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1* Introduction* F. Burton Jones has shown [4, Theorem 15]
that the set of weak cut points of a compact metric continuum that
is not semi-locally-connected at any point of an open set U of M is
dense in U (the proofs apply to locally peripherally compact complete
metric continua). It is the purpose of this paper to extend Jones' results
by establishing stronger cutting properties.

The theory is given here for locally compact metric spaces but
applies, with appropriate modifications, to locally peripherally bicompact,
regular spaces of the general class mentioned in [2],

2* Definitions and preliminary theorems* A point p of a con-
tinuum M is a weak cut point of M (or cuts M weakly) if there are
two points x and y of M — {p} such that each subcontinuum of M
that contains both x and y contains p also. In this case p cuts x
from y weakly in M.

A continuum M is semi-locally-connected at a point p of M if
each open subset U of M containing p contains an open subset V of
M containing p, the complement of which relative to M consists of a
finite number of components. A continuum M is totally nonsemi-
locally-connected (on a point set A) if M is not semi-locally-connected
at any point (of A). A continuum M is locally peripherally aposyn-
detic at a point p of M if each open subset U of M containing p
contains an open subset V of M containing p such that, for some
collection (Hl9 ••• , Hn) of subcontinua of M, (ΓlLii?*) Π (V- V) = Φ
and p is in the (nonvoid) interior W of (Π?=i •#») Π F, relative to M.
In this case W is a peripheral aposyndesis subset of Ϊ7 and V is a
set associated with W and £7.

EXAMPLE. The Cartesian product of a cantor set and a simple
closed curve, with one of the cantor sets shrunk to a point, is locally
peripherally aposyndetic at each point but aposyndetic at only one
point.

THEOREM 1. A locally compact metric continuum M is locally
peripherally aposyndetic on a dense Gδ subset of an open subset D
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of M if it is locally peripherally aposyndetic on a dense subset of D.

Theorem 1 is a corollary of [2, Theorem 1],

THEOREM 2. If M is a locally compact metric continuum that
is not semi-locally-connected at the point x, then x is a limit point
of the set of points of M at which M is nonaposyndetic with respect
to x.

Theorem 2 follows from the fact that any open subset D of M
which has a compact boundary and contains the point x, contains an
open subset, containing x, whose complement with respect to M con-
sists of a finite number of subcontinua of M, if M is aposyndetic at
each point of D — D with respect to x.

THEOREM 3. If M is a locally compact metric continuum that
is not locally peripherally aposyndetic at the point x then x is a
limit point of the set of all points y of M such that M is non-
aposyndetic at x with respect to y.

Theorem 3 follows from the Heine-Borel Theorem by an indirect
proof.

3* Cut point theorems*
THEOREM 4. If M is a locally compact metric continuum which

is locally peripherally aposyndetic and nonsemi-locally connected at
each point of a Gδ subset I dense in an open subset D, then for each
point p of M there is a dense Gδ subset Jp of D such that for each
point x of Jp there is a point y at which M is nonaposyndetic with
respect to x and x cuts p weakly from each such y.

Proof. A point x of D has the properties required for member-
ship in Jp if x 6 I — {p} and each open subset D' of D, containing x,
contains an open subset Dlt containing x, and a subset S such that
(1) M is aposyndetic at each point of M — Dr with respect to each
point of A or (2) S separates p from each point y of M — Dr at which
M is nonaposyndetic with respect to some point of Dlm This observa-
tion suggests consideration of distinguished subsets defined as follows
(see [2, p. ]). An open subset A of an open subset D' of D is a
distinguished subset of D' if

(1) M is aposyndetic at each point of M — Df with respect to
each point of Dλ or

(2) there is a subset S of D' which separates p from each point
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y, in M — Dr, at which M is nonaposyndetic with respect to some
point of A

If each open set in D contains a distinguished open subset then
[2, Theorem 1] the set of distinguished points of D is a dense (τδ

subset of D the intersection of which with / is the desired set Jp.
To prove that each open set in D contains a distinguished open subset,
let

(1) D' be any open subset of D,
(2) S be a peripheral aposyndesis subset of Df that does not

contain p (such a set exists since M is locally peripherally aposyndetic
on a dense subset of D) and

(3) D" be a set associated with S and D\ If M — S is con-
nected then A = S is a distinguished subset of Z>', since M is aposyn-
detic at each point of M— Df with respect to each point of A If
M— S — A\J B, where A and B are mutually separated and p e A,
then B Π (2?" — S) Φ Φ. Let if be a continuum containing S but not
containing B Π {D" - S). Let A = (M - i ϊ) Π B Π (2)" - S). Then
M is aposyndetic at each point of A with respect to each point of D19

since H [j A is a continuum containing A in its interior. But S
separates p from each point of B and A\J B ZD M — Dr. It follows
that A is a distinguished subset of D\

That there is a space satisfying the hypothesis of Theorem 4 is
seen from the example [3, Example 2] of a bounded plane continuum
which is both connected im kleinen and nonsemi-locally-connected at
each point of a dense G8 subset.

Local peripheral aposyndesis is used instead of aposyndesis in
Theorem 4 in order that the complementary case (covered in Theorem
5) will be such that each x in Jp will be a limit point of Ax.

COROLLARY 4.1. If a compact metric continuum M is aposyndetic,
but not semi-locally-connected, at each point of a dense G8 subset of
M and P is a countable, dense subset of M, then there is a dense Gs
subset J of M each point x of which cuts each point p of P from
each point y at which M is nonaposyndetic with respect to x.

Proof. First, if M is aposyndetic at x then M is locally peri-
pherally aposyndetic at x. Second, if p(l), p(2), is a counting of
P let J = ΠΓ=i JpM> where JpM is as given in Theorem 4.

Theorem 5 is a corollary of [1, Theorem 2].

THEOREM 5. If M is a locally compact metric continuum and
D is an open subset of M such that M is nonlocally peripherally
aposyndetic at each point of a dense G5 subset of D, then for each
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point p of M there is a dense G& subset Jp of D such that each point
x of Jv

( 1) is cut from p weakly by each point of the set Ax, of all
points y Φ p such that M is nonaposyndetic at x with respect to ys

and
( 2 ) is a limit point of Ax.

The following theorem is a consequence of Theorems 4 and 5.

THEOREM 6. If M is a locally compact metric continuum which
is totally nonsemi-locally-connected on some dense G5 subset of an
subset D of M then D is contained in the union of the closures of
two (possibly void) open subsets Dx and D2 such that M is locally
peripherally aposyndetic at each point of a G8 set dense in Dx but
not at any point of D2 and for each point p of M there is a dense
G5 subset Jp of D such that

( 1 ) each point x of Jp Γi A cuts p weakly from each point y
such that M is nonaposyndetic at y with respect to x, and

( 2 ) each x in Jv Π D2 is cut from p weakly by each point of
Aχ — {y\yΦV and Mis nonaposyndetic at x with respect to y] and is a
limit point of Ax.

COROLLARY 6.1. If M is a compact metric continuum which is
totally nonsemi-locally-connected on some dense G8 set and P is a
countable dense subset of M then M contains a dense set A each point
of which cuts some point of M weakly from each point of P.

Proof. Let p{l), p(2), be a counting of P and let A and D2

be as given in Theorem 6. For each natural number n, let Jp{n) be
as given in Theorem 6. Let J = ΠΓ=i «/*<»)• L e t 2? = J Π A and C
be the set of all xe M such that M is nonaposyndetic at.some point
y of J Π D2 with respect to x. Then C z> J ΓΊ D2 and each point of C
cuts some point of J Π D2 weakly from each point of P. The union
of B and C is the desired dense set of points.

Question. Does each totally nonsemi-locally-connected, compact
metric continuum contain a dense Gδ set of weak cut points ?
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