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A group topology on the ring C(X), of all real-valued, continuous
functions on X, is said to have the ideal closure property, (1.C.P),
in case the closure of any ideal is simply the intersection of all maximal
ideals containing it. In this paper we consider which ideals of C(X)
can be open with respect to such a topology.

In §2, a characterization of such ideals is given and it is shown
that the family &7, of all such ideals, is itself a fundamental system
of neighborhoods of zero with respect to a ring topology having I.C.P.
In §38 we consider the two extremes, where & is the family of all
ideals and where .&” consists only of finite intersections of maximal
ideals. The former class is characterized as the class of p-space (spaces
for which every prime ideal of C(X) is maximal) and the latter as
the class of pseudo-compact spaces (spaces for which every fe C(x) is
bounded). In the final section it is shown that if P is a countable
discrete subset of the Stone-Cech compactification of X, then
N{M»; pe P}e &7 if and only if P is C-embedded in X U P.

1. The notation and terminology will be that of [1]. Many of
the arguments will depend upon theorems and exercises of [1]. In
order to avoid lengthy restatements of these results, when such results
are used, we will simply give a reference to the appropriate statement.
To simplify the reader’s task all references will be given to [1]. The
original source of these results can be determined by consulting the
notes at the end of this book.

Throughout the paper X will denote a topological space and C(X)
the ring of all real-valued continuous funections on X. The term
“topology”, unless explicitly stated to the contrary, will always mean
Hausdorff topology.

Although it is assumed that the reader is familiar with the ma-
terial in the first few chapters of [1], we will recall some of the basic
definitions and results which will be used throughout. For fe C(X)
we set Z(f) :ffﬁ) and for an ideal I we set Z[I]={Z(f);fel}.
An ideal I is called a z-ideal if Z(g)e Z[I] implies ge I. It will be
recalled that there is a one-to-one correspondence between the maximal
ideals of C(X) and the points of the Stone-Cech compactification, BX,
of X. Explicitly this correspondence, p — M?, is given by the Gelfand-
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Kolmogorff theorem, [1; p. 120], which states that for each pe X
M? = {fe C(X); peclezZ(f)}.

A second class of ideals which will be of importance for our purposes
is the class of ideals of the form

0r = {fe C(X); peint. clexZ(f)} .

We will frequently make use of the fact that every fe C(X) has
a unique continuous extension to a function f* of B8X into the one-
point . compactification of the real number system. In particular it
should be noted that if X S TS B8X and feC(T) then (f|X)*(t)=
f @) and that if f,ge C(X), ge BX with f*(¢) and ¢g*(g9) real numbers
then (f + 9)*(¢) = f*(¢) + ¢9*(9) and (f9)* = f*(¢) - 9*(¢). Finally, we
recall that there exists a largest subspace vX of BX such that for
every fe C(X), (f*|vX)e C(vX).

If A is a subset of BX, the symbol A will always refér to the
closure of A in BX and A° will always denote the interior of A in
BX. The symbol N will be reserved throughout to denote the set of
nonnegative integers.

2. If Iis an ideal of C(X) we will set 6(I) = {pepBX; IS M*}
and if P is a subset of BX we will set J(P)= N{M*; peP}. It is
apparent that a topology .7~ on C(X) will have I.C.P. if and only if
for every ideal I of C(X),cl,I= Jo0(I). We begin our investigation
with a straightforward observation regarding the restrictions placed
on open ideals by this condition.

2.1, LEMMA. Suppose that an ideal I is open with respect to
some group topology on C(X) having 1.C.P. Then I= Jo6(I) and
hence I is a z-ideal. Moreover, for every pe SX and every fe M?,
[Ff+I1n0* = ¢.

Proof. Suppose I is an ideal of C(X) and & is a topology,
having I.C.P., for which I is open. Since I is open and ¢l I = Jo0(I),
for any feJod(I) we must have [f+ I|NI=+¢. Let g,hel such
that f+h=g¢9. Thus f=9g — hel and hence I = JofA(I). That I
is a z-ideal now follows from the fact that every maximal ideal is a
z-ideal and an intersection of z-ideals is a z-ideal. The final asssertion
follows from the fact that, for every p e 8X, M? is the unique maximal
ideal containing O*, [1; 7.18, page 106], and hence ¢l,O0? = M?,

In the last lemma we saw that, if . has 1.C.P., then for every
peBX,cl, 0" = M*. The following theorem shows that under certain
conditions the converse holds. In particular we have:
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2.2, THEOREM. Suppose 7~ is a group topology for C(X) pos-
sessing a basis for the netghborhood system of zero consisting of ideals.
Then 7~ has 1.C.P. i¢f and only if for every pe BX, ¢l,0° = M®,

Proof. The necessity is obvious, in view of the fact that, for
each pe BX, M? is theunique maximal ideal containing O°. On the
other hand if the condition is statisfied then every maximal ideal is
closed and hence ¢l IS JoO(I) for every ideal I. To complete the
proof it is sufficient to show that, if I is an ideal, feJo6(I) and V
a 7 -open ideal, then [f+ V] NI+ ¢.

We begin by considering the case where f is a nonnegative function.
For each ped(I), there exists h,e V such that f— h,€0% Ii.e.,
Z(f — h,)’ is a neighborhood of p. Let us suppose that, for each
ped(I), we have chosen such a function h,e V. Then {Z(f — h,)’
pe O(I)} is an open cover of 0(I) and 6(I) is compaet [1; 7.0, p. 112].
Thus there exists a finite subcover, say {Z(f —h,)"; 1 =1, -++, n}.
Without loss of generality we may assume that each 7, is nonnegative;
for since V is a z-ideal and f is nonnegative we have |k;|e V and
Z(f—h)S Z(f — | h;]). Thus the functions fY», hY*, .., hY* are
well-defined continuous functions Moreover Z(hi™) = Z(h,;) and hence
hime Viori=1,+--,mn. Now, (fV»—hi")(fY"—hi*) .- (f"—hi" e f+
V; i.e., there exists h € V such that f+h=(f"—h{") «- (f"— k™).
In addition,

Z(f+ h) = Z(fur — Rty o oo (fUm — h}/”))
| Z(F17 — %) = U Z(f — ho)

3

4

and hence
200 = (UZF—h) 2UZG— 5y 200) .

By [1; 7.0, p. 112] we have f+ he L.

Now if f is arbitrary in Jo8(I) we decompose f, in the usual
manner, into the difference of two positive functions. Explicitly, let
f=f*—f" where f*=14(f|+f) and f~=3(f]—f). Since
Z(fH2Z(f) and Z(f)=2 Z(f), we have f*,f~eJof(I). Using
the first part of the proof we choose functions g, 9,€ V and k, k,e I
such that f*+¢,=%k and f~+g¢g,=%k. Thus f+ (9.—g,)=
(f+9)—(f+9)=Fk —k,cl Since V is an ideal g, — g,€ V and !
hence [f+ V]INnI=g.

We now turn our attention to whether or not there exists any
topologies satisfying the conditions of the above theorem. The next
lemma will lay the basis for such an example
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2.3. LEMMA. Suppose I, and I, are ideals of C(X) such that
for every peBX and every feM? [f+ I]NO0O*+#¢,5=1,2. Then
[f+ (@I NN 0P+ 4.

Proof. As in the last proof, we begin by supposing that f is
nonnegative. Then fY?¢ M* and hence there exists g,€ I, and g,¢ I,
such that fY*+ g,€ 0? and f** + g,€0*. But Z(f — 9.9.) 2 Z(f¥* +
9) N Z(f** + g.) € Z[0”] and hence f — g.9.€ O?. Since —g,9,€ NI,
we have [f+ (LN L)]NO* = ¢. If f is arbitrary in M?, we express
f as f* — f~ and proceed as in the proof of the last theorem.

2.4. THEOREM. The fomily of all maximal ideals of C(X) is a
subbase for the meighborhood system of zero, with respect to a ring
topology on C(X) having 1.C.P. Moreover, an ideal is open with
respect to this topology if and only if it is a finite intersection of
maximal ideals.

Proof. It is easily seen that any nonvoid family of ideals of C(X)
is a subbase for the neighborhood system of zero, with respect to a
(possibly not Hausdorff) ring topology on C(X). That the topology
described in the theorem is Hausdorff follows from the fact C(X) is
semi-simple; i.e., the singleton zero is closed.

In view of Theorem 2.2 and Lemma 2.3, to see that this topology
has I.C.P. it is sufficient to see that, if p,qeB8X and fe M? then
[f+ M?INnO"=¢. If p=gq, then —fec M?= M? and hence 0 =
Sf—relf+ M INnO. If p+#q then there exists a ge C(BX) that
vanishes on a neighborhood of p and takes on only the value 1 on a
neighborhood of q. It follows that gfe M? and f — fge O

To prove the concluding statement suppose that I is an ideal, open
with respeet to this topology. Then there exists a finite subset P of
BX such that J(P) € I and hence 6(I) & 6oJ(P). But HoJ(P) = P,
for if ¢¢ P then {q} and P are completely separated and hence there
exists ge C(BX) such that ¢ vanishes on a neighborhood of P and
g(@)=1. Thus PS Z(g) and q¢ Z(g). It follows that g foJ(P) =
N{Z(h); he J(P)}, [1; 7.0 p. 112]. Thus 0(I) S 0oJ(P) = P and as
such 6(I) is finite. The proof is completed by noting that from Lemma
2.2 we have I = JoO(I) = N{M>»; pe 6(I)}.

In the remainder of the paper, the topology defined by taking the
family of maximal ideals as a subbase for the neighborhood system
of zero will be referred to as the maximal ideal topology.

2.5. THEOREM. There exists a largest element in the lattice of
all ring topologies on C(X) which have I1.C.P. and a fundamental
system of meighborhoods of zero consisting of ideals. The family
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& of all ideals which are open with respect to this topology contains
every ideal which is open with respect to some group topology having
1.C.P. Moreover, the family & can be characterized as the collection
of all ideals I satisfying the following condition.

(x) For every pe BX and every fe M?, [f+ I1N O” # 4.

Proof. Let &7 be the family of all ideals satisfying (*). From
Lemma 2.8 it follows that .7 is closed under finite intersection. As
was noted earlier, any family of ideals closed under finite intersection
is a basis for the neighborhood system of zero with respect to a
(possibly not Hausdorff) ring topology on C(X). In particular & is
such a basis. Moreover since .&” contains all maximal ideals, the
topology determined by &7 is finer than the maximal ideal topology.
Since the latter is Hausdorff so is that determined by .. From
Theorem 2.2 it follows that & has I.C.P. Finally from Lemma 2.1
we know, if an ideal I is open with respect to some group topology
having I.C.P., then I satisfies (x) and hence is a member of &7,

3. In the last section we saw that for an arbitrary space X there
exists at least one topology on C(X) having I.C.P. and possessing a
fundamental system of neighborhoods of zero, consisting of ideals;
namely, the maximal ideal topology. From Theorem 2.5 we know that
the topology determined by & is another and that it is at least as
fine as the maximal ideal topology. We now ask, for which spaces,
if any, these topologies coincide.

That they do not invariably coincide is easily seen by considering
an infinite p-space. Reecall that X is a p-space in case every prime
ideal of C(X) is maximal. It is shown in [1; 4J, p. 63] that a p-space
can be characterized as a space X for which every ideal of C(X) is
an intersection of maximal ideals. It follows that, for a p-space, .&¥
is simply the family of all ideals and the topology determined by .&¥
is the discrete topology. From Theorem 2.4 we know that an ideal
is open with respect to the maximal ideal topology only if it is
a finite intersection of maximal ideals. Hence the two topologies do
not agree on any infinite p-space. Indeed, since every ideal of &7 is
an intersection of maximal ideals, a p-spaces can be characterized as
a space for which &7 is the family of all ideals or equivalently as
a space for which the topology determined by . is the discrete
topology.

There is nonetheless an extensive class of spaces for which the
two topologies agree. In this section we shall characterize this class
as the class of pseudo-compact spaces; i.e., those spaces for which

every fe C(X) is bounded.
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3.1. LEMMA. If P 1is a countable discrete subset of BX and
J(P)e.s”, then all of the accumulation points of P are in BX — vX.

Proof. Suppose P = {p;;t€ N} is a countable discrete subset of
BX, J(P)e . s”, and gevX is an accumulation point of P. For each
ne N, set P,={p;%<n}. Then, for each ne N, P, and {q} are
disjoint subsets of 8X and hence there exists f,e C(BX) such that
0=f. =1, fulP.]=1 and f, vanishes on a neighborhood of qf(i.e.,
(f.|X)e M9. Let such an f, be chosen for each ne N and set f=
S 27" It is easily seen that f(p) = 0, for any pe P, and that
Z(f) 2 Np-1 Z(f,). Since qevX, Z[M*] is closed under countable
intersections, [1; 8.4, p. 117] and hence Z(f|X)e Z[M?. Since
J(P)e &7 it satisfies (x) and hence [(f|X) + J(P)]N O == ¢. Choose
he J(P) and g € O? such that (f| X) + k = g. Since Z(g) is a neighbor-
hood of ¢, there exists pe P such that peZ(g). Moreover he J(P)
so peZ() and hence pecZ(g — k) = Z(Ff|X). But the latter is
impossible since (f| X)*(p) — f(p) = 0.

3.2. LEmMA. If P is a countable discrete subset of BX which
is C-embedded in X U P, then J(P)ec.%”.

Proof. Suppose that P is as described in the lemma, ¢€ 8X and
fe M. First we will show that A = PN (BX — Z(f)) and Z(f) are
completely separated. To this end we will construct a function
g€ C(X U P) such that Z(f) = Z(g) N X and g(a) # 0 for any ac A.
If A is finite the existence of such a function is obvious. Thus suppose
that A is infinite, say A = {a,; € N}. By a standard argument it
can be shown that for each ne N there exists a unit u,€ C(X) such
that 0 = f*-u, =1 and (f*-u,)*(a,) = 1. For each n we choose such
a unit %, and set g = >\, f*-u, 2. Clearly we have Z(9) = Z(f)
and g*(a,) #= 0 for any ne N. Since P is C-embedded in XU P, the
function (1/g*) has a continuous extension to X U P, say h. Since
(gh)* must take on both the value 0 and 1 at any point of AN Z(9),
we have AN Z(f) = ANZ(g) = ¢. Thus by the usual argument there
exists ke C(X) such that AS Z%k) and Z(f) =S Z(k — 1). Thus
PSS AUZ(f)= Z(f-k) and qecZ(f — fk)’. Hence we have
f—fkelf+ J(P)]N O This completes the proof.

3.3. THEOREM. A necessary and sufiicient condition that the
family 7 consists precisely of all finite intersections of maximal
1deals 1s that the underlying space be pseudo-compact.

Proof. Suppose that X is pseudo-compact. Since C(X) = C(BX)
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we need only consider . with respect to the compact space BX. If
Q@ is any infinite subset of ABX then @ contains a countably infinite
discrete subset P. But P must have an accumulation point in BX =
v(BX). By Lemma 3.1, J(P)¢.%”. But clearly if J(P) does not
satisfy (x) and J(Q) & J(P), then J(Q) does not satisfy (+) and hence
is not a member of 5.

Conversely if X is not pseudo-compact then X contains a countable
discrete C-embedded subset P, [1; 1.20, p. 20]. By Lemma 3.2,
J(P)e .~ and hence & contains ideals other than finite intersections
of maximal ideals.

The problem of determining the ideals of .5 is, of course, equiva-
lent to determing those subsets @ of B8X for which J(Q)e .&”. If we
set () = {Q & BX; J(Q)€ &}, we can rephrase the results of this
section as follows. The family 6(5”) consists of all subsets of 8X if
and only if X is a p-space and 0(S”) consists of all finite subsets of
BX if and only if X is pseudo-compact. Between these two extremes
considerable variation in 6(5”) is to be expected. In the next section
we examine this question in more detail. However we note in passing,
the following.

COROLLARY. If 60(5”) contains a set which 1is mot finite then

0(.5”) contains a set of cardinality 2°, where ¢ is the power of the
continuum.

Proof. If 6(S”) contains a set which is not finite then the under-
lying space is not pseudo-compact and hence contains a C-embedded
copy of N with N=BN. But J(N)=J(N) and J(N)e.&” so
J(N)e &#. The corollary follows since card BN is 2°, [1; 9.3, p. 131].

4. The last section left unanswered the problem of determining
& for arbitrary spaces. At the end of the last section it was noted
that this is equivalent to determining those subsets @ of BX for which
J(Q)e . We are not able to give a complete characterization of
these sets. However a beginning on the problem can be made by
recalling that every infinite subset @ of BX contains a countably
infinite discrete subset P and that if J(Q) is in & then so is J(P).
From Lemma 3.2, we know that, if P is a countable discrete subset
of BX which is C-embedded in XU P, then J(P)e.$”. The major
result of this section is that this condition is also necessary. The
major step in this proof is the establishment of a necessary and suf-
ficient condition that a countable discrete subset of 8X be C-embedded
in XU P.

As our starting point we take the well known fact that, if P&
BX and feC(XU P) such that (f|P) is a homeomorphism of P onto
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a closed subset of the reals, then P is C-embedded in X. Our first
lemma is a slight variation of this result.

4.1. Lemma. Let P be a countable discrete subset of BX. If
there exists fe C(X N P) such that f[P] is closed and discrete and
Jor each re f[P], PN f(—r) 18 finite, then P is C-embedded in X U P.

Proof. Let us assume that f is nonnegative. There is no loss of
generality in doing this since, if f satisfies the hypothesis so does f*.
Since a closed disrete subset of the positive real line is well ordered
in the usual order, we may assume f[P] = {r,; n€ N} where r, < 7,41
for every ne N. Using the axiom of choice we may suppose that for
each n € N we have ordered Pﬂf("Fn), say PN f(ﬁ)z{p(n, 1), « -+, p(n,t,)}.
We define a function g on P as follows. Foreachne Nand 1 <751,
we set

o(o(m, ) = (L=1) - @uin. e — 7, 1)

Since g(p(n, J))— 0 as % — o, we may extend ¢ continuously to P
by defining g to be 0 at all of the accumulation points (in 8X) of P.
Since every compact subset of AX is C*-embedded in AX we may
extend ¢ continuously to all of 8X. Let % be such an extension and
let k=f+ (h|XUP). Then ke C(XU P) and (k|P) is a homeomor-
phism of P onto a closed subset of the reals. This is sufficient to
insure that P is C-embedded in X U P, [1; 1.19, p. 20].

4.2, LEMMA. Let P be a countable discrete subset of BX. If
there exists fe C(X U P) such that f*[P— P]= oo, then P is C-embedded
wm XU P.

Proof. Clearly we may assume that f is nonnegative; for, if f
satisfies the hypothesis, so does f?. Since f*[P — P]= o, for each
ne N, an, n + 1] is finite. Thus f[P] is closed and discrete and, for
each re f|P], f‘(7') N P is finite. The lemma now follows from Lemma
4.1,

4.3. THEOREM. For a countable discrete subset P of BX, the
Jollowing statements are equivalent.

1. P is C-embedded in XN P

2. J(P)es

3. There exists a countable family {U,}, of meighborhoods of
P — P, such that (N{U,}H)N X = ¢.
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Proof. The implication (1) implies (2) is the content of Lemma
3.2. We will show that (2) implies (3) by showing that the denial of
(3) implies the denial of (2). Thus suppose that (3) is false; i.e., that,
for any countable family {U,} of neighborhoods of P— P,(N{U,}) N X+¢.
Let P= {p,; ne N} and set P, = {p,; 0 = k < n}, for each ne N. Then,
for each ne N, P, and P — P are disjoint closed subsets of 8X. Hence
there exists a closed neighborhood U,, of P — P, disjoint from P,.
Since AX is normal, there exists f,€ C(BX) such that 0= f, =1,
fIP]=1, and f,[U,]=0. Then, as is well known, the function
f=232"f, is in C(BX) and Z(f)2 NZ(f,) 2 NU,. Moreover,
[(NTYNX]N(P— P) = ¢; for, if it were, we could find a neighbor-
hood W, of P — P, disjoint from (N W,) N X and hence {W, =W N U,}
would satisfy condition (3), contrary to our assumption. Since
Z(fIX)y2(nU)NX, it follows that Z(f|X)N(P— P)+# ¢. Let
e Z(f1X)N(P— P). Then (f|X)eMs. If J(P)ec.&”, it follows
from Lemma 2.1 and Theorem 2.5 that [(f|X) + J(P)]N Oq # ¢.
Thus suppose g€ O? and he J(P), with (f|X) =g — h. Since ge 09,
there exists a neighborhood V of ¢ on which g¢g* vanishes. Since
he JJ(P), h* vanishes on P and hence (f|X)* = (g — h)* = g* — b*
vanishes on VN P. But from the construction of f it is clear that
(f|X)* = f does not vanish anywhere on P. Hence J(P)¢.&”. It
remains to show that (3) implies (2). It is easily seen that (3) implies
that there exists a countable family {V,} of open neighborhoods of
P — P satistying, () V,.2 SV, and (i) [N V.] N X = 4. We will show
that the existence of such a family {V,} implies the existence of a
funetion fe C(X U P), with f*[P — P] = oo.

For each n e N, choose f, € C(BX) such that 0 = £, = 1, £, [V.u]l=1
and f,[|8X — V,] =0 and set f= 3f,. To see feC(XU P), suppose
#e X U P. Then, by (ii), there exists nc N such that x¢ V,,,. From
(i) it follows that, for m >n, BX—V,=2B8X—V, and hence
fulBX — V,] =0. Thus, on the neighborhood (8X — V,)N (XN P), f
is a finite sum of continuous real-valued funetions and, hence, is itself
a continuous real-valued function. Thus fe C(X U P). Finally, since

PPNV, f*[P— P]= . The implication now follows from
Lemma 4.2.

BIBLIOGRAPHY

1. L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand, 1960.






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
ROBERT OSSERMAN J. Ducunpat
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
M. G. ARSOVE LoweLL J. PAIGE
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosipA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced), and on submission, must be accompanied by a separate author’s
résumé. Manuscripts may be sent to any one of the four editors. All other communications to
the editors should be addressed to the managing editor, L. J. Paige at the University of California,
Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available. '

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT- CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 14, No. 4 August, 1964

Homer Franklin Bechtell, Jr., Pseudo-Frattini subgroups ................c.couuuu... 1129
Thomas Kelman Boehme and Andrew Michael Bruckner, Functions with convex

T 7 1137
Lutz Bungart, Boundary kernel functions for domains on complex manifolds . . . .. .. 1151
L. Carlitz, Rings of arithmetic functions ...............ooeuueeeeiueeeennnnnnnnn 1165
D. S. Carter, Uniqueness of a class of steady plane gravity flows .................. 1173
Richard Albert Dean and Robert Harvey Oehmke, Idempotent semigroups with

distributive right congruence lattices . .............couuuiiiiiiiiiennnnn. 1187
Lester Eli Dubins and David Amiel Freedman, Measurable sets of measures ... .. .. 1211
Robert Pertsch Gilbert, On class of elliptic partial differential equations in four

VAFIADIES . . . .o oo 1223
Harry Gonshor, On abstract affine near-rings ...............ccooeuieenneenno.. 1237
Edward Everett Grace, Cut points in totally non-semi-locally-connected

COMBIMUG . . . o oot ettt e e e e e e e e e et et e e 1241
Edward Everett Grace, On local properties and Gg sets ...................c...... 1245
Keith A. Hardie, A proof of the Nakaoka-Toda formula . .......................... 1249
Lowell A. Hinrichs, Open ideals in C(X) .....ouienie i 1255
John Rolfe Isbell, Natural sums and abelianizing . ................ccccvuiiieen... 1265
G. W. Kimble, A characterization of extremals for general multiple integral

PrODLemS . . ... e 1283

Nand Kishore, A representation of the Bernoulli number B,, . . .
Melven Robert Krom, A decision procedure for a class of formu

predicate calculus ..............cc i,
Peter A. Lappan, Identity and uniqueness theorems for automor
Lorraine Doris Lavallee, Mosaics of metric continua and of qua
Mark Mahowald, On the normal bundle of a manifold. . .......
J. D. McKnight, Kleene quotient theorems ...................
Charles Kimbrough Megibben, 111, On high subgroups . ... ....
Philip Miles, Derivations on B* algebras....................
J. Marshall Osborn, A generalization of power-associativity . . . .
Theodore G. Ostrom, Nets with critical deficiency ............
Elvira Rapaport Strasser, On the defining relations of a free pro
K. Rogers, A note on orthoganal Latin squares ...............
P. P. Saworotnow, On continuity of multiplication in a complem
Johanan Schonheim, On coverings..........................
Victor Lenard Shapiro, Bounded generalized analytic functions
James D. Stafney, Arens multiplication and convolution . . . . ...
Daniel Sterling, Coverings of algebraic groups and Lie algebra

TP e e e
Alfred B. Willcox, Silov type C algebras over a connected loca
group. Il. ... ... e
Bertram Yood, Faithful *-representations of normed algebras. I
Alexander Zabrodsky, Covering spaces of paracompact spaces



http://dx.doi.org/10.2140/pjm.1964.14.1129
http://dx.doi.org/10.2140/pjm.1964.14.1137
http://dx.doi.org/10.2140/pjm.1964.14.1137
http://dx.doi.org/10.2140/pjm.1964.14.1151
http://dx.doi.org/10.2140/pjm.1964.14.1165
http://dx.doi.org/10.2140/pjm.1964.14.1173
http://dx.doi.org/10.2140/pjm.1964.14.1187
http://dx.doi.org/10.2140/pjm.1964.14.1187
http://dx.doi.org/10.2140/pjm.1964.14.1211
http://dx.doi.org/10.2140/pjm.1964.14.1223
http://dx.doi.org/10.2140/pjm.1964.14.1223
http://dx.doi.org/10.2140/pjm.1964.14.1237
http://dx.doi.org/10.2140/pjm.1964.14.1241
http://dx.doi.org/10.2140/pjm.1964.14.1241
http://dx.doi.org/10.2140/pjm.1964.14.1245
http://dx.doi.org/10.2140/pjm.1964.14.1249
http://dx.doi.org/10.2140/pjm.1964.14.1265
http://dx.doi.org/10.2140/pjm.1964.14.1283
http://dx.doi.org/10.2140/pjm.1964.14.1283
http://dx.doi.org/10.2140/pjm.1964.14.1297
http://dx.doi.org/10.2140/pjm.1964.14.1305
http://dx.doi.org/10.2140/pjm.1964.14.1305
http://dx.doi.org/10.2140/pjm.1964.14.1321
http://dx.doi.org/10.2140/pjm.1964.14.1327
http://dx.doi.org/10.2140/pjm.1964.14.1335
http://dx.doi.org/10.2140/pjm.1964.14.1343
http://dx.doi.org/10.2140/pjm.1964.14.1353
http://dx.doi.org/10.2140/pjm.1964.14.1359
http://dx.doi.org/10.2140/pjm.1964.14.1367
http://dx.doi.org/10.2140/pjm.1964.14.1381
http://dx.doi.org/10.2140/pjm.1964.14.1389
http://dx.doi.org/10.2140/pjm.1964.14.1395
http://dx.doi.org/10.2140/pjm.1964.14.1399
http://dx.doi.org/10.2140/pjm.1964.14.1405
http://dx.doi.org/10.2140/pjm.1964.14.1413
http://dx.doi.org/10.2140/pjm.1964.14.1423
http://dx.doi.org/10.2140/pjm.1964.14.1449
http://dx.doi.org/10.2140/pjm.1964.14.1449
http://dx.doi.org/10.2140/pjm.1964.14.1463
http://dx.doi.org/10.2140/pjm.1964.14.1463
http://dx.doi.org/10.2140/pjm.1964.14.1475
http://dx.doi.org/10.2140/pjm.1964.14.1489

	
	
	

