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This paper is concerned mainly with approximating
functions on closed subsets P of a locally compact Abelian
group (G by absolute-convex combinations of convolutions fx g,
with f and ¢ extracted from bounded subsets of conjugate
Lebesgue spaces L?(G) and L*(G). It is shown that the
Helson subsets of G can be characterised in terms of this
approximation problem, and that the solubility of this problem
for P is closely related to questions concerning certain
multipliers of L?(G), The final theorem shows in particular
that the P.J. Cohen factorisation theorem for L!(G) fails badly
for L*(G) whenever G is infinite compact Abelian and p > 1.

1. The Approximation Problem.

(1.1) Throughout this note, G denotes a locally compact Abelian
group and X its character group. For the most part we shall be
concerned with the possibility of approximating functions on closed
subsets P of G by absolute-convex combinations

(1) Salfeg),

of convolutions f* g, where f and g are selected freely from bounded
subsets of conjugate Lebesgue spaces L?(G) and L*'(G) (1/p + 1/p' =
1). In the sums (1), the number » of terms is variable, whilst the
complex coeflicients «, are subject to the condition

fiA

(2) Slal=1.

Accordingly, if the f, and g, are respectively free to range over subsets
A and B of L?(G) and L”(G), the allowed sums (1) compose precisely
the convex, balanced envelope of

AxB={fxg:feA,geB}.

We denote by C(G) the Banach space of continuous, complex-
valued functions on G which tend to zero at infinity, the norm being
lwl]l=sup{|u()|:xcG}. The space C,(P) is defined similarly, P
replacing G throughout. If G (or P) is compact, the restriction that
the functions tend to zero at infinity becomes void; we then write
C(G) (or C(P)) in place of Cy(G) (or C,(P)).

It is well-known that if 1< p< o then fxgeC(G) whenever
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fe L*?(G) and g€ L*(G), so that restriction from G to P results in a
member of C(P).

(1.2) Given an exponent p satisfying 1 < p < « and a closed

subset P of G, we shall consider the following assertion:—

(A2) To each member u of a second category subset of Cy(P)
corresponds a number K = K (P,p,u) < o such that « is the
uniform limit on P of absolute-convex combinations (1), the f,
and g, being subject to the restrictions

1Al =VE [lg =V K.

It is evident that (A42) and (A%) are equivalent assertions. Fur-
thermore, only a little reflection is required to see that (A}) is true
for every P, so that the restriction 1 < p < o is reasonable. With
this restriction on p, (A%) signifies that each w belonging to the said
second category set belongs to the closed, convex, balanced envelope
in Cy(P) of Ax B, where A and B are respectively the closed balls in

L*(G) and L*'(G) of radius V'K (which a priori may depend upon u).

(1.3) As well shall see, the truth or falsity of (A4%) is equivalent
to an assertion about bounded measures supported by P which may
conveniently be expressed by regarding such a measure as a multiplier
(or centraliser) of (L*(G).

We denote by M(G) the space of bounded, complex (Radon) measures
on G; it may be regarded as the dual of C(G). Furthermore, M(P)
may be thought of as the subset of M(G) composed of measures pe
M(G) whose supports are contained in P.

Each pte M(@G) generates a multiplier 7, of L*(G) defined by
T.f=pxf for fe L?(G). In general, by a multiplier of L*(G) is
meant a continuous endomorphism of L?(G) which commutes with
translations. KEach multiplier T' of L?(G) has a norm

I T =sup{[| TF[l,: [ fll, =1} .

Accordingly we may define N,(¢) for pe M(G) as the norm of T,
regarded as a multiplier of L*(G).
It is easily seen that

(3) N, () =1l eell,

equality holding if » = 1 (and hence also if p = o).

Although, as will be seen in (2.3), the norms N,(¢) and |l | are
not generally equivalent on M(G) when 1< p < o, yet equivalence
may obtain on M (P) for suitable closed subsets P of G. In fact, as
the next theorem shows, the suitable sets P are just those for which
the assertion (A%) is true. When p = 2 one obtains in this way a
new characterisation of the so-called Helson subsets of G; see (1.6)



APPROXIMATION BY CONVOLUTION 87

wnfra. A further link between (A2) and properties of certain sets of
multipliers of L?(G) is expressed in Theorem (2.1).

(1.4) THEOREM. Let P be a closed subset of G, and let 1 < p < oo,
Then (A2) is true if and only if there exists a number k = (P, p)
< = such that

(4) )] < k.N(),
Jor each pte M(P).

Proof. Suppose first that (4) holds for pe M(P). This signifies
that

el = ke Sup [{ () gdo

’

the supremum being taken over those f and ¢ lying respectively in
the unit balls in L?(G) and L*(G). Since

[, gdo = (Frg dn,

where J; () = f(—ux), it follows that

el = sup{|], (Fx 9) de |21 7L = VR, g1l < VE] .

From this it follows that for each u € Cy(P) one has

(5) [, wdee | = sup| (£20)dn|,
where now f and g vary subject to the conditions

(6) Il =V E Viull,llglly 2V EV u]l .

Now (5), combined with the Bipolar Theorem, shows that u belongs
to the closed, convex, balanced envelope in C,(P) of the functions fxg
(or, more precisely, their restrictions to P), where f and g are subject
to (6). Thus the assertion (A2%) is true for each ue Cy(P), with

K(P,pu) = k(P,p). || u]| .

Conversely, suppose that (A%) is satisfied. Let X denote the set
of we Cy(P) for which K(P,p,u) exists finitely, so that ¥ is a second
category subset of Cy(P). For a given ue X, the set of admissible
numbers K(P,p,u) is easily seen to be closed. Denote by S the set
of we X for which the infimum of this set of admissible values of
K(P,p,u) is at most unity. Thus S consists precisely of those u e Cy(P)
which are limits in Cy(P) of sums (1), wherein
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(7) Nhlle =1, 119- 1l =1.

It is almost evident that S is closed, convex, and balanced in C(P).
Moreover, Y is the union of the sets S (= 1,2, ---). Since X is
second category in Cy(P), it follows that S must be a neighbourhood
of zero in Cy(P). Consequently, ¥ = C,(P) and, for some r > 0, each
we C(P) satisfying ||u || < r is the limit in CyP) of sums (1) with
the f, and g, subject to (7). Then, however, each ue Cy(P) belongs
to the closed, convex, balanced envelope in C(P) of the set of con-
volutions fx g with

Al = r7 2V ull, gl = vV u]l.
For pe M(P) it is therefore the case that

el = Sup{| | wape s 11w =1}

= Sup{|{ (Feodu 1 £l = 0 1 g 1, = 7o)

Using again the relation

|, (Frade=1 (x7)gda,

it appears that

el < o Sup [ g f U 1 f Uy S 70}
=77 Ny(1)

which is (4), with & = »~-*. The proof is thus complete.

(1.5) REMARK. It has appeared in the course of the preceding
proof that, if the approximation specified in (A%) is possible for each
member of a second category subset of C,(P), then it is indeed possible
for each we Cy(P), and this with a value of K(P,p,u) not exceeding
Ky(P,p). [|ul].

(1.6) The case p = 2: relation with Helson sets. When p = 2
it is a simple consequence of the Parseval formula and Plancherel’s
theorem that

Ny(p) = || £
=sw{ A©)1:¢eX },

where
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e =\, T apw,

is the Fourier-Stieltjes transform of ¢£. Reference to Rudin [4], p.115,
Theorem 5.6.3 shows then that as a Corollary to Theorem (1.4) one
obtains the fact that (A4%) is true for a closed set PCG if and only if
P is a Helson subset of G. (Rudin assumes his Helson sets to be
compact, but this restriction is unnecessary in the present connection.)

From the case p =2 of Theorem (1.4) we may also derive a
known property of Helson subsets of discrete groups G. (For historical
reasons, Helson subsets of discrete groups are often termed Sidon sets;
see [4], Section 5.7.)

(1.7) COROLLARY. Suppose that G 1is discrete and that P is a
Helson (or Sidon) subset of G. Then each bounded, complex-valued
JSunction on P is the restriction to P of the Fourier-Stieltjes trans-
Sform of some measure on the (compact) character group X. (Cf.[4],
p. 121, Theorem 5.7.3(d).)

Proof. Let B(P) be the superspace of Cy(P) formed of all bounded,
complex-valued functions on P. On B(P) take the topology of pointwise
convergence on P, Let T denote the linear mapping of M(X) into
B(P) which assigns to A€ M(X) the function T\ defined by

T = |_E@ane) .

It is evident that T is continuous for the weak topology t = o(M(X),
C(X)) on M(X). For any k >0, the set

Sp={Me M(X):|IN]| =k},

is compact for ¢, so that its image 7(S,) is compact, and therefore
closed, in B(P). It will therefore suffice to show that, for some k& >
0, T(S,) is dense in

V={veB®P):||v||=1};

and this will certainly be the case if T(S,) is shown to be dense in
the closed unit ball ¥V, = VN C(P) in Cy(P).

Suppose then that we V,. Since P is a Helson set, (1.5) affirms
the existence of a number k= K(P,2) such that w is the limit,
uniformly on P, and so a fortiori in the sense of the pointwise topology,

of functions (1) with || £, |, < V'K and ||g,|, £ VK. By the Plan-

cherel theory, these approximating functions form a sequence (u,)i;,
each term of which is expressible in the form
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wi@) = | @ F@ds = Tr, @),

where ), € M(X) is defined by dr, (&) = F,(&)dé, and where

3

R
— { ( A
F,=3aP .6,

1

8
r

I

so that

Dall= {17 1de = 31 117 el I
<Sar | VEVESE.

Thus wu, e T(S,) for each s, which shows that each u € V, belongs to the
closure in B(P) of T(S,), as we wished to show.

2. Falsity of (AZ). It is not altogether trivial to decide whether
or not (A4%) is true. By expressing this assertion in terms of multipliers
of L*(G), we shall show that (AZ%) is false at any rate whenever 1 <
p < e and G is infinite compact Abelian. The same conclusion is
derivable without explicit mention of multipliers; see Remark (3.2)
wmfra.

Let us denote by m?(G) the set of all multipliers of L?(G). As
observed in (1.3), we may regard M(G) as a subset of m?(G). The
next theorem makes reference to the so-called weak and uniform
operator topologies on m?(G), and for brevity we shall label these
“W.0.T.” and “U.0.T.” respectively.

(2.1) THEOREM. If P is a closed subset of G, the following four
statements are equivalent:—

(i) M(P) is closed in m™(G) for the U.0.T.;

(ii) M(P) 1s sequentially closed in m*(G) for the W.O.T.;

(ii’) M(P) contains the closure in m*(G), relative to the W.0.T.,
of any N,-bounded subset of M(P);

(iii) there exists a number k = k(P,p) < oo such that

el < BNy
for pre M(P), t.e., by Theorem (1.4), (A%) s true.

Proof. Since P is closed, M(P) is in any case complete for the
norm || ||. Since m?(G) is complete for the U.0.T., M(P) is complete
for N, if and only if (i) holds. In any case, Ny (¢) = || ¢]|l. These
remarks, combined with the Inversion Theorem for Banach spaces,
show that (i) and (iii) are equivalent.
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It is evident that (ii) implies (i). Also, since any sequence in
M(P) which is convergent for the W.O.T. is N,-bounded (a direct
application of the uniform boundedness principle), (ii’) implies (ii). It
therefore remains only to show that (iii) implies (ii’).

Suppose then that (g,) is an N,-bounded net in M(P) such that
lim; Ty, = T in the W.0.T.: we have to show that T = T, for some
pe M(P). Now, since (iii) is true by hypothesis, Sup; || ¢ || < <.
Hence the net (¢;) has a weak limiting point pe M(G). Since P is
closed, ¢ necessarily belongs to M(P). The definition of the weak
topology on M(G) ensures that, for each fe L?(G) and each ge L*(G),

the number S (¢t = fHgdx is a limiting point of the numerical net
q

(I, e prgda) = (1T £) gds) .

But this last net is convergent to S (Tfygdx. It follows that Tf =

tx f for each fe L™G), i.e., T = T,e M(P), which is what we wished
to prove.

(2.2) REMARK. It is simple to verify that if pe M(P), then the
multiplier 7T, has the property that T,.f is, for each fe L?(G), the
limit of linear combinations of translates f(z-a) of f with ae P.
Problem: Is it true that conversely any T e m?(G), which is so ap-
proximable, is the limit in the W.0.T. of multipliers T, with ¢ rang-
ing over some N,-bounded subset of M(P)? The answer is affirmative
if P= G is compact, as will appear in the proof immediately below.

(2.3) COROLLARY. Suppose that GG is infintte compact Abelian. Then
(A2) is false for every o satisfying 1 < p < oo.

Proof. Let us show first that any T € m,(G) is the limit in the
W.0O.T. of an N,-bounded net (g, in M(G). Take any base (U,) of
compact neighbourhoods of zero in G, and choose for each ¢ a non-
negative, continuous function k; on G with support contained in U,
and such that S hdx = 1., Then lim, h; * f = f in L?(G) for each fe
L*(G), so that

T, = lim; T(h; * f) = lim, Th, * f = lim, k, x [,
where k;, = Th, e L*(G) and

Vox Flly = T T Ol = [ T b % Fl
= [Tl

Let p, ¢ M(G) be defined by dp(x) = k{x)dx. Then N,(t,) = || T,
and lim; Ty, f=lim; k; x f= f in L?(G). Thus lim; T,, = T in the
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W.0.T. (even in the strong operator topology), and the net (g,) is N,-
bounded. This verifies our claim.

This being so, Theorem (2.1) shows that it is now sufficient to
show that M(G) #= m*(G), when G and P satisfy the stated conditions.
To this end, we choose and fix any infinite Sidon subset S of X, and
aim to show that corresponding to any bounded-complex-valued function

b on X which vanishes on XNS" there is a multiplier 7 e m?(G) for
which

(8) (TA"@) =bOfE (EeX).

Indeed, if 1 < p =< 2, this follows from the substance of p. 130 of [4].
If, on the other hand, 2 < p < = there is by that same token a
multiplier T, of L*'(G) such that (8) is true with 7T, in place of T,
and it then suffices to take for the desired T the adjoint of T..

If the multiplier T' defined by (8) were of the form 7', with pe
M(G), then (8) would entail that

(9) e =bE) (e X).

Since therefore /i vanishes off S, the lemma immediately below would
combine with (9) to show that

(10) Dies |0E) P < oo

However, S being infinite, we are at liberty to suppose that (10) is
false, in which case T is not of the form 7,. Thus M(G) is a proper
subset of m?(G), and the proof is complete.

(2.4) Let G be a compact Abelian group and S a Sidon subset
of X. If pe M(G) s such that

(11) pE) =0 (eXnsS),

then tt is absolutely continuous (relative to Haar measure on G) and
its Radon-Nikodym derivative h belongs to LYG) for every finite q.
In particular,

Jees | ﬂ(g) [P < oo,

Proof. It is known ([4|, p.128, Theorem 5.7.7) that
(12) el = Balitll,

for every ¢ < « and every trigonometric polynomial ¢ on G for which
£(&) = 0 for £€ XN S’, the number B, being independent of ¢. On the
other hand one may select in many ways a net (f;) of trigonometric
polynomials on G such that lim;¢, * ¢ = ¢ weakly in M(G) and C =
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sup; || ¢; |} < e. The inequality (12) applies to ¢; * # and gives

ltix gl = Bolltx ]l = BCY 2]

Supposing that ¢ > 1, it follows that the net (¢, * ) has a weak
limiting point %, in L,(G) and, since t; * ¢t — p weakly in M(G), ¢ can
be none other than the measure defined by dg(x) = hy(x)dx. Putting
h = h,e L(G), it is seen that h,=h a.e. for each ¢ >1, so that
he LYG) for every finite q. This % is, modulo negligible functions,
the Radon-Nikodym derivative of p, and the lemma is established.

3. Impossibility of factorisation in L?(G), p > 1. It was shown
by P.J. Cohen [1] that each he LYG) can be factorised as f* g with
fand g in LYG). Now, if »p > 1, L*(G) is an algebra under convolu-
tion if G is compact (and, if Abelian as we assume throughout, in no
other cases). The next theorem, still concerned with approximation
by sums of the type (1), though now with different restrictions on

the f, and g, shows that Cohen’s result is very far from being
extendible to L*(G) with p > 1.

(3.1) THEOREM. Let G be infinite compact Abelian, and let
1< p= . Let Y denote the set of functions h in L*(G) with the
Jollowing property:— There exists a nmumber R = R(p, h) < c such
that h is the weak limit in M(G) of finite sums

(13) S fox 0,

subject to the condition

14 P FATRIPATRES
Then X is a first category subset of L*(G).
Note. In the statement of Theorem (3.1) we are regarding L*(G)

as a subset of M(G), identifying a function fe L?(G) with the measure
¢ defined by du(x) = f(x)dzx.

Proof. Take again an infinite Sidon subset S of X. Since p >1
there exists ([4], p.130) a number ¢ = ¢(p, S) such that

17 llos = [Bees | FEO 1" S 6 [ flls

for each fe L?(G). If k is a sum of the type (13), then k = 37, 7§,
and so, by the Cauchy-Schwarz inequality,
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Ties K@) 1= 5117 llusell 8 s

¢ 2 L fellse Il g- s
R,

A

IA

the last step by virtue of (14). Consequently, the inequality

(15) Sees | B (©)] < oo,

is satisfied by each he 3.
If 3 were second category in L?(G), an argument similar to that
used in the proof of Theorem (1.4) would show that

(16) Ses | ME [ = ¢RIy,

for each he L?(G), ¢’ being independent of A. This in turn would
entail the existence of a measure re M(G) (actually a function in
L?(G) if p < o) such that

1 if ¢e S,

HO=10 it ceXxns .

But this would contradict Lemma (2.4). Thus X must be a first
category subset of L*(G), as asserted.

(3.2) REMARK. The preceding proof can be modified slightly to
show that ¥ NC(G) is a first category subset of C(G), thus providing
an alternative proof of Corollary (2.3).

(3.3) REMARK. The final phase of the preceding proof, leading
from (16) to the contradiction, may be completed without reference to
Lemma (2.4), and is in fact quite independent of the notion of Sidon
sets and their properties. This is shown by the following lemma.

(3.4) LEMMA. Let G be compact Abelian. If S is a subset of
X such that
17 Sees | U(E) | < oo,
holds for each w in a second category subset of C(G), then S 1is
necessarily finite.

Proof. The hypothesis entails (cf. the proof of Theorem (1.4))
the existence of a number ¢” such

Zees|WE) [ = " [[ull,
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for each ue C(GG). This and the Riesz theorem combine to show that
to each bounded, complex-valued function b on S corresponds a measure
re M(G) for which

(&) = b(¢) for £e S, f(&) =0 for £ XNS'.

This ¢ is uniquely determined by b and the mapping 7 which carries
b into g is an algebraic isomorphism of the algebra B(S) of all
bounded, complex-valued functions on S (with the sup norm and
pointwise product) into the convolution algebra M(G). By Theorem 1
of [2], this entails that B(S) is of finite dimension, so that S must be
finite.

(3.5) REMARK. Yet another way of deriving a contradiction from
(16), or from the apparently weaker variant (17), is to invoke a known
theorem which says that if S is a Sidon subset of the character group
of a compact Abelian group G, then for any given v ¢ [*(S) there exists
w e C(@) such that 4(¢) = v(&) for £€ S. For the circle group this is
established by Rudin ([5], 5.1 and 5.3), though the result for Hadamard
sets S of integers is much older; and for general G it follows from
Theorem 5.7.7 of [4] together with a result due to Hewitt and Zuckerman
{[3], Theorem 8.6) which applies even to non-Abelian compact G.
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