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1Φ Introduction* Let C and D denote the unit circle and the
unit disk, respectively, and let p(z, zf) denote the non-Euclidean hyper-
bolic distance between the points z and z* in D [3, Chapter II].
Bagemihl and Seidel have proved the following identity theorem [2,
Theorem 3, p. 13].

THEOREM A. Let f(z) be a meromorphic function of bounded
characteristic in D, and let {zn} be a sequence of points in D with
at least two limit points in C, such that \ zn \ —> 1 and p(zn, zn+1) < M
for every n, where M is a positive constant. If f(zn) —> c, then
f(z) = e.

There is also a corresponding uniqueness theorem [2, Theorem 4,
P. 14].

THEOREM B. Let f(z) and g{z) be meromorphic functions of
bounded characteristic in D, and let {zn} be a sequence of points
in D with at least two limit points in C, such that \ zn \ —* 1 and
p(zn, zn+1) < M for every n, where M is a positive constant. If
{/(*») ~ Φn)} -> 0, then f(z) = g{n).

Along the same lines, Bagemihl has proved an identity theorem
for normal functions [1, Theorem 3, p. 4],

THEOREM C. Let f(z) be a normal meromorphic function and let
{zn} be a sequence of points in D with at least two limit points in
C, such that | zn \ —> 1 and p(zn, zn+1) —> 0. // f(zn) —> c, then f(z) = c.

This paper will investigate such identity and uniqueness theorems
for automorphic functions. It shall be shown that there is a result
analoguous to Theorem C for automorphic functions with Fuchsian
groups of the first kind. However, an example will show that there
is no corresponding theorem for automorphic functions with Fuchsian
groups of the second kind. In the case of automorphic functions with
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Fuchsian groups of the first kind, a corresponding uniqueness theorem
holds.

2. Some notation and terminology• We begin with some basic
definitions about Fuchsian groups and automorphic functions.1

DEFINITION 1. A group & of linear transformations of D onto
itself is called a Fuchsian group if there exists a point zoe D and a
neighborhood N(z0) of zQ such that N(z0) Π S(z0) = Φ for each Se 5f
which is not the identity transformation.

DEFINITION 2. Let & be a Fuchsian group aτιd let S(z) =
(az + b)/(cz + d), ad — be = 1, c Φ 0, be an element of &. The circle
\cz + d\ = 1 is called an isometric circle of &, or simply an iso-
metric circle, and is denoted by I(S). The disk \ cz + d | ^ 1 is called
an isometric disk and is denoted by K(S).

DEFINITION 3. A limit point of the centers of the isometric circles
of the transformations of a Fuchsian group & is called a limit
point of <&'.

DEFINITION 4. If every point of C is a limit point of &, then
& is called a Fuchsian group of the first kind. A Fuchsian group
which is not of the first kind is said to be of the second kind.

DEFINITION 5. Let & be a Fuchsian group and let Rr

Q be the set
of points in D exterior to every isometric disk of &'. If Ro con-
sists of JSo plus a set of boundary points of JS0' such that every point
of D is congruent under & to exactly one point of Ro, then RQ is
called the fundamental region of %?'.

We note that the fundamental region RQ is not unique, but Ro,
the closure of Ro, is unique.

DEFINITION 6. Let f(z) be a meromorphic function in D, and
let ^ be a Fuchsian group. If f(S(z)) — f(z) for each Se 5f and
each zeD, then f(z) is called an automorphic function.

In addition to the standard terminology, we shall make use of
what will be called an L-set.

DEFINITION 7. An arcwise connected2 subset A of D is called an
1 For a more complete discussion of automorphic functions, the reader is referred

to the book by Ford [4].
2 Arcwise connected here means that any two points in A may be jointed be a

Jordan arc contained in A,
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L-set of D if Af]C Φφ.

3. The main theorems* The proofs of the main results require
some preliminary lemmas.

LEMMA 1. Let & be a Fuchsίan group, and let S be a non-
elliptic transformation in &'. Let B be the straight line segment
from 0 to S(0), and let As = \Jn=0S

n(B). Then As is an L-set of D.

Proof. It is clear that As is arcwise connected. Since S is non-
elliptic, {Sn} is an infinite sequence of distinct elements of &, and
{S%(0)} may have no limit point in D. Hence A8 has a limit point in C.

In fact, it is easily seen that As has but a single limit point in
C. This follows from the geometry of the isometric disks.

LEMMA 2. Let ^ be a Fuchsian group of the first kind, and
let aβ be an arc of C. Then there exists an L-set A of D whose
limit points on C are interior points of aβ and each point of A is
congruent under & to a point of a compact subset K of D.

Proof. It is well known that if a Fuchsian group contains only
elliptic elements, then it is is a finite group of the second kind. Let
S be any nonelliptic element of ^ and let As be as described in
Lemma 1. Let zλ be the limit point of As in C. If zx is an interior
point of the arc aβ, we set A = As. If zx is not an interior point of
aβ, let z2 be any interior point of aβ. Let {Tn} be a sequence of ele-
ments of 5^ such that Tn(0) -> z2. Let W be any element of 5f for
which zλ is not a fixed point. Then either zx or W(z^) (or perhaps
both) is not in infinitely many of the K(Tn) and, by the geometry of
isometric circles (see [4, p. 26]), there exists an integer N such that
either TN{z^) or TN{W{z^)) is an interior point of aβ. Then we set A
equal to the corresponding TN{AS) or TN(W{AS)). Every point of A
is congruent under ^ to a point of B. Setting K—B, we see that
A is the desired L-set.

LEMMA 3. Let S^ be a Fuchsian group of the first kind, and
let aβ be an arc of C. Let {zn} be a sequence of points in D such
that p(zn, zn+1) —»0 and the set of limit points of {zn} consists of the
arc aβ. Let L be the set of limit points of the set {S(zm):Se5f,
n — 1, 2, 3, •}. Then there exists a point of L in D.

Proof. By Lemma 2, there exists an L-set A of D all of whose
points are congruent under g^ to points on a compact subset K of D,
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and whose limit points in C are interior points of aβ. Since p(zn, zn+1)—>0f

there exists a subsequence {znjc} such that p(znjc, A) —> 0. Then there
exist transformations Sk e 5^ such that {Sk(znk)} has a limit point

K. But 20

 e

LEMMA 4. Leέ & be a Fuchsian group of the first kind and

let aβ be an arc of C. Let {zn} be a sequence of points in D such

that ρ(zny zn+1) —> 0 and the set of limit points of {zn} cansists of the

arc aβ. Let L be the set of limit points of the set {S(zn):Se^f

n = 1, 2, 3, •}. Then any point of L Π D is a limit point of L.

Proof. If zoeL Π D, then there exists a subsequence {z%k} of {zn}
and a sequence {Sk} of elements of such that Sk(znk)-+zQ. Since {zn}
has more than one limit point in C, the nk& can be chosen so that
there exists a sequence of integers {pk} such that pk < nk+1 — nk and
p(?nk,

 znk+pk) —* °° Let r > 0 be given. Then for k sufficiently large,
we have ρ(z0, Sk(znj)) < r and ρ(z0, Sk(znjc+Pk)) > r. If, for each k, qk

is the least positive integer such that ρ(z0, Sk(znk+gj)) > r, then
p(z0, Sk(znk+qk-J) ^ r, and it is easy to see that the sequence {Sk(znk+qk)}
has a limit point wr on the circle p{z, z0) — r. Hence wr e L. Thus-
for each n there exists a point wneL such that p(wn, z0) = 1/n. This,
implies that wn —> z0 and that z0 is a limit point of L Π D.

We are now in a position to prove an identity theorem for auto-
morphic functions with Fuchsian groups of the first kind.

IDENTITY THEOREM. Let ^ be a Fuchsian group of the first kind
and let f(z) be a meromorphic function automorphίc with respect to
<&. Let {zn} be a sequence of points in D with at least two limit
points on C, such that \ zn \ —• 1 and ρ(zn, zn+1) —> 0. / / f{zn) —> c, then

Proof. Let L be the set of limit points of the set {S(zn) S e g 7 ,
n = 1, 2, 3, •}. By Lemma 3 there exists a point zoeL Pi D, and by
Lemma 4 there exists a sequence {wn} of points in L Π D such that
wn —* 2o But f(wn) = c for each w and f{z0) = c. Therefore, since
/(#) assumes the same value on a sequence of points in D with a limit
point in D, f(z) Ξ= C.

Since the sum of two automorphic functions with the same Fuchsian
group is itself automorphic, we have a corresponding uniqueness
theorem.

UNIQUENESS THEOREM. Let & be a Fuchsian group of the first
kind, and let f(z) and g(z) be two meromorphic functions automorphic
with respect to &. Let {zn} be a sequence of points in D with αί-
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least two limit points on C such that | z | —> 1 and p(zn, zn+1) —> 0. If

{/(*.) - ff(« )} - 0, then f(z) =

4* Groups of the second kind* The identity and uniqueness
theorems stated in §3 are not true if ^ is a Puchsian group of the
second kind.

EXAMPLE. There exists a nonconstant meromorphic function f(z)
automorphic with respect to a Fuchsian group & of the second kind,
and a set of points {zn} in D with at least two limit points in C
such that I zn | —> 1, p(zn9 zn+1) —> 0, and f(zn) —• 0.

Proof. Let ^ be a Fuchsian group of the second kind. With-
out loss of generality, we may assume that there exists a number k,
0 < k < 1, such that the set {z: z e D, &(z) > 1 - k) is a subset of
Ro. Let F be the union of the half-plane &(z) < 1 — k/2 and D.
Let {#J be a sequence of points in D with at least two limit points
on C such that | zn \ —• 1, &{zn) > 1 — fc/2, and /o(sn, zn+1) -+ 0. By a
well-known theorem of Mittag-Leffler together with the Riemann
Mapping Theorem, there exists a meromorphic function M(z) in F
whose only poles are at the points {zn}, each pole being of order one.
Then M(z) is holomorphic and uniformly bounded in D — i?0. If the
•elements of & are denoted by {Sn}, where Sn(z) = (anz + bn)/(cnz + dn),
then for m ^ 2,

and

ί=ί SM (cnz +

define meromorphic functions in D, and

is automorphic with respect to & (The argument that iϊi(2;) is mero-
morphic is identical to that of the proof of [4, Theorem 2, p. 105]).
Γurther, for each n, f(zn) = 0. But f(z) has a pole at « = 0, and
thus f(z) is nonconstant function.
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