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Probably the most promising new identity to arise in a recent
study of identities on commutative algebras [3] is

(2) 2(x*x)x)x + (x*-x)x® = 3(x?-x)x .

This identity generalizes not only the power-associative identity, x?-a?
= (x*-x)x, but also the generalization of the Jordan identity considered
in [4]. In the present paper, we study the structure of commutative
rings of characteristic relatively prime to 2,3, 5, or 7 satisfying (1).
This restriction on the characteristic ‘will be assumed throughout the
paper without further mention.

There are two obvious ways in which the structure theory of
the class of rings studied here is noticeably weaker than the structure
theory of power-associative rings. First of all, given a ring A satisfy-
ing (1) containing an idempotent e, there can exist elements of A
which are annihilated by the operator (2R, — I)* but not by (2R, — I).
Secondly, defining the additive subgroups 4, = 4,(\) = {z|xc A, xe =
Az} for M =0, 1/2, and 1, the relations 4,4, = 0 and A,,4,, C A, + A,
are not valid in general. Despite these impediments, we see in §1
that A may be decomposed simultaneously with respect to a set of
mutually orthogonal idempotents in much the usual fashion. In §2
we prove that, if A is simple of degree > 8 satisfying the condition
that *(2R, — I)* = 0 if and only if (2R, — I) = 0 for all z in A, then
A is a Jordan ring.

1. We begin our investigation by partially linearizing (1) to obtain

(2) A(yx-2)x)> + 2y -x)x + 2yx*-x + 2y(x®-x) + 2yx-x)x’
+ yatea? + 2yx-0® = 12(yx-2d)x + Sy(x®-a?) .

Then, setting # = ¢ in (2) immediately yields
4yR}' — 8yR} + 5yR? — yR, =0, or
(3) y[(R. — I)2R, — I)'R] =0 .

Defining B,, = B,(1/2) = {x|xc A, x(2R, — I)* =0}, it follows from
(8) that A may be decomposed into the additive direct sum

(4) A=A+ B+ 4.
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Another additive subgroup of A which will be useful is C,, = C,(1/2)
= {x |3yeB,,c y(2R, — I) = x}. It is easy to see that C,, C A, C Byjs.

THEOREM 1 Let A be a ring satisfying (1) with an tdempotent
e, and let A,, A,, Ay, By, Cip be defined as above. Then A, and A,
are subrings, A,A,C A,,, A,B,,C By, + A, AB,,C By, + A,, ACyp
C A1/2; AOCII2 c Al/z; A112A1/2 e A1 + Al/Z + Ao’ A1/2C1/2 c Al + Cl/z + Al)y
and C,,C,;, C Cyp.

To establish this theorem, we first partially linearize (2) and assume
that the new variable of degree 3 is idempotent. This gives

4(yx)R; + A(ye-a)R; + A(YR:-2)R, + 4yR!-x + 4(y-xe)R:
+ 2(ye-x)R, + 2yR:-x + 4(y-xRHR, + 2(y-xe)R, + 2ye-x
+ 4y(xR?) + 2y(xR?) + 2y-xe + 2(yx)R? + 2(ye-x)R,
+ 4(yR)(xe) + 2(y-we)R, + 2ye)(xe) + 2(yx)R,
+ 4(yx)(@R;) + 2ye)(xe)
= 12(yx)R? + 24(ye-xe)R, + 12yR?-x + 12y(xR?) ,

which simplifies to

(yx)[2R? — BR? + R,] + (ye-x + y-we)[2R? + 2R, + I]
(5) + (yR:=x + y-aRY[2R, — 5I] + 2(yR:-x + y-xR?)
+ (ye-we)[— 12R, + 2I] + 2(yR:-xe + ye-xR}) =0,

First, letting x, y € A,, this reduces to (yx)[2R: — R? — 3R, + 2I] = 0.
Since 1 is a root of this operator but 0 and 1/2 are not for any char-
acteristic, we have yx ¢ A,, or AA, C A,. Similarly, if z,y ¢ A,
(5) reduces to (yx)[2R: — 5R?: + R,] = 0, which gives 4,4, C A,. And,
choosing ye€ 4,, x€ A, in (5) yields (y®)[2R? — 8R? 4 5R, — 2I] = 0, or
A A, C Ay,

Suppose next that ye 4, and x€ B,,,. Letting w = (R, — 1/2I),
we have xe =1/2x + w, we = 1/2w, wxe-e = 1/4x + w, (xe-e)e=1/8x +
3/4w, and (5) becomes (yx)[2QR:— 5R:+ R,) + (BR? + 3R, + 3/2I) +
(5/2R, — 25/4I) 4 9/4I + (— 6R, + I) + 3/2I1 + (yw)[2R: + 2R, + I +
2R, — 5I + 8/2I — 12R, + 2I + 4I]1 =0, or

(6) (yx)[zRg — 2RI + _;_ Re] + (yw)[zR: — 8R, + % I] —0.

Taking w =0 in (6), we see that A,A,,C By, + 4,. But then (yw)
€ B, + A, in general and the component of (6) in A, is —;—(ym)1 =0,

giving A, B, C By, + A,. This shows that the first term in (6) is zero,
which implies that (yw)[2QR,—I)(R,—7/2I)]=0, or A,;C,;;C A,;,. Similarly,
letting y€ A4,, ®€ By, in (5) yields
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(y.'x:)[zR,? _ 4R + -g— R, — -;—I] + (yw)[2R? + 4R, — .2_ I] —0,

from which one gets A,B,, C By, + A; and AC,;, C A;p.
Finally, let «,y¢€ By, ®(R, —1/2I) = w, y(R, —1/2I) =z in (5)
to get

(wa)[@R: — 5R? + R)) + (2R? + 2R, + I) + (R,, — %I) + _;- I
1 1 )
+ (-3, — I) + —2-1] + (yw + 2)[2R? + 2R, + I)

+ (@R, ~5D + S+ (- 6B+ D+ 21]

+ (zw)[(— 12R, 4+ 2I) + 411 =0,
or

(7) (yx)[2R; — 8R! + R,] + (yw + zx)[2R? — 2R,]
+ (zw)[— 12R, + 6I=10.

Taking w =2z =0 in (7), we obtain first the relation A4,,4,,c 4, +
Ay + A, If only 2z is zero, then the component of (7) in B, is
{(yx), 2R, — IT + 2(yw),}(R, — I)R, = 0, showing that A,,C,, C A, +
Cy, + A,. If neither w nor z is zero, we may apply the operator
(2R, — I)* to (7) to get (zw)(2R, — I)* =0, or C,,C,; C B,;. But since
C..Ci. C A1psCy € Ay + Cyyy + Ay, we have C,,Cy, C Cyyy to finish the
proof of Theorem 1.

By constructing examples, it is not difficult to show that the re-
lations given in Theorem 1 cannot be improved. To illustrate this
proceedure, we shall show that the relation 4,4, C A,;, cannot be im-
proved. Consider the commutative algebra spanned by the four ele-
ments e, @,, Q.. @, over any field F, and let multiplication be defined
by €’ = e, a0, = @y, €a; = 1a; (¢t =0, 1/2, 1), where all other products
of basis elements are assumed to be zero. To show that this algebra
satisfies (1), it is sufficient to show that the complete linearization of
of (1) is satisfied for all ways of replacing the variables by basis ele-
ments. If either four or five of these variables are replaced by e, the
equation is satisfied by (8). If exactly three of the variables are re-
placed by e and the other two variables by a, and a, respectively, then
the equation reduces to (a,a,)[2R} — 3R.+ 5R, — 2I] =0 as in the
proof of Theorem 1, and hence is satisfied. If any other combination
of basis elements is substituted into the linearized form of (1), it is
clear that every term will vanish, and the identity will be trivially
satisfied.

Suppose now that a ring A satisfying (1) contains two orthogonal
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idempotents w and v. Although the elements of of A,(1) are not in
general orthogonal to the elements of A,(1), we can prove that v is
orthogonal to A,(1).

LemMMA 1 If w and v are orthogonal idempotents, then A,(1)C
A 0).

For the proof of this lemma we linearize (2) so that two of the
2’s in each term become u’s and the other two become #’s. This gives

4((yu-u)v)v + 4((yu-v)u)v + 4(yu-v)v)u + 4((yv-w)u)v
+ Av-up)u + 4(yv-v)upu + 2(yu-v)v + 2(yv-u)w
+ 2(yu-u)v + 2(yv-v)U + YU-v + Yyou
= 12(yu-v)u + 12(yv-u)v .

Taking ye€ A,(1) and using the relation yv-u = 1/2yv which follows
from Theorem 1, this becomes (yv-v)[4R? + 8R, + 3I] = 2yv, or

(9) (yv-v)]2R, + I)2R, + 3I)] = 2yv .

Since yve 4,(1/2), we see from (9) that (yv-v) e A,(1/2) also. But then
(9) reduces to 8yv.-v = 2yv, or (yv)[4R, — I] =0. Thus, yv =0 and
A,(1) c A, (0) as desired.

We are now ready to consider how the decomposition of A with
respect to the idempotent # + v is related to the decompositions with
respect to # and v separately. We shall prove.

THEOREM 2 Let u and v be orthogonal idempotents in a ring A
satisfying (1). Then R,R, = R,R, and

A = A0 + B.(3) 0 B.(F) + 40,

2
B (3) = B.(5) 0 4.0 + 40 1 B.(3),
A (é—) =4, (%) NA© + 400 4,(),
Con(E) = C(3) N 4O + AONC, (%)

Au+v(0) = Au(O) ﬂ Av(o) .
For the proof of Theorem 2 we shall need
‘LEMMA 2 If w and v are orthogonal idempotents and if ye

B,(1/2) N B,(1/2), then yve B,(1/2) N B,(1/2), yu-v = yv-u = 1/4y, and
ye A, (1). Hence, A,(1/2) N B,(1/2) = A,(1/2) N A,(1/2).
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By Theorem 1, we have yve B,(1/2) + A.(1) and hence (yv)(2R, —
Iy¥e A,(1) c A,(0). On the other hand, yve B,(1/2), giving (yv)2R, —
I)*e B,(1/2) + A,(1). Thus, (yv)2R, — I)* = 0, or (yv) € B,(1/2), to give
the first assertion of the lemma.

From Theorem 1 we also get the relation y(2R, — R, (2R, — I) = 0,
or 4(yu-v)u = 2yu-v + 2yv-u — yv. Using this relation and 4yu-u =
4yw — ¥y, equation (8) with ye B,(1/2) N B,(1/2) becomes

d(yu-vyv — yv-v + 2yu-v)v + 2yv-w)v — yv-v + Lyu-v)u
— Yyu-u + Hyv-u)v — yv-v + 2yv-u)v + 2(Yyv-v)u — Yyv-v
+ dyv-v)u — yv-v + 2yu-v) + 2yv-wyu + 2(yu-u)v
+ 4yv-v)u — yv-v + 2(yu-v)v + 2yv-w)u + 2(yu-u)v
+ 2(yv-vyu + yu-v + yv-u — 12(yu-v)u — 12(yv-w)v = 0,

or
8(yu-v)v — A(yv-u)v + 8(yv-v)u + 2yv-uyu — 8(yu-v)u
+ 2(yu-w)v + yu-v + yv-u — Syv-v — yu-u =0 .

Reducing this equation again given
Byu-v — 2yu — 2yu-v — 2yv-u + yu + 8yv-u — 2yu + 2yv-u
— %y'v — dyu-v — dyv-u + 2yv + 2yu-v — -;—yv + yu-v

+yv-u~5yv+%y—yu+—i—y:0,

or syu-v + byv-u — dyu — 4yv + 3/2y = 0, which may be put in the
form

| (B — 1158 — 1) + (B, - L1)(5B. - %I)] —0.

If ye A,(1/2) N B,(1/2), then (10) reduces to y(R, — 1/21)(6R, — 3/2I) = 0,
or, y€ A,(1/2). Thus A,(1/2) N B,1/2) = 4,(1/2) N A(1/2). But then
ye B,(1/2) n B,(1/2) implies that y(R, —1/2I)c A.(1/2) N A,(1/2) and
Yy(R, — 1)2I)(6R, — 3/2I) = y(R, — 1/2I). Using this relation, (10) re-
duces to y[R, —1/2I + R, — 1/2I] =0, or ye A, (1). Since y(R, —
1/2I)R, = 1/2y(R, — 1/2I), we also have yu-v=1/2yv + 1/2yu —
1/4y = 1/2y(uw + v) — 1/4y = 1/4y. And finally, yv-u = 1/4y by sym-
metry.

Returning to the proof of the theorem, let ¥ be an arbitrary ele-
ment of A,.,(1) and let ¥ =y, + ¥, + ¥, be its decomposition with
respect to w. Then the equation y(u + v) = ¥ gives ¥, + ¥.(w + v) +
YV = Y1 + Y2 + Yo, Which breaks into the two equations ¥,,(w + v) = yy,
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and Yy = ¥, since y,(u + v)e B,(1/2) + A,(1) and ywve A,(0). Thus,
Y€ A1) and ¥,,2R, — I) =— y.s(2R, — I) e A,(1/2) N A,+,(1), leading
to  4..2R, — I) = 4,,2R, — D[2(R, + R,) — I — 2R,] = ¥.,(2R, — I)
(I—2R)=0 and y,,€ B,(1/2). We have shown that A4,.,(1) is con-
tained in A4,(1) + B,1/2) N B,1/2) + A,1). Conversely, A,(1) and A4,(1)
are clearly in A4,,,(1), while B,(1/2) N B,(1/2) is in by Lemma.

Next, suppose that ye B,.,(1/2) and let y =y, + %, + ¥, again
be the decomposition of y with respect to w. Then,

0=(y, + Yis + yo)[(Ru + R) ~ (R, + R) + %_I] = %’?h

+ ym[Rz R, + %I + R,R, + R,R, + R — R,,]

+ yo[R: — R, + %I] ,

and breaking this equation into components gives 1/4y, + v, [R.R, +
RR,+ R}~ R] =0, and y[R? — R, + 1/4I1 = 0 or y,< B,(1/2). Let-
ting ¥, = wy + wy, + w, be the decomposition of ¥, with respect to
v, the former equation becomes 1/4y, + w,,|R, R, + R,R, + R — R,] = 0.
But 1/4y, is the only term in the last equation with a component in
A0), so that ¥, =0 and ¥,,€ B,..(1/2). By symmetry, w, =0 and
w, € B,(1/2), giving w,;, = (¢, — w,) € B,(1/2) N B,(1/2). Then Lemma

2 1
0= wylR.R, + RE, + B — Rl = wy| 7T+ 21— 1| 2w,

showing that y,, = w,€ A,(0). This proves that B,.,(1/2) is contained
in B,(1/2) N A,0) + A4,(0) N B,(1/2), and the converse is immediate.

If ye A,,,(1/2), the argument above shows that ¥ = 9., + ¥, where
Y12 € B,(1/2) N A,0) and y,€ A,(0) N B,(1/2). Then, 0 = (%, + Y[R, +
R, — 11211 = y (R, — 1/2I) 4 y«(R, — 1/2I), and breaking into com-
ponents gives ¥, € 4,(1/2) and y,€ 4,(1/2). Hence A,.,(1/2) is contained
in A,(1/2) N A,0) + A,0) N A,(1/2), and the converse is obvious. If
z€ C,.,(1/2), then there exists an element y <€ B,.,(1/2) such that z =
y[Ru + R, — 1/2I]~ But then z = (¥, + ¥)[R. + R, — 1/2I] = yl/Z(Ru -
1/21) + y(R, — 1/2I) e C,(1/2) N A4,(0) + A,(0) N C(1/2), and the con-
verse is again obvious.

Finally, let ye A,.,(0) and let ¥y = ¥, + ¥.» + %, be the decomposi-
tion of y with respect to w. Then 0= y(u + v) = ¥y, + Yu(vt + v) +
yv = 0, giving y,€ A,0) and ¥, + ¥u(u + 0) = 0. If 9, = w, + Wy +
w, is the decomposition of %, with respect to v, the latter equation
gives ¥, + w, + wy(w + v) + weu = 0, and the component of this equa-
tion in A4,0) is y, + wu = 0. But then w,ec 4,1) + A4,(0), so that
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0 = y.,(4R: — 4R, + I) = w, + w, (4R — 4R, + I) + w,. The com-
ponent of the last equation in A,0) is w, = 0, implying that v, =0
and that ¥,,€ A,.,(0). By symmetry, we also have w, =0, so that
Yis = Wip € B,(1/2) N B,(1/2) € A,1,(1). Thus, #,,=0, and A4,,,(0) C
A (0) N A,0). The The converse of this inclusion is trivial.

The relation R,R,= R,RB, was shown to hold on elements of
B,(1/2) N B,(1/2) in Lemma 2, and it is easy to check that it also holds
for elements of each of the other additive subgroups into which we
have decomposed A.

Now that we have established Theorem 2, it is an easy matter to

decompose A simultaneously with respect to any number of mutually
orthogonal idempotents.

THEOREM 8 Let ¢,e, +-+,¢, be a set of orthogonal idempotents
m a ring A satisfying (1) whose sum s the unity element of A, and
define A, = A, (1), A;=A12) 0 A1/2), By=B.1/2) N B,(1/2),
and C;; = C,(1/2) N C.(1/2) for 1<4, j<n and i#j. Then A is
the additive direct sum of the A;s and the B;s, and AA; C A,
Aq;Aj C Aijy Asz C Bij + AJ-, A,'C” C A“‘, BijBij (e A@ + B'ij + Aj,
AjjA ; C A+ Ay + Ay, ACic A+ Cy + Ay, CiyCiy < Cy,, ByuBy
B, A;A;c Ay, BjCicCy, and C;Cy = A;Bj, = B;;B,, =0 for
1<4,7,k1l<nand 4,7,k distinet.

The first eight inclusion relations listed in this theorem follow im-
mediately from Theorem 1. To show B;;B; C B;, we let u =¢; + ¢;
and w =e¢; +¢; + ¢, and observe that B;;B; C B,(1/2) + A,(0) and
B;;B;, < A,Q), leading to B;;B;, C B;, -+ B;;, + A,. But, by symmetry,
we also have B;;B;,C B;, + B;; + A,. But, by symmetry, we also
have B;;B;, C B;, + B;; + A;, giving B;;B;, C B;. This same calcula-
tion also shows that C;;C;; C B;,. However, C;;,C;. € C,(1/2) N 4,(1) =
C;; + C;;, giving C;;C;, = 0. Looking at the product A;B;, with re-
speot to the three idempotents e, e;, e,, we get that this product is
contained respectively in A,; + A, Bj, + Bi; + A4;, and Bj, + By, +
A,. Since the mutual intersection of three is zero, A;B;, = 0. Ob-
serving that B;;B,, < A,(1)B,, for u = ¢; + e;, we also have B;;B,; = 0.

For the two remaining inclusion relations given in Theorem 3, we
must make a little longer ecalculation. Linearing (2) completely and
setting two of the variables equal to ¢;, and the other three equal to
e;, ¢, Y respectively where x € B;; and y € B, we get

4((ye;-w)e;)e; + 4(y-wes)e)e; + 4(y(we;-e;))e; + 4y(xe;-e)))e;
4y((we;-e;)e;) + 4y((we;-e;)e; + dy((we;-e.)e; + 2y(xe;-e;)
2(ye;-x)e; + 2(y-wes)e; + Aye;)(we;-e;) + 2(ye;)(we;)
= 24(ye;-xe)e; + 12y(xe;-e;) .
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Using the relation xe;-¢; = xe;-e; = 1/4x from Lemma 2, this reduces to

(vey- + mo, YUE:, + 2B,] + Svec-y + (o) 2B, — 21|
+ d(ye)(we;-e;) + 2(ye;)(we;) — 24(ye;-ae)e; = 0 .
Letting xe; = 1/2x + w and ye; = 1/2y + 2, and noting that xe; = x —
xe; = 1/2¢ — w and that zw = 0, our equation becomes

(yo)[4R:; — 2R, | + (e@)[4R:, — 10R,, + 21]
+ (yw)[4R: + 14R, — 6I] =0 .

Since yx, zx, and yw are all in B, we may replace 4R}, by 4R, — I
here, giving

(11)  (o)2R,, — I] + (z2)[— 6R,, + I[ + (yw)[18R,, — T[] =0,
Applying the operator (2R, — I) to (11), we get
(zx)[— 12R? + 8R,, — I| + (yw)[86R: — 32R, + TI] =0,

which reduces to (za)[— 4R, + 2I]+ (yw)[4R,, — 2I] =0, or (yw —
zx)e A;,. On the other hand, we may set ¢ = e in (7) to obtain

(yw)|2R,° — 3R + R.] + (yw + 2x)[2R;, — 2R, ] = 0,

which simplifies to (y2)[1/2R,, — 1/4I] + (yw + 22)[— 1/2I] =0, or (yw +
zz)e C;,. Thus, yw and zx are both in A;, and (11) reduces to (yx)
[2R,, — I] — 2zz + 2yw = 0, or (yw — zx) € C,i. Wefinally havezx e C,,,
giving the relation B;;C;, < C;,. The remaining relation — A4;;4,, C
A;, — may be derived by taking z = w = 0 in (11).

2. This section will be devoted to the proof of

THEOREM 4. Let A be a simple ring satisfying (1) and contain-
ang two orthogonal idempotents u and v such that u -+ v is not the
unity element of A and such that B,(1/2) = A,(1/2) and B,1/2) =
A1/2). Then A is a Jordan ring.

If A doesn’t contain a unity element, then we may adjoin one
and the resulting ring will still satisfy the same identity [3, Theorem
1]. It is therefore sufficient to prove the theorem for a ring R which
contains a unity element and which is either simple or is the result of
adjoining a unity element to a simple ring. In the latter case, every
ideal of the augmented ring contains the original ring [1, Lem. 2, p.
506], and in either case, the idempotents e, = u, ¢, = v, and ¢, =1 —
% — v are mutually orthogonal idempotents of R which add to the
unity element. Adopting the terminology of Theorem 3, we see from the
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last sentence of Lemma 2 that the remaining hypotheses of Theorem
4 are equivalent to the relations B;; = 4;; for 1 <14, <8 and ¢ # j.
We must next deduce more information from our identity about
the products of elements from different components of R. Linearizing
(1) completely, replacing two of the variables by the idempotent ¢ = e;
(t =1, 2,3), and assuming that the other three variables satisfy xe =
A, ye = py, and ze = vz, we obtain
[yz-x + yx-2 + 22 -y|R + [(yz-e)x + (yx-e)z + (x2-e)y]R,
+ (N4 ¢+ v —3)(yz-e)x + (yx-e)z + (xz-€)y]
+ [(wR)R:-x + (yx)RI-2 + (x2)[Ri-y]

(12) + [(;c Fy— 6+ %)(yz-x) + (x b — 6y + %)(yx-z)
+ (x +y—6p+ %)(xz-y)]Re

—I—(V-I—yz—l—vz—l—xy—i—?w—émv—l—%x

+ —;—# + —;—v>yzx + (W +m? Y

+ A4 gy — 6Ap —;—x + —;—# + %v)ymz

+<>»2+pt2+v2+xy+pv—6xu+%x+—:é—#

5)
—v)xz-y=20.
+2 Y

We first set A= ¢ =0, vy =1 in this equation to get

3
2

3

(yz-x + xz~y)[R3 + =R, + —2—I]+ [(yz-e)x + (xz-e)y][R, — 2I]

+ WoR % + (@R)R2-y + (yx-z)[Rf — 1—21Re + %I] —0,
which reduces to

3

. ) B2 3 o -1 E]z
Yz + x2 y)[Re + 2R, + 41] + (yx z)[Re 2Re+ 2I 0.

Separating this equation into components and using the convention
that the subseript 1, 1/2, or 0 indicates the component in 4,(1), A,(1/2),
or A,(0) respectively, the last equation yields

(13) 2lyz-x + x2-yYly. = y2-2 .
Next, setting »=p¢ =0, v =1/2 in (12) gives
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%I] + @) B - —g—Rs + %I]

+ [(Wz-e)z + (xz-e)yl[R, — 5/2I] + [(W2)R{-x + (x2)RI-y] =0,

(yz-x + xz-y)[RZ + R, +

which becomes
(2 o + (@2),-yl[R? + 2R, — I + [(2)y & + (@2)y0-y][R?
+ 3/2R, — 1/2I] + (yx-2)| R} — 5/2R, + 1/2I] = 0.
This separates into the two equations
(14 2[(y2)ar e + (@2)ys*¥] = [yz-2): ,
15)  [@2hw + @2)-9] + 2YR)us® + (@2)1-Ylus = 2[Y2 2]y

The equations that we have just derived may be put in operator
form by defining for each xe A,(0) the mappings S,: 4,(1) — A.1/2),
T,: A(1/2)— A,Q1), and U,: A,1/2) — A.(1/2) by the equations (2)S, =
2%, (2T, = (2x);, and (2y;) U, = (2x),, respectively. In this notation,
equations (13) — (15) become

(16) %sw = S,U. + 8,U, ,
an LT = UL + UT,,
(18) U, = U,U, + U,U, + %(Tys, +T.S,) .

We shall make use of these relations to prove.

LEMMA 3 In the ring R, Aj;A;; CA; + A; for 1 <14, <38 and
T # 7.

Choosing e to be that one of e, e, ¢, which is neither e; nor ¢;, we
see that A4,(0) = A; + A;; + A;. Consider the subalgebra of A4,(0) defined
by D={x|xc A, S,=T,=0}. By (18), the mapping x — U, defines a
homomorphism of D into the Jordan ring of all endomorphisms of A,(1/2)
with kernel C ={x|xec A4, S,=T,=U,=0}. If xcC and yc A, then
Sy. = Tye = Uy, = 0 by (16), (17), and (18), so that C is an ideal of
4,. Furthermore, CA,(1) = CA,(1/2) =0 by the definition of S, T,
and U, showing that C is an ideal of R. But R contains no nonzero
ideals lying within A4,(0), implying that C = 0 and that D is a Jordan
ring.

Since ¢; and e; are contained in D, we have D= D, + D;; + D;,
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where D, C A;, D;;C A;;, and D; C A;. The fact that D is Jordan
implies that D;;D;;c D, + D;cC A; + A;. But since A;;4,(1)=0
and A;;A.(1/2) c A,(1/2), we see that A;; C D, giving A;;C D;; and
A;A;; C Di;D; C A; + A,

In order to prove our next lemma, we need to compute two more
special cases of (12). Using Lemma 2, we may now assume that
A(1/24,(1/2) c A,(1) + A 0). First, taking =0, £ =1/2, y=1 and
saving just the component in A,(0) gives

3N 1 1 1

— ?[-2—yoc-z + ?xz ]0 + [—Zyx-z + sz°y]°

+ [—yz-x + —5—yw-z + éxzy] =0,
2 2 o
or

19) 2[Yu1s00 2y + To2iYapslo = Yus2os o -

Secondly, setting »=0, g =v=1/2 in (12) and keeping just the
component in A4,(0), we get

— 2[—%— Yx)y22 + (Yx),°2 + —;—(mz)m'y + (®2),-¥lo
+ |3 wmn + @z + Tedy + @2y
L s Oyps B, ] —
+[ 2yz r + 4yx z + 4wz Y 0——0,

which simplifies to

(20) 2[(%/2%)1/2‘21/2 + (21/2“;0)1/2".7/1/2]0
+ [Was0)1 22 + (Rupao)Yusslo = 2(U152112)0° o

LEMMA 4. Let G, be the additive subgroup of A, = A.(0) generated
by all elements of the form (Yy.2) and (YysRys)e. Then either G, = A,
or we may adjoin e to G, to obtain A,.

If x, is any element of A4, we see from (19) that (¥,.%:). %, I8 in
G, and from (20) that (¥y.2:1)0°%, is in G,. Thus, G, is an ideal of A,.
Defining the ideal G, of A, analogously, we now consider G = G; +
A1/2 + Go- But GAl = G1A1 + (A1I2A1)1/2 + (A1/2A1)o + A0A1 c Gl + Allz =+
G, + 4, = G, and similarly GA,, € G and G4, C G. Thus, G is an
ideal of R and is nonzero since A;, C G. It follows from the defini-
tion of R that either G = R or we may adjoin e, to obtain E. In
either case the lemma holds.

We shall assume hereafter that <, 7, k¥ form a permutation of 1, 2, 3,
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and we shall indicate in which part of the decomposition of R an ele-
ment lies by attaching the appropriate subscripts. Then, taking e = ¢;
in Lemma 4 yields the following.

COROLLARY. A, is generated by the elements of the form (¥;;z;)
and A; is generated by e; and by the elements of the form (y:;z;); and
(Yii%i5)i.

LemMMA 5. The following relations hold in R: x,(¥:2;); € As,
T(Yi2:5) = 0, and ®4,(Y:5%:5); € A

To establish this lemma, we observe first that x;,(y.:;2;); € A A; C
A;, 4+ A,. On the other hand, using (19) with e = e; gives x,.(¥;2;); =
2[Yiii 2 + TR Yis] = 20i@a0 2 € Apd; C Ay, + Ay, and combining the
two relations gives ®;,(¥;;%;); € A;. Secondly, taking ¢ = ¢, in (13) gives
2 (Yii%:5) = 2[00 %i5 + %42i5°Yi;] = 0. And finally, setting e =¢; in
(20) yields @ (¥:%:5); = Yii%in*2i; + Zii%inYi; € Ase

LEMMA 6. If x; ts an element of A; such that x;A;, C A, then
w;A;; C Ay Similarly, xA;, C A, implies x,4;; = 0.

Suppose that x;4;, < A;,. Then (20) gives
i Yinzin) = (@Yi)25, € Auin C Ayj

to show that x;4;; € A;;. On the other hand, if x;4;, < A,, then (20)
yields (x;(¥:x2:) = (X:Y:)25 € Arzir © Aj, + A,. However, we also have
2:(Yin®in) € :4;; C Ay; + 4y, and thus z;4;; = 0.

We are now in a position to prove.

LeMMA 7. In the ring R, A;A; C A;; and A;A; = 0. Hence
A; + A;; + A; is a Jordan ring.

By the corollary to Lemma 4, A, is generated by e; and elements
of the form (¥;2,); and (¥;2:;);. Then (¥;;2;):4: C A, by Lemma 5
and 8o (¥;;2;);4;; = 0 by Lemma 6. On the other hand, Lemma 5 also
gives (¥;%:;):Ay C Ay, which implies (¥;;2:5):4:; € A;; by Lemma 6.
Hence, A;A;; C A;;, (¥i52;): = 0, and A; is generated by e; and elements
of the form (¥;;z:;;);. But then A;4, =0 by the second relation of
Lemma 5. The relations which we have just established show that
the Jordan ring D = {w |« € 4,,(0), A, (1) = 0, z4,,(1/2) C A, (1/2)} used
in the proof of Lemma 3 is all of A, (0) = A; + A;; + A;.

Now that Lemma 7 has been proved, equation (15) yields the three
special cases
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(21) i Yir = %55 TYir »  Ralii* Ty = 2" Y3
Rii%sYir T 2iilYinCir = i  CirWir

while (20) yields

(22) [V 2i) = [Ynn2in- 2i5]s

Since A; + A;; + A; is a Jordan ring, we also have

2 XY = B Y+ 2Yic %y R Y = ZYi0 0,
(23) Yiiig 0 = (Y25 + 2305 Yisli
[yis@i-2i5); = (2052393515 -

Theorem 4 may now be established by verifying that the linearized
Jordan identity is satisfied for all possible ways of choosing the argu-
ments in the various components of RE. These calculations all proceed
easily using Theorem 3, Lemma 3, Lemma 7, and equations (21)—(23).
However, this computation may be avoided by appealing to [2, Theorem
5], which states that a certain set of hypotheses implied by the pro-
perties that we have established for R implies power-associativity. It
should be remarked that Mrs. Losey’s theorem is stated only for simple
algebras in which the decomposition is well behaved with respect to
any idempotent in the algebra. However, her proof actually establishes
the theorem for simple rings containing a unity element or with unity
element adjoined in which properties about the decomposition with re-
spect to an idempotent are only assumed for three particular idempot-
ents which add to the unity element.
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