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A theorem of R. J. Koch asserts that if X is a compact
space endowed with a partial order /" such that

(i) [ is a closed subset of X X X,

(i) there exists 0 € X such that (0,x)c " for each x € X,
and

(iii) for each xz€ X the set L(z) = {y : ¥y < «} is connected,
then each point of X lies in a connected chain containing 0,
In particular, X is arcwise connected. This is a corollary of
the theorem: if X is a compact space and /' is a partial order
satisfying (i), and if W is an open subset of X such that each
neighborhood of each point & of W contains a point ¥ =+ x
with (y,x)&I’, then each point of W is the supremum of a
connected chain which meets X — W. A new proof of these
results is presented.

The first of these theorems is generalized in several ways,
The compactness is relaxed to local compactness and the as-
sumption that each closed chain has a zero. Moreover, the
existence of a zero need not be assumed. If the set £ of
minimal elements is closed, then £ is joined by connected
chains to all other points of X. If the set function L is
continuous, then F is necessarily closed.

1. A classical problem of topology is to determine when a space
is arcwise connected. Here it will be convenient to adopt the termi-
nology of A. D. Wallace [6] and call a subset 4 of a space an arc if
A is a continuum with exactly two noncutpoints. If A is also sepa-
rable then it is a real arc.

A few years ago R. J. Koch [4] proved a remarkable theorem of
this type. He showed that a compact partially ordered space is arcwise
connected if certain natural conditions are imposed on the partial order.
It is the purpose of this paper to study Koch’s result in detail. His
proof, although ingenious, is long and very complicated. Since the
theorem is fundamental to the structure theory of partially ordered
spaces, and since it has been applied [3, 4, 6] to a variety of problems
in topological algebra, it is of some interest to exhibit a shorter and
simpler proof. This is donein § 2. In the later sections, some gener-
alizations of Koch’s theorem are obtained.
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Perhaps the most celebrated theorem on arcwise connectivity is
the assertion that every locally connected and metrizable continuum is
real arcwise connected. I suspect the existence of an intimate relation-
ship between Koch’s theorem and this result. In the final section of
the present paper, this possible relationship is discussed, but I have
not been able to resolve the question satisfactorily.

2. A short proof of Koch’s theorem. If I" is a partial order
on a set X, we identify I" with its graph and treat the symbols 2 <
¥, xl'y and (x, y)e I’ as synonyms. Recall that a chain of a partially
ordered set (X, ") is a subset C of X such that a/™d or b/'a obtains
for each @ and b in C. We also define

L, N ={xe X:xla},
M(a, ") ={xe X:alx},

for each a€ X. Where no ambiguity may occur we shall write L(a)
for L(a, I') and M(a) for M(a, I'). Moreover, if A C X we define

L(A) = U {L(»):x e 4},
and it is convenient to adopt the notation
[z, ylr = M(x, I') N L(z, I') .

In case X is a topological space, the partial order [I' is continuous
provided I" is a closed subset of X X X. When this occurs, X =
(X, ") is called a continuously partially ordered space. It is well-
known [7] that if X is a continuously partially ordered space then the
sets L(x) and M(x) are closed, for each x ¢ X, X is a Hausdorff space,
and, if X is compact, it admits a minimal element, i.e., an element
having no proper predecessors. A zero of a continuously partially
ordered space is an element which precedes every other element. In
the compact case, a unique minimal element is necessarily a zero.
Finally, we remark that in a compact, continuously partially ordered
space, a connected chain joining two distinet points is an arc. An
are which is also a chain will be termed an order arc or a I'-arc.

(2.1) THEOREM (Koch). Let W be an open subset of the compact,
continuously partially ordered space X, and suppose, for each xc W,
that each meighborhood of x contains an element y with y > x. Then
each xc W is the supremum of an order arc C such that C — W 1is
nonempty.

(2.2) COROLLARY. If X s a compact, continuwously partially
ordered space with zero, 0, such that L(x) is connected for each xec X,
then each xe X — {0} is joimed to O by an order arc.
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The corollary follows easily from Theorem 2.1 by taking W =
X — {0} (see [4]). Our proof of Theorem 2.1 is embodied in two main
lemmas.

(2.3) LEMMA. Let W be an open subset of the compact space X.
If X admits a partial order satisfying the hypotheses of (2.1), then
X admits such a partial order which is minimal.

Proof. Let {I",} be a maximal nest of partial orders satisfying
the hypotheses of (2.1), and let I'y= M {[,}. It is readily verified
that I, is a continuous partial order on X. Let x¢ W and let U be
a neighborhood of z; clearly we may assume that U cC W. Since X
is regular, there exists an open set V with xe¢ V<V U, and since
X is normal, there exists an open set R with X — UcRcRcX—V.
For each «, let 2, be a I',-minimal element of L(x, I",) N V; then there
must exist ¥y, # x, such that

yweL(%,Fa)“RCL(OC,FW)* (RUV) .

Since the closed sets L(x, I',) — (RU V) are nested and nonempty,
there exists ye L(zx, ") — RUV. Thus (y,x)el, y =2, and ye U.
Therefore I, satisfied the hypotheses of (2.1) and is minimal.

(2.4) LEMMA. Let W be an open subset of the compact space X,
and suppose I' is a partial order on X which is minimal with

respect to satisfying the hypotheses of (2.1). Then every maximal
chain of (X, I') is connected.

Proof. If not then the compactness of X guarantees [7] the
existence of elements « and b of X with (a,b)el", ¢ # b, and

[a, b]; = {a} U {b} .

Since X is a Hausdorff space, there are disjoint open sets U and V
with ae U and be V. Let

F={wyeXxX:[2,yl —(UUV)=0}.

A routine argument involving the continuity of /" shows that F is
closed and hence

Ad=T— (U XV — F)

is also closed. Since I' is reflexive and U NV = 0, one sees that 4
is reflexive, and the anti-symmetry of I implies that 4 has the same
property. To see that A4 is transitive, suppose that pdq and q4r but
(p,r)e X x X — 4. Since pl'r, it is clear that
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(p,relUxV —F

and thus [p, v, U UV, so that gqe U or qe V. If ge U then, since
re V and (q, r)€ 4, we infer that (g, r)€ F' and consequently

lg,7]: = (U U V)+0.
But then
[pv/r.]F_(UU V)i(),

i.e., (p, r)e F, a contradiction. A similar contradiction ensues if ge V
and therefore 4 is transitive. ‘

Now let xe€ W and let N be a neighborhood of 2. If ze X -V
then L(x, 4) = L(z, I') and hence there exists ye N, y # =, with y4z.
If xe V then

L@, )NV = L, )NV

and hence the desired y exists in N NV. Therefore 4 satisfies the
hypotheses of (2.1), contrary to the minimality of I.

Proof of Theorem (2.1). In view of Lemma 2.3 we may assume
that 7" is minimal, for any I'-arc will be an order arc with respect to
a partial order which contains I". Let € W and let D be a maximal
chain of X such that xeD. By Lemma 2.4, D is an order arc, and
by hypothesis, C = D N L(x) is nondegenerate and hence C is also an
order arc. Since X is compact, C has a least element which cannot
lie in W,

It should be noted that the chief applications to topological algebra
arise from Theorem 2.1. From a purely topological point of view,
hewever, Corollary 2.2 is the more interesting, and it is this result
which we shall generalize in several ways.

3. A lemma on quotient spaces. If X is a space and F is a
closed subset of X, we denote by X/F the quotient space which is
obtained when F' is identified with a point.

(8.1) LEMMA. Let (X,I") be a continucusly partially ordered
space and let F be a compact subset of X such that F = L(F). Then
X/F is a continuously partially ordered space. If, for each xze X,
it follows that L(x, I') meets F, then F is o zero for X/F. Finally,
1f X is compact and, for each x e X, each component of L(x, I') meets
F, then X/F satisfies the hypotheses of Corollary 2.2 and hence each
point of X/F — {F') 1is joined to F by an order arc of X/F.
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Proof. Define the relation 4 on X/F by pdq provided p,qge X—F
and pl'g, or p=F and L(g, ") meets F. It is clear that 4 is a
partial order, and the proof that 4 is continuous is routine except for
the verification of the fact that if (F, q)¢ 4, then there are open sets
U and V such that qe U, FCV and L(U, ") and V are disjoint. To
see this we note that since I” is continuous and L(g,I") and F' are
disjoint there exist, for each t€ F, open sets U, and V, such that
qe U,, teV, and L(U,, I') and V, are disjoint. Since F' is compact,
a familiar argument shows that the desired sets U and V exist. That
F is a zero if each L(x, I") meets F' is obvious. If X is compact then
so is X/F', and if each component K, of L(x, ") meets F, then

L(x, 4) = {F} U U{K, — F}

is also connected.

(3.2) COROLLARY. If X is a compact and continuously partially
ordered space, if F is a closed subset of X such that F = L(F') and
if, for each we X, each component of L(x) meets F, then, for each
xe X — F, there exists y < x such that y and x are joined by an
order are in X.

Proof. If e X — F, then, in X/F, there exists an order arc 4,
joining F and x. Let ye A, — {z} U {F'}; then y < 2 and an order arc
joing ¥ and « in X/F. Since this arc is disjoint from F, it remains
an order arc in X,

In the following sections we shall also require a simple lemma
about compact partially ordered spaces.

(3.3) LemmA. If A s a closed subset of a compact, continuously
partially ordered space, then L(A) is a closed set.

Proof. Let I' denote the graph of the partial order. Choquet [2]
first observed' that in a continuously partially ordered space the set
functions L and M are upper semi-continuous. Therefore, if x¢ L(A),
there is an open set U with 2e€ U such that M@ N A4 =0 for each
te U. Therefore U N L{A) = 0, so that L(A) is closed.

4. The locally compact case. Very simple examples exist to
show that Koch’s theorem fails if X is assumed only to be locally
compact. For later reference we describe one of these.

(4.1) ExAmpLE. There exists a locally compact and continuwously
partially ordered space Y with zero, 0, such that L(x) s connected,

1 T am indebted to the referee for this reference.
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Jor each xc Y, but certain elements of Y — {0} are not joimed to 0
by an are.

In the Cartesian plane let A_, denote the closed line segment whose
endpoints are (0,0) and (1,0), A4, is the closed line segment whose
endpoints are (1,0) and (1,1), and, for each n=1,2, -+, 4, is the
closed line segment whose endpoints are (1 — 2%, 0) and (1 — 2", 1). Let

X = nL__J_1 {4,} .
In the relative topology X is a compact space. Give X the coordi-
natewise partial order, i.e., (a,b) = (¢,d) if and only if a <c¢ and
b=d. Then it is easy to see that X satisfies the hypotheses of
Theorem 2.1, with the origin for zero.

Now let S be a closed segment of 4, which does not contain (1, 1),
and let Y =X — S. Then Y is a locally compact space which other-
wise satisfies all the hypotheses of Theorem 2.1, but no arec joins 0
to (1, 1).

The space Y is even a topological semi-lattice. The author and
L. W. Anderson [1] have shown that if a connected and locally compact
topological lattice has a zero, then each point is connected by an order
arc to zero, and, under suitable auxiliary hypotheses, the same is true
of locally compact semi-lattices, but our methods depended very strongly
on the lattice structure.

With no additional hypotheses at all, however, some results can
be obtained in the locally compact case, using Lemma 3.1 and Corollary
3.2.

(4.2) THEOREM. Let X be a continuously partially ordered space,
let pe X, and suppose p admits a compact netghborhood N which
contains no minimal elements of X. If L(x) is connected, for each
x€ N, then there exists q€ L(p) — {p} such that q and p lie in an
order arec.

Proof. Let B denote the boundary of N and define
F=LLMPNB)NN.

We assert that L(p) N B is not empty, for otherwise the connectivity
of L(p) insures that L(p) C N; but then L(p) is compact and hence
contains a minimal element of X. But, by hypothesis, N contains no
minimal elements of X. Moreover, since p€ L(p) — B, it follows that
pe L(p) N (N — F). By Lemma 3.3, F is a closed subset of L(p) N N.
If xeL(p) N (N — F) then the connectivity of L(x) guarantees that
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each component of L{x) N N meets F. Therefore, the space L(p) N N
satisfies the hypotheses of Corollary 3.2, and the theorem follows.

Referring to the space Y of Example 4.1, the point (1,1) can
certainly be joined by an order arc to a point (1,1 —¢)< (1,1). In
order to continue this arc on to 0 it is necessary to add some further
hypothesis such as is contained in our next result.

(4.3) THEOREM. Let X be a locally compact, continuously par-
tially ordered space with zero, 0, and suppose L(x) is connected, for
each xe X. If each closed chain of X has a zero, then each ve X —
{0} is joined to 0 by an order arc.

Proof. If ze¢ X — {0}, then Theorem 4.2 assures us that z is the
supremum of a nontrivial connected chain. Let C be a maximal such
chain; by hypothesis, z(C), the zero of C, exists. If 2(C) = 0, then
another application of Theorem 4.2 produces a nontrivial connected
chain D, of which 2(C) is the supremum. But the chain CUD is
connected and thus contradicts the maximality of C. Thus C is an
order arc joining « to 0.

We note that Theorem 4.3 truly generalizes Corollary 2.2 because,
in the compact case, every closed chain has a zero.

Problem. Does Theorem 4.3 remain true if the hypothesis that
each closed chain has a zero is weakened to “each chain has an infimum”?

5. Partially ordered spaces without zero. Let K be a continuum
which contains no are. Select x,€ K and define # < ¢ if and only if
Yy =, or ¥y = x. With respect to this relation K is a compact continu-
ously partially ordered space in which each set L(x) is connected but
in which there are no arcs. Thus we cannot infer the existence of
order arcs without some restrictions on the set of minimal elements,
but the hypothesis of Corollary 2.2 that there is only one minimal
element is unduly restrictive.

(5.1) THEOREM. Let X be a compact, continuously partially
ordered space tn which L(x) is connected, for each xe X. Let E
denote the set of minimal elements of X, and suppose, for each
xe X —E, that e X — CU(L(x) N E). Then each xe X — K is joined
by an order arc to some element of E.

Proof. Let xe X — E; since L(x) is also a compact, continuously
partially ordered space, L(x) N E is not empty. Let

E, = L(CUL(x) N E))
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and note that xe L(x) — E, and, by Lemma 3.3, that E, is closed.
By Corollary 8.2, « is the supremum of a nondegenerate connected
chain. The proof now follows that of Theorem 4.3. If C is a maximal
connected chain such that z = sup C, then by compactness C has a
zero which, by maximality, is a member of K.

(5.2) COROLLARY. Let X be a locally compact, continuously
partially ordered space im which each closed chain has a zero, and
iwn which, for each xe X — E, it follows that xe X — Cl(L(x) N E),
where E denotes the set of minimal elements of X. If L(x) ts con-
nected, for each xe€ X, then each xe X — E 1is joined by an order
arc to some element of K.

Proof. If xe X — E then by Theorem 4.2, x is the supremum
of some nondegenerate connected chain. If C is a maximal chain with
this property, then C is closed and, by maximality, its zero is an
element of FE,

(5.3) COROLLARY. Let X be a locally compact, continuously
partially ordered space in which each closed chain has a zero, and
i which the set E of minimal elements is closed. If L(x) is con-
nected, for each xe X, then each xe X — E 4s joined by an order
arc to some element of H.

Some authors have called a partial order on a space “continuous”
if the set-valued mapping L is continuous in the following sense: that
each set L(x) is closed and, if U and V are open sets such that
L(z) c U and L(x) meets V, then there exists an open set W containing
2 such that, if ye W, then L(y)C U and L(y) meets V. If a partial
order satisfies this condition, let us say that the space is an L-con-
tinuous partially ordered space. It is a simple exercise to verify
that L-continuity of a partial order implies continuity. (See Choquet

[2])

(5.4) THEOREM. If X is an L-continuous partially ordered
space, then the set E of minimal elements of X is closed.

Proof. If xe€ X — E then there exists p < ¢ and hence, if U is
a neighborhood of p, L(x) N U is not empty. We may select U such
that xe X — U. By L-continuity, there exists an open set W such
that ke W X — U and, for each te W, L(t) N U is not empty. In
particular, L(t) is nondegenerate and hence W N E is empty.

(5.5) COROLLARY. If X 4s a locally compact, L-continuous par-
tially ordered space im which each closed chain has a zero, and +f



CONCERNING KOCH’S THEOREM ON THE EXISTENCE OF ARCS 355

L(x) s comnected, for each xc X, then each non-minimal element of
X 1is joined by an order arc to some minimal element of X.

6. Concluding remarks. We return to consideration of the
theorem that a locally connected, metrizable continuum is real arcwise
connected. The problem we wish to raise may be put in this way:
Does Koch’s theorem tmply the arcwise connectivity of such continua?l
Since Mardesic has shown [5] that the natural analog of this result
fails in the nonmetrizable case, metrizability (or some slightly weaker
condition) must certainly be assumed. Now it can be shown that any
locally connected continuum admits a nontrivial quasi-order (i.e., a
reflexive, transitive relation) which is continuous, has a zero, and is
such that each set L(x) is connected. By an argument similar to that
of Lemma 2.3 one can find a minimal quasi-order with the same
properties. If, under suitable conditions, this minimal quasi-order is
found to be a partial order, then arcwise connectivity would follow
from Corollary 2.2.
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