in S_a \). If \(W_x \leq W_a \) the result is that of Lemma 13. On the other hand if \(W_x \geq W_a \) and \(xy = z \) then from Lemma 13 it would follow that \(az = ay = z \), a contradiction. Hence \(xy = y \) in this case. Finally suppose that \(W_x \) and \(W_a \) are incomparable. We have \(W_x > W_a \). By Lemma 13 \(axz = axy = y \). Also \(W_x > W_a \) and if \(xy = z \), then Lemma 13 gives \(axy = z \), a contradiction. Thus \(xy = y \).

Corollary. Let \(a \in L_y \). Either \(xy = y \) for all \(x \in S_a \) or \(xz = z \) for all \(x \in S_a \).

Proof. If \(bz = y \) for some \(b \in S_a = S_b \), then, from Lemma 14, \(xy = y \) for all \(x \in S_b = S_a \).

Lemma 15. In \(S \), the following two alternatives obtain:

1. For all \(a \in L_y \), \(ay = az \).
2. There exists a unique \(S_a \) such that for some \(a_0 \in S_a \) it is true that \(a_0y = y \) and \(a_0z = z \). Moreover if \(W_{a_1} \geq W_{a_2} \), then \(a_1y = y \) and \(a_1z = z \).

Proof. Suppose that (1) does not hold. Then for \(a_0 \in L_y \), \(a_0y = y \) and \(a_0z = z \). (If \(a_0y = z \), then \(a_0y = a_0z = z \).) Now if \(b \in S_{a_0} \) then \(ba_0 \in L_y \) and so

\[(ba_0)y = ba_0 = b(a_0y) = by\]

and

\[(ba_0)z = ba_0 = b(a_0z) = bz\]

so that \(by = bz \). Thus it follows that if \(ay = y \) and \(az = z \) it must be the case that \(a \in S_{a_0} \). This establishes the uniqueness of \(S_{a_0} \.

Now suppose that \(W_a \geq W_{a_0} \). If \(ay = az \) then Lemma 13 shows that \(a_0y = a_0z \), a contradiction. Hence \(ay = y \) and \(az = z \).

Corollary. The set \(D = \{ W_x | ay = y \) and \(az = z \} \) forms a dual ideal of \(\mathfrak{M} \).

Proof. First note that from condition (2) of Lemma 15, \(D \) is well defined, and indeed if \(W_x \in D \) and \(W_{a_1} \geq W_x \) then \(W_{a_1} \in D \). Lastly, if
$W_a \in D$ and $W_b \in D$ then $W_a \cdot W_b = W_{ab} \in D$ since from $ay = by = y$ and $az = bz = z$ it follows that $aby = y$ and $abz = z$.

Lemma 16. If $a \in L_y$ and $ay = az$ then for $b \in S_a$, $ab = ay = az$. Moreover, if $xy = xz$ for all $x \in S_a$ then if $S_b \neq S_a$, $S_b S_a = \{ay\}$. Finally if $a \in L_y$ and $ay = y$, $az = z$ then for $b \in S_a$, $ab = by$.

Proof. Since $b \in S_a$, $ab \in L_y$ and so $ab = a(ab) = ay = az$. Under the second assumption $xy = xz = ay = az$ and so $xb = ab = ay = az$, for all $x \in S_a$. On the other hand, from Lemma 12, $aS_b = \{ab\}$, thus $S_b S_a = \{ab\} = \{ay\}$. Under the third assumption we have $ab \in W_y$, $ab = aby = by$ since $by \in W_y$.

As a result of Lemmas 10 and 11 we may write S as the disjoint union of sub-semigroups S_a and the sub-semigroup $W_y = L_y = \{y, z\}$. Lemmas 12–16 describe how these semigroups multiply. The typical possibilities are summarized in the table below. We assume that

14) S_a contains an element a_0 such that $a_0y = y$ and $a_0z = z$ and other elements x such that $xy = xz$;
15) that $S_b \neq S_a$ and $by = bz = y$, and
16) $S_c \neq S_a$ and $cy = cz = z$. A single entry in a box means that all entries in that box have the entered value.

<table>
<thead>
<tr>
<th></th>
<th>S_a</th>
<th>S_b</th>
<th>S_c</th>
<th>...</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_a</td>
<td>a_0</td>
<td>y</td>
<td>z</td>
<td>...</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>S_a</td>
<td>xy</td>
<td>xy</td>
<td>xy</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>y</td>
<td>S_b</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>S_c</td>
<td>z</td>
<td>z</td>
<td>S_c</td>
<td>z</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>
| | : | : | : | : | :
| y | y | y | y | y | y |
| z | z | z | z | z | z |

Another way of decomposing S is to construct

$I_y = \{x \mid xy = xz = y\}$
$I_z = \{x \mid xy = xz = z\}$

and

$J = \{x \mid xy = y, xz = z\}$.
It is easy to see that these sets are mutually disjoint and that I_y and I_z are left ideals. It is clear that if J is nonempty it contains those elements of the single set S_a such that $by = y$ and $bz = z$. Any other S_a falls into either I_y or I_z. The remainder (if any) of the S_a falls into either I_y or I_z depending on whether $by = y$ or $bz = z$ for all $b \in S_a$.

Idempotent semigroups whose right congruence lattices are distributive may be constructed by pasting together semigroups with the structure of an S_a by using the rules laid down in Lemma 9–16. Thus let \mathcal{S} be a collection of distinct semigroups S_a satisfying conditions (i), (ii), (iv), and in addition that $W_a = R_a$ for all a. Let y and z be elements not appearing in $\bigcup \mathcal{S}$. $\bigcup \mathcal{S} \cup \{y, z\}$ is made into a semigroup by defining the multiplication between the sets S_a and $\{y, z\}$. It is convenient to think of this as being done in a multiplication table. We insist that $yx = y$, $zx = z$, for all x. For all S_a, with one possible exception we may choose with complete freedom, we define for $x \in S_a$, $xy = xz \in \{y, z\}$. The choice of the particular value is arbitrary. Then for all $c \in S_a$, xc is defined to be $xy = xz$. For $c \in S_a$, the multiplication is of course to be that of S_a. After this stage only the exceptional semigroup, call it S_a, has yet to be handled. In $\mathfrak{M}(S_a)$ let D be any dual ideal. We define $dy = y$, $dz = z$ if $W_a \in D$. For all $x \in D$ we make $xy = xz \in \{y, z\}$ and the choice is again arbitrary. We now claim that under these rules $\bigcup \mathcal{S} \cup \{y, z\}$ is an idempotent semigroup with distributive right congruence lattice.

To verify that the associative law holds we need to check several cases of the identity $p(qr) = (pq)r$.

Case 1. $S_p = S_q = S_r$ or $\{p, q, r\} \subseteq \{y, z\}$. Here p, q, r belong to a set assumed to be a sub-semigroup.

Case 2. $p \in \{y, z\}$. Here the multiplication gives $(pq)r = pr = p = p(qr)$.
Hereafter we assume that $p \notin \{y, z\}$.

Case 3. $py = pz$. By Lemma 16, $px = py = pz$ for all $x \in S_p$ so that associativity holds here.

Case 4. $py = y$ and $pz = z$. Thus $p \in S_a$ and in $\mathfrak{M}(S_a)$, $W_p \in D$. In view of the corollary to Lemma 14 we may suppose, without loss of generality, that for all $x \in S_a$ such that $W_x \notin D$, $xy = xz = y$.

If $q \in \{y, z\}$ then $p(qr) = pq = q$ while $(pq)r = qr = q$, and so we may assume $q \notin \{y, z\}$. We may also suppose that $qr \notin S_a$, otherwise $S_p = S_q = S_r$. Under these assumptions for Case 4 two main subcases arise.
Case 4.1. $S_q = S_r \neq S_a$. From Lemma 13 we have $pq = pr = p(qr)$ and since $pq \in \{y, z\}$ we have $(pq)r = pq$. Thus associativity holds.

Case 4.2. $S_q \neq S_r$. Here $qr \in \{y, z\}$ so that under the hypothesis of Case 4, $p(qr) = qr$. If $S_p \neq S_q$, then from Lemma 16 we have $pq = qy = qz = qr$, so that $(pq)r = (qr)r = qr$. Thus in this case we may assume $S_p = S_q = S_a \neq S_r$. Now if $W_{rs} \in D$, then since $W_s \supseteq W_{rs}$ we have $W_s \in D$ and thus $qy = y$ and $qz = z$. Since $S_r \neq S_a$ it follows that $ry = rz$ and thus from Lemma 16, that $qr = ry = rz = (pq)r$. On the other hand, if $W_{rs} \notin D$ it follows that, since $W_s \notin D$, it must be the case that $W_q \notin D$. Thus $(pq)r = y$ and $qr = y$ from the Case 4 assumptions; so that $p(qr) = py = y$. This completes the verification of the associative law.

Finally we need to see that conditions (i), (ii), (iii) and (iv) of Theorem 10 are satisfied. From the multiplication table it is easily seen that for all $x \in \cup \mathfrak{S}$, W_x is unchanged in the large semigroup while $W_y = L_y = \{y, z\} = L_z = W_z$ is the minimal element of \mathfrak{W}. Thus conditions (ii) and (iii) hold. $\mathfrak{L} = \mathfrak{W}$ is distributive since for the large semigroup, \mathfrak{L} is the set sum of the individual \mathfrak{A}_a of the member semigroups together with W_y. The only new order relations present are $W_x < W_z$ for all $x \in \cup \mathfrak{S}$. For this reason it is clear that (iv) holds since if $L_a \neq W_a < W_b$ it must be that $S_a = S_a$ and condition (iv) was assumed to hold in S_a.

Bibliography

Mathematical papers intended for publication in the Pacific Journal of Mathematics should by typewritten (double spaced), and on submission, must be accompanied by a separate author’s résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal but they are not owners or publishers and have no responsibility for its content or policies.
Pacific Journal of Mathematics
Vol. 14, No. 4 August, 1964

Homer Franklin Bechtell, Jr., Pseudo-Frattini subgroups 1129
Thomas Kelman Boehme and Andrew Michael Bruckner, Functions with convex
means .. 1137
Lutz Bungart, Boundary kernel functions for domains on complex manifolds 1151
L. Carlitz, Rings of arithmetic functions .. 1165
D. S. Carter, Uniqueness of a class of steady plane gravity flows 1173
Richard Albert Dean and Robert Harvey Oehmke, Idempotent semigroups with
distributive right congruence lattices .. 1187
Lester Eli Dubins and David Amiel Freedman, Measurable sets of measures 1211
Robert Pertsch Gilbert, On class of elliptic partial differential equations in four
variables .. 1223
Harry Gonshor, On abstract affine near-rings .. 1237
Edward Everett Grace, Cut points in totally non-semi-locally-connected
continua .. 1241
Edward Everett Grace, On local properties and Gδ sets 1245
Keith A. Hardie, A proof of the Nakaoaka-Toda formula 1249
Lowell A. Hinrichs, Open ideals in C(X) .. 1255
John Rolfe Isbell, Natural sums and abelianizing 1265
G. W. Kimble, A characterization of extremals for general multiple integral
problems .. 1283
Nand Kishore, A representation of the Bernoulli number Bn 1297
Melven Robert Krom, A decision procedure for a class of formulas of first order
predicate calculus ... 1305
Peter A. Lappan, Identity and uniqueness theorems for automorphic functions 1321
Lorraine Doris Lavallee, Mosaics of metric continua and of quasi-Peano spaces ... 1327
Mark Mahowald, On the normal bundle of a manifold 1335
J. D. McKnight, Kleene quotient theorems .. 1343
Charles Kimbrough Megibben, III, On high subgroups 1353
Philip Miles, Derivations on B* algebras .. 1359
J. Marshall Osborn, A generalization of power-associativity 1367
Theodore G. Ostrom, Nets with critical deficiency 1381
Elvira Rapaport Strasser, On the defining relations of a free product 1389
K. Rogers, A note on orthogonal Latin squares .. 1395
P. P. Saworotnow, On continuity of multiplication in a complemented algebra ... 1399
Johann Schonheim, On coverings .. 1405
Victor Lenard Shapiro, Bounded generalized analytic functions on the torus 1413
James D. Stafney, Arens multiplication and convolution 1423
Daniel Sterling, Coverings of algebraic groups and Lie algebras of classical
type .. 1449
Alfred B. Willcox, Šilov type C algebras over a connected locally compact abelian
group, II .. 1463
Bertram Yood, Faithful *-representations of normed algebras, II 1475
Alexander Zabrodsky, Covering spaces of paracompact spaces 1489