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The purpose of this note is an outline of an algebraic
theory of summability in algebraic structures like abelian
groups, ordered abelian groups, modules, and rings, ‘‘Infinite
sums’’ of elements of these structures will be defined by means
of homomorphisms satisfying some weak requirements of per-
manency which hold in all usual linear summability methods.
It will turn out that several elementary well known theorems
from the theory of infinite series, proved ordinarily by methods
of analysis, (i.e. by use of some concept of a limit) are con-
sequences of algebraic properties.

1. Definitions and existence theorems. Let G be an abelian
group with a ring T operating from the left; we assume, without loss
of generality, that 7 contains the integers. Denote by G the strong
direct sum of countably many copies of G, i.e., the set of all infinite
sequences s = (9% = (01, G5y =**, g;, ++°) Oof elements of G, with the
natural definitions of addition and of left multiplication by elements
of T. Let I" be the weak direct sum of countably many copies of G,
i.e., the subgroup of G“ consisting of all infinite sequences with at
most a finite number of coordinates different from 0 (the neutral ele-
ment of G). For s=(g,, g, ***, g;, -+ *) € G*, denote by s’ the element
0, 9,09 92,9 +++); s will be called the translate of s.

DerFINITION 1. The T-subgroup S of G* will be called admissible if
(1) rcs
and if

(2) seS if and only if s’e S, where s’ is the translate of s.

Obviously, both I" and G* are admissible, and any subset K of G
can be completed in a unique way to a minimal admissible subgroup
containing K.

DEFINITION 2. Let S be admissible, and ¢ a 7T-homomorphism
S — G with the following properties:

(3) 90(970;01"°):gf (geG)
and
(4) Pp(s) = (), (sef).
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Then ¢ will be called a summation method on G with domain S,
and we shall refer to it briefly as the summation method [S, ¢].

Using the fact that S is admissible, and by properties (3) and (4)
of the homomorphism ¢, it follows immediately that

@(gly Gay ***y Gny 0! 09 "') - ;gt

for any summation method [S, ¢]. Therefore, the (unique) summation
method [I7, ¢] shall be called trivial. Furthermore, by (3), @ is always
a T-homomorphism onto G.

We ask first the following question:

When does there exist a summation method containing in s
domain a given sc G*?

Denote by s™ for any integer n the nth translate of s, i.e.

SO — g

8™ = (8" )Y =(0, +++, 0, gy, G, ***) for n >0
n

8™ = (Gt Gntay **°) for » < 0.

Let S be the minimal admissible subgroup of G* containing s.
The elements of S have the form

(5) PRTLEES

where m, n are nonnegative integers, the ¢, are arbitrary elements of
T, and v is an element of I'. This representation of an element of
S is not necessarily unique, and a T-homomorphism ¢:S— G has to
be independent of it. But, since all summation methods agree on [,
one has to answer first the question when an expression of type (5)
will be in I". We may evidently assume m = 0 (changing s if neces-
sary); hence we shall study linearly independent expressions of type

(6) L= S tus® = v,e I (1=10,1,2 )
k=0

where t,,e€ T. For each ¢, the coefficients t;, appearing in (6) form a
left ideal T; of T, and T, C T, C -+~

We now assume that T satisfies an ascending chain condition,
so that each T, is finitely generated, and that there exists an index
m such that T, = T,., = ---. Let ti (=1, ---,m,;) be a system of
generators of T, (4 =1, ---, m). Then a finite system of equations
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(8) =St =viel,  j=L-mg i=1m
pr

implies all equations of (6) in the sense that each I, in (6) is a linear
combination over T of the I, and their translates.

A summation method @ on G with domain S exists if and only if
p(s) satisfies all the equations

(67) (B th)e® = 20, J=1 e mg =1, m
=0

where the right side is independent of ¢, since on /" the homomorphism
@ is the ordinary sum of finitely many elements of G. Once ¢(s) is
determined it extends by linearity (over T') to all of S.

This may be generalized easily for any finite number of elements
S5, 8, *°*, S,. Assume a summation method ¢ defined for the minimal
admissible subgroup I'; containing s;,. We can now obtain a finite
system of relations of the type (6'), with s replaced by s, and I” by
I",. This leads to a system of necessary and sufficient conditions for
@(s,) compatible with ¢(s,), which is analogous to (6”) (the right side
there being already defined by the previous step). Proceed by induction.

As a consequence we can prove the following existence theorem:

THEOREM 1. For any abelian group G =+ {0} with ring of oper-
ators T satisfying an ascending chain condition, there exists a mon-
trivial summation method.

Proof. Let geG be # 0. Define s = (¢,)7-, by

(g if m=2F
In = 0 otherwise .

Let S be the minimal admissible subgroup containing s, and § any
element of G such that tg = 0 implies ¢g = 0 for all e T (for example
g = g). Then obviously the only relations of type (6) are of the form
ts = 0 (because tg = 0), so that (6”) reduces to f@(s) = 0 whenever
tg = 0. These conditions are satisfied by setting @(s) = g.

REMARK 1. From the 2% sequences in G* whose elements are g
or 0 one can pick a subset R, of power 2% go that any relation
S Suatrd?el” for elements t; of T and 7,€ R implies ¢,;0 = 0
for all £,;, Thus we can define 2™ different summation methods for
the least admissible S which contains R by setting @(r) to be 0 or ¢
arbitrarily for each r e R, and then extending ¢ to all of S by linearity
(over T).

On the other hand, in a nontrivial group no summation method



184 PAUL KATZ AND ERNST G. STRAUS
can assign a sum to all the sequences of elements of the group.

THEOREM 2. Let G #0 be a T-group and ¢g,€G, (1 =1, -+, n)
such that >\, g, % 0. Then there exists mo summation method de-
fined for

8§ = (gu Jay ** 5 Gny 1y Gay ***y Gy G1s "') .
Proof., s™P —s=1(g,0, *+**, 0., 0,0, ---) would lead to

Ps — 8) = Ps™) — @(s) = P(5) — P(6) = 0= gy + gy + -+ + 4, ,

a contradiction.

THEOREM 3. If @i, @y +--, @, are summation methods on G with
domain S, and e,e, ++-,¢, are T-endomorphisms of G so that
e+ e+ - +e, =1, then ep, + e;p, + «+- + €,p, 18 o summation
method on G with domain S.

Proof. Let ¢ = e,p, + e, + -+ + e,p,. Then ¢ is obviously a
T-homomorphism S — G. Since @,;(s’) = @,(s), the same is true for ¢,
and for a g€ G we have ¢(g,0,0, ---) = g.

THEOREM 4. Let [Sy, @], [Ss @.] be two summation methods on
G which agree on D, =8, NS,. Then there is a summation method
@ on G with domain S = S, + S,, such that ¢|S; = @, for 1 =1,2.

Proof. The group S is evidently admissible. Denote D, =
(S\Dy) U {0}, 2 =1,2. Then any s€ S can be written (not necessarily
uniquely)

(7) s=d,+d,+d, d;eD;,, :=0,1,2.
Define ¢ by
P(8) = @idy) + pu(dy) + Pi(dy) .

This definition is independent of the representation (7), since if s =
d, + d, + d, with d;e D,, then A = o(d, + d, + d;) — (d, - d, + d,) =
pdy — d) + pd, — d) + @y(dy — d;). The element d, — d, is in S,
but since d,—d,=d, —d,+d, —d,, it is in D, and therefore
?2(‘%2 —d,) = fz(do —dy+d,—d,). Hence A= op(d, — dy) + ¢(d, — d,) +
p(dy — dy + d, — d) = 0. A similar reasoning is needed in order to
show that o(s + §) = ¢(s8) + o(8) for s, 5€S, since the sum of two
representations of type (7) is generally not of the same type. Property
(3) of ¢ is obvious, since I"< D, and (4) follows easily, since (7)
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implies s’ = d} + d; + dj, where d}e D,, + = 0,1,2. Since the decom-
position (7) can be extended to ts, @ is a T-homomorphism, which
finishes the proof.

REMARK 2. On the other hand, if [S,, ] and [S,, ¢.] are sum-
mation methods which do not agree on S; NS, then there need not
exist a summation method for the admissible subgroup S, + S,. Take
S, and @, as S and @ in Theorem 1, and define s, = (g;)7-, by

0 if n = 2%

g =
g otherwise .

Again, if § is any element of G such that tg = 0 implies tg = 0 for
any te T, then @y s,) = G is a valid definition that can be extended to
a summation method on the minimal admissible subgroup S, containing
s,. But S; 4+ S, can not be the domain of any summation method,
since it contains the element (g, g, g, *-+), in contradiction to the con-
struction in Theorem 2.

REMARK 3. Let (G.)wes, Where A is a set of indices, be a family
of abelian groups with operators 7T'; assume that S, is an admissible
subgroup of G¢ and that ¢, is a summation method on G, with domain
S, for each ae A. Consider the (weak or strong) direct sum G =
@D.ciG.. Then it is easily shown that S = @, S, is admissible for
G, and that @ = (Pu)ecs is & summation method with domain S on G.
It is clear that [S, @] is nontrivial if and only if at least one of the
summation methods [S., ¢,] is nontrivial.

2. Subgroups and ideals. To each subgroup H of G we asso-
ciate the (left) annihilator ideal 7'y of T consisting of all ¢t€ T such
that tH =0, If H is a T-subgroup of G, then T, is a two-sided
ideal, since 0 = t4(tH) = (tzt)H for every tz€ Ty and te T. Clearly
Tyo = Thy.

Let [S, @] be a summation method on G, and let H be a T-sub-
group of G. Then (S N H*®) = H, is a T-subgroup of G which contains
H. We call this group the [S, p]-extenston of H. It is easy to see
that of H, is an [S, ¢l-extension of H, then Ty = Ty; since H, D H,
we obviously have Ty C Tp. On the other hand, Ty D Tye = Thy.
From this, it follows:

THEOREM 5. If H is a maximal T-subgroup for the anmihilatc™
ideal Ty, then H has no proper [S, pl-extensions.

THEOREM 6. Let H, be a denumerable T-subgroup of G, and



186 PAUL KATZ AND ERNST G. STRAUS

H, > H, a T-subgroup of G of cardinality not greater than 2% such
that Ty, = Tg,. Then there is a summation method [S, p] on G so
that H, is the [S, pl-extension of H..

Proof. Let {h, hy +++} be an enumeration of H,, and let M be
an increasing sequence of integers. Define sequences sy,; = (¢,,:.)r-1 by

h, if = 27" meM, p, = ith prime

T

I = 10 otherwise .

It is easy to find (see Remark 1) a set 9 of 2% sequences M such
that any relation of the form >, ;t,;8%;€ " implies ¢,;s57; = 0 for all
r and j, which in turn implies that ¢,;€ T,. Now, let {A'}sc, be a
minimal system of generators of H,, that is >, ¢,h5 = 0 (finite sum)
if and only if ¢k, = 0 for all @. For any choice of the subsystem
M, of M the definition (sy,,) = e for a € A yields a summation method
on the minimal admissible subgroup S of G* containing all the s,,.

REMARK 4. The restrictions on the cardinalities of H, and H,
can be removed if we allow summation methods using, instead of G*,
the strong direct sum G*, where & is an arbitrary infinite ordinal.

ExaMPLE 1. Let G be a finite abelian group, and T the ring of
integers modulo the minimal annihilator N of G. To each subgroup
H of G corresponds the ideal generated by its minimal annihilator.
Clearly, to every divisor D of N, there corresponds a unique maximal
subgroup H, of G with minimal annihilator D). Each subgroup of G
can be [S, p]-extended to exactly one H,,.

ExXAMPLE 2. If G is the additive group of a ring R considered
as the ring of operators T on G, then T-subgroups of G are the left
ideals of R. Given now a subset M C R, it determines a left annihi-
lator ideal T, of M. Any finitely generated left ideal containing M
whose annihilator is 7, can be represented as an [S, ¢]|-extension of
the left ideal generated by M.

3. Ordered groups. Let G be an abelian group with a partial
ordering relation = satisfying: (1) there is a semigroup HC G con-
taining the zero element and at least one element = 0, in which the
binary reflexive and transitive relation = is defined; (2) if h, h,e¢ H
and & > 0, then h, + & > h;; (3) the archimedean axiom: if &, h,€ H,
h,>0and h,>0, then there is a positive integer n such that nh,>h,.

DEeFINITION 3. Let G be a partially ordered abelian group. s =
(91, G2, =+, Gy =+ +) € G will be called positive if g, H and ¢, = 0 for
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n=12---, and if g, > 0 for at least one index m,. A summation
method [S, ] will be called positive if s€ S and s positive imply
@(s) > 0.

The positive elements of G* or of S evidently form a semigroup.
Furthermore, if s is positive, so is its translate s’.

THEOREM 7. Let G be a partially ordered abelian group, and
[S, @] a positive summation method on G. Ifs=1(g,0s ***ygn,-*)EG
8 such that g, =g >0 for infinitely many indices k,, then s¢S.

Proof. The hypothesis implies that s is a positive element. Assume
seS and @(s) =7, then 0> = @(s) = @(g;, 92 *** 94,5 0, 0, ) +
P(0, .0, Gupy Gipiry *++) = i g + @0, +++,0, 05, Gppia, +++) > mg for
each positive integer n. This contradicts the archimedean axiom.

COROLLARY 7.1. There 14s mo positive nontrivial summation
method for the group of integers with their natural ordering.

COROLLARY 7.2. Let G be an abelian group with a linear
ordering, and |S, p] a positive summation method on G. If s=
(G0 Gy >y Gny +++)ES s positive, then glb g,=0 and o(s) =
Lub.cpce 21 Gie

From the last part of Corollary 7.2 it follows that if the partial
sums of a “series” with positive terms are unbounded, then the
“series” does not belong to the domain of any positive summation
method.

THEOREM. 8. Let G be a linearly ordered abelian group. Then
there ts a nontrivial positive summation method on G tf and only
of G contains an tnfinite sequence ¢, g,, + -+, of positive elements and
an element g, such that g, + <+« + g, = g for all n.

Proof. The necessity follows immediately from Corollary 7.2. To
prove sufficiency, set s = (s,)7-, and define

(g, for m = 2*

n

|0 otherwise .

Then the least admissible S which contains s has elements which can
be expressed uniquely in the form

t=7v+ 3 a;s?
=0
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where the a; are integers and v = (v, Vs *+*y Y, 0,0, +)el. t=0
implies a; = 0 and 37, v; > —(Ci%,a,)g. Thus if we define @o(s) = ¢
we obtain

P(t) = Jﬁnlzl Y + (2:30 ai)g

where () = 0 whenever ¢ = 0, and ¢ can be extended in an obvious
way to a summation method, and is nontrivial.

THEOREM 9. Let G be a linearly ordered abelian group and
[S, #] a positive summation mothod such that S contains all the
positive elements s = (g,)i, € G for which the “partial sums” S, ¢,
are bounded for all nm. Then p(s) = L.u.Ducyce Sitr g; JOr any posi-
tive s S.

Proof. By Corollary 7.2 we know that ¢(s) = § = L.u.b., >\, g..
Assume @(s) > g. Then (0, «++,0, 9y, O+, =) = @(s) — g >0 for
any N, and gy + gy + *c* + gy < g for all &. It follows that there
is a greatest positive integer =, such that (2n)(g,+ --- + 9.) <@
for all k. Determine m%, as greatest positive integer such that
@Cng)gy + ¢+ + o) < F — mg for all k, ete. This defines a nondecreas-
ing sequence of positive integers n; with n; — o. Consider the element
5§ = (n;9,)7-.€ G°. It is obviously in S, since the partial sums >}, n,g;
are bounded for all ». On the other hand

P(8) > ni(p(s) — g)

for all 7, which is in contradiction with the archimedean property of
the order in G.

4. Limits.

DEFINITION 4. Let [S, @] be a summation method on the abelian
group G. The sequence {g,, g5, ***, g, **+} of elements of G will be
called [S, p]-convergent to g (notation: g = limy 4 9,, Or ¢, [S—) g) if
1) s=1(9, — 9ur)i=1€ S, and (2) o(s) = g. (Here g, = 0. )

The following properties are immediate:

THEOREM 10. (1) The sequence {g,g9, 9, -++} 18 [S, pl-convergent

to g for any [S, pl. (2) If 951 9 and gnmg then g, + 7, —=— 5ol

g+9. B limgy,(—g,)=—limgug. 4 If g=Ilimg,g, and
by, By, ++ =, by are arbitrary elements of G, then the sequence {hy, hy, «« -,

Ry 915 9oy ** %y Gny =+ *} 18 |S, @p]-convergent to g.

The last part of Theorem 10 implies that if limy, 9, = ¢, then
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{g%, 911, »++} is [S, p]-convergent to g, too.
An arbitrary subsequence of an [S, p]-convergent sequence will

not always be [S, ¢]-convergent to the same limit, even if it is [S, ¢]-
convergent.

ExAMPLE 3. Let G be an abelian group with an element g of

order > 2. Define S to be the minimal admissible subgroup of G*
containing the element

s = (297 —2g, 2g, “‘29, "') .

Since s" + s = (29,0, 0, -+ +) we may define ¢(s) = g. Then the sequence
{24, 0, 2¢, 0, -+ -} is [S, @]-convergent to g, but the subsequence {2g,
2g, <+ -} is [S, p]-convergent to 2g.

This example shows that it is not always possible to define a
topology in G by means of [S, ¢]-convergent sequences.

THEOREM 11. Let G be an abelian group. A mon-trivial sum-
mation method [S, ] on G, with the property that every subsequence
of any [S, p]-convergent sequence 1is [S, p]-convergent to the same
limit, exists if and only 1f G is imfinite.

Proof. Let G be finite. If a sequence of elements of G is not
eventually constant, then two different elements must occur infinitely
often. Hence no summation method [S, ] with the required property
is possible.

Assume G infinite, and distinguish among the following cases:

(a) G contains an element g of infinite order. Let S be the
minimal admissible subgroup of G“ containing all the sequences (7,9);,

such that >\m,; converges p-adically to a rational integer n. Define
then

P((n:9)e) = ng .

(b) There exists an element g = 0 of G of finite order divisible
by arbitrarily high powers of some prime p. Let M be the subgroup
of the additive group of rationals, containing all the sequences (p~*"a,);-,
where a, and k, are integers, such that >, p *"a, converges to a
number of the form p~*a, @ and %k integers. ILet S be the minimal
admissible subgroup of G* that contains the sequence (p~*»a,9);-;, and
define p((p~*ra,9)7-.) = p~*ag.

(¢) All elements of G are finite but not of bounded order, and
no element of G is infinitely divisible (by powers of some prime).
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Define G, = n!G; let S be the minimal admissible subgroup of G con-
sisting of the sequences (g,)7-; so that there exists a ¢ in G with
g—9— ¢ — -+ —9,€G, for n =1,2, ... Define p((g.)7=1) = 9.

(d) All elements of G have bounded order =< m. Then G must
contain an infinite subgroup, all of whose elements have order p for
some fixed prime p. Otherwise there would be a least divisor d of
m for which there is an infinite subgroup G, of G such that dG, = 0.
If d is composite, then for every prime divisor ¢ of d the group ¢G,
is finite, and hence the kernel of the homomorphism G, — qG, is an
infinite group G, with ¢G, = 0, contrary to the hypothesis.

Now, an infinite abelian group all of whose elements are of order
p is the direct sum of infinitely many cyclic groups of order p, say
ZPPZPEP--. Let S be the minimal admissible subgroup of G*
containing the sequences (g,)7-, for which there exists a g€ G such
that g — g, — ++» — 9, € ZR P ZE P + -+, and define p((g,)i-) = 9.
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