ON CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN FOUR VARIABLES

ROBERT PERTSCH GILBERT
ON A CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN FOUR VARIABLES

R. P. GILBERT

1. Introduction. Bergman [1]–[6], [11] has considered the elliptic partial differential equation,

\[T_3[F] = \frac{\partial^3 F}{\partial x_\mu \partial x_\mu} + A(r^\mu) x_\mu \frac{\partial F}{\partial x_\mu} + C(r^3) F = 0, \quad (\mu = 1, 2, 3) \]

where \(A(r^\mu), C(r^3) \) are analytic functions of the real variable \(r^3 = x_\mu x_\mu \) \([\mu = 1, 2, 3] \) (Repeated indices mean the summation convention is used.) In this paper we shall investigate the four variable analogue of this equation, \(T_4[F] = 0 \), and show that many of Bergman’s results carry over to this case. Here, we need in many instances, the methods of several complex variables in order to find the natural generalizations.

In Bergman’s theory,\(^1\) the integral operator \(B_3[f] \) plays an important role in studying the solutions of (1.1). In our case, there is an analogous operator \(B_4[f] \), which is a four-variable analogue to \(B_3[f] \):

\[H[X] = B_4[f] = -\frac{1}{4\pi^2} \iint_D \frac{d\eta}{\eta} \frac{d\xi}{\xi} f(u; \eta, \xi), \quad X = (x_1, x_2, x_3, x_4), \]

(1.2)

\[u = x_1 \left(1 + \frac{1}{\eta \xi} \right) + i x_2 \left(1 - \frac{1}{\eta \xi} \right) + x_3 \left(\frac{1}{\xi} - \frac{1}{\eta} \right) + i x_4 \left(\frac{1}{\xi} + \frac{1}{\eta} \right) \]

and \(D = \{|\xi| = 1\} \times \{|\eta| = 1\} \). The operator \(B_4[f] \) maps analytic functions of three-complex variable onto harmonic, function-elements of four-variables. One may realize how analytic functions are transformed into harmonic functions, by considering the powers of \(u \), which act as generating functions for the homogeneous, harmonic polynomials, \(H^k_4[X] \),

(1.3)

\[u^n = \sum_{k,l=0}^{n} H^k_l[X] \xi^{-k} \eta^{-l} \]

The polynomials \(H^k_l(X) \) \([k, l = 0, 1, \ldots, n; n = 0, 1, 2, \ldots] \) form a complete, linearly independent system \([13] \) [7] [8]. From the Cauchy formula for two complex variable we have an integral representation for these polynomials given by,

Received November 22, 1963. This research supported in part by the United States Air Force through the Air Force Office of Scientific Research Grant 400-64.

\(^1\) See Bergman [1], Chapter II.
It is clear then, that the analytic function,

\begin{equation}
\frac{H_n^k}{H} = \frac{1}{4\pi^2} \int_{|\eta|=1} \int_{|\xi|=1} \eta^{n-1} \eta^{l-1} d\eta d\xi.
\end{equation}

\begin{equation}
\begin{aligned}
f(u; \eta, \xi) &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n,m} u^n \eta^m \xi^m,
\end{aligned}
\end{equation}

is mapped onto a harmonic function,

\begin{equation}
H[X] = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n,m} H_{n,m}[X],
\end{equation}

defined in the small in the neighborhood of the origin, \([X] = (0)\). We shall refer to (1.6) as the normalized associate of \(H[X]\) with respect to \(B_4\) (see Bergman [1] pg. 62, Kreyszig [14] and Gilbert [8]).

2. The derivation of a Bergman integral operator generating solutions to \(T_4[\Psi] = 0\). We shall establish the following theorem, which is four-variable analogue of Bergman's [5].

THEOREM 2.1. Let \(H(r, \tau), |\tau| \leq 1,\) be a solution of

\begin{equation}
(1 - \tau^*)H_{r\tau} - \tau^{-1}(\tau^2 + 1)H_r + \rho \tau(H_{rr} + \frac{3}{r} H_r + BH) = 0,
\end{equation}

where

\begin{equation}
B = -\frac{r}{2} A_r - 2A - \frac{r^2}{4} A^2 + C, \quad r^2 = x_\mu x_\mu,
\end{equation}

and \(H_r/r\tau\) is continuous at \(r = \tau = 0\). Then,

\begin{equation}
\Psi(X) = \Omega[f]
\end{equation}

\begin{equation}
\equiv -\frac{1}{4\pi^2} \int_{|\eta|=1} \frac{d\eta}{\eta} \int_{|\xi|=1} \frac{d\xi}{\xi} \int_{\tau=-1}^{+1} E(r, \tau)f(u(1 - \tau^2); \eta, \xi)d\tau,
\end{equation}

where

\begin{equation}
E(r, \tau) \equiv \exp \left(-\frac{1}{2} \int_0^r Ardr \right) H(r, \tau),
\end{equation}

is a solution of (1.1).

The proof of Theorem 2.1 follows closely the proof given by Bergman for the three-variable case. First, we list several formal relationships which exist between the variables:

\begin{equation}
\frac{\partial u}{\partial x_\mu} \frac{\partial u}{\partial x_\mu} = \left(1 + \frac{1}{\eta \xi}\right)^2 + (i)\left(1 - \frac{1}{\eta \xi}\right)^2 + \left(\frac{1}{\xi} - \frac{1}{\eta}\right)^2
\end{equation}

\begin{equation}
+ (i)^2\left(\frac{1}{\xi} + \frac{1}{\eta}\right)^2 = 0,
\end{equation}
ON A CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

\[\frac{\partial u}{\partial x_\mu} \frac{\partial E}{\partial x_\mu} = \frac{\partial u}{\partial x_\mu} \frac{\partial E}{\partial r} \frac{\partial r}{\partial x_\mu} = \frac{\partial u}{\partial r} \frac{\partial E}{\partial r} \]

\[x_\mu \frac{\partial E}{\partial x_\mu} = x_\mu \frac{\partial r}{\partial x_\mu} \frac{\partial E}{\partial r} = r \frac{\partial E}{\partial r} \]

and

\[x_\mu \frac{\partial u}{\partial x_\mu} = u , \]

and

\[\frac{\partial}{\partial x_\mu} f[(1 - \tau^\nu)u; \eta, \xi] = \frac{1}{2u} \frac{\partial u}{\partial x_\mu} \left(\frac{\tau - 1}{\tau} \right) f_\tau \]

Now, using relations (2.5)-(2.9) we compute formally, that

\[\frac{\partial^2 \Psi}{\partial x_\mu \partial x_\mu} = -\frac{1}{4\pi^2} \int_{|\eta|=1} d\eta \int_{|\xi|=1} d\xi \int_{\tau=-1}^{+1} f[u(1 - \tau^\nu); \eta, \xi] \left(\frac{\partial^2 E}{\partial x_\mu \partial x_\mu} - \frac{\partial (\tau - 1/\tau) \frac{1}{r} E_r}{\partial \tau} \right) d\tau , \]

and consequently

\[T_4(\Psi) = -\frac{1}{4\pi^2} \int_{|\eta|=1} d\eta \int_{|\xi|=1} d\xi \int_{\tau=-1}^{+1} f \left\{ \frac{\partial^2 E}{\partial x_\mu \partial x_\mu} - \frac{\partial (\tau - 1/\tau) \frac{1}{r} E_r}{\partial \tau} \right\} + A \left(x_\mu \frac{\partial E}{\partial x_\mu} - \frac{x_\mu}{u} \frac{\partial u}{\partial x_\mu} \right) \frac{1}{2} \frac{\tau - 1}{\tau} E_r \left(\frac{\tau - 1}{\tau} E_r \right) + CE d\tau \]

\[= -\frac{1}{4\pi^2} \int_{|\eta|=1} d\eta \int_{|\xi|=1} d\xi \int_{\tau=-1}^{+1} f \left\{ \frac{\partial^2 E}{\partial x_\mu \partial x_\mu} - \frac{\partial (\tau - 1/\tau) \frac{1}{r} E_r}{\partial \tau} \right\} + A_\tau E_r - A \left(\frac{\tau - 1}{\tau} E_r \right) \frac{1}{2} \frac{\tau - 1}{\tau} E_r + CE \left(\frac{\tau - 1}{\tau} E_r \right) d\tau \]

In order to verify that is a solution of \(T_4(\Psi) = 0 \), we show that the terms in the brace of the integrand (2.11) vanish identically. By setting \(E(r, \tau) = H(r, \tau) \exp \left(-1/2 \int_0^r A \, dr \right) \), and computing the terms involved we obtain

\[\frac{1}{\tau r} \left((1 - \tau^\nu)H_r - \tau^{-1}(\tau^2 + 1)H_r + r\tau \left(H_r + \frac{3}{r} H_r \right) \right) \]

\[+ r\tau \left(-\frac{1}{2} A - 2A + \frac{r^2}{4} A^2 + C \right) H \exp \left(-\frac{1}{2} \int_0^r A \, dr \right) \equiv 0 ; \]
consequently, if a solution $H(r, \tau)$ exists to (2.1), then (2.3) represents a solution of $T_4(\mathcal{F}) = 0$.

One can show the existence of an absolutely, and uniformly convergent solution,

$$H(r, \tau) = 1 + \sum_{n=1}^{\infty} \tau^{2n} b^{(n)}(r), \tag{2.13}$$

where the $\{b^{(n)}(r)\}$ are sequences of functions defined by the recurrence formulas

$$\begin{cases} (b^{(1)}_r + rB = 0 \\ (2n - 1)b^{(n)}_r + r b^{(n-1)}_r - (2n - 5)b^{(n-1)}_r + r B b^{(n-1)} = 0, \quad (n=2,3,\cdots) \\ b^{(n)}(0) = 0, \quad (n = 1,2,\cdots) \end{cases} \tag{2.14}$$

and where $|\tau| \leq 1$, and $r \leq p < P_0/\sqrt{2}$ (distance of the first singularity of B from the origin). The recurrence formulas are obtained by substituting the series (2.13) into (2.1), and the convergence may be proved by the method of dominants as Bergman has done in the case of three-variables [5].

As an illustration of the above method we consider the Klein-Gordon equation

$$\square \mathcal{F} - m^2 \mathcal{F} = 0, \tag{2.15}$$

which describes the motion of massive, free elementary-particles, of spin zero. Here our recursive formulae become

$$(2n - 1)b^{(n)}_r + r b^{(n-1)}_r - (2n - 5)b^{(n-1)}_r - rm^2 b^{(n-1)} = 0, \quad (n \geq 2)$$

$$b^{(1)}_r + rm^2, \quad b^{(n)}(0) = 0,$$

which have the solution,

$$b^{(n)} = -2 \frac{(m-1)(mr)^{2n-2}}{(2n-1)!} + \frac{(mr)^{2n}}{(2n)!}; \tag{2.16}$$

Consequently,

$$E(r, \tau) = H(r, \tau) = 1 + \sum_{n=1}^{\infty} \tau^{2n} b^{(n)}(r)$$

$$= (1 - \tau^2) \cosh (mr) + \frac{\tau}{mr} \sinh (mr). \tag{2.17}$$

3. A Class of vector solutions. In an earlier paper [8] we introduced a class of harmonic vectors $\vec{H}[X]$, whose components were given by
where \(N_\mu \) is a component of the vector,

\[
N(\eta, \xi) = \left(1 + \frac{1}{\eta \xi}, i \left[1 - \frac{1}{\eta \xi} \right], \left[1 - \frac{1}{\eta} \right], i \left[\frac{1}{\xi} + \frac{1}{\eta} \right] \right)
\]

and \(u = \overrightarrow{N \times X} \). In the same way we introduce a class of solutions to \(T_s[\Psi] = 0 \) by setting

\[
\Psi_\mu(X) = Q_\mu[f]
\]

\[
\Psi_\mu(X) = -\frac{1}{4\pi^2} \int_{|\eta|=1} \int_{|\xi|=1} \frac{d\eta}{\eta} \frac{d\xi}{\xi} N_\mu(\eta, \xi) \int_{\tau=-1}^{+1} E(r, \tau) f[u(1 - \tau^2); \eta, \xi] d\tau.
\]

If \(X \) is chosen so that the integrand is absolutely integrable we may exchange orders of integration and write (3.3) as

\[
\Psi_\mu(X) = -\frac{1}{4\pi^2} \int_{r=-1}^{+1} E(r, \tau) \int_{|\eta|=1} \int_{|\xi|=1} \frac{d\eta}{\eta} \frac{d\xi}{\xi} N_\mu(\eta, \xi) f[u(1 - \tau^2); \eta, \xi] d\tau
\]

\[
= 2 \int_{0}^{+1} E(r, \tau) H_\mu(X(1 - \tau^2)) d\tau.
\]

We next consider the line integral,

\[
\int_{\mathcal{X}} \Psi_\mu(X) d\mu_x = 2 \int_{\mathcal{X}} d\mu_x \int_{0}^{1} E(r, \tau) H_\mu(X(1 - \tau^2)) d\tau,
\]

where \(\mathcal{X} \) lies on the hypersphere, \(||X|| = R \).

Here we may interchange orders of integration and write

\[
\int_{\mathcal{X}} \Psi_\mu(X) d\mu_x = 2 \int_{0}^{1} E(R, \tau) \left\{ \int_{\mathcal{X}} H_\mu(X(1 - \tau^2)) d\mu_x \right\} d\tau
\]

\[
= 2 \int_{0}^{1} E(R, \tau) \left\{ \int_{\mathcal{X}} H_\mu[Y] dy_\mu \right\} d\tau,
\]

where

\[
\mathcal{X} = \{ Y \mid Y_\mu = (1 - \tau^2)x_\mu, \mu = 1, 2, 3, 4; X \in \mathcal{X} \}.
\]

Now as Bergman [1] [5], and later Mitchell [16] have done in the case of the equation \(T_s[\Psi] = 0 \), we assume the associate of \(H_\mu(X) \) is rational,

\[
f(u, \eta, \xi) = \frac{p_s(u, \eta, \xi)}{p_s(u, \eta, \xi)} = \frac{\eta^{s\xi^2} P_s[X; \eta, \xi]}{P_s[X; \eta, \xi]},
\]

and then
It has been shown in Gilbert [9], that the integral (3.9) may be evaluated in terms of Weierstrass integrals of the first, second and third kind [18]. (see also [1], [16], [10]).

With this in mind, let us define the families of sets,

\[\mathcal{E}_i(\tau) = \{ X \mid p_0[\mathcal{X}(1 - \tau^2); \eta] = 0; \forall \eta \} \]
\[\mathcal{E}_j(\tau) = \left\{ X \mid R\left(P_0, -\frac{\partial P_1}{\partial \xi} \right) = (-1)^{n(n - 1)} \left(p_0^{n-1} V[\mathcal{X}(1 - \tau^2)]; \eta \right) = 0 \forall \eta \right\} \]
\[\mathcal{E}_k(\tau) = \left\{ X \mid R(\eta, R(V, -\frac{\partial V}{\partial \eta}) = 0) \right\} \cup \left\{ X \mid R(p_0, -\frac{\partial p_0}{\partial \eta}) = 0, \forall \eta \right\} , \]

(3.10) \[\mathcal{E}^3(\tau) = \mathcal{E}_1(\tau) \cup \mathcal{E}_2(\tau) \cup \mathcal{E}_3(\tau) , \]

where

\[V(\mathcal{X}; \eta) = \prod_{0 \leq a < b < \gamma} [A_\beta(\mathcal{X}; \eta) - A_\alpha(\mathcal{X}, \eta)] \]

is the Vandermonde determinant associated with the equation,

(3.11) \[P_1[\mathcal{X}(1 - \tau^2); \eta, \xi] = \sum_{\gamma=0}^{n} p_\gamma[\mathcal{X}; \gamma] \xi^{n-\gamma} = 0 , \]

and \(R(f, g) \) is the resultant of \(f \) and \(g \).

The genus \(\rho[\mathcal{X}(1 - \tau^2)] \) of the Riemann surface \(\mathbb{R}[\mathcal{X}(1 - \tau^2)] \) which lies over the \(\eta \) plane and is associated with the algebraic equation \(P_1[\mathcal{X}(1 - \tau^2); \eta, \xi] = 0 \) (\(\tau \)-fixed) is constant for

\[\forall X \in (E^4 - \mathcal{E}^3(\tau)) . \]

Furthermore, let

(3.12) \[H_\alpha[\mathcal{X}(1 - \tau^2); \eta, \xi], \bar{H}_\alpha[\mathcal{X}(1 - \tau^2); \eta, \xi], H[\mathcal{X}(1 - \tau^2); \eta, \xi, \eta, \xi] \]

be Weierstrass integrands of the first, second, and third kind respectively, associated with the Riemann surface \(\mathbb{R}[\mathcal{X}(1 - \tau^2)] \), and let their periods taken over \(\rho[\mathcal{X}(1 - \tau^2)] \) cycles \(K_\rho[\mathcal{X}(1 - \tau^2)] \) be given by

(3.13) \[2\omega_{\rho \alpha}[\mathcal{X}(1 - \tau^2)], 2\eta_{\rho \alpha}[\mathcal{X}(1 - \tau^2)], \Omega_{\rho}[\mathcal{X}(1 - \tau^2)] \]

(\(\beta = 1, 2, \cdots, p \), \(\alpha = 1, 2, \cdots, p \)),

and their periods over the conjugate cycles \(\bar{K}_\rho[\mathcal{X}(1 - \tau^2)] \) be given by

(3.14) \[2\bar{\omega}_{\rho \alpha}[\mathcal{X}(1 - \tau^2)], 2\bar{\eta}_{\rho \alpha}[\mathcal{X}(1 - \tau^2)], \bar{\Omega}_{\rho}[\mathcal{X}(1 - \tau^2)] . \]

For each fixed value of \(X, \) and \(\tau \) we may evaluate the integral
(3.9) by first integrating with respect to ξ,

\[H_\mu[X(1 - \tau^2)] = \frac{1}{2\pi i} \sum_{\sigma=1}^{\infty} \int_{-J_\sigma(\tau)} \frac{\eta \xi \mu P_\mu[X(1 - \tau^2); \eta, \xi]}{\partial \xi} P_\mu[X(1 - \tau^2); \eta, \xi] d\eta \]

(3.15) where $J_\sigma(\tau)$ is that subset of $\{|\eta| = 1\}$ for which the root $\xi_\sigma = A_\sigma[X(1 - \tau^2); \eta]$ lies inside $\{|\xi| = 1\}$, and then by using the Weierstrass decomposition theorem \([18],[1],[10]\) to write,

\[
\frac{\eta \xi \mu P_\mu[X(1 - \tau^2); \eta, \xi]}{\partial \xi} P_\mu[X(1 - \tau^2); \eta, \xi] = \sum_{\nu=1}^{r} C_{\nu \mu}[X(1 - \tau^2)] H_\mu[X(1 - \tau^2); \eta, \xi, \nu; \eta, \xi] \]

\[- \sum_{\alpha=1}^{\rho} \{ \delta_{\mu \alpha}[X(1 - \tau^2)] H_{\mu \alpha}[X(1 - \tau^2); \eta, \xi] - g_{\mu \alpha}[X(1 - \tau^2)] \times H_{\mu \alpha}[X(1 - \tau^2); \eta, \xi]\]

\[+ \frac{\partial}{\partial \eta} \left(\sum_{\nu=1}^{r} F_{\nu \mu}[X(1 - \tau^2); \eta, \xi] \right), \sum_{\nu=1}^{r} C_{\nu \mu}[X(1 - \tau^2)] = 0 , \]

where $\rho = \rho[X(1 - \tau^2)], r = r[X(1 - \tau^2)]$ is the number of infinity points of the integrand (4.15), and the $F_{\nu \mu}[X(1 - \tau^2); \eta, \xi]$ are rational functions of η, ξ. Using Theorem 1 from Gilbert [9] we then may express $H_\mu[X(1 - \tau^2)]$ in the form,

\[H_\mu[X1 - \tau^2] = \sum_{\sigma=1}^{\eta} \sum_{\lambda=1}^{k_\mu} \left\{ \sum_{\nu=1}^{r} C_{\nu \mu}[X(1 - \tau^2)] \right\} \times \log \frac{E_{\mu \mu}[X(1 - \tau^2); \eta, \xi]}{E_{\mu \mu}[X(1 - \tau^2); \eta, \xi]} \]

\[+ \sum_{\alpha=1}^{\rho} \left(\tilde{C}_{\mu \alpha}[X(1 - \tau^2)] \log \frac{E_{\mu \alpha}[X(1 - \tau^2); \eta, \xi]}{E_{\mu \alpha}[X(1 - \tau^2); \eta, \xi]} \right) \]

\[- C_{\nu \mu}[X(1 - \tau^2)] \times \log \frac{E_{\nu \mu}[X(1 - \tau^2); \eta, \xi]}{E_{\nu \mu}[X(1 - \tau^2); \eta, \xi]} \]

\[+ \frac{\partial}{\partial \eta} \left(\sum_{\nu=1}^{r} F_{\nu \mu}[X(1 - \tau^2); \eta, \xi] \right), \sum_{\nu=1}^{r} C_{\nu \mu}[X(1 - \tau^2)] = 0 , \]

Here we have assumed that $X \in \mathcal{S}(\tau)$ for $\forall \tau \in [0, 1]$.

We next introduce the families of sets,

\[\mathcal{M}_\tau(\tau) \equiv \{ X | V[X(1 - \tau^2); \eta] = 0; \forall \eta \in |\eta| = 1 \}, \]

\[\mathcal{N}_\tau(\tau) \equiv \{ X | P_\mu[X(1 - \tau^2); \eta] = 0; \forall \eta \in |\eta| = 1 \}, \]

for each fixed $X \in \mathcal{S}(\tau)$ only a finite set $\{\tau_k\}$

\[\subset (0, 1) \ni X \in (\mathcal{M}_\tau(\tau_k) \cup \mathcal{N}_\tau(\tau_k)), \quad (k = 1, 2, \ldots, N[X]). \]
Let us define the intervals on $(0, 1)$,

$$A_k[X] \equiv \{ \tau \mid \tau_{k-1} < \tau < \tau_k \},$$

where we take $\tau_0 = 0$, and $\tau_n = 1$; for $\forall \tau \exists \tau \in A_k[X]$ (where X is fixed and $\not \in \mathcal{H}(\tau)$) there can be no poles of $\eta_\tau P_\mu \partial P_\mu / \partial \xi$ (defined on the Riemann surface associated with $P_\mu = 0$), which coincide with the path of integration $|\eta| = 1$. Another way of saying this is that,

$$X \not \in \bigcup_{\tau \in A_k} \mathcal{H}^\tau(\tau) \quad \text{(for } k = 1, 2, \ldots, N[X]),$$

hence for each k, the number of poles, $r_k[X]$ inside $\{|\eta| = 1\}$ remains constant for all $\tau \in A_k[X]$. We designate these values of η as the set of points

$$(3.18) \quad N_k[X] = \{(k)_{k=1}^r \}, \quad r = r_k[X].$$

From the definition of the set $\{\tau_n\}$ it also follows that

$$X \not \in \bigcup_{\tau \in A_k} \mathcal{H}^\tau(\tau) \quad (k = 1, 2, \ldots, N[X]),$$

hence the Riemann surface

$$R[X(1 - \tau^2)] \quad \text{associated with } \quad P_\mu[X(1 - \tau^2); \eta, \xi] = 0$$

[equation (3.11)] has constant genus for all $\tau \in A_k[X]$. Consequently, our evaluation of $\Psi_\mu[X]$ is made by computing a term (3.17) for each τ-interval $A_k[X]$, where

$$\rho \equiv \rho[X(1 - \tau^2)] = \rho_k \quad \text{(a constant) for } \tau \in A_k[X],$$

$$r \equiv r[X(1 - \tau^2)] = r_k \quad \text{(a constant) for } \tau \in A_k[X],$$

and summing the integrals

$$(3.19) \quad \Psi_\mu[X] = 2 \sum_{k=1}^{N[X]} \int_{\tau_{k-1}}^{\tau_k} E(r, \tau) H_\mu[X(1 - \tau^2)] d\tau$$

We now return to evaluate the integral (3.7), where \mathcal{X}' is a closed curve lying on the hypersphere $||X|| = R$,

$$\mathcal{X}' = \{X \mid x_\mu = x_\mu(s); 0 \leq s \leq 1\},$$

and \mathcal{Y}' is the image of \mathcal{X}' under the mapping, $y_\mu = (1 - \tau)x_\mu$, for τ fixed, and $0 \leq \tau \leq 1$. The integration involved on the right-hand-side of (4.7) is then over the two-dimensional region,

$$(3.20) \quad \mathcal{Y}' = \{Y \mid y_\mu = (1 - \tau)x_\mu(s); 0 \leq s \leq 1, 0 \leq \tau \leq 1\}$$

We assume further, that \mathcal{X}' is chosen such that for τ-fixed
\[\mathcal{X}' \cap \{ M^v(\tau) \cup N^v(\tau) \} \]

is a discrete set of points \(\{X_k(\tau)\}_{k=1}^n \); consequently, as \(\tau \) varies the points \(X_k(\tau) \) trace out curves \(\Gamma_k' \). This construction (see Mitchell [16]) suggests a subdivision of the \(s \)-interval such that for

\[s \in (s_\mu, s_{\mu+1}), \quad [0, 1] = \sum_\mu [s_{\mu-1}, s_\mu] \]

there are a constant number of intersections of the curves \(\Gamma_k' \) (\(k = 2, \ldots, M \)) with the ray \(\hat{X} | \hat{X} = (1 - \tau^2)X(s); 0 \leq \tau \leq 1, s \text{ fixed} \). \(\mathcal{X}'_\mu \) is that subset of \(\mathcal{X}' \) for which \(s \in (s_\mu, s_\mu) \), and \(N_\mu \) is the number of \(\tau \)-sub-intervals \([0, 1]\) is broken into such that for \(\tau \in A_\mu \{X\}, X \in \mathcal{X}'_\mu \), the number of poles \(\tau_{a\mu}^* \) and the genus \(\rho_{a\mu}^* \) will remain constant. This leads us to consider the line interval broken up into the sum,

\[\sum_{a=1}^m \sum_{k=1}^{N_a} \int_{X_a}^{\tau_k} E(r, \tau)H_{a\mu}^v[X(1 - \tau^2)]d\tau dx_\mu; \]

the superscript \(\alpha \) in the integrand indicates, that for each \((s_{\mu-1}, s_\mu) \) interval we must perform a different Weierstrass decomposition (3.17).

The end points \(s_\mu \) are found to be those \(s \)-values for which \(\Gamma_k' \) coincides with \(\mathcal{X} \cap \{s = s_\mu\} \) for a finite number of \(\tau \)-subintervals.

4. Considerations from the theory of algebraic surfaces.

Using (3.1) the line integral (3.5) may be written as

\[
\int_{\mathcal{X}} \psi_\mu[X]dx_\mu = 2 \int_{\mathcal{X}} d\mu \int_0^{1/2} E(r, \tau)H_\mu[H(X(1 - \tau^2))]d\tau
\]

\[= -\frac{1}{2\pi^2} \int_{\mathcal{X}} d\mu \int_0^{1/2} E(r, \tau) \left(\int_{[\eta]} \int_{[\xi]} \frac{d\eta}{\eta} \frac{d\xi}{\xi} f(u(1 - \tau^2), \eta, \xi) \right) \times N_\mu(d\eta, d\xi)d\tau
\]

\[= -\frac{1}{2\pi^2} \int_{[\eta]} \int_{[\xi]} \frac{d\eta}{\eta} \frac{d\xi}{\xi} f(u(1 - \tau^2), \eta, \xi) \times N_\mu/d\eta, d\xi)d\tau
\]

\(\mathcal{X}(\eta, \xi, \tau) \) is the image of \(\mathcal{X}' \) under the map \(v = u[X; \eta, \xi](1 - \tau^2) \) where \(\eta, \xi, \) and \(\tau \) are held fixed, and the integrand is assumed absolutely integrable.

If \(f(u, \eta, \xi) = p_1(u, \eta, \xi)/p_2(u, \eta, \xi) \) is rational, then we may evaluate (3.22) by the theory of algebraic surfaces [19] [17]. For instance, let us consider the algebraic surface \(\mathcal{X} \) defined by

\[P_2(u, \eta, \xi) = \sum_{\gamma=0}^q a_\gamma(\eta, \xi)u^{\eta-\gamma}, \]

where the \(a_\gamma(\eta, \xi) \) are polynomials in \(\eta, \xi \) and \(q \) is the degree of \(u \) in \(p_2 \). Furthermore, if \(p_3 = (\partial/\partial u)P_2(u, \eta, \xi) \), then the resultant of \(p_3, p_2 \) with respect to \(u \) is [12],
(which is also the discriminant of p_2 with respect to u); the u-roots of $p_2 = 0$, $u = u_0(\gamma, \xi)$, may be found by computing

\[u = \frac{\partial R}{\partial a_0} / \frac{\partial R}{\partial a_1} = \frac{\partial R}{\partial a_1} / \frac{\partial R}{\partial a_2} = \text{etc.} \]

$P_2(u, \eta, \xi)$ may be expressed as factors of its u-roots as

\[P_2(u, \eta, \xi) = a_q \prod_{\nu=1}^q [u - u_\nu(\eta, \xi)]. \]

The roots $u_\nu(\eta, \xi)$ $(\nu = 1, 2, \ldots, q)$ are distinct for all $(\eta, \xi) \in \{(\eta, \xi) | R(p_2, p_3) = 0\}$.

For each fixed value of τ we may determine a set of values (η, ξ) for which $u_\nu(\eta, \xi)$ lies inside $C^1(\eta, \xi, \tau)$ and the set for which the root lies outside. For instance, setting $\eta = e^{i\alpha}$, $\xi = e^{i\beta}$, and using the parametrization $x_\mu = x_\mu(s)$, $(0 \leq s \leq 1)$ we may determine when the root u_ν lies on C^1 by taking the real and imaginary parts of the equation,

\[u(s; \alpha, \beta) = u[X(s); e^{i\alpha}, e^{i\beta}](1 - \tau^2) = u_\nu(e^{i\alpha}, e^{i\beta}) = u_\nu(\alpha \beta) \]

and then eliminating s to obtain $\alpha = \Phi_\nu(\beta; \tau)$, $(k = 1, 2, \ldots, N)$. This gives us a subdivision of the α-interval, say,

\[0 < \alpha_1^{(v)} < \cdots < \alpha_{2k}^{(v)} < \alpha_{2k+1}^{(v)} < \cdots < 1 \quad (\alpha_{2k} \equiv \Phi_\nu(\beta, \tau)) \]

such that for $\alpha \in D_\nu^1(\beta, \tau) \equiv (\alpha_{2k}^{(v)}, \alpha_{2k+1}^{(v)})$ the root u_ν lies inside C^1. A further subdivision may then be made such the same set of roots \{u_\nu\}$_{\nu \in I(\beta, \tau)}$ lie inside C^1 for all $\alpha \in D_\nu(\beta, \tau)$. Consequently we have

\[-\frac{1}{2\pi^2} \int_0^1 \frac{E(r, \tau)}{1 - \tau^2} \sum_{\nu \in I(\beta, \tau)} \int_{\xi \in (r, r)} \int_{|\xi|=1} \frac{p_2(v_\nu, \eta, \xi)}{p_3(v_\nu, \eta, \xi)} \frac{d\xi}{\xi} \frac{d\eta}{\eta} d\tau \]
Here $\mathcal{L}(\xi, \tau)$ is the union of certain closed subintervals on the unit η-circle,

$$\mathcal{L}(\xi, \tau) = \bigcup \{ \eta = e^{i\alpha}; \alpha \in \mathcal{A}(\beta, \tau) \}$$

Next, we wish to obtain a subdivision of the s, and τ intervals similar to the one obtained in the previous section. Essentially, the problem is the same, to find the subintervals $(\tau_\mu, \tau_{\mu+1})$ and $\mathcal{H}(\tau) = (Y_s(\tau), Y_{s+1}(\tau))$, where $Y_s(\tau)$ are end points on the curve,

$$\mathcal{H}(\tau) = \{ Y | y_\mu = (1 - \tau^2)x_\mu(s); 0 \leq s \leq 1; \tau-\text{fixed} \},$$

such that the I^*_k intersects \mathcal{H}_s in a constant number of points. We consider a point $Y(\tau) \in \mathcal{H}_s(\tau)$ for $\tau \in (\tau_\mu, \tau_{\mu+1})$. If $Y(\tau) \in I^*_k$, then $Y(\tau) \in M^s(\tau) \cup N^s(\tau)$; returning to our definition for $M^s(\tau)$ and $N^s(\tau)$, we realize that this implies the existence of an $\eta(\tau)$ with $|\eta(\tau)| = 1$, such that either $Y(\tau) \in M^s[\tau; \eta(\tau)]$ or $Y(\tau) \in N^s[\tau; \eta(\tau)]$.

Now, in order to find the τ-subdivision we note that $Y(\tau)$ either intersects M^s (or N^s) in a finite number of points (as τ-varies) or in a finite number of τ-subintervals. In the latter case, this gives us [one of the s-points of subdivision in the previous section] a $Y(\tau)$-point subdivision or as we have shown above a point of subdivision of the integration path $|\eta| = 1$. The τ-interval is now subdivided so that there are a constant number or intersections in each subinterval. One obtains then the following sum of integrals for (4.6).

$$\frac{-1}{2\pi^2} \sum_{s=0}^{N} \sum_{\mu=0}^{N} \sum_{r=1}^{r_{\lambda-1}} \int_{r_{\lambda-1}}^{r_{\lambda}} \frac{E(r, \tau)}{1 - r^2} \int_{x_{\mu}(r)}^{x_{\mu+1}(r)} \frac{p_1(v, \eta, \xi)}{d_{\xi}d_{\eta}} d\xi d\eta$$

over $d_{\xi}(\nu, \eta, \xi) = 0$. $I_{\lambda} = (x)$ is the index set of those roots, v, of $p_2 = 0$ which lie inside $C^s(\eta, \xi, \tau)$ where the others remain outside; $\bigcup_{s=0}^{N} (x_{\tau-1}, x_{\lambda}) = [0, 1]$ is the subdivision of the τ-interval and $\eta(\tau)$ $(\mu = 1, 2, \cdots, N_\lambda)$ are the points on $|\eta| = 1$ which correspond to the N_λ, Y-points on either $M^s(\tau)$ or $N^s(\tau)$ for $\tau \in (\tau_{\lambda-1}, \tau_\lambda)$.

The cartesian product $\{ |x| = 1 \} \times L_\mu(\tau)$ (for fixed τ) is a tubular chain [16] on \mathcal{L}. On \mathcal{L} $p_1(v, \eta, \xi)/p_2(v, \eta, \xi)$ may be represented as

$$\frac{p_1}{p_2} = \frac{p_1C_2(v, \eta, \xi)}{R(p_2, p_3)},$$

where $R(p_2, p_3) = C_3(v, \eta, \xi)p_2 + C_2(p_2, v, \eta, \xi)p_3$, C_1, C_2 are polynomials [19]

2 This construction of subintervals is due to Mitchell [16] who employed it in the three-variable case.

3 $\mathcal{E}(\tau; \eta(\tau))$ is a restriction of $\mathcal{E}(\tau)$; see definition of $\mathcal{E}(\tau)$.

4 In the definition of $\mathcal{E}(\tau)$, and $\mathcal{N}(\tau)$ the t-variable does not appear, hence it plays no part in our subdivision. Because of this we may make a similar subdivision as in the three-variable case [16].
[10], and \(v \) is given by (5.4). If we designate the polar curves \(D_\sigma \) on \(\mathbb{R} \) by

\[
D_\sigma = \left\{ g_\sigma(\eta, \xi) = 0; \quad \frac{\partial R}{\partial a_{\sigma - 1}} = \frac{\partial R}{\partial a_{\sigma}} \right\}
\]

then we may rewrite (5.9) as,

\[
(4.11) - \int_{\gamma_{\lambda - 1}}^{\gamma_{\lambda}} \frac{E(r, \tau)}{1 - \tau^2} \sum_{\sigma = 1}^{r_\sigma} \frac{\partial^i g_\sigma(\eta, \xi)}{\partial \xi^i} \int_{\mathbb{R}_{\mu}(\tau)}^\mathbb{R}_{\mu}(\tau) \frac{p_\sigma(v, \eta, \xi) C_\sigma(v, \eta, \xi)}{\phi(\xi)} d\xi d\eta,
\]

which may be reduced by partial fractions and subtraction of certain improper integrals [19] [10] to the form,

\[
(4.12) - \int_{\gamma_{\lambda - 1}}^{\gamma_{\lambda}} \frac{E(r, \tau)}{1 - \tau^2} \sum_{\sigma = 1}^{r_\sigma} \frac{V_\sigma(v, \eta, \xi)}{\partial \xi} d\xi d\eta.
\]

The functions,

\[
W_\sigma(v, \eta, \xi) = \frac{V_\sigma(v, \eta, \xi)}{\partial g_\sigma(\eta, \xi)}
\]

are algebraic functions defined on the Riemann surface \(\mathcal{R}_\sigma \) associated with the polar curve \(D_\sigma \); consequently \(W_\sigma(v, \eta, \xi) \) has a Weierstrass decomposition such as illustrated in (3.16)

\[
(4.13) W_\sigma(v, \eta, \xi) = \sum_{\sigma = 1}^{r_\sigma} d_\sigma H_\sigma(\eta_{\sigma 1}, \xi_{\sigma 1}; \eta, \xi)
\]

where the terms have a similar meaning as before in (3.16). Each \(\mathcal{L}_\mu(\tau) \) is the union of intervals on the unit \(\gamma \)-circle, \(\mathcal{L}_\mu(\tau) = \mathcal{V}_{\sigma}(\tau) = \bigcup_{n=1}^{m_\sigma}(\eta_{2n}^{(\sigma)}(\tau), \eta_{2n+1}^{(\sigma)}(\tau)) \), hence using a result from Theorem (2) of Gilbert [10] we have for (5.9)

\[
(4.14) - \int_{\gamma_{\lambda - 1}}^{\gamma_{\lambda}} \frac{E(r, \tau)}{1 - \tau^2} \sum_{\sigma = 1}^{r_\sigma} \log \frac{E_\sigma(\eta_{2n+1}, \xi_{2n+1}; \eta_{\sigma 1}, \xi_{\sigma 1}, \eta_{\sigma 0}, \xi_{\sigma 0})}{E_\sigma(\eta_{2n}, \xi_{2n}; \eta_{\sigma 1}, \xi_{\sigma 1}, \eta_{\sigma 0}, \xi_{\sigma 0})} d\xi_\sigma
\]

\[
\times \left\{ \sum_{\sigma = 1}^{r_\sigma} \sum_{\beta = 1}^{r_\beta} \frac{C_\sigma H_{\sigma \beta}(\eta, \xi) - H_{\sigma \beta}(\eta, \xi)}{\partial \eta} \right\}
\]

\[
+ \sum_{\sigma = 1}^{r_\sigma} \left(C_\sigma H_\sigma(\eta_{2n+1}, \xi_{2n+1}; \eta_{\sigma 1}, \xi_{\sigma 1}, \eta_{\sigma 0}, \xi_{\sigma 0}) - C_\sigma H_\sigma(\eta_{2n}, \xi_{2n}; \eta_{\sigma 1}, \xi_{\sigma 1}, \eta_{\sigma 0}, \xi_{\sigma 0}) \right)
\]

\[
+ \sum_{\sigma = 1}^{r_\sigma} \left(F_\sigma(\eta_{2n+1}, \xi_{2n+1}; \eta_{\sigma 1}, \xi_{\sigma 1}, \eta_{\sigma 0}, \xi_{\sigma 0}) - F_\sigma(\eta_{2n}, \xi_{2n}; \eta_{\sigma 1}, \xi_{\sigma 1}, \eta_{\sigma 0}, \xi_{\sigma 0}) \right)
\]
From the above discussion we have proved the following theorem, which is the four-variable analogue of results by Bergman [1] [5] and later Mitchell [16].

THEOREM 4.1. Let \(\Psi_\mu(X) = \Omega_\mu[f] \) be the \(\mu \)th component of a vector solution to \(T_\mu[\Psi] = 0 \), where \(f(u, \eta, \xi) \) is a rational \(B_\tau \)-associate of a harmonic function \(H[X] \). Let \(\mathcal{X} \) be a simple, closed curve on the hypersphere \(||X|| = r \) meeting the above discussed conditions. Then the integral of (3.21),

\[
\sum_{a=1}^{M} \sum_{\sigma=1}^{N_a} \int_{X_a}^{X_{a+1}} E(r, \tau) H_{\mu}^{(a, \sigma, k)}[X(1 - \tau)]d\tau dx_\mu
\]

may be evaluated in terms of an expression (4.14).

REFERENCES

15. V. Maric'. *On some properties of solutions of \(\Delta \Psi + A(r^2)X\Psi + C(r^2)\Psi = 0 \), to appear in Pacific J. Math.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should by typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal but they are not owners or publishers and have no responsibility for its content or policies.
Homer Franklin Bechtell, Jr., *Pseudo-Frattini subgroups* ... 1129
Thomas Kelman Boehme and Andrew Michael Bruckner, *Functions with convex means* ... 1137
Lutz Bungart, *Boundary kernel functions for domains on complex manifolds* 1151
L. Carlitz, *Rings of arithmetic functions* ... 1165
D. S. Carter, *Uniqueness of a class of steady plane gravity flows* 1173
Richard Albert Dean and Robert Harvey Oehmke, *Idempotent semigroups with distributive right congruence lattices* 1187
Lester Eli Dubins and David Amiel Freedman, *Measurable sets of measures* 1211
Robert Pertsch Gilbert, *On class of elliptic partial differential equations in four variables* ... 1223
Edward Everett Grace, *Cut points in totally non-semi-locally-connected continua* ... 1241
Edward Everett Grace, *On local properties and $G_δ$ sets* .. 1245
Keith A. Hardie, *A proof of the Nakaoka-Toda formula* ... 1249
Lowell A. Hinrichs, *Open ideals in $C(X)$* ... 1255
John Rolfe Isbell, *Natural sums and abelianizing* .. 1265
G. W. Kimble, *A characterization of extremals for general multiple integral problems* .. 1283
Nand Kishore, *A representation of the Bernoulli number B_n* 1297
Melven Robert Krom, *A decision procedure for a class of formulas of first order predicate calculus* ... 1305
Peter A. Lappan, *Identity and uniqueness theorems for automorphic functions* 1321
Lorraine Doris Lavalle, *Mosaics of metric continua and of quasi-Peano spaces* 1327
Mark Mahowald, *On the normal bundle of a manifold* ... 1335
J. D. McKnight, *Kleene quotient theorems* ... 1343
Charles Kimbrough Megibben, III, *On high subgroups* ... 1353
Philip Miles, *Derivations on B^* algebras* ... 1359
J. Marshall Osborn, *A generalization of power-associativity* 1367
Theodore G. Ostrom, *Nets with critical deficiency* ... 1381
Elvira Rapaport Strasser, *On the defining relations of a free product* 1389
K. Rogers, *A note on orthogonal Latin squares* ... 1395
P. P. Saworotnow, *On continuity of multiplication in a complemented algebra* 1399
Johan Schönheim, *On coverings* ... 1405
Victor Lenard Shapiro, *Bounded generalized analytic functions on the torus* 1413
James D. Stafney, *Arens multiplication and convolution* .. 1423
Daniel Sterling, *Coverings of algebraic groups and Lie algebras of classical type* .. 1449
Alfred B. Willcox, *Šilov type C algebras over a connected locally compact abelian group. II* ... 1463
Bertram Yood, *Faithful *-representations of normed algebras. II* 1475
Alexander Zabrodsky, *Covering spaces of paracompact spaces* 1489