Pacific Journal of Mathematics

BOUNDED GENERALIZED ANALYTIC FUNCTIONS ON THE TORUS

VICTOR LENARD SHAPIRO

Vol. 14, No. 4

August 1964

BOUNDED GENERALIZED ANALYTIC FUNCTIONS ON THE TORUS

VICTOR L. SHAPIRO

1. Introduction. We shall operate in Euclidean k-space, E_k , $k \ge 2$, and use the following notation:

$$egin{aligned} &x=(x_1,\,\cdots,\,x_k)\ ; &y=(y_1,\,\cdots,\,y_k)\ ;\ &lpha x+eta y=(lpha x_1+eta y_1,\,\cdots,\,lpha x_k+eta y_k)\ ;\ &(x,\,y)=x_1y_1+\cdots+x_ky_k\ ; &|x|=(x,\,x)^{1/2}\ . \end{aligned}$$

 T_k will designate the k-dimensional torus $\{x; -\pi < x_j \le \pi, j = 1, \dots, k\}$, v will always designate a point a distance one from the origin, i.e., |v| = 1, and m will always designate an integral lattice point. If f is in L^1 on T_k , then $\hat{f}(m)$ will designate the mth Fourier coefficient of f, i.e., $(2\pi)^{-k} \int_{T_k} f(x) e^{-i(m,x)} dx$.

We shall say that f(x) in L^1 on T_k is a generalized analytic function on T_k if there exists v such that f is in A_v , where $A_v = A_v^+ \cup A_{-v}^+$, and A_v^+ is defined as follows:

f is in A_v^+ if there exists an m_0 such that if $m \neq m_0$ and $(m - m_0, v) \leq 0$, then $\widehat{f}(m) = 0$.

We shall say that f(x) in L^1 on T_k is a strictly generalized anaic function on T_k if there exists a v such that f is in B_v , where $B_v = B_v^+ \cup B_{-v}^+$, and B_v^+ is defined as follows:

 $f \text{ is in } B_v^+ \text{ if there exists an } m_0 \text{ and } a \gamma \text{ with } 0 < \gamma < 1 \text{ such that if } (m - m_0, v) < \gamma | m - m_0 |$, then $\hat{f}(m) = 0$.

It is quite clear that $B_v \subset A_v$. In this paper, we shall obtain a result which is false for bounded functions in A_v but which is true for bounded functions in B_v . It is primarily with the class B_v and its extension to finite complex measures that the classical paper of Bochner [2, p. 718] is concerned. On T_k , it is essentially with the class A_v that the papers of Helson and Lowdenslager [5], [6], and de Leeuw and Glicksberg [4] are concerned.

We shall be concerned in this paper with a class of functions C_v which for bounded functions is intermediate between the two classes B_v and A_v .

We first note that if f is in B_v^+ , then $\sum_m |\hat{f}(m)| e^{(m,v)\sigma} < \infty$ for every $\sigma < 0$. For with $||f||_p$, $1 \leq p \leq \infty$, designating the L^p -norm of f on T_k , we see that there exists a γ with $0 < \gamma < 1$ and an m_0 such that

Received October 8, 1963. This research was supported by the Air Force Office of Scientific Research.

$$\sum_{m} |\widehat{f}(m)| e^{(m,v)\sigma} \leq ||f||_{1} \sum_{\gamma|m-m_0| \leq (m-m_0,v)} e^{(m,v)\sigma},$$

and

$$\sum_{\gamma\mid m-m_0\mid \leq (m-m_0,v)} e^{(m,v)\sigma} \leq e^{(m_0,v)\sigma} \sum_m e^{\gamma\mid m-m_0\mid \sigma} < \infty$$

Next, we note that if $\sum_{m} |\hat{f}(m)| e^{(m,v)\sigma_0} < \infty$, then

(1) there exists a function g(x) in L^1 on T_k which is continuous in an open subset of T_k and which furthermore has $\sum_m \hat{f}(m)e^{(m,v)\sigma_0}e^{i(m,x)}$ as its Fourier series.

We use (1) to define the class $C_v = C_v^+ \cup C_{-v}^+$. In particular we say that f is in C_v^+ if the following three conditions are met:

(i) f is in L^{∞} on T_k ,

(ii) f is in A_v^+ ,

(iii) there exists a $\sigma_0 < 0$ such that (1) holds.

We note once again that if (ii) is replaced by

(ii') f is in B_v^+ ,

then (iii) follows automatically.

With every unit point $v = (v_1, \dots, v_k)$ there is also associated a one-parameter subgroup of T_k which we shall call G_v where

 $G_{\mathbf{v}} = \{x; -\pi < x_j \leq \pi, x_j \equiv tv_j \text{ mod } 2\pi, -\infty < t < \infty\}$.

If v is linearly independent with respect to rational coefficients, then G_v is dense on T_k . If v is linearly dependent with respect to rational coefficients, G_v is not dense on T_k . (We say $v = (v_1, \dots, v_k)$ is linearly dependent with respect to rational coefficients if there exist rational numbers r_1, \dots, r_k with $r_1^2 + \dots + r_k^2 \neq 0$ such that $\sum_{j=1}^k r_j v_j = 0$.) In either case, however, the statement that a set $E \subset G_v$ is of positive linear measure is well-defined. In particular, we set $E^* = \{t; \text{ there exists an } x \text{ in } E \text{ such that } x_j \equiv tv_j \mod 2\pi \text{ for } j = 1, \dots, k\}$. Then E^* is a set on the real line $-\infty < t < \infty$. We say that E is of positive linear measure if E^* is a set with positive 1-dimensional Lebesgue measure.

In the sequel, we shall work primarily with functions f in L^{∞} on T_k . Also, all functions initially defined in T_k will be understood to be extended to all of E_k by periodicity of period 2π in each variable.

Given a function f in L^{∞} on T_k , we shall set

(2)
$$f(x, h) = \sum_{m} \hat{f}(m) e^{i(m,x)} e^{-|m|h}$$
 for $h > 0$.

We shall say that f vanishes at x_0 if

(3)
$$\lim_{h\to 0+} f(x_0, h) = 0$$
.

We note that the changing of f on a set of k-dimensional measure zero does not affect its vanishing at the point x_0 . (In classical termi-

1414

nology, (3) says that the Fourier series of f is Abel summable to zero at x_0 .)

We shall say that f vanishes on a set E if f vanishes at all points of E.

With B(x, h) representing the open k-ball with center x and radius h and |B(x, h)| representing the k-dimensional volume of B(x, h), we set

(4)
$$f_h(x) = |B(x, h)|^{-1} \int_{B(x, h)} f(y) dy$$

and note that if $\lim_{h\to 0} f_h(x_0) = 0$, then f vanishes at x_0 , i.e., $\lim_{h\to 0^+} f(x_0, h) = 0$ (See [10, p. 55]).

The theorem that we shall prove is the following:

THEOREM. A necessary and sufficient condition that every f in C_v which vanishes on a subset of G_v of positive linear measure be zero almost everywhere on T_k is that v be linearly independent with respect to rational coefficients.

We first note that the sufficiency of the above theorem is false for bounded functions in A_v . This fact will be established in §4.

We next note that if f(x) is in C_v , so is $f(x + x_0)$. Consequently, the above theorem implies that if f is in C_v , v linearly independent with respect to rational coefficients, and f vanishes on a subset of $x_0 + G_v$ of positive linear measure, then f is zero almost everywhere on T_k .

We finally note that for k = 1 the above theorem reduces to the well-known theorem of F. and M. Riesz for holomorphic functions on the unit disc in the form that they first proved it, i.e., for bounded functions, [9]. There have been other extensions of the F. and M. Riesz Theorem to higher dimensions (see [5, p. 176] and [4, p. 188]), but these always involve the vanishing of f on sets of positive k-dimensional measure. Here, we only ask that f vanish on particular sets of positive 1-dimensional measure, but on the other hand, we deal with a more restricted class of functions.

2. Proof of sufficiency. Since $C_v = C_{-v}$ and $G_v = G_{-v}$ with no loss in generality, we can assume from the start that f is in C_v^+ .

Since f is in C_v^+ , it is in A_v^+ . Consequently there exists an m_0 such that $\hat{f}(m) = 0$ if $m \neq m_0$ and $(m - m_0, v) \leq 0$. If we set $a(x) = e^{-i(m_0, x)}f(x)$, then a(x) is in A_v^+ with $m_0 = 0$. Furthermore, it is clear that since f(x) satisfies (1), a(x) does also. If we can show that

(5) if
$$\lim_{h\to 0+} f(x_0, h) = 0$$
, then $\lim_{h\to 0+} a(x_0, h) = 0$,

it will be sufficient to prove the theorem for a(x).

To establish (5), set $b(x) = a(x) - e^{-i(m_0, x_0)}f(x)$. Then $a(x, h) = b(x, h) + e^{i(m_0, x_0)}f(x, h)$, and by the remark after (4), (5) will follow once it is shown that $b_k(x_0) \to 0$ as $h \to 0$. But

$$|b_{h}(x_{0})| \leq 0(h^{-k}) ||f||_{\infty} \int_{B(x_{0},h)} |e^{-i(m_{0},x)} - e^{-i(m_{0},x_{0})}| dx$$
$$\leq 0(h^{-k}) ||f||_{\infty} |m_{0}| \int_{B(x_{0},h)} |x - x_{0}| dx$$
$$\leq o(1) \quad \text{as} \ h \to 0 ,$$

and (5) is established.

We now replace a(x) by f(x) and proceed, i.e., we set

(6)
$$M = \{m; (m, v) \ge 0\}$$

and assume

(7) if m is not in M, then
$$\hat{f}(m) = 0$$
.

Setting $P(x,h) = \sum_{m} e^{i(m,x)-|m|h}$ for h > 0 and noticing that P(x,h) > 0for x on T_k and h > 0, [3, p. 32], and that $(2\pi)^{-k} \int_{T_k} P(x,h) dx = 1$ we see that f(x,h) defined in (2) is given by

$$f(x, h) = (2\pi)^{-k} \int_{T_k} f(x - y) P(y, h) dy .$$

Consequently,

(8)
$$|f(x,h)| \leq ||f||_{\infty}$$
 for $h > 0$ and x on T_k .

Next, with $z = \sigma + it$ and $\sigma \leq 0$, we set

(9)
$$F(z, h) = \sum_{m} \hat{f}(m) e^{i(tv,m)} e^{\sigma(v,m)} e^{-|m|h}$$
$$= \sum_{m \ln M} \hat{f}(m) e^{\lambda_{m} z} e^{-|m|h}$$

where

(10)
$$\lambda_m = (m, v) \text{ for } m \text{ in } M$$

By (6), (7), (9), and (10), F(z, h) is, for fixed h > 0, analytic in the left half-plane $\sigma < 0$ and continuous in the closed half-plane $\sigma \leq 0$. Furthermore, since F(it, h) = f(tv, h), we have by (8) that

(11)
$$\sup_{-\infty < t < \infty} |F(it, h)| \leq ||f||_{\infty} \quad \text{for } h > 0.$$

Also, it is clear that for $\sigma \leq 0$, $|F(\sigma+it,h)| \leq \sum_{m \text{ in } M} |\hat{f}(m)| e^{-|m|h} < \infty$ and therefore that

1416

 $\lim_{\sigma o -\infty} \sup_{-\infty < t < \infty} |F(\sigma + it, h)| \leq |\widehat{f}(0)| \leq ||f||_{\infty}$.

Consequently, it follows from the Phragmen-Lindelof theorem, [1, p. 137], that

(12)
$$||F(z, h)|| \leq ||f||_{\infty}$$
 for $\sigma \leq 0$ and $h > 0$.

But then by Montel's theorem]1, p. 132],

(13) there exists a function F(z), analytic for $\sigma < 0$, and a sequence $h_1 > h_2 > \cdots > h_j > \cdots \rightarrow 0$ such that $\lim_{j\to\infty} F(z, h_j) = F(z)$ uniformly on any compact subset of the open left half-plane $\sigma < 0$.

We propose to show that F(z) is identically zero. To do this we look at $F(it, h_j)$. By (11), $\{F(it, h_j)\}_{j=1}^{\infty}$ is a bounded sequence of continuous functions on the interval $-\infty < t < \infty$. Consequently, it follows from the notion of weak* convergence that there exists a function q(t) in L^{∞} on $-\infty < t < \infty$, with $|q(t)| \leq ||f||_{\infty}$ for almost every t and a subsequence $\{h_{j_n}\}_{n=1}^{\infty}$ of $\{h_j\}_{j=1}^{\infty}$ with $\lim_{n\to\infty} h_{j_n} = 0$ such that for every $\xi(t)$ in $L^{\infty} \cap L^1$ on $-\infty < t < \infty$,

(14)
$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\xi(t)^{F}(it, h_{j_{n}})dt = \int_{-\infty}^{\infty}\xi(t)q(t)dt$$

Choosing ξ in (14) to be the function

$$\xi(u)=-\sigma[\sigma^2+(u-t)^2]^{-1}\pi^{-1}$$
 where $\sigma<0$,

we see from (13) that

(15)
$$F(\sigma + it) = \lim_{n \to \infty} F(\sigma + it, h_{j_n})$$
$$= \lim_{n \to \infty} -\pi^{-1} \sigma \int_{-\infty}^{\infty} F(iu, h_{j_n}) [\sigma^2 + (u - t)^2]^{-1} du$$
$$= -\pi^{-1} \sigma \int_{-\infty}^{\infty} q(u) [\sigma^2 + (u - t)^2]^{-1} du.$$

Since $|F(\sigma + it, h)| \leq ||f||_{\infty}$ for h > 0 and $\sigma \leq 0$, it follows from (13) that $|F(\sigma + it)| \leq ||f||_{\infty}$ for $\sigma < 0$, and consequently from (15) and [7, p. 447] that

(16)
$$\lim_{\sigma \to 0^-} F(\sigma + it) = q(t)$$
 for almost every t .

If we can show that q(t) = 0 on a set of positive measure, then it will follow from (16) and the F. and M. Riesz Theorem for a halfplane, [7, p. 449], that $F(\sigma + it)$ is identically zero for $\sigma < 0$.

To show that q(t) = 0 on a set of positive measure we set

$$E^* = \left\{t, \lim_{h\to 0} f(tv, h) = 0\right\}.$$

By hypothesis, E^* is a set of positive linear measure in the infinite interval $-\infty < t < \infty$. Let B^* be any measurable subset of E^* of finite measure and let $\xi_{B^*}(t)$ be the indicator function of B^* . Then by (14)

(17)
$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\xi_{B^*}(t)F(it,\,h_{j_n})dt=\int_{B^*}q(t)dt.$$

However, $F(it, h_{i_n}) = f(tv, h_{j_n})$, $f(tv, h_{j_n}) \to 0$ as $n \to \infty$ for t in B^* , and $|f(tv, h_{j_n})| \leq ||f||_{\infty}$. We conclude from the Lebesgue dominated convergence theorem that

(18)
$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\xi_{B^*}(t)F(it, h_{j_n})dt = 0.$$

From (17) and (18), we obtain that $\int_{B^*} q(t)dt = 0$. B^* , however, is an arbitrary subset of E^* of finite measure. Therefore q(t) must equal zero almost everywhere in E^* . Consequently, q(t) = 0 on a set of positive measure, and we have that

(19)
$$F(\sigma + it) = 0$$
 for $\sigma < 0$.

By hypothesis, there exist a $\sigma_0 < 0$, an open set $U \subset T_k$ and a function g(x) in L^1 on T_k such that the following facts prevail:

(21)
$$\widehat{g}(m) = \widehat{f}(m)e^{(v,m)\sigma_0}$$
 for every m :

(22) g is continuous in U.

From (9), (13), and (19), it follows that

(23)
$$\lim_{j \to \infty} \sum_m \widehat{f}(m) e^{(v,m)\sigma_0} e^{i(tv,m)} e^{-|m|h_j} = 0 \quad ext{for} \ -\infty < t < \infty$$

On the other hand, as is well-known (see [10, p. 55]), (21) and (22) imply

(24)
$$\lim_{j\to\infty}\sum \widehat{f}(m)e^{(m,v)\sigma_0}e^{i(m,x)}e^{-|m|h_j} = g(x) \quad \text{for } x \text{ in } U.$$

We conclude from (23) and (24) that g(x) = 0 for x in $U \cap G_v$. However, since G_v is dense in T_k and U is open, $U \cap G_v$ is dense in U, and consequently, g(x) = 0 in all of U.

Suppose that $B(x_0, h_0) \subset U$. Then for $0 < h < h_0$ and $g_h(x)$ defined by (4), we have that $g_h(x)$ is a continuous periodic function which for each fixed h is zero on an open set. In particular, $g_h(x + x_0)$ is zero on a subset of G_v of positive linear measure. Since

$$\widehat{g}_{h}(m)=\widehat{f}(m)e^{(m,v)\sigma_{0}}\,|\,B(0,\,h)\,|^{-1}\!\int_{B^{(0,\,h)}}\!\!\!e^{i(m,x)}dx\,,$$

we conclude from the argument previously given that $g_h(tv + x_0) = 0$ for $-\infty < t < \infty$ and $0 < h < h_0$. But then the continuous function $g_h(x)$ is zero on a dense subset of T_k , and therefore for $0 < h < h_0$, $g_h(x) = 0$ for all x on T_k . Consequently, g(x) = 0 almost everywhere on T_k . We conclude from (21) that $\hat{f}(m) = 0$ for every m. Therefore f(x) = 0almost everywhere, and the proof of the sufficiency is complete.

3. Proof of necessity. Let $v = (v_1, \dots, v_k)$ be linearly dependent over the rationals with $v_1^2 + \dots + v_k^2 = 1$. We shall show that there exists a nonzero trigonometric polynomial f(x) in B_v^+ (and therefore in C_v^+) such that f(x) = 0 for x in G_v .

Two cases present themselves. Either there exists a coordinate v_{j_0} of v which is zero or all the coordinates of v are different from zero. We handle the former case first.

Since |v| = 1, there exists a coordinate v_{j_1} of v which is different from zero. Let m' be the integral lattice point with 1 in the j_0 coordinate, sgn v_{j_1} in the j_1 -coordinate, and zero at all other coordinates. Similarly define m'' to be the integral lattice point with 2 in the j_0 coordinate, sgn v_{j_1} in the j_1 -coordinate, and zero at all other coordinates. Then $(m', v) = (m'', v) = |v_{j_1}| > 0$, and the trigonometric polynomial $f(x) = e^{i(m',x)} - e^{i(m'',x)}$ is clearly in B_v^+ . Also, $f(tv) = e^{it(m',v)} - e^{it(m'',v)} = 0$ for $-\infty < t < \infty$; f(x) is zero on G_v , and the first case is settled.

Next, suppose that all the coordinates of v are different from zero. Since by assumption v is linearly dependent with respect to rational coefficients, there exists a nonzero integral lattice point m such that (m, v) = 0. Let m_{j_0} be the first coordinate of m which is different from zero. We can assume $\operatorname{sgn} m_{j_0} = \operatorname{sgn} v_{j_0}$ for otherwise we can replace m by -m. Let m' be the integral lattice point with $\operatorname{sgn} v_{j_0}$ in the j_0 -coordinate and zero elsewhere. Set m'' = m + m'. Then

$$(m'', v) = (m + m', v) = (m', v) = |v_{i_0}| > 0$$
,

and the trigonometric polynomial $f(x) = e^{i(m',x)} - e^{i(m'',x)}$ is in B_v^+ and is zero on G_v . The second case is settled, and the proof of the theorem is complete.

4. Counter-example for A_v . Given v linearly independent with respect to rational coefficients, we shall exhibit a function f(x) in L^{∞} on T_k and in A_v^+ such that

(25)
$$\lim_{h\to 0} f_h(x) = 0 \quad \text{for every } x \text{ in } G_v$$

and such that $f(x) \neq 0$ in a set of positive measure on T_k .

We note once again that (25) implies that f vanishes on all of G_{v} .

We start in the classical manner (see [11, p. 276 and p. 105]). Observing that G_v is of k-dimensional measure zero, we see that there exists a sequence of sets $\{G_n\}_{n=1}^{\infty}$ each open in the torus sense on T_k with the following properties:

(26)
$$T_k \supset G_1 \supset G_2 \supset \cdots \supset G_n \cdots \supset G_v;$$

(27) the k-dimensional measure of G_n is $\leq n^{-4}$.

We set

(28)
$$g_n(x) = n^2 \text{ for } x \text{ in } G_n$$
,
= 0 for $x \text{ in } T_k - G_n$,

and

(29)
$$g(x) = \sum_{n=1}^{\infty} g_n(x)$$
.

Now $\int_{x_k} g(x) dx \leq \sum_{n=1}^{\infty} n^{-2}$. Consequently, g(x) is a nonnegative function on T_k , and the set $\{x; g(x) = +\infty\}$ is of k-dimensional measure zero.

Next, we set $a(x) = e^{-g(x)}$ and observe that a(x) is a Borel measurable function on T_k with the following properties:

$$(30) 0 \leq a(x) \leq 1 \text{for } x \text{ in } T_k,$$

(31) $\{x; a(x) = 0\}$ is of k-dimensional measure zero.

Observing that $G_v \subset G_n$ for every *n* by (27) and that by (29), $a(x) \leq e^{-g_n(x)}$, we see from (28) that for fixed *n* and a fixed x_0 in G_v , $a_h(x_0) \leq e^{-n^2}$ for *h* sufficiently small. We conclude that

(32)
$$\lim_{h\to 0} a_h(x) = 0 \quad \text{for } x \text{ in } G_v$$

From (31) and (32), we see that there is no constant such that a(x) is equal to it almost everywhere on T_k . Consequently there exists an $m_0 \neq 0$ such that $\hat{a}(m_0) \neq 0$. Since a(-x) satisfies (30), (31), and (32), with no loss in generality, we can also assume that $(m_0, v) > 0$. Thus we have

(33)
$$\hat{a}(m_0) \neq 0 \text{ and } (m_0, v) > 0.$$

Next, as in [8, p. 60], we introduce the complex Borel measure μ on T_k defined by

(34)
$$\int_{T_k} b(x) d\mu(x) = \int_{-\infty}^{\infty} b(tv) (1 - it)^{-2} dt$$

for every bounded Borel measurable function on T_k .

From the fact that

we see that $\hat{\mu}(m) = (2\pi)^{-k} \int_{T_k} e^{-i(m,x)} d\mu(x)$ is such that

(35)
$$\hat{\mu}(m) \neq 0 \text{ for } (m, v) > 0$$

= 0 for $(m, v) \leq 0$.

We set

(36)
$$f(x) = (2\pi)^{-k} \int_{T_k} a(x-y) d\mu(y)$$

and shall show that f has the requisite properties set forth at the beginning of this section.

In the first place, we see from (30), (34), and (36)

$$|f(x)| \leq (2\pi)^{-k} \int_{-\infty}^{\infty} (1+t^2)^{-1} dt$$
 for x in T_k ,

and consequently f(x) in L^{∞} on T_k .

In the second place, we observe from (36) that $\hat{f}(m) = \hat{a}(m)\hat{\mu}(m)$ and consequently by (35) that f(x) is in A_v^+ . Furthermore, by (33) and (35), $\hat{f}(m_0) \neq 0$. Consequently, $f(x) \neq 0$ on a set of positive measure on T_k .

All that remains to establish is (25). Let x_0 be a fixed point in G_v . Then by (36) and Fubini's theorem,

(37)
$$(2\pi)^k f_k(x_0) = \int_{T_k} a_k(x_0 - y) d\mu(y) \\ = \int_{-\infty}^{\infty} a_k(x_0 - tv)(1 - it)^{-2} dt.$$

By (30), $|a_h(x)| \leq 1$ for all x on T_k . Furthermore, since x_0 is in G_v , so is $x_0 - tv$ for $-\infty < t < \infty$. Therefore, by (32), $\lim_{h\to 0} a_h(x_0 - tv) = 0$ for $-\infty < t < \infty$. We consequently conclude from the Lebesgue dominated convergence theorem and (37) that $\lim_{h\to 0} f_h(x_0) = 0$, and (25) is established.

BIBLIOGRAPHY

1. A. S. Besicovitch, Almost periodic functions, Cambridge, 1932.

2. S. Bochner, Boundary values of analytic functions, Annals of Math., 45 (1944), 708-722.

3. S. Bochner, Harmonic analysis and the theory of probability, University of California. Press, 1955.

4. K. de Leeuw and I. Glicksberg, Quasi-invariance and analyticity of measures on compact groups, Acta Math., 109 (1963), 179-205.

5. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math., **99** (1958), 165-201.

6. _____, Prediction theory and Fourier series in several variables II., Acta Math., **106** (1961), 175-212.

7. E. Hille, Analytic Function Theory, Vol. II., Ginn and Co., 1962.

8. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962.

9. F. Riesz and M. Riesz, Über die Randwerte einer analytischen fünction, Compte Rendu du Quatrième Congrès des Mathematiciens Scandinaves tenu à Stockholm, 1916, pp. 27-44.

10. V. L. Shapiro, Fourier series in several variables, Bull. Amer. Math. Soc., 70 (1964), 48-93.

11. A. Zygmund, Trigonometric Series, Vol. I., Cambridge, 1959.

UNIVERSITY OF CALIFORNIA, RIVERSIDE

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

ROBERT OSSERMAN Stanford University Stanford, California

M. G. ARSOVE University of Washington Seattle 5. Washington J. DUGUNDJI

University of Southern California Los Angeles 7, California

LOWELL J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 14, No. 4 August, 1964

Homer Franklin Bechtell, Jr., Pseudo-Frattini subgroups	1129
Thomas Kelman Boehme and Andrew Michael Bruckner, Functions with convex	
means	1137
Lutz Bungart, Boundary kernel functions for domains on complex manifolds	1151
L. Carlitz, Rings of arithmetic functions	1165
D. S. Carter, Uniqueness of a class of steady plane gravity flows	1173
Richard Albert Dean and Robert Harvey Oehmke, Idempotent semigroups with	
distributive right congruence lattices	1187
Lester Eli Dubins and David Amiel Freedman, Measurable sets of measures	1211
Robert Pertsch Gilbert, On class of elliptic partial differential equations in four	
variables	1223
Harry Gonshor, On abstract affine near-rings	1237
Edward Everett Grace, Cut points in totally non-semi-locally-connected	
continua	1241
Edward Everett Grace, On local properties and G_{δ} sets	1245
Keith A. Hardie, A proof of the Nakaoka-Toda formula	1249
Lowell A. Hinrichs, <i>Open ideals in</i> $C(X)$	1255
John Rolfe Isbell, Natural sums and abelianizing	1265
G. W. Kimble, A characterization of extremals for general multiple integral	
problems	1283
Nand Kishore, A representation of the Bernoulli number $B_n \dots$	1297
Melven Robert Krom, A decision procedure for a class of formulas of first order	
predicate calculus	1305
Peter A. Lappan, <i>Identity and uniqueness theorems for automorphic functions</i>	1321
Lorraine Doris Lavallee, <i>Mosaics of metric continua and of quasi-Peano spaces</i>	1327
Mark Mahowald, On the normal bundle of a manifold	1335
J. D. McKnight, <i>Kleene quotient theorems</i>	1343
Charles Kimbrough Megibben, III, On high subgroups	1353
Philip Miles, Derivations on B* algebras	1359
J. Marshall Osborn, A generalization of power-associativity	1367
Theodore G. Ostrom, <i>Nets with critical deficiency</i>	1381
Elvira Rapaport Strasser, On the defining relations of a free product	1389
K. Rogers, A note on orthoganal Latin squares	1395
P. P. Saworotnow, On continuity of multiplication in a complemented algebra	
Johanan Schonheim, On coverings	
Victor Lenard Shapiro, Bounded generalized analytic functions on the torus	1413
James D. Stafney, Arens multiplication and convolution	
Daniel Sterling, Coverings of algebraic groups and Lie algebras of classical	
type	1449
Alfred B. Willcox, <i>Šilov type C algebras over a connected locally compact abelian</i>	
group. II	1463
Bertram Yood, Faithful *-representations of normed algebras. II	1475
Alexander Zabrodsky, Covering spaces of paracompact spaces.	1489