#### Vol. 15, No. 1, 1965

 Download this article For screen For printing  Recent Issues Vol. 325: 1  2 Vol. 324: 1  2 Vol. 323: 1  2 Vol. 322: 1  2 Vol. 321: 1  2 Vol. 320: 1  2 Vol. 319: 1  2 Vol. 318: 1  2 Online Archive Volume: Issue:  The Journal Subscriptions Editorial Board Officers Contacts Submission Guidelines Submission Form Policies for Authors ISSN: 1945-5844 (e-only) ISSN: 0030-8730 (print) Special Issues Author Index To Appear Other MSP Journals
A note on Hausdorff's summation methods

### Joseph Patrick Brannen

Vol. 15 (1965), No. 1, 29–33
##### Abstract

If $\left\{{a}_{n}\right\}$ is a moment sequence and $\left(\Delta a\right)$ is the difference matrix having base sequence $\left\{{a}_{n}\right\}$, then $\left(\Delta a\right)$ is symmetric about the main diagonal if and only if the function $\alpha \left(x\right)$ such that ${a}_{n}={\int }_{0}^{1}\phantom{\rule{0.3em}{0ex}}{x}^{n}\phantom{\rule{0.3em}{0ex}}d\alpha \left(x\right),\phantom{\rule{1em}{0ex}}n=0,1,2,\cdots \phantom{\rule{0.3em}{0ex}}$, is symmetric in the sense that $\alpha \left(x\right)+\alpha \left(1+x\right)=\alpha \left(1\right)+\alpha \left(0\right)$ except for at most countably many $x$ in $\left[0,1\right]$. This property is related to the “fixed points” of the matrix $H$, where $HaH$ is the Hausdorff matrix determined by the moment sequence $\left\{{a}_{n}\right\}$.

Primary: 40.30
##### Milestones 