Pacific Journal of Mathematics

DEDEKIND DOMAINS AND RINGS OF QUOTIENTS

LUTHER ELIC CLABORN

Vol. 15, No. 1

September 1965

DEDEKIND DOMAINS AND RINGS OF QUOTIENTS

LUTHER CLABORN

We study the relation of the ideal class group of a Dedekind domain A to that of A_S , where S is a multiplicatively closed subset of A. We construct examples of (a) a Dedekind domain with no principal prime ideal and (b) a Dedekind domain which is not the integral closure of a principal ideal domain. We also obtain some qualitative information on the number of non-principal prime ideals in an arbitrary Dedekind domain.

If A is a Dedekind domain, S the set of all monic polynomials and T the set of all primitive polynomials of A[X], then $A[X]_S$ and $A[X]_T$ are both Dedekind domains. We obtain the class groups of these new Dedekind domains in terms of that of A.

1. LEMMA 1-1. If A is a Dedekind domain and S is a multiplicatively closed set of A such that A_s is not a field, then A_s is also a Dedekind domain.

Proof. That A_s is integrally closed and Noetherian if A is, follows from the general theory of quotient ring formations. The primes of A_s are of the type PA_s , where P is a prime ideal of A such that $P \cap S = \phi$. Since height $PA_s =$ height P if $P \cap S = \phi$, $P \neq (0)$ and $P \cap S = \phi$ imply that height $PA_s = 1$.

PROPOSITION 1-2. If A is a Dedekind domain and S is a multiplicatively closed set of A, the assignment $C \rightarrow CA_s$ is a mapping of the set of fractionary ideals of A onto the set of fractionary ideals of A_s which is a homomorphism for multiplication.

Proof. C is a fractionary ideal of A if and only if there is a $d \in A$ such that $dC \subseteq A$. If this is so, certainly $dCA_s \subseteq A_s$, so CA_s is a fractionary ideal of A_s . Clearly $(B \cdot C)A_s = BA_s \cdot CA_s$, so the assignment is a homomorphism. Let D be any fractionary ideal of A_s . Since A_s is a Dedekind domain, D is in the free group generated by all prime ideals of A_s , i.e. $D = Q_{i}^{s_1} \cdots Q_k^{s_k}$. For each $i = 1, \dots, k$ there is a prime P_i of A such that $Q_i = P_i A_s$. Set $E = P_i^{s_1} \cdots P_k^{s_k}$. Then using the fact that we have a multiplicative homomorphism of fractionary ideals, we get

Received December 13, 1963.

$$EA_S=(P_1A_S)^{e_1}\cdots(P_kA_S)^{e_k}=Q_1^{e_1}\cdots Q_k^{e_k}.$$

COROLLARY 1-3. Let A be a Dedekind domain and S be a multiplicatively closed set of A. Let \overline{C} (for C a fractionary ideal of A or A_s) denote the class of the ideal class group to which C belongs. Then the assignment $\overline{C} \to \overline{C}\overline{A}_s$ is a homomorphism φ of the ideal class group of A onto that of A_s .

Proof. It is only necessary to note that if C = dA, then $CA_s = dA_s$.

THEOREM 1-4. The kernel of φ is generated by all \overline{P}_{α} , where P_{α} ranges over all primes such that $P_{\alpha} \cap S \neq \phi$.

If $P_{\alpha} \cap S \neq \phi$, then $P_{\alpha}A_{s} = A_{s}$. Suppose C is a fractionary ideal such that $\overline{C} = \overline{P}_{\alpha}$, i.e. $C = dP_{\alpha}$ for some d in the quotient field of A. Then $CA_{s} = dP_{\alpha}A_{s} = dA_{s}$, and thus $\overline{C}A_{s}$ is the principal class.

On the other hand, suppose that C is a fractionary ideal of A such that $CA_s = xA_s$. We may choose x in C. Then $C^{-1} \cdot xA$ is an integral ideal of A, and $(C^{-1} \cdot xA)A_s = A_s$. In other words, $C^{-1} \cdot xA = P_1^{f_1} \cdots P_l^{f_l}$, where $P_i \cap S \neq \phi$, $i = 1, \dots, l$. Then $\overline{C} = \overline{P}_1^{-f_1}, \dots, -\overline{P}_l^{-f_l}$, completing the proof.

EXAMPLE 1-5. There are Dedekind domains with no prime ideals in the principal class.

Let A be any Dedekind domain which is not a principal ideal domain. Let S be the multiplicative set generated by all Π_{α} , where Π_{α} ranges over all the prime elements of A. Then by Theorem 1-4, A_{s} will have the same class group as A but will have no principal prime ideals.

COROLLARY 1-6. If A is a Dedekind domain which is not a principal ideal domain, then A has an infinite number of non-principal prime ideals.

Proof. Choose S as in Example 1-5. Then A_s is not a principal ideal domain, hence has an infinite number of prime ideals, none of which are principal. These are of the form PA_s , where P is a (non-principal) prime of A.

COROLLARY 1-7. Let A be a Dedekind domain with torsion class group and let $\{P_{\alpha}\}$ be a collection of primes such that the subgroup of the ideal class group of A generated by $\{\overline{P}_{\alpha}\}$ is not the entire class group. Then there are always an infinite number of nonprincipal primes not in the set $\{P_{\alpha}\}$.

Proof. For each α , chose n_{α} such that $P_{\alpha}^{*\alpha}$ is principal, say = $A \cdot a_{\alpha}$. Let S be the multiplicatively closed set generated by all a_{α} . By Theorem 1-4, A_s is not a principal ideal domain, hence A_s must have an infinite number of non-principal prime ideals by Corollary 1-6. These come from non-principal prime ideals of A which do not meet S. Each P_{α} does meet S, so there are an infinite number of non-principal prime jet and jet A = 1.

COROLLARY 1-8. Let A be a Dedekind domain with at least one prime ideal in every ideal class. Then for any multiplicatively closed set S, A_s will have a prime ideal in every class except possibly the principal class.

Proof. By Corollary 1-3, every class of A_s is the image of a class of A. Let \overline{D} be a non-principal class of A_s . $\overline{D} = \overline{CA}_s$, where C is a fractionary ideal of A. By assumption, there is a prime P of A such that $\overline{P} = \overline{C}$. If $PA_s = A_s$, then CA_s is principal and so \overline{D} is the principal class of A_s . This is not the case, so PA_s is prime, and certainly $\overline{PA}_s = \overline{CA}_s = \overline{D}$.

EXAMPLE 1-9. There is a Dedekind domain which is not the integral closure of a principal ideal domain.

Let $A = Z[\sqrt{-5}]$. A is a Dedekind domain which is not a principal ideal domain. In A, $29 = (3 + 2\sqrt{-5}) \cdot (3 - 2\sqrt{-5})$. It follows from elementary algebraic number theory that $\Pi_1 = 3 + 2\sqrt{-5}$ and $\Pi_2 = 3 - 2\sqrt{-5}$ generate distinct prime ideals of A. Let $S = \{\Pi_1^k\}_{k\geq 0}$. Then A_S is by Theorem 1-4 a Dedekind domain which is not a principal ideal domain. Let F denote the quotient field of A and Q the rational numbers. A_S cannot be the integral closure of a principal ideal domain whose quotient field is F since principal ideal domains are integrally closed. If A_S were the integral closure of a principal ideal domain C with quotient field Q, then C would contain Z, and Π_1 and Π_2 would be both units or nonunits in A_S (since Π_1 and Π_2 are conjugate over Q). But only Π_1 is a unit in A_S .

REMARK 1-10. Example 1-9 settles negatively a conjecture in Vol. I of *Commutative Algebra* [2, p. 284]. The following conjecture may yet be true: Every Dedekind domain can be realized as an A_s , where A is the integral closure of a principal ideal domain in a finite extension field and S is a multiplicatively closed set of A.

2. LEMMA 2-1. Let A be a Dedekind domain. Let S be the multiplicatively closed set of A[X] consisting of all monic polynomials of A[X]. Let T be the multiplicatively closed set of all primitive polynomials of A[X] (i.e. all polynomials whose coefficients generate the unit ideal of A). Then $A[X]_s$ and $A[X]_r$ are both Dedekind domains.

Proof. A[X] is integrally closed and noetherian, and so both $A[X]_s$ and $A[X]_r$ are integrally closed and noetherian. Let P be a prime ideal of A[X]. If $P \cap A \neq (0)$, then $P \cap A = Q$ is a maximal ideal of A. If $P \neq QA[X]$, then passing to A[X]/QA[X], it is easy to see that $P = QA[X] + f(X) \cdot A[X]$ where f(X) is a suitably chosen monic polynomial of A[X]. In this case $P \cap S \neq \phi$, so $PA[X]_s = A[X]_s$. Thus if $P \cap A \neq (0)$ and $PA[X]_s$ is a proper prime of $A[X]_s$, then P = QA[X] where $Q = P \cap A$. Then height P = height Q = 1. If $P \cap A = (0)$, then PK[X] is a prime ideal of K[X] (where K denotes the quotient field of A). Certainly height P = height PK[X] = 1, so in any case if a prime P of $A[X]_s$ is a Dedekind domain. Since $S \subseteq T$, $A[X]_r$ is also a Dedekind domain by Lemma 1–1.

REMARK 2-2. $A[X]_r$ is customarily denoted by A(X) [1, p. 18]. For the remainder of this article, $A[X]_s$ will be denoted by A^1 .

PROPOSITION 2-3. A^1 has the same ideal class group as A. In fact, the map $\overline{C} \to \overline{CA^1}$ is a one-to-one map of the ideal class group of A onto that of A^1 .

We can prove that $\overline{C} \to \overline{CA^i}$ is a one-to-one map of the ideal class of A into that of A by showing that if two integral ideals D and Eof A are not in the same class, neither are DA^i and EA^i . Suppose then that $\overline{DA^i} = \overline{EA^i}$. This implies that there are elements $f_i(X)$, $g_i(X)$, i = 1,2 in A[X] with $g_i(X)$ monic for i = 1,2 such that

$$DA^{\scriptscriptstyle 1} \hspace{-.15cm} \cdot \hspace{-.15cm} rac{f_{\scriptscriptstyle 1}\left(X
ight)}{g_{\scriptscriptstyle 1}\left(X
ight)} = EA^{\scriptscriptstyle 1} \hspace{-.15cm} \cdot \hspace{-.15cm} rac{f_{\scriptscriptstyle 2}\left(X
ight)}{g_{\scriptscriptstyle 2}\left(X
ight)} \, .$$

Let a_i be the leading coefficient of $f_i(X)$ for i = 1,2, and let $d \in D$. Then we get a relation

$$d \cdot \frac{f_1(X)}{g_1(X)} = \frac{e(X)}{g(X)} \cdot \frac{f_2(X)}{g_2(X)}, g(X) \text{ monic,}$$

where e(X) can be chosen as a polynomial in A[X] all of whose coefficients are in E. This leads to $dg_2(X) \cdot f_1(X) \cdot g(X) = e(X) \cdot f_2(X) \cdot g_1(X)$. The leading coefficient on the right is in $a_2 \cdot E$. This shows that $a_1 \cdot D$ $D \subseteq a_2 \cdot E$. Likewise $a_2 \cdot E \subseteq a_1 \cdot D$, thus $a_1 \cdot D = a_2 \cdot E$ and $\overline{D} = \overline{E}$. To prove the map is onto, the following lemma is needed.

LEMMA 2-4. Let A be a Dedekind domain with quotient field K. To each polynomial $f(X) = a_n X^n + \cdots - a_o$ of K[X] assign the fractionary ideal $c(f) = (a_n, \dots, a_o)$. Then c(fg) = c(f) c(g).

Proof. Let V_p (for each prime P of A) denote the P-adic valuation of A. It is immediate that $V_p(c(f)) = \min V_p(a_i)$. Because of the unique factorization of fractionary ideals in Dedekind domains, it suffices to show that $V_p(c(fg)) = V_p(c(f)) + V_p(c(g))$ for each prime P of A. This will be true if the equation is true in each $A_p[X]$. But A_p is a principal ideal domain, and the well-known proof for principal ideal domains shows the truth of the lemma.

To complete Prop. 2-3, let P be a prime ideal of A^1 . The proof of Lemma 2-1 shows that if $P \cap A \neq (0)$, then $P = QA^1$ where Q is a prime of A. Thus $\overline{P} = \overline{QA^1}$ and ideal classes generated by these primes are images of classes of A. Suppose now that P is a prime of A^1 such that $P \cap A = (0)$. Let $P^1 = P \cap A[X]$. Then $P^1 \cap A = (0)$, and $P^1 \cdot K[X]$ is a prime ideal of K[X]. Let $P^1 \cdot K[X] = f(X)K[X]$; we may choose f(X) in A[X]. Let C = c(f). Suppose that $g(X) \cdot f(X) \in$ A[X]. Then because $c(fg) = (c(f)) + (c(g)) \geq 0$ for all P, $g(X) \in C^{-1} \cdot$ A[X]. Conversely if $g(X) \in C^{-1} \cdot A[X]$, then $g(X) f(X) \in A[X]$. Thus $P^1 = f(X)K[X] \cap A[X] = C^{-1} \cdot A[X] \cdot f(X)A[X]$, and $P = P^1 A^1 = C^{-1} \cdot$ $A^1 \cdot f(X)A^1$. This gives finally that $\overline{P} = \overline{C^{-1}A^1}$, and the class is an image of a class of A under our map. Since the ideal class group of A^1 is generated by all \overline{P} where P is a prime of A^1 , this finishes the proof.

COROLLARY 2-5. A^1 has a prime ideal in each ideal class.

Proof. Let w be any nonunit of A. Then $(wX + 1) K[X] \cap A^1$ $(= (wX + 1)A^1)$ is a prime ideal in the principal class. Otherwise let C be any integral ideal in a nonprincipal class \overline{D}^{-1} . C can be generated by 2 elements, so suppose $C = (c_0, c_1)$; then $Q = (c_0 + c_1X) \cdot K[X] \cap A^1$ is a prime ideal in $\overline{C}^{-1}\overline{A}^1 = \overline{D}$.

PROPOSITION 2-6. If A is a Dedekind domain, then A(X) is a principal ideal domain.

Proof. Since $A(X) = A_T^1$, Corollary 1-3 and the proof of Corollary 2-5 show that each nonprincipal class of A(X) contains a prime QA(X), where Q is a prime ideal of A of the type $(c_0 + c_1 X)K[X] \cap A^1$. Clearly $Q \cap A[X] = (c_0 + c_1 X)K[X] \cap A[X] = C^{-1} \cdot A[X] \cdot (c_0 + c_1 X)A[X] \not\subseteq$ PA[X] for any prime P of A. Thus there is in $Q \cap A[X]$ a primitive polynomial of A[X|. Thus QA(X) = A(X). Theorem 1-4 now implies that every class of A becomes principal in A(X), i.e. A(X) is a principal ideal domain.

REMARK 2-7. Proposition 2-6 is interesting in light of the fact that the primes of A(X) are exactly those of the form PA(X), where P is a prime of A [1, p. 18].

REMARK 2-8. If the conjecture given in Remark 1-10 is true for a Dedekind domain A, it is also true for A^1 . For suppose $A = B_M$, where M is a multiplicatively closed set of B and B is the integral closure of a principal ideal domain B_0 in a suitable finite extension field. Let S, S^1 , and T be the set of monic polynomials in A[X], B[X], and $B_0[X]$ respectively. Then $A^1 = A[X]_S = (B_M[X])_S =$ $(B[X]_M)_S = (B[X])_{<M,S>} = (B[X]_{S^1})_{<M,S>}$. The last equality holds because $S^1 \subseteq S \subseteq \langle M, S \rangle$. It is easy to see that $B[X]_{S^1}$ is the integral closure of the principal ideal domain $B_0[X]_T$ in K(X), where K is the quotient field of B.

References

1. M. Nagata, Local rings, New York, Interscience Publishers, Inc. (1962).

2. O. Zariski and P. Samuel, *Commutative algebra*, Vol. I, Princeton, D. Van Nostrand Company (1958).

CORNELL COLLEGE

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California

R. M. BLUMENTHAL

University of Washington Seattle, Washington 98105 J. DUGUNDJI University of Southern California Los Angeles, California 90007

*RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

B. H. NEUMANN

E. F. BECKENBACH

F. Wolf

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan

Pacific Journal of Mathematics Vol. 15, No. 1 September, 1965

Donald Charles Benson, Unimodular solutions of infinite systems of linear	
equations	1
Richard Earl Block, <i>Transitive groups of collineations on certain designs</i>	13
Barry William Boehm, <i>Existence of best rational Tchebycheff approximations</i>	19
Joseph Patrick Brannen, A note on Hausdorff's summation methods	29
Dennison Robert Brown, <i>Topological semilattices on the two-cell</i>	35
Peter Southcott Bullen, Some inequalities for symmetric means	47
David Geoffrey Cantor, On arithmetic properties of coefficients of rational	
functions	55
Luther Elic Claborn, Dedekind domains and rings of quotients	59
Allan Clark, Homotopy commutativity and the Moore spectral sequence	65
Allen Devinatz, The asymptotic nature of the solutions of certain linear systems of	
differential equations	75
Robert E. Edwards, <i>Approximation by convolutions</i>	85
Theodore William Gamelin, <i>Decomposition theorems for Fredholm operators</i>	97
Edmond E. Granirer, On the invariant mean on topological semigroups and on	
topological groups	107
Noel Justin Hicks, <i>Closed vector fields</i>	141
Charles Ray Hobby and Ronald Pyke, <i>Doubly stochastic operators obtained from</i>	
positive operators	153
Robert Franklin Jolly, <i>Concerning periodic subadditive functions</i>	159
Tosio Kato, <i>Wave operators and unitary equivalence</i>	171
Paul Katz and Ernst Gabor Straus, <i>Infinite sums in algebraic structures</i>	181
Herbert Frederick Kreimer, Jr., On an extension of the Picard-Vessiot theory	191
Radha Govinda Laha and Eugene Lukacs, On a linear form whose distribution is	
identical with that of a monomial	207
Donald A. Ludwig, <i>Singularities of superpositions of distributions</i>	215
Albert W. Marshall and Ingram Olkin, Norms and inequalities for condition	
numbers	241
Horace Yomishi Mochizuki, <i>Finitistic global dimension for ring</i>	249
Robert Harvey Oehmke and Reuben Sandler, <i>The collineation groups of division</i>	
ring planes. II. Jordan division rings	
George H. Orland, On non-convex polyhedral surfaces in E^3	267
Theodore G. Ostrom, <i>Collineation groups of semi-translation planes</i>	273
Arthur Argyle Sagle, On anti-commutative algebras and general Lie triple	
systems	281
Laurent Siebenmann, A characterization of free projective planes	293
Edward Silverman, <i>Simple areas</i>	299
James McLean Sloss, <i>Chebyshev approximation to zero</i>	305
Robert S. Strichartz, <i>Isometric isomorphisms of measure algebras</i>	315
Richard Joseph Turyn, <i>Character sums and difference sets</i>	319
L. E. Ward, Concerning Koch's theorem on the existence of arcs	347
Israel Zuckerman, A new measure of a partial differential field extension	357