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IDEMPOTENT SEMIGROUPS WITH DISTRIBUTIVE
RIGHT CONGRUENCE LATTICES

R. A. DEAN AND ROBERT H. OEHMKE

A great deal of effort in, the study of semigroups has been spent
in an attempt to adopt group theoretic methods to semigroups and to
find suitable analogues for group concepts that will be significant in
the general structure theory of semigroups. Of particular importance
in the study of groups are the various relationships between a group
and its subgroups. As is well-known each subgroup in a group induces
a decomposition of the group into right cosets. In turn, this decom-
position corresponds to an equivalence relation that is invariant under
right multiplication. We call such an equivalence relation a right
congruence. Since there is a one-to-one correspondence between the
set of right congruences of a group and the set of subgroups of the
group it is clear that any subgroup-group relationship can be translated
into one involving these right congruences.

In semigroup theory the importance of the subsemigroup structure
to the nature of the semigroup is not quite so clear. This is due
primarily to the fact that there is very little relationship between the
homomorphisms of a semigroup and the subsemigroups of the semi-
group. Thus in studying lattices associated with semigroups we have
chosen to study the right congruences of a semigroup rather than the
more obvious analogue of subgroup, the subsemigroup, studied by Ego,
et al, [3, 7, 8].

In § 1 we show that these right congruences form a complete
lattice which is compactly generated in the sense of Crawley and
Dilworth [2, p. 2]. It is natural to ask what are the implications for
the semigroup of restraints which may be placed on this related lattice.

As a first problem in this area we seek a characterization of those
semigroups whose lattice of right congruences is distributive. For
groups this answer was determined by Ore [6, Theorem 4] to be the
locally cyclic groups. It is shown in § 2 that the lattice of right con-
gruences of a locally cyclic semigroup is distributive. (It should be
noted here that Severin [7] has shown that the lattice of semigroups
of a locally cyclic semigroup is not necessarily distributive.) However,
as is seen, not all semigroups with distributive right congruence lattices
need be locally cyclic. Thus the characterization problem remains.
While we have no solution to this problem in general, we do give in
§§3 and 4 necessary and sufficient conditions for an idempotent semi-
group to have a distributive lattice of right congruences. § 3 treats
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commutative idempotent semigroups (semi-lattices) and § 4 treats arbi-
trary idempotent semigroups. In §5 a necessary and sufficient condi-
tion for an idempotent semigroup to have both its lattice of right
congruences and its lattice of left congruences distributive is given.
Finally in § 6 idempotent semigroups with a distributive lattice of right
congruences are characterized in terms of simpler structures.

1. Let τ be an equivalence relation on a semigroup S. We shall
write either aτb or a = b (mod τ) if the ordered pair (α, b) belongs to
the relation τ.

An equivalence relation τ on a semigroup S is a right (left) con-
gruence if a,b,ceS and aτb implies acτbc (caτcb).

In this section we denote by Sr(S) the set of all right congruences
on the semigroup S. We shall use Latin letters to denote elements
of S and Greek letters to denote elements of Sr(S) Sr(S) is never
empty since the relation c defined by acb if and only if a = b is trivially
a right congruence as is the universal relation υ in which aυb holds
for all elements of S. We impose the natural ordering on 2r(S);
namely, that a ^ β if and only if aab implies aβb for all α, b in S.
It is easy to see that if Γ is any set of right congruences then f)Γ
defined by a = b (mod ΓΊ Γ) if and only if ayb for all 7 e Γ is a right
congruence on S, and is the greatest lower bound of Γ in S>r(S) under the
partial ordering ^ . This, together with the fact that v is a maximal
element in 2r(S) guarantees that £r(S) is a complete lattice under ^ .

It is important to obtain a better characterization of the least
upper bound l)Γ of a set Γ of right congruences. As is customary
in such matters we have the following result whose proof we omit.

LEMMA 1. Let α, b e S, and let Γ be a set of right congruences
On S. a = b (mod U Γ) if and only if there is a finite sequence a =
xu x2f , xn = b of elements in S and a sequence yl9 , 7n_i in Γ
such that xf/iXi+1 for i = 1, , n — 1.

As a consequence of this lemma and of the definition of l)Γ it
follows easily that 2r(S) is a sublattice of the lattice 5β(s) of all par-
titions on S considered as an abstract set.

To prove that 2r(S) is compactly generated we need to identify
the minimal congruence τα,6 identifying a with 6. We have of course
that τath — Π {7 I ayb}. Of interest is the alternate description afforded
by the next lemma.

LEMMA 2. Let p be any partition of S. Define ρr by aprb if
and only if either apb or there are elements r, s, t in S such that
a = rt, b — st and rps. If σ is the transitive closure of p', then σ
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is the smallest equivalent relation in ^β(s) which is a right congruence
ccontaining p, hence in Sr(S), σ — f]{cce 2r(S) | apb => aab}.

Proof. A straightforward calculation shows that σ is a right
congruence containing p. Thus it remains to show that if τ is a right
congruence containing p it must also contain σ. Certainly if ap'b then
aτb since τ is a right congruence and so rτs implies (rt)τ(st). From
this it follows easily that if aσb then aτb and thus σ ^ τ.

This lemma gives the characterization of τa>b by taking p to be
the partition which identifies a, b and no other distinct pair of elements
of S. The σ of the lemma is then τa>b.

THEOREM 1. Sr(S) is a complete, compactly generated lattice.

Proof. We have already proved completeness. It is clear that if
a 6 %>r(S) then a — U {7«,δ | ααδ} and so it remains only to show that
for each pair of elements τa>b is a compact element of 2r(S). Suppose
that τa>b ^ [jΓ where Γ is any set of right congruences on S. In
particular we have that a = 6 (mod U Z"1) and by Lemma 1 there are
sequences a — xl9 , xn — b and 7X, , 7«_i such that #/y1α;ί+1. Thus
a = b mod (Ti U 72 U U 7») and by Lemma 2 therefore τo,& ^ 7i U U Ύn+

Another type of right congruence construction which we frequently
employ is the following. Suppose that I is a right ideal of S. Let
T — τ(I) be defined by aτb if and only if a — b or a and b are both
members of I. τ is easily seen to be a right congruence which, following
Clifford and Preston [1, p. 17], we call the Rees right congruence de-
fined by /.

THEOREM 2. If S is a semigroup having three mutually disjoint
right ideals Il912,13 then 2r(S) is not distributive.

Proof. Clearly the set union of J2 and I3, denoted by I2 U /3, is
a right ideal. We let τλ = τ{I^) U τ(I2 U /3) and define τ2 and τ3 as cyclic
variants. Because J; Π Ij = φ it follows that τ{ Π τό = rί/O U τ(I2) U τ(/8>
while Ti U τ, = τίΛ U /2 U I3) and so rx Π (τ2 U r3) ^ fa Π ra) U fa Π τ8).

2* LEMMA 3. Let S be an arbitrary semigroup, τ and σ be right
congruences on S and xe S. Then

( 1 ) A(τ, x) = {n: xιτxj and n — i — j} is an ideal in the ring of
integers. If A(τ, x) = (d) we write a(τ, x) — d;

(2 ) if (0) Φ A(τ, x) — dy then there is a unique positive integer
μ(τ, x) = r such that xrτxr+d and if xaτxs with 1 ^ a < r then a — s;

(3 ) for all xe S, A(σ Π τ, x) = l.c.m. (a(σ, x), a(τ, x)) and
μ{σ Π τ, x) = max (μ(σ9 x)f μ(τ9 x));
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( 4 ) if S is the cyclic semiqroup <x> then a(σ U τ9 x) — g.c.d.
(a(σ, x), a(τ, x)) and μ(σ (J τ, x) = min (μ(σ, x), μ(τ, x)).

Proof. To prove (1), suppose that n and m € A(τ, x), say xιτxi+n

and x3τxj+m. Hence xi+jτxi+3'+n and xi+3'τxi+3+m so t h a t xί+3+nτxi+j+m.

Thus n - m G A(τ, a?) and so A(τ, x) is an ideal.
To prove (2), choose μ(τ9 x) to be the least positive integer r such

that xrτxr+d. Now suppose xaτxs with 1 ̂  α < r and α =£ s. Without
loss of generality we may assume a < s. Then we may conclude
x'-Hx* where t — s + (r — a) — 1 and r — 1 < t. Now d | (r — 1) —.ί
so that t = (r - 1) + M = r + kd - 1 = r + (d - 1) + (k - l)d with
Λ^ 1. From x rτx r + d we conclude af raf+{*-1)d. Therefore χr+(a-i)τχr+(a-iwk-na
and a?r""1+dτa?*. But xhx^1 and so ajr~1τa?ίr'~1)+d, contrary to the choice of r.

In the proof of (3) and (4) we may suppose A(τ, x) Φ (0) Φ A(σ, x)
since if A{τ, x) = (0) then clearly A(σ Π τ9 x) = A(<r U r, α?) = A(σ, a?).
We let A(r, x) — (p), μ(τ, x) — r, A(σ, x) = (q), and μ(σ, a?) = s. Assume
r ^ s.

To prove (3) let m = l.c.m. (p, q) with m = ppx — qqx. We have
xrτxr+pτxr+PP1 and so itJsra?s+m. Similarly xsσxs+m so that m e A(σ Π r, α?).
Let A(σ f] τ, x) — m1 and μ(σ f)τ, x) = t., Thus xι{σ fl τ)ccί+Wl and
in particular xtσxt'irmι so that ί? | m1 and similarly g | mlm Hence m | m1

and since m 6 (m^, we have m = m1# From ccs(σ Π τ)x s + w it follows
that μ(σ Π r, a?) ̂  s. On the other hand from ίc^α Π r)α;ί+m it follows
that x*σxt+m. Now (2) implies that either m = 0 or s ^ έ.

To prove (4) let d = g.c.d. (p, q). There is a solution w for the
congruence wp ΞΞ d (mod #) with w arbitrarily large. Indeed, if we
choose v so that r + d + vp > s then we may find a solution w so
that for u = w + v we have r + up > s. With these choices we have
(u — v)p~d (mod q) and of τ£ r+Wί> and £r+wpσαf+<2+^ since q\d + vp — up
and r + up > s. But xr+d+ί;2)τxr+Λ and so xr(σ (J τ)x r + d. This shows
that deA(σ \jτ,x).

Now let t — μ(σ (J τ, a?) and (e) = A(ί7 U τ, a;). Thus e \ d. From
x*(σ U τ)αjί+e we know there are integers t = α0, αx, , an = ί + e so
that αjαίδίuαΐ+1 where <5 = σ or τ and where at Φ ai+1. For each i we
have either that p \ ai+1 — a{ or q \ ai+1 — α̂  and so for all i we have
d I ai+1 — di. Hence d \ Σ{ (ai+1 — a{) or d \ an — a0 = e. Hence d — e

and since xr(σ U τ)xr+d it follows that μ(σ U τ, x) = £ ̂  r ^ s. Now
consider α δ̂cc"1. Since ί Φ ax it follows from (2) that £ ̂  r if δ = τ
and £ Ξ> s ^ r if δ = σ. In either event, t ^ r. Hence ί = r and the
lemma is proved.

From this lemma the following theorem is easily established.

THEOREM 3. If S is a locally cyclic semigroup then its lattice
of right congruences is distributive. (The word "right" is superfluous
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since a locally cyclic semigroup is abelian.)

Proof. Let p, σ, τ be congruences on S. We are to show p Π {o U τ) =
(p Π tf) U (p Π r) . TO simplify notation let Φ = p Π (σ U r) and 0 =
(ί> Π α1) U (p Π τ). AS in any lattice Φ 3 0 so we need only show φξiθ.
Let α^δ. Then apb, a(σ U r)6 and there is a sequence α = al9 , an = b
with αiδα ί+1 and δ = σ or τ. . Since S is locally cyclic there is a c with
a — ce, b = cf and at e < c > . Hence we can assume S = < c > . By
Lemma 3

a(Φ, c) = l.c.m. (α(|0, c), g.c.d. (α(σ, c), α(r, c)))

= g.c.d. (l.c.m. (α(^, c), α(σ, c))), l.c.m. (α(|0, c), α(r, c)))

= «(«, c) ,

, c) = max (^(|O, c), min (/£(σ, c), ^(τ, c)))

= min (max (^ί^, c), ̂ (σ, c)), max (^(|O, c), μ(τ, c)))

Let α(^, c) = a(θ, c) = d and ^(^, c) — //(^, c) = r and e = / . Then
either e—foτr^e<f and ώ | / — e. Hence from ceφcf we easily get ceθcf.

COROLLARY. If S is an inήnite cyclic semigroup then its con-
gruence lattice is the direct product of a countably infinite chain
and the lattice of integers partially ordered by division. If S is a
finite cyclic semigroup, {α, α2, , ar, ar+1, , ar+m — ar} then its con-
gruence lattice is the direct product of a chain of length r and the
divisor lattice of m.

Proof. It is easily verified that if S is a cyclic semigroup with
generator a, the mapping Φ —• (μ(Φ, α), a{φ, a)) is a one-to-one mapping
of the congruence lattice onto the direct product of the lattices men-
tioned in the corollary. It is also easy to see that Φ ̂  θ in the con-
gruence if and only if μ(φ, a) ̂  μ(θ, a) and a{θ, a) \ a(φ, a), so that the
correspondence is a lattice isomorphism. Note that the ordering of the
chain reverses the "natural" ordering.

3* A semilattice is a commutative idempotent semigroup S. If
we define

(1) a ^ b if and only if ba — a

then S is partially ordered by this relation and ab = a Π b = greatest
lower bound of a and δ.

Let S be a semilattice. Whenever a ^ δ we let α/δ = {x | a ^ x ^ δ}
which we call the quotient a over δ. We say that a/b projects down
to c/d if a ^ c ^ c£ ̂  δc. We write α/δ —> c/d.
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LEMMA 4. In the semίlattice S, the following properties hold:
( i ) α/6 —> c/d implies a/b —> cx/dx for all x e S;
(ii) a/b —> c/d and c ^ e ^ / ^ d imply a/b —»> e/f;
(iii) a/b —• c/rf αwd α/δ —> d/e imply a/b —> c/e;
(iv) a/b —* c/d αtiώ c/d —> β// imply a/b —> e//.

Proo/.
( i ) We have α JΞ> c Ξ> d ^ δc. From c ^ d ^ be we conclude c ^

ex ^ dx ^ (bc)x Ξ> 6(c$).
(ii) We have α ^ c ^ c ^ / ^ d Ξ> 6c. From c ^ e we conclude

6c ^ 6e while from e ^ 6c we conclude δc ^ δ(δc) = 6c. Hence δc = δβ
and a ^ e ^ f ^ be.

(iii) We have a ^ c ^ d Ξ> 6c and α ^ d ^ c ^ δd. From d ^ be
we have δd ^ δ(6c) = δc and thus a ^ c ^ c ^ δd ^ δc. Thus α/δ —> c/β.

(iv) We have a Ξ> c ^ d ^ δc and c ^ c ^ / ^ de. From d 7> be
we have dβ ^ (δc)c = 6(ce). Now c ^ e implies e = ce, hence de ^ δeo

Thus a ^ β ^ / ^ 6e, that is α/6 —• e//.

THEOREM 4. Let S be a semilattice. Let a ^ b in S. The mini-
mal congruence identifying a and 6, τayh = τ, is characterized by

xτy if and only ifx — y or a/b —> x/xy and a/b —+ y/xy .

Proof. For brevity let us write x ~ y if x = y or if α/δ —> sc/αsy
and a/b-+y/xy. The relation (~) is clearly reflexive and symmetric.

First we establish that x ~ y implies xτy. We suppose that a/b —•
x/xy and a/b —> ^//^. We shall show that τ̂cu?/ and, by symmetry,

whence xτy follows. Now a/b —> aj/ajy means α ^ α? ̂  ^ ^ 6x»

x implies ax — x and so axy = xy and sc ^ α?̂/ ̂  6x implies bx ^
^ 6x, hence bx = 6xτ/. On the other hand ατδ implies axτbx and

axyτbxy; in other words xτδα? and xyτbx. Thus α&τscy.
We next show that (~) is a congruence relation on S and a ~ b.

This completes the proof, since the above paragraph then shows that
(~) <Ξ τ while τ ^ (~) by the minimal nature of τ.

( i ) α ~ 6 holds by the definition of a projection since αδ = 6.
(ii) x ~ 7/ implies x̂ ; — yz since if a/b—> x/xy, then α/δ —> xz/xyz

by property (i) of Lemma 3.
(iii) To show that (~) is transitive suppose that x ~ y and y ~ z.

If x = y or y — z then clearly x ~ z. Thus we suppose that α/δ —*
x/xy, a/b —> j//a?j/, α/6 —> y/y«, and α/6 —> 2;/^. By property (i) we have
a/b—*xy/xyz and thus by property (iii) a/b-*x/xyz. Finally, since
x^xz^ (xz)y = #2/2 it follows from property (ii) that α/δ —• x/xz. By
symmetry α/6 —> «/ίC2 and thus # ^ 2.

COROLLARY. PR£/& ίfce notation of the theorem, aτx if and only
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if a ̂  x ̂  δ.

Proof. If a ̂  x ^ 6 then α# = a?, bx — b and αxτδx implies
and hence ατaj. Conversely, aτx implies α/δ —> ajxa and α/δ —* x/xa;
hence α ̂  α Ξ> xα ̂  δα = δ, α ̂  a; ̂  xa ̂  δ# and α ̂  a? ̂  δ.

THEOREMS, In a semilattice S, for any two elements a, b it is

true that τa>b = τa>ah U τb,ab.

Proof. a(τa>ab U τb>ab)b since aτa>ababτbtahb. Hence τα, 6 ^ τα,α 6 (Jτ 6 > α 6 .

On the other hand for any congruence τ, aτb implies aτab and αδτδ.
Thus in particular τa>b ^ τα,α6 and τayb ^ τb>ab which implies τayb ^
τa,ab U 'ZΓ&.αδ

For semilattices we need the concepts of an ideal and a dual ideal.
A subset I of a semi-lattice is called an ideal, if when a e I and x ̂  α
then x e I. It is clear# that this is but a reformulation of an ideal in
a semigroup in the special case when the semigroup is a semilattice.
A dual ideal is a subset J such that if (i) a e J and a ̂  x then a? e J
and (ii) if ae J and beJ then αδe J.

THEOREM 6. Let S be a semilattice containing three distinct ele-
ments a, δ, c such that b and c are noncomparable but such that
a > δ and a> c. Then the lattice of congruences on S is nonmodular.

Proof. Let p = τb>bc, σ = τa>b and τ = τa>c. Clearly p ^ τ as
α/c —> δ/δc and so δτδc. We shall prove that while p ^ τ it is false
that τf)(pl)σ) = ρu(σnτ).

First note that since a > δ and α > c while δ and c are non-
comparable, the corollary to Theorem 4 implies that a =£ c (mod σ).

Second note that α/δ —> c/δc and so cσbc. Thus we have cσbc, bcpb,
and δtfα; that is, c(p U #)α. Thus τ ^ p{J σ and r Π (p U σ) = r. It
now suffices to show that a φ c mod p U {o Π T).

To simplify matters we replace p by a possibly larger congruence
φ. ψ is the Rees congruence generated by the ideal I — {x: x ^ δ}.
Since bφbc it follows that p ^ φ. We claim in fact that
a Ξ£ c mod (φ U (tf ΓΊ τ)).

Note that xφy and a? > δ imply x — y and in particular that aφx
implies a — x. Also, from the corollary if aσx and aτx then a^x^b
and α ̂  a? ̂  c. Suppose, then, that there is a sequence

α = a?lf a?a> •••,»» = c (n > 2)

so that flCi9>a!<+1 or aĵ σ Π τ)xi+1. Without loss of generality we suppose
that we have selected a sequence of minimal length. Now if a = xx
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then x2 — a and x2 could have been deleted from the sequence. Thus
a = Xj[σ n τ)x2 and a ^ x2 ^ δ. In fact, since a & b (mod τ) we have
#2 > b. Now if w ̂  3, and if x2(σ Π τ)xΛ9 then ^(σ Π τ)#3 and x2 could
have been deleted. Thus if n ^ 3, it must be that xjpxz. But #2 > δ
and hence x3 = x2 so that xd could have been deleted from the sequence.
Thus it must be that n — 2 and that a(σ f] τ)c; the latter is a contra-
diction since a ^ c (mod σ).

THEOREM 7. Lei S be a semilattice. A congruence τ is uniquely
determined by the set of quotients a/b such that aτb. That is if
Q(z) = {a/b I aτb} then Q{τ) — Q(σ) implies σ = τ. Moreover σ ^ τ if
and only if Q(σ) § Q(τ).

Proof. It clearly suffices to prove the last conclusion of the
theorem. If σ ^ τ then Q(σ) £Ξ Q{τ) holds trivially. Suppose then
that Q(σ) £ Q(τ) and that xσ /̂. Thus xσxy and x̂ /σ̂ /. Thus x/xy and
y/a?y e Q(σ) g Q(τ). Thus ccτa;̂  and xyτy, whence xτy, and consequently
σ S τ.

THEOREM 8. Let S be a semilattice in which elements with a
common upper bound are comparable i.e., for all a,b, ce S, if a g: δ
and a ^ c then either b ^ c or c Ξ> 6. The lattice of congruence rela-
tions on S form a distributive lattice.

Proof. Let p, σ, τ be three elements of 8 r(S). We are to show
that p Π (σ U τ) = (p Π σ) U (/o Π τ). Since p Π (σ U τ) ^ (/OΓÎ ) U (pUr)
in any lattice we need only establish the reverse relation and in view
of Theorem 7 we need only show that Q[p Π (σ U τ)] E Q[(p Π cr) U (p Π τ)].

We shall first prove that under the conditions of the theorem if
a/b e Q(σ (J τ) then there is a sequence a — xx ^ x2 ^ ^ ίcw = 6 so
that for each i,Xilxi+1eQ(σ)\jQ(τ). Now if α/δeQ(σUτ) we have
a(σ U τ)δ so that there is a sequence a — yuy2, ** ,yn — b with yfiLiVi+1

where α* = σ or τ. From this sequence we construct the desired
sequence by setting α?< = yxy2 -•- y{. Clearly x{ ^ xi+1 and «< =
Vi ViaiVi * ' V«V«+i so that Xi/xi+1 G Q((7) U Q(τ). Since α ̂  xi and
α ^ δ = ym ^ a?w, from the hypothesis it must be the case that xt and
δ are comparable, for all i. If we choose n as the least integer such
that b ̂  xnf then we may conclude that a — x1 ^ ^ a?n-i > δ and
thus xu , αj.-i, δ is the desired chain.

Now suppose that c/d e Q[p Π (σ U r)]. Then c^d and c/d e Q(σ U τ).
By the preceeding paragraph there is a chain c = xx ^ α?2 ̂  ^ xn = d
with fiBi/αj<+1 G Q(σ) U Q(τ). Since C|0cZ it follows from the Corollary to
Theorem 4 that XiPxi+1 and thus ^ ( p Π o)xi+1 or αjίί/o Π r)α?<+1; in any
event c == d mod (/O Π <J) (J (p Π τ).
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We may now combine Theorems 6 and 8 to obtain an answer to
our question in the case of semilattices.

COROLLARY. A semilattice has a distributive lattice of congruences
if and only if every pair of elements with a common upper bound
are comparable.

4* We define a relation R on the idempotent semigroup S by aRb
if and only if

ab = b and ba — a

and a relation L by aLb if and only if

ab = a and ba = b .

It has been shown by McLean [5, Lemma 4] that both R and L
are equivalence relations. In fact R is a left congruence and L is a
right congruence [5, Lemma 5] We shall denote the equivalence
class of a under R and L respectively by Ra and La.

Further, if W is the relation defined by aWb if and only if

aba — a and bob — b

then W is a two-sided congruence (homomorphism) on S, the homo-
morphic image of S under W is a semilattice 2B [5, Theorem 1] and
Wa, the equivalence class of a under W, is the direct product of La

and Ra [4, Lemma 1] and Wa = LaRa.
We shall use the notations WaoWb for the multiplication in 2δ

and WaWb for ordinary complex multiplication. Also, we shall use
the notation Wa^ Wh for the ordering defined in (1) on the semilattice SB.

We prove the following elementary consequences of these results:

and TF6T7α U WaWb S

= y.

The first three of these were obtained by McLean [5]. From Wa =
LaRaj aRa = Ra and Laa = Lα it follows that (5) holds. If Wy = Ry

and Wy ^ Wβ then Way = Wtf and ay e Wy = JBy. Therefore y{ay)y = y.
But 2/(αy) = αy and we have (6). We prove (7) in a similar manner.

( 2 )
( 3 )
( 4 )
( 5 )
( 6 )
( 7 )

W.oW.
w <
W < 1
Ra S ϊ
If Wy
If Wy

Wx and TF., :
Wh implies Wt

Va and La S 1
= Ry and TF,,
= L v and Wy

wxa =zwυ.
O VVJ, —

I ' ' 0
Va.

^ wa^ wa

w
Vγ ax

wa

then
then

THEOREM 9. If S is an idempotent semigroup such that the lattice
8>r(S) is modular then for all yeS either Ly — {y} or Ry = {y}.

Proof. Assume ze Ly and z Φ y. We shall consider three basic
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right congruences, τ l f τ2 and L. L was defined above. τx shall be the
right congruence whose only possible nontrivial equivalence classes are
Ry and the ideal I = {x \ Wx < Wy). τ2 shall have only Rz and I as its
possible nontrivial equivalence classes.

First we prove that τλ and (by symmetry) τ2 are right congruences.
Set aτj). We are to show acτj)c for all ce S. We have Wac ^ Wa

and Wbc^Wb. Thus if α, be I then ac,bcel and thus acτλbc. If
a,beRy then α, 6 e Wi, and Wββ = Wbc. If Wββ ^ Wy then αc and
hence bee I so that acτ^bc. If Wαc = Wj, = W6c then αc, 6ce i ^ since
W is an equivalence relation. Hence acτφc.

Now, to complete the proof of the theorem, let x e Ry. We will
show x — y. We use the fact that modularity implies

fa U τ2) n (τ2 U L) = τ2 U [(τx U τ2) n L] .

By the definition of τx we have ccΓxj/ and hence ^(τx U T2)y. Next
we show x(τ2 U ί/)2/. First we note yLz and hence yxLzx. Since # G i?y,
ί/ίc = x, so that α L ^ Now zx e Rz since z(zx) — zx and («»)« = z by
the definition of ΐί^. Therefore ^r2^^. We now have

xLzx; zxτ2z; zLy

and

x(L U

In summary x = y mod (τ1 U τ2) Π (τa U L) and by modularity ίc =
2/ mod τ2 U [(^Ί U ra) Π L]. However both x and y are in trivial equiva-
lence classes of τ a. If 1/ = αmod ((rx U ra) Π L) then i/Lα and yfaljτja.
Thus we have α e Ly. But β β Π iϊjr = ?> for if beRzπRy then zδ = δ,
by — y and (zδ)i/ — by — y. However, 2(62/) = zi/ = z. It follows that
the only possible nontrivial equivalence classes of τx U r2 are Ryy Rz

and 7. Hence a e Ry. We now have a e Ry Π Ly = {y}. Thus /̂ lies
in a trivial equivalence class under both τ2 and (τx U r2) (Ί L and hence
under τ2 U [(τΊ U ra) Π L]. Therefore y = x and Ry = {̂/}

THEOREM 10. Lei S δβ an idempotent semigroup. 2r(S) is dis-
tributive if and only if

( i ) S(2δ) is distributive.
(ii) For αϊϊ aeS, Wa contains at most two elements.
(iii) If Wa — LaΦ {a} then Wa is the smallest element of 2B.
(iv) If Wx < Wy then either WxWy={xy} or Wx = Lx.

Proof. We first assume Sr(S) is distributive. If a is a right
congruence of SB define σ' by

ασ'δ if and only if Waσ Wb .
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A straightforward proof shows that the correspondence σ —»σf is a
lattice isomorphism of S(2δ) into S r(S). Hence 8(2B) is distributive.

By Theorem 9, Ψy = Z^ or #„.
In order to prove that (iii) is necessary for %>r(S) to be distribu-

tive we assume y is an element of S such that Ly — Wy Φ {y}. Now
let T be a subset of Ly and I the right ideal defined by

I={x\Wx<Wy}.

If ae S and ze Ly then by (3), Wza ̂ Wz = Ly. If Wza = W. then
TΓ2 ^ Wβ and by (7) we have za = z. This says that if T is any
subset of Ly then either

( 8 ) Ta S I or Tα = Γ .

Now let ίE be any decomposition of Ly into disjoint subsets and
let p be the equivalence relation defined by

apb if and only if a — b or a, b e I or a, b e T for some T e X .

It follows from (8) that p is a right congruence. Now let ToeX and
define an equivalence relation pf by

α '̂fr if and only if a — b or α, 6 e To (J / or

a,beT for some T e £ .

Again it follows from (8) that pf is a right congruence.
Now let y Φ ze Ly and τx, τ2 and τ3 be the right congruences

whose only possible nontrivial equivalence classes are

τ,: {y} U /

r2: M U /
τ 3 : {z, y}, I.

The only possible nontrivial equivalence class of either τx Π τ2 or τt Π τ3

is /. Therefore if a e I then

y =έ a (mod (rx Π ra) U (τx Π r8)) .

However τt ^ r2 U τ3 and α r ^ . Therefore

α = y (mod rx Π (τ2 (J τ8))

and

Tx n (τ2 n r8) ^ (Ti n τ2) u (^ n r 8 ) .

Hence if Sr(S) is distributive then we must assume / is empty and
thus (iii) holds.

In the same way, if w is an element of Ly distinct from y and z
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we can show that the right congruences τu τ2, τ3 whose nontrivial
equivalence classes are

?i: {v, z}

τ*: {V9 w}
τ 3 : {w, z}

fail to satisfy the distributive law. Therefore (ii) holds for all Wy = Ly.
To prove (ii) in the case Wy — Ry we shall proceed as in the case

Wy — Ly. However, to establish the necessary right congruence pro-
perties we need a weak form of (iv); namely, if Ry < Wa then Rya =
{yd}. Assume Ry < Wa and there is a pair x, x' in Ry such that

xa Φ x'a .

We let xa — y and x'a — y'. Then ya — y and y'a — yf. Let σy and
Oy, be the right congruences defined by

We have

Therefore

Thus if
must have

cύyb if and only if yc = yb

cσy,b if and only if y'c — y'b .

aσyy and aσy,y
r .

2/ = yf (mod σy U oy) .

is the minimal right congruence relating y and yf we

and

y = y' (mod τ ^ , n (σy U ^

Now let zeRy and s Ξ zf (mod Π Since zσyz' we have y^ =
yz = z and JŜ  = Ryz = Wyz, ^ Wβ/. But we also have

(9) ZW*'

Let T be the right congruence corresponding to the right ideal

J = {x IW. ^ Ry} .

Since yτy' we have τyflf/ g τ. Therefore from «6 Ry and (9) we have
zf € J and T7Z, ^ i?y. Thus TΓZ, = Ry and / = yz' = yz = z. We can
now conclude that if z e Rv then z is in a trivial equivalence class of
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( w n <v) u (τy,y> n σy).

To avoid a contradiction to the assumption that Sr(S) is distributive
we must assume that if Wa ^ Ry then #'α = ya for all #' e Ry or

We now have sufficient multiplicative properties for Ry to show,
just as in the case Wy = Ly, that if % is any decomposition of Ry

then the collection % U {/}, I = {x:Wx < Ry}, can be extended in a
trivial way to a decomposition of S and the corresponding relation is
a right congruence. This follows chiefly from the fact proved above
that if T £ Ry then either Ta is a single element of Ry or Tα £ I.
If a?, 2/, 2 are distinct elements of Ry then the three right congruences
τn τ2i 3̂ corresponding to the decompositions of Ry:

τ 3 : {x, z} ,

do not satisfy the distributive law since

x = y (mod τx Π (τ2 U τ8))

and

a? ^ /̂ (mod (Γi Π τa) U (rx Π r8)) .

Therefore i?y contains at most two elements.
We can now prove a slightly stronger result on the multiplicative

properties of the Ry& and thus prove (iv). Assume Ry — {y, z} and
Wa > Ry. If Wa = {»} then from the above results we have Ry Wa =
Rya = {̂ /α}. We shall show that the same result holds if Wa = {α, 6}.
Since Wβ > ^ we cannot have Wa = Lα. Hence we must have Wa = i?α.
Let |O and <5 be the right congruences defined by

cpd if and only if Wc = Wd ^ iZα

cδd if and only if Wc = Wd < Ra .

If Sr(S) is distributive then since 5 ^ / ) we have

(10) |O Π (σy U ί) = (iθ Π σy) U δ

where σy was defined above. Assume Rya = {y}. Then /̂α = y2 and
/̂ = a (mod tfy). Multiplying by & we have yb = ab (mod σy) and

yb = b (mod α^). Therefore

&; ybσyb

and
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a ΞΞ b (mod σy U <?)

a = b (mod p Π (σy U &)) .

On the other hand, by (10), there is a minimal sequence a = xl9 ,xn — b
such that XiOtiXi+i where at is either p Γϊ σy or δ. Since α is in a
trivial equivalence class of 8 and the sequence xlf , xn is minimal
we have a Φ x2 and a = x2 (mod p f l ^ ) . Therefore α<o#2. But x2eRa;
thus x2 = b, a = b (mod /O Π 0 )̂ and α = 6 (mod σy). Therefore ya — yb
and RyRa = {#α}.

We now prove the sufficiency of the four conditions of the theorem.
Since each Wa contains at most two elements we must have either
Wa = Ra or Wα = La.

LEMMA 5. If Ra — {a, b} and σ is a right congruence such that
aσx for x Φ a then aσb.

Proof. Since ab — b and aσx we have

ασ(ccα)

and

bσ(xb) .

Also, Wxb = Wxa. If Wxh is a singleton then xb = xa and aσb. If
Wxb — Rxb ^ Wb then ccα e Wxb and (iv) implies (xα)α = (xa)b and
ίcα = xb. Thus ασ6.

If Wa-5 = Lxb then (x&)α = xb by (7). But (#δ)α = x(ba) — xa.
Then xb = xa and again aσb.

LEMMA 6. If a = b (mod σ U W) then either
( 1 ) ασ6,
( 2 ) aWb, or
( 3) ίfeere exist distinct elements y and z such that az — y9 by — z9

Ly — {y, z} and aσy Wzσb.

Proof. Assume there is a minimal sequence xl9 , xn such that
a = χlf b — xn and a?iαίa?<+1 where a{ — σ or W. If all α^ are equal
then, by transitivity either aσb or aWb. Also since the sequence of
x's is minimal we can assume at Φ ai+1. Therefore for some i we
have either xi^1σxiWxi+1 or Xi^WXiOXi+ύ say the first of these holds.
By Lemma 5, if WH — RXi then x{^xi+1. But then the minimality of
the sequence is contradicted. Therefore we can assume that each
Xi Φ a9 b must be in Wy = Ly = {y, z}. If i > 4 then either y or z is
duplicated in the sequence, and hence it could be shortened. There-
fore we must haye either
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a Wx2σxz Wb

or

aσx2Wxsσb .

If the first of these alternatives hold we have a, be Ly, since x2, x3e Ly,
and Wa = Wb. So assume the second alternative holds. Then

axzσx2xz = x2 and xB = xzx2σbx2.

If either axz — xB or bx2 = x2 then xzσx2 and aσx2 Wxzσb implies aσb

and the lemma is proved.

LEMMA 7. If az = y, by — z, Ly = {y, z}, y Φ z and aσb then
a, 6, y and z are congruent under σ.

Proof. Let ce S such that Wc = Rc. lί cz — y then ĉ / = &z —
cz — y. If d e Rc then d — cd and eZz = ccί̂  = c(dz) = 2/ since ciz e L y .
Therefore ^ L ^ = {y}. In the same way if cy — z we have RcLy — {z}.
Now bab, aba e Wab. Thus, if Wab — Rab then babz = αδα ;̂. But by a
direct calculation 6(α&2) = z and α(&α£) = y. Hence Wah Φ Rab and
indeed bab and α&α are distinct. Since babz Φ abaz we must have
Wab = Ly) i.e., α&, &αe Ly. From αδa; = /̂ and bay = « and the defini-
tion of L y we have ab = y and 6α = z. We can now conclude that
aσb implies cfσba, abσb2 and consequently aσz and yσb.

For any right congruence δ we define <5' as δ' = δ (J TΓ. It is
clear that δ' is a right congruence on S3 and δj[ U δa = (δx U δ2)'. In
addition we have

LEMMA 8. (δ[ n «ί) = (δx n δ2)'.

Proof. It follows readily from the definition of δ[ and lattice-
theoretical properties that

δί Π δ ^ (δ, n δ2)'

therefore we assume

a Ξ= b mod δ[ Π δ̂

and show

(11) a = δ mod (δx Π δ2)' .

Since α = 6 mod δj we can conclude that for each i; (1), (2) or (3) of
Lemma 6 holds. If the same case holds for both δ{ then clearly (11)
is satisfied. Again (11) is satisfied if for either δf (2) holds, This
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leaves a mixed case, say aδj) and aδ2yWzδ2b where az = y, and by — z.
Applying Lemma 7 we have aδxy, zδj) and aδφWzδJb. Therefore
a(δi Π d^yWz(δt Π δ2)b and the proof is complete.

To prove the distributivity of %>r(S) we consider three right con-
gruences τl9 τ2 and r3. By lattice-theoretical properties we have

*i Π fa U τ3) ^ fa Π τ2) U fa Π τ3) .

So assume

(12) a~b (mod rx Π fa U r8)) .

If Wa = Wb and α ^ b then from (12) we have α(τ2 (J τ3)6 and there-
fore there is an x Φ a such that either aτ2x or aτsx. If Wa — Wh — Ra

then by Lemma 5 we have either aτ2b or aτjb. In either case
a s 6 mod (^ Π τ2) U (rx Π r 8). If TΓα = "PΓ6 = Ly = {», }̂ then 2/ =
2J (mod τ2 U τ3) and there is a sequence y = α?x, * 9xn = z such that

for all i = 1, •••, w and a^ = r2 or τ3. Multiplying by i/, we have
BiVa&i+iV Since a;^ = y, xny = z and x& is either i/ or z there must
be an i such that i/α^. Hence either aτ2b or αr3& and

(13) a = b mod fa Π τ2) U fa Π r8) .

It remains to show (13) holds when Wa Φ Wb. From (12) we have

a Ξ= 6 mod rj Π (τ2 U r j ) .

By the distributivity of S(2δ) we then have

a = 6mod(τίnr ί )U(τ;nrJ) .

But, by Lemma 8,

fa' n τ2) u (ri n ri) = fa n τ2γ u fa n r.y = [fa n τ2) u fa n r8)]' - σ'

and either (13) holds or (3) of Lemma 6 holds. However if (3) holds
then from (12) and Lemma 7 a, 6, y, z are related by τx Π fa U τ8).
Since TFj, = W# = Ly then by the argument above y = z mod σ. Also,
from Lemma 6, we have

aσy Wzσb .

Therefore aσy; yσz; zσb and aσb. Hence (13) holds in all cases and

τxn faur8) - fanτ2)u fanr8).

Thus Sr(S) is distributive.
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5Φ We now let 2r(S) be the lattice of right congruences of S
and $>ι(S) be the lattice of left congruences of S we have

THEOREM 11. Let S be an idempotent semigroup. Then 2r(S)
and %ι(S) are distributive if and only if S is a distributive semi-
lattice or S is the union of two nonempty distributive semilattices
Zx and Zy with zeros x and y respectively such that if ae Zx and
beZy then

(1) ab = x and ba — y
or

( 2 ) ab = y and ba — x.

Proof. We first assume 2r(S) and S,(S) are distributive. While
the results of the preceding theorem and proof were obtained for Sr(S)
it can be seen that the dual results hold for %>ι(S). Thus for example
since any nontrivial Ly must satisfy Ly S Wa for all a we have, by
duality, that any nontrivial Ry must satisfy Ry ^ Wa for all a. Hence
if there is any nontrivial Wy we must have Wy ̂  Wa for all a.

We now prove one further result for a nontrivial Ry — {y, x)
using the distributivity of 2r(S). We let

Zw = {a\ya = y} = {a\xa = y}

Zx = {a I xa = x} = {a \ ya = x}.

Since Rya = {ya} e Ry we have ZvnZ9 = Φ. If Wa > Ry, ya = y and
beWa then yb = y since RyWa = {ya}, i.e., if α e ^ , δe Wα and
Wa > Ry then be Zy. Similarly if aeZx, be Wa and Wa > Ry then
6 e Zx. Let aeZx, beXy then

y(ab) = (ya)b = xb = x .

Therefore ab e Zy. In this manner we show that both Zy and Zx are
left ideals of S. Then α6α e Zβ. But α6α e Wab and α6 G Z y. There-
fore if Wab > Ry we have aba e Zy and aba eZxΠ Zy. Hence we must
have Wab — Ry Since the only element of Ry in Zy is y we have
αδ = y. Similarly ba = x.

Since i2y = {̂/, x) must satisfy JB̂  ̂  Wa for all α we have S =
Zy U ̂ ». Also, since there is only one nontrivial Wa then J^ and Zn

must be semilattices.
Again using the duality principle, if Ly — {y, x) then there are

two disjoint semilattices Zx and Zy such that x is a zero of Zβ9 y is a
zero of Zy and ae Zx and be Zy implies

ab — x and ba — y .

In this case let σ be a right congruence of S. Let σx and tfy be
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the right congruences induced by σ on Zx and Zy respectively. Also
let δ be the congruence whose only nontrivial equivalence class is Ly.

Now, since Zx is a right ideal any (right) congruence τ on Zx may
be extended to a (right) congruence τ' on S by defining aτ'b if and
only if a = b or α, b e Zx and aτb. In this way we extend σx and σy

to congruences σx and 0^.
We claim that σ = σf where

ar — σr

x U ofy if x^y mod σ

σf — σx U σ'v U δ if a? = 2/ mod tf .

We note that if aσb with ae Zx,beZy then ασ &α, or aσy and α&tfδ or
xσδ; hence xσy. Thus α* Ξ> σ\ Conversely, suppose aσb. If {α, 6} S ^
or Zy then clearly αα '6. If for example ae Zx and 6e Zy then, as above,
aσyσxσb, so that aσ'yyδxσrb, and we have ασ'δ. It now follows that

US) - 8ΛZ.) x UZy) x fe δ}.

Note that since Zx and Zy are semilattices then the congruences of
2r(Zx) and 2r(Zv) are two sided. Also both L and dN are two sided.
Therefore 2ι(S) = 8 r(S).

Using the duality once more we can concluded that we have the
same result if Ry = {y, x).

We have just shown that if S — ZX{J Zy with Zx and Zy defined
as in the statement of the theorem then

2r(S) = 2(ZX) x 2(Zy) x {c, δ} .

Since {c, δ} is a distributive lattice then a necessary and sufficient con-
dition that 2r(S) be distributive is that both %(ZX) and S>(Zy) be dis-
tributive. This concludes the proof of the theorem.

The following corollary is a consequence of one of the remarks
made in the above proof.

COROLLARY. If Sr(S) and Sj(S) are both distributive then every
congruence of S is two-sided.

6. In this section we give a more detailed description of an idem-
potent semigroup S whose right congruence lattice is distributive.
Throughout this section we shall consider a semigroup satisfying con-
ditions (i), (ii), (iii), and (iv) of Theorem 10. We denote by y and z
the unique pair (if they exist) of elements such that Wy~Ly — {y, z}.

DEFINITION. For a e S let Sa = {b | Wab Φ Ly}.

In particular Sy is empty and if no y and z exist, Sa — S. Also,
if W* Φ Wy then α e S , so that Sa Φ Φ<
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LEMMA 9. If Wa^WbΦWy = Ly then Sa = Sb. In particular
if xeSa, Sa = Sax = Sx.

Proof. Now Wa ̂  Wb implies Wax ^ Wbx for all xeS. Thus if
Wbx Φ Lyj then Wax Φ Ly and so Sb £ Sβ. On the other hand, suppose
that x e Sa. Since Wa ^ Wax and Wβ ^ Wb from condition (i) we must
have that Wax ^ Wb or TΓ6 ̂  Wα*. Hence Waxo Wb = Wαίc6 is either
^ or WβjB, neither of which is Wy. But Wbx ^ Wαa;6 and so Wbx Φ Wy.
Thus x e Sb so that SaQ Sb.

As an immediate consequence we have that if x e Sa, then Sa —

LEMMA 10. For all a, δ, e S, βiί/z-er Sα Π Sb = ψ or Sa = Sb.

Proof. If Sa n Sb Φ φ, let c e Sa 0 Sb. From Lemma 9, Sa = Sαβ =
S c while S 6 = Sbc = Sc.

LEMMA 11. If Sa is nonempty, Sa is a sub-semigroup of S and
Sa U Wy is a two-sided ideal.

Proof. Let 6, c e Sa. From Lemma 9 we have Sa = Sb = S6c;
in particular bee Sa. The fact that Sα U W* is a two-sided ideal follows
easily from the observation that for all x e S, Wa^ Wax — Wxa ^ Wy.

LEMMA 12. If a,b<ί Ly and Wao Wb = Ly then aSb = {ab}.

Proof. Let b and V e Sb. Thus Wbb, Φ Ly and so Wbb, = Rbh,.
By (6) we then have, since Wb > Wbb>, that b{Vb) — b'b. Again, since
ab and abr 6 Ly, and WbΊ) > Wy it follows from (7) that ab = ab{brb)
and (α6')δ'6 = (αδ')6 = α&' Thus αδ = abVb = α&'δ = αδ'.

LEMMA 13. Let α g Ly. If xe Sa and xz — xy then uy — uz — xz
whenever ue Sa and WUS Wx.

Proof. Without loss of generality suppose xy — xz = y. Now
Wu S Wx and Wu — Ru so that xu = u. Also the hypothesis implies
uxz — uy.

If ux — u, then uz — uy and it must follow that uz — uy — y for
if it were the case that uz = uy = z then y — xz = α̂ w z) = (xu)z —
uz — z\ a contradiction. Thus we may suppose that Wu = Ru = {u, u'}
and that ux — u\ hence that ux — u'x = u'. On the other hand since
u'x — u' we may replace u by uf in the above argument to conclude
u'y — ufz — y and so uufy = uy. But uu' = vi so that uy = y. Simi-
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larly if uz = z it follows that ufuz — u'z, or uz =.u'z — z, a contradic-
tion. In this way we have y — uy — uz.

LEMMA 14. Let a & Ly. If az = y then for x e S^, xy = y.

Proof. We have az = ay = y. Let x e Sa. If W, ^ Wβ the result
is that of Lemma 13. On the other hand if Wx ^ Wa and xy — z
then from Lemma 13 it would follow that az — ay — z, a contradiction.
Hence xy — y in this case. Finally suppose that Wx and Wa are in-
comparable. We have Wa > Wax By Lemma 13 axz = α#2/ = i/. Also
Wβ > Wax and if x̂ / = z, then Lemma 13 gives axy = z, B, contradic-
tion. Thus xy = 2/.

COROLLARY. Let a ί Ly> Either xy — y for all x e Sa or xz — z
for all x e Sα.

Proof. If bz = y for some be Sa — Sbf then, from Lemma 14,
xy = 2/ for all x e Sb — Sa.

LEMMA 15. In S, the following two alternatives obtain:
( 1 ) For all a 0 Ly, ay — az.
( 2 ) There exists a vnique Sa such that for some aoeSa it is

true that aoy — y and aoz = z. Moreover if Waχ ̂  WaQ9 then aλy — y
and aλz = z.

Proof. Suppose that (1) does not hold. Then for α0 g Ly, aoy = y
and aoz — z. (If aoy = z, then aoy — aoz = z.) Now if b ί SaQ then

bα0 G Ly and so

= ba0 =

and

(6αo)£ = &̂o = b(aoz) = bz

so that by = bz. Thus it follows that if ay = y and az — z it must
be the case that a e Sαo. This establishes the uniqueness of Sao.

Now suppose that Wa ̂  TFαo. If ay — az then Lemma 13 shows
that aoy — aoz9 a contradiction. Hence ay — y and az ~ z.

COROLLARY. The set D = {Wa\ay = y and az = z} forms a dual
ideal of 323.

Proof. First note that from condition (2) of Lemma 15, D is well
defined, and indeed if Wa e D and Waχ ̂  Wa then Wai e D. Lastly, if
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Wa e D and Wb e D then Wao Wb = WabeD since from ay = by = y
and az — bz — z it follows that aby — y and abz = 2.

LEMMA 16. If a&Ly and ay = as £/&ew /or 6 g Sa, a& = a# = az.
Moreover, if xy = #z /or aii a? € Sa then if Sb Φ Sa, SaSb =
Finally if a$Ly and ay — y, az — z then for b 0 Sa, ab = by.

Proof. Since b $ Sa9 ab e Ly and so ab — a(ab) — ay — az. Under
the second assumption xy = xz — ay — az and so xb ^ ab — ay — az,
for all x 6 Sα. On the other hand, from Lemma 12, aSh — {ab}, thus
SaSb = {ab} = {α̂ /}. Under the third assumption we have ab e TFy,
α& = aby = δ̂ / since 62/ e TFj,.

As a result of Lemmas 10 and 11 we may write S as the disjoint
union of sub-semigroups Sa and the sub-semigroup Wy — Ly — {y, z}.
Lemmas 12-16 describe how these semigroups multiply. The typical
possibilities are summarized in the table below. We assume that

(14) Sa contains an element α0 such that aoy = y and aQz — z and
other elements x such that xy = xz;

(15) that Sb Φ Sa and by — bz = y, and
(16) Sc Φ Sa and cy — cz = z. A single entry in a box means

that all entries in that box have the entered value.

sb

»
y

z

s a

a0

X
s a

y

z

•

y

z

sb

y

xy

Sb

z

.

y

z

s c

z

xy

y

s .

•
y

z

•

•
xy

y

z

•

y

z

y

y

xy -

y

z

.

y

z

z

z

= xz

y

z

•
.

y

z

Another way of decomposing S is to construct

Iy = {x I xy = xz = y}

Iz = {x I xy = as = z}

and

J — {x\xy — yy xz — z}.
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It is easy to see that these sets are mutually disjoint and that
Iy and Iz are left ideals. It is clear that if J is nonempty it contains
those elements of the single set Sa such that by = y and bz = z. Any
other Sx falls into either Iy or Iz. The remainder (if any) of the Sa

falls into either Iy or Iz depending on whether by — y or bz = z for
a l l δ e S α .

Idempotent semigroups whose right congruence lattices are dis-
tributive may be constructed by pasting together semigroups with the
structure of an Sa by using the rules laid down in Lemma 9-16. Thus
let @ be a collection of distinct semigroups Sa satisfying conditions
(i), (ii), (iv), and in addition that Wx — Rx for all x. Let y and z be
elements not appearing in U @. U @ U {y, z} is made into a semigroup
by defining the multiplication between the sets Sa and {y, z}. It is
convenient to think of this as being done in a multiplication table.
We insist that yx = y, zx = z, for all x. For all Sb, with one possible
exception we may choose with complete freedom, we define for xeSb,
xy = xze {y, z). The choice of the particular value is arbitrary. Then
for all c g Sh9 xc is defined to be xy — xz. For c e Sb, the multiplica-
tion is of course to be that of Sb. After this stage only the exceptional
semigroup, call it Sa, has yet to be handled. In 2B(Sα) let D be any
dual ideal. We define dy = y, dz = z if Wd e Ώ. For all x $ D we
make xy — xz e {y, z} and the choice is again arbitrary. We now claim
that under these rules U @ U {y, z) is an idempotent semigroup with
distributive right congruence lattice.

To verify that the associative law holds we need to check several
cases of the identity p(qr) = (pq)r.

Case 1. Sp = Sq = Sr or {p, q, r) ^ {y, z}. Here p, q, r belong to
a set assumed to be a sub-semigroup.

Case 2. pe{y, z). Here the multiplication gives (pq)r = pr =
P = P(qr).

Hereafter we assume that p g {y, z).

Case 3. py = pz. By Lemma 16, px — py = pz for all x g Sp so
that associativity holds here.

Case 4. py — y and pz — z. Thus peSa and in 2δ(Sβ), Wp e D.
In view of the corollary to Lemma 14 we may suppose, without loss
of generality, that for all x e Sa such that Wx g D, xy — xz — y.

If q 6 {y, z} then p(qr) — pq — q while (pq)r — qr — q, and so we
may assume q $ {y, z}. We may also suppose that qr £ Sa, otherwise
Sp = Sq = Sr. Under these assumptions for Case 4 two main subcases
arise.
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Case 4.1. Sq = Sr Φ Sa. From Lemma 13 we have pq — pr — p(qr)
and since pq e {y, z} we have (pq)r — pq. Thus associativity holds.

Case 4.2. Sq Φ Sr. Here qr e {y, z} so that under the hypothesis
of Case 4, p(qr) = gr. If S p =£ Sg, then from Lemma 16 we have
pq — qy — qz = gr, so that (p#)r = (?f) r = qr. Thus in this case we
may assume Sp — Sq — SaΦ Sr, in particular we have pqeSp = Sa.
Now if Wpq e D, then since TF"g Ξ> TFpg we have WqeD and thus qy — y
and #2 = 2. Since S r =£ Sq it follows that r # = rz and thus from
Lemma 16, that qr ~ ry — rz — (pq)r. On the other hand, if Wpq & D
it follows that, since Wp e D, it must be the case that Wq $ D. Thus
(pq)r = y and qr — y from the Case 4 assumptions; so that p(qr) =
pi/ = 2/. This completes the verification of the associative law.

Finally we need to see that conditions (i), (ii), (iii) and (iv) of
Theorem 10 are satisfied. From the multiplication table it is easily
seen that for all xe U@, Wx is unchanged in the large semigroup
while Wy = Ly — {y, z) = Lz — Wz is the minimal element of SB. Thus
conditions (ii) and (iii) hold. £(2B) is distributive since for the large
semigroup, SB is the set sum of the individual 2Bα of the member
semigroups together with Wy. The only new order relations present
are Wy < Wx for all x e U @. For this reason it is clear that (iv) holds
since if La Φ Wa < Wb it must be that Sa — Sb and condition (iv) was
assumed to hold in Sa.

BIBLIOGRAPHY

1. A. H. Clifford, and G. B. Preston, The Algebraic theory of semigroups, Volume 1 Amer.
Math. Soc, (1961).
2. R. P. Dilworth and Peter Crawley, Decomposition theory for lattices without chain
conditions, Trans. Amer. Math. Soc, 96 (1960), 1-22.
3. M. Ego, Structures des demi-groupes dont le treillis des sous-demi-groups satis fait
a certaines conditions, Bull. Soc. Math. France 9 1 , (1963), 138-201.
4. N. Kimura, The structure of idempotent semigroups. Pacific J. Math., 8 (1958), 257-
275.
5. D. McLean, Idempotent semigroups, Amer. Math. Mon., 6 1 (1954), 110-113.
6. O. Ore, Structures and group theory, Duke Math. J., 2 1 (1938), 247-269.
7. L. N. Sevrin, Semigroups with certain types of sub-semigroup lattices, Dokl. Akad.
Nauk. S.S.S.R., 138 (1961), 796-798.
8. Takayuki Tamura, Semigroups and their subsemigroup lattices, Pacific J. Math., 13
(1963), 725-736.

CALIFORNIA INSTITUTE OF TECHNOLOGY

INSTITUTE FOR DEFENSE ANALYSIS





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
ROBERT OSSERMAN

Stanford University
Stanford, California

M. G. ARSOVE

University of Washington
Seattle 5, Washington

J. DuGUNDJl

University of Southern California
Los Angeles 7, California

LOWELL J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced), and on submission, must be accompanied by a separate author's
resume. Manuscripts may be sent to any one of the four editors. All other communications to
the editors should be addressed to the managing editor, L. J. Paige at the University of California,
Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 14, No. 4 August, 1964

Homer Franklin Bechtell, Jr., Pseudo-Frattini subgroups . . . . . . . . . . . . . . . . . . . . . . . . . 1129
Thomas Kelman Boehme and Andrew Michael Bruckner, Functions with convex

means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
Lutz Bungart, Boundary kernel functions for domains on complex manifolds . . . . . . . 1151
L. Carlitz, Rings of arithmetic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165
D. S. Carter, Uniqueness of a class of steady plane gravity flows . . . . . . . . . . . . . . . . . . 1173
Richard Albert Dean and Robert Harvey Oehmke, Idempotent semigroups with

distributive right congruence lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
Lester Eli Dubins and David Amiel Freedman, Measurable sets of measures . . . . . . . 1211
Robert Pertsch Gilbert, On class of elliptic partial differential equations in four

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
Harry Gonshor, On abstract affine near-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
Edward Everett Grace, Cut points in totally non-semi-locally-connected

continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
Edward Everett Grace, On local properties and Gδ sets . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
Keith A. Hardie, A proof of the Nakaoka-Toda formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
Lowell A. Hinrichs, Open ideals in C(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255
John Rolfe Isbell, Natural sums and abelianizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
G. W. Kimble, A characterization of extremals for general multiple integral

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
Nand Kishore, A representation of the Bernoulli number Bn . . . . . . . . . . . . . . . . . . . . . . 1297
Melven Robert Krom, A decision procedure for a class of formulas of first order

predicate calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
Peter A. Lappan, Identity and uniqueness theorems for automorphic functions . . . . . . 1321
Lorraine Doris Lavallee, Mosaics of metric continua and of quasi-Peano spaces . . . . 1327
Mark Mahowald, On the normal bundle of a manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
J. D. McKnight, Kleene quotient theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343
Charles Kimbrough Megibben, III, On high subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353
Philip Miles, Derivations on B∗ algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359
J. Marshall Osborn, A generalization of power-associativity . . . . . . . . . . . . . . . . . . . . . . 1367
Theodore G. Ostrom, Nets with critical deficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1381
Elvira Rapaport Strasser, On the defining relations of a free product . . . . . . . . . . . . . . . 1389
K. Rogers, A note on orthoganal Latin squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
P. P. Saworotnow, On continuity of multiplication in a complemented algebra . . . . . . 1399
Johanan Schonheim, On coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
Victor Lenard Shapiro, Bounded generalized analytic functions on the torus . . . . . . . . 1413
James D. Stafney, Arens multiplication and convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
Daniel Sterling, Coverings of algebraic groups and Lie algebras of classical

type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449
Alfred B. Willcox, Šilov type C algebras over a connected locally compact abelian

group. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463
Bertram Yood, Faithful ∗-representations of normed algebras. II . . . . . . . . . . . . . . . . . . 1475
Alexander Zabrodsky, Covering spaces of paracompact spaces . . . . . . . . . . . . . . . . . . . 1489

Pacific
JournalofM

athem
atics

1964
Vol.14,N

o.4

http://dx.doi.org/10.2140/pjm.1964.14.1129
http://dx.doi.org/10.2140/pjm.1964.14.1137
http://dx.doi.org/10.2140/pjm.1964.14.1137
http://dx.doi.org/10.2140/pjm.1964.14.1151
http://dx.doi.org/10.2140/pjm.1964.14.1165
http://dx.doi.org/10.2140/pjm.1964.14.1173
http://dx.doi.org/10.2140/pjm.1964.14.1211
http://dx.doi.org/10.2140/pjm.1964.14.1223
http://dx.doi.org/10.2140/pjm.1964.14.1223
http://dx.doi.org/10.2140/pjm.1964.14.1237
http://dx.doi.org/10.2140/pjm.1964.14.1241
http://dx.doi.org/10.2140/pjm.1964.14.1241
http://dx.doi.org/10.2140/pjm.1964.14.1245
http://dx.doi.org/10.2140/pjm.1964.14.1249
http://dx.doi.org/10.2140/pjm.1964.14.1255
http://dx.doi.org/10.2140/pjm.1964.14.1265
http://dx.doi.org/10.2140/pjm.1964.14.1283
http://dx.doi.org/10.2140/pjm.1964.14.1283
http://dx.doi.org/10.2140/pjm.1964.14.1297
http://dx.doi.org/10.2140/pjm.1964.14.1305
http://dx.doi.org/10.2140/pjm.1964.14.1305
http://dx.doi.org/10.2140/pjm.1964.14.1321
http://dx.doi.org/10.2140/pjm.1964.14.1327
http://dx.doi.org/10.2140/pjm.1964.14.1335
http://dx.doi.org/10.2140/pjm.1964.14.1343
http://dx.doi.org/10.2140/pjm.1964.14.1353
http://dx.doi.org/10.2140/pjm.1964.14.1359
http://dx.doi.org/10.2140/pjm.1964.14.1367
http://dx.doi.org/10.2140/pjm.1964.14.1381
http://dx.doi.org/10.2140/pjm.1964.14.1389
http://dx.doi.org/10.2140/pjm.1964.14.1395
http://dx.doi.org/10.2140/pjm.1964.14.1399
http://dx.doi.org/10.2140/pjm.1964.14.1405
http://dx.doi.org/10.2140/pjm.1964.14.1413
http://dx.doi.org/10.2140/pjm.1964.14.1423
http://dx.doi.org/10.2140/pjm.1964.14.1449
http://dx.doi.org/10.2140/pjm.1964.14.1449
http://dx.doi.org/10.2140/pjm.1964.14.1463
http://dx.doi.org/10.2140/pjm.1964.14.1463
http://dx.doi.org/10.2140/pjm.1964.14.1475
http://dx.doi.org/10.2140/pjm.1964.14.1489

	
	
	

