A NOTE ON HAUSDORFF’S SUMMATION METHODS

JOSEPH PATRICK BRANNEN
A NOTE ON HAUSDORFF’S SUMMATION METHODS

J. P. BRANNEN

If \(\{a_n\} \) is a moment sequence and \((\Delta a) \) is the difference matrix having base sequence \(\{a_n\} \), then \((\Delta a) \) is symmetric about the main diagonal if and only if the function \(\alpha(x) \) such that
\[
a_n = \int_0^1 x^n d\alpha(x), \quad n = 0, 1, 2, \ldots,
\]
is symmetric in the sense that
\[
\alpha(x) + \alpha(1 + x) = \alpha(1) + \alpha(0)
\]
extcept for at most countably many \(x \) in \([0, 1]\). This property is related to the “fixed points” of the matrix \(H \), where \(HaH \) is the Hausdorff matrix determined by the moment sequence \(\{a_n\} \).

In each of the papers [2], [3] and [5], there is reference to difference matrices of the form
\[
(\Delta d) = \begin{bmatrix}
\Delta^0 d_0 & \Delta^1 d_1 & \Delta^2 d_2 & \\
\Delta^0 d_0 & \Delta^1 d_1 & \Delta^2 d_2 & \\
\Delta^0 d_0 & \Delta^1 d_1 & \Delta^2 d_2 & \\
\vdots & & & \\
\end{bmatrix}
\]
where \(\{d_n\} \) is a moment sequence, \(\Delta^m d_n = d_n, \quad n = 0, 1, 2, \ldots \) and \(\Delta^m d_n = \Delta^{m-1} d_n - \Delta^{m-1} d_{n+1} \), for \(n = 0, 1, 2, \ldots \) and \(m = 1, 2, 3, \ldots \). In [2], Garabedian and Wall discussed the importance of \((\Delta d) \) having the property of being symmetric about the main diagonal, i.e. \(\Delta^m d_n = \Delta^n d_m \). They also showed that if \(\{d_n\} \) is a totally monotone sequence, then \((\Delta d) \) is symmetric about the main diagonal if and only if the function \(f(x) \) which generates \(\{d_n\} \) has a certain type continued fraction expansion.

In this paper, the symmetry of \((\Delta d) \) is investigated with the restriction of total monotonicity removed and a collection of necessary and sufficient conditions are given, Theorem 3, for moment sequences in general. A relation is established between the symmetry of \((\Delta d) \) and the “fixed points” of the difference matrix
\[
H = \begin{bmatrix}
(0) & (0) & (0) & \\
(1) & (1) & (1) & \\
(2) & (2) & (2) & \\
\vdots & & & \\
\end{bmatrix}.
\]

Received March 15, 1964. This work was performed under the auspices of the United States Atomic Energy Commission.
2. **Notation, definitions, and examples.** Except for some notation and definitions introduced for convenience, the notation and definitions of this paper will follow [6].

Notation. If \(\{d_n\} \) is an infinite sequence, \(d^* \) and \(d' \) denote respectively the diagonal and column matrices determined by \(\{d_n\} \).

Definition 1. If \(\{d_n\} \) is a number sequence such that for some function \(f(x) \) on \([0, 1]\),

\[
d_p = \int_0^1 x^p f(x) \, dx = \int_0^1 (1 - x)^p f(x) \, dx ; \quad p = 0, 1, 2, \cdots ,
\]

then \(\{d_n\} \) is called a symmetric moment sequence.

The Cesàro moment sequence 1, \(\frac{1}{2} \), \(\frac{1}{3} \), \(\cdots \) provides an example of a moment sequence satisfying Definition 1 since for \(p = 0, 1, 2, \cdots \)

\[
c_p = \int_0^1 x^p dx = \frac{x^{p+1}}{p+1} \bigg|_0^1 = \frac{1}{p+1}.
\]

Definition 2. If \(A \) is a semi-infinite, lower triangular, matrix having inverse and \(\{a_j\} \) and \(\{d_n\} \) are sequences such that \(A^{-1}d^*Aa' = A^{-1}a^*Ad' \), then \(\{a_j\} \) and \(\{d_n\} \) are symmetric relative to \(A \).

The Cesàro moment sequence 1, \(\frac{1}{2} \), \(\frac{1}{3} \), \(\cdots \), \(c_p \) of (2), and the sequence 1, \(\frac{1}{2} \), \(\frac{1}{3} \), \(\cdots \) are symmetric relative to the matrix \(H \) of (1).

3. **Theorems. Lemma.** Suppose \(\{s_n\} \) is a sequence such that \(s_p \neq 0 \) for \(p = 0, 1, 2, \cdots \) and suppose that \(A \) is a semi-infinite matrix having inverse such that \(As' = s' \); then,

(i) \(A^{-1}s' = s' \),

(ii) \(\{x_n\} \) and \(\{s_n\} \) are symmetric with respect to \(A \) if and only if \(Ax' = x' \), and

(iii) if \(A^{-1}a^*Aa' = A^{-1}s^*Aa' \) and \(A^{-1}b^*As' = A^{-1}s^*Ab' \), then \(A^{-1}b^*Aa' = A^{-1}a^*Ab' \).

Proof. (i) is obvious. For the proof of (ii), we first suppose \(\{x_n\} \) is symmetric with \(\{s_n\} \) relative to \(A \) so that \(A^{-1}x^*As' = A^{-1}s^*Ax' \). Multiplying both sides on the left by \(A \) and using \(As' = s' \) gives \(x^*s' = s^*Ax' \). Under the hypothesis, \(s^* \) has inverse \(s_-^* \) so that

\[
s_-^{-1}x^*s' = s_-^{-1}s^*Ax' = Ax'.
\]

Since \(x^*s' = s^*x' \), it follows from (3) that \(x' = Ax' \).
On the other hand, if \(Ax' = x' \),

\[
(4) \quad A^{-1}x^*A's' = A^{-1}x^*s'
\]

and

\[
A^{-1}s^*Ax' = A^{-1}s^*x'.
\]

Since \(s^*x' = x^*s' \), it follows from (4) that \(x \) and \(s \) are symmetric relative to \(A \).

For the proof of (iii), we suppose that \(a' = s^{-1}a^*s' \) and \(b' = s^{-1}b^*s' \), from which it follows that

\[
(5) \quad A^{-1}a^*Ab' = A^{-1}a^*s^{-1}b^*s' \]

and

\[
(6) \quad A^{-1}b^*Aa' = A^{-1}b^*s^{-1}a^*s'.
\]

Since diagonal matrices permute, it follows that (5) and (6) are equal establishing (iii).

Theorem 1. If \(\{b_n\} \) is a moment sequence, i.e.,

\[
(7) \quad b_p = \int_0^1 x^p dg(x),
\]

\(\{b_n\} \) and the Cesàro sequence (2) are symmetric relative to \(H \) if and only if \(\{b_n\} \) is a symmetric moment sequence.

Proof. Let

\[
f_n(x) = \begin{cases}
\sum_{p=0}^{n-1} \binom{n}{p}(-1)^p x^p & \text{for } n = 2, 4, 6, \cdots \\
\sum_{p=0}^{n-1} \binom{n}{p}(-1)^p x^p - 2x^n & \text{for } n = 1, 3, 5, \cdots.
\end{cases}
\]

Clearly, if \(\{t_n\} \) is any number sequence, \(Ht' = t' \) if and only if

\[
\sum_{p=0}^{n-1} \binom{n}{p}(-1)^p t_p = 0 \quad \text{for } n = 2, 4, 6, \cdots
\]

and

\[
\sum_{p=0}^{n-1} \binom{n}{p}(-1)^p t_p - 2t_n = 0 \quad \text{for } n = 1, 3, 5, \cdots.
\]

Thus if \(\{b_n\} \) is defined as in (7), \(Hb' = b' \) if and only if

\[
(8) \quad \int_0^1 f_n(x) dg(x) = 0 \quad \text{for } n = 1, 2, 3, \cdots.
\]

But, \(f_n(x) = (1 - x)^n - x^n \) for \(n = 1, 2, 3, \cdots \) so that
\[\int_0^1 f_n(x) dg(x) = \int_0^1 (1 - x)^n dg(x) - \int_0^1 x^n dg(x) , \]

and consequently (8) holds if and only if \(\{b_n\} \) is a symmetric moment sequence. It follows from (9) and (2) that \(Hc' = c' \) and from the preceding Lemma that \(\{b_n\} \) and \(\{c_n\} \) are symmetric relative to \(H \).

Conversely, if \(\{b_n\} \) and \(\{c_n\} \) are symmetric relative to \(H \), it follows that \(Hb' = b' \), and if \(\{b_n\} \) is defined as in (7), then \(\{b_n\} \) is a symmetric moment sequence.

Theorem 2. If \(g(x) \) is of bounded variation on \([0, 1]\) and \(\{z_n\} \) is the moment sequence determined by \(g(x) \), the following two statements are equivalent:

(i) \(\{z_n\} \) is a symmetric moment sequence, and

(ii) there do not exist uncountably many \(x \) in \([0, 1]\) for which \(g(x) + g(1 - x) \neq g(1) + g(0) \).

Proof. Suppose (i). Then let \(u = 1 - x \) so that,

\[z_p = \int_0^1 (1 - x)^p dg(x) = \int_0^1 u^p dg(1 - x) = -\int_0^1 u^p dg(1 - u) . \]

Thus, \(\int_0^1 (1 - x)^p dg(x) = -\int_0^1 x^p dg(1 - x) \) so that for \(p = 0, 1, 2, \ldots \),

\[\int_0^1 x^p [g(x) + g(1 - x)] = 0 . \]

Since \(g(x) - g(1 - x) \) is of bounded variation on \([0, 1]\), (10) implies that for every \(k(x) \) continuous on \([0, 1]\),

\[\int_0^1 k(x) d[g(x) + g(1 - x)] = 0 . \]

This, [4, p. 69], implies (ii). Reversing the steps leading to (10) shows that (ii) implies (i).

An interesting example of a function satisfying (ii) is provided by Evans in [1].

Theorem 3. Suppose \(g(x) \) is of bounded variation on \([0, 1]\) and suppose \(\{a_n\} \) is the moment sequence generated by \(g(x) \). The following statements are equivalent:

(i) \(\{a_n\} \) is a symmetric moment sequence,

(ii) \(H\alpha' = \alpha' \),

(iii) \(\{a_n\} \) and the Cesàro moment sequence \(\{c_n\} \) are symmetric relative to \(H \), and

(iv) the difference matrix \((\Delta a) \) having base sequence \(\{a_n\} \) is symmetric about the main diagonal.

Proof. Theorem 1 implies the equivalence of (i), (ii), and (iii).
(i) implies (iv) provided

\[(11) \int_0^1 x^n(1-x)^m dg(x) = \int_0^1 x^n(1-x)^m dg(x) \quad \text{for } m, n = 0, 1, 2, \cdots .\]

Let \(u = 1 - x \) so that \(\int_0^1 x^n(1-x)^m dg(x) = \int_1^0 (1-u)^m u^n dg(1-u) \). Thus (11) may be rewritten as

\[(12) - \int_0^1 (1-x)^m x^n dg(1-x) = \int_0^1 x^n(1-x)^m dg(x) = \int_0^1 x^n(1-x)^m d[g(x) + g(1-x)] = 0 .\]

That (12) is the case for \(\{a_n\} \) a symmetric moment sequence follows from (ii) of Theorem 2. (iv) implies (ii) since (iv) implies that \(a_n = A^n A_n \), which is the same as saying that \(Ha' = a' \). Thus the equivalence of the four statements is established.

I am grateful to Professor H. S. Wall for some comments which have been of considerable value in the preparation of this paper.

REFERENCES

Donald Charles Benson, *Unimodular solutions of infinite systems of linear equations* .. 1
Richard Earl Block, *Transitive groups of collineations on certain designs* 13
Joseph Patrick Brannen, *A note on Hausdorff’s summation methods* 29
Dennison Robert Brown, *Topological semilattices on the two-cell* 35
Peter Southcott Bullen, *Some inequalities for symmetric means* 47
David Geoffrey Cantor, *On arithmetic properties of coefficients of rational functions* .. 55
Luther Elic Claborn, *Dedekind domains and rings of quotients* 59
Allen Devinatz, *The asymptotic nature of the solutions of certain linear systems of differential equations* .. 75
Robert E. Edwards, *Approximation by convolutions* .. 85
Theodore William Gamelin, *Decomposition theorems for Fredholm operators* 97
Edmond E. Granirer, *On the invariant mean on topological semigroups and on topological groups* .. 107
Noel Justin Hicks, *Closed vector fields* ... 141
Charles Ray Hobby and Ronald Pyke, *Doubly stochastic operators obtained from positive operators* .. 153
Robert Franklin Jolly, *Concerning periodic subadditive functions* 159
Tosio Kato, *Wave operators and unitary equivalence* 171
Paul Katz and Ernst Gabor Straus, *Infinite sums in algebraic structures* 181
Herbert Frederick Kreimer, Jr., *On an extension of the Picard-Vessiot theory* 191
Radha Govinda Laha and Eugene Lukacs, *On a linear form whose distribution is identical with that of a monomial* .. 207
Donald A. Ludwig, *Singularities of superpositions of distributions* 215
Albert W. Marshall and Ingram Olkin, *Norms and inequalities for condition numbers* .. 241
Horace Yomishi Mochizuki, *Finitistic global dimension for rings* 249
Robert Harvey Oehmke and Reuben Sandler, *The collineation groups of division ring planes. II. Jordan division rings* 259
George H. Orland, *On non-convex polyhedral surfaces in E3* 267
Theodore G. Ostrom, *Collineation groups of semi-translation planes* 273
Arthur Argyle Sagle, *On anti-commutative algebras and general Lie triple systems* .. 281
Laurent Siebenmann, *A characterization of free projective planes* 293
Edward Silverman, *Simple areas* ... 299
James McLean Sloss, *Chebyshev approximation to zero* 305
Robert S. Strichartz, *Isometric isomorphisms of measure algebras* 315
Richard Joseph Turyn, *Character sums and difference sets* 319
L. E. Ward, *Concerning Koch’s theorem on the existence of arcs* 347
Israel Zuckerman, *A new measure of a partial differential field extension* 357