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UNIMODULAR SOLUTIONS OF INFINITE
SYSTEMS OF LINEAR EQUATIONS

DONALD C. BENSON

It is well known that if a series of real numbers ΣΓ=i an

converges, but not absolutely, then for any b, there exists a
sequence {Xi}, Xi = ± 1 , such that 2?=i&A = b. In § 1, a
criterion is given on a system of denumerably many equa-
tions of this type, with real coefficients, so that solutions
Xi = ± 1 exist for arbitrary right hand sides. A sequence
{Xi} such that Xi = ± 1 will be called unimodular. In § 2, there
results are extended to finite systems, and it is shown that
an infinite system has unimodular solutions for arbitrary right
hand sides if and only if every finite subsystem has this
property. § 3 shows that if a system satisfies the criterion
of § 1, then, in a certain sense, "almost any" sequence {#;},
Xi = ± 1 , "satisfies" the system for any choice of right hand
sides. In § 4, conditions are given whereby infinite systems
can be constructed which satisfy the criterion of §2. It fol-
lows, for example, that the system

Σ (-l)C i / 2 i ]i"%- = hi , i = 1, 2, 0 < a g 1
3=1

has solutions (Xi — ±1) for any hi (ΐ = 1, 2, •). The hi are
allowed to be real numbers or ±oo.

1* The main theorem* THEOREM 1. Let ai5 (i, j = 1, 2, 3, •)
be real numbers such that there exist xjkι (j = 1, 2, •••;& = 0 , 1 , 2,

I — 1, 2, •) which satisfy the following conditions:

1. Each xm is equal to + 1 or — 1.

2. Σaijχ3ki converges for all i such that i Φk and i ^ I.
3=1

3. Yiai3x3\i diverges to +co.
3=1

Then, for any sequence {6J, the infinite system of equations

(1) Σ<%αy = δi
3=1

can be solved such that for each i, xi— ± 1 . Here, bi is allowed to

be either a real number or ± o o .

Proof. If k Φ i g I, for any ε > 0 there exists N(ε; i, k, I) such
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that

(2)

DONALD C. BENSON

Σ an*,:•kl < ε and I ain | < ε/2 ,

provided m,n> N(e; i, k, I).
We define the solution {x{} inductively along with positive integers

Mnm which will be defined whenever n is a positive integer and m is
a nonnegative integer such that m ^ n. The ordered pairs (n, m)
are ordered lexicographically, i.e., (n, m) < (nl9 mj if and only if
either n < nu or w = n± and m < m1# The induction will be with
respect to this order.

The following definitions will be used with m g n and i tSz n:

bi if bi is finite

Binm = •! ±n if bi — ± co and i ^ m ,

K ± (w — 1) if 6* = ± co and i > m

b{ if 6; is finite

± (% — 1) if i — m and ^ ^ = ± 0 0

(2(m - i) + l)/n2 if i < m

JL̂/ p Li litj ϊv LL V ^~ lib

( 3 )

( 4 )

( 5 )

Let us suppose that positive integers Mnm have been defined for
(n, m) ^ (s, ί), and ^ for i ^ JkΓβί such that the following conditions
are satisfied:

(A) Mnm < Mpq if and only if (n, m) < (p, q).

(B) Mn0 ^ ΛΓ(1M2; ΐ, fc, w) for all if k ^ n (i ^ k).

( C )

( D ) If i ^ w - 1 and M% m ^

where m Φ 0.

^ , ^ ! if m 0

then

(Dl) Ainm - din

and

(D2) Binm -
inm

ίn-lιn-! if m = 0,

We wish to determine Muυ where (u, v) is the immediate successor
of (s, t), and a?if i = Mst + 1, , Muυ, such that the conditions (A)-(D)
are valid for all {n9 m) ^ (u, v). There are two cases to consider.
Either we have s — t, or s > t.
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Case I. s — t. In this case the immediate successor of (s, t) is
(s + 1, 0). Putting M8+1,o equal to the largest of the numbers Mss + 1
and N(l/(s + I)2; i, k, s + 1) for all ί, k ^ s + 1 (i Φ k), we see that
(A) and (B) will be satisfied.

We now put xό = xj0SJ (j = Mss + 1, , M8+1.o). Condition (C)
remains satisfied because the newly defined quantities do not occur
in (C). Condition (B) holds with n = s by the inductive assumption.
Therefore, | Σ;=*+i anχjo8 I < 1/s2, provided k, I > Mss and i ^ s. We
have diss = (2(s — ί) + l)/s2, 3,Ls+lι0 = 2(s + 1 — ί)/s2, and hence δ ί i β + l i 0

— 5ίβ8 = 1/s2. From the equality Aίss = 5 ί s s = A i fβ+ l l0 = Bi>s+lι0 for i < s,
we see that (D) holds with i < s. It must be shown that (D) holds
with i — s. We have also S s s s — BS)S+1>0 — A8f8+lt0. Recall that

I

V a Ύ <^ 1 /Q2

Since 3β,β+1,0 = 2/s2 and (C) holds with ΐ = s, the result follows, namely
that (D) holds with i = s. This disposes of Case I.

Case II. s > t. The immediate successor of (s, t) is (s, t + 1).

We use the fact that ΣΓ=i αί+i,i^i,ίfi,s = +co.

Subcase IIA. For some I > Mst we have

z
< 1/s2 .

In this case, we put I = M s, ί + 1 and xy = x ios, i = Mβί + 1, , MS ) ί + 1.

Subcase ΠB. If the above never happens, then

I

must keep the same sign for all I > Λfβt, because, for j > Λfβt, we
have | α ί 4 1 > i | < l/2s2, from inductive assumption (B).

Let σ— ± 1 , depending upon whether the sign stays + or —.
Because the series ΣΓ=i at+i,3 %d,t+i,8 diverges to + oo, there exists iΓ > M s ί

such that

(6) Σ ^+i,i»io. + ._Σ+ i^+i,^i, ί +i, s > o

for all I > K. Let iΓ0 be the smallest number K with this property.
We put xd = xjos, Mst < j < Ko, and xά = - ^ , t + 1 , s , i = Ko, , Ms>t+U

where the integer M8,t+1 will now be defined. Because ΣF=i at+i,jχj,t+i,s
= + co, and I at+ltj \ < l/2s2 for j > ikΓsί, there exist integers M > Mst
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such that (C) is satisfied for n — s, m = t + 1 and Λfβlt+1 — M. Let
M s > i + 1 be the smallest integer with the above property.

It will be shown that conditions (A)-(D) hold for both subcases.
Conditions (A) and (B) are evident. Condition (C) follows immediately
from the construction above. Condition (D) is somewhat more difficult.

It will be shown first that (D) holds with i=t+l9n = s9m —
ί + 1. We may suppose i ^ n — 1, i.e., t + 1 ^ s — 1. We have

( 7 ) δ ί + 1 > s > ί + 1 - δ ί + 1,S ) ί = 2/s2 ,

and

From inductive assumption (D), we have

( 8 ) Σ^ί+1 - 2/s2 .

Thus, in Subcase ΠA with Mst < j ) | Ms,t+1, and in Subcase IIB, with
Mst< p< Ko< M.,t+U we have

P

Σ - 1/s2 .

This disposes of Subcase IIA, because the above inequality is stronger
than (D). It must be shown now that (D) holds for Ko g p g Matt+U.
with ί~t + l, n = s,τn, = t + l.

From the inequalities,

V

Σ ^ί+l,i%,i + l,s = " >

(where an empty sum is taken to equal zero), it follows that we have

(P S M.,t+1)

(10) = Σ + i α^iXi.. - g a i+1,yxy, i+liS

3>

_ V v 4- 9 I π

P

- Σ α ,χ. + l/s2

using (B) and the definition of xjf Mst < j S Ms>t+1. Now, from (6), we :

have
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P P

(11) — Σ at+i % t s < — & Σ a •%- .
j = Mst+l ' ' ' j = Mst+l

Combining (1), (11) and (B), we have

(12) σ _ Σ at+i,3%j < ~ σ . _ Σ at+u3%3os + 1/s2 < 2/s2 .

From (8), we have

Mat

(13) σ Σ at+i,i»j < 0At+lt8,t+1 + δ ί + 1 , s , ί + 1 - 1/s2 .

3=1

Putting (12) and (13) together, we have

V

(14) σ Σ α ί + i,Λ < 0At+lt8,t+1 + δ ί + l f β f t + 1 .
J = l

From the definition of σ and the fact that if At+UStt+1 Φ Bt+lt8,t+1, then
I At+lt8tt+1 - Bt+1>S)t+11 = 1, it follows that σ(At+ltStt+1 - Bί+1,s,ί+1) ^ 0.
Thus (Dl) or (D2) must be demonstrated, depending on whether σ —
- 1 or + 1 .

If σ — — 1, we have from (14)

which is half of (Dl). From the definition of M8tt+U we have

V α x <C B + 1/s2 <C B | j A

provided Mst < p ^ Λfβ,t+1, which gives the remaining half of (Dl).
Similar considerations show that if σ — 1, then (D2) holds. This con-
cludes the demonstration that (D) holds with i — t + 1, n — sf m —
t + 1.

It remains to show that (D) holds for ίΦt + 1, n = s,m = t + l,
0 ^ o JL.

We have dit8,t+1 — δί>sU = 2/s2, so that it is sufficient to show

(15)
P

Σ <
j-=M8t + l

< 2/s2

for Mst < p ^ ikfβ,t+1.
In Subcase ΠA, we have, using (B),

(16) Σ CL:ό9C on < 1/s2 .

In Subcase ΠB with p < Ko, (15) is valid once again because (16)
holds.
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In Subcase ΠB with p ^ KQ, we have

(17) Σ ^ij^j(LuXi Σ π .v .

j = Mst+l

because of (B). This concludes the demonstration of Case II.
The definition by induction is completed by setting M01 = N(l; 1, 0,1)

and observing that thereby (A)-(D) are satisfied with n= l,m = 0,ί = 1..
It remains to show the sequence {#J constructed in this way sa-

tisfies the infinite system of equations (1). However, this follows from
the fact that {xj satisfies condition (D).

2* Systems with finitely many equations* The extension of
Theorem 1 to systems with finitely many equations is accomplished
by producing an infinite system which can be treated by Theorem 1
and which is equivalent to the given finite system.

THEOREM 2. Let aiά (i = 1, , R; j — 1, 2, •) be real numbers
such that there exist xjk (j — 1, 2, k — 0, 1, , R) which satisfy
the following conditions:

1. Each xjk is equal to + 1 or — 1.

2. Σ aijχjk converges for all i such that i Φ k.
oo

3. 2 aijχji diverges to + ° ° .

Then, for any numbers blf , bRi each of which is a real number or
±co, the equations

(18)

c a n be solved such t h a t for e a c h if x i — ± 1 .

Proof. We construct an auxiliary infinite system of equations

3=1

(19) Σ
3=1

We define βi+nB — b{ for any nonnegative integer n, and

(20) ai+nB>ι

where T(n) — n(n + l)/2 is the wth triangular number. The fact to

'aik if there exists k > 0 such that

I = T(k + n - 1 ) + n - 1 and

k0 otherwise,
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be used about T(n) is that each positive integer has one and only one
representation in the form T(k + n — 1) + n — 1 = S(k, ri), where k
and n are positive integers.

Let us define ξjkι = ξjk as follows:

xki if there exists k > 0 such that I = S(k9 ri), and

ίCjfco if I = S(fc, m), n Φ m > 0 .

Then we have
1. Each ξjk is equal to + 1 or — 1 .

CO

2. 2 αΰ?i/c converges for all i such that i Φ k.2
3=1

oσ

3. ΣaCijξji diverges to +co.
5 = 1

The hypotheses of Theorem 1 are satisfied, and therefore the system
(19) has a solution {?,-}. Then x5 — ξT{j)y j — 1, 2, , is a solution of
(18).

COROLLARY. The system (1), with arbitrary right hand sides, has
a unimodular solution if and only if every finite subsystem of (1),
with arbitrary right hand sides has a unimodular solution.

A system of nondenumerably many equations of the type described
in Theorem 1 will never have unimodular solutions for all possible right
hand sides, because the number of ways in which the right hand sides
could be prescribed would have cardinality greater than C, whereas
the cardinality of all unimodular sequences, x{ — ± 1 , i — 1, 2, •••, is
equal to C. (Here C denotes the cardinality of the continuum.)

3* The metric space Λ£. The set of sequences {xj, x{ = ± 1
form a complete metric space under the metric

diiXi), {x-}) = lβ ,

where I — min {i : x{ Φ #•}.
Let a o satisfy the hypotheses of Theorem 1. Let Ui9 i = 1, 2, ,

be nonempty open sets of extended real numbers. (£7, may contain
-{-co or — co.) Let ^Vu be the set of sequences {ccj such that for all
N ^ M, Σί=i ^jχj $ ui fo r s o m e i (0 < i ^ M).

Λ^u is closed. For suppose {xΊ} e ^M and lim^^ d({x*}, {x{}) = 0.
Also, suppose there exists N ̂  M such that Σf=i aijχj e ^ ί ° r each
i (0 < i ^ M). For sufficiently large n, we have xό — x*, j ~ 1, , N,
and hence we get Σf=i α ΰ x i G ^ (0 < ̂  = -^)> contrary to the assump-
tion {x"}e ^KM.

is nowhere dense. For suppose {ccj e ^ i Let b{ be an
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arbitrary element of Z7i# For any P > 0, there exists, because of
Theorem 1, a sequence {x{} such that

1. x'i = xi9 i — 1, 2, , P, and

2. J>,X = K
Clearly, {&<} ί ^ i and d({x{}, {&{}) < 1/P.

Thus the set Uϊ=i ^x = - ^ ί s o f t h e first category, and since
^/f is a complete metric space, ^ — < ^ is of the second category.
We have proved the following:

LEMMA 1. For any sequence {xn} in ^/f — <yV" there exists an
infinite monotone increasing sequence {Nk} of positive integers such
that for each k, Xfi3 ai5x5 e U{ for i g k.

For any sequence {&<} of extended real numbers we may take U"
as follows:

{x: I x - bi \ < IIn) if bi is finite

{x: ±(x - bi) > n} if bi = ±&> .

By applying the lemma for each n to {U*} 0 < i < ©o ? we find that
there exists a monotone increasing sequence of positive integers {Sk}
such that

(23) Σ dijXj eU* f o r i ^ k .
3=1

From (22), it now follows that we have

Sk

lim 2 ^i^i = δ̂  for every i > 0 .

In summary, this proves the following:

THEOREM 3. Let aiό satisfy the hypotheses of Theorem 1. Then
there exists a sequence {χ.}9χ.= ± 1 , with the following property.
{Indeed, any sequence {x^ in the complete metric space ^Jt, apart
from a certain set of first category, has this property.) For any
sequence {ί>J of extended real numbers, there exists a sequence of
positive integers {Sk} such that for each i,

Sk

lim Σ dijXj = b{ .

4* Sufficient conditions* In this section we shall find sufficient
conditions on the coefficients a{i so that the hypotheses of Theorem 1
are satisfied.
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THEOREM 4. Let {αj be a sequence of real numbers such that

( i ) α< > 0
oo

(ii) Σ α i = °°

(iii) .For every fc Ξ> 1, α{ — α i+/c is monotone decreasing in i.

(iv) α{ ίe^ds monotonically to zero as i —> oo.

Lei α o = ( — l)Cj'ma,,-. Then au satisfies the hypotheses of Theorem 1.

Proof. We must find sequences {xjkι), l ^ i < ^o, 0 ίg & < co, 1 fg
I < °°, such that conditions (1), (2) and (3) of Theorem 1 are fulfilled.

k — 0. First we show that by putting xjoι — 1, the conditions are
satisfied for k — 0. Condition (3) is fulfilled vacuously and condition
(1) is trivial.

It will be shown that condition (2) holds, i.e., that Σ ^ i ί
converges for each i. Let

(24) (-l)kh

Then we have

( + )

(25) δft = Σ «i > 0 .
j = k 2ι

From (iv), bk is monotone decreasing, and hence ^( — l)kbk converges.
The condition (2) follows because

(26) Σ ( - l ) * δ ί = Σ (-l) κ / i i ] αj .
i=i i=o

& ̂  0. Let xjkι = (- lp 7 2 f c ] . Since it is assumed that ΣΓ=i ^ = °°,
we have ^?=iaijxju — °°> a n ( i thus condition (3) holds.

We will show (2) holds and thereby complete the proof by showing
that

(27)
i=i

converges if i > k. We have

(28) [i/2*] + [i/2fe] = [(i + 20/2*] + [U + 20/2*] - 1 - 2*"*

and

(29) (

Putting

( ϊ i + l ) 2 1

(30) (-l)"c,= Σ ( -
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we have

(31) c . =

Evidently c% is positive. Also, cn is monotone because, from (iii)r

ai — ai+2k is monotone decreasing in i. Thus Σn=i( — VΓC* converges.
Since we have

(32) Σ ( ) ^ I
3=1 3=0

it follows that (27) converges if i > k. This concludes the proof of
Theorem 4.

The sequence ai — l/ia, for positive a ^ 1, is an example satisfy-
ing (i)~(iv) of Theorem 4.

This result can be extended with the help of Abel's test for con-
vergence.

THEOREM 5. Let {αj satisfy the hypotheses of Theorem 4. Let
{viό}, i, j — 1, 2, satisfy the following:

1. v{j > 0.
2. For each i, {vi3) is monotone (increasing or decreasing) with

respect to j .

3. Σ aάviά = °o far each i.
3=1

Then ( — l)ul2i]ajVi:} satisfies the hypotheses of Theorem 1.

Proof. We take the same definition for xjk as in Theorem 4.
Then ΣΓ=i aijχjk converges for i Φ k by AbeΓs test. Further, we
have

Σ Wai = Σ aPii = + °°

We obtain a result which allows us to transform any array of
coefficients aiS which satisfies the hypotheses of Theorem 1 into a
different array satisfying the same conditions. First we need a lemma
which is related to AbeΓs test for convergence.

LEMMA 2. Let {vj be a monotone decreasing sequence of real
numbers which is bounded away from zero; i.e., there exists b such
that 0 < b ^ vt for all i. Suppose ΣΓ=i ^ = + °° Then ΣΓ=i ^ A =
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Proof. Let sn = Σ?=iα*> a n ( * l e t K = inΐk^nsk. We have, iim^p,

(33) 2 α ^ = s»ί(v1 — v2) + + Sp-^^j,-! — f p) + spvp

The result follows because hm —> ©o as m —> co.

THEOREM 6. Lei αΐy satisfy the hypotheses of Theorem 1. Lei
wo satisfy the following:

1. There exist ci such that 0 < c{ ^ vi3- for all positive integers
i and j .

2. For each i, {vi3) is monotone decreasing with respect to j .

Then ai3vi3- satisfy the hypotheses of Theorem 1.

Proof. The conditions are satisfied by using the xm which are
assumed to exist in Theorem 1. We have that ΣΓ=i aijvijχjki converges
if i Φ k by Abel's test and diverges to + co for i — k by Lemma 2.

UNIVERSITY OF CALIFORNIA, DAVIS





PACIFIC JOURNAL OF MATHEMATICS

Vol. 15, No. 1, 1956

TRANSITIVE GROUPS OF COLLINEATIONS

ON CERTAIN DESIGNS

RICHARD E. BLOCK

Let M — (dij) be an mxn matrix with entries in {1, —1}.
Suppose that there is a positive integer d such that the inner
product of every pair of distinct rows of M is n — 2d; this is
equivalent to assuming that any two distinct rows have Ham-
ming distance d, i.e. differ in exactly d places. The rows of
M form the code words of a binary code; such a code is called
a (binary) constant-distance code, of length n and distance d.
Special cases of matrices which may be taken to be M are
the Hadamard matrices, which are defined by the condition that

m = n = 2d, and the incidence matrices (written with ± 1) of
balanced incomplete block designs, which are characterized by
the property that all column sums are equal and all row sums
are equal.

Suppose that π is a permutation of {1, ••-,%} such that
replacement, for i = 1 , n, of the π(i)ih column of M by the
iίh column of M sends each row of M into a row of M. Then
π induces a permutation of the rows of M. Call such a pair
of permutations of the columns and of the rows a collineation
of M, or of the code. We shall examine constant-distance
codes with a group G of collineations which is transitive on
the columns. We shall show that G has at most two orbits on
the rows (just one orbit if and only if M comes from a ba-
lanced incomplete block design), and that if G is nilpotent then
at most one of these orbits contains more than a constant
row.

Moreover, it will be shown that this last conclusion need not
hold if G is not assumed nilpotent; this will be done by giving an infinite
class of Hadamard matrices with doubly transitive collineation groups.

One way of obtaining a constant-distance code with a transitive
group on the columns is the following. Given a (cyclic) (v, k, λ) dif-
ference set, write a v-tuple of Γs and -Ps with 1 in the k places which
corresponds to elements of the difference set, and repeat this 'y-tuple
s times to obtain a vs-tuple. The set of all cyclic permutations of
this ws-tuple forms constant-distance code with v code words and
distance d = 2(k — X)s. Call such a code an iterated difference set
code. The code is closed under the cyclic shift (the permutation π =
(1, 2, , vs) on the columns).

Our results imply that, conversely, any constant-distance code which

is closed under the cyclic shift consists of repeated cyclic shifts of

Received December 20, 1963.
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some single word, plus possibly a single constant word. The main part
of the code is thus an iterated difference set code; the extra word
can occur if and only if the parameters (v, k, λ) are of Hadamard
type.

2. The number of orbits on the rows*

THEOREM 1. Suppose that G is a group of collineations of a
constant-distance code. If G is transitive on the columns then G has
at most two orbits on the rows.

Proof. Suppose that G has t orbits Tu , Tt on the rows. Then
there are integers r* such that each row in T{ has exactly ri Γs,
i = 1, , t. It follows that if ai and a3- are rows and ai e Tiy a3- e Tjf

and if c(aif a3) is the number of places in which both a{ and a3 have
1, then r{ + r3 — d + 2c(ai9 a3 ) , or c(aif a3) — (ri + r3 — d)/2. Let vi

denote the number of words in T{. Since G is transitive on the
columns, for each column there are the same number fc^ of words in
Tί with 1 in that place; we have ki = ViTjn, where n is the length
of the words. Thus the words in Ti form the incidence matrix of a
balanced incomplete block design with λ = ri — (eZ/2). Now suppose
that t ^ 2, that Tt and T3 are distinct orbits and that a e T3. Count-
ing in two ways the total number of times in which words in T{

have a 1 in the same place as a 1 in a, we have vί(ri + r3 — d)/2 —
Tjkim Thus, since ki — v^^n,

(1) &ι±*^l*L = r%rj .
Li

Suppose that, ri Φ n. Then for some prime p, with pe and pf the
highest powers of p dividing n and rif respectively, one has e > /.
Since v^{ — nk{ and

(2) r,(fc4 - 1)

p\(vi- 1) and pf \ rt - (d/2). If r{ = r3- then the left side of (1) is
divisible by pe+f, the right side only by p2f, a contradiction. Hence
Ti Φ r, if i Φ j . Also r{ Φ n/2, since otherwise, by (1), r{ = n/2 — d
and kt = vJ29 contradicting (2). Thus rd is uniquely determined in
terms of rt by (1). It follows that t ^ 2, and the theorem is proved.

If there is only one orbit, then, as shown in the above proof, M
is the incidence matrix of a balanced incomplete block design. The
next result is the converse.



TRANSITIVE GROUPS OF COLLINEATIONS ON CERTAIN DESIGNS 15

THEOREM 2. Suppose that G is a group of collineations of a
balanced incomplete block design. IfG is transitive on the blocks then
G is also transitive on the points.

Proof. The incidence matrix of the design is a constant-distance
code with d = 2(r — λ). If G had two orbits on the points, then r1 —
r2 — r. But by the proof of Theorem 1, r1 Φ r2, a contradiction. This
proves Theorem 2.

COROLLARY 1. Let G be a group of collineations of a constant-
distance code. Suppose that G fixes c columns and is transitive on the
remaining columns. Let q be the number of different c-tuples in the
rows of the submatrix formed by the c fixed columns. Then G has at
most 2 q orbits on the rows; if moreover the code corresponds to a
balanced incomplete block design, then G has exactly q orbits on the
rows (points).

Proof. The set of rows with a given c-tuple in the fixed columns
must be closed under G; deleting the fixed columns from these rows,
one obtains a constant distance code with a transitive group of colline-
ations. The result now follows immediately from Theorems 1 and 2.

These results are a partial generalization to nonsymmetric designs
of a theorem proved by Dembowski [2], Hughes [3], and Parker [4],
which says that for a symmetric design, the number of orbits on the
points is the same as the number of orbits on the lines. However
there are balanced incomplete block designs with a group of colline-
ations which is transitive, even cyclic, on the points, but not transitive
on the lines.

3. Codes with a nil potent transitive group. In this section we
assume that M is an m x n matrix whose rows form a constant-distance
code with distance d, and that G is a group of collineations which is
transitive on the columns. Let H denote the subgroup of G fixing
the first column. We shall continue using the notation Tif vit ri and
ki introduced in the above proofs.

THEOREM 3. Suppose that T1 and T2 are distinct orbits ofG (on
the rows). For i = 1, 2, take ai in Ti and let St be the subgroup of
G fixing a{. Suppose that p is any prime such that the highest
power pj of p dividing n does not divide d. Then, either for i — 1
or 2, Si contains the normalizer of a Sylow p-subgroup of G, p | vi — 1,
and pj I r{.

Proof. If the orbit T{ is trivial (consists of a constant word) then
Si = G and the conclusion is obvious. Thus suppose that both orbits
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are nontrivial. Take a prime p such that pj, the highest power of p
dividing n, does not divide d. Let pe and pf be the highest powers
of p dividing rλ and r2, respectively; by choice of notation we may
suppose that e f£ /. J5y (1), pι \ r±r2.

Suppose first that p\vλ — 1 and p)fv2 — l. Then by (2), pe\[r1 —
(d/2)] and pf \ [r2 - (d/2)], so that p ' | (d/2) and p e | r, + r2 - d. If p>2
then p j + e divides the left side of (1) while pe+f is the highest power
of p dividing the right side; hence / ^ j , so that pj \ d, a contradic-
tion. If p = 2 then p6"11 [(rx + r2 - d)/2] and p ^ 6 " 1 divides the left
side of (1), so that /*> i — 1, p-*"11 (d/2) and p y | c£, again a contradic-
tion.

Hence p \ v{ — 1 for some i, with i = 1 or 2. Then since
p|([G : Si] — 1), 2>t [G : SJ and Si contains a Sylow p-subgroup of G.
Suppose that K is any subgroup of G, and consider the orbits of K
when Jf is regarded as a permutation group on the columns. For each
of these orbits there is an x in G such that the number of elements
in the orbit is [K: K Π xHx'1]. If pι is the highest power of p divid-
ing \H\ then pj+ι is the highest power of p dividing \G\. Hence if
K contains a Sylow p-subgroup of G then pj \ [K: K Π xHx'1] for any
cc. Taking K = Ŝ  we see that p j | r f, since the set of places where
cti has 1 is a union of orbits of Sλ (on the columns). If g e G and
g £ Si then ga{ Φ aiy and gS{g~x is the subgroup of G fixing #c^. If
moreover gS^'1 contains a Sylow p-subgroup of Sif then p j divides
the number of elements in each orbit (on the columns) of S{ Π gS^'1.
But the set of places where a{ and ga{ disagree is a union of orbits
of Si (Ί gSig'1, so that pj \ d, a contradiction. Therefore no Sylow p-
subgroup of Si is contained in a conjugate of S{. Suppose that P is
a Sylow p-subgroup of St (and so also of G), and that xeNG{P), the
normalizer of P. If x £ S{ then xS^-1 Φ S{ but P = xPx~τ £ xS^"1, a
a contradiction. Hence NG(P) S S^ and the theorem is proved.

COROLLARY 2. If G is a nilpotent group of collineations of M
which is transitive on the columns, then either G is transitive on the
rows or one of the two orbits of G on the rows consists of one trivial
row.

Proof Unless M has only the two trivial rows, there is a prime
p such that the highest power of p dividing n does not divide d. Since
a Sylow p-subgroup of a nilpotent group is normal, if G is not transi-
tive on the rows then by Theorem 3, G fixes a row. This proves the
result.

Now suppose the constant distance code is closed under the cyclic
shift π = (1, 2, •• , n). If a is a code word with r ones, then a
must be periodic of (minimal) period v, a divisor of n; write v = n/s*
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A single period of a gives a (v, k, λ) difference set with k — r/s and
X = [r — (c£/2)]/s. Thus the set of cyclic shifts πιa or a forms an s-
times iterated (v, k, λ)-difference set code; solving k(k — 1) = X(v — 1)
for s, one has s — n + [2r(r — n)jd\. By Corollary a, either this set
is the entire code or there is one more word, with all Γs or all — Γs.
If the extra word has all — Γs then r = d, λ = d/2s, and from
k(k — 1) = X(v — 1) one obtains n/s = 2d/s. Hence, with d/2s = u, one
would have v = Au — 1, & — 2% and λ = %„ If on the other hand the
extra word has all Γs, then we have the complement of a code of the
above type, and v — 4% — 1, k = 2u — 1 and λ = u — 1.

The above characterization of constant-distance code closed under
the cyclic shift was conjectured by the writer and proved independently
at the same time by the writer [1] and R.C. Titsworth [5]. Titsworth's
proof uses arguments on polynominals dividing xn — 1.

3* Hadamard matrices and codes with two orbits* In this
section we give a class of Hadamard matrices with doubly transitive
collineation groups, and use these matrices to obtain a class of constant-
distance codes with a transitive group on the columns for which the
conclusion of Corollary 2 does not hold.

Let A be the Hadamard matrix of order 4 with 1 on the diagonal,
— 1 elsewhere, and let B — B(s) be the tensor product of s copies of
A.

THEOREM 4. For any s, the group G of collineatίons of B(s) is
doubly transitive on the columns (and also on the rows).

Proof Denote the rows and columns of B by θ-tuples, so that

K , is; jlf ••-,./, = ailf h a h , h a i s , h .

The result is obvious when s = 1. Suppose 8 = 2. We shall show that the
subgroup H oί G fixing the column (1, 1) is transitive on the remaining
columns. If τλ and τ2 are any permutations on four letters then the
permutation of columns sending (il9 i2) to ( r ^ ) , τ2(i2)) is a collineation
of B, sending row (il9 i2) to row ( r^ i j , τ2(i2)); denote this collineation by
(τlfτ2). It can be verified that the product of four transpositions of col-
umns σ = ((1, 4) (2, 3))((4,1) (3, 2))((1, 3) (2, 4))((3,1) (4, 2)) is a collineation
of B; also, σ e H. Taking σ and its products with various (τlf τ2), we
see that all columns other than (1, 1) form a single orbit of H. More-
over some (τl9 τ2) moves column (1, 1), so that G is transitive, and
hence doubly transitive. Now suppose that s > 2. If τ is a collinea-
tion of JB(2) and if a set of two column coordinates of B(s) is given,
then a collineation of B(s) is obtained by applying τ to the given
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column coordinates while keeping the remaining ones fixed. Using this
type of collineation, we see that the subgroup of G fixing column
(1, •••, 1) is transitive on the remaining columns. Hence G is always
doubly transitive on the columns, and, by symmetry, also on the rows.
This completes the proof.

COROLLARY 3. For every power 4s o/4(s > 1), there is a constant-
distance code with 4s words of length 4s — 1 , such that the group of
collineations is transitive on the columns but has two nontrivial
orbits on the rows.

Proof. The matrix B(s) is Hadamard, and hence its rows form a
constant-distance code. Complement the rows with a + 1 in column
(1, * ,1) and then delete this column. What remains is still a con-
stant-distance code; call it C. The subgroup of G fixing (1, * ,1)
clearly gives a group of collineations of C which is transitive on the
columns. Moreover the set of uncomplemented rows is closed under
the group, so the group has two nontrivial orbits. This completes the
proof.

Let G and H continue to have the same meanings as in Theorem 4.
It follows from Corollary 2 and the proof of Corollary 3 that H is not
nilpotent. However it can actually be shown that the subgroup K of
H fixing column (1, 2) is isomorphic to S6, being generated by σ and
certain (τl9 τ3)'s. Hence when s = 2, G has order 16 15-720. Also it
follows that if s > 1 then G contains a subgroup isomorphic to S6

which fixes 2 4S~2 columns.
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EXISTENCE OF BEST RATIONAL TCHEBYCHEFF
APPROXIMATIONS

BARRY BOEHM

Some conditions are given which guarantee the existence
of best Tchebycheff approximations to a given function / by
generalized rational functions of the form

Kx) ~~ bMx) + + bjιm{%)

The principal theorem states that such a best Tchebycheff ap-
proximation exists whenever /, gί9 , gn9 hu , hm are bounded
continuous functions, defined on an arbitrary topological space
X, and the set {hl9 , hm} has the dense nonzezo property on
X: if bl9" ,bn are real numbers not all zero, then the
function bjii + + bmhm is different from zero on a set dense
in X. An equivalent statement is that the set {hu •• ,Am}
is linearly independent on every open subset of X.

Further theorems assure the existence of best weighted
Tchebycheff approximations and best constrained Tchebycheff
approximations by generalized rational functions and by ap-
proximating functions of other similar forms.

Terminology* Let X be an arbitrary topological space, and let

C[X] be the linear space of functions / continuous on the space X}

normed with the Tchebycheff norm

In this paper, we investigate the conditions necessary to guarantee

the existence of a best approximation to functions / e C[X) by rational

combinations of functions glf , gn, hl9 , hm e C[X]. Such functions

have the form

y & A + ••• +bmhm*

where 7 = (au , anf bu , bm) is a vector in the closed set Γn+m of

all real (n + m)-tuples satisfying

Received March 12, 1964. The material in this paper was included in the
author's Doctoral Dissertation submitted to the University of California, Los
Angeles under the guidance of Professor E.W. Cheney. The research was supported
in part by The RAND Corporation under U.S. Air Force Project RAND (Contract
No. AF 49 (638)-700) and in part by the U.S. Air Force Office of Scientific Research
(Contract No. AF-AFOSR-77-63).
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δi I + + I δ J = 1 .

One such condition is that ry be well defined at points x0 such that

t>A(x0) + + bjιm{xo) = 0

thus, we shall restrict our attention to sets of functions {h19 , hm]
for which we can guarantee a unique definition of ry(x0).

A set of functions {hl9 , hm} is said to have the dense nonzero-
property on X if, for any 7£Γn+m, the function

6Λ + • • + bmhm

is different from zero on a set Yy dense in X. (An equivalent state-
ment is that the set {hu ••,/&«} is linearly independent on'all open
subsets of X.) If this is the case, the function ry is well defined on
the set Yy; to define ry uniquely at points x0 e X — Yy, we set

ry(xQ) = lim sup ry(x) .

We could define ry(x0) by a liminf operation just as well; all that is
necessary is to define the function ry uniquely, and in such a way that
if the limit

lim ry(x)

exists, it is equal to ry{x0). Thus, if {hlf * ,hm} has the dense non-
zero property on X, the generalized rational function ry is uniquely
defined on X for all jeΓn+m.

For each set {gu * ,gn, hlf , hm} such that {hj} has the dense
nonzero property on X, let R denote the set of generalized rational
functions

Then for each fe C[X] there exists a real number dist (i?, /) represent-
ing the distance from / to the set iϋ:

If there exists a function ry* e R such that

| | / - r y , || = dist (22,/),

then ry* is called a best rational approximation to /, and dist (R, f)f

is the error of the best rational approximation.
After a brief survey in 2 and 3 of previous existence results

and nonexistence phenomena, we demonstrate in § 4 that under the
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conditions prescribed above, there exists for every feC[X] a best
rational approximation ry*. Some extensions and specializations of this
existence theorem, including its relation to the nonexistence phenomena
of § 3, will be given in § 5. In § 6, we present some existence theorems
for two other approximating families similar in nature to the family
of rational approximations.

2* Previous results* The special case 7)1=1, hx(x) = 1 corresponds
to approximation by generalized polynomials a1gι + + angn; it has
been the subject of much fruitful study due to the feature of linearity
in the coefficients a{. An existence theorem was obtained in this case
for Tchebycheff approximation of continuous functions / by algebraic
polynomials

gi%) = x1-1

by Borel in 1905 [2]; his proof was extended by Achieser [1] to ar-
bitrary elements ^ in a normed linear space S.

Results are more sparse for the general rational problem (w > 1)
in which the coefficients do not enter linearly. Walsh obtained in 1931
[6] an existence theorem for ratios of polynomials of the same degree
defined on a perfect set X in the complex plane.

THEOREM (Walsh). For any fe C[X], X a perfect set in the
complex plane, there exists a best Tchebycheff approximation ry% to f
among all rational functions of the form

r (x) = a°
7 bb0 + bxx + + bnx*

for τeΛ,+ 2.

Walsh also proved in [6] a similar existence theorem for Lp norms.
Achieser gives in [1] an incomplete proof of theorem above for ratios
of polynomials of arbitrary degrees on an interval [α, b] of the real
line. Cheney and Loeb [3] have recently obtained a similar theorem
for rational trigonometric approximation.

Furthermore, the Achieser and Cheney-Loeb theorems show that
with no loss of generality the denominator of the best approximation
may be assumed to be strictly positive on the interval of definition.

3* Nonexistence phenomena* Some of the possible pitfalls in
the existence problem are illustrated by the following two examples of
nonexistence phenomena. In the first example, we consider the problem
of approximating f(x) — x in the Tchebycheff sense by a rational function
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of the form

i + &2#

on the interval [0, 1], with the additional condition that the denomina-
tor be strictly positive on [0,1]. Here, however, by setting aλ = b2 = 1
and letting ^ [ 0, we see that dist (R, /) = 0, although no allowable
rye R achieves this minimum distance.

The second example shows that difficulties may arise when the
dense nonzero property is violated. Consider the problem of approxi-
mating f(x) = (x —l)(x — 2)/2 in the Tchebycheff sense by a rational
function of the form

ry{x) = -
i b2x

with the three points 0, 1, 2 comprising X. Since /(0) = 1, /(I) =
/(2) = 0, we see that the deviation of the approximation ε/(x + ε) from
/ on X is no greater than ε/(l + ε), which can be made arbitrarily
small by making ε small. Thus dist (R, f) ~ 0, although again no
choice of rye R achieves this minimum.

4* An existence theorem* We shall find it convenient to state
part of the theorem as a separate lemma.

LEMMA 1. If f,h19 * ,hm are bounded functions on X, an
arbitrary topologieal space, such that the set {hό} has the dense non-
zero property on X, and if the set of functions {gl9 , gm} is linearly
independent on X, then any sequence {yk} of vectors in Γn+m such
that

lim || ru - /|I = inf || ry - f\\ - dist (R, f) ,

has a cluster point γ0 € Γn+m.

Proof (i). Define the functions A = Σ <&»&, B = Σ bάhh with
Σ\bjI = 1; define Ak and Bk similarly. The boundedness of the hά

implies for any B that

\\B\\ ̂  JV=max| |Λ y | |

the linear independence of the set {gj implies the existence of a posi-
tive number δ such that

Σl<*i| = 1 implies || Λ| | ^ δ.
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It is clear that for sufficiently large K, k ̂  K implies

II Δ II
Π _ i _ 1 ^ > 11 Λ l l ^ > ' l ^ - k . I

Hence, for k ̂  K

| | A J | ^ i

and by the definition of the number δ, for k 2: K,

±\ah\£M=J?Γ [dist (R, /) + 1].

Thus, for k Ξ> K, {yk} is restricted to the compact set

By the Bolzano-Weierstrass theorem, then, the sequence {yk} has a
cluster point yoeΓn+m.

THEOREM 1. If f g1 , gny hlf , hm are hounded functions in
C[X], X an arbitrary topological space, and if the set {h3) has the
dense nonzero property on X, then there exists a best rational Tcheby-
cheff approximation rγ* to f on X.

Proof, (i) Select a maximal linearily independent subset {glf , gp}
among the functions gi9 and let d — dist(ί2,/). Then, any sequence
{yk} of vectors 7k e Γv+m such that

has by Lemma 1 a cluster point τ0 = (α10, , αp0, 610, , δm0) e Γp+m.
We shall show that

Clearly, since τ0 G Γp+m, we need only show

ll^o - f\\τ S d .

Since the set of functions {h3) has the dense nonzero property on
X, the set YΊQ of points x at which the denominator B0(x) is different
from zero, is dense in X. At points x e FVo, we have for each k

I ryQ(x) - f(x) I ̂  I ryQ(x) - rΎ]c(x) \ + \ rΎk(x) - f(x)
=S I ryo(x) - ryjc(x) I + d + 1/k .

As the functions hό are bounded on X,
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Bk fc_>oo> Bo

uniformly on X. Since B0(x) Φ 0 for x e YyQ, this implies

Ak(x) , A0(x)

Bk(x) k— BQ(x)

for x e Γ v Hence, for x e YyQ,

lim I ryo(x) - ryjc(x) | = 0 ,

and thus

I ryo(x) - f(x) I <£ <Z .

It remains only to obtain this inequality for points x0 e X — y v

(ii). By the definition of the rational functions ry, we have for

x0 6 X — Yy0 that

y_y«^Ό/ 11111 O \X\j I y\w)

Thus, there exists a sequence {xv} of points in FVo such that

I *Vo(*o) - rγo(xv) I ̂  1/v

l/(*,)-/(a!v)| ^1/υ

(since also /e C[X]). Hence,

Since the left hand side of this inequality is independent of v, it
follows for xQe X — YyQ that

I ryQ(x0) - f(xQ) I ̂  d .

Therefore || ryQ - f\\τ ^ d, implying, since ΎoeΓp+m, that || ryQ - f\\τ=d,
showing that indeed there exists a best approximation ττ = ryQ to /.

5. Extensions and specializations* Theorem 1 can be extended
to the problem of weighted Tchebycheff approximation, in which the
distance between / and ry is measured by the functional

for some prescribed weighting function seC[X]. This problem is
equivalent to that of approximating the function sf by rational com-
binations of the functions sgx and hό; existence of a best approxima-
tion is thus guaranteed whenever the products sf and s^ are bounded
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functions and the functions hj satisfy the hypotheses of Theorem 1.
Also, the proof of Theorem 1 is valid if the coefficients 7 are res-

tricted to a closed set Cn+m c Γn+m containing at least one feasible vector
7° such that

A slight but straightforward modification of step (ii) of Lemma 1 is
needed if no vectors of the form (0, , 0, b19 , bm) are in Cn+m.

Thus, the following theorem holds.

THEOREM 2. If f, s, g19 , gn9 hl9 , hm e C[X] are such that the
functions sf, sg19 , sgn are bounded on X, an arbitrary topological
space, and the set {hj} has the dense nonzero property on X, then
for any closed set Cn+m c Γn+m of coefficient vectors including a feasi-
ble vector 7°, there exists a best weighted rational Tchebycheff ap-
proximation ry* to f such that

\τ = inf || s(ry - f)\\τ .

If the closed set of coefficients Cn+m of form

Cn+m(e) = {7 e Γn+m: | Σ & Λ ( » ) \^e>0, xeX}

is nonempty, we can obtain existence theorems with much weaker hy-
potheses on the functions involved, since in this case the set YyQ

comprises all of X, and step (ii) of Theorem 1, the only step requiring
the continuity of /, s, glf and hjf is not required in the proof. Hence,
the following theorem holds in an arbitrary normed linear space.

THEOREM 3. If the functions /, s, g19 , gn, h19 , hm are such
that sf, sgu , sgnf h19 *",hm are bounded on X9 an arbitrary set of
points x9 and if the set Cn+m(e) c Γn+m is nonempty, then there exists
a best weighted rational approximation r7Hί to f such that

l | β ( r y * - / ) | | = inf | | s ( r y - / ) | | .
yeon+m{s)

Let us now consider the nonexistence examples of § 3 in the light
of the above existence theorems. The first example can be handled
by Theorem 1 by allowing the denominator b± + b2x to have its zero
at a point xoe [0,1], and defining a^l/^ + b2x0) by a limsup operation,
which reduces in this case to a limit opreration. Thus, the function
x2/x is an acceptable rational function in Theorem 1, and is indeed the
best approximation ry*.

The second example cannot be handled by Theorem 1 since the
dense nonzero property is violated. A weaker result can be given for
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both examples by Theorem 3, however, by considering only those ra-
tional functions such that bλ + b2x Ξ> ε; i.e., ye C3(ε). With this modi-
fication, a best approximation rY* exists in the first example and is at
least as good as x2/(ε + x); hence the error

can be made as small as desired by taking ε small enough. In the
second example, r7* again exists and is at least as good as ε/(ε + x);
thus again

) ^ ε/(ε + 1) .

In practical problems, placing such a " floor " under the denominator
function and slightly above zero is often a reasonable thing to do, as
the inequality constraint B{x) ^ ε is no harder to deal with than
B(x) > 0.

In most continuous rational Tchebycheff approximation problems,
the existence of a best approximation is guaranteed by Theorems 1
and 2, as sets of functions with the dense nonzero property are fairly
common. They include all linearly independent sets of functions analy-
tic on a perfect set X, and all sets of piecewise analytic functions on
X which are linearly independent on each component of analyticity.

An independent result similar to Theorem 1 has been obtained re-
cently by Newman and Shapiro [4]. Their existence theorem is stated
for functions defined on a compact Hausdorff space X, and thus does
not cover such problems as the approximation of functions continuous
and bounded on the positive real axis by functions of the form

ry(x)=

for λ;, μs ^ 0, a problem handled by Theorem 1. Rice in [5] has also
obtained independently a somewhat similar existence theorem for the
interval [0,1], under the assumption that the denominator possess only
a finite set of zeros.

6* Existence theorems for other approximating families* The
fact that best approximations exist among rational functions with
coefficients in a closed set allows us, with the aid of the following
lemma, to state some theorems assuring the existence of best approxi-
mations in other approximating families.

LEMMA 2. The set of all vectors (cu, , clm, c21, , cnm) such
that ciS = afij for real numbers aif bjf is closed.

The proof of this lemma is straightforward, and is omitted here.
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The following theorem follows directly from Lemma 2 and Theorem
3, with m = 1, n — pq, and gv = u{vh since the set of numerator
coefficients cv = afij is closed.

THEOREM 4. // the functions /, s9ul9 , uv, vl9 , vq are such
that the products sf, suLvl9 — ,supvq are bounded on X, an arbitrary
set of points x, then there exists a best approximation

P * = ( α χ + • + atup){b\vx + + b*vq)

to the function f, such that

= inf || β[(Σ <Mθ(Σ M i ) - / 1 1 1 -
δ

In a similar fashion, a theorem can be established on the existence
of best approximations by finite products of generalized polynomials of
the form

P = ( Σ αα&iXΣ αi20ί2) ( Σ a>in9in) •

In particular, if the component polynomials are of the form ax + 6,
we have the following corollary.

COROLLARY 4a. Any function f bounded on a compact domain X
on the real line has, among all polynomials Pn of degree n having
only real roots, a best approximation P * .

The next theorem follows from Lemma 2 and Theorem 2; a similar
theorem can be based on Lemma 2 and Theorem 3.

THEOREM 5. // the functions

f, s,ulf , up, vu , vq, hl9 - , hm e C[X]

are such that the products of sf9sujιu 9sv,vhm9sv19 9svq are
bounded on X, an arbitrary topological space, and the set {hά} has
the dense nonzero property on X, then there exists a best weighted
Tchebycheff approximation

P*= aXUi +... + a>p + j f f i + + 5 ^
bth> ffi5

to the function f, such that

il s(P* - /) ||Γ = inf || 8 (Σ W< + ^tklk - f) \\r
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A NOTE ON HAUSDORFF'S SUMMATION METHODS

J. P. BRANNEN

If {an} is a moment sequence and (Δa) is the difference
matrix having base sequence {an}, then (Δa) is symmetric about
the main diagonal if and only if the function a{x) such that

an — 1 xnda(x), n — 0,1, 2, , is symmetric in the sense that
Jo

a(%) + a(l + x) = α(l) + «(0) except for at most countably many
x in [0,1], This property is related to the "fixed points" of
the matrix H, where HaH is the Hausdorff matrix determined
hy the moment sequence {an}.

In each of the papers [2], [3] and [5], there is reference to dif-
ference matrices of the form

(Δd) =

Δ°d
0

J°d
2

Δ
ι
d

2

where {dn} is a moment sequence, Δ°dn = dn, n — 0, 1, 2, and Δmdn =
Δm~λdn - Δm~xdn+1, for n = 0,1, 2, and m = 1, 2, 3, . In [2],
Garabedian and Wall discussed the importance of (Δd) having the
property of being symmetric about the main diagonal, i.e. Δmdn = Δndm.~
They also showed that if {dn} is a totally monotone sequence, then
(Δd) is symmetric about the main diagonal if and only if the function
f(x) which generates {dn} has a certain type continued fraction expansion.

In this paper, the symmetry of (Δd) is investigated with the re-
striction of total monotonicity removed and a collection of necessary
and sufficient conditions are given, Theorem 3, for moment sequences
in general. A relation is established between the symmetry of (Δd)
and the "fixed points" of the difference matrix

( 1 )
TJ

(i)

Received March 15, 1964. This work was performed under the auspices of the
United States Atomic Energy Commission.
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2Φ Notation, definitions, and examples* Except for some notation
and definitions introduced for convenience, the notation and definitions
of this paper will follow [6].

NOTATION. If {dn} is an infinite sequence, d* and d' denote re-
spectively the diagonal and column matrices determined by {dn}.

DEFINITION 1. If {dn} is a number sequence such that for some
function f(x) on [0, 1],

dp = [x'dfix) = \\l - xYdf(x) p = 0, 1, 2, ,
Jo Jo

then {dn} is called a symmetric moment sequence.
The Cesaro moment sequence 1, i , i , provides an example of a

moment sequence satisfying Definition 1 since for p = 0, 1, 2,

cp= [xpdx =
Jo

= Γ(l - x)*dx = - ( 1 - PY+1/P + 1? = — i — .
Jo Jo p + 1

D E F I N I T I O N 2. If A is a semi-infinite, lower t r i a n g u l a r , m a t r i x
hav ing inverse and { α j and {dn} a re sequences such t h a t A~Ύd^Aaf =
A~~λa*Adf, t h e n { α j and {c£J are s y m m e t r i c re lat ive to A.

The Cesaro moment sequence 1, i , i , •••,<?„ of (2), and t h e sequence
1> 4, i , J , a re symmetr ic re lat ive to t h e m a t r i x H of (1).

3* T H E O R E M S . L E M M A . Suppose {sn} is a sequence such that
sp Φ 0 for p — 0, 1, 2, cmd suppose that A is a semi-infinite matrix
having inverse such that As' — s'; £/kβw,

( i ) A-V = 8',
(ii) {xn} and {sn} are symmetric with respect to A if and only

if Ax' — x', and
(iii) if A-WAs' = i^sMα' and A'^As' = A-VA&',

Proof, (i) is obvious. For the proof of (ii), we first suppose {xj
is symmetric with {sn} relative to A so that A~1x*As' = A~ιs*Axf.
Multiplying both sides on the left by A and using As' = s' gives
x*s' — s*Ax'. Under the hypothesis, s* has inverse s*"1 so that

( 3) s * - 1 ^ ' = 8*-1e*Aa' = ila/ .

Since x*s' — 8*x\ it follows from (3) that x' — Ax'.
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On the other hand, if Axf — x'',

( 4 ) A-WAs' = A~ιx*sf

and

A-WAx' = A-χ8*x' .

Since s*xr — x*sf, it follows from (4) that x and s are symmetric
relative to A.

For the proof of (iii), we suppose that a! — 3*^*3' and bf — s*~16*s',
from which it follows that

( 5 ) A'WAV = A-1α*s*"16*β'

and

( 6 ) A-WAa! = A-Ws^Ws' .

Since diagonal matrices permute, it follows that (5) and (6) are equal
establishing (iii).

THEOREM 1. If {bn} is a moment sequence, i.e.,

( 7 ) bp= [xpdg(x) ,
Jo

{bn} and the Cesάro sequence (2) are symmetric relative to H if and
only if {bn} is a symmetric moment sequence.

Proof. Let

Σ ( J J ( - 1 ) ^ for ̂  = 2,4,6, ...

Σ ( ^ ) ( - l ) ^ - 2^1 for w = 1, 3, 5, . .

Clearly, if {ίj is any number sequence, ift' = £' if and only if

Σ (™\-l)ptp = 0 for n = 2, 4, 6,

and
n-l /M\

V ί l ^ — Λ\H — 9f — 0 f o r ΎI — Λ % ^ . .
P=o \/^ /

Thus if {&„} is defined as in (7), Hb' = δ' if and only if

(8 ) [fn(x)dg(x) = 0 for n = 1, 2, 3, .
JO

But, /Λ(α) = (1 - a;)w - x* for n = 1, 2, 3, - so that
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( 9 ) \fn(x)dg{x) = Γ(l - xfdg(x) - [xndg(x) ,
Jo Jo Jo

and consequently (8) holds if and only if {6J is a symmetric moment
sequence. It follows from (9) and (2) that Hcr — cr and from the
preceding Lemma that {bn} and {cn} are symmetric relative to H.

Conversely, if {6J and {ej are symmetric relative to H, it follows
that HV — V, and if {6J is defined as in (7), then {bn} is a symmetric
moment sequence.

THEOREM 2. If g(x) is of bounded variation on [0, 1] and {zn}
is the moment sequence determined by g(x), the following two state-
ments are equivalent:

( i ) {zn} is a symmetric moment sequence^ and
(ii) there do not exist uncountably many x in [0, 1] for which

g(x) + 0(1 - x) Φ 0(1) + g(0).

Proof. Suppose (i). Then let u — 1 — x so that,

zp = Γ(l - x)*dg(x) = ( ^ ^ ( l - a?) = -[u*>dg(l - u) .
Jo Jo Jo

Thus, Γ ( l - x)pdg(x) = - Ϋ x*dg{l - x) so that for p = 0,1, 2, ,
Jo Jo

(10) (1χ*d[g{x) + ff(l - x)] = 0 .
Jo

Since #(#) — ̂ (1 — α?) is of bounded variation on [0, 1], (10) implies

that for every k(x) continuous on [0, 1], \ k(x)d[g(x) + g(l — x)] = 0.
Jo

This, [4, p. 69], implies (ii). Reversing the steps leading to (10) shows
that (ii) implies (i).

An interesting example of a function satisfying (ii) is provided
by Evans in [1].

THEOREM 3. Suppose g(x) is of bounded variation on [0,1] and
suppose {an} is the moment sequence generated by g{x). The following
statements are equivalent:

( i ) {an\ is a symmetric moment sequence^
(ϋ) Ha' = a',
(iii) {an} and the Cesάro moment sequence {cn} are symmetric

relative to H, and
(iv) the difference matrix (Δa) having base sequence {an} is sym-

metric about the main diagonal.

Proof. Theorem 1 implies the equivalence of (i), (ii), and (iii).
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(i) implies (iv) provided

(11) f V ( l - x)ndg(x) = [xn(l - x)mdg(x) for m, n = 0, 1, 2, .
Jo Jo

Let u = 1 - x so that ( V ( l - x)ndg{x) = Γ(l - u)mundg(l - w). Thus
Jo Ji

(11) may be rewritten as

(12) - (1 - x)mxndg(l - x) = xn(l - x)mdg{x)
Jo

= ( V ( l - x)md[g(x) + 9(1 -x)] = O .

That (12) is the case for {αj a symmetric moment sequence follows
from (ii) of Theorem 2β (iv) implies (ii) since (iv) implies that an —
AnAϋJ which is the same as saying that Ha! — a!. Thus the equivalence
of the four statements is established.

I am grateful to Professor H. S. Wall for some comments which
have been of considerable value in the preparation of this paper.
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TOPOLOGICAL SEMILATTICES ON THE TWO-CELL

To Professor A. D. Wallace on his 60th birthday

DBNNISON R. BROWN

Topological lattices on the n-cell have been studied by
L.W. Anderson, A.D. Wallace, A.L. Shields, and L.E. Ward,
Jr. In particular, these authors have papers setting forth
conditions under which a topological lattice on the two-cell
is topologically isomorphic to the product lattice Ixl.

The primary purpose of this paper is the investigation of
topological semilattices (commutative, idempotent topological
semigroups) on the two-cell which retain the lattice like pro-
perty that for each element x, {y: x ^ y) is a connected set.
Specifically, it is shown that any such entity is the continuous
homomorphic image of one of a fixed pair of semilattices on
the two-cell, where the choice of domain depends on the loca-
tion of the zero element.

It is also proved that a TSL on the two-cell has an identity
(a unique maximal element) and {y: x ^ y} connected for each
element x if and only if it is the continuous homomorphic
image of I x I. Also, if {y:x ^ y} is connected for each ele-
ment x, then S, a TSL on the two-cell, is generated by its
boundary B in the sense that B2 = S.

Semilattices on the n-cell are also discussed. Let S be such
an object with boundary B. It is proved that if x is a max-
imal element of S, then x e B. If S has an identity, 1, and
T is a continuum chain from 1 to 0, then S = BT.

Finally, let S be a continuum TSL with 1 and let A be the
subset defined by x e A if and only if {y: x ^ y] is connected.
Then (1) x e A if and only if there is a continuum chain from
1 to x; and(2) A is a nondegenerate continuum sub-TSL of S.

Topological lattices on the w-cell have been studied in [1], [6],
and in [8]. In particular, these papers set forth conditions under
which a topological lattice on the two-cell is iseomorphic (topologically
isomorphic) to the product lattice Ixl.

The primary purpose of this paper is the investigation of topolo-
gical semilattices (commutative, idempotent topological semigroups) on
the two-cell which retain the lattice-like property that for each ele-
ment x, M(x) is a connected set (see below). Specifically, we show
that any such entity is the continuous homomorphic image of one of
a fixed pair of semilattices, where the choice of domain depends upon
the location of the zero.

Received March 12, 1964. This work was supported in part by NSF contract
'GP-1637.
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Section 3 discusses semilattices on the n-cell. The role of the
boundary sphere in determining the multiplication is seen to be quite
important.

The next section is the main body of the paper. In addition to
the theorems indicated above, we prove that any topological semilattice
on the two-cell which has a unique maximal element and all M{x)
connected must be the continuous homomorphic image of I x /. In
particular, any topological lattice has these properties. We also show
that, if each M(x) is connected, then a topological semilattice S on
the two-cell is generated by its boundary B in the sense that B2 = S.

In § 5 we prove that if S is a compact, connected topological semi-
lattice with identity, then the subset of elements x such that M(x)
is connected is a compact connected subsemilattice of S.

We are indebted to Professors H. Cohen and R.J. Koch for their
helpful comments and support.

2* Preliminaries* A topological semilattice (hereafter TSL) is-
a pair (S, S) such that S is a Hausdorff topological space, ^ is a
continuous semilattice ordering on S. Equivalently, S is a commuta-
tive, idempotent topological semigroup with x fg y if and only if
xy — x.

An element x of S is maximal if it is dominated by no other
element of S; that is, xy = x implies y — x. A minimal element is.
defined dually. It is well known that a compact TSL has maximal
elements and a unique minimal element. For x e S, let M(x) =
{y: x g y}, L(x) — {y:y ^ cc}. It is easy to verify that L(x) — Sx.
These are closed subsemilattices of S [10].

A chain is a totally ordered subset of S. Of primary interest
here are compact, connected chains; in case S is metric these are
known to be arcs [13] and will be referred to henceforth as arc chains.

The following theorem, due to Koch [4], is stated without proof.

THEOREM A. If S is a compact, connected, metric TSL with
zero (0), then every x e S is connected to 0 by an arc chain.

If S is as stated in Theorem A and has also M(x) connected for
each x e S, then, by replacing S by M(x) in the theorem, is may be
seen that any pair of comparable elements in S is connected by an arc:
chain.

A space S is homotopically trivial if TΓ^S) = 0, i > 0 where TΓ^S)
is the ΐth homotopy group of S. The following result extends slightly
a theorem of Anderson and Ward [2].

THEOREM B. If S is an arcwise connected idempotent semigroup*
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with (0), then S is homotopically trivial.

Proof. Let / : ii x x In~>S with /(Bndry (I x x I) = 0.
Define g: (Iλ x x JΛ) x /—> S by

^(^i, , &*, r) =f(x19 , x j/fe - xjr, , αw - a?Λr) .

Henceforth, the letter I will be reserved to represent the TSL on
the arc [0, 1] defined by xy — min (x, y), where the ordering is that
inherited from the real numbers. Any arc chain is iseomorphic to
I [5].

3. Semilattices on the n»cell. Throughout this section, S re-
presents a TSL whose underlying space is an n-cell, and B the boundary
% — 1 sphere of S. If S has an identity, 1, then 1 is clearly the
unique maximal element of S. It is well-known [7] that 1 e B. The
following order—theoretic version of the maximum modulus theorem
generalizes this statement.

THEOREM 1. Let x be a maximal element of S. Then x e B.

Proof. By the maximality of x, and Theorem B, S\{x} is a sub-
semilattice, homotopically trivial. Hence x £ S\B.

In [3] and in [5] it was shown that, under certain conditions, the
multiplication in S is determined by that in B together with that in
a certain arc subsemigroup. The next theorem is of a similar nature.

THEOREM 2. Let S have a 1, and let T be any arc chain from
1 to 0. Then S = BT.

Proof. Since B c BT, it suffices to show BT is contractible.
Since T is an interval, define g:(BT) x T -> BT by g(bt, r) = btr.
Then g(bt, 1) = bt, and g(bt, 0) = 0. The function g is clearly con-
tinuous, hence the proof is complete.

4* Semilattices on the 2-celL The following lemmas will be
useful in the sequel.

LEMMA 1. Let S be a topological semilattice in which, for each
x, M(x) is a connected set. Let f:S-^Tbea continuous homomor-
phism of S onto T. Then, for each y £ T, M(y) is connected
furthermore f is a monotone map.
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Proof. The continuous homomorphic image of an arc chain is clearly
an arc chain, although possibly degenerate. Let y e T, z e M(y), y =
/(α), z — f(b). Then y = yz = f(a)f(b) = /(αδ). Let C be an arc chain
in S from 6 to αδ. Then f(C) is again such from z to 2/.

Now let X — f~\y), a, b e X. Let C, D be arc chains from a to
αδ, δ to αδ respectively. Then C \J D Q X, hence X is connected.

LEMMA 2. Lei S be a two cell, S = C U A C Π # = D, where
C and D are arc wise connected sets. Let B be the boundary of S and
suppose BΓiCφ\Z\φBf]D. Then C Π B and Df]B are each connected

Proof. If C Π B is not connected, then clearly neither is D Π B.
Choose α, δ from different components of C (Ί J5, and let T be an arc
in C connecting α, δ. Choose d, e from different components of D Π B,
so that {α, δ} separates d and e in By and let J be an arc in D con-
necting d, e. Then J and T cannot be disjoint [13], which contradicts

In the remainder of this section, S will represent a TSL whose
underlying space is a two-cell, and B the boundary circle of S.

COROLLARY. Let a, b e B, with M(ab) a connected set. Decompose
B into arcs P, Q with P Π Q — {α, δ}. Then either P S M(ab) or
Q S M(ab).

Proof. M(ab) is arcwise connected by Theorem A. On the other
hand, any x e S\M(ab) can be connected to 0 by an arc chain T in S.
Clearly T Π M(ab) ~ D. Hence S\M(ab) is arcwise connected. By
the lemma above, M(ab) Π B is therefore connected and the result
follows.

Methods used in portions of the proof of the following theorem
are similar to those used in [8].

THEOREM 3. Suppose S has a 1. These are equivalent:
( i ) for each x, M(x) is a connected set;
(ii) B is the union of two maximal arc chains of S;
(iii) S is the continuous homomorphic image of I x I.

Proof, (i) implies (ii). Fix a e δ , α ^ l . By the above corollary,.
M(a) must contain one of the boundary arcs between a and 1. De-
signate this arc by Q and let p e Q, p Φ a. Let P be the boundary arc
between p and 1 which is contained in Q. Then P g M(p), for if not
then a e M(p), which is false. It follows that any element of Q
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compares with p, and hence Q is totally ordered. Let J be a maximal
chain in J5, with α, 1 e J. By continuity of multiplication, J is
closed and therefore proper in B. Let t e B\J, and let K be a maxi-
mal chain in B, with t, 1 e K. By the maximality of J and K, B =
J{J K. From the anti-symmetry of the relation (^), /and K have the
same minimal element, z. Now M(̂ ) is a compact, connected semilat-
tice, homotopically trivial by Theorems A and B. Since B g M(z),
M(z) = S, and hence z = 0. The arc chains J, Z" are thus maximal
in B. If ce S\B, then ikf(c) Π J and L(c) Π J are closed, disjoint sub-
sets of J, and hence fail to exhaust J. Then maximality of /, K in
S is now immediate.

(ii) implies (iii). Let R be the closed ideal (Ix {0}) U ({0} x I) of
I x I; and let M be the Rees quotient (/ x I)/R. This TSL on the
2-cell has the properties that every nonzero element of M is repre-
sented uniquely as a product of two boundary elements, one from each
of the maximal chains composing the boundary of M (if a e C, then
a = a 1), and ah = 0 implies either a = 0 or 6 = 0. Denote the
boundary of M by C = 7U TΓ, and the boundary of S by 5 = J u Kf

with F, IF, J, K maximal arc chains.
Let fx\ F—> /and /2: TF—+ i£ be iseomorphisms. Define /*: M—> S

by f*(x) = /i(α)/2(δ), where db — x, ae V, be W. The only element
of ikf which has a nonunique representation in this manner is 0; but
db — 0 requires that one of α, b — 0. Hence /* is well defined, and
the following diagram is commutative:

M — > S

V x W

 / l X / 2

 > J x K

Here, the vertical arrows represent the respective multiplication
functions. Since these functions, together with fx and /2, are con-
tinuous, and V and W are compact, it follows that /* is continuous.

Next, let a = vλwlf b — v2w2 be elements of M. Then

f*((ώ) = /*(v1w1ι;2w2) = /*((v1

2 ) - / * ( ^ ^ i ) / ^ 2 ^ 2 ) = f*(a)f*(b)

Hence /* is a homomorphism.
Finally, f*(M) is a compact connected TSL containing B; by

Theorems A and B it follows that f*(M) = S. The natural map of
I x I onto (JΓ x I)/J2 is now composed with /* to obtain the desired
result.

(iii) implies (i). Clearly I x I has M(x) connected for each x. By
Lemma 1, S has this property also.
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COROLLARY 3.1. If S has a 1 and M(x) connected for each x e S,
then 0 G B.

COROLLARY 3.2. If S is a topological lattice on the 2-cell, then
S is the continuous (semilattice) homomorphic image of I x I.

Proof As a topological lattice, S has a 1 and has M(x) connected
for each x e S.

THEOREM 4. If M(x) is connected for each x e S, then B2 — S.

Proof. Suppose 0 e B. It will first be shown that B3 S B\ Let
a, b, c e B. In order to prove that abc e B2, it suffices to assume that
a, 6, c are distinct and nonzero. Assume also that these points are
named so that 0, b are in different components of B\{a, c}. By the
corollary to Lemma 2, one component of B\{a, c] lies in M(ac). Since
0 ί M(ac), it follows that b e M{ac), hence abc = ac and B* g B\
Hence B* = B*B g B2B £ B\ Since B2 is a compact connected TSL,
and B S B2, it follows from Theorems A and B that B2 = S.

Now suppose 0 e S\B, and again select α, 6, c distinct elements
of B. If any of άb, ac, 6c, abc e 5, then immediately αδc e B\
Similarly, it may be assumed that a $ M{bc), b 0 M(ac), c ί M(ab).
By the corollary to Lemma 2, it follows that B = M(ab){jM(ac)UM(bc).
But the latter subset is included in M(abc). Since M(abc) is a compact, con-
nected TSL and B £ M(abc), it again follows that M(abc) — S, and therefore
abc = 0. It has now been shown that S 3 = B2 (J {0}; thus S 2 U {0} is
compact and connected. Furthermore, (B2 U {0})2 g B 4 U {0} g 5 3 U {0};
hence J32 U {0} is a subsemilattice containing B. This yields B2 U {0} = S.
But JB2 is compact, hence 0 e B2. Consequently B3 £ β2, and as before,
B2 = S.

The next pair of theorems shows that the structure of S when
OeB is essentially different from that occurring when 0eS\B. Let
T — {(x, y)e I x I : x + y ^ 1}. Note Γ is a subsemilattice of I x J.

THEOREM 5. T%e semilattice S has OeB and M(x) connected for

each x if and only if S is a continuous homomorphic image of T.

Proof. As in Theorem 3, let R = (I x {0}) U ({0}) x I ) . Let N =
T/R, the Rees quotient of T. Let D be the boundary circle of N.
Note that every nonzero element of N has a unique representation as
a product of two not necessarily distinct elements of D9 and that db — 0
implies a — 0 or 6 = 0. Now let f\D—>B homeomorphically, with
/(0) = 0, and extend / t o / * : N-> S by /*(c) = /(α)/(δ), where a,beD.
As in Theorem 3, / * is well defined, and the following diagram is
commutative:
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f*
N — - > S

DxD f X f ) BxB

Vertical arrows represent the respective multiplication functions of
N and S. Since these functions and / are continuous and D is com-
pact, / * is continuous. By Theorem 4, /* maps N onto S.

It remains to show that /* is a homomorphism. To this end, let
c — ab, a — pq, b = rs, with p, q9 r, s distinct nonzero elements of
D. Some unique pair of p, g, r, s separates the remaining pair from
0 on D; suppose p, r and 0 lie in different components of D\{q, s}. By
the corollary to Lemma 2, {p, r}^M(qs). Hence ab = pqrs = qs, and
f*(c) = f*(ab) — f*(qs) = f(q)f(s). On the other hand, since / is a
homeomorphism on D9 it follows that {f(p),f(r)} and {/(0) = 0} lie in
different components of B\{f(q), /(β)}. Hence {f(p), f(r)} g M(f(q)f(s))
and therefore f(q)f(s) =f(p)f(q)f(r)f(8)=f*(pq)f*(r8) = /*(α)/*(δ).
The argument is similar if p, q9 r, s occur in a different order in D.
This portion of the proof is now complete.

The converse follows from the fact that T has M(x) connected
for each x and Lemma 1, together with the fact that a monotone map
of a a two-cell onto a two-cell must take boundary onto boundary [12].

Now, let W be the disk of radius one, centered at the origin of
a plane, and let F be the boundary circle of W. If x, ye F, let xy
be the midpoint of the chord joining x and ya This is transparently
continuous, and note that a nonzero point of W is uniquely repre-
sented as the product of two boundary points. To extend the multi-
plication to all of Wlet a = wx9 b — yz where α, be Wand w,x,y,ze F;
set ab — 0 if each boundary arc containing w9 x9 y and z has length Ξ>τr, and
otherwise let ab be the product of those two of the four elements w, x9 y
and z whose distance apart is a maximum. Again continuity is obvious,
as is the fact that multiplication is commutative and idempotent.

It is certainly desirable to give an alternative, order-theoretic
description of W. For each x e W let L(x) be the intersection of all
circular disks which are tangent to F9 which contain x, and whose
boundaries contain 0. This is a semilattice partial order and L(x)Γ\L(y)
is precisely L(z) for that z( = xy) e L(x) Π L(y) which is at maximum
distance from 0. In this manner, it if easily seen that M(x) is con-
nected for each x e W. Note that, if α, b, c9 de F9 then abed Φ 0 if
and only if one of these elements, say α, has the property that 6, c, d
lie in the same component of F\{a, — a}, where (— α) represents the

1 The author is indebted to the referee for improving the description of the
semigroup W.
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point of F antipodal to α.(1)

THEOREM 6. Let Oe S\B. Then M(x) is a connected set for each
xe S if and only if S is the continuous homomorphic image of W.

Proof One implication is an immediate consequence of Lemma 1,
since W has M(x) connected for all x. Therefore, assume that S has
M(x) connected for all x, OίB. It will be shown that S is the con-
tinuous homomorphic image of W.

First, suppose that / is a continuous map of F onto B. Define
/*: W-> S by f*(x) = f(a)f(b), where x = αδ, α, be F. Recall that,
if x Φ 0, then this representation of x is unique, and f*(x) is
therefore well defined. On the other hand 0 may be expressed only
as the product of any pair of antipodal elements of F. Hence, in
order that /* be well defined, ab = 0, α, be F must imply f(a)f(b) = 0
in S. The construction of a continuous map / with this property is
the major portion the proof. For xe Bf define A(x) — {ye B : xy — 0}.
In the sequel, the expression [a, b], α, be B, will represent the counter-
clockwise arc of B from a to b.

(A) For each xe Bf A(x) is a continuum; further, there exist
yy ze B such that yz = 0, xe [y, z] and A(x) Π [z, y] is nonempty.
By Theorem 4, B2 = S; hence there exist y, ze B such that yz = 0.
Let xe[y, z], te[zf y]. By the corollary to Lemma 2, then either
yeM(xt) or zeM(xt). Hence x[z, y] g L(y) U L(z). Since x[z, y] is
connected and L(y) f] L(z) = {0}, it follows that for some te[z, y],
xt = 0; hence A(x) Φ Π. Next, let α, be A(x), xe [a, 6], ί€ [6, α].
Again by the corollary to Lemma 2, either ae M(xt) or be M(xt). Say
ae M(xt); then αtf = a(xt) — (ax)t = 0. Therefore [6, α] £ A(a?); by using
the compactness of B to obtain a maximal interval, it may be seen
that A(x) is an (possibly degenerate) arc in B.

(B) There exist α0, aλe B such that aoa1 = 0 ami /or every
xe(aQ, ax), A(OJ)£((&!, a0). Let a e δ ; there exists ^ 6 ^ ) such that
[α, αj ΓΊ A(a) = {αj and there exists α0 e A(αx) such that [α0, αj Π A{a^ =
{α0}. Then αoαi = 0 and we observe that αe [a19 α0]. It xe (α0, αj then
it is obvious that ĉ x ^ 0 Φ ax. Now by {A), A(x) meets [α1? α] and,
since it is connected, A(x) c (alf a) c (a13 a0).

(C) Lei α, 6, c, cί, e 6e five elements of B occurring in counter
clockwise order as listed; suppose also that ac = 0 = bd and that
be Φ 0 Φ ce. Then A(e)£(6, c). For, from ac — 0, βc ^ 0, ee (c, α),
we have A(β)c (e, c) by (A). Similarly, from bd =0, eb Φ 0, ee (d, 6),
we have A(e) c (6, e). Therefore A(e) c (e, c) Π (d, b) = (&, c).
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The function f:F—>B will now be defined.

(D) Choose elements α0, α t of B as in part B above. For con-
venience, the antipodal point of xe FΊs denoted by — x. Fix any xe F
and define f(x) — α0. /(—x) — alm i^is now decomposed into the two closed
intervals [x, — x] and [— x, %\, while B = [α0, α j U [au α0]. The scheme
is now as follows: / will map a dense subset of [x, — x] onto a dense
subset of [α0, α j , and a dense subset of [— x, x] onto a dense subset
of [au a0] in an order preserving manner; furthermore f(y)f(—y) will
be 0 for every y in either the dense subset of [x, — x] or the dense
subset of [— x, x]. The function / will then be extended through
standard methods into a continuous map of Fonto B; that f{y)f{ — y) —
0 for all yeF will be a consequence of this method of construction.

For ease of notation, set — x— χ1 — yOf χoz=zχ — y1 in .Fandα^&o*
6χ = a0 in 5 . Now F= [xθ9 &J U bo, 2/J, •# = K, α j U [δ0, δ j . Let α01

be the mid-point of [α0, αx], £c01 the mid-point of [x0, ccj, 2/Oi(= — #oi) that
of [l/o, l/i]. Define f(x01) = a01. By part B), A(α01) £ (δ0, δx); let &01 e A(α01)
and define f(y01) = δOi

(E) Next, let &Ooi be the mid-point of [60, δ01], ym that of [yOf y01],
and define f(y0oi)~b0oi Let xOoi= — 2/ooi It is necessary to map xOoi into
some point α001 of the interval [α0, α01]. To this end, suppose that
aobm = 0 = αolδOoi. Then by (A) above [a09 α01] g A(bm). In this case
choose α001 to be the mid-point of [α0, α01]. If, on the other hand, αQδ001 =
0 Φ α01δ00i, then let am = αo; if αo&OOi ^ 0 = α01&001, let α001 = α01. Finally,
if αo6ool Φ 0 ^ α016001, then, on applying (C) with a = b01, b = α0, c = α01,
d — bQy e — δOoi, it follows that A(δOOi) S (α0, «ΌI) I n this case, choose
αOOi arbitrarily in A(b001). Similarly, let bon be the mid-point of [δ01, δ2];
by an argument similar to the one above, there exists aon e [a01, α j such
that α011δ0n — 0. Choose the appropriate y011, x011 in F and define f(xou) =

^oii, f(yon) = δou

(F) In the next stage, mid-points α0001 of [α0, α001], ami of [α001, α01], αo i w

of [α01, α011] and α0111 of [α011, α j are chosen as images of the appropriate
xiu As many as two of the four intervals listed may be degenerate;
it is still possible to choose a "mid-point". Suppose, for example,
that am = a0 = α0001. Then aOQO1-bool = 0 = aom bo, hence by (E) above,
δoooi m a Y be chosen as the mid-point of [60, 6001].

(G) At any stage, suppose ai is the mid-point of \ah ak]. It is
then necessary that bie[bj,bk]. By examining the products afij and
dibk, bi may be chosen precisely by means of the argument used in
part (E). A dual argument is obvious in the event that the original
choice of mid-point is from a subinterval of [δ0, δ j , rather than [α0, α j .
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(H) By (G) it may be assumed that / has been defined on a dense
subset D of F into B. The image subset f(D) is dense in B9 since
lengths of complementary intervals clearly approach zero. Also, / is
monotonic within [xθ9 xτ] and [yθ9 yx]. It is therefore possible to extend
/ to a continuous map of F onto W. Furthermore, choose xe F. It
must be shown that f{x)f{— x) = 0. Let xe [xθ9 x j . It may be as-
sumed that x £ D; let {ccj —*x, {a J S ΰ . Then {— xJ —> — x and
{- x{} S Zλ By the continuity of /, {fix,)} - f(x), {/(- »,)} - / ( - x).
Finally, {0 =/(x^fi—x,)}—> f(x)f(—x)9 by the continuity of multi-
plication in S. Hence f(x)f(— x) = 0.

(I) From the discussion prior to (A), the function / * is now well
defined from W into S, and the following diagram is commutative:

W — > S

FxF f X f >BxB

Since F is compact, / * is continuous; by Theorem 4, / * maps W onto
S. It remains to show that /* is a homomorphisπu Let ab — c e W, and
suppose a = wx, b = yz, with w, x9 y9 ze F. Then c = wxyz. If c Φ 0,
then recall that one of these factors of c, say w, must have the pro-
perty that x, y, z are all in the same component of F\{w, — w}. Sup-
pose further that {x, z} S [w, y] S [w, — w], where all intervals represented
are counter clockwise. Then c — wy, hence f*(c) — f(w)f{y). On the
other hand, since / is monotone on [w,y], {f(x), f(z)} S [f(w), f(v)]
in B, and / ( - w) e [f(y), f(w)]. If f(y) = / ( - w), then f(w)f(y) = 0 =
/*(c) = f*(a)f*(b). If /(i/) ̂  / ( - w), then by the corollary of Lemma
2, [/(^),/(?/)]^M(/(^)/(7/)), hence f*(a)f*(b) = f(w)f(x)f(y)f(z) =
f(w)f(y) — /*(c)., The other cases are handled similarly.

If α& = c = 0 in FT, again with α = wx, b = #z, then it must be
shown that f(w)f(x)f(y)f(z) = 0. Since c — 0, x,y,z cannot all be in
the same component of F\{w, — w}. Suppose y is in one component
of F\{w, — w}9 and {x, z} in the other. Then, within the component
containing {x, z}9 — y must be separated from — w by one of x, z;
otherwise w, x9 z9 are in the same component of F\{y, — y). Suppose
x separates — y from — w. Then, applying the corollary to Lemma
2, —y e M(wx). Hence f( — y) e M(f(w)f(x)), and therefore

f*(a)f*(b) = f(w)f(x)f(y)f(z) = [f(-y)f(w)f(x)]f(y)f(z)

= lf(-y)f(y)]f(w)f(χ)f(z) = o = f*(c).

The remaining cases are similar. This completes the proof.
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5* Remarks on the general case* It is easy to construct a
TSL in which M(x) fails to be connected for some x. For example,
let J be the arc subsemilattice of I x I consisting of

( {0}xJ)U({ l }x/)U(Ix{0}) .

Then M((0, y)) is not connected for any y > 0. Similarly, the product
TSL on the disk JxJ contains points of this nature. For a more
complicated example, let K be a subset of Ixl defined as follows:
Let a canonical Cantor set C be constructed on the arc /, and let D{

be the union of the open intervals deleted from C at the ith stage in
its construction. Let K, = {(x, y):xe Di7 (3* - l)/3* ̂ 2 / ^ 1 } . Let
K= ( / x / ) \ U i ^i . Then if is a subsemilattice and is topologically a
disk. Set z = (0, 1). Then M(z) is a Cantor set.

LEMMA 3. Let S be any compact connected metric TSL with
identity. Let A = {x : M(x) is a connected subset of S}. Then xe A
if and only if x lies on an arc chain containing 1.

Proof Suppose xe A. Then M(x) is a compact connected TSL, and
by Theorem A, there exists an arc chain T from 1 to x. Conversely, let
T be an arc chain from 1 to x. Clearly T^M(x). Let yeM(x).
Then yT is connected, and contains x and y, and is a subset of M(x).
Hence every element of M(x) is connected to x by a connected subset
of M(x), and therefore M(x) is connected.

Recall that, if {An}neω is a collection of closed subsets of a space
S, then lim sup {An} — {x e S; if x e U, U open in S, n e ω, then there
exists m > n such that Am Π U Φ D}.

THEOREM 7. Let S and A be as in Lemma 3. Then A is a
compact connected subsemilattice of S containing 0 and 1.

Proof Clearly 0, l e i . Let x,ye A, and let J, J be arc chains
from 1 to x,y, respectively. Then I\jxJ is an arc chain from 1 to
xy; by Lemma 3, xy e A. Hence A is a subsemilattice. Furthermore,
since / g i , every element of A lies in a connected subset of A which
also includes the element 1; hence A is connected. It remains to show
that A is closed. Let {xn} be a sequence in A, and let {xj converge
to x. For each n, let Tn be an arc chain from 1 to xn. Let T = lim
sup{TJ. The set T is known to be connected [12]. To see that
T S M(x), choose αeT, let {αj cluster to α, α%e Γn. Then {xn} = {anxn}
clusters to ax, hence ax — x. Therefore a e M(x), and x is connected to
1 inside of M(x). It now follows easily that every element of M(x)
lies in a connected set containing x within M(x), hence xe A and the
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proof is complete.
In all examples on the 2-cell known to the author, A is also lo-

cally connected; it is conjectured that if S is locally connected, then
A is also. Indeed, it may be that A is a homomorphic retract of S.

If S is not assumed to have a 1, none of the conclusions of the above
theorem need hold. In particular, certain subsemilattices of the TSL
J x J mentioned earlier in this section fail in these respects.
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SOME INEQUALITIES FOR SYMMETRIC MEANS

P. S. BULLEN

This paper was received before the synoptic introduction
became a requirement.

1* In two recent papers, [3, 4], Everitt has generalised certain
known inequalities, by replacing the known monotonicity of certain
set (or sequence) functions by super-additivity; the sequence functions
are zero if all the terms of the sequence are equal.

Included in the inequalities generalised is one due to Rado, [5,
p. 61]. Bullen and Marcus, [1], recently proved a multiplicative ana-
logue of this inequality and a generalisation to symmetric means. It
is one of the intentions of this note to show that the corresponding
sequence function, which is 1 when all the terms of the sequence are
equal is logarithmically super-additive, (Corollary 5, below). Further
properties of these sequence functions are then investigated.

2* (a) — (au

 β ,α m ) will denote an m-tple of positive numbers.
Er(a)f 1 ^ r gΞ m, is the r t h elementary symmetric function of (α),

( 1 ) Sr=W = Σ Π S ' #0=1,
3=1 J

the sum being over all r-tples, ίl9 , ir, such that 1 rg i± < < ir 5* m.
Pr{o) is the mean of Er{a),

( 2 ) Pr = Pr{a) =

If m =jb + q, (a) =^{au , αn), (a) = (an+1, , an+q) and correspond-
ingly Er — Er{a), Er = Er(a), etc., if r has suitable values. When
r = 1 the symmetric means are arithmetic means and will be written
Pα = An+q, Pλ = Άni Px = Άq. Similarly, P_n+q, Pn,Pq are powers of
geometric means and will be written G +J, Gl and Gq

q respectively.

3. It is known, [5, p. 52] that

( 3) s < t implies PI ^ Pt% with equality if and only if aλ = = am.

It is easily seen from (1) that

( i ) if s ^ min (n, q) then Es = Σ Es_tEu
ί=0

(ii) if s > max (n, q) then Es = " + f En_tEs_n+t,

Received June 3, 1963. This research was supported by the U. S. Air Force
Office of Scientific Research.
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q ^

(iii) if q < s ^ n then Es = Σ Es_tEt.
ί=0

Using these identities and (2) we have

LEMMA 1. ( i ) I f l ^ s S n + q

t = u

where u — max (s — n, 0), v = min (s, g), λ£s) = λis<) — 1 αwn! t / 0, s,

(ii) /w particular if an+1 = = anΛq — β then

V

/ r \ ΊD >ΓΊ Λ ( s ) T> Qt
\ O ) ± s 2-L ^ ί -Ls — tP 9

and if in addition aλ— = an = a,

When g = 1 this reduces to formulae (2) and (4) of [1].

4. We are now in a position to state and prove

T H E O R E M 2. Let l^rSk^n + q and u — max (r — n, 0), v —

min (r, g), ̂  = max (k — n, 0), x — min (fe, g).

(i) if v ̂  w and r — u ̂  k -— x

P k/r ID (k — x)l (r—u) ΊDw/υ

. . . . r ~ > •*• r—u •*- v

P == P P

(ii) if v ^ w

~Dk\r JDw/υ

8 ) r, ^ — ^ >

with equality in each case if and only if either r = kora1= '= an+q»
Before proceeding with the proof it should be noted that the con-

dition v ^ w becomes r — u^k — xiίn and q are interchanged. So
if r — u ^ k — x inequality (8) holds, with the role of n and q inter-
changed; or equivalents Pr

klr/Pk ^ Pr-Zx)lir~u)/Pk-^ If neither v ^ w
nor r — u ^ k — x then, from (3), nothing is true. The condition
v ^ w is equivalent to min (r, q) S max (& — r, 0) and for this either
r < q and i ^ ^ + r o r r ^ g and k = n + q; that is λ; ^ n + v. For
both v ^ w and r — n ^ k — x either r < min (n, q) and k ^ r +
max (w, g) or r ^ min (w, g) and k — n + q.

Proof of Theorem 2. If r = & the results are trivial so assume
r < k. Rewrite (7) as
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Or pk

L= _k— g — £ = R .
pr pr p[(k-x)/(r-u)]rpwr/v

By (4) with s — r

( v _ „ \k

V λ ( r ) P p \
t = u /

Using (3) on each term of this sum

Pk > I V \(r)p(r-t)l{r-u)ptlv\

\

By (6) the right hand side of this inequality is the kth power of the
rth symmetric mean of bu , bn+q where b^— —bn — Plιlr

u~
u) and

bn+1 = =bn+q = Pι

v

ι\ Using (3), (6) and r < k this gives

pk > ί y*^(k)p(k-t)l(r-u) pt/υY
~ \t=w l T~U J

— p[(fc-i)/(r-tt)]rpuίr/i)/v >. (k) p(x-t)J(r-u) p(t-w)Jυ
\t=w

On rewriting we get,

( * — ~ \r

V •\(k)p(x-t)l(r-u)p(t-w)lυ\ _ O

t=w /

Similarly by (4)

(10) Pk

Using (3) on each term of this sum gives

γ« \(k)p(k-t)l(k-x)ptlw\

2-1 'W •* k—x Γ w J

t = w /
pr pr/V Λ(k)p(x-t)l(r-x) p(t~w)lw\

— X u—xrw\ 2-1 ^t ± k~x Γw )
\t = w /

Rewriting we have that

L S (Σ \ik)Pili;tmk-*)P«-'D)lw)r = Γ , say .

By the condition in (i) and (3), T S S, which proves (7). Some terms
in the above proof become undefined in certain limiting cases. If they
are defined to be 1 the proof is then correct. Finally, since r < k,
the inequality is clearly strict when (3) is. This completes the proof
of (i).

To prove (ii) the procedure is similar except that when (3) is
applied to the right hand sides of (9) and (10) it is applied to the
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second part of each term only, that is to Pt. The analysis is then
the same with (5) being used instead of (6),

COROLLARY 3.

(11)

with equality if and only if ax~ = an+q.

Proof. From Theorem 2(i) with r = 1, k — n + q.

C O R O L L A R Y 4 . IflSr^s^n then

JDs + l IDs

(12) ±z— >. £ϊ-

in particular

A.
(13) =

equality if and only if aλ— = an+1.

Proof. From Theorem 2 (ii) with k — s + lf n — 1. These results
are those in [1],

Finally if r{(a)} = r(a) = (AJGm)m then we have

COROLLARY 5. logr{(α) u (a)} ̂  logr(α ) + logr(α).

5* The above inequalities (11), (13) and that due to Rado, [5,
p. 61] can be further generalised by the use of weighted means. Let
(w) = (wl9 , wn) be an m-tple of nonnegative numbers, not all zero.
Define

Wr = Σ wr , Wr>0,

It is known that

(14) Gr ̂  Ar, with equality only when ax — = αw

A generalisation of Rado's inequality and (13) is given by

THEOREM 6.

Wn(An ~ Gr) g Wn+1(An+i ~ Gn+1) ,
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' A \W*> ί A , \wn + l

w i ί λ equality if and only if aλ— = α n + 1 .

Proof. The proofs are exactly those of the special cases. As
direct proofs were not given in [1] they will be given here. In particu-
lar the proof of (15) is simpler than that suggested in [5].

(15) is equivalent to Gn+1 £ (WJWn+1)Gn + (wn+JWn+dan+1 = U, say.

^ u
by an application of (14).

Similarly (16) is equivalent to

An+1 ^ A^niw^a^nwn+i) = Vf s a y

but

(18)

.by an application of

A α. —^ • T O + l

IIV

(14).

\π/ mi

w n w
v,

In a similar way we can prove

THEOREM 7.

W (A — Gr \ > W (A — (Ί- \ 4- W (A — <̂M

nJ G
with equality if and only if ax— = a

*q

n+q.

Generalisations along the same lines are possible for the inequalities
(7), (8) and (12). Suppose (wa) — (w±al9 - — ,wmam); then define

Fr(a) =
Er{w)

a generalisation of Pr(α), to which it reduces if w1 = = wm Φ 0.
The two m-tples (α), (w) will be said to be similarly ordered if for all
if j> a* S dj (<2; ̂  dj) implies w{ ^ w3- (wi ̂  wά).

THEOREM 8. If (a) and (w) are similarly ordered then
(i) s<t implies Fι

s > Ft% with equality if and only ίfaλ= —am.
(ii) inequalities (7), (8) and (12) hold, subject to the relevant

• conditions, with P replaced by F.
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Proof. The proof of (i) is exactly that of (3), [5, p. 53]. Then
the inequalities follow as before.

The requirement that (a) and (w) be similarly ordered is essential
as the following example shows. If (a) = (1,1, 2) and (w) — (2,1,1)
then F1 < Fϊ12 but F2

112 > Fl!\ The extreme case s = 1, t = m of (i)
is a weaker form of (14) since F]lm is the unweighted geometric mean
whereas FΎ is the weighted arithmetic mean with the larger numbers
having the larger weights.

6* In recent papers Diananda, [2] and Kober [6], have investigated
further properties of An — Gn. We will now prove multiplicative
analogues of their results. Let (w) — (wlf , wn), w{ > 0, Wn = 1
and define

» / /vl/2/γ—!/2 _L / * — l/2/γl/2

κ = Π ( α < ttf + C T i α^

V / / YίWj

Λn 11 1
i,j=Λ 2

w — min (wu , wn), W = max (wlf , wn).

THEOREM 9.

(19) LZ^'1' SRn^ Ήn ,

(20) AT~W) SRnS ΛT* ?

with equality if and only if a1 — = an.

Proof. The proofs of (19) and (20) are similar so only that of (20>
will be given. Writing a = 1/(1 — w) the left hand inequality in (20)
can be rewritten as

(21) G^Ul ̂  An ,

where

π. = Π
2

The left hand side of (21) is equal to

TT J α t T aj \ Π (jf»i+(i-«)wi} #

Since α ̂ l + (1 — d)wi ^ 0 and Σi^i<i^n2α:wiWi + Σ?-i{ α w i + C1 ~
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1, an application of (14) gives (21).
The proof of the r ight hand inequality in (20) is slightly longer.

The proof is by induction on n and the result is trivial when n = 1.
By rewrit ing, t h e inequality is equivalent to

<22) βM = Anl*n ^ 1 .

Using (17) and (18) it is easy to show that

. an \ A 4- 1/1 a l«>/?ί(l—wn)(l—w)/γW«U—w«—10)

Π"-1'iti\ 2

In particular therefore, if aλ = = an_τ — a,

/OQ\ O /SΊ\ iV-*- ΊMn)(X ~Γ w)nUjn) Oi n n

\Δ6) Pn\a) '

2

Further if v = min (wu , wn_Ύ) then v ^ w and

Now, since 1 — wn~ w Ξ> 0 and w + (l — wn)(l — w) + wn(l — wn — w) =

:2wn(l — wn), an application of (14) to (23) demonstrates (22) in this
special case.

If we now assume βn__τ ̂  1 then

β <: β* = {(1 — wn)An_1 + wna.n}
wG^iΓn){1~w)~{1~Wn)2{1^υ)^nil~Wn~w)

π
i=ι \ 2

{(1 - wn)A«-i + ^ A N I 1 : ; - ' ^ - ^ ? ' 1 ^ - ^

using (14). Without any loss of generality we can assume that an =
max (a1? , α j , when in particular an ^ An_λ. Then

Pn\a) = ~ ^~

t y the particular case (23) with a = -4n_χ.
The cases of equality are immediate.
It might be remarked that if W is second largest and wr the
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second smallest of (w) tnen

1 < J w%υ> < /f < TWW

It is possible to generalise Holder's inequality using Theorem 9.

THEOREM 10. Let a i 3 ^ 0 (i = 1, , m, j = 1, , n) and

m

Σ « ϋ = sj > 0 ( i = 1, « , n ) .

Π βp

Z) = min (1, L,

d = max (I, λ)

L = max L~{wl>l~1](aiu , α,J = max L-{?ln~1]

ί i

= max ^/- ( ] / 1 - w ) (α i l , , ain) = max Δ-[]11-W)

i i

I — min L~J ,
i

λ = min A~]lw .

Proof\ A simple modification of the usual proof [5, p. 23] using
Theorem 9 instead of (14).
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ON ARITHMETIC PROPERTIES OF COEFFICIENTS
OF RATIONAL FUNCTIONS

DAVID G. CANTOR

The purpose of this note is to prove the following: gener-
alization of a result of Polya:

THEOREM. Let {an} be a sequence of algebraic integers,
and / a nonzero polynomial with complex coefficients. If
Σn=of(n)anz

n is a rational function, then so is Σn=oCtnz
n.

Polya [3] has proved that if Σ * = o nanz
n is a rational function, then

so is Σ?=o ttn

z% It follows immediately from Polya's result that if k
is a rational integer and Σ~=o (n — k)anz

n is a rational function, then
so is Σ~= o anz

n. It is then easy to prove inductively, that if / is a
polynomial with complex coefficients, all of whose roots are rational
integers, and if Σ~= o f(

n)anzn ι s a rational function, then so is Σ~=o <V%*
Suppose K is an algebraic number field and A c K is an ideaL

If a and β are algebraic numbers in K, we say, as usual, that a = β(A),
if there exists a rational integer r, relatively prime to A, such that
ra and r/3 are algebraic integers and {ra — r/3) e A. We say that A
divides the numerator (denominator) oΐ a Ίί a = 0(A) {{IIa) == 0(A)).
We denote the norm of the ideal A by NmA.

LEMMA 1. Let K be an algebraic number field and a e K an
algebraic number. Then the set of those prime ideals of K which
divide the numerator of some element of the sequence {k — a : k —
1, 2, 3, •} is infinite.

Proof. Suppose n is a rational integer such that na is an algebraic
integer, and suppose Pl9 P2, , P r are the only prime ideal divisors of
the sequence {nk — na : k — 1, 2, 3, •}. Now Nm{nk — na) is a non-
constant polynomial g{k) with rational integral coefficients. Hence for
each rational integer k, there exist rational integers slf s2, , sr such
that g{k) = +Π<=i (NmP?)Si. Thus there are only finitely many rational
primes which divide some element of the sequence {g{k) : k — 1, 2, 3, •}.
But this is false [2, p. 82].

REMARK. A less elementary proof of Lemma 1 is obtained by
observing that if P is a prime ideal with residue class degree 1, and
not dividing the denominator of a, then there exists a rational integer
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n such that n Ξ= a(P); since the set of such prime ideals has Dirichlet
density 1, among all prime ideals, there are infinitely many of them.

LEMMA 2. Suppose {an} is a sequence of algebraic integers and
a is an algebraic number. If Σ~= o (w — oc)anz

n is a rational function
then so is ^^anz

n.

Proof. Since Σn=o (n — a)anz
n is a rational function, there exist

distinct nonzero algebraic numbers θl9 θ2, , θm and polynomials with
algebraic coefficients λ l f λ2, , λm such that

(1) (n- a)an = ± x^nW ,
i = l

for all n^ n0, where n0 is a rational integer. By replacing the sequence
{αj by the sequence {an+nQ} if necessary, we may assume that (1) holds
for all n ^ 0. Let K be an algebraic number field which contains a,
the coefficients of the Xi9 and the θ{. Choose a rational integer k and
a prime ideal P a K such that P divides the numerator of k — a and
does not divide the numerator or denominator of a, the θi9 the dif-
ferences (θi — θj) (i Φ j), and the coefficients of the λ̂ ; by Lemma 1,
there are infinitely many choices for the prime ideal P. Suppose that
JSfmP = pf where p is a rational prime. We substitute n — k + jpf

in (1), where j is a rational integer:

(k + jpf - a)an = Σ \(k + jpf)θϊ+jpf .

Since pf = 0(P) and k = a(P), we obtain

But 0f ' Ξ Θ{{P), hence

m
y Δ ) f.Λ Ki\(X)ui -

The m equations obtained from (2) by successively substituting j =
0,1, 2, , m — 1 are linear in the λ^α) and have as determinant
Πί=i <̂ times the Vandermonde determinant det || θ\" ||, 1 ^ i ^ m, 0 ^
j ^ m — 1, which is not =0(P), since P does not divide any of the
θi or the differences (^ — #,•) (i Φ j). Hence

( 3) Xi(a) = 0 ( P ) , l ^ i ^ m .

By Lemma 1, (3) is true for infinitely many prime ideals P, hence
Xi(a) = 0, 1 g i ^ m. It follows that the polynomials X{(n) are divis-
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ible by n — a. Put μt(n) = Xi(n)/(n — a); μ^n) is a polynomial with
algebraic coefficients. By (1)

α» = Σ ΛW*?
ΐ = l

Thus ΣΓ=o α«zw is a rational function.

LEMMA 3. Suppose {an} is a sequence of algebraic numbers and
fis a nonzero polynomial with complex coefficients. If "Σ^^ f{n)anz

n

is a rational function, then there exists a nonzero polynomial g with
algebraic coefficients snch that ΣZ=o9(n)anz

n is a rational function.

Proof. There exist distinct nonzero complex numbers θu θ2, , θm

and nonzero polynomials with complex coefficients \, λ2, , λm such
that

on

( 4 ) f(n)an = Σ K(n)θϊ ,

for all large n. Without loss of generality, we may assume that (4)
holds for all n ί> 0. In what follows, all fields are considered as sub-
fields of the field of complex numbers. Denote by Ω the field of
algebraic numbers, and by L the smallest field which contains Ω, the
θi9 and all of the coefficients of the polynomials /, Xl9 λ2, , λw.

Since L is finitely generated over Ω, it has a finite transcendence
basis xl9 x2, •••, xr. Each of the θi9 the coefficients of the λ̂ , and the
coefficients of / satisfies an irreducible polynomial equation whose
coefficients are elements of Ω[xl9 x2, , xr]. Let hl9 h2, , hs be all
of the nonzero coefficients of these polynomials; h19 h2, , hs are poly-
nomials in xlfx2f -",xr with coefficients in Ω. Since there are only
finitely many such polynomials, there exist algebraic numbers ξl9 ξ2, , ξr

such that h(ξl9 f2, , ξr) Φ 0, 1 ^ i ^ s. The map x{ —> ξ{ gives rise
to a homomorphism of the ring Ω[xlf x2i , xr] onto Ω9 which is the
identity on Ω. By the extension of place theorem [1, p. 8], this homo-
morphism can be extended to a place φ : L —> Ω9 which is the identity
on Ω. If a e L, we denote by a the image of a under φ and if b is
a polynomial, b(n) = Σί=i ^inί with coefficients b{ e L, we denote by b
the polynomial with b(n) = Σ*=i δ ^ The ^ { and the coefficients of
/, λj, λ2, , λm satisfy nonconstant polynomials gl9 g29 , gυ with non-
zero constant term; the nonzero coefficients of these polynomials are
the hj. Under the place φ the hd go into finite nonzero algebraic
numbers hj. Hence the polynomial gk has the same degree as gk9 all
of its terms are finite, and its constant term is not zero (1 ̂  k ^ v).
The Si and the coefficients of /, λlf λ2, , Xr are roots of these poly-
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nomials; hence the θi are finite, nonzero algebraic numbers, and the
/, Xu λ2, , λm are nonzero polynomials, with finite, algebraic coef-
ficients. Applying the place φ to both terms in (4), and putting / : — g9

yields, since an = an

g(n)an = ^ \(w)#? .

Hence

Σ ΰ(n)anz
n = Σ Σ \(n)θΐzn

is a rational function, and g is a nonzero polynomial with algebraic
coefficients.

Proof of theorem. By Lemma 3, we may assume that / h a s alge-
braic integer coefficients. Let a be a root of / and g{n) = f(n)/(n — α);
by the lemma of Gause, g(n) is a polynomial with algebraically integral
coefficients. Put bn = g(n)an; {bn} is a sequence of algebraic integers and
Σ~=o (n — a)bnz

n is a rational function. By Lemma 2, so is Σ?=o ^ %

Proceeding inductively, on the degree of /, we see that Σ^=o &%%% is a
rational function.

REMARK. By the Remark following Lemma 1, one can replace, in
the theorem, the requirement that the an be integers, by the require-
ment that the set of prime ideal divisors of the denominators of the
an has Dirichlet density less than 1 among all prime ideals.

Let f(z) — ΣΓ=o Ov^, where the an are rational integers. Polya's
theorem then asserts that if f'(z) is a rational function, so is f(z). The
corresponding assertion of our generalization of Polya's theorem is: Let
f(z) — Σ"=o αnz

n be a power series with algebraically integral coefficients.
If there exists a nonzero differential operator L, of the form L =
ΣUoCiizd/dzY (Ci complex numbers), such that Lf is a rational func-
tion, then so is f(z).
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DEDEKIND DOMAINS AND RINGS OF QUOTIENTS

LUTHER CLABORN

We study the relation of the ideal class group of a
Dedekind domain A to that of As, where S is a multiplicatively
closed subset of A. We construct examples of (a) a Dedekind
domain with no principal prime ideal and (b) a Dedekind
domain which is not the integral closure of a principal ideal
domain. We also obtain some qualitative information on the
number of non-principal prime ideals in an arbitrary Dedekind
domain.

If A is a Dadekind domain, S the set of all monic poly-
nomials and T the set of all primitive polynomials of A[X],
then A[X]<? and A[X]T are both Dadekind domains. We obtain
the class groups of these new Dsdekind domains in terms of
that of A.

1* LEMMA 1-1. If A is a Dedekind domain and S is a multi-
plicatively closed set of A suoh that As is not a field, then As is
also a Dedekind domain.

Proof. That As is integrally closed and Noetherian if A is, follows
from the general theory of quotient ring formations. The primes of
As are of the type PAS) where P is a prime ideal of A such that
PΓ)S = ψ. Since height PAS = height P if PΠS = φ, P Φ (0) and
PΠS = φ imply that height PAS = 1.

PROPOSITION 1-2. If A is a Dedekind domain and S is a multi-
plicatively closed set of A, the assignment C —» CAS is a mapping of
the set of fractionary ideals of A onto the set of fractionary ideals
of As which is a homomorphism for multiplication.

Proof. C is a fractionary ideal of A if and only if there is a
d G A such that dC S A. If this is so, certainly dCAs S ASj so CAS

is a fractionary ideal of As. Clearly (J5 C)AS ~ BAS-CAS, so the
assignment is a homomorphism. Let D be any fractionary ideal of
As. Since As is a Dedekind domain, D is in the free group generated
by all prime ideals of As, i.e. D = Q -1 Qlk. For each i — 1, , k
there is a prime Pi of A such that Qi = P{ASa Set E = Pi1 Pn

kK
Then using the fact that we have a multiplicative homomorphism of
fractionary ideals, we get
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EAa = (P1AS)^ (PkAsy* = Q i . . . QlK

COROLLARY 1-3. Let A be a Dedekind domain and S be a multi-
plicatively closed set of A. Let C (for C a fractionary ideal of A
or As) denote the class of the ideal class group to which C belongs.
Then the assignment C —* CAS is a homomorphism φ of the ideal
class group of A onto that of As.

Proof It is only necessary to note that if C = dA, then CAS =
dAs.

THEOREM 1-4. The kernel of φ is generated by all Pω, where
Pa ranges over all primes such that P#OS Φ Φ.

If PaΠS Φ φ, then P^As — As. Suppose C is a fractionary ideal
such that C = Pay i.e. C = dPω for some d in the quotient field of
A. Then CAS — dPaAs = dAs, and thus^CA? is the principal class.

On the other hand, suppose that C is a fractionary ideal of A
such that CAS — xAs. We may choose x in C. Then C~x xA is an
integral ideal of A, and (C~1 xA)As — As. In other words, C~1 xA =
P{i... P{i9 where Pi f)S Φ φ, i = 1, . . . , I. Then C = Pτf\ , ~Pϊfι,
completing the proof.

EXAMPLE 1-5. There are Dedekind domains with no prime ideals
in the principal class.

Let A be any Dedekind domain which is not a principal ideal
domain. Let S be the multiplicative set generated by all Πa, where
Πa ranges over all the prime elements of A. Then by Theorem 1-4,
As will have the same class group as A but will have no principal
prime ideals.

COROLLARY 1-6. If A is a Dedekind domain which is not a
principal ideal domain, then A has an infinite number of non-
principal prime ideals.

Proof. Choose S as in Example 1-5. Then As is not a principal
ideal domain, hence has an infinite number of prime ideals, none of
which are principal. These are of the form PAS, where P is a (non-
principal) prime of A.

COROLLARY 1-7. Let A be a Dedekind domain with torsion class
group and let {Pa} be a collection of primes such that the subgroup
of the ideal class group of A generated by {P0} is not the entire
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class group. Then there are always an infinite number of non-
principal primes not in the set {Pa}.

Proof. For each a, chose nΛ such that Pl<* is principal, say =
A aa. Let S be the multiplicatively closed set generated by all aa.
By Theorem 1-4, As is not a principal ideal domain, hence A8 must
have an infinite number of non-principal prime ideals by Corollary 1-6.
These come from non-principal prime ideals of A which do not meet
S. Each P« does meet S, so there are an infinite number of non-
principal primes outside the set {Pa}.

COROLLARY 1-8. Let A be a Dedekind domain with at least one
prime ideal in every ideal class. Then for any multiplicatively
closed set S, As will have a prime ideal in every class except pos-
sibly the principal class.

Proof. By Corollary 1-3, every class of As is the image of a
class of A. Let D be a non-principal class of As. D = UAS, where
C is a fractionary ideal of A. By assumption, there is a prime P of
A such that P'= C. If PAS — As, then CAS is principal and so D is
the principal class of As. This is not the case, so PAS is prime, and
certainly PAS = *CAS = D.

EXAMPLE 1-9. There is a Dedekind domain which is not the
integral closure of a principal ideal domain.

Let A — Z[V — 5]. A is a Dedekind domain which is not a
principal ideal domain. In A, 29 = (3 + 2 t/" : = Γ5) (3 - 2
follows from elementary algebraic number theory that / 7 1 = 3
and J T 2 = 3 - 2 l / - 5 generate distinct prime ideals of A. Let S =
{Πi}^. Then As is by Theorem 1-4 a Dedekind domain which is not
a principal ideal domain. Let F denote the quotient field of A and Q
the rational numbers. As cannot be the integral closure of a principal
ideal domain whose quotient field is F since principal ideal domains
are integrally closed. If As were the integral closure of a principal
ideal domain C with quotient field Q, then C would contain Z, and
Π1 and Π2 would be both units or nonunits in As (since Π1 and Π2

are conjugate over Q). But only Π1 is a unit in As.

REMARK 1-10. Example 1-9 settles negatively a conjecture in
Vol. I of Commutative Algebra [2, p. 284], The following conjecture
may yet be true: Every Dedekind domain can be realized as an ASf

where A is the integral closure of a principal ideal domain in a finite
extension field and S is a multiplicatively closed set of A.
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2 LEMMA 2-1. Let A be a Dedekind domain. Let S be the
multiplicatively closed set of A[X] consisting of all monic poly-
nomials of A[X]. Let T be the multiplicatively closed set of all
primitive polynomials of A[X] {i.e. all polynomials whose coefficients
generate the unit ideal of A). Then A[X]S &nd A\X\T are both
Dedekind domains.

Proof. A[X] is integrally closed and noetherian, and so both
A[X]s and A[X]y are integrally closed and noetherian. Let P be a
prime ideal of A[X]. If PnAΦ(0), then PΓ)A = Q is a maximal
ideal of A. If P Φ QA[X], then passing to A[X]/QA[X], it is easy
to see that P= QA[X] + f(X)Ά[X] where f(X) is a suitably chosen
monic polynomial of A[X]. In this case PΓ\ S Φ φ, so PA[X]S = A[X]S.
Thus if PΠAΦ(O) and PA[X]^ is a proper prime of A[X]S, then
P=QA[X] where Q = PΠA. Then height P = height Q = 1. If
P Π i = ( 0 ) , then PK[X] is a prime ideal of K[X] (where K denotes
the quotient field of A). Certainly height P = height PK[X] = 1, so
in any case if a prime P of A[X] is such that PflS = φ, then height
P ^ 1. This proves that A[X]S is a Dedekind domain. Since S ^ T,
A[X]T is also a Dedekind domain by Lemma 1-1.

REMARK 2-2. A[X]T is customarily denoted by A(X) [1, p. 18].
For the remainder of this article, A[X]^ will be denoted by A1.

PROPOSITION 2-3. A1 has the same ideal class group as A. In

fact, the map C —> UAL is a one-to-one map of the ideal class group of

A onto that of A1.

We can prove that C —> CΆ1 is a one-to-one map of the ideal class

of A into that of A by showing that if two integral ideals D and E

of A are not in the same class, neither are DA1 and EA1. Suppose

then that DA1 — EA1. This implies that there are elements f (X),

9i(X), i = 1,2 in A[X] with ^(X) monic for i = 1,2 such that

DA1-
gi(X)

Let a{ be the leading coefficient of fι{X) for i = 1,2, and let deD.
Then we get a relation

d. ΛWL = jl(XL . MXL, g{X) mOnic,
(X) g(X) {X) yX }

where e{X) can be chosen as a polynomial in A[X] all of whose coef-
ficients are in E. This leads to d g2(X)'f(X)'g(X) - e(X) /2(X) ^(X).
The leading coefficient on the right is in a2 E. This shows that aλ-D
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D S a2Έ. Likewise a2 E £ ax Ώ, thus a^D = a2Έ and D = E.
To prove the map is onto, the following lemma is needed.

LEMMA 2-4. Let A be a Dedekind domain with quotient field
K. To each polynomial f{X) ~ anX

n + V a0 of K[X] assign
the fractionary ideal c(f) = (αΛ, , a0). Then c(fg) = c(f) c(g).

Proof Let Vv (for each prime P of A) denote the P-adic valua-
tion of A. It is immediate that Vp(c(f)) — min F^αJ. Because of
the unique factorization of fractionary ideals in Dedekind domains, it
suffices to show that Vp(c(fg)) = Vp(c(f))+ Vp(c(g)) for each prime
P of A. This will be true if the equation is true in each AP[X].
But Ap is a principal ideal domain, and the well-known proof for
principal ideal domains shows the truth of the lemma.

To complete Prop. 2-3, let P be a prime ideal of A1. The proof
of Lemma 2-1 shows that if P[\Aφ (0), then P = QA1 where Q is a
prime of A. Thus P = QA1 and ideal classes generated by these primes
are images of classes of A. Suppose now that P is a prime of A1

such that PΓ)A=(0). Let P1 = Pf\A[X]. Then P1^ A = (0), and
P^K[X] is a prime ideal of K[X]. Let P^K[X] = f(X)K[X]; we
may choose f(X) in A[X]. Let C = c(f). Suppose that g(X)-f(X)e
A[X]. Then because c(fg) = (c(/)) + (c(^» ^ 0 for all P, g(X)eC~1'
A[X]. Conversely if g(X)e C-^A[X]9 then g(X) f(X) e A[X]. Thus
P1 - /(I)K[I]ΠA[I] = C-1- A[X]-f{X)A[X], and P = P1 A1 - C"1-

This gives finally that P = C~λA\ and the class is an
image of a class of A under our map. Since the ideal class group of
A1 is generated by all P where P is a prime of A1, this finishes the
proof.

COROLLARY 2-5. A1 has a prime ideal in each ideal class.

Proof Let w be any nonunit of A. Then (wX +
(= ( r f + 1)A1) is a prime ideal in the principal class. Otherwise let
C be any integral ideal in a nonprincipal class D~x. C can be
generated by 2 elements, so suppose C — (c0, Cj); then Q — (c0 + ^X)-
K[X] Π A1 is a prime ideal in C717!"1 = D.

PROPOSITION 2-6. If A is a Dedekind domain, then A(X) is a
principal ideal domain.

Proof. Since A(X) = Ai , Corollary 1-3 and the proof of Corollary
2-5 show that each nonprincipal class of A(X) contains a prime QA(X),
where Q is a prime ideal of A of the type (c0 + c1 X)K[X] Π A1.
Clearly Q n A[X] = (cQ + ClX)K[X] Π A[X] = C"1- A[X] (c0
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PA[X] for any prime P of A. Thus there is in Q Π A[X] a primitive
polynomial of A[X\. Thus QA(X) = A(X). Theorem 1-4 now implies
that every class of A becomes principal in A{X), i.e. A(X) is a
principal ideal domain.

REMARK 2-7. Proposition 2-6 is interesting in light of the fact
that the primes of A(X) are exactly those of the form PA(X), where
P is a prime of A [1, p. 18].

REMARK 2-8. If the conjecture given in Remark 1-10 is true for
a Dedekind domain A, it is also true for A1. For suppose A = BM,
where M is a multiplicatively closed set of B and B is the integral
closure of a principal ideal domain Bo in a suitable finite extension
field. Let S, S1, and T be the set of monic polynomials in A[X],
B[X], and B0[X] respectively. Then A1 = A[X]S = (BM[X])S =
(B[X]M)s = CB[X])<M,s> = (J5[-X"l*i)<jff*. The last equality holds because
S1 S S S <Λf, S>. It is easy to see that B[X]sι is the integral closure
of the principal ideal domain BO[X]T in K(X), where K is the quotient
field of B.
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HOMOTOPY COMMUTATIVITY AND THE
MOORE SPECTRAL SEQUENCE

ALLAN CLARK

This paper initiates the study of strong homotopy com-
mutativity is both geometric and algebraic contexts in order
to correct an error in a paper of J. C. Moore.

The difficulty [8, §7, Theorem II] lies in the tacit assumption here
(and in the remark following Proposition 7.1) that the multiplication
m:XxX —>X on an ίf-space X induces a morphism of iϊ-spaces
ΩX x ΩX —> ΩX where ΩX denotes the associative loop space of X
defined in [6, Chapter 2]. Unfortunately the situation is more complex
than this. A morphism of iϊ-spaces Ωm\ Ω(X x X) —> ΩX is induced by
the product m on X. However for associative loop spaces, ΩX x ΩX is
not the same as Ω(X x X), although it has the same homotopy type.
Moreover there is no obvious morphism of ίf-spaces from ΩX x ΩX to
Ω(X x X) with which the induced morphism Ωm could be composed.

There are three ways to resolve this problem so that the proofs
involved can be carried through. One is to assume that X is associative,
use the product induced from X as the product in the ordinary loop
space, and to take the usual loop product as the morphism of H-spaces.
Another way would be to use the product induced on the ordinary loop
space as a morphism of StashefΓs A^ structures [10]. The third way,
the one used in this paper, is to show that there is a strongly homotopy
multiplicative map of if-spaces ΩX x ΩX—> ΩX, and that this is sufficient
for the proofs desired. The second and third alternatives are homotopy
equivalent, and the third is preferred in order to use the bar construction
rather than the less familiar tilde construction of Stasheff [10].

The exposition is organized as follows: § 1 sets up the geometry
and discusses strong homotopy commutativity; §2 recalls the bar
construction and the definition of the Moore spectral sequence; § 3
defines the algebraic analogue of strong homotopy commutativity for
a differential graded algebra A and uses it to construct a product in
the bar construction B(A), and consequently to introduce a Hopf algebra
structure into the Moore spectral sequence; § 4 proves a homology
suspension theorem for a contractible fibre space over an ff-space, a
slight improvement on a theorem of Browder [1, Theorem 5.13] which
contains the original result of Moore in which the trouble began.

The comments of the referee resulted in substantial improvement
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partially supported by a National Science Foundation grant.
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in the author's exposition, and the author is indebted to W. Browder
for helpful conversations.

l The geometric situation* X will denote a pathwise connected
and simply connected iϊ-space with multiplication m: X x X—> X which
has a two-sided unit element e. In addition we assume that X has
finite homologίcal type, that is, that the singular homology groups of
X are finitely generated in every degree.

ΩX will denote the associative loop space of X as defined in [6,
Chapter 2], and φ: ΩX x ΩX—>ΩX will denote the loop multiplication.
Φ gives ΩX the structure of an associative H-space with unit element Ωe,
the unique loop of length zero. Clearly ΩX x ΩX is also an associative
iϊ-space with multiplication (Φ x φ)(l x Γ x l ) where T denotes the
standard twisting map. Note that (unlike the ordinary loop space)
ΩX x ΩX is not the same as Ω(X x X).

DEFINITION 1.1. A map f: Y—+Z where Y and Z are associative
iί-spaces is strongly homotopy multiplicative if there exist maps

Mn: Yx (J x Yf — Z

for every nonnegative integer n, such that Mo = /, and such that

Mn(yOftlfylf ••-,*», y n )

^ d / o , * ! ,-•-, ί<-i, 2/i-il/i, ί ί + i , , ίΛ, 2/») for ίi = 0

f^d/o, ίi, , ti-i, Vi-iW^iy,, ti+1, ••-,*«, i/n) for t t = 1 .

The definition is due to Sugawara [11].
If X is an associative iϊ-space, then Bx will denote the classifying

space of X as constructed in Dold and Lashof [3].

THEOREM 1.2. (Sugawara [11, Lemma 2.2]). If f: Y-+Z is a
strongly homotopy multiplicative map, then/induces a map Bf: BY—>BZ.

DEFINITION 1.3. An associative iJ-space X is strongly homotopy
commutative if there exists a strongly homotopy multiplicative map
/: X x X—• X, such that f(e, x) = cc = /(α?, e).

THEOREM 1.4. (Sugawara [11, Theorem 4.3]). If X is an H-space
with associative multiplication, then Bx is an H-space if and only
if the multiplication on X is strongly homotopy commutative.

COROLLARY 1.5. X is an H-space if and only if ΩX is strongly
homotopy commutative.

P R O P O S I T I O N 1.6. F o r a n y p a t h w i s e c o n n e c t e d s p a c e s Xlf « , X W
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there exists a strongly homotopy multiplicative map

ψ: ΩXX x X ΩXm -> Ω(XX x x XJ .

Proof. Ω{XX x x Xm) may be considered to be the subspace
of ΩXX x x ΩXm consisting of m-tuples of loops of equal length.
If (ωl9 , ωm) e ΩXλ x x ΩXm and ω{\ [0, s{] —> Xiy then we define
ψ(ω19 , ωm) = (ά^, , ώ J where ώ. = ωjs — s j where s = max {sj
and {s — s j denotes the constant loop of length s — s^

The homotopies Mn are complicated to define. For i = 0, •••,%
suppose that ω* = (ω\, " , C ) G i2Xx x x ί2Xm and ω): [0, s}] -> Xh

Then we want to define

Mn(ω°, t19 ω\ , tn, ω ) = f K ( ί ) , , ωm(ί))

for t = ( ^ , tn)e In

y the unit ?t-cube, and with

^•(ί) - ω'rfoδXfy ω) {tnδ%t)} ω*s .

(As above {r} denotes the constant loop of length r and denotes
the loop product.) Then for tk = 1 we must have that the loops
ω^{tλ8){t)}^ω) ωj- 1 -^^)} have the same lengths for different j's.
Setting λj(ί) = 8? + tiδj ίt) + + ί^xδ*-1^) + βj-1 and λfe(έ) = max (λj(ί)),
we must have δj(ί) = Xk(t) — λ)(ί). This gives an inductive definition
for δj(ί) and we note that δj(ί) actually depends only on £1? , tft_lβ

This completes the definition of Λfn.

REMARK. If ω} = Ωe for all j Φ k, then, setting s = sf + + ŝ ,

Mn{ω\ tlf , tn, α>%) = ^(.%, .'.., Ωe, ω\ <yj, fle, , i2β)

COROLLARY lβ7. / / X is α% H-space, there are strongly homotopy
multiplicative maps

Proof. Let mk: Xk —> X be given by some fixed way of associating
the product of k elements of X. (Unless otherwise specified we shall
assume that mk(xlf •••,#*) = ^ ( ^ ( •(%k-i(%k))m' •))• Let ilί^ denote
the homotopies defined above for the map ψ: (ΩX)k —> Ω(Xk). Then
φw ~ Ω{mk) o α/r and the homotopies for ψ{k) are given by Mk =
Ω(mk) o Mk. When k = 2, this shows that flX is strongly homotopy
commutative.

2* The bar construction* For the convenience of the reader and
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to fix notation we recall the principal parts of the bar construction
(Eilenberg and MacLane [4]).

K will denote a commutative ring with unit and A will denote an
associative DGA algebra over K with augmentation ε: A —> K. Then
A — Ker ε and sA denotes the suspension of A, the graded module
formed from A by raising degrees by one. Bn(A) = (sΆ)n, the n-fόld
tensor power of sA, with the convention (sA)° ~ K. The (normalized)
bar construction B(A) is the graded iΓ-module with component Bn(A)
in degree n, and with the obvious augmentation. Elements of Bn(A) are
written as linear combinations of elements [ax | | an] — [αj (g) (g) [αj
where [αj denotes the suspension of ai e A. Then B(A) is graded by
assigning the element [aλ [ [ an] external degree n and internal degree
m — Σΐ=i deg (α. ), and bidegree (w, m). It will be convenient to abbreviate
by Bn(A) the graded module with component Bk(A) in (external) degree k
ίor 0 ^ k ^ n, and the 0 module in all other degrees. As a differential
if-module B(A) has a total differential dτ — dE + dΣ where the external
and internal differentials, dE and dΣ are given by the formulas

dE({(h I I an]) - Σ ( - l m α x I I c A + 1 1 I α j
i=l

dάfa I I α,]) = Σ ( - l r * - 1 1 ^ I I dα41 | αH]
i = l

in which (j(i) = deg ([αx | | αj) and a{a i+1 and dα̂  indicate the product
and differential taken in A. B(A) is an associative co-algebra in a.
natural way with coproduct

l) = Σ K I I
i = 0

where in the extreme terms ΐ — 0 and i = l,[] = le B0(A) — K.
When K is a principal ideal domain, the homology of the bar

construction B{A) will be denoted Tor4 (K, K), and extension of the
usual use of this notation. (See Moore [8].)

If B{A) is filtered by external degree, we obtain the Moore spectral
sequence, {Er(A), dr), in which E1 ^ B(H(A)), and in which E\A) ^
ΎOΎEU) (K, K) provided that Hn(A) is if-projective for all n. If H(A)
is of finite type, then Er => E°° ^ E° (Tor4 (K, K))f the graded module
associated with the filtration induced on Tor4 (K, K).

3* Homotopy commutativity and the bar construction* In this
section are given algebraic analogues for some parts of the geometric
situation discussed in § 1 and a product is introduced into the Moore
spectral sequence turning it into a spectral sequence of Hopf algebras.

DEFINITION 3.1. Let A and A' be associative DGA algebras over K.
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A homomorphism of DGA modules over Ky h: A—* A'', is strongly
homotopy multiplicative if there exists for each nonnegative integer
%, a homomorphism of Z-modules of degree n,

K\A® •••(% + 1) •• <g)A->A'

such that hQ = h and

dhJsh <g> <g> α n f l ) = Σ ( - ir^Kfa <g) <g> dα, <g) . . <g) αn + 1)

+ Σ (-l) σ ( i ) [^-i(αi 0 <g> 8Λ + i ® <g> α,+1)

-Λ<(θi (g) ® αm)fc»-i+i(αi+2 (g) (g> αΛ+1)]

where as before σ(i) — deg ([αx | | αj).
Clearly this condition implies that h is (chain) homotopy multi-

plicative A homomorphism of algebras, h: A—> A', is automatically
strongly homotopy multiplicative taking hn to be the zero homomorphism
for n > 0.

PROPOSITION 3.2. If h: A —> A' is strongly homotopy multiplicative,
then A induces a homomorphism of DGA coalgebras over K

B(h): B(A) -> B{Af) .

Furthermore B(h) induces a homomorphism of spectral sequences

Er(h): Er(A) -> Er(A')

such that E\h) — B(h*) where h*: H(A) —» H(Ar). In other words E\h)
is given by

Proof. Let S(n, k) denote the set of /^-tuples of nonnegative integers
whose sum is n. Then

v Σ [hi _i(«i ® β β ® ^ ) I ! Λ, _i(αw_ί +i (g) * (g) <xw)] .Σ
k = l

All the properties required of B(h) are easily checked by direct computation.

DEFINITION 3.3. An associative DGA algebra A is said to be strongly
homotopy commutative if there is a strongly homotopy multiplicative
homomorphism h: A (g) A —> A such that h(a ® 1) = α = fe(l ® α).

PROPOSITION 3.4. If A is a strongly homotopy commutative, asso-
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ciative DGA algebra, then B(A) is a DGA Hopf algebra, and the terms
of the Moore spectral sequence Er(A) are Hopf algebras provided the
ground ring K is a field. Furthermore as 1 e Ao is a unit for the map
h:A(&A—>Ay the Hopf algebras Er(A) are commutative, associative,
and have a unit.

Proof. The shuffling map 2: B(A) ® 5(A) -> 5(A (g) A) is a homo-
morphism of coalgebras and therefore Φ = B(h) Σ provides a product
for B(A) which is a homomorphism of coalgebras, and hence B(A)
becomes a Hopf algebra. Let E°(A) denote the associated graded DGA
Hopf algebra for the filtration of B(A) by external degree. Then
E°(A) & B(A) as a coalgebra, and as h(a ® 1) = a = h(l (g) α), it follows
that E°(Φ) is just the well known shuffle product of Eilenberg and
MacLane [4]. The remaining conclusions follow immediately since
the shuffle product is commutative, associative, and has a unit.

COROLLARY 3.5. If X is a pathwise connected and simply connected
H-space of finite homological type, then there exists a spectral sequence
of commutative and associative Hopf algebras with unit over Zpy

{Er(ΩX; Zp), dr}, such that

E2(ΩX; Zp) « TorH*{ΩX**> (Zp, Zv) (as Hopf algebras)

E°°(ΩX; Zp) P* E°(H*(X; Zp)) (as Hopf algebras)

where E°(H*(X; Zp)) denotes the associated graded Hopf algebra under
a filtration of H*(X; Zp).

Proof. Let A — CN(ΩX; Zp), the normalized singular chains of ΩX
mod p. Then by 1.7 ΩX is strongly homotopy commutative. It will
follow that A is strongly homotopy commutative in the algebraic sense
if we set (for a{ e A ® A)

K((h ® * ® an+i) = M^(ax (g) β ® ® β ® an+1)

where # indicates the induced chain homomorphism and e denotes the
singular 1-chain of I given by the identity map on I.1 From Moore [8,
Theorem 7.1] it follows that H*(X; Zp) & Tor4 (Zp, Zp) as ^-coalgebras,
and the rest is immediate from 3.4 by setting Er(ΩX; Zp) = Er(A).

REMARK. The results of this paper up to this point could be
generalized as follows: an ίf-space Y is n-homotopy commutative if and
only if there exists for k — 0, 1, , n maps

M2

k:(Y x Y) x (/ x Γ x Y)k — Y
1 The only nontriviality involved is to know that hn(a,ι® - - (x)αw+i) = 0 when each

at = a (x) 1 (or 1 (x) a) and this follows from the remark which precedes 1.7.
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with the appropriate properties as given in § 1. Then strongly homotopy
commutative would be the same as oo -homotopy commutative. The
definitions and proofs above could be modified to obtain a Hopf algebra
structure in the terms E\Y; Zp), , En+1(Y; Zp) of the Moore spectral
sequence converging to E°(H*(BY; Zp)) using as hypothesis only that
Y is ^-homotopy commutative.

4* The suspension theorem* Using the results above we prove
a suspension theorem which is a slight improvement on Browder [1,
Theorem 5.13], The notation and terminology is that of [5]; in particular
Q is the functor which assigns to an algebra its module of decomposable
elements, and P is the functor which assigns to a coalgebra its
submodule of primitive elements. Γ(x) denotes the ring with divided
powers of x as defined in [5, Chapter 5] and Ύk(x) = xk/kl.

If σ*\ H*(ΩX; Zp) —-> H*(X; Zp) denotes the suspension in homology
mod p for the contractible fibre space of paths over X as defined in
[7], then Ker σ* contains the decomposable elements of H*(ΩX; Zp) and
Im σ* is contained in the submodule of primitive elements of H*(X; Zp)
and σ* has degree 1. (See [7] for proofs.) Therefore σ* induces in
each degree i ^ l a homomorphism

S i : Q(HtφX; Z,)) - P(# i + 1 (X; Z,))

from the indecomposable elements of degree i of H*(ΩX; Zp) to the
primitive elements of degree i + 1 of H*(X; Zp). Our suspension theorem
will be a statement about the s{. The philosophy of the proof will be
a bit more clear if the reader bears in mind that taking A — CN(ΩX\ Zp),
H*(X; Zp) P* Tor4 (ZP9 ZP) = H(B(A)) and under this isomorphism the
suspension is given by x —•» [x] on the chain level. More precisely if
σ: A—>B(A) is given by σ(x) = [x], then we have a commutative diagram

; Zp) - ^ H*(X; Zp)

H(A) —* H(B(A)) .

In fact this is just [8, Proposition 7.2] applied to the case at hand.

THEOREM 4.1. Let X be a pathwise connected and simply connected
H-space of finite homological type and let s{ denote the homology mod
p suspension in degree i as defined above. Then

(a) if pΦ2, Si is a monomorphism unless i = (2mpk + 2)pq — 2 for
k > 0, q > 0, and Q(H2m(ΩX; Zp)) Φ 0, or unless i = (2m + 2)pq - 2
for q>0 and Q(H2m+1(ΩX; Zp)) Φ 0;

(b) if p Φ 2, Si is an epimorphism unless i = 2mpk + 1 for k > 0
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and Q(H2m(ΩX; Zp)) Φ 0;
(c) if p — 2, s{ is a monomorphism unless i — 2q(2km + 2) — 2,

for q>0,k> 0, and Q(Hm(ΩX; Z2)) Φ 0;
(d) if p — 2, s{ is an epimorphism unless i = 2km + 1 for k > 0

and Q(Hm(ΩX; Z%)) Φ 0.

Proof. Since X has finite homological type, ΩX does also, and
ΩX is pathwise connected. H*(ΩX; Zp) is a commutative and associative
Hopf algebra over Zv and is connected. From the Borel decomposition
theorem for Hopf algebras it follows that as an algebra, H*(ΩX; Zp)
is a tensor product of exterior, polynomial and truncated polynomial
algebras, each with a single generator. Since Tor4 (K, K) commutes
with tensor products (as a functor of A) [2, Chapter XI, Theorem 3.1,
p. 209], to compute E2 ^ Tor^* ( i2X;^ } (Zp, Zp) in the spectral sequence
of 3.5, we need only compute on sample factors. The results are listed
in the table below. The first entry is given by [8, Proposition 4.1],
and the others admit similar and very simple proofs.

A Tor4 (Zp, Zp)

E(x, 2m + 1) Γ(sx, 1, 2m + 1)

p Φ 2 L(x, 2m) E(sx9 1, 2m)

L(x, 2m)/(x»k) E{sx, 1, 2m) (g) Γ(tx, 2, 2mpk)

E(x, m) — L(x, m)/(x2) Γ(sx, 1, m)

p — 2 L(x, m) E(sx9 1, m)

L(x, m)l(x*k) (k > 1) E{sx, 1 ,m) (g) Γ{tx, 2, 2fcm)

where E{x, ri), L(x, ri), and Γ(x, n) indicate exterior, polynomial, and
divided polynomial algebras on a single generator of degree n. In the
right hand columm bidegrees are specified, and all entries are Hopf
algebras with primitive generators, sx and tx indicate the suspension
and transpotence of x. (For the definition of transpotence see [9].)

By induction on r we shall prove the following statements for Er:
( 1 ) The generators of odd degree have external degree 1 and

are primitive.
( 2 ) Generators of even degree are primitive if the external degree

is 1 and nonprimitive for external degree greater than 2, and the
nonprimitive generators have the form Ί q where x is a primitive
generator.

( 3) If yk(χ) Φ 0, but yk+1(x) = 0, then k < r.
( 4 ) As a differential Hopf algebra Er is the tensor product of

differential Hopf algebras with differential identically zero, and differ-
ential Hopf algebras of the form E{x, 1, m) (g) Γ(y, u, v) where dr(y q(y)) —
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x and where (consequently) r = upq~λ for u = 1 or u — 2.
Clearly (4) implies (1), (2), and (3) for Er+1, and we need only

show that (1), (2), and (3) imply (4). Suppose that dr does not vanish
completely. Let z be a generator of minimal degree such that drz Φ 0.
Since r ^ 2 and dr has bidegree ( — r, r — 1) it must be that z — Ύpq(y)
where y has external degree u = 1 or u = 2. Furthermore z has even
total degree and drz is therefore a primitive element of odd degree and
therefore has external degree 1. We may therefore assume without
loss of generality that x = drz is a generator. It follows that r =
upq—1. Then setting A = E(x, 1, m) ® Γ(τ/, w, v) we have that Er p&
A® B where B is a differential Hopf algebra satisfying (1), (2), and
(3) and the same argument may be repeated for B, and so on until
Er is exhausted. A small modification is necessary in the case that
p = 2 and x — drz generates a divided polynomial algebra Γ(x, 1, m),
but we leave this to the reader. It should also be remarked that in
the notation of [5], the algebra B is usually denoted by Er//A.

Since the ground ring is the field Zp, we have E°° ^ H*(X; Zp)
as a Zp-module. Then the following diagram is commutative

; Zp) ^ - > H*(X; Zp)

E~(ΩX; Zp) = E\H*(X; Zv))

where σ% is induced from the algebraic suspension σ defined above.
Since the primitive elements of H*(X; Zp) are mapped into (but not
necessarily onto) primitive elements of E°°(ΩX; Zp) by the vertical
isomorphism, information about σ* may be obtained from information
about σ% which can be calculated routinely using (4) above.

Evidently by purely algebraic considerations of the filtration on
the bar construction it could be shown that the vertical isomorphism
is a homomorphism of coalgebras. Since the primitive submodule of
E°° gives us an upper bound on the primitive elements of Ht(X; Zv)y

we have not tried to carry this out.

Added in proof. Judging by P. J. Hilton's review [Math. Reviews,
29, 2809] a similar proof of a theorem similar to 4.1 appears in Samuel
Gitler's paper, Spaces fibered by H-spaces (Spanish), Bol. Soc. Mat.
Mexicana (2) 7 (1962), 71-84. On the evidence of the review, it appears
that Gitler's proof contains the algebraic version of Moore's error.
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THE ASYMPTOTIC NATURE OF THE SOLUTIONS

OF CERTAIN LINEAR SYSTEMS OF

DIFFERENTIAL EQUATIONS

A. DEVINATZ

Suppose y'if) = [A+V(t)+R(t)]y(t) is a system of differential
equations defined on [0, oo), where A is a constant matrix,
V(t) —> 0 as t —> co and the norms of the matrices V'it) and R(t)
are summable. If the roots of the characteristic polynomial
of A are simple, then under suitable conditions on the real
parts of the roots of the characteristic polynomials of A + V(t)
a theorem of N. Levinson gives an asymptotic estimate of the
behavior of the solutions of the differential system as t -» co.
In this paper Levinson's theorem is improved by removing the
condition that the characteristic roots of A are simple. Under
suitable conditions on V{t) and R(t) and the characteristic roots
of A + V(t), which reduce to Levinson's conditions when the
characteristic roots of A are simple, asymptotic estimates are
obtained for the solutions of the given system.

The proof given here, with essential modifications, will follow the
proof given by Levinson [3] [2, p. 92], One interest in the improved
theorem is in its application to the problem of finding the deficiency
index of an ordinary self-ad joint differential operator, which will appear
in a subsequent paper. We shall establish the following.

THEOREM.1 Let A be a constant n x n matrix whose minimal
polynomial is of degree n and is of the form

χ(λ) = β (λ - λfc)
w*, λ, Φ λk for j Φk9 Σ nk = n .

Let q + 1 = max nk, V(t) an n x n matrix with (q + l)-times continu-
ously dijferentiable elements satisfying t2q \v(

ι

r

J

)(t)\Jlr e L1 for 1 ^ r ^
q + 1 and V(t)—>0 as t-*co. Let the roots of det (A + V(t) - λl) = 0
be {λA.(ί)}f and for t 7> τ0 we suppose the minimal polynomial of
A + V(t) is

χ(λ, ί) = Π (λ - Ut)Y«,
k = l

where Xk(t) —> Xk as t —> co. For a given k, let

Received February 3, 1964. Research supported by NSF Grant G 24834.
1 If A is an n X n matrix with entries an we shall write | A \ = Σϋ \ aij |. If x

is a vector with entries xι we shall write \x\ = Σ* l ^ l
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76 A. DEVINATZ

dkJ(t) = Re(Xk(t) - λy(ί)) ,

and suppose that all j , 1 ^ j ^ n9 fall into one of two classes Ix and

dkj —> oo as t—> oo and
Jo

(I t - τ \q + 1) exp - Γ dkj < M < ™ for t ^ τ ^ 0 ,

j e J2 if and only if \ dkj < log M for t ^ τ ^ 0. Let R(t) be a
Jr

matrix valued function with measurable elements such that
t2q \R(t)\e L1. Let {qkj; 1 S j ^ nk) be a set of "principal vectors"
for Xk; i.e., qkj = (A - XkI)n*-jgknk, (A - λΛJ)Λ*"1flrΛnjfe ^ 0 cmd (A -
XkI)n]cgknk = 0. Then, given the differential equation

(1.1) y'(ί) = [A + F(ί) + R(t)]y(t)

there exists a t0 and a fundamental system of solutions {ykj(t); 1 ^
j ^ nk, 1 ^ k ^ m} such that

[ p -i rt -|-i

— — - exp Xk{τ)dτ ykj(t) - qkj -> 0, t — co .
( j — 1)! Jίo J

2* We begin the proof by first considering a differential system
of the form

(2.1) y\t) - (A(t)

where A(t) is a matrix with blocks {J3 {t)}T down the main diagonal
and zeros elsewhere, J3(t) being an n3- x n3- matrix with the same
number X3(t) down the main diagonal, 1 down the superdiagonal and
zeros elsewhere, and R(t) has measurable entries with t2q | R(t) \ e L1,
where q + 1 — max {n3, 1 ^ j" ̂  m}.

One fundamental matrix ?Γ for the system

v^ / c/ \^/ ~~~ -^ΛV)y\v)

has blocks {P ĵΓ down the main diagonal and zeros elsewhere, where
Pj is an n5 x ŵ  matrix of the form

(2.3) Pj(t) = exp λ,

1 ί f/2!

0 1 ί

•
•
0 •

h - 1)!

h - 2)!

0 1

This may be checked by a direct computation. Again, it may be easily
checked that
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Pγ\t) = exp - ['
Jί,

and

(2.4)

Ptf)Pϊ\τ) = exp \ λ,

-t f/2l - ί 3 / 3 !

1 - t ί /2!

- 1)!'

1 (t-τ) ( t - τf/2l

0

0

(t-τ)

(t -

(t -

- 1 ) !

- 2 ) !

0

Let us fix k and let Ψ1 be that matrix with zeros everywhere
except for diagonal blocks {Pj j/eii}, where each such P3- has the
same position as in the matrix Ψ. Let Ψ2 be the corresponding type
matrix with diagonal blocks {Pj je 72}. Clearly Ψ = Ψλ + ?Γ2.

Let e4 be the vector with i t h component equal to δijf δi3- being
the Kronecker symbol. Now set i = I + Σ ϊ =ί %> where 1 ^ ϊ ^ wft,
and consider the equation

(2.5) ί4(ί) =

It may be checked by a straightforward computation that, at least
formally, φ is a solution to (2.1). Hence, if it can be shown that a
solution to (2.5) exists, where the integrands are in L1, then this
solution will also be a solution to (2.1).

We proceed by successive approximations. Choose Φ° — 0 and hence
φ1 = W(t)eim It follows that

(2.6) a1 - Φ° I ̂  Γexp Γ
L Jt 3=0

Now, the matrix Ψλ{t)Ψ \τ) has blocks along the main diagonal which
are zero in those positions for which j e I2 and of the form (2.4) in
those positions for which j e Iλ. Hence, using the hypothesis of the
theorem of § 1, for ί0 =

 τ = ^ we have

(2.7)

^ C[\ t - τ | exp ( -

expΓi2eλft ,

exp
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where C is a suitable constant dependent only of q. In the same way,
for ί 5Ξ τ < co,

(2.8) I Ψ lt)Ψ~\τ)R{τ) \ ^ CM[\t - τ\" + 1]\ R(τ) | e x p - [*ReXk .

Using the estimates (2.6), (2.7) and (2.8) we arrive at the estimate

l ^ - ^ l e x p - Γ t f e λ *
(2.9) Jί°

^ CikflΓ I J2(r) I Σ T̂ /iWr + Γ | Λ(τ) | [| ί - r |? + 1] Σ τ V ϋ ^ l .
U*o j=o Jί i=o J

Now using the fact that τ2q \ R(τ) \e L1 we can choose t0 so large so
that

(2.10) - Φ11 exp - Γ i2eλ, ^ 1/2 for ί ^ ί0 .
J ί o

Using (2.7), (2.8) and (2.10) and proceeding by induction we find that
for j ^ 1,

__ ψi I exp

(2.11) ^

^ (1/2V

R(τ) \ dτ | t - τ |

This means that there exists a function Φ so that on every compact sub-
interval of [ί0, oo), φj goes uniformly to φ, and indeed, using (2.6),

(2.12) φj ^ exp Γ ^ C[P + 1] exp Γ ReXk .

The estimates (2.12) taken together with the estimate (2.8) shows that
the integrands in (2.5) are in L1 and that indeed Φ is a solution of
that equation.

We claim that

(2.13) [φ(t) - W(t)ei\ exp - Γ λfc --> 0 as ί -> α> .

To show this, it is enough to show that

Ψ^ψ-^Riφi^dτ -> 0 as t — oo, and

(2.15) exp ( - Γ Rexλ^Ψ^W-^Riφiφτ -> 0 as t -> co .

Using (2.12) and (2.8) we see that the norm of (2.15) is less than or
equal to

(2.14) exp f- Γ
V J ί
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CWΓ[| t - τ I* + l][r< + 1] | R(τ) \ dτ,

()

Γexp - Γ λJsPXί)^ has the entry t1-*-1!^ — j - 1)! in the

^ j ^ i 1 d l h H

which goes to zero as t—>co. To prove (2.14) we use the fact that

t~q exp Γ dkj -> oo. Choose ix so that CM[° \ R(τ) \ \ φ{τ) \ dτ < ε. Then
}t0 J ί x

the norm of (2.14) is less than or equal to

ε + exp ( - Γ ifeλ*) I Ψx{t) | Γ | ψ-\τ) \ \ R(τ) | | φ(τ) \ dτ .
\ jt0 / J ί 0

N o w ,

e x p ( - Γ JBeλΛ | ^ ^ ί ) | g CP Σ e x p - Γ dkj-> 0 a s ί - > o o ,
\ Jί 0 / ie i i Jί 0

Hence we see that (2.14) is valid.

The vector p Γ

i + j position, 0 5̂  j ^ i — 1, and zero elsewhere. Hence

(2.16) {,/"* , ^ P Γ λΛ"V(«) - β, -> 0 a s ί - o o .
l(ί — 1)! Jί0 J

Let us designate the solution we have obtained in the previous
considerations by φ{. Then the set of solutions {<£$ is a fundamental
system for (2.1). Indeed, it is clear that the determinant of the matrix
Φ with the vectors φt as columns is nonzero for t sufficiently large.

3* In order to use the results of §2 to prove the theorem of §1
it will be necessary to establish the following.

LEMMA. Suppose the matrix A + V(t) satisfies the conditions of
the theorem of § 1. Then for all sufficiently large t there exists a
differentiable and invertible matrix P(t) such that tfq \ P~\t)Pr(t) \ e L1,
P(t)[A + V(t)]P~\t) is a Jordan canonical form, P(t)—*P and
P~\t)—+ P~x as t—> co, where PAP~λ is a corresponding Jordan
canonical form for A, and the columns of P " 1 are a given set of
principal vectors for A.

Proof. Let X19 λ2, , λm be the distinct eigenvalues of A. Since
the coefficients of the characteristic polynomial of A + V(t) are con-
tinuous functions of t in a neighborhood of oo, using the hypothesis
of the theorem, there exists a neighborhood of oo so that A + V{t)
has eigenvalues λ^ί), * ,λm(£) which are continuous for all t in that
neighborhood. In particular, this means that λΛ(ί)—>λΛ as t—» oo.

In fact, for t sufficiently large, each λfc(t) is (q + l)-times contiiri»
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ously differentiable. To see this, we consider the characteristic poly-
nomial

(3.1) F(X, t) = Σ /y(ί)λ"-' = (-1)" Π (λ - **(«))"' ,
3=0 j=l

where fό{t) is (q + l)-times continuously diίferentiable. If we set
Gk(X, t) = β ^ - ^ λ , ί)/0λn*-\ then Gfc(λfc(r), τ) = 0, but θGk(\k(τ), τ)/θλ Φ 0.
Hence, the implicit function theorem tells us that there exists a neigh-
borhood about τ and a (q + l)-times continuously differentiable function
μk, defined in this neighborhood, so that μk(τ) = λfc(τ) and Gk(μk(t), ί) = 0.
Moreover, if any other continuous function satisfies the last two con-
ditions, then this other function coincides with μk in some neighbor-
hood of τ. Hence Xk(t) — μk(t) in some neighborhood of τ, which
proves our assertion.

Let {qkj; 1 ^ j ^ wj be a given set of principal vectors for λ̂  and
let Q be the matrix whose columns are {qll9 , qlnχ1 qn, •• ,g2%2, •••,
Qmi, ' *, QmnJ, in the given order. Then, since the minimal and charac-
teristic polynomials of A are of the same degree, Q~XAQ is in the
Jordan canonical form (see e.g. [1], Ch. XVII). If Vk is the subspace
generated by {gkj\ 1 ^ j ^ nk}, then A is reduced by Vk. Hence, if
we set

*k(A) = Π (A - λ^ i ,

then this matrix is reduced by Vk and the restriction of πk(A) to Vk

has an inverse. Let us set hk — πi\A)qknk, where by ΊZ^\A) we mean
the inverse of the restriction of πk(A) to Vk.

Let us write the minimal polynomial, χ(λ, t), of A + V(t) as

χ(λ, t) = (λ - λ,(£)r*τr,(λ, ί) ,

where

^(λ, t) = Π (λ - λy(ί)) ' .

Set gfcWfc(ΐ) = τrfc(A + F(ί), t ) ^ ; then since πk{A + V(t),t)-»πh(A) as
ί —•* oo f it follows that if we set

qkj(t) = (A + V(t) - \k(t)Y*-'qk%h(t)

the set {qkj{t)}ι* forms a set of principal vectors for the eigenvalue
λ/c(ί), provided t is sufficiently large. Indeed for t sufficiently large,

(A + V(t) - Xk{t)f^qknk{t) Φ 0 ,

but

(A + V(t) - λ^t))"*?*,"' = X(A + V(t), t)hk = 0 .
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If Q(t) is the matrix whose columns are the vectors

{ffu(*), , Qiφ), 9n(ί), , ?*a(ί), , ?mi(<), , tfm.m(*)} ,

in the order given, then Q~\t)[A + V(t)]Q(t) is in the Jordan canonical
form ([1]).

Notice that the elements of Q(t) are polynomial functions in
{λ*(£)}Γ and the elements of A + V(t), and hence the elements of Q~\t)
are rational functions in these variables, where the denominator of each
rational function is det Q(t). Hence, if we set P(ί) = [det Q{t)]Q~\t),
then the elements of P(t) are polynomials in the previously mentioned
variables and P(t)[A + V(t)]P~\t) is in the Jordan canonical form*
Further, from the assumptions of the lemma, and the manner of con-
struction of Q(t), it is clear that Q(t)-+Q, where Q~ιAQ is in the
Jordan canonical form. Hence P(t) —• P, where PAP"1 is in the Jordan
canonical form.

Since P~\t) —> P~\ it is clear that P~\t) is bounded in a neigh-
borhood of infinity. Hence, if we can show that t2g \ Pf{t) \e L1 we
will have proved the lemma. The elements of P'(t) are linear functions
of {λ£(t)}r and {v'iS(t)} (the entries of V\t)) with coefficients which are
bounded in a neighborhood of infinity. Since, by hypothesis tfg \ v\j{t) | e L1

f

if we can show that t2Q \ X'k(t) \ e L1 we will be done.
Use (3.1) to obtain

l Π (λ4(t) -

Since Πî fc (λ*(ί) — \{t))nj is uniformly bounded away from zero and
Xk(t) is bounded, in a neighborhood of oo, it follows that there exists
a constant N such that

(3.2) i

Each function fd is the sum of suitably signed products of elements
of A + F(£). A typical term in the sum representing fs is say
OjKt) dj(t)f where a{(t) is an entry of A + F(ί). The &̂ derivative
of this product is given by

where Civ...tij are the constants which appear in the multinomial ex-
pansion of (a?! + + α^fc and the sum is taken over all j-tuples of
nonnegative integers, (iu •• ,ΐy), whose sum is nk. Hence if
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(3.3) t* I αί'i* φ > p/ * e L1

it will follow that ί2* | X'k | e U and hence t2q \ P'(t) \ e L.

If Σr=i^r = Uk, we may apply Holder's inequality to get,

ί2' Π <ir) ^ Π *2'l < * ' \Vir \irln« ,
t0 r=l r=l LJί0 J

where we make the convention that if % = 0, then

|| αr |U = sup I αr(ί) | = Γ Γ V | α«'> I1"'?''"* .
ί̂ *o LJt0 -J

From the hypothesis of the lemma it follows from (3.4) that (3.3) is
satisfied and hence lemma is proved.

4* Using the results of § 2 and § 3 it is now an easy matter to
finish the proof of the theorem stated in § 1. Make the transformation
x(t) = P(t)y{t) in (1.1) and we get the equation

(4.1) x* = [P(A + V)P'1 - P-χP' + PRP-^x .

The matrix P(A + V)P~X is in the Jordan form of the matrix A(t) of
(2.1) and P< \ PRP"1 - P-ψ' \ e L\ Hence, we may apply the results
of §2 and for i — I + Σi=ί^i> 1 = I ^ nk, we find a solution xt such
that

a s t —• oo .

Hence, if y^t) — P~\t)xiy we get

^ exp 5 4

t o

λ*]"W*) - P ' \ - 0 a s t - o o ,

where P " 1 = l im,^ P " 1 ^ ) .
The vector P " 1 ^ is the ith column of P " 1 which by Lemma 3 can

be taken to be the given principal vector qki. Since the vectors
{Qki't 1 ^ I ^ nkf 1 ^ fc ^ m} are linearly independent, the vectors {^(ί)}Γ
form a fundamental set of solutions of (1.1). This completes the proof
of the theorem.

Note added in proof. The theorem of this paper can be gener-
alized in the following way. Using the same notation as in the theorem
let p be a real number satisfying the inequality 0 ^ p ^ q. Suppose
further that for each given k all integers j , 1 ^ j ^ n, fall into two
classes I± and /2 where Iλ is the same as in the hypothesis of the
theorem but now I2 is the collection of j so that



THE ASYMPTOTIC NATURE OF THE SOLUTIONS 83

(I ί - τ Y + 1) exp Γ dkj < M < oo for t ^ τ ^ 0 .

Then under the hypothesis that fq~p \ v#(t) |1/r, 1 ^ r ^ q + 1, and
£2g-p i j^>^ I a r e summable, the conclusion of the theorem holds. The

proof of the generalized theorem follows the proof given in the text
mutatis mutandis.
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APPROXIMATION BY CONVOLUTIONS

R. E. EDWARDS

This paper is concerned mainly with approximating
functions on closed subsets P of a locally compact Abelian
group G by absolute-convex combinations of convolutions / * g,
with / and g extracted from bounded subsets of conjugate
Lebesgue spaces LV(G) and Lp/(G). It is shown that the
Helson subsets of G can be characterised in terms of this
approximation problem, and that the solubility of this problem
for P is closely related to questions concerning certain
multipliers of LP(G). The final theorem shows in particular
that the P. J. Cohen factorisation theorem for L^G) fails badly
for LP(G) whenever G is infinite compact Abelian and p > 1.

1* The Approximation Problem*
(1.1) Throughout this note, G denotes a locally compact Abelian

group and X its character group. For the most part we shall be
concerned with the possibility of approximating functions on closed
subsets P of G by absolute-convex combinations

( 1 ) ±ar(fr*9r),
r=l

of convolutions f*g, where / and g are selected freely from bounded
subsets of conjugate Lebesgue spaces LP(G) and Lpt(G) (1/p + Ijp' =
1). In the sums (1), the number n of terms is variable, whilst the
complex coefficients ar are subject to the condition

( 2 ) Σ l « r l ^ l .

Accordingly, if the fr and gr are respectively free to range over subsets
A and B of LP(G) and Lpf(G), the allowed sums (1) compose precisely
the convex, balanced envelope of

A * £ = {f*g:feA,geB}.

We denote by CQ(G) the Banach space of continuous, complex-
valued functions on G which tend to zero at infinity, the norm being
|| u || = sup {I u(x) I : x e G}. The space C0(P) is defined similarly, P
replacing G throughout. If G (or P) is compact, the restriction that
the functions tend to zero at infinity becomes void; we then write
C{G) (or C{P)) in place of C0(G) (or C0(P)).

It is well-known that if 1 < p < °o then f*ge C0(G) whenever

Received February 5, 1964.
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fe LP(G) and g e LP'(G), so that restriction from G to P results in a
member of C0(P).

(1.2) Given an exponent p satisfying 1 < p < oo and a closed
subset P of G, we shall consider the following assertion:—

{Avp) To each member u of a second category subset of C0(P)
corresponds a number i ί = K(Pyp,u) < °o such that w is the
uniform limit on P of absolute-convex combinations (1), the fr

and gr being subject to the restrictions

It is evident that (AP) and (AP

f) are equivalent assertions. Fur-
thermore, only a little reflection is required to see that (Ap) is true
for every P, so that the restriction 1 < p < oo is reasonable. With
this restriction on p, (AP) signifies that each u belonging to the said
second category set belongs to the closed, convex, balanced envelope
in C0(P) of A * B, where A and B are respectively the closed balls in
LP(G) and Lpf{G) of radius VK (which a priori may depend upon u).

(1.3) As well shall see, the truth or falsity of (AP

P) is equivalent
to an assertion about bounded measures supported by P which may
conveniently be expressed by regarding such a measure as a multiplier
(or centraliser) of (LP(G).

We denote by M(G) the space of bounded, complex (Radon) measures
on G; it may be regarded as the dual of C0(G). Furthermore, M(P)
may be thought of as the subset of M(G) composed of measures μ e
M(G) whose supports are contained in P.

Each μ e M(G) generates a multiplier Γμ of LP(G) defined by
Tμf=μ*f for feLp(G). In general, by a multiplier of LP(G) is
meant a continuous endomorphism of LP(G) which commutes with
translations. Each multiplier T of LP(G) has a norm

II Γ | | = sup{ | |Γ/ | | p : | | / | | , ^ 1 } .

Accordingly we may define Np(μ) for μ e M(G) as the norm of ΪV
regarded as a multiplier of LP(G).

It is easily seen that

( 3 ) N,(μ)£\\μ\\,

equality holding if p — 1 (and hence also if p — oo).
Although, as will be seen in (2.3), the norms Np(μ) and \\μ\\ are

not generally equivalent on M(G) when 1 < p < oo, yet equivalence
may obtain on M(P) for suitable closed subsets P of G. In fact, as
the next theorem shows, the suitable sets P are just those for which
the assertion (AP) is true. When p — 2 one obtains in this way a
new characterisation of the so-called Helsόn subsets of G; see (1.6)
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infra. A further link between (AP) and properties of certain sets of
multipliers of LP(G) is expressed in Theorem (2.1).

(1.4) THEOREM. Let P be a closed subset of (?, and let 1 < p < oo.
Then (Ap) is true if and only if there exists a number k — (P, p)
< oo such that

( 4 ) \\μ\\^k.Np(μ),

for each μeM(P).

Proof. Suppose first that (4) holds for μeM(P)0 This signifies
that

the supremum being taken over those / and g lying respectively in
the unit balls in LP(G) and LV'(G). Since

* g) dμ ,

where f(x) = f(—x), it follows that

I! μ ^ Sup{ (/* g)dμ : \\f\\, S V~K, \\ g \\p, S

From this it follows that for each u e Ca{P) one has

( 5 ) udμ ^ Sup (/* 9) dμ

where now / and g vary subject to the conditions

( 6 )

Now (5), combined with the Bipolar Theorem, shows that u belongs
to the closed, convex, balanced envelope in C0(P) of the functions f*g
(or, more precisely, their restrictions to P), where / and g are subject
to (6). Thus the assertion (Ap) is true for each ueC0(P), with

K(P9p,u)^k(P,p).\\u\\ .

Conversely, suppose that (AF) is satisfied. Let Σ denote the set
of we C0(P) for which K(P,p,u) exists finitely, so that Σ is a second
category subset of C0(P). For a given ueΣ, the set of admissible
numbers K(P,p,u) is easily seen to be closed. Denote by S the set
of u e Σ for which the infimum of this set of admissible values of
K(P,p,u) is at most unity. Thus S consists precisely of those u e C0(P)
which are limits in CQ(P) of sums (1), wherein
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( 7 ) WfrWpS 1, || flr, | | , ^ 1 .

It is almost evident that S is closed, convex, and balanced in C0(P).
Moreover, Σ is the union of the sets nS (n = 1, 2, •••). Since Σ is
second category in CQ(P), it follows that S must be a neighbourhood
of zero in CQ(P). Consequently, Σ = C0(P) and, for some r > 0, each
ueC0(P) satisfying \\u\\ ^ r is the limit in C0(P) of sums (1) with
the fr and gr subject to (7) Then, however, each ueCQ(P) belongs
to the closed, convex, balanced envelope in C0(P) of the set of con-
volutions f*g with

For μ e M(P) it is therefore the case that

r " 1

Using again the relation

( (f*9)dμ^ \ (μ*f)gdx

it appears that

= r~\Np(μ),

which is (4), with k = r"1. The proof is thus complete.

(1.5) REMARK. It has appeared in the course of the preceding
proof that, if the approximation specified in (A%) is possible for each
member of a second category subset of C0(P), then it is indeed possible
for each u e C0(P), and this with a value of K(P,p,u) not exceeding
Ko(P,P). I I * | |.

(1.6) The case p = 2: relation with Helson sets. When p — 2
it is a simple consequence of the Parseval formula and PlancherePs
theorem that

where
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μ(ξ)=\σξ(v)dμ(x) ,

is the Fourier-Stieltjes transform of μ. Reference to Rudin [4], p.115,
Theorem 5.6.3 shows then that as a Corollary to Theorem (1.4) one
obtains the fact that (A%) is true for a closed set PaG if and only if
P is a Helson subset of G. (Rudin assumes his Helson sets to be
compact, but this restriction is unnecessary in the present connection.)

From the case p = 2 of Theorem (1.4) we may also derive a
known property of Helson subsets of discrete groups G. (For historical
reasons, Helson subsets of discrete groups are often termed Sidon sets;
see [4], Section 5.7.)

(1.7) COROLLARY. Suppose that G is discrete and that P is a
Helson (or Sidon) subset of G. Then each bounded, complex-valued
function on P is the restriction to P of the Fourier-Stieltjes trans-
form of some measure on the (compact) character group X. (Cf. [4],
p. 121, Theorem 5.7.3(d).)

Proof. Let B(P) be the superspace of C0(P) formed of all bounded,
complex-valued functions on P. On B(P) take the topology of pointwise
convergence on P. Let T denote the linear mapping of M(X) into
B(P) which assigns to λ e M(X) the function Tλ defined by

It is evident that T is continuous for the weak topology t — σ(M(X)>
C(X)) on M(X). For any k > 0, the set

Sk = {λeM(X): | | λ | | g k} ,

is compact for t, so that its image T(Sk) is compact, and therefore
closed, in B(P). It will therefore suffice to show that, for some k >
0, T(Sk) is dense in

V={veB(P):\\v\\ g 1 } ;

and this will certainly be the case if T(Sk) is shown to be dense in
the closed unit ball VQ = Vf) C0(P) in C0(P).

Suppose then that ue Fo. Since P is a Helson set, (1.5) affirms
the existence of a number k = KQ(P,2) such that u is the limit,
uniformly on P, and so a fortiori in the sense of the pointwise topology,
of functions (1) with || fr ||2 g VΈ and || gr ||2 S VT. By the Plan-
cherel theory, these approximating functions form a sequence (ΊOJU,

each term of which is expressible in the form
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where λs e M(X) is defined by dxs(ξ) = Fβ(ξ)dξ, and where

so that

| | λ f | | =

^ Σ

Thus us e T(Sk) for each s, which shows that each ue Vo belongs to the
closure in B(P) of T(Sk), as we wished to show.

2. Falsity of (AS). It is not altogether trivial to decide whether
or not (AS) is true. By expressing this assertion in terms of multipliers
of LP(G), we shall show that (A%) is false at any rate whenever 1 <
p < oo and G is infinite compact Abelian. The same conclusion is
derivable without explicit mention of multipliers; see Remark (3.2)
infra.

Let us denote by mp(G) the set of all multipliers of LV(G). As
observed in (1.3), we may regard M(G) as a subset of mp(G). The
next theorem makes reference to the so-called weak and uniform
operator topologies on mv(G), and for brevity we shall label these
"W.O.T." and "U.O.T." respectively.

(2.1) THEOREM. If P is a closed subset of G, the following four
statements are equivalent:—

( i) M{P) is closed in mp(G) for the U.O.T.;
(ii) M(P) is sequentially closed in mp(G) for the W.O.T.
(ii') M(P) contains the closure in mp(G), relative to the W.O.T.,

of any Np-bounded subset of M(P);
(iii) there exists a number k — k(P,p) < oo such that

\\μ\\^k.Np(μ),

for μeM(P), i.e., by Theorem (1.4), (A*P) is true.

Proof. Since P is closed, M(P) is in any case complete for the
norm \\ μ\\. Since mp(G) is complete for the U.O.T., M(P) is complete
for Np if and only if (i) holds. In any case, Np(μ) ^ || μ \\. These
remarks, combined with the Inversion Theorem for Banach spaces,
show that (i) and (iii) are equivalent.
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It is evident that (ii) implies (i). Also, since any sequence in
M{P) which is convergent for the W.O.T. is iV -̂bounded (a direct
application of the uniform boundedness principle), (ii') implies (ii). It
therefore remains only to show that (iii) implies (ii').

Suppose then that {μ^ is an JV -̂bounded net in M{P) such that
liπii TH = T in the W.O.T.: we have to show that T = Tμ for some
μeM(P). Now, since (iii) is true by hypothesis, Sup̂  || μ{ || < oo.
Hence the net (μ{) has a weak limiting point μ e M(G). Since P is
closed, μ necessarily belongs to M(P). The definition of the weak
topology on M(G) ensures that, for each feLp(G) and each geLp\G),

the number I (μ * f)gdx is a limiting point of the numerical net

But this last net is convergent to i (Tf)gdx. It follows that Tf ~

μ*f for each fe LP(G), i.e., T = Tμe M(P), which is what we wished
to prove.

(2.2) REMARK. It is simple to verify that if μ e M{P), then the
multiplier Tμ has the property that T^f is, for each fe LP(G), the
limit of linear combinations of translates f(x-a) of / with ae P.
Problem: Is it true that conversely any Temp(G), which is so ap-
proximable, is the limit in the W.O.T. of multipliers Tμ with μ rang-
ing over some iV -̂bounded subset of M(P)f! The answer is affirmative
if P = G is compact, as will appear in the proof immediately below.

(2.3) COROLLARY. Suppose that G is infinite compact Abelian. Then
{Al) is false for every p satisfying 1 < p < °o.

Proof. Let us show first that any T e mp(G) is the limit in the
W.O.T. of an Λ/>bounded net (μj in M{G). Take any base {U,) of
compact neighbourhoods of zero in G, and choose for each i a non-
negative, continuous function h{ on G with support contained in Uf
and such that I h{dx = 1. Then lim^ h{ * / = / in LP{G) for each fe

LP{G), so that
Tx = lim, T{hi * /) = lim, Th, * / = lim, k, * / ,

where k{ = Th, e LP{G) and

Let μίeM{G) be defined by dμ^x) = ki{x)dx. Then N^μ,) ^ || T \\ ,
and lim, TH f = lim, k{ * / = / in LP{G). Thus lim, TH - T in the



92 R. E. EDWARDS

W.O.T. (even in the strong operator topology), and the net (/̂ ) is Np-
bounded. This verifies our claim.

This being so, Theorem (2.1) shows that it is now sufficient to
show that M(G) Φ mp(G), when G and P satisfy the stated conditions.
To this end, we choose and fix any infinite Sidon subset S of X, and
aim to show that corresponding to any bounded-complex-valued function
b on X which vanishes on XΓ\S' there is a multiplier Temp(G) for
which

(8) (T/y(ξ) = b(ξ)f(ξ) (ξeX).

Indeed, if 1 < p ^ 2, this follows from the substance of p. 130 of [4].
If, on the other hand, 2 < p < oo there is by that same token a
multiplier 2\ of LP'(G) such that (8) is true with Tx in place of T,
and it then suffices to take for the desired T the adjoint of 2\.

If the multiplier T defined by (8) were of the form Tμ with μe
M(G), then (8) would entail that

(9) β(ξ) = b(ξ) (ξeX).

Since therefore μ vanishes off S, the lemma immediately below would
combine with (9) to show that

(10) Σ^s I b(ξ) |2 < - .

However, S being infinite, we are at liberty to suppose that (10) is
false, in which case T is not of the form Tμ. Thus M(G) is a proper
subset of mp{G), and the proof is complete.

(2.4) Let G be a compact Abelίan group and S a Sidon subset
of X. If μe M(G) is such that

(11) /*(£) = 0 (f

then μ is absolutely continuous (relative to Haar measure on G) and
its Radon-Nikodym derivative h belongs to Lq(G) for every finite q.
In particular,

Σζes I β ( ξ ) \ 2 < o o .

Proof. It is known ([4|, p. 128, Theorem 5.7.7) that

(12) \\t\\qSBq\\t\\lf

for every q < °° and every trigonometric polynomial t on G for which
t(ξ) = 0 for ξeXnS', the number Bg being independent of t. On the
other hand one may select in many ways a net (ίt ) of trigonometric
polynomials on G such that lim^ tt* μ = μ weakly in M(G) and C =
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sup. || ίi ||i < °°. The inequality (12) applies to tt* μ and gives

Supposing that q > 1, it follows that the net (tt * μ) has a weak
limiting point hg in Lq(G) and, since t{* μ—*μ weakly in M(G), μ can
be none other than the measure defined by dμ(x) = hq(x)dx. Putting
h = JI2QL2(G), it is seen that hq — h a.e. for each β > 1, so that
h 6 Lg(G) for every finite q. This A is, modulo negligible functions,
the Radon-Nikodym derivative of μ, and the lemma is established.

3* Impossibility of factorisation in Lp(G)t p > 1. It was shown
by P.J. Cohen [1] that each heL\G) can be factorised as f*g with
/ and g in L\G). Now, if p > 1, LP(G) is an algebra under convolu-
tion if G is compact (and, if Abelian as we assume throughout, in no
other cases). The next theorem, still concerned with approximation
by sums of the type (1), though now with different restrictions on
the fr and gr, shows that Cohen's result is very far from being
extendible to LP(G) with p > 1.

(3.1) THEOREM. Let G be infinite compact Abelian, and let
1 < p g oo. Let Σ denote the set of functions h in LP(G) with the
following property:— There exists a number R = R(p, h) < oo such
that h is the weak limit in M(G) of finite sums

subject to the condition

(14)
r-\

Then Σ is a first category subset of LP(G).

Note. In the statement of Theorem (3.1) we are regarding LP(G)
as a subset of M(G), identifying a function fe LP(G) with the measure
μ defined by dμ(x) = f(x)dx.

Proof. Take again an infinite Sidon subset S of X. Since p >1
there exists ([4], p. 130) a number c = c(p, S) such that

for each fe LP(G). If k is a sum of the type (13), then k = Σ?«iΛ f7r
and so, by the Cauchy-Schwarz inequality,
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^ c2R ,

the last step by virtue of (14). Consequently, the inequality

(15) Σζes\h(ξ)\< oo

is satisfied by each he Σ.
If ^ were second category in LP(G), an argument similar to that

used in the proof of Theorem (1.4) would show that

(16) Σtes\R(ξ)\^c'\\h\\p,

for each h e LP(G), c' being independent of h. This in turn would
entail the existence of a measure μ e M(G) (actually a function in
LV'{G) if p < oo) such that

0 if ξeXί)S' .

But this would contradict Lemma (2.4). Thus Σ must be a first
category subset of LP(G), as asserted.

(3.2) REMARK. The preceding proof can be modified slightly to
show that Σf)C(G) is a first category subset of C(G), thus providing
an alternative proof of Corollary (2.3).

(3.3) REMARK. The final phase of the preceding proof, leading
from (16) to the contradiction, may be completed without reference to
Lemma (2.4), and is in fact quite independent of the notion of Sidon
sets and their properties. This is shown by the following lemma.

(3.4) LEMMA. Let G be compact Abelίan. If S is a subset of
X such that

(17) Σςes I u(ξ) | < oo ,

holds for each u in a second category subset of C(G), then S is
necessarily finite.

Proof. The hypothesis entails (cf. the proof of Theorem (1.4))
the existence of a number c" such
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for each ueC(G). This and the Riesz theorem combine to show that
to each bounded, complex-valued function b on S corresponds a measure
μ e M(G) for which

μ(ξ) = b(ξ) for ξeS, μ{ξ) = 0 for ξeXnS'.

This μ is uniquely determined by b and the mapping T which carries
b into μ is an algebraic isomorphism of the algebra B(S) of all
bounded, complex-valued functions on S (with the sup norm and
pointwise product) into the convolution algebra M(G). By Theorem 1
of [2], this entails that B(S) is of finite dimension, so that S must be
finite.

(3.5) REMARK. Yet another way of deriving a contradiction from
(16), or from the apparently weaker variant (17), is to invoke a known
theorem which says that if S is a Sidon subset of the character group
of a compact Abelian group G, then for any given v e 12(S) there exists
ue C(G) such that u(ξ) — v(ξ) for ξe S. For the circle group this is
established by Rudin ([5], 5.1 and 5.3), though the result for Hadamard
sets S of integers is much older; and for general G it follows from
Theorem 5.7.7 of [4] together with a result due to Hewitt and Zuckerman
{[3], Theorem 8.6) which applies even to non-Abelian compact G.

REFERENCES

1. Paul J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205.
2. R. E. Edwards, On functions which are Fourier transforms, Proc. Amer. Math.
Soc. 5 (1954), 71-78.
3. Edwin Hewitt and H. S. Zuckerman, Some theorems on lacunary Fourier series,
with extensions to compact groups, Trans. Amer. Math. Soc. 9 3 (1959), 1-19.
4. Walter Rudin, Fourier analysis on groups, Interscience Publishers (1962).
5. , Trigonometric series with gaps, J. Math, and Mech. 9 (I960), 203-228.

INSTITUTE OF ADVANCED STUDIES

AUSTRALIAN NATIONAL UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

Vol. 15, No. 1, 1965

DECOMPOSITION THEOREMS FOR
FREDHOLM OPERATORS

T. W. GAMELIN

This paper is devoted to proving and discussing several
consequences of the following decomposition theorem:

Let A and B be closed densely-defined linear operators
from the Banach space X to the Banach space Y such that
D(B) 2 D(A), D(B*) 2 JD(A*), the range R(A) of A is closed,
and the dimension of the null-space N(A) of A is finite. Then
X and Y can be decomposed into direct sums X = Xo Θ Xu
Y = γ0 0 γl9 where Xί and Yx are finite dimensional, Xλ g D(A),
XonD(A) is dense in X, and (Xo, Yo) and (Xί9 Yi) are invariant
pairs of subspaces for both A and 5. Let A* and Bi be the
restrictions of A and J5 respectively to Xu For all integers
ft, (tfoAΓXO) £ #(A), and

dim (BoAϊ̂ CO) =fc dim (EoA^XO) = ft dim #(A0) .
Also, the action of Ai and Bι from Xi to Yi can be given a
certain canonical description.

The object of this paper is to study the operator equation
Ax — XBx =y, where A and B are (unbounded) linear operators from a
Banach space X to a Banach space Y. In §1, an integer μ(A:B) is defined,
which expresses a certain interrelationship between the null space of A
and the null space of B. In §1 and 2, decomposition theorems are proved
which refine theorem 4 of [2]. The theorems allow us to split off certain
finite dimensional invariant pairs of subspaces of X and Y so that A
and B are well-behaved with respect to μ(A:B) on the remainder.

In §4, the stability of these decompositions under perturbation of
A by XB is investigated. In § 5, relations between the dimensions
of certain subspaces of X and Y are given, and a formula for the
Fredholm index of A — XB is obtained. These extend results of Kaniel
and Schechter [1], who consider the case X= Y and B the indentity
operator.

It should be noted that the results of Kaniel and Schechter re-
ferred to here follow from theorems 3 and 4 of [2]. The results of
this paper properly refine Kato's results only when the null space of
B is not {0}.

1. We will be considering linear operators T defined on a dense
linear subset D(A) of a Banach space X9 and with values in a Banach
space Y. N(T) and R(T) will denote the null space and range of T
respectively, while a{T) is the dimension of N{T), and β(T) is the
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codimension of R(T) in Y. T is a Fredholm operator if T is closed,

R(T) is closed, and both a{T) and β(T) are finite. The index of a
Fredholm operator is the integer.

κ(T) = a{T) - β{T) .

Let P be a subspace of X, Q a subspace of Y. (P, Q) is an
invariant pair of subspaces for T if Γ(P Π J5(Γ)) S Q

Standing assumptions: In the remainder of the paper, A and I?
are closed linear operators from X to Y, D(A) is dense in X, D{B) 2 £>(A),
and ΰ ( β * ) g ΰ ( A * ) ; A is semi-Fredholm, in the sense that R(A) is
closed and α(A)< co.

The assumption D(B*) Ξ2 £)(A*) seems necessary for the proof of
the decomposition theorems. It is often met when A and B are dif-
ferential operators on some domain in Euclidean space, and the order
of B is less than the order of A. It is always met when B is bounded.

The linear manifolds Nk = Nk(A:B) and Mk = Mk(A:B) are defined
by induction as follows :

N, = N(A)

Nk = A-XBN^) , k > 1

Mk = BNk .

Nk and Mk are increasing sequences of linear manifolds in X and
Y respectively.

The smallest integer n such that Nn is not a subset of U^ϋ^A)
will be denoted by v(A:B). If Nn is a subset of B~λR{A) for all n,
then we define v(A:B) = co. (cf. [2])

The dimension of Nk will be denoted by πk — πk{A:B), and the
dimension of Mk by pk — pk(A:B). Then ^ = a(A), and, in general,
πk^ka(A). μ(A:B) will denote the first integer n such that πn< na(A).
It Vrn = na(A) for all intergers n, then we define μ{A: B) = co.

In general, μ(A: 1?) ^ v(A:B) + 1. This inequality is trivial if
i£= oo. If v < co, then Λfv-iSi2(A), while Mv g i?(A). Consequently,
7ΓV+1 < 7ΓV + α(A) ^ (v + l)a(A), and so /i(A: B) ^ y + 1.

We define 0"fc(A :B) = πk — ττA;_1. Then σfc is the dimension of the
quotient space N^N^. {σk} is a decreasing sequence of nonnegative
integers, and so the limit

σ(A : β) — lim σk(A : B) exists.

If μ(A : B) = co, then σ(A : B) = α(A).

2* THEOREM 1. Assume, in addition to the standing assumptions
on A and B, that v{A: B) = co. TΛen X and Y" can be decomposed
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into direct sums

Z=Zo0X1

Y= r ,φr 1 (

where Xλ and Yx are finite dimensional, X1 S D(A), Xo 0 D(A) is
dense in Xo, and (Xo, Yo) and (X19 Yi) are invariant pairs for both
A and B. If A{ and B{ are the restrictions of A and B respectively
to Xi9 then μ(A0, Bo) = oo, while Aλ and Bλ map Xx onto Yx.

Furthermore, X1 and Yλ can be decomposed as direct sums

where Ax and Bx map P3 onto Q3 . Bases {x)\ 1 < i ^ η{j)} and
{y)\ 1 5g i ^ Ύ](j) — 1} can be chosen for P3 and Qo- respectively so that

γ - Bx) = yj, l ^ i

Ax) = 0 = Bxfj) .

Although the decomposition is not, in general, unique, the integers
φ and η(j), 1 ^ j ^ m, are uniquely determined by A and J5. In
fact,

p = α(A) - (τ(A: B) .

Proof. Let n — a{A), and suppose that {z\, zl} is a basis for
N(A). Since v(A: B) = oo, z) can be chosen by induction so that
Az) — Bz)~x. \z\\ 1 ^ j S n, 1 ^ i ^ m} is a spanning set for Nm,
while {β^}: 1 ^ j ^ n, 1 ^ i ^ m} is a spanning set for Λfw. Also,
{z?: 1 ^ i ^ n} span iVm modulo ^ ^

Recall that σm = σ(m) = dim (iVm/iVm_1). By induction, the order of
the 2} can be chosen so that {2?_σ(m)+i, , C} span ΛΓm modulo Nn-^
Then

Gm = {z}: n - σ(ΐ) + l ^ i ^ ^ , 1 ^

is a basis for i\Γm.

Let ^(i) be the greatest integer k such that z) e Gk. If z) e

for all &, let (̂jΓ) = oo. Then 1 S η(l) ^ η(2) ^ S η{n). Let p
be the greatest integer k such that Ύ](k) < oo. By definition of σ, it
is clear that

p — α(A) — a .

Suppose 1 ^ j ^ p. 2j°')+1 is linearly dependent on the set Gη{j)+1,
and so we can write
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where the sum is taken over all pairs of integers (i, k), with the
understanding t h a t z\ — 0 if ΐ ^ O and α α = 0 if z\ $ Gvij)+1. For
— 1 ^ g ^ η(j) define

For 0 ^ ? ^ τ?(i),

)—Q+1 V

In particular, Bxfj) = 0.
Since the sum for ^ ( i ) ~ 9 involves zfj)~q only in the first term, the

z]{j)-q may be replaced by the xf3Ί~q

f 0 ^ q ^ η(j), to obtain another
basis for Nη{j)+1. Repeating this process for 1 ^ j g>p, and making other
appropriate replacements, we arrive at vectors x) such that.

(1) x\, •••,«* are a basis for N(A)

(2) Bx) = Ax}+1 , 1 ^ ΐ S

(3) B ^ ( i ) = 0 , l^

For convenience, it is assumed that

(4) x) = 0 if i >

If l ^ i ^ P , let P y be the subspace of X with basis {x}, -,xfj)}.
Let Qj be the subspace of Y with basis {y)9 •• ,^ ( i ) " 1 }, where yj —
Bx) - i4α?J+1. Let Xx = Pλ 0 0 Pp and ^ = Qx © © Qp. Then
Xx and F x satisfy all the conclusions of the theorem. To conclude the
proof, it suffices to produce complementary subspaces to Xx and Yx

which also form an invariant pair.
We will construct functionals

{g): 1 ^ i ^ 7}(j) , H i ^ r f o n l and

{/}: 1 ^ i ^ 5?(i) - 1 , U i ^ r f o n Γ such that

the fj are in the domain of A* and

(5) 0}+α = A*S\ , l g ί g V{j) ~ 1

(6) 9) = B*f} , l ^ i S V(j) - 1

(7) ΓM) = δitδjk , 1 S j, k g n
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(8) g){xϊ) = δjjk , 1 ^ j , k ^ n

H g _<_ i .

Let gfj) be any functional on X which satisfies (8). The other
g) will be chosen by induction.

Suppose that fl and g% are chosen, for q > i Ξ> 1, to satisfy (5)
through (8). By (8), gi+1 is orthogonal to N(A), and so gι

k

+1 is in the
closure of R(A*). Since R{A) is closed, R(A*) is closed, and there is
an fi e D(A*) for which A*f{ - gi+1. Let g\ = B*f{. Then (5) and
(6) hold by definition.

To verify (7), we have for q ^ ί,

fXvl) = f}(Axl+1)

= (A*/J)(aJi+1)

= 9)+1(xl+1) = δiqδSk .

(8) is an immediate consequence of (7).

Let Xo = n {N(g}): l ^ i ^ vU) , 1 ^ i ^

^o = ΓΊ {ΛΓ(/}): 1 <* i ^ ^( i ) - 1 , 1 ^ i ^

From (7) and (8), it is clear that Xo Π Xλ = {0} and Γo Π Yi = {0}.
Since the codimension of Xo in X is no greater than the number of
functionals g) defining it, and since this number is the dimension of
Xu we must have X = XQ 0 Xlβ Similarly, Y = r o φ F^

Suppose a? e £>(A) n Xo Then /j(Aα ) = (A*/j)(a) = g)+1(x) = 0,
and so Ax e Y"o Similarly, Bx G YO, and (Xo, YQ) is an invariant
pair for both A and J5.

Since (X09 Yo) and (X1? Yλ) are invariant pairs, JVA(i4. : S ) i l I 0 =
ΛΓ,(Λ : B0)β For k sufficiently large, Xx g iVA(A : B), and so

dim {iV/cfl(Λ : B,)INk(A,: 50)} - dim {ΛΓ/C+1(A : B)/Nk(A :

= σ

= a(A) - v

This can occur only if dim Nk(A0: Bo) = &α:(A0) for all integers k.
Hence ^(Ao: Bo) = oo.

3* Let (P, Q) be an invariant pair of finite dimensional subspaces
for A and B. (P, Q) is an irreducible invariant pair of type v if
there are bases {#J?=1 for P and {!/<}?=! for Q such that Bxi — yi9

Ax1 — 0, and Axi — y{_19 2 ^ i ^ n.
(P, Q) is an irreducible invariant pair of type μ if there are

bases {ccjj=1 for P and {y^%\ for Q such that
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Ax1=0 = Bxn

Axi+1 — Vi — Bx{ , 1 <2 i S n— 1 .

(P, Q) is an irreducible invariant pair of type μ* if there are
bases {x%)n~X for P and {#J?=i for Q such that

Bx{ = yi , 1 ^ i ^ % — 1
AXi = yi+1, 1 ^ i ^ w — 1 .

(P, Q) is an invariant pair of type v if P = Pj 0 © Pk and
ζ) = Qx © © Qk, where (Pjf Qd) is an irreducible invariant pair of
type v, 1 ^ j ^ k. Invariant pairs of type μ or type μ* are defined
similarly.

It is straightforward to verify that if (P, Q) is an (irreducible)
invariant pair of type μ(A: B) (resp. μ*(A: B)), then (P, Q) is an
(irreducible) invariant pair of type μ(A — XB: Z?) (resp. μ*{A — XB:B))f

for all complex numbers λ. If (P, Q) is an invariant pair of type μ,
then v{A \ P, B | P) = oo and μ((A | P)*f (S | P)*) = oo. If (P, Q) is.
of type jt£*, then y(A | P, β | P) = co and μ(A\P, B \ P) = oo.

THEOREM 2. Suppose A and B satisfy the standing hypothesis.
Then there exist decompositions

XT _ TΓ /T\ TΛ ff\ Y

Where (Xo, Yo) is an invariant pair, (Xl9 Fx) is an invariant pair
of type μ, and (X29 Y2) is an invariant pair of type v. If Ao and
Bo are the restrictions of A and B respectively to Xo, then v{AQ, Bo) = cσ
and μ(A0, Bo) — oo.

Proof. Theorem 2 follows from Theorem 1 and Kato's Theorem
4 [1], after it is noted that the latter theorem, although stated only
for bounded operators B, is valid under the less restrictive assump-
tion that D(B*) 3 D(A*).

THEOREM 3. In addition to the standing hypotheses, suppose
that A is a Fredholm operator. Then there exist decompositions

v — y ΓΠ y (Tι y ίTi y

where each (Xif Y{) is an invariant pair, (Xlf Yx) is of type μ,
(X2, Y2) is of type v, and (X3, Y3) is of type μ*. If Ao and Bo are
the restrictions of A and B to Xo, then v(A0 : Bo) — oo, μ(A0: Bo) — cor

μ(Aί : Bt) = oo, and v{A* : B*o) = oo.
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If X* = X* 0 X* 0 X* 0 X* and P = Γ $ 0 Γ * 0 7 * 0 F* are
the corresponding decompositions of the adjoint spaces, then (Fί, X%)
is an invariant pair of type μ*(A* : I?*), (F*, X*) is an invariant
pair of type v(A* : #*), and (Y*, X|) is an invariant pair of type
μ(A*:B*).

Proof. In view of Theorem 2, we may assume that μ(A : B) = co
and y(A: B) — oo. Then y(A* : £*) = oo, and we can proceed to de-
compose X* and Y*, as in the proof of Theorem 1. The only difficulty
encountered is to produce vectors x) to span X3 which actually lie in
D(A). An induction argument similar to that used in Theorem 1 to
produce the /} and g) can also be employed in this case.

4* Let Φ+(A: B) be the set of complex numbers λ such that
A — XB is a closed operator from D(A) to Y, and such that R(A — XB)
is closed and a(A — XB) < oo. Φ+(A: S) is an open subset of the
complex plane which, by assumption, contains the point X = 0.

For all X e Φ+(A: £), Theorems 1 and 2 are applicable to the
operators A — XB and B. Also, for λ e 0 + (A: B) we define

<r*(λ) = σA(A -XB:B)

πk(χ) = τrΛ(A -XB:B)

ft(λ) = ft(A -XB:B)

σ(χ) = σ(A -XB:B) .

THEOREM 4. L ί̂ A and B satisfy the standing hypotheses.
There exists a decomposition

— -Λ.Q K3J uΛ.1

such that (Xo, Yo) is an invariant pair, and (X19 Yx) is an invariant
pair of type μ(A — XB : B) for all complex numbers λ. If Ao and BQ

are the restrictions of A and B to Xo, then μ(A0 — XB0: Bo) = co for
all X e Φ+(A : B) satisfying v{A — XB : B) = oo.

Proof. The points X e Φ+(A : B) for which v(A - XB : B)< oo
form a discrete subset of Φ+(A: B), and so there is a λ' e (P+ such
that v{A - λ Έ : B) = oo. Let X = Xo 0 ^ be the decomposition of
Theorem 1 with respect to A — X'B and B. Then (Xx, F J is an in-
variant pair of type μ(A — XB: B) for all complex numbers λ, as
remarked earlier.

If λ G Φ+(A : B) and v(A - XB : B) = oo, then Xo and Γo cannot
be decomposed further as in Theorem 1, for such a decomposition
would violate the fact that μ(A0 - X'BQ: B) = oo. Hence v{A -XB:B)^
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co implies μ(A0 — XB0: Bo) — co.
L e t D be t h e subset of Φ+(A: B) of complex n u m b e r s λ for which

v(A — XB : B) < co. JD is a discrete subset of 0 + ( A : B) w i t h no limit
points in Φ+(A : £)(cf [1]).

THEOREM 5. μ(A — XB : B) is a constant, either finite or infinite,
for X e Φ+(A :B)~ D.

Proof. In view of Theorem 4, it suffices to prove the theorem
when A and B are operators in an invariant pair of type μ. For this,
it suffices to look at an irreducible invariant pair of type μ. This case
is easy to verify.

THEOREM 6. σ(X) is constant on each component of Φ+(A : B).

Proof. It suffices to show that σ(X) is constant in a neighborhood
of an arbitrary point λ' 6 Φ+(A: B). Let X = Xo φ Xx φ X2 and Y =
^o Θ Yi Φ ^2 be the decomposition of Theorem 2 with respect to
A — X'B and B. Then v(A — λi?0: Z?o) = oo for λ near λ', and so σ(k)=
a(A0 - XB0) for λ near V. By Theorem 3, [2], α(A0 - XB0) =

— λ'JS0) for λ near λ'.

5. Let X = I o 0 I 1 0 X 2 a n d Y = Γ o φ F x 0 Γ2 be the decom-
positions of Theorem 2 with respect to A and J5. Let 7Γfc = π\ + π^ + π |
and Pk = pl + p\ + i°l be the corresponding decompositions of πfc and
pk. Assume that r is chosen small that 0 < |λ | < r implies λ e Φ+(A:B)
and v(A - XB : B) - co. Then π\{X) = kσ(X) for | λ | < r. If A? is
sufficiently large,

7ri(λ) = dim Xx , I λ I < r

( dim X2, λ = 0

0 , 0 < | λ | < r .πl(X) = j

Also, pl(X) = kσ(X) for | λ | < r. For k sufficiently large,

p\(X) = dim Yλ

__ I dim Y2 , λ = 0

I 0 , 0 < I λ I < r .

We define, for any X e Φ+(A : B),

(1) π(λ) = lim [πk(X) - kσ(X)]

(2) /θ(λ) = lim [pk(X) — kσ(X)]

π(λ) and p(X) correspond to τ(λ) defined in [!]• From the preced-
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ing, we deduce that

dim (X, 0 X2) , λ = 0

, , 0 < | λ | < r
(4) p(X) = i

jdimi^er) λ = 0.
Prom these formulae, it follows that

(5) a(A - XB) = σ(X) + π(X) - ρ(X) , 0 < | λ | < r ,

for both sides of this expression are equal to

a(A0 - XB0) + dim Xλ - dim Yx .

We will assume in the remainder of the discussion that A is a
Fredholm operator. The set of complex numbers X such that A —XB
is a Fredholm operator will be denoted by Φ(A: B). Φ(A : B) is an
open subset of the complex plane, and consists of the union of those
components of Φ+(A : B) for which R(A — XB) is of finite codimension
in Y, i.e., for which a(A* - XB*) < oo.

The quantities τr*(λ) = πk(A* - XB* : B*), pt(X), σ*(X), τr*(λ) and
|0*(λ) are then well-defined for λ e Φ(A: B). The formula for the
adjoint operators corresponding to (5) is

(6) a{A* - λS*) = o *(λ) + rc*(λ) - ^^(λ) , 0 < I λ I <r .

Since α(A* - XB*) = β(A - XB), we have

(7) κ(A - XB) •=. (σ(X) - σ*(X))

+ (π(λ) - τr*(λ)) - (p(X) - p*(X)) 0 < I λ | < r .

In view of the decomposition of Theorem 3, the jump discontinuity
of π* at λ = 0 is equal to that of π at λ = 0, i.e., they are both equal
to dim X2 — dim Y2. Hence (7) holds also for X = 0, and we arrive at
the following theorem.

THEOREM 7. For all X e Φ(A : B),

/c(A - λB) = (σ(X) - σ*(λ)) + (7r(λ) - π*(λ))

Analogous formulae can be written down if it is assumed, further,
that B is a Fredholm operator. If M(B) = {0} and R(B) is dense in
Yx then />(λ) = p*(x) = π(λ) = 7r*(λ) = 0, and Theorem 7 reduces to

(8) fc(A - XB) = cr(λ) - tx*(λ), λ e Φ(A : B) .

This latter formula is due to Kaniel and Schechter [1], when
X — Y and B is the identity operator.
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ON THE INVARIANT MEAN ON TOPOLOGICAL
SEMIGROUPS

AND ON TOPOLOGICAL GROUPS

EDMOND GRANIRER

Let S be a topological semigroup and C(S) be the space of
bounded continous functions on S. The space of translation
invariant, bounded, linear functionals on C(S) and its connec-
tion with the structure of S, are investigated in this paper.
For topological groups G, not necessarily locally compact, the
space of bounded, linear, translation invariant functionals, on
the space UC(G) of bounded uniformly continuous functions,
is also investigated and its connection with the structure of
G pointed out. The obtained results are applied to the study
of the radical of the convolution algebra UC(G)* (for locally
compact groups, or for subgroups of locally convex linear to-
pological spaces) and some results which seem to be unknown
even when G is taken to be the real line are obtained.

The topological semigroup S is assumed to have a separately
continuous multiplication, and C(S) is given the usual sup norm.
C(S)* will denote the conjugate Banach space of C(S). If aeS
and / is any function on S then fa is defined by fa(s) — f(as) for
seS. φeC(S)* is said to be left invariant if φ(fa) = φ{f) for each
/ in C(S) and a in S. Jcl(S) will denote the space of left invariant
elements of C(AS)*. A topological semigroup is said to be left ame-
nable as a discrete semigroup if there is a linear functional φ Φ 0
on m(S) (the space of all real bounded functions on S with the usual
sup. norm) which satisfies φ(fa) — φ(f) for each a in S and / in m(S)
and φ(f) ^ 0 if / ^ 0. An analogous definition holds for the right
amenable case. A topological semigroup is said to be amenable as a dis-
crete semigroup if it is right and left amenable as a discrete semigroup.

The following are results of I. S. Luthar [12]:
(1) If S is an abelian topological semigroup with a compact ideal

then dimJ"βi(S) = 1
(2) If G is an abelian topological group having a certain property

P (Any noncompact locally compact group or any nonzero subgroup of
a linear convex topological vector space has this property see [12]
p. 406) then dim Jcl(G) ^ 2.

We say that a subset So of the semigroup S is a left-ideal group if
So is a group when endowed with the multiplication induced from S

Received December 2, 1963. Supported in part by National Science Foundation
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and ss0 belongs to So for any s in S and s0 in So. If S is also a
topological space then So c S is a compact left-ideal group if it is a
left-ideal group and a compact subset of S.

The following theorem is proved in Ch. IV of this paper:

THEOREM IV-1. Let S be a topological semigroup (with only sepa-
rately continuous multiplication and no separation axioms) containing
exactly n(Q < n < °°) compact left-ideal groups. Then dim Jcl(S) — n.

If S is abelian and contains a compact ideal then as known and
directly shown, S contains a unique group and compact ideal (see the
argument in [12] at the top of p. 404) and so dim Jcl(S) = 1, which
yields Luthar's first result.

When considering this Theorem IV-I one is tempted to conjecture
that its converse if true i.e.

(A) If S is a topological semigroup and dim Jcl(S) = n 0 < n < oof

then S contains exactly n compact left-ideal groups1.
This conjecture, even when allowing S to be a topological semi-

group with jointly continuous multiplication and S to be a Hausdorίf
regular topological space, cannot be true as the following simple ex-
ample shows:

E. Hewitt (see [22]) has constructed a regular Hausdorff space
S such that the only real continuous functions on it are the constant
functions. Define in this space S the following multiplication: ab = a
for any a, b e S. If F: S x S — S is defined by F(a, b) = ab = a and
Ua S is open then F~\U) = {(α, b); ab e U} = {(α, b); a e U} = U x S
which is surely open in S x S. Therefore multiplication in S is jointly
continuous and S is a Hausdorff regular topological space. But C(S)
is one dimensional and so C(S)* is one dimensional. Moreover, if we
define φ(f) = f(a) for each / in C(S) and some fixed ae S then φ Φ 0
is easily seen to be left invariant. Thus dim Jcl(S) = 1. But S does

1 This conjecture made by I. S. Luthar for the abelian case (see [12] p. 403) and
believed to be true by this author for completely regular topological semigroups, is
not true even for abelian topological groups. In fact let G be a pseudocompact non-
compact abelian topological group and A & translation invariant nonnegative linear
functional on C(G) such that | | A| | = 1. By Theorem 4.1 of W. Comfort and K. Ross
(see [23] G) is totally bounded and each / in C(G) is uniformly continuous and therefore
has a unique uniformly continuous extension/to the compact topological group G (the
completion of G). Conversely any feC(G) is the uniformly continuous extension of
a unique fβC(G). Define now the linear functional A on C(G) by Af= Af. It is
not hard to show now, after using heavily the Comfort-Ross theorem, that A is
translation invariant (with respect to the elements of G) nonnegative and \\ A\\ = 1.
Therefore Af= I fdm where m is the unique normalized Haar measure on G. This
shows that dim Jcl(G) — 1 while G is not compact. Many thanks are due to W. Com-
fort and K. Ross for kindly letting this author have a preprint of their paper.
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not contain any proper left ideal since Sb = S for any be S. And S
is neither a group nor is it compact (For a compact hausdorff space
S9 C(S) even separates points). Nevertheless, in certain cases, state-
ment (A) holds true. The following theorem is proved in Ch. II of
this paper:

THEOREM Π-2. Let S be a countable topological semigroup which
is left amenable as a discrete semigroup and which is a 7\ regular
topological space (and therefore completely regular).

Then dim Jcl(S) = n, n < o°, if and only if then S contains exactly
n finite left-ideal groups2.

Consider now G to be a topological group and denote by L UC(G) c C(G)
the space of left uniformly continuous functions on the group G. Let
Jul(G) c LUC(G)* be defined as:

{φ; φ(fa) = φ(f) for each / in LUC(G) and a in G) .

Also, recall that at least any abelian or solvable or locally finite group
G, is left amenable as a discrete group, (see Day [4] for these and
more examples). We can now state our next result:

THEOREM IΠ-2. Let G be a separable locally compact hausdorff
topological group which is amenable as a discrete group. Then

(1) Either dim JJ(G) = 1 or dim JJ(G) = oo and dim JJ(G) = 1
if and only if G is compact.

(2) Either dim Jcl{G) = 1 or dim Jol(G) = oo and dim Jcl(G) = 1
if and only if G is compact.

THEOREM IΠ-3. Let G be any separable (not necessarily closed)
subgroup of locally convex linear topological space. Then

(1) Either dim JJ(G) = 1 or dim JJ(G) = oo and dim JJ(G) = 1
if and only if G — {0}.

(2) Either dim Jcl(G) = 1 or dim Jcl(G) = oo and dim JJ(G) = 1
if and only if G = {0}.

From these theorems it is obvious that for both the considered groups
dim JJ(G) = dim Jcl(G) invariably holds. An example of a countable
abelian topological group in which dim JJ(G) — 1 while dim Jcl(G) = oo
is given in Ch. III. This example uses heavily the theorems on coun-
table topological semigroups obtained in Ch. II.

Separable topological groups G which are amenable as discrete groups
and have a certain property B (G has property B means that G admits

2 One cannot hope for much more than this theorem. In fact an example of a
locally compact abelian topological semigroup (with jointly continuous multiplication)
for which statement A does not hold true for any n can be given.
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a real left uniformly continuous unbounded function. Noncompact local-
ly compact groups, nonzero subgroups of locally convex linear topological
spaces and groups which admit a right invariant unbounded metric
have this property.) are considered in Ch. Ill and for them it is proved
that dim JJ(G) = 0 0 and dim J c ί (G)= 00 (see Theorem (III. 1)). It
should be remarked here, that our results neither imply, nor are im-
plied by Luthar's results in [12]. They improve Luthar's results in
the case where G is separable and either locally compact or a sub-
group of a locally convex linear topological space (and also in certain
other cases) but they do not deal at all with the non separable case.

We consider further in this paper the Banach space LUC(G)* (i.e.
the conjugate of LUC(G)). As known and easily seen LUC(G)* be-
comes a Banach algebra under convolution as multiplication (while con-
volution in C{G)* cannot generally be defined, as known). If we denote
by R(G) the radical of the Banach algebra LUC{G)* (which may not
be commutative though G is so) then the following results are obtained,
as immediate consequences of our work:

THEOREM, If G is a separable, noncompact, locally compact topo-
logical group which is amenable as a discrete group, then the radical
R(G), of LUC(G)* is infinite dimensional (see Theorem III-6)

Combining this theorem with a known result, to be found in Rudin
[15], which asserts that if G is compact abelian then C(G)* is semi-
simple one gets.

THEOREM ΠI-4. Let G be a separable abelian locally compact
topological group. Then either R(G) = {0} or R(G) is infinite dimen-
sional. Moreover R(G) = {0} if and only if G is compact3.

THEOREM IΠ-5. Let G be a separable subgroup of a locally con-
vex linear topological space. Then either R(G) — {0} or R(G) is in-
finite dimensional. Moreover R(G) = {0} if and only if G — {0}.

If we take G to be the real line R and therefore LUC(G) = UC(R)
to be the space of real uniformly continuous bounded functions on R
then the algebra UC(R)*, with convolution as multiplication, has as in-
finite dimensional radical. It is not hard to see that this holds true
also for the complex valued uniformly continuous functions on R. Even
this result for the real line seems to be unknown.

3 It can be proved that R(G) = {0} for any compact topological group G. There-
fore Theorem IΠ-4 holds true for any separable locally compact G, which is ame-
nable as a discrete group. Thanks are due to Professor M. Rajagopalan for com-
municating this fact to me.
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In the end it is a pleasure for me to thank Ranga R. Rao for the
friendly and fruitful conversations I had with him. It was in fact his
idea to use the functions {/J in the proof of Theorem IΠ-1.

Some notations. S is a topological semigroup if it has an associa-
tive multiplication and is a topological space (with no separation axioms)
and for any fixed a in S the mappings s—>as and s —>sa are continuous
from S to S. (i.e. multiplication is only separately continuous). We do
not assume that (x, y) —> xy from S x S—• S is continuous. As remarked
in [19] p. 64 the multiplicative semigroup or linear continuous operators
on a Banach space with the weak operator topology is only separately
continuous.

G is a topological group if it is a group, has a Hausdorff topology
and (x, y) —-> xy~x from G x G —> G is continuous (i.e. in this case jointly
continuous multiplication.)

If S is a set then ^(S), m(S) are defined as usual (see Day [5]
p. 28) and if S has a topology then C(S) is again defined as usual
(see introduction). We stress that we deal only with real valued
bounded functions in this paper. If X, Y are normed spaces then
X*,Y* are their respective conjugate Banach spaces and if T: X-^Y
is linear then T*: Γ* —> X* denotes the conjugate of T (see [5] pp.
14-17.)

If A a S then 1Λ is the function whose value is one an A and zero
otherwise (when no ambiguity may arise, 1 will denote the constant
one function on S, i.e. 1̂ ). If A, B are subsets of S then A — B will
invariably mean the set of points of A which are not in B.

If / is a function on S and aeS then fa, fa are defined by
(fa)(s) — f(as) and (fa)(a) = f(sa) for each s in S. A linear manifold
(which means the same as a linear subspace or in short a subspace)
L c m(S) is left invariant if / α e i for each / e L. In this case φ e L*
is left invariant if φ(fa) — φ{f) for each f in L and a in S. If L
contains the constant functions then φ e L* is called a mean if <p(f) ^ 0
for / ^ 0 in L and <£>(ls) = 1. φeL* is called a finite mean of L*
if there is a finite subset {αx, , an} c S, and nonnegative α ,̂ , αn

with Σai = 1 such that φ(f) = Σ?=i<**/(<*<) for each / e i .
If S is a topological semigroup then Jcl(S) = {φe C(S)*; φ(fa) —

φ{f) for each fe C(S) and ae S} and Jl(S) = {^e m(S)*; φ(/α) = φ{f)
for each fem(S) and αeS}. For "left-ideal group" or "compact left-
ideal group" see the introduction. A finite left ideal group is a left
ideal group which contains a finite number of elements. If X is a
Banach space and Y c X a subspace then we write dim Y — n if Y
is n dimensional, 0 ^ n < oo, and dimY=: co if 7 is not finite
dimensional.
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If X is a Banach space with conjugate space X* then the w*
topology in X* (sometimes called the X topology of X*) is defined
as in Day [5] p. 17.

A nonempty class F of subsets of a set S is called a field (σ-field)
if it is closed under complementation and under the operation of taking
finite (countable) unions.

II* The invariant mean on countable topological semigroups

The main theorem of this chapter is Theorem 2. The main tool
for its proof is Theorem 1. The proof of Theorem 1 uses basically
the same idea as the proof of Theorem (5.1) of [6], It yields though
a simpler proof even for the discrete case than Theorem (5.1) of [6].

DEFINITION 1. Let S be a semigroup. Define la: m(S) —> m(S) by
laf=fa for any a in S. If L o cm(S) is a left invariant manifold
then define li:L0—+L0 by lif=fa for any a in S and/inL 0 . Denote
in this case Sfa = ZJ: m(S)* -* m(S)*, £fa° = (£α

0)*: Lo* — L* and

jQl(S) = {φe L*; j£fa°φ = φ for each seS} .

THEOREM 1. Let S be a left amenable semigroup and LQ(zm(S)
be a left invariant linear manifold containing the constants. Assume
that there is a sequence {sn}~ c S such that

{φ e L*; Sf.\ψ = φ, n = 1, 2, . . •} - JQl(S) .

If dim Jol(S) < oo then each left invariant mean φeL* is aw*-
sequential limit of finite means, in other words there is a sequence of
finite means φn in Z/o* such that φ(f) = linv_>oo φn(f) for each fe Lo.

REMARK 1. If we do not assume the existence of a countable
sequence {sn}cS as above then the theorem does not remain true as
is shown by the following example: Let G be an abelian compact
hausdorff nonseparable topological group and let LQ = C(G). Then
dim Jol(G) — 1. Let φoeL$ be the left invariant mean represented by
the normalized Haar measure on G. Assume that <po(f) = limTO_>oo φn{f)
for each feC(G) where φn are finite means i.e., φn{f) = Σjkj=ιajf(Qj}
where aj9 gβ and k depend on n, aά ^ 0 and Σ as — l

If we call σ(φn) = {gl9 , gk}, then A = \Jn=i σ(<Pn) is countable
and therefore the group generated by A is countable and therefore
the closure of this group, say Gθ9 is a closed separable subgroup of
G. Since G is nonseparable G Φ Go. But if fe C(G) satisfies f(g) ^ 1
for g e Go then φn{f) ^ 1 since σ(<pn) c Go. Therefore <po(f) ̂  1 which
shows by [8] p. 248 that μ(G0) — 1 where μ is the normalized Haar
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measure on G. But if a e G and agG0 then aG0 Π Go — 0 and so
1 = μ(G) ^ μ(aG0) + μ(G0) — 2, which is a contradiction.

Thus the above theorem is not true if we do not assume the
existence of the above sequence {sj. This is the reason why Luthar,
in his theorem about the uniqueness of the invariant mean on an
abelian semigroup, see [11] and this author, in proving the theorem
about the finite dimensionality of the set of invariant means on a
semigroup, (see [6]), had to handle first the case in which the semi-
group was countable and only afterwards, by using arguments involv-
ing much more the algebraic properties of semigroups, to handle the
uncountable case (which is not yet proved in its due generality).

Proof of the Theorem. Let φ0 e Lo* be a left invariant mean. Let
ψem(S)* be a norm preserving extension of φ0. Since 1 G L 0 and φ0

is a mean one has: 1 = || φQ || = φo(l) = ψ(ϊ). But \\ψ\\ = 11 φ0 II and
so 1 = \\ψ\\ = ^(1). This implies as known that ψ(f) ^ 0 if / ^ 0.
(In fact if / e m ( S ) , U / ^ 0 , would be such that ψ(f)< 0 then
|| 1 - f\\ ^ 1 and || ψ || ^ ψ(l - /) = ψ(l) - ψ{f) > 1) and therefore
ψ is a mean. If v is a left invariant mean on m(S) then φ[ — v 0 ψ
is a left invariant mean on m(S) (see Day [4] p. 526-527 and p. 529
Cor. 2) which is an extension of φQm In fact, if fe Lo then (v 0 ψ)(f) =
v(h) where h(s) = ψ(lsf) = φo(l8f) = ζP0(/) Thus h(s) is constant on
S and takes only the value φo(f). Hence v(h) = <po(f), since y is a
mean. (We notice that we could have applied an invariant extension
theorem of R. J. Silverman see [16] in order to get immediately the
existence of φ[ but we prefered the above simple argument).

Let now {φ'a} be a net of finite means in m(S)* such that wMim* φ'Λ =
φ[ and limΛ \\£fΛφ'Λ - φ'Λ\\ = 0 for each s in S. (see [6] p. 44, (5.8)*).
If φ^eLt is the restriction of ^ to Lo then since l im Λ ^(/) = φΌ(f)
for each fem(S) we get that limΛ <pΛ(/) = φo(f) for each / e L 0 and
thus w*-\imφa = φ0 (in Lo*). Moreover if / G L 0 and | | / | | ^ 1,

- - φ.)f\ = I y . ( β / - /) I = I φUhf- f) I
* - φ«)f\ ^ \\Sf.φ'Λ - φ'« || — 0

for each s in S. This implies that limΛ || Sf8°φa — φa\\ = 0 (where the
norm now is that of Lo*) for each s in S.

Let now S(φ0,1/n) = {cpe Lo*; || φ — φQ \\ < 1/n} and let Vn be a
sequence of convex tί;* neighborhoods of φ0 which are w*-closed such
that Vn+1 c Vn f or n = 1, 2, and

c s(φ0, i-) ΓΊ

The choice of such Fw's is possible since Jol(S) is finite dimensional
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(see [6] p. 44 (5.5)* and p. 45). There is now an ar

n such that a ^ af

n

implies \\Sf.\φa - φa \\ < 1/n for i = 1, 2, , n.
Since φ0 is a w* limit point of the net {<ρα} there is an an ^ α^

such that φa>n e V"w. Write <pαn = <pw and let ψ0 be some w*-limit point
of the net {φn}. The set of means of Lo* can be written as

Π {φeL*; || φ || ^ 1 and φ(/) ^ 0}

and so is w* compact. This shows the existence of such a ψ0 (and so

ψ0 is even a mean). Moreover, if feLQ \\f\\ ^ 1 and s3- is fixed then

to)/1 ^ \^fs°(ψo - φjf\

n - <Pn)f\

If ε > 0 is given then there is an n0 ^ i such that l/n0 < ε/3 and
therefore for n ^ n0, \\JSf8]φn — φn II < s/3 Since ψ0 is a w*-limit
point of {<7?w}, there is an ^ ^ n0 such that | (τ/τ0 — φni)l°SJf\ < ε/3 and

(φn — to)/1 < e/3. Thus Sfs]ψ0 = to for each i and using the as-
sumption of our theorem we get that ψQe Jol(S). But ψQ is also a
w* limit point of the sequence {φn}7=k c VΛ. Since V* is ^ * closed
ψ oe Vk for each fc. Thus < ôe Vk Π JOΪ(S) c S(^o, 1/fc) n Joί(S). This
shows that || τ/r0 — φQ II < 1/& for each k and so φ0 — ψQ. Therefore
the sequence {φn} c L* has the unique i(;*-limit point φ0. Therefore
\imn__>oo φn(f) — Φo(f) for each feL (see [6] p. 43 and replace there
m(G) by Lo). This finishes the proof of our theorem.

REMARK 2. Jol(S) coincides with the linear manifold spanned by
the left invariant means in JQl(S). Since if φeJol(S) and ψem(S)*
is any extension of φ and if v is any left invariant mean of m(S)*
then φ' = v Q ψe m(S)* is a left invariant extension of ^ e Jol(S) (see
begining of proof of the preceeding theorem). But by [6] p. 55 foot-
note 5 there are left invariant means φ[, φ'2 in m(S)* such that φ' =
aφ[ — βφ'2. If φi is the restriction of φ\ to Lo then φ = O ^ Ί — /S<̂ 2

and ψi are left invariant means of Lo*.

DEFINITION 2. If X is a topological space then A c X is called a
Z-set if A = {α; /(α?) = 0} for some fe C(X), Fx will denote the field
generated by the Z-sets and BΣ is the σ-field generated by the insets
(or the σ-field of Baire subsets of X).

LEMMA 1. Let S be a countable topological semigroup which is
left amenable as a discrete semigroup. If the set of left invariant
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elements of C(S), Jcl(S), is finite dimensional then each left invariant
mean φ0 of C(S)* can be represented by a regular countable additive
measure m0 on Bs.

Proof Let <peC(S)* be a left invariant mean. Taking in the
previous theorem Lo = C(S) we get that there is a sequence of finite
means {φn} such that l\mn_>ooφn(f) = φ(f) for each feC(S).

If a e S then let ma be the countable additive measure defined on
Bs by: ma(B) = 1 if and only if ae B. ma is regular and countably
additive and since any finite mean can be represented by a linear com-
bination of mα's we get that φn are represented by countable additive
regular measures mn on Bs. Thus for each feC(S)

φo(f) = lim \fdmn .

Applying now A. D. Alexandroff's theorem (for statement and proof
see Varadarajan [17] p. 68~69 Theorem 19) there exists a countably
additive measure m0 on F8 such that

r

<P*(f) — \fdmQ for each fe C(S) .

By a known theorem m0 can be uniquely extended to a countably
additive measure on Bs. (see [17] p. 45 Thm 18). By the second
part of [17] Thm. 18 p. 45 this m0 is even regular.

REMARK 3. Applying now the uniqueness part of Alexandroff's
theorem on the representation of linear functionals by measures, (see
Alexandroff [1] or Varadarajan [17] p. 39 Thm 5) we get that for any
Z-set Zo one has mo(Zo) = inf {φo(f);f^ 1ZQ, fe C(S)}.

THEOREM 2. Let S be a countable topological semigroup which
is left amenable as a discrete semigroup and which is a Tx and
regular topological space (for definition see [10] p.113). Then dim Jcl(S)~
n, n < oo, if and only if S contains exactly n finite left-ideal groups.

REMARK 4. (a) If φ is any invariant mean on m(S) then its
restriction to C(S) is an invariant mean of C(S)*. Thus in any case
dim Jcl(S) g 1 (if S is left amenable as a discrete semigroup),
(b) Two different left-ideal groups are disjoint (each one is a minimal
left ideal).

Proof of Theorem. S being countable is Lindelof and being also
regular is normal (see Kelley [10] p. 113) We show now that any
closed F c S i s a Z-set.
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Let S - F= {su sa, •} and let fne C(S) satisfy 0 ^ fn ^ 1 and
fn(F) = 0 while fn(sn) = 1 (Uryson's lemma).

Let f(s) = Σ - i (l/2*)/»(«). Then / e C(S) and {s; f(s) = 0} - {F}.
(This is the standard well known proof that any closed Gδ in a normal
space is a Z-set).

Let φ0 be a left invariant mean on C(S) and let m0 be the regular
countably additive measure such that

<Po(f) = l/rfwo for each / e C(S) .

If S = {t19 U9 •}, then 1 = mo(S) = Σ^i^o({U). Therefere there is
some ae S (one of the ί/s) such that mo({α}) > 0. Now for any finite
subset FaS

( 1 ) mo({sF}) = inf {φo(f); f ^ lsF} = inf {φo(/s); / ^ ls^}

^ inf {φo(^); ^ ^ 1̂ } = ^Q{F) .

And the inequality is true since / Ξ> 18F implies that fs(t) = /(si) ̂  1
for teF i.e. /, ^ 1,.

Therefore if a e S satisfies mo({a}) > 0 and s e S we have mo({sa}) ^
m o(M) > 0. This shows that Sa is a finite left ideal (since mo(S) = 1).
If A c Sα is a minimal left ideal then for b e A, Ab c A and since Aί>
is a left ideal, Aδ = A. If we denote A = {bu , & }̂, the above shows
that for each pair if j , 1 ^ i, j ^ N, there is some k, 1 ^ k g iV, such
that &A = δy. Taking JP7 = {δ̂ } in the inequality (1) we get that
mo({bj}) = ^({646^) ^ wo({64}) > 0 and interchanging i and j we get that
mo({ ĵ}) = moifii}) > 0 for each bif bj in the finite minimal left ideal A,
i.e. Wo^δJ) = mo({δ2}) = = mQ({bN}). If now δ is any element of A
then mo(bA) ^ mo(^4) = NmQ({bb^). But J i c i and therefore mo(bA) =
imo({δδj) where j is the number of differents elements in bA. Thus
j — N and bA ~ A. This shows that A is a finite minimal left ideal
which satisfies for each be A that bA= Ab = A. This shows that A
is a finite left ideal group.

If se S and e is the identity of A then sA = (se)A = A since
se G A. Thus sA = A so that any finite left-ideal group is also what
is (unnecessarily) called in [6] p. 34 a (l.i.l.c). (Also, obviously, any
finite group and (l.i.l.c) is a left-ideal group.) Now the number of finite
left-ideal groups in S is less than or equal to n (where dim Jel(S) = n)
since if Au , An, An+1 would be finite left-ideal groups and we would
define φ.e C(S) by φ^f) = [l/Λ^A*)] Σ*e^/(s) where N(A^) is the num-
ber of elements of A* then as easily checked φt is a left invariant mean
on C(S) (since sAi — A* for each seS). But φu , ̂ w + 1 e C(S)* are
linearly independent. In fact if Σ i + 1 ^i^i — 0 and if we define fl on
U? + 1 Ad by //(β) = 1 for s e A{ and //(β) = 0 if s e A5 for jΦi then
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we can, by Tietze's extension theorem find an extension fteC(S) of
f . For this /< we have 0 = Σ aύψAfi) — aiψi(fi) = <%i which shows
that a{ — 0 so that dim Jcl{G) ^n + 1, which contradicts our assumption.
Thus there are at most n finite left-ideal groups in S.* If m ( l ^ m^ri)
is the number of the finite left-ideal groups in S then we get by [6]
p. 34 Thm. 3.1 and p. 36 Remark 3.2 and [6] p. 55 footnote 5
that dim Jl(S) — m where Jl(S) is the set of left invariant elements
of m(S)*. But any φe Jcl(S)aC(S)* has an extention φ' e Jl(S)am(S)*
(see beginning of proof to Thm (II.1)). Thus if φl9 , φn are n linearly
independent elements of Jcl(S) and {φ[, , φ'n} c Jl(S) c m(S)* are ex-
tensions of φlf * φn respectively then <pr

u •••, φr

n are also linearly in-
dependent in m(S)*. Since if Σ ί <*i<pl = 0 then for each / e C(S) c m(S)
we would have Σ * #*?>*(/) = 0 which would imply that ax=a2= an=0.
Therefore {φ[, , <p'n} c Jl(S) are linearly independent which shows that
m ^ n and S contains exactly n finite left-ideal groups.

REMARK 5. We also proved at the end of this theorem that
•dim Jcl(S) = n implies dim Jl(S) — n where S is countable and left
amenable as a discrete semigroup. That this does not hold true for
noncountable S is shown by the following example: Let G be an
abelian compact Hausdorff topological group which is not finite. Then
by Theorem B of [6] p. 32 we get that dim Jl(G)= ^ while dim Jel(G) = l
(The Haar measure is unique). In other words the restriction of the
infinite dimensional space Jl(G)(zm(G)* to C(G) forms an one dimen-
sional subspace of C(G)* which coincides with Jcl(G). The end of the
proof of our preceeding theorem shows that this cannot happen if G
is countable.

COROLLARY 1. Let S be a countable T1 regular topological semi-
group which is left amenable as a discrete semigroup. If S has left
cancellation then dim Jcl(G) — n (n < oo) if and only if S is finite
and is the union of n finite disjoint left-ideal groups, dim Jel(G) = 1
if and only if then G is a finite group.

Proof. At the end of the last theorem it was in fact shown that
n — dim Jcl(S) — dim Jl(S) where Jl(S) is the set of left invariant

* We could also proceed as follows: Let m, 1 ̂  m < °°, be the number of finite
left ideal groups of S and let A be a compact left ideal group of S. Then A is a
countable group and has a compact hausdorίf topology in which multiplication is
separately continuous. Hence by the theorem of Ellis (see Ellis [21] or Glicksberg-
Deleeuw [19] p.p. 64-65 and p.p. 94-96) A is a compact topological group which is
countable. Hence A has to be finite (since if m is its normalised Haar measure
then m{α}>0 for some a in A, hence m(A) — oo, if A is infinite, which cannot be.).
Therefore S contains, in our case exactly m compact left ideal groups. By Theorem
ΊV-1 of the present paper dim JO1(S) = m which finishes the proof.
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elements of m(S)*. Applying Thm E of [6] p. 49 and remembering
footnote 5 on p. 55 of [6] we get this corollary.

REMARK 6. If G is a discrete amenable group and G' c G a sub-
group then there exists a linear positive isometry from Jl{Gf) into
Jl(G) (see Day [4] p. 534). Therefore, the assumption that dim Jl(G) = n
implies that dim Jl(G') ^ n. If G is a topological group and G ' c G a
subgroup then there does not generally exist a linear isometry from
Jcl(Gf) to Jcl(G). In fact let G be a compact abelian hausdorff topo-
logical group. Then dim Jcl(G) — 1. If now G'cG is any countable
(not finite) subgroup then Gf being abelian, is amenable as a discrete
group and satisfies all the assumptions of our previous corollary. There-
fore dim Jcl{Gr) — co, which shows that there cannot exist an isometry
from Jcl{Gf) into Jcl(G). This theorem of Day was the main tool to
pass from the countable case to the uncountable case when dealing
with discrete groups (see [6] p. 46 proof of Cor (5.3)). The above
example shows that this important tool is not more available when
dealing with topological groups.

Ill* The invariant mean on separable topological groups

The main theorem of this chapter is Theorem 1. We have to
restrict ourselves to topological groups rather than topological semi-
groups since our method works only for left uniformly continuous
functions and on semigroups there may not be any uniformity at all
which is consistent with the algebraic structure.

DEFINITION 1. Let G be a topological group and ί / c G a neighbor-
hood of the identity. We say that U totally covers G if G c U<U Uat:
for some finite subset {al9 , ak) c G. (We should have said that U
left totally covers G but we drop the "left" since we do not deal at
all with the "right" case.)

We say that the topological group G has property (B) if it has
a neighborhood of the identity U such that none of its powers totally
covers G (or in other words for each n and each finite subset
K . ., ak} c G, G - Uf=i U*at Φ 0.)

REMARK 1.

(a) A noncompact locally compact group has property B since if
U is a compact neighborhood of the identity then Un is compact for
each n and so JJJU Una,i is compact and therefore does not cover the
whole of G.

(b) Any subgroup G Φ {0} of a hausdorff locally convex linear
topological space E has property B. Since if 0 Φ a e G and / is a
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linear continuous functional on E such that f(a) Φ 0 then let U —
{yeG;\f(y)\<l}. Then the nth power of U is defined by Un =
U + + U (n times). Thus if y e Un then y = uλ + + un with
Ui e U and | f(y) | ^ n. Therefore y e \Jk

ί=1 Un + gi implies that

1/(1/) I ̂  max \f(Qi)\ + n = K.

But there is a positive integer j which satisfies | f(ja) | = j . \ f(a) \ > K.
Since ja e G this implies that G is not included in \J (gi + Un) so that
G has property (B).

(C) Any topological metric group G which admits a right invariant
non bounded metric (i.e. its topology can be given by a right invariant
metric d such that for any K>0 there are a,beG satisfying d(a,b)>K),
has property B. It should be pointed out that any metric topological
group admits as known (see G. Birkhof [2] or Kakutani [9]) a right
invariant metric. Therefore the real requirement is that the metric
should be unbounded. (If G is totally bounded and metric then any
admissible invariant metric is bounded).

Assume that G admits a right invariant unbounded metric d. If
e is the identity element of G then let U = {g; d(e, g) < 1}. Then for
ue Un d(e, u) ^ n. This is true for n — 1. Assume that it holds for
n — 1. If u e Un then u — u±u2 un with u{ e U. Then

d(uτu2 - un9 e) <: d{uλu2 un, u2 un) + d(u2 un, e)

^ d(uu e) + n — 1 ^ n

since c? is right invariant. If G c (J;=i £ ^ α ; then any g e G satisfies
g e Unai for some 1 ^ i ^ k and so g = va{ with v e Un. Thus

d(e, g) ^ d(e, α j + d(aif va{) ^ K + d(e, v) ^ K + w = Kλ

where K — max {d(e, α{), 1 ^ i ^ A;}. But the metric d is unbounded
and therefore there are α, 6 e G such that eZ(e, ba~x) — d{a, b) > Kx which
is a contradiction. (As we see here it is enough that d(x, y) should be
a continuous unbounded right invariant pseudometric on G and it is
not necessary that d, generates the topology of Gf

The following lemma is needed in what follows:

LEMMA 1. Let Gbe a separable hausdorff topological group having
property (B) and let {pj}T be dense in G. Then for any open sym-

4 The following example of a group with property (B) seems to have some in-

terest. Consider the space Lp(0,1), for 0 < p < 1, with the metric | x(t) — y(t) \pdt.

ί l J 0 j-i

I x(t) Ipdt is uniformly continuous and F(nx) = np \0\ x(t) \pdt -> «>
if n -> <*> and x φ 0. As known there is no nonzero continuous linear functional (or
even character) on Lp{0,1), for 0 < p < 1, and hence it is not even a locally convex
linear topological space (see M. M. Day Bull. Amer. Math. Soc. 46 (194o), 816-823).



120 EDMOND GRANIRER

metric neighborhood of the identity U none of whose powers totally
cover G there exist a left uniformly continuous nonnegative function
F on G such that

4

{g; 0 ̂  F(g) ^ k} = i^tfO, k]) c U U™+*> for k = 1, 2, 3, . .
3=1 3

Proof Let {pn} be a countable dense subset of G. We define an
increasing sequence of open subsets of G in the following way:

As well known Ax = Π VAX where V ranges over all the neighborhoods
of e and therefore A1a U2plm Let

A2 = U(A1 U

We get immediately that UpΛ U Up2 c 4̂2 and UA1 c 4̂2 and

c ^ ( t ^ ^ U t/p.) c ^ 4 p! U f/3p2 c C/4^ U

Assume now that Au A2, , An have been chosen such that

Up1 U ?7p2 U Upά a Aά c A, c t / 2 ^ U ί72ip2 U U2''pά

and ί/A -̂i c A,- for each j Sn — 1 then we chose

An = tΓ(Λ^ U I7pn) .

We have that (E/pi U t/pa U E/ί>») c (i4.nβl U C/pJ c AΛ and that

, c 4 c l β c l/^A^ U Upn)

c i72[t/2(w-1)p1 u U ̂ 2(w~1)P.-i U l/2^"1^,]

c i72wp1 U U U2npn .

In short our sequence of open substs An satisfies the following

(III. 1) \JAn = G

(\jT=iUpiCi\Jn=1An and G = \jT=iUpi since otherwise there would be
some aeG such that α ί ZTp̂  for each i i.e., ̂ S C/α for each i (U is
open symetric) which cannot be since {pj is dense in G.)

(III. 2) UAu<zAu+1<z\JU*™Pi.

We can also assume that An — Aw_! Φ 0 for each n (Where for A, BaG,
A — B are the elements of A which are not in B). (Since otherwise we
would choose Anχ — Au n2 to be the first n > nx for which An — Anχ — 0
and if nk_Ύ was already chosen then let nk be the first n > nk_λ for
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which An — Anjc_1 Φ 0 . There is such a nk since Uk does not totally
cover G for any k. Obviously the sequence Ak = A%k would satisfy
(III. 1) (III. 2) in addition to Af

k - A U Φ 0 )
It is proved in A. Weil [18] p. 13 that if E is a uniform space

and V a neighborhood of the diagonal in E x E and if p0 e E then
there exists a uniformly continuous function f;E—> [0,1] such that
f(p) = 0 and f(q) = 1 f or q e E - V'(p). (where V'(p) = {qeE; (p, q) e V'}
and for AaE, Vά(A) — \JPeA V*(p)). But moreover, if we chose a fixed
sequence of symmetric neighborhoods of the diagonal (i.e., elements of
the uniformity) in E x E say VI which satisfy V^+1Vi+1(zVl (for
notation see [18] A. Weil) for n = 0, 1, 2 and 7 o ' c F ' then the
function f:E—> [0,1] can even be chosen to satisfy the condition
I /(?) ~ f(r) I < 1/2""1 whenever (p, q) e VL (see [18] p. 14). We notice
also that the sequence Vή is not dependent upon p. But the same
proof yields actually more: If V is a neighborhood of the diagonal
(a member of the uniformity) and the sequence VI is chosen as above
and if P is any subset of E then there exists a uniformly continuous
f : E - > [ 0 , 1] s u c h t h a t f{p) = 0 i f pe P a n d f ( q ) = 1 it q e E - V'{P).
Returning now to our group we consider its left uniformity i.e. the uni-
formity whose elements are all the sets of the form V — {(p, q); q e Vp}
where p, qeG and V ranges over all the neighborhoods of e. Let
Vn, n — 0, 1, 2 be a fixed sequence of symmetric neighborhoods of
e in G such that Vo = U and Vn+1Vn+1c:Vn for each n. Then VI =
{(p> Q)) Q G Vnjp) (zG x G are symmetric elements of the uniformity
which satisfy Vl+1Vl+1c:Vή (since for e a c h j ? e G (Fw'+i^»+i)(p) =
V»+i(K+i3>) c F%p = FΛp)). Therefore since F0'(Λ) = V0Ak = C/A,c A4+1

there exists a left uniformly continuous function fk:G—>[0,1] such
that /Λ(AΛ) = 0 and fk(G - UAk) - 1 which implies that fk(G - Ak+1) = 1.
Moreover if (p, q)e VL i.e. if qe Vmp then \fk(p) - fk(q) \ < 1/2*-1 for
each k.

Consider now the sequence of functions

h(g) = fk(g) + k - 1 for fc = 1, 2, 3,

We have:

and also

(III. 3)

(0 on Aτ
l ( f l r ) = ( l on G -

(1 on A2

[2 on G —

ik — 1 on

( k on

K{p) — hk(q) 1 = | fk(p) -

AJ

A3

Ah

G- A

- MQ)



122 EDMOND GRANIRER

q e VmP uniformly in k. (Our sequence of symmetric neighborhoods
Vm is the same for all Ak).

Define now the required function F on G as follows:

(III. 4) F(g) =

hλ{g) for geA2

h2(g) for g e A3 — A2

hk(g) for g e Ak+1 - Ak if k ^ 2 .

Since Ak c Ak+1 and \Jn=1 Ak — G, F is a well defined and real valued
function on G which satisfies that {g: 0 ^ .F(#) g k} c Afc+2, since if
g ί Afc+2 then s f G i w - A ^ for some w > k + 2 and so

F{g) = K(g) ^ n - l ^ k + 1 .

Therefore by (III. 2) F-\[Ok]) c (J"i 2 Ui{k+2)pt. We also notice that
.F(#) is not bounded since Ak — Afc_3 ^ 0 and for ge Ak — Ak_lf F(g) =
fcfc(g) ̂  & — 1. We prove now that ί7 is left uniformly continuous:

If ε > 0 is given then there exists an m such that 2~m+2 < ε. We
shall show that for any p,qeG such that qe Vmp, | F(p) — F(q) \ < ε.
Assume therefore that q e Vmp. If p and q are both in Ak+1 — Ak for
some k ^ 2 or are both in A2 we can immediately conclude from (III. 3),
(III. 4) that: | F(p) - F(q) | - | hk(p) - hk{q) | < 1/2—1 < ε where k = 1
if p and q are both in A2.

If the above is not the case then let ϊ be the first index for which
pe A{ and j be the first index for which qe Aj. Assume that i < j .
Since q e Vmp aUpa UAi c Ai+1 (see (III. 2)) we have that j = i + 1
and q e Ai+Ί (we can assume that i ^ 2 since if i = 1 then p, q e A2

and we alredy dealt with this case). Thus p e A{ — A{_λ and

q6 Ai+1 - Ai c G - Ai and qe Vmp .

Therefore:

= hi(q) — (i — 1) + (i — 1) — h^q)
= hi(q) — hi(p) + hi^q) — h^^p)

since:

(i — 2 on Ai_i

[̂  - 1 on G - A,

and

(i — 1 on A{

I i on G — A. +1 .

Therefore, remembering that qe Vmp and applying (III. 4), we get:

F(q) - F{p) I ̂  I hi(q) - h^p) \ + | h^q) - h{

^ 1/21-1 + 1/21*"1 < ε .
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If j < i then, remembering that qe Vmp if and only if pe Vmq (Vm is
symmetric), and interchanging p and q we get that | F(p) — F(q) | < ε
for this case also.

COROLLARY. A topological group G has property B if and only
if there exists a left uniformly continuous real valued unbounded
function on G5.

Proof. If G has property B then the function F(g) of the pre-
ceeding lemma is unbounded and left uniformly continuous.

Conversely if F(g) is an unbounded left uniformly continuous
function on G there is a neighborhood of the identity u such that
I F(a) - F(b) I < 1 if b e Ua for any a9beG. We show now that if
b e Una then | F(a) — F(b) | ^ n. Assume that this is true for n. If
be Unflα then be U(Una) and so there is some ce Una such that be Uc.
Therefore | F(b) - F(c) | < 1 and so

i F ( b ) - F ( a ) I ^ I F ( b ) - F ( c ) | + | F ( c ) - F ( a ) \ ύ l + n .

Assume now now that G = U U Una{ where ai e G. If now g e G then
g G Όnai for some 1 ^ i ^ k and so | F{g) — F(a{) \ S n which implies
that

F(g) I ^ n + max

This contradicts the assumption that F(g) is not bounded.

DEFINITION 2. We denote by LUC{G)(zC{G) the norm closed sub-
space of C(G) of left uniformly continuous functions on G, i.e. fe C(G)
is in LUC(G) if and only if for each ε > 0 there is a neighborhood
of the identity, V in G such that | f(vg) — f(g) | < ε for each ve V
and g eG.

5 This corollary is an immediate consequence of a theorem of M. Atsuji (see
Canad. J. Math. 13 (1961), p. 661) who proved that it holds true for any uniform
space. Thanks are due to K. Ross and W. Comfort for communicating it to me.
The above corollary (which is not used in what follows) gives in fact a character-
ization of what may be called "uniformly pseudocompact groups" i.e. groups for
which every uniformly continuous real function is bounded. It states: Each left
uniformly continuous real function on the topological group G is bounded if and
only if each neighborhood of the identity has some power which totally covers G
(see def. 1 of this ch.). The following example of an abelian metric group for
which every uniformly continuous real function is bounded but the group is not
totally bounded (i.e. its completion is not compact) has been given by W. W. Com-
fort and K. A. Ross in [23]. Let G = Γκ° (where T is the circle group) and define
for x = {xn}, y = {Vn} in G, x-y = {xnyn}. The m e t r i c d is defined by d(x, y) =

sup {| xn — yn I; n = 1, 2, •}. These remarks and the above corollary are given here
only for the general information of the reader and are not used later on. The
lemma preceeding the above corollary is though, used heavily in what follows.
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JJ(G) will denote the space of left invariant element of LUC{G)*.
Since LUC{G) will play the role of Lo of Theorem II-l, define l°af=fa

for a in S and / in LUC(G). Also ^ ° = (ία°)*

THEOREM 1. Seέ G be a separable hausdorff topological group
which is amenable as discrete group and satisfies property (B). Then
Jul(G) is infinite dimensional. As an immediate consequence Jcl(G)
is infinite dimensional.

Proof. We remark first that LUC(G) is a left invariant subspace
of m(G) containing the constant functions, since if feLUC(G) and
aeG then let U be a neighborhood of the identity e of G such that
I f(ug) — f(g) I < ε f or each u in U and g in G. Then | f(uag) — f(ag) | < ε
for u in U and # in G. If V is a neighborhood of e such that aVaUa
then

I (U)(vg) - (laf)(g) I = \f(avg) - f(ag) \ < ε

for each v in V and # in G which shows that lafeLUC(G).
G is amenable as a discrete group and therefore there exists a left

invariant mean μ on m(G). The restriction of μ to LUC(G) is a left
invariant mean. Therefore in any case dim Jul(G) ^ 1. Assume now
that dim Jul(G) — n where 0 < n < oo. We shall show that in this case
G has not property (B). Let {pn} be a countable dense subset of G
and let φ e LUC(G)* satisfy || φ \\ = 1 and &p\φ = ?> for w = 1, 2, .
Let αeG, then for feLUC(G), φ{l%J) = 9/and so:

But for any ε > 0 there is a neighborhood V of e such that
|/0>fj) — fid) \< e tor g in G and v e F, i.e. surely |/(vαflf) — /(α#) | < ε
whenever veV. Thus for any be Va we have that || (l°b — l°a)f\\ < ε.
Since pn is dense in G there is some pά in Vα. For this pά we can write
I (jStfφ -ψ)f\S\ φ(l°a - l%)(f) I S II (i.° - ΪJJ/H < e. This shows that
φ e JJ(G) or that {φ e LUC(G)*; £fg°φ = φ for g e G} = {9 e LUC(G)*;
Sfplφ = φ, w = 1, 2, •} Denoting Lo = LUC(G) we can apply Theorem
II-l to get that for any left invariant mean φ of LUC{G)* there exists
a sequence of finite means {φn} such that limw_>oo 9>Λ(/) = 9>(/) f° r e a c ^
feLUC(G). We choose φ as a £wo sided invariant mean on m(G).
(see [4] p. 529) This φ will be fixed till the end of the proof. Then
the restriction of this φ (which we again denote by this same φ) to
LUC(G) will be at least a left invariant mean on LUC(G). Therefore

= \xmn_>ooφn{f) for each feLUC(G) where φn is a sequence of



ON THE INVARIANT MEAN ON TOPOLOGICAL SEMIGROUPS 125

finite means of LUC(G)*\ Let U be a neighborhood of e such that
none of its powers totally covers G. We may assume that U is sym-
metric (since any neighborhood of e included in U also has this pro-
perty). If i c G w e shall write φ(A) instead of φ(lΛ) (we remember
that φ(f) is defined for any / in m(G)). We shall show at first that
φ(Un) > 0 for some integer n > 0. This will immediately yield that
U2n totally covers G, which is the desired contradiction.

Define the following bounded uniformly continuous functions on
the real line:

1 - 2

0
- [ n ~ τ if n — 1 ^ x ^ n

otherwise
and

1- 2\x - n\ if n — — ^ x < ^ + —

otherwise .

Since the functions f^x), f5{χ) (or g^x), gs(χ)) have disjoint carriers
iίiΦJ the two functions /(x) = ΣΓ/»(aO and ff(s) - ΣZ9M are well
defined, their graph is plotted:

n-i

This does not imply that φ can be represented by a countably additive measure
on the Baire field of G. Consider in fact the following example: Let G be the
additive group of rationals with the metric | r2 - n | and let a be an irrational
number. Let rn be a sequence of rationals converging to a and let <mn be the point
measure concentrated at rn. Then l i n w ^ fdmn = lim^ f(rn) = Af exists for each
uniformly continuous bounded / (and equals f(a) where /is the uniformly continuous
extension of / t o the whole real line). Assume now that Af= J fdm for some coun-
tably additive real valued measure m on BG and consider the sequence of uniformly
continuous functions defined for x in G by

fn(x) =
1 - n\x - a\ \x — α <Iif

,0 otherwise.

Then fn{x) 10 for each x £ G and | fn(x) | <g 1. Therefore Afn = f /wdm -> 0 by Lebesgue's
bounded convergence theorem. But Afn = lim^o/w(r fc) = 1 for each n, which cannot
be.

If though, G would be a locally compact group then the above relation φ(f) =
lim^oo ?>„(/) would imply that φ can be represented by a countably additive measure
on BG. (see Dieudonne: Sur le produit de composition Compositio Math. 1954 p. 28).
In this particular case the proof of our theorem could be simplified.
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where f(x) is represented by the solid line while g(x) by the interrupted
line. If {an} is any bounded sequence of reals then it may easily be
proved that both Σ anfn(x) and Σ an9n(χ) are bounded uniformly con-
tinuous functions on the real line. Therefore if F(g) is the left uni-
formly continuous real valued function on the group G which satisfies.

F~\[Ok]) c Uί ί ϊ U2{k+2)

Pj (see Lemma III-l) then surely Σ anfu(F(g))
and Σ angn(F(g)) will both be bounded left uniformly continuous func-
tions on G. But since Σ i fΛχ) + Σ i Qn(χ) ^ d ^ 0 for some d > 0, for
each x ^ 0 we have that Σ fn(F(g)) + Σ 9n(F(g)) ^ d ^ 0 f or each 0
of G. Therefore φ[Σfn{F{g)) + %gu(F(g))] > 0 and so either

φ[ΣfΛF(g))]>0 or φ[Σ9«(F(g))] > 0 .

Assume therefore that <p[Σ fΛF(g))] > 0 (for the other case the
proof is similar) and define the following linear positive functionals
on the Banach space m of all the bounded real sequences {ak} (with
the sup norm):

and

where φn is the sequence of finite means of LUC(G)* which satisfies
linv_> φn(f) = φ(f) for each / in LUC(G). But for any feLUC(G).

φΛf) = Σ»=i a i f (9i) where ^ ^ O Σ ^ = 1 (and j , {# J and g{eG

depend on φn.) Therefore as is easily seen

Σ f f-\ i

where {1} e m is the sequence whose constant value is 1 and {lk} e m
is the sequence which is identically zero except at the place k where
it is 1. This shows that φ'n e Q[k] c m* where lτ is the Banach space
of all the absolute convergent real sequences {6J with norm Σ I δ< |
and Q: l1—•* if* = m* is the natural maping from the Banach space lx

into its second adjoint, (see Day [5] pp. 29-30). But lx is weakly
sequentially complete ([5] p. 33 Cor. 3) and therefore Qih] is w*-
sequentially complete in m*. (for notation see Day [5] p. 17). There-
fore we have the following situation: If n —• co then

<Pn{ak] = φ i Σ akfk(F(g)] -> φ[Z akfk(F(g))] = φ'{ak} .

Thus φ' e lλ which immediately implies that φ'{l) — Σ?=i 9>'{1*}
by definition φ'{lk) = φ[fk(F(g))]. Thus
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0 < φ[Σ fu(F(g))] = φ'{l) = Σ <p'{U) = Σ φfu(F(g))

and since fk(F(g)) ^ 0 for each g in G and φ i> 0 we have that foi

at least one & > 0, ̂ [ΛO^to))] = c > 0. Now

{ί; Λ(t) > 0} c [k - 1, fc] c [0, fc]

and so

to; fu(F(g)) > 0} c {̂  2P(ff) e [0, &]} = F^O, k] c U p y
3=1

But we can easily find (as in elementary integration theory) a function
of the form h(g) — Σ ί ̂ ;1^(#) e m(G) such that at ^ 0 α, = 0, Alf , ^Lz_!
form a partition of {g; fk(F(g)) > 0} and Aι = G - {βf; fk(F(g)) > 0} and
0 ^ fk(F(g)) — fe(flf) < c/3. If we remember now that >̂ is defined on
all of m(G) (and we have used till now only Its restriction to L UC{G))
we can write

c = φ[fk(F(g))]

c/3 + φ[h(g)] .

Therefore (̂Λ,) > 0 which implies immediately that φ{A,) > 0 for some
l ^ i ^ l - 1 . Since A« c U*l? Um+1)

Pj we get that ^(Z72(A+2)pi) > 0
for some j" and using the fact that φ is also a ri^/^ί invariant mean
we get that φ(U2{lc+2)) > 0 (Remember that φ(A) = cp(lj = <p(li) = <p(l^-i)
for any ^ e G and A c G).

Let now V=U2{lc+2). We shall prove that V2 = C/4("+2) totally
covers G, which will contradict the assumption that no power of U
totally covers G. U is symmetric and therefore so is V and <p(V) > 0.
Assume that V2 does not totally cover G. Then we chose an infinite
sequence of elements {αj c G this way: aλ — e. Since G Φ V2^ let
α2 g F 2 ^ . Thus Va2 f) Va± = 0 (since V""1 = F ) . If au , αn_1 have
teen chosen such that Va{ Π Vaβ — 0 if i Φ j and l ^ ί , i ^ ^ — 1
then since G ̂  U Γ 1 V2aζ there is some element an £ IJΐ1 V2ait Thus
an $ V2a{ for each 1 ̂  ΐ ^ n — 1 and so Fα% Π 7 ^ = 0 for 1 ̂  i ^ w — 1.
Therefore for any n > 0

1 = <p(0) ^ ^ ( F α J + φ(Va2) + - + φ(Van) = nφ(V) .

This shows that φ(V) = 0 which is a contradiction and so V2 = f/4(&+2)

totally covers G. This proves that Jul{G) is infinite dimensional. As
an immediate consequence one gets that Jcl(G) is infinite dimensional as
follows: G is amenable and so surely dim/<i(G) Ξ> 1 and dim JJ(G) ^ 1.
Assume now that dim Jel(G) — n,n < oo. We show that this implies
that dim Jul(G) g n, which cannot be.

If ψeJul{G) then it has a left invariant extension ψ" e m(G)* (see
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Remark Π-2). The restriction ψf of this f", to C(G) is left invariant
and so any ψe Jul(G) has an extension ψ'e Jcl(G). If dim Jcl(G) = n,
n < oo, and {ψlf , ψn+1} c Jul(G) would be linearly independent then
let {ψ[, , ψ'n+1} c Jcl(G) be respective extensions. Then Σ ? + 1 aiΨi = °
for some reals ai would surely imply that Σ ί + 1 aiψi(f) — 0 for any /
in LUC(G) and so at = 0 for 1 ^ i ^ n + 1. Therefore dim JJ(G) ^ n
which cannot be.*

THEOREM 2. Let G be a separable locally compact hausdorff topo-
logical group which is amenable as a discrete group. Let Jcl(G)(zC{G)*
be the space of left invariant elements of C(G)*, Jul(G) c LUC(G)* be
the space of left invariant elements of LUC(G)*. Then

(1) Either dim Jcl(G) = 1 or dim Jcl(G) = oo and furthermore
dim Jcl(G) — 1 if and only if G is compact.

(2) Either dim JJ(G) — 1 or dim JJ(G) — oo cmcZ furthermore
dim Jul{G) = 1 if and only if G is compact.

REMARK 2. (a) The reader should remember that at least any
abelian or solvable, or locally finite group is amenable as a discrete
group, (see Day [4] pp. 516-518 for these and more examples)

(b) This theorem is not known even for the real line R. It asserts
that C(i2)* ahd LUC(R)* both have an infinite dimensional subspace of
invariant elements.

Proof of theorem. G is amenable and so the restriction of any
left invariant mean to C(G) or LUC(G) is a left invariant mean of
C(G) or LUC(G). Thus dim Jcl{G) ^ 1 and dim JJ(G) ^ 1 in any case.

If G is compact then LUC(G) = C(G) as well known (see A. Weil
[18]) and there is a unique left invariant mean on C(G) (which is
represented by the normalized Haar measure on G). Thus by the
Remark Π-2 we get that dim JJ(G) = dim Jcl(G) = 1.

Assume now that dim Jul(G) = n, n < oo. Then G is compact
(since otherwise it would be noncompact locally compact and therefore
would satisfy property B and by the previous theorem would satisfy
dim JJ(G) = oo) Therefore n = 1. Thus dim JJ(G) can be either 1
or oo and dim JJ(G) = 1 if and only if G is compact. Using in the
same way the previous theorem one immediately gets the remaining
part of this theorem. Remembering that any nonzero subgroup of the

* In fact if A is any left invariant subspace of m(G) containing LUC{G) and
the space of left invariant elements of A*, then as above, dim JU1(G) ̂

dim JA1(G) which shows that Theorem III-l holds true C{G) is replaced by A. All
the following theorems involving C(G) could be shown to hold true when C{G) is
replaced by A. We could take as A, for instance, the space of all bounded Baire
measurable functions on G.
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additive group of a hausdorff locally convex linear topological space
has property (B) (see, Remark IΠ-1 (b)) and using in the same way
Theorem IΠ-1 one immediately obtains.

THEOREM 3. Let G be any separable subgroup of the additive
group of a hausdorff locally convex linear topological space. Then

(1) Either dim JJ(G) = 1 or dim Jul(G) — oo and furthermore
dim JJ(G) = 1 if and only if G — {0}.

(2) Either dim Jcl(G) = 1 or dim Jcl(G) = oo and furthermore
dim Jcl(G) — 1 if and only if G — {0}.

EXAMPLE 1. From the above theorems it follows that for separable
locally compact groups (which are amenable as discrete groups) and
for separable subgroups of a hausdorff locally convex linear topological
space dim Jcl{G) = dim JJ(G) invariably holds. We give now on ex-
ample of an abelin countable hausdorff topological group which satisfies
dim JJ(G) = 1 while dim Jcl(G) = oo . Let Gf be a compact abelian
separable metric group which is not finite and let d(x, y) be an ad-
missible invariant metric on G'. Then feLUC(Gf) if and only if /
is uniformly continuous on Gf as a metric space with the metric d.
Let {̂ 2̂, •*•} be a countable dense subset of Gr and let G be the
group generated by {g1g2y * •}• Then G is a countable Hausdorff abelian
topological group and therefore G is 2\ and regular (even completely
regular see [18] p. 13). Therefore G is amenable as a discrete group
and hence we can apply Corollary Π-2 to get that dim Jcl(G) = oo.

Consider now LUC(G). Any / in LUC(G) has a unique uniformly
continuous extension / ' e C(Gr) such that s u p ^ \f(g) \ = supff6Gί, \f'(g) |.
But any / ' € C(G') is uniformly continuous on the (compact) metric
space (Gf, d) and therefore its restriction to G is uniformly continuous
on (G, d). Thus T: C(Gr) — LUC(G) defined by (Tf)(g) = f(g) for g in G
is a positive linear isometry onto LUC(G). Therefore T*: LUC(G)* —+
C(Gf)* is an isometry. Since dim Jel{G' — 1 it will be enough to show
that T*φeJcl(G') for any φeJJ(G).

Let Va: C(G')-+C(G') be defined by l'af=fa for αe S and l°a:LUC(G)->
LUC(G) be defined by l ° β / = / β for aeS. If 0 , α e G c G ' then

WJ){g) = (Γaf)(g) = f(ag) = H(Tf)(g) .

Thus T(l'af) = Γa(Tf) if aeG. Let now φeJJ(G) and aeG then for
fe C{G') (T*φ)(l'af) = φ{Tl'J) = φillTf) - φ{Tf) - T*φ{f).

If a £ G but aeGf then there is a sequence {an} c G such that
d(ana) —* 0. Since d is an invariant metric we have that d(ang, ag) =
d(ana) —> 0 for any g in G. But any / 6 G(G') is uniformly continuous,
which means that for ε > 0 there is a δ > 0 such that if d(x, y) < δ
then I f(x) — f(y) \ < ε. If therefore %0 is such that n ^ n0 implies
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d(ana) < d then | (Va% - K)f(g) | = | f(ang) - f(ag) \ < ε. This shows that
II (l'an — lr

a)f\\ ^ 0 if w—• °° T h u s

(T*φ)(Vaf) = lim(T*φ)(l'anf) = (T*φ)f

since an e G. Therefore T*φ e Jcl(G'). As one can easily see the con-
dition that G' is metric is not essential and may easily be dropped.
Also instead of Gr being abelian we may require that G' is amenable
as a discrete group and therefore we get:

COROLLARY 1. If Gx is a compact hausdorff topological group
which is amenable as a discrete group and GaGx is any countable
(not finite) subgroup then dim Jul{G) — 1 while dim Jcl(G) — <*>.

We may remark that we take G' of the preceeding example to be
the closure of G in Gλ and we remember that Gf as a subgroup of an
amenable group is also amenable as a discrete group, (see Day [4] p.
516 (D)).

Applications: The Banach Algebra LUC(G)*. Let G be a topo-
logical group and define in LUC(G)* (where LUC(G)(zC(G) are the
left uniformly continuous functions with the sup. norm) the following
multiplication: If φ, ψ eLUC{G)* then for f e LUC{G) [φ 0 ψ](f) =
φ(y) where y(h) = ψ(l°hf) for heG. (And l°a: LUC(G) -> LUC(G) is
defined by Hf=fa for aeG). The function y belongs to LUC(G).
In fact \y(h)\ ^ \\ψ || \\l\f\\ S\\f\\ \\f\\ and so y is bounded, but more-
over, y(h) is left uniformly continuous. This is true since for any ε > 0
there is a neighborhood of the identity V such that | f(vg) — f(g) \ < ε
for each g in G and v in V. In other words || Pυf— f\\ < ε for each
v in V. Thus

I j/(iΛ) - y(h) I = I Λ / - ψllf\ = I f (ZJ*/- II f) [

for each h in (?. Therefore this multiplication is at least well defined.
But moreover, it renders LUC(G)* a Banach algebra as easily shown
and known. In fact if φ,ψeLUC(G)* and feLUC(G) then

I (φ Θ Ψ)(/) I = I φh{fllf) I ̂  || p || || tlS/ll

( w h e r e 9?Λ m e a n s ψ w i t h r e s p e c t t o t h e var iab le heG a n d H ^ i J / l l =

sup Λ e * I ψllf\). But I fl\f\ ^ || t II II β/ll ^ 11/11 II f II. The associative
law is also easily proved. In fact if λ, μ, v e LUC{G)* and fe LUC(G)
then [λ 0 (μ 0 *)](/) = λβ[(/£ 0 v)Zα

0/] = λα[^[^(ί°α/)]]. But

[(λ 0 μ) 0 y ]/= (λ 0 μ)δ[i^/] = (λ 0 JEIKV)
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where y(g) = vl°gf for each g e G. But (Vay){g) = y(ag) = v(Vagf) = v{l%f).
Therefore (λ 0 μ)y = Xa[μl°ay] = K\μb«l°af)] which implies that 0 is
associative. The distributive laws are also easily proved. The follow-
ing should be noted here: In C(G)* we cannot define the same multi-
plication as above since if φ, ψe C(G)*, fe C(G) and G is not compact
then y(h) = ψ(fh) is not generally a continuous function of h. In fact
the following nice result has been established by Chivukula R. Rao,
for groups G with an invariant metric: If feC(G) satisfies for each
O/ΓG C(G)* that ψfg — y(g)e C(G) then / is uniformly continuous (see
C. R. Rao [13] p. 17 thm 2). As an immediate consequence of our
work combined with a result proved in Rudin [15], one gets the fol-
lowing results: (Denote by R(G) the radical of the algebra LUC{G)*.)

THEOREM 4. Let G be a separable abelian locally compact haus-
dorff topological group. Then either R(G) = {0} or R(G) is infinite
dimensional. Moreover; R(G) — {0} (i.e. LUC{G)* is semisimple) if
and only if G is compact.

We need the following lemma whose proof is essentially known
(see Civin-Yood [3], p. 849)

LEMMA. Let G be a topological group and JJ(G) c LUC(G)* be
the space of left invariant elements and let

J1 = {φeJJ(G);φ(lΘ) = 0}.

Then Jλ is a two sided ideal and J? — {0}.

Proof. If μ,veJτ and feLUC(G) then y(h) = vl°hf= v(f) for
each heG i.e., y(h) = v(f) la. Therefore μ 0 v(f) = μ{v{f)ΛQ) =
v(f)μ(lG) = 0. This shows that Jl = {0}. Let now φeLUC(G)*,
veJJ(G) and feLUC(G). Then y(h) - v(f)lo(h). Thus φ 0 v{f) =
φ{y) — ΦiW'Vif)- In other words

(III. 5) φ Q v ~ c v where c — φ(lG) is a constant .

If v 6 J, c JJ(G) then (φ 0 ψ)lG =• c-v(lQ) = 0 and so φ 0 f e Jλ. There-
fore Jx is a left ideal. Moreover if a e G then

» 0 φ(Hf) = Mφ(l0Λf)) = Mφllkf).

But if we define now y(h) = φ{Hf) then (Γay)(h) = y(ah) = φ(llhf).
Therefore vh(φl°ahf) = v(l°ay) = v(y) = v(φΓhf) = v 0 φ(f) which proves
that v 0 <p is left invariant. But since l°hlG = 1G and φ(ίU^) = φ(ίo) = c,
we immediately get that v 0 φ(la) = ^(clff) = c v(lff) = 0. Therefore
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v 0 φ e Jx which finishes the proof of this lemma.

REMARK. The above lemma implies as well known that Jλ c R(G)
for any topological group G.

Proof of Theorem 4. Denote by MJ(G) the set of left invariant
means of LUC{G)* and let φoeMul(G) be fixed. Then obviously

MJ(G) - φ o = {φ-φQ,φe Mul(G)}c JxcR{G)

since φ{lβ) = 1 for each φeMJ(G). But as pointed out in the Remark
(Π-2) the linear manifold spanned by MJ(G) coincides with JJ(G).
Assume now that dim R(G) = n where 0 ^ n < oo 9 then dim JJ(G) —
dimMJ(G) < oo. This implies by Theorem (III. 2) that G is compact.
But by Rudin [15] if G is any compact abelian topological group then
C(G)* with the above defined multiplication is semisimple. Since
for compact G, C(G) = LUC(G) we get that R(G) = {0}. Therefore
either R(G) - {0} or dimR(G) = oo. And R(G) = {0} if and only if G
is compact.

THEOREM 5. If G is separable subgroup of a locally convex linear
topological space then either R{G) — {0} or dim R(G) — oo. Moreover
R(G) = {0} if and only if G = {0}.

Proof. As in the previous theorem if dim R(G) = n where 0 ^ n < co
then dim JJ(G) < oo which implies by Theorem (III. 3) that G = {0}
But if G = {0} then surely R{G) = {0}. Which finishes the proof of
this theorem.

THEOREM 6. Let G be a separable hausdorff topological group
which is amenable as a discrete group. If G has property (B) then
dim R{G) = oo.

Proof As above MJ(G) - φ0 c Jx c JS(G). But by Theorem (III, 1)
dim Jul(G) ~ co and since Mul(G) spans JJ(G), dim MJ(G) = oo which
proves this theorem.

REMARK, (a) If LUC(G)* contains two distinct left invariant
means φx and φ2 then the algebra LUC(G)* is not commutative since
ψi Θ Φz ~ Φ2 &nd Φ>2 0 <Pi = φ. Therefore if G is even a commutative
noncompact locally compact separable group, then LUC(G)* is not com-
mutative.

(b) If LCUC(G) is the Banach space of bounded complex valued
left uniformly continuous functions on G and the algebra LCUC(G)*
is defined as above then Theorems IΠ-4, IΠ-5, IΠ-6 hold true alsα
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for LCUC{G)*. Since any φeJx can be extended to LCUC(G) by
defining for f9ge LUC(G) φ(f+ ig) = φ(f) + iφ{g). If J[ c LCUC(G)*
is the set of all such extensions of elements of J1(zLUC(GY then
Jl(zRc{G) where RC{G) denotes the radical of LCUC(G)*. From here
one immediately gets that Theorem 4 holds also for the complex case.

IV* The invariant mean on semigroups containing
compact groups and left ideals

The main theorem of this chapter is Theorem IV-1. The following
lemma is essentially known and we need it in the special form appear-
ing here.

LEMMA 1. Let S be a topological semigroup which contains a
compact left-ideal group Ao. If {A*; ot e 1} is the set of all compact
left-ideal groups of S then A = (J«ei Λ» is a right minimal ideal.
Moreover if ea is the identity of the group Aa then for any ae A,
eaa = a. Also for any te S, tAa — Aa.

REMARK. Aa as groups and left ideals are minimal left ideals and
therefore are disjoint.

Proof. Let se S. Then Aas is a minimal left ideal since if
L c Aas is a left ideal and ase L with ae A* then A^s — (Aaa)s c L
(since Aω is a group). Thus Aas = L is a minimal left ideal. But
AaSaaAa for any aeAa and therefore A^sas a Aas. Since AΛs is
a minimal left ideal (Aas)as = Aas. If te S then tAa — t(e*Aa) —
(te^Aa = A& since teΛe Aai which is a group. In particular for ae Aa

as(Aas) = Aωs. In other words for any b e A^s, biA^s) = A^s — {Aas)b
holds which proves that the semigroup Aas is in fact a group. Thus
Aas is a left ideal and group which as a continuous immage of A^ is
also a compact subset of S. Therefore Aas — Aβ(Z A for some β e I.
Thus for any se S, As — LL€/ Aas c A which shows that A is a
right ideal.

Let now R be any right ideal of S and r e R. Then AΛ = r A^ c i?
for each ae I. This shows that AaR (i.e. that A is included in each
right ideal of S) and in particular that A is a minimal right ideal.
Now if ea, eβ are the identities of Aai Aβ respectively then eω eβeAβ

and

(eaeβ)(eaeβ) = e^ββie^β)) = ea(eaeβ) = e«eβ .

Thus eaeβ is an idempotent of the group Aβ and therefore eaeβ = eβ for
any a, βe I. If now ae A then ae Aβ for some /3e I and therefore
β«α = e*(eβa) = eβa = a.
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REMARK. In semigroup terminology this shows that A is the
Suschevitch kernel of the semigroup S.

If φe C(S)* then φ ̂  0 (is positive) if φ(f) ^ 0 for each / ^ 0,
feC(S). An operator T: C(S)* -> C(S')* is called positive if Tφ ^ 0
whenever φ ̂  0.

LEMMA 2. Let S be the semigroup of Lemma (IV, 1) and π; C(S)-+
C(A) be defined by (πf){a) = f(a) for a in A. Then π*: C(A)* -> C(S)*
is a linear positive isometry such that π*[Jel(A)] = Jcl(S). Moreover
π*"""1: Jcl(S) —• Jci(A) is αZso positive.

Proof, π maps C(S) onto C(A) since if JteC(A) then define
KeC(S) by

(IV. 1) h(s) = ΛM) ,

where eΛ is the identity of the group Aa for some fixed a el. lΐ se A
then by the proceeding lemma eas = s and so h(s) — h(s). Also s —» βΛs
is a continuous map from S to i (with the relative topology) since
if 0' is open in A then 0' = 0 Π A with 0 open in S and (since A is
a right ideal) {s; eωs e 0'} = {s; eΛs £ 0} which is open by the continuity
of the left multiplication. Since h e C(A) we get that h(eas) = h(s) e C(S).
We also remark that if || h \\ ^ 1 then \\h\\ ̂  1 and so π maps the unit
ball of C(S) onto the unit ball of C(A). Also if / ^ 0 then πf^O
and π(ls) = 1A. Therefore it φe C(A)* then

[ π*φ || = sup I (7Γ*<p)/| = sup | φ(πf) \
ll/ll^i fec(s) \\f\\^i fec(S)

sup
heθ(A)

Therefore π*: C(A)* —• C(S)* is a positive linear isometry into C(S)*.
We shall show that it maps Jcl(A) onto Jcl(S). If seS, aeA then
let ί ί iCίA)-^ C(A) and ί s:C(S) — C(S) be defined by: l'ah = ha and
l.f=f. for and αe A and s in S. Let ̂  = If. Then (πlaf)(b) =
(Jβ/)(6) = /(α6) = (ττ/)(α6) = (l'*(πf)){b) for each α, 6 e A. Thus ττiα/ =
lΌπfίoΐ each /G C(S) and so for any aeA and φ G J c ί ( i ) and fe C(S):

(π*φ)(laf) = φ{πlj) - φ{l'aπf) - 9>(τr/) - (π*φ)(f) .

Thus ^ ( π * ( p ) = π*<p for each α e A . If now se S and α e A then

since saeA. Thus π*: Jel(A))—> Jel(S) is a linear positive isometry
into. We prove now that π* maps Jcl(A) onto Jcl(S).

Let φeJcl(S) and let feC(S) satisfy /(α) = 0 for each α e i .
Then for α e i we have (laf)(s) = /(as) = 0, since A is a right ideal.
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Thus φ(f) = φ{lj) = φ(0) = 0. Therefore if /,, f2 e C(S) satisfy /2(α) =
/2(α) for each aeA then /x(α) — /2(α) = 0 for ae A and so φ(fx) = φ(/ 2).
In other words if Λe C(A) and he C(S) is α?ιy extension of h to all of
S then <p(ft) does not depend on the particular extension h e C(S) of
heC(A). Therefore φ'eC(A)* defined for heC(S) by

where heC(S) is any extension of h to all of S, is at least well
defined. Moreover if φ ^ 0 and A ^ O then the extension KeC(S)
defined above (IV. 1) satisfies h(s) = h(ea$) ^ 0 and so φ'{h) = φ(h) ^ 0.
This shows that if φ ^ 0 then φ ^ 0. It is easily checked that φ' is
linear. Also if \\h\\Sl then the extension defined by IV-1 satisfies
(I %|| ^ 1 and thus

This shows that <p'eC(A)*.
We show now that φ'eJel(A). Let aeA be fixed. Then

where iife is any extension, in C(S)9 of ΓaheC(A). But α e 4 o for
some aoe I and the function defined by

(IV. 2) (W(s) - (Γah)(e«os)

is a bounded continuous extension of Γah e C(A). (where eΛQ is the
identity of A Λ Q ) . And for each s e S:

l'ah(s) = (l'Ji)(eas) = h(ae»Qs) = h(as).

But if KeC(S) is any extension of h to all of S then, since A is a
right ideal, we get

h(as) =

Therefore

= (lah)(s)

where VJi is the extension defined by (IV. 2) while KeC(S) is any
extension of h. Therefore

φ'd'Jl) - φ0) = φ(lah) = φ{h) = ^'(A) .

This shows that φ'eJcl(A). Moreover π V = φ. In fact if feC{S)
then (π*φ')(f) = φ'(πf) = <p(/) since / is obviously an extension of
π/eC(A). Therefore π*: JCZ(A) —> J ei(S) is a positive linear isometry
onto and positive elements in Jl(S) have positive preimages in Jcl(A)



136 EDMOND GRANIRER

or in other words π*~ι: Jel(S) —> Jcl(A) is a linear positive isometry
onto.

REMARK. We notice that we do not assume any separation axioms
about the topological space A. We shall show in what follows that in
fact we can assume about A that it is even a hausdorff space (and even
that C(A) separates points).

In fact define in A the following equivalence relation: If a,be A
then a ~ b if and only if x(a) — x(b) for each xe C(A). Obviously this
is an equivalence relation but moreover ~ is even a congruence, i.e.,
if a ~ b then ca ~ cb and ac ~ be for each ce A. This is true since
for any x e C(A)

x(ca) = xc(a) = xc(b) = x(cb)

and

x{ac) = xc(a) = α;c(6) = x(bc) .

Let A' be the collection of all equivalence classes of A and for
each ae A let α' be the equivalence class containing α. Define in A!
the multiplication α' δ' = (αδ)\ Since ^ is a congurence this multi-
plication is well defined and renders A' a semigroup, (see Lyapin [20]
p. 361-362). Thus ψ: A—> A' defined by ψ(a) = a' is a homomorphism
of A onto A'. Define now in A' the quotient topology this way: Ur c A'
is open if and only if <ψ*~1(?7')cA is open. Thus ψ:A-^>Af is a con-
tinuous homomorphism and so A'a — ir{AΛ) are compact. Moreover if
a e Aa then A^ = ψ(AJ) = ψ(aAa) = ψ(a)ψ(Aa) = a!A'a and in the same
way A'ad' = A* which shows that Af

a is a group. Also if be A then
b'A* = ψφ)ψ(Ac6) — ψibAa) = ψ»(AΛ) = A^ which shows that A^ is a
left ideal.

But moreover, A! with the above defined quotient topology has
separately continuous multiplication. In fact if U' is an open set in
A' and aoe A then we have to show that 0' = {c'; a'Qc' e Uf) is open in
A' or that

0 = ψ-ψ) = \c; (αoc)' e U'} = {c; αoc e ^\Uf)}

is open in A. But since ψ is continuous ψ~~\U) is open in A and since
left multiplication by α0 is continuous, we get that {c; αoce i/r~1(C7/)} is
open in A. In the same way one shows that right multiplication in
A' is continuous. Define now the map ψ: C(Ar) —* C(A) by (ψx')(a) =
β'(^α) = a?'(αf) for each ae A. Since π/r(A) = A', ^ is a linear positive
isometry (i.e., if x' ^ 0 then <f (α?') ^ 0) into C(A). But we notice now
that each x e C(A) gives raise to an x! e C{Ar) by defining: x'(a') = a (α)
where a is any representative of the equivalence class a! e A'. Since a?
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is constant on equivalence classes, x' is well defined and x1 e C(A'),
since if V is an open set of reals then

ψ-'ia'; x\a!) e V} = {a; x(a) = x\a!) e F } = x~\V)

which is open in A since xe C(A). Also (ψx')(a) = x'(ψ(a)) — x'(a!) =
x(a). This shows that ψ: C{Af) —* C(A) is onto. It is immediate now
that A' is hausdorff. In fact if α', br e A! are such that a! Φ V then
there is an xe C(A) such that x(a) Φ x(b) i.e. cc'(α') =£ #'(&') so that
C{Af) even separates points.

LEMMA 3. ψ*: C(A)* —* C(A')* is α linear positive isometry such
Ithat ψ*[Jel(A)] = Jo^A'). 'f *~1: «/"ei(A') —> Jcί(A) is αίso positive.

Proof. Since ψ: C(A) —> C(A') is a positive isometry onto we im-
mediately get that ψ**: C(A)* —• C(A')* is a linear positive isometry.
Let now l'a.; C{A') — C{A') be given by {l'a>x'){c') = x\a'c') for each
d e A and la: C(A) —> C(A) by iαx = a;α, As known and easily checked
la(ψx') = ψ>(ϊi/ίc')> which shows that if φ e Jcl(A) then:

(φ*φ)(l'a,X
f) = φψ(l'a>v') = Φihψx') = <P(W) = ( ί V ) M

Therefore ψ*[Jol{A)](zJol(A')\.
If now φ'eJcί(A') then let φeC{Ay be defined, for xeC(A), by

φ(aj) = φ'(χr) where x' e C(Af) is given by x'(a') = x(a) for each ae A.
Then (lax)\V) = (iβa;)(&) = a?(α6) = a?'((α6)') = ^(α'6') = (&&')(&')• Thus

Therefore 9? e Jβϊ(A). But (^^ r)(α) = ^ ;(^ ;) = ^Φ) and thus

This shows that ψ*φ = φ i.e., that ψ*[Jcl{A)\ = Jci(Ar). We also
notice that if <p' ^ 0 then φ ^ 0 and so positive elements in Jl(Ar)
have positive preimages and so α/r*"1 is also positive.

REMARKS. We notice that A^ is a group which is a compact
hausdorff topological space with separately continuous multiplication
and therefore by Ellis theorem (see Ellis [21] or Glicksberg Deleeuw
[19] p. 64-65 and p. 94-96) each A* is a compact Hausdorff topological
group, (i.e. the mapping (a, b) —-• ab~λ from A^ x A'ω into A^ is con-
tinuous).

THEOREM 1. Let S be a topological semigroup (only with se-
parately continuous multiplication) and let S contain exactly n com-
pact left-ideal groups Alf •••, An. Then dim Jcl(S) = n and Jcl(S) is
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spanned by the left invariant means.

Proof. If A = U?=iΛ then π*; Jΰl{A)-> Jcl(S) is a positive iso-
metry onto (and so maps left invariant means into left invariant means).
If A! is the semigroup of Lemma (IV. 3) then φ*"1: Jcl{A') --> Jcl(A) is
a linear positive isometry onto and so it is enough to show that
dim Jcl{Af) = n and that Jel(Af) is spanned by the set of left invariant
means. We recall now that A' = U?=i A* is a Hausdorff topological
space and that A[ are compact topological groups and left ideals and
therefore disjoint. Thus A! is a compact hausdorff semigroup and
multiplication is (at least) separately continuous. In what follows we
shall drop the prime and write A, A{ instead of AJA!i-AyAi are com-
pact hausdorff. But A{ as the complement of the compact set Ui^; Aj9

is also open. Therefore lAieC(A). Hence if feC(A) then f(a) =
Σ / ( α ) W α ) f o r e a c h a e A a n d fm^At^C(A). Moreover if heC(Ai)
then h defined by h(a) — h(ae{) for each ae A is an extension of h to
all of A and heC(A). Furthermore, if h ^ 0 then h^O and if
|| λ || ^ 1 then \\h\\ ̂  1. Let π{\ C(A) -> C(A<) be defined by (πj)(a) =
f(a) for aeAi. If a e A, then let l*a: C(A4) — C(A{) be defined by l*ah = ha

for α e A ί # Also, iα:C(A)-^C(A) is defined by laf=fa for any a in
A. Let It = £fa. Then as easily checked: π{laf= liπjίoτ each fe C(A)
and α in A{.

Let now ̂ e C ^ ) * be the linear positive functional of norm one
represented by the normalized Haar measure on the compact hausdorff
topological group A{. Define φ{eC(Ay by

(IV. 3) Ψi(f) = φ[(πj) for each feC(A) .

Then we get immediately that φi ^ 0, ψi(lA) — 1 and that cpi(lAi) — 1
while ψiO^Aj) — 0 if i Φ k. Thus for any ae A{:

Ψiihf) = φ'&ilaf) = φ'JRπJ) = φ\(πj) = Ψi{f) .

T h e r e f o r e £f*q>i = cpi f o r e a c h aeA{. I f n o w ceA a n d aeA{ t h e n
j£fe<Pi = ^fc^faψi = ^fcaψi = ψi since ca e Aim Therefore φ{ is a left

invariant mean in C{A)*. Also φu —, φn are linearly independent
(since if Σ aiΦi — 0 then ak — ( Σ ̂ ^ ^ ( 1 ^ ) = 0). It remains to show
t h a t φu — ,φn span Jcl(A).

If he C(Ai) and if he C(A) is any extension of h (for instance
h(c) = h{cei) for each c e i ) then let P{(h) = K-lAieC(A). In other
words PiheCiA) equals h on Ai and 0 outside Aiβ Thus
C(A) and as easily checked:

(IV. 4) π.P.h = h for h e

and
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(IV. 5) Piπif=flAi for feC(A).

If ae A{ and h e C(Ai) then

ίO if δ ί A

Moreover,

/&(αδ) i

But αδ G A* if and only if b e Ai (if b $ A{ then δ e A3 for j" =£ i and
so αδ e Aj) and αδ g A; if and only if δ g A*. This shows that

« » » > =..»..« a b e A t

(IV. 6) P<(i;fc) = ία(PiΛ) for each A e C(A,) and a e A, .

Let φ e Jcl(A) (Z C(A)* and define f - e C ( A ) * by

(IV. 7) ψt(h) =

If αe A< then by IV-6, IV-7: ψi(l%

ah) = <p(PiHh) = φ(laPJι) =
ψi(h) which shows that ψ{ is a left invariant functional in C(A{).
Therefore, (by the uniqueness of the Haar measure) we get that i/r =
(Xicpl ίor some real number a{. Therefore if feC(A) then using IV-5,
IV-7 and IV-3 one gets:

= Σ U^if) - Σ oiiφ\{πj) = Σ aiΨi(f) .

Thus φ = Σ α ^ i which finishes the proof. As a special case one
gets the following theorem of I. S. Luthar (see [12] p. 403).

THEOREM. If S is an abelian topological semigroup which con-
tains a compact ideal then dim Jcl(S) = 1.

Proof. As in Luthar's proof if I is a compact ideal of S and
Iu , In are closed ideals of S contained in I then Ix- -Ina Π*=i /y ̂  0 .
Therefore the family jp7 of all closed ideals of S contained in / has the
finite intersection peoperty and so A — Ore** I' ^ 0 . Thus A is a
compact ideal. If ae A then a A a. A is a compact ideal and so a A = A
which shows that A is a group. If now Aλ is any other compact ideal
and group of S then AλA c A Π A1 Φ 0 and if α e A π Λ then A —
Aa — Aλa — Aλ which shows that S contains exactly one ideal and com-
pact group. Using Theorem (IV. 1) we get that dim Jcl(S) = 1 or that
C(S) admits a unique invariant mean.
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CLOSED VECTOR FIELDS

N. HICKS

We study closed vector fields on a semi-Riemannian mani-
fold. In particular, we study the differential geometry of the
submanifolds determined by a nonvanishing closed field. Ex-
pressions are computed for the Weingarten map, the mean
curvature, the Riemannian curvature, and the Laplacian of the
square of the length of the field. Thus we obtain a necessary
and sufficient condition that the constant hypersurface of a
nontrivial harmonic function be a minimal surface. We obtain
conditions that imply the classical Codazzi-Mainardi equations
hold. We obtain conditions that imply the existence of a repre-
sentation of the manifold as a cross product in which one factor
is a real line. Finally, various special cases are examined.

1* Notation* Let M be a connected C°° semi-Riemannian manifold

with metric tensor <̂  , )> and Riemannian connexion D [see Helgason

4 or Hicks 7 for definitions]. We summarize the properties of D and

some associated concepts we shall use. The operator D assigns to each

pair of C°° vector fields X and Y on an open set U of M, a C°° vector

field Dx Y called the covariant derivative of Y in the direction X. If

X, Y, and Z are C°° fields on U and / a C°° function (real valued) on

U then we have the following relations between vector fields on U:

DX{Y+ Z) = DXY+DXZ

Dix+Y)Z = DXZ + DYZ

Dx(fY) = (Xf)Y+fDxY

Tor(X, Y) = DXY-DYX-[X, Y]

R(X, Y)Z = DXDYZ - DYDXZ - D[X)Y]Z .

We call Tor the torsion on D and R the curvature of D. Since D is

Riemannian, Tor = 0, and D is compatible with the metric tensor, thus

DXY-ΏYX=\X, Y]

, zy = <DX Y, zy

We extend the operator DX1 as usual, to be a complete derivation

on the tensor algebra over M. If Tr>s denotes the set of r-contravariant

and s-covariant tensors on M, then Dx: T
r's —> Tr>\ If fe T°>°, then

Dxf=Xf. If Γ G Γ1'0, then DXY is given by the connexion. If

Received January 16, 1964. This work was supported in part by NSF Grants
G 23842 and GP 88.
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weT°>\ then (Dzw)(Y) = X(w(Y)) - w(DzY). The last equality
contains the seeds of what is meant by a complete derivation which
we explain. Having defined Dx on functions, fields, and 1-forms if
Φ e Tr>% Wi G T0'1 for i = 1, , r, and Yά e T M for j = 1, , s, then

Xφ(w19 - , wr, Yl9 • , Γ.) = (Z?x0)(wlf - , wr9 Y19 • , Γ.)

* *» W i - u D χ w i > w i + i , -- ,wr9Yl9 - *9 Γ β )

, wr, Yt, • • , Γ ^ , D x Γ y , Γ ί + 1, , Y.) ,
3

where all terms are well-defined except the first term on the right side
of the equation.

The symbol Δ will denote the general covariant differentiation
operator Δ: Tr>s —• Tr>s+1 which is induced by D. Using the above
notation, (ΔΦ)(wl9 , wr9 Yl9 , Yr9 X) = {Dzφ)(w19 , wr, Y19 , Ys).

Our study will concern linear transformation valued tensors on
M (tensor fields of type 1, 1). For completeness, we define a linear
transformation valued tensor A on an open set U of M to be a mapping
that assigns to each point m in U, a linear transformation Am: Mm —>
Mm, where Mm is the tangent space at m. We say A is C°° if it maps
C°° fields on U into C°° fields; then if X is a C°° field on U then the
field (A(X))m = Am(Xm) is C°° on U. We define the vector valued 2-form
TorΛ by

Tor^ (X, Γ) = DχA(F) - DYA(X) - A[X, Γ]

and let tr A and det A denote the trace and determinant functions on
A, respectively.

We will use G to denote the nonsingular linear transformation
induced by the metric tensor that maps Mm onto Ml for each m. Thus
if X is in Mm then G(X)(Y) = <X, Γ> for Y in Mm; or G(X) =
Cx<( , ]> = (X, y where Cx is contraction by X in the first covariant
slot. We also use the symbol G for the inverse of G. Thus we think
of G as a "switch map" and let the argument it is applied to tell us
which map is being used. A vecter field X will be called closed (or
exact) if G(X) is closed (or exact), and X is geodesic if DXX = 0 . A
vector X is nonsingular (not light-like) if <X, Xy ^ 0 . If # e Tr>s with
r > 0, then the divergence of Θ is the tensor div Θ e Tr~1}S defined by
div θ = tr Δθ, where the trace is taken on the last covariant slot and
last contravariant slot. If Z19 9Zn is a base field of independent
C°° vector fields on an open set U in M and z19 , zn is the dual base
of 1-forms, then

(div θ)(wl9 , wr_lf Y19 , Ys)

= Σ (Δθ)(w19 , wr_l9 zj, Y19 , Ysy Zj) .
3=1
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If fe Γ° °, then the gradient of f, grad /, is the vector field G(df),
so <grad /, Xy = Xf, and the Laplacian of f, z/2/, is the function
div(grad / ) . A function / is harmonic if 4 » / = 0, and a field T is
conservative if div T = 0.

2* Operators associated with a vector field* Let T be a C°°
vector field on M. On each tangent space Mm, we define linear maps
Aτ, BT, and Cτ by

Λr(X) = Z?XΓ, BT(X) = DX{DTT) , and Cy(X) = #(X, Γ)Γ .

These maps are C°° since D and T are C°°. Let U be the open set
of points in M where <(T, Ty does not vanish. On U, we define the
C°°(n — 1) dimensional distribution TL by

(T% = [Xe Mv: <X, Γ> = 0] .

From the definition of the curvature R we have

Cτ = Bτ - A\ + [Aτ, DT]

where

[AT, DT](X) = AT{DTX) - DT{ATX)

and thus [AT} Dτ] is a linear transformation valued tensor. By the
standard symmetry properties of the four covariant Riemann Christoffel
tensor, the map Cτ is symmetric (self-adjoint), and we call it the Ricci
map associated with T. The trace of Cτ is the Ricci curvature of T,
which we denote by Ric(T, T).

Following Bochner [1], we say a field T is restrained if Δ2ζT> T)>< 0
at some point or T has constant length. Bochner has shown that every
field on a compact manifold is restrained, and in the noncompact case,
a field is restrained if its length attains a relative maximum at some
point.

Our main interests in this study are the cases when Aτ is symmetric,
or equivalently, T is closed. Since the gradient of any C°° function
is a closed field, many closed fields exist.

PROPOSITION 1. For any field T, tr Aτ = div T and tr [Aτ, Ώτ\ =
-T(div T). If T = grad/, then the Laplacian of f is the trace of Aτ.

Proof. Let Z19 , Zn be a set of nonsingular orthonormal vector
fields belonging to a Riemannian normal coordinate system at a point
m in M and let w19 *',wn be the dual 1-forms of this base. Thus
if βi = <Zf, Zi>, then

tr Aτ = Σe&DZiTf Z^ = Σw{{DZiT) = tr Δ(T) ,
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and using the fact that ΌTZ{ — 0 at m for any T,

tr [A*, DT] = Σ<AτDτZi - DτAτZif

= Σ<pDτEiT - ΏTΌZ%T, Z<X

= -ΣT<DZiT, ^ X + Σ<p£iT, ΏTZ

= - Γ(tr Aτ) .

PROPOSITION 2. For any field Γ,

Ric (Γ, Γ) = tr CΓ = tr Bτ - tr A2

Γ - T(div Γ) .

Proof. Using the fields Z{ in the above proof,

tr Cτ = Σ<β(Zt, T)T, ̂ X - Ric (2\ T) ,

and the rest of the proposition follows from the linearity of the trace.

PROPOSITION 3. For any field T, T has constant length if and only
if (Image AT) a T1.

Proof. For any vector X,

T, T> = 2<AT(X), T> .

3* The symmetric case* Throughout this section we assume T
is a closed field, or equivalently, Aτ is symmetric (by the following
proposition).

THEOREM 1. A field T is closed if and only if Aτ is symmetric.
If T is closed, then T1 is integrable on U.

Proof. If X and Y are fields, then

, xy - <rf [x

= <pzτ, Yy -

since the torsion of D is zero.
If X and Y belong to T-1, then

, T> -
- <x, Aτγy - <F, AΓX> = o

since <Γ, T> ΞΞ <X, T> = 0. Thus T1 is involutive or integrable (see
Chevalley [2]).
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In the special case T — grad /, then the integral manifolds of TL

on U are precisely the hypersurfaces on which / is constant. We next
investigate the geometry of an integral manifold M' of Γ 1 through a
point m in U. Since T is normal to M'', we use T to frame Mr locally
(see Hicks [6]). Let e be the function on U which is plus or minus
one according as <(T, T)> is positive or negative, respectively.

THEOREM 2. Let L be the Weingarten map on Mf and take X in

L(X) = [eζT, Ty\-'»[e<T, T>AT{X) - e<T, AT(X)>T]

and the mean curvature H of Mr is given by

H - tr L - I T Γ1 [div T - T log | T |]

where \T\ — [eζT, Γ>]1/2 is the length of T. Thus Mf is minimal if
and only if div T = T log | T |.

Proof. Let N = [e<T, Γ>]-1/2 T be the unit normal so

L(X) = DXN - - K Γ , T>]-3XAΓX, Γ>Γ + [<Γ, Γ^-^ApJf .

To compute tr L, let ZX1 , U ^ be a nonsingular orthonormal base of

(M')m and let Zn = N. Letting β4 - <^, ^ > , then

But

- <DTT,

Γ> = (l/2)Γlog<Γ,

Hence, H = « T , T»-^2 [tr ̂ Γ - T log | Γ |].

COROLLARY 1. The constant hypersurfaces of a nonconstant har-
monic function are minimal surfaces if and only if the gradient of
the function has constant length along its integral curves.

Proof. Let / be harmonic and T = grad /. Then T is closed
and tr Aτ = div T = 0. Hence H = 0 if and only if <DTT, T> = 0 or

, T> = 0.

COROLLARY 2. Lei T be a unit field on M which is closed. Then



146 N. HICKS

the total curvature and mean curvature of the integral manifolds of
TL are given by K = det Aτ and H — div T. Indeed, S = Aτ if and
only if T is a unit field.

The first corollary above suggests the definition of a minimal
harmonic function as a harmonic function whose constant hypersurf aces
are minimal surfaces. This class of harmonic functions has not been
examined as yet, as far as we know, nor has the above result (Corollary
1) been proven before.

PROPOSITION 4. Let Φ = <T, Γ>. Then grad Φ = 2DTT, which
implies Bτ is symmetric, and

Δ2φ = 2tvBτ = 2[Ric (T, T) + tr A% + T(div T)]

while

(*Φ){Z, Y) - 2<βτZ, Γ> .

Proof. Consider

(ΔΦ)X = X<Γ, T> - 2<DΣT, Γ> - 2<Z, DTT> .

Hence grad Φ = 2DTT, and Δ2Φ — div grad Φ = 2 tr Bτ. The last expres-
sion for the Laplacian of φ follows from Proposition 2.

Finally,

(/PΦ)(Z, Y) = [Dr(Jφ)]Z = 2Γ<Z, DτTy - 2<DYZ, DτTy =

We have immediately a slight generalization of a result of Bochner [1],

COROLLARY 1. Let T be a closed field such that div T is constant
along the integral curves of T. If T is restrained, then Ric (Γ, T) < 0
at some point of M or Ric (T, T) S 0 ow αW o/ Λί. On a compact
manifold whose Ricci curvature is always positive there can be no
nontrivial closed field T with Γ(div T) = 0. On a compact manifold
whose Ricci curvature is nonnegative any nontrivial closed field T
with T(div T) = 0 must be a global parallel field with constant length,
zero Ricci curvature, and Aτ = 0 (see Proposition 6).

Proof. In these cases,

Ric (T, T) - (1/2)40 - tr Al

which proves the first two statements immediately. If T is restrained,
as in the last statement, then we force Ric (T, T) = 0 and T to have
constant length since R(T, T) < 0 at any point is impossible. Thus φ
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is constant, J2φ = 0, and tr A2

T — 0 which implies all the eigenvalues
of Aτ are zero, so Aτ = 0.

COROLLARY 2. A nontrivial closed field has constant length on a
semi-Riemannian manifold if and only if its integral curves are
geodesies.

Proof. This is trivial since grad Φ — 2DTT.
The following result applies to any vector field.

PROPOSITION 5. The integral curves of a field T are reparameteri-
zations of geodesies if and only if DTT — gT for some real valued C°°
function g.

Proof. If the field fT is geodesic (/never vanishes), 0 = DfτfT =
f[{Tf)T + fDτT] and g = -T(logf). Conversely, if DTT = gT then
along each integral curve of T we need only solve the linear equation
(Tf) + fg = 0 to obtain / for which fT is geodesic.

COROLLARY. If T is closed, nonvanishing, and DTT — gT then
Kic (T) = g div T - tr A\ + T(g - div T).

We now study the case when T has constant length on the
hypersurfaces M'.

THEOREM 3. The following four statements are equivalent on the
set U:

(a) Aτ is invariant on TL.
(b) T has constant length on any Mr.
(c) DTT is orthogonal to T 1 .
(d) [T, X] is in T1 if X in T x.

Proof. If X is in T 1 then X<T, Γ> = 2<ATX, T> = 2<X, DτTy
which shows (a), (b), and (c) are equivalent. Also

<AΓX, τ> = <x, Aττy
= -<pxτ+[τ,x\,τ>,

where we extend X to be a C°° field in T1. Hence 2<AΓX, T> =
<[X, T], T> which shows (a) is equivalent to (d).

THEOREM 4. If one of the statements in Theorem 3 holds and T
does not vanish, then the integral curves of T are reparameterizations
of geodesies, grad Φ = 2DTT — (T log eφ)T, and the vector grad Φ has
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constant length on M\ i.e. T log Φ is constant on M'. Moreover\
the mean curvature of Mf is constant if and only if div T is constant
on M'.

Proof. Letting grad Φ = fT then Tφ = 2<DPT, T> = </T, T> =
fφ. If T Φ 0, then φ Φ 0, so /== (Tφ)/Φ = Γ log β#. The integral curves,
of JΓ are reparameterizations of geodesic by Proposition 5.

Letting X be a C°° field in Γ1, then

Xf = XT(logφ) = [X, Γ] log^ + Γ(Xlog^) = 0

since [X, T] is in TL and ̂  is constant on M'.
The last statement of the conclusion follows from Theorem 2.

COROLLARY. If grad Φ does not vanish on M, then the hyper-
surfaces M* are precisely the constant hyper surfaces of Φ if and only
if one of the statements in Theorem 3 is true.

We return to the study of the geometry of the hypersurface M'..
Eecall the fact that if L is the Weingarten map of an oriented
nonsingular hypersurface in a semi-Riemannian manifold, then the
Codazzi-Mainardi equations hold on the hypersurface if and only if
Torz = 0. In the following theorem, we write Aτ — AT which is
admissable by the identification of linear transformations with tensors,
of type 1,1.

THEOREM 5. On the set U, the following three statements are
equivalent:

(a) The Codazzi-Mainardi equations hold on M'.
(b) TorJΓ = 0 on vectors in Tx.
(c) R(X, Y)T = 0 for all X, Y in Tx.

Proof. Let Dr be the induced Riemannian covariant differentiation
on M\ thus for fields X and Y in TL,

DΣY^D'XY - <LX, Y>rN

by the Gauss equation (see Hicks [7]), where r = <iV, JV> = e.
Using the Gauss equation and Theorem 2, a straightforward-

computation yields,

Tor, (X, Γ) = D'ALY) - D'T{LX) - L([X, Y])

)

, Y), Γ>T
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since Tor^Γ (X, Y) = DXATY - DYATX - AT[X, Y] = R(X, Y)T and
^R(X, Y)T, Ty — 0 by the skew-symmetry of the covarίant Riemann-
Christoffel curvature tensor. Thus TorAT (X, Y) has no component
orthogonal to M' and the conclusion now follows.

THEOREM 6. On the set U, let P be a two dimensional subspace
of Mf with nonsingular orthonormal base Xy Y Then

K(P) = K'{P)

- [e<T, TXXf XXY, F > r K ^ X , XXArY, F> - <AΓX, Yy]

relates the Riemannian curvature of P with respect to M and M'.

Proof. The general Gauss curvature equation (see Hicks [6]) states
that

tan R(X, Y)Z = R\X, Y)Z - r«JLY, ZyLX - <LX, Z^LY) .

Using Theorem 2, a straightforward computation yields the result.

COROLLARY. // M is Riemannian and T = grad /, m in Z7, and
x, y, are a set of Riemann normal coordinates at m such that
Θ/Θx and d/Θy span the subspace P in Mf

m, then

L dx2 Θy2 V dxdy I J/

at m.

Proof. Let X = θ/dx and Y = d/θy. Then <^[rX, F>m = <J9X T, F> -
X<7\ F> = XW(Y/) since (DxY)m = 0.

We now show the tensor Tor^Γ represents a condition on the
holonomy of the distribution Tλ.

THEOREM 7. Let M be Riemannian, complete, connected, and
simply connected. Let T be a nonvanishing closed field such that
AT has no torsion. Then M is diffeomorphic to a product M' X R,
where Mr is the (n — 1) dimensional integral submanifold of T1

through a point m in M and R is the real line. Hence the orbit space
M/T is diffeomorphic to Mf.

Proof. Since M is simply connected its restricted homogeneous
holonomy group is equal to its homogeneous holonomy group H. The
Lie algebra of H is generated by the linear transformations R(X, Y)
on Mm for all vectors Xand Y in Mm (see Nomizu [8]). Since Tor^Γ =
0,R(X, Y)T=0 for all X and Y hence R(X, Y) is invariant on TΣ.
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Since H is contained in the special orthogonal group SO(n, R), which
is compact, the exponential map is onto. If h is in H, then h =
expi?(X, Y) for some X and Y in Mm, and thus h(TL) is contained in
Tx. We now apply the result of DeRham [3] to get M= Mf x N.
Since M is Riemannian and complete, N is difFeomorphic to the real
line or the one dimensional torus. Since M is simply connected, N is
diffeomorphic to R.

4* Special cases* We conclude with some special cases that follow
from the above results. We will always assume the field T is nontrivial,
nonsingular, and closed.

PROPOSITION 6. If 4 Γ Ξ O, then T is a geodesic field with constant
length, zero divergence, and zero Ricci curvature. If T lies in the
plane section P then K{P) = 0. Thus there is no pair of conjugate
points along the geodesies determined by T. The distribution T1 is
integrable and its integral manifolds Mr are flatly imbedded in M (i.e.
L Ξ O O Π Λf'). Hence Mr is a geodesic submanifold of M. If M is
Riemannian, complete, and simply connected, then M is isometric to
the product Mf x R.

PROPOSITION 7. If Bτ = 0 and T is geodesic then T has constant
length c and Ric (T) = - t r A2

T - T(div T). When M' is defined it has
total curvature zero and mean curvature (1/c) div T. If Mf is defined
and flat everywhere, then 4 Γ Ξ 0 and Proposition 6 is applicable.

PROPOSITION 8. If Bτ = 0 and the integral curves of T are repara-
meterizations of geodesies with DTT = gT, then at points where g and
T do not vanish, Mf is flat and the Ricci curvature of T is zero.

In proving Proposition 8 one shows at points in U where g does
not vanish then ATT = DTT — (div T)T by applying Proposition 6 to
DTT. Furthermore, at such points 0 = BTT = [Γ(div T) + (div Tf]T
so tr A% = (div Tf = - Γ(div T) and Ric (T) = 0.

PROPOSITION 9. lί Bτ = 0 and the integral curves of T are not
reparameterizations of geodesies, then Proposition 6 may be applied to
DTT. Moreover T\T, Ty is constant, hence there can be at most one
point on each integral curve of T where the length of T has a critical
point. If the integral curves of T are parametrically complete (defined
for all parameter values), then M cannot be compact.

Notice in Proposition 9 the length of T is not constant along any
of its integral curves, for 0 = TζT, T> = 2ζDτT, Ty implies DTT = gT
by Theorem 4, which implies the integral curves of T are geodesies
by Proposition 5.
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DOUBLY STOCHASTIC OPERATORS OBTAINED
FROM POSITIVE OPERATORS

CHARLES HOBBY AND RONALD PYKB

A recent result of Sinkhorn [3] states that for any square
matrix A of positive elements, there exist diagonal matrices
Dι and D2 with positive diagonal elements for which Dι A D2

is doubly stochastic. In the present paper, this result is
generalized to a wide class of positive operators as follows.

Let (Ω9 % λ) be the product space of two probability
measure spaces (βu %u λϊ). Let / denote a measurable
function on (42, SI) for which there exist constants c9C such
that 0 < c ^ / ^ C < o o . Let K be any nonnegative, two-
dimensional real valued continuous function defined on the
open unit square, (0,1) X (0,1), for which the functions K(u, )
and K( ,v) are strictly increasing functions with strict ranges
(0,oo) for each u or v in (0,1). Then there exist functions
h: Ωι -»Eί and g: Ω2 —> EΊ such that

j\x, v) K(h(x), g(y)) dλ2(y) = 1 = ( f(u,y) K(h{u\

almost everywhere — (λ).

Let (Ω, 2ί, λ) be the product space of two probability measure
spaces (Ωi9 %, λ<). Let / denote a measurable function on (Ωf 9X) for
which there exist constants c,C such that

(11) 0<c^f^C< oo .

Let K be any nonnegative, real valued continuous function defined on
the open unit square, (0,1) x (0,1), for which the functions K(u,')
and K( ,v) are strictly increasing functions with strict ranges (0, °o)
for each u or v in (0,1).

In what follows, h and g will denote measurable, real valued,
functions defined on Ωu and Ω2, respectively. Whenever well defined,
set

R(x: Kg) = \ f(x,v) K(h(x), g(v))d7φ)
JΩ2

( 2 ) f

C(y: Kg) = f(u,y) K(h(u), g(y))d\L(u)
hi

for (x,y) e Ω.

Received February 13, 1964. The authors research was supported in part by
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For a fixed choice of h, g we can think of R and C as defining
positive operators. The main result of this paper is that R and C
can be made doubly stochastic by choosing h and g appropriately.
One immediate consequence of this result is a recent theorem of
Sinkhorn [3] on doubly stochastic matrices.

THEOREM. There exist functions h: Ωλ —> (0,1) and g: Ω2 —* (0,1) for
which

( 3 ) R(x:h,g) = l = C(y:h,g),

almost everywhere — (λ).

Proof We shall obtain h and g as the limits of two sequences
of functions, {hn} and {gn}. The hn and gn are defined recursively as
follows.

Set ho(x) = a for all xeΩlf where a is any number in (0,1). If
hn has been defined, let gn be the function defined by the equation
C(y: hn,gn) = 1. That is, gn(y) is the solution of the equation

( 4 ) 1 = \ f(x,y) K(h%(x),gn(y))dUx)
jQi

This solution exists and is unique since C(y: hn,t) is a strictly increasing
continuous function of t with range (0,c>o)# Furthermore, gn is easily
seen to be measurable if hn is measurable (certainly the case for h0),
since {yeΩ2: gn(y) <Ξ ί} = {yeΩ2: C(y: hn,t) ^ 1} and since C(y: hn,t) is
a measurable function of y for each fixed t. By Fubini's theorem

ί R(x: K, gjd\(x) = \ C(y: hn,gn)dX2(y)
JΩJ JΩ2

-j

Thus if R(x: hn,gn) ^ 1 for all x in Ωu then R(x: hn, gn) — 1 almost
everywhere — Xl9 and the proof is complete. If for some xeΩu

R(x: hn, gn) < 1, we define hn+1(x) to be the numbert for t which
R(x: t,gn) — 1. The existence and uniqueness of hn+1(x) follow from
our assumptions on K. We set hn+1(x) = hjx) at every x where
R(x: hn,gn) ^ 1. Just as for gn, we see that hn+1 is measurable (since
gn is measurable).

Let An = {xeΩ1\ R(x: hn,gn) ^ 1}. If for some n ^ 0, X^AJ = 1
we stop our iteration since this implies that R(x: hn,gn) = 1 a.e. — Xu

so we can take hn and gn to be h and g of the theorem. We shall
assume henceforth that X^AJ < 1 for every n.

Observe that hn+1(x) ^ hn(x) for every x, thus

( 6) 1 - C(y: hnygn) S C(y: hn+1,gn) .

Consequently gn+1(y) ^ gn(y) for every y. It follows from this mono-
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tonicity that the limits h = lim^c hn and g — l im^^ gn exist. We
shall now show that this choice of h and g satisfies the theorem.

By our construction, {AJ is a nondecreasmg sequence of sets. Set
A = lim^oo An. Since λ^AJ < 1, the complementary set Ac

n is a set
of positive measure for each n. For x e AG

n, hn(x) = a whence

^ R(x: hnfgn) = [ f(x,

K(a,gn(y))dUv) .
J θ 2

This inequality holds for each n, so one may take limits to obtain

1 S C J Ω K{a,g{y))dX2{y) .

Thus there are positive numbers r and σ such that X2{y e Ω2\ g(y) >̂ r} > σ.
Then for arbitrary n and x e An,

1 > c f K(hn,gn)dX2(y) ^ cσK(hn(x),r) .
jΩo

Hence, by taking limits on n, one obtains 1 ^ cσK(h(x),τ) for each
xe A. Let ί be a number for which 1 — cσK(t,r). Then fe(cc) ̂  ί for
xe A, and /&(#) = ^ for x G AC, whence h(x) ^ /3 = max (#,£) < 1 for
all x G β1# But for all y £ Ω2 and all n,

= ( /(»,!/) K(K(x),gn(y))d\(x)

^ CK(β,gn(y)) ,

thus ^(T/) ^ 7 > 0 where 7 satisfies C"1 = K(β9y).
The import of the above is that the set {(^%(x),

^ ^ 0} is contained in a compact subset of the interior of [0,1] x [0,1],
on which K is continuous, and hence bounded. Therefore, by the
Lebesgue dominated convergence theorem

1 = lim C(y: hn,gn) = ( f(x,y) K(h(x)yg(v))dX1(x)

and

1 = lim R(x: kn+1,gn) = \ f(x,y) K(h(x),g(v))d\(y) ,

for xe A. Moreover

1 rg lim R(x: hn,gn) = f J(x,y) K(h{x),g{y))dX2{y) ,
W->oo J Ω 2

for x $ A. But an inequality here on a set of positive λi-measure is
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impossible by (5), thereby completing the proof.

COROLLARY (Sinkhorn [3]). Let A = (aiS) be an m by m matrix
of positive elements. There exist diagonal matrices Dλ and D2 of
positive diagonal elements for which the matrix DXAD2 is doubly
stochastic.

Proof. In the above theorem let Ωx — Ω2 — {1,2, , m} and let
λj = λ2 be the uniform measure, λ^i}) = 1/m. Set K(u,v) —
uv{l — u)~\l — v)~λ and f(ί,j) — ai3 . By the theorem there exist
functions h and g such that

m-1 Σ aiSh(i)g(3) [1 - Hi)Γ [1 - g(j)]-1 = 1
i l

Σ
3=1

The corollary is then proved if one lets dH = m~1/2[l — h(i)]~ιh{i) and
d2i = m~1/2[l — giiyi^gii) be the diagonal elements of Dλ and D2

respectively.
The above result for symmetric matrices has also been obtained

by Marcus and Newman [1] and Maxfield and Mine [2].
The application which motivated Sinkhorn's theorem was the case

in which A is the matrix of maximum likelihood estimates of a
stochastic transition matrix P of a Markov Chain. When it is further
known that P is actually doubly stochastic, then Sinkhorn's result
shows that numbers {xl9 "-9xn;ylf •••,#„} exist such that A can be
renormalized by dividing the ith row by x{ and the i t h column by y3-
to obtain a doubly stochastic matrix. However, if one considers the
maximum likelihood equations for the restricted case in which P is
known to be doubly stochastic one observes that the proper normalized
form of A (relative to the maximum likelihood approach) is a doubly
stochastic matrix B = {bi5) with b{j — aiS(Xi + yj)~λ. The existence of
such a normalization follows straightforwardly from the proof of the
above theorem. To see this, consider the function K(u,v) = [v*1 —
(1 — u)-1]-1 defined on the triangular region u > 0, v > 0, u + v < 1.
This function is nonnegative and continuous on this triangle. Moreover,
both K(u, ) and K( ,v) are strictly increasing functions wherever
defined and the ranges of K(u,-) and K(-,v) are respectively (0,oo)
and (^[1 — v]"1,™) for each fixed u and v. Let X1 and λ2 be the same
discrete measures as used in the proof of the above corollary. The
functions R(x: hn,gn) and C(y: hn,gn) then become finite sums. The
only change required in the proof is that one must show that the
points (hn(x),gn(y)), for all n ^ 1 and all x and y, are well defined
and contained in a compact subset of the domain of K. That this is
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true follows from the assumptions on the monotonicity, continuity and
range of K, combined with the fact that the integrals are finite sums.
Actually, because of these properties, it is clear that K(hn{x),gn{y)) is
bounded by me"1 for all n and y.
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CONCERNING PERIODIC SUBADDITIVE FUNCTIONS

R. F. JOLLY

The author investigates those subsets M of the complex
plane with the group property that M is closed with respect
to complex multiplication. In particular if M is closed, bounded
and has for its boundary a curve given in polar form by
p(β) = r(Θ) exp (iθ) where r is a positive continuous function
with period 2π, then r is characterized by these requirements,
together with the additional condition that r be submulti-
plicative. If fix) = — log r(x), the corresponding conditions
on / are: / is a continuous nonnegative subadditive function
with period 2π.

Some relations between the roots (zeros) and periods of
subadditive functions are discussed and in particular, it is
shown that: if / is a continuous subadditive function not
identically zero, with period 1 and with a root c (i.e., f(c) —
0), then c is a rational number m/n (in lowest terms), /(0) =
0 and / has period 1/n.

For each positive number c and function / on the set of
all numbers, a type of polygonal approximation P(c, f) is
denned such that if / is continuous, lim P(c, f) = f uniformly
over every bounded number set as c —> 0. If / is subadditive,
P(c9 f) is subadditive. The subadditive P(c, /) are characterized
in terms of their slopes. Since a change of scale does not
affect the subadditive property, the author studies functions
with period 1 rather than those with period 2π. For each
positive integer n, the collection Kn of all functions P(1M, /)
for all continuous subadditive functions / with period 1, is
shown to have a finite basis. In fact, Kn forms a function
cone with finitely many extremal elements (the basis). While
an explicit representation is not given, the proof shows how
these extremal elements may be constructed.

Several examples are given to illustrate some pathological
cases. The methods of this paper may easily be applied to
the solution of certain other functional inequalities with cor-
responding restrictions.

!• Introduction* The statement that M is a Gset means that M
is a point set in the complex plane such that if P is in M and Q is in M,
then the product PQ is in M, i.e., M has the group property that it is
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closed with respect to multiplication. For example, the set of all points1

z such that | z \ < 1 is a G-set; for each number k, the intersection of
the interiors of the circles with radius (1 + kψ2 and centers ik and
— ik is a G-set; and the union of the coordinate axes is a G-set which
contains no domain (§6). The statement that I is a simple G-set
means that M is a G-set which is closed, bounded and which has for
its boundary a curve given in polar form by p{θ) = r(θ) exp (iθ) where
r is a positive continuous function of period 2ττ. The function r is
completely characterized by these requirements together with the ad-
ditional condition that for each number x and number y, r(x) r (y) ^
r(x + y). If f(x) = — logr(α ), the corresponding conditions on / are:
/ is continuous, nonnegative and of period 2π and moreover, for each
number x and number y, f(x + y) ^ f(x) + f(y). Hence, the deter-
mination of all simple G-sets resolves itself into the problem of the
determination of all continuous nonnegative subadditive functions with
period 2π (§2).

For each number p, let Fp denote the collection of all functions
/ which are subadditive on the set of all numbers and which have
the property that if x is a number, f(x + p) — f(x). Let F denote
the collection of all continuous functions in Fx. The statement that
c is a root of / means f(c) — 0. An anchored function is one with
zero for a root. In § 3, some relationships are shown between the
roots and periods of subadditive functions. In particular, it is shown
that if / is a function in F not identically zero and c is a root of /,
then c is a rational number m/n (in lowest terms) and / is an anchored
function with period 1/n (Theorem 5).

Since a change of scale does not affect the subadditive property
(Lemma 3), we study the functions in Fx instead of those in F2π and
thereby simplify the notation. For each positive number c and func-
tion / on the set of all numbers, a type of polygonal approximation
P(c, f) is defined (§ 4) such that if / is continuous, limc_0 P(c, f) — f
uniformly over every bounded number set. These polygonal approxi-
mations to functions in Fo are themselves in Fo (Theorem 6) and are
characterized in terms of their slopes (Theorem 7). It is then shown
that for each positive integer n, the collection Kn of all functions
P(l/n9 f) for all functions / in F, has a finite basis in the sense that
there is an integer M(n) and a sequence an of M(n) elements of Kn

such that a function g belongs to Kn if, and only if, g is the sum of
a linear combination of the functions of an with nonnegative coefficients
(Theorem 9). These polygonal subadditive functions are then used to
characterize F as the collection to which / belongs if, and only if, /

1 In this paper, the word number shall be used to denote a real number and
the word point shall mean a point of the complex plane.
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can be approximated uniformly by linear combinations of the functions
of au a2, α3, with nonnegative coefficients.

There are simple G-sets which are not convex and in fact, which
have no tangent at any point (Theorem 12). Some other examples,
which show the difficulty in obtaining nontrivial characterizations of
G-sets, are given in § 6. One example is a countable G-set dense in
the plane.

2* Boundaries of simple G-sets* Throughout this section, assume
that r is a positive continuous function with period 2π and let D
denote the closed and bounded set with boundary z — r(θ) exp (iθ).

THEOREM 1. The following two statements are equivalent:
(i) D is a simple G-set.
(ii) For each number a and each number β, r(a)r(β) ^ r(a + β).

Proof. To show that statement (ii) implies statement (i), let P =
c exp (ia) and Q — d exp (iβ) where 0 ̂  c < r(a), 0 ̂  d < r(β) and
r(a)r(β) g r{a + β). Hence PQ = cd exp (i(a + β)) and PQ is in D.

To show that statement (i) implies statement (ii), assume (i) and
r(a)r(β) > r(a + β). Let P = (r{a) - δ) exp (ia) and Q = (r(β) - δ)
exp (iβ) where δ = [r(a)r(β) - r(a + β)]/[r(a) + r(β)] > 0. Note that
r(a) - δ = [r\a) + r(α + β)]/[r(a) + r(/S)] > 0. Therefore P is in D.
Likewise r(β) - δ= [r2(β) + r(a + /5)]/[r(α) + r(β)] and Q is in D.
Since P is in D and Q is in D. PQ is in Zλ Therefore r(a + β) >
(r(a) - δ) (r(β) - δ) but (r(a) - δ) (r(β) - δ) > r(a)r(β) - δ (r(a) +

= r(α + β). This is a contradiction.

THEOREM 2. Suppose that D is a G-set. Then the following
two statements are equivalent:

(i) Each point of D is the product of two points of D.
(ii) r(0) = l.

Proof, r is continuous and has period 2π, therefore there is a
number 0 ̂  w < 2π such that for any number a, r(a) ̂  r(w). Since

2 ( ) ( 2 ) ^ ( ) ( ) ^ 1
To show that statement (ii) implies statement (i), suppose Z — d

exp (ia) where 0 ̂  d < r(a). From the preceding d < r(a) S r(w) ^
1, hence d < (1/2) (1 + d)< 1 and 2d/(l + d)< 1. Let TΓ= (1/2) (1 + d)
exp (ia) and C7 = 2d/(l + d). Then Z = WU.

To show that statement (i) implies statement (ii), assume (i) is
true. Let us first show that r(w) = 1. Suppose r(w) < 1. Let Z =
(1/2) [r(w) + r2(w)] exp(iw). By (i) there is a point TF=cexp(ία)
and a point Z7 = d exp (ί/5) where 0 g c < r(a)9 0 S d < r(β) and Z =
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WU. Note that 0 ^ c < r{a) S r{w) and 0 S d < r(β) ^ r(w). There-
fore cd < r\w) < (1/2) [r(w) + r2(w)] < r(w). Hence Z Φ WU which
is a contradiction. Therefore r(w) — 1.

Since 1 = r(w)r(kw) ^ r((k + l)w) ^ r(w) — 1 when r(&w) = 1, it
follows by induction that if n is a positive integer, r(nw) = 1.

Since r is continuous and periodic, r is uniformly continuous.
Suppose ε > 0. Then there is a number δ > 0 such that if | x — y I <
<?, I r(x) — r(y) | < ε. For infinitely many positive integers m and w,
|(w/27r) — (mjn)\ < ^~2 < δ/(2πri). For such integers m and n, \r(nw) —
r(2πm)\ < e, r(nw) = 1 (previously proven) and r(2πm) = r(0) (r has
period 2ττ). Hence, 1 — r(0) < ε. Therefore r(0) = 1.

THEOREM 3. If g is a continuous periodic submultiplicative
function, either g is a positive function or g = 0.

Proof For each number x, 0 ^ (̂α /2) #(#/2) ^ r̂(ί»). Since gr is
continuous, either g = 0 or there is some segment containing no root
of g. Suppose a < b and the segment (α, 6) contains no root of g. If
a < x < b and w > 0, then na < nx < nb and if g(kx) Φ 0 and g(x) Φ
0, then 0 < g{x)g(kx) ̂  #((& + 1)#). It follows by induction that for
every positive integer n, the segment (na, nb) contains no root of g.
Since g has period p, for some positive number p, and there is a
positive integer N such that N(b — a) > p, there is no root of g and
hence g is positive.

THEOREM 4. Suppose f and g are functions such that f — — log
#. Then the following two statements are equivalent:

(i) g is positive and submultiplicative.
(ii) / is subadditive.

The proof is omitted.

3* Roots and periods of subadditive functions* Let us now
show how the roots of subadditive functions are related to their periods
and in particular, what happens in the continuous case.

Note that if p and — p are both roots of the function / of Fo,
then / is an anchored function with period p. This is shown by the
inequalities

0 = f(p) ^ f(p) + /(0) = /(0) = f(p -p)< f(p) + /(-p) = 0

f{x) = f(x + p-p)£ f(x + p) + fi-p) ^ f(x) + fip) = fix).

On the other hand, the example

/(*) = {1, if x ^ ττ/2 I sin x |, if 7r/2 ^ *}
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shows that a continuous element of FQ may have infinitely many roots
without being either anchored or periodic. However, if / is a non-
negative continuous element of FQ with both a positive and negative
root, then / is anchored and periodic. This is easily shown by letting
p and q denote respectively the smallest positive and largest negative
roots of / (these obviously exist). But q < p + q < p and 0 ^ f(p +
<?) ̂  f(p) + f(q) = 0. Hence f(p + q) = 0 and p + q = 0.

THEOREM 5. Suppose f is in F and c is a number different
from 0 such that f(c) = 0. Then

( i) f is anchored)
(ii) if c is irrational, / = 0;
(iii) if c is a rational number m/n (in lowest terms), then f

has period 1/n.

Proof First we show that there is no number x such that f(x)<0.
Suppose there were such an x. Then /(0 + 0) g /(0) + /(0) implies
0 g /(0). Hence x Φ 0. Since /((& + l)α?) g /(») + f(kx), it follows
by induction that f(nx) S nf(x) for every positive integer n. As /
is continuous and periodic, there is a number M such that if w is a
number, | /(w) | < M. Let m denote an integer greater than M/\ f(x)\.
Therefore m | f(x) \ > M but if f(x) < 0, | f(mx) \ = - /(m») S -
•mf(x) = m I /(a?) | which is a contradiction.

Since / has period 1, assume 0 < c < 1. It was previously shown
that / is nonnegative and if n is a positive integer, f(nx) ^ nf(x).
Hence f(nc) = 0 for every positive integer w. Following the line of
argument used in Theorem 2, the fact that / is uniformly continuous
may now be used to show that /(0) = 0 and therefore / is anchored.

To show (ii), assume c is irrational and fφQ. Again following
a line of argument used in Theorem 2\ the fact that the multiples of
c modulo 1 are dense in the interval [0, 1] gives a contradiction since
/ is continuous, has period 1 and f(nc) = 0 for every positive integer
n.

To show (iii), assume c is the rational number m/n in lowest
positive terms. There exists an integer k and an integer p such that
km — np ~ 1. Hence km In = (1 + np) = p + 1/n and 0 = f(km/n) =
f(p + 1/n) = f(l/n). For each number w, f(w + 1/ri) g f(w) + /(I/
n) = /(tϋ). Therefore it follows by induction that for every number
x and positive integer s, f(x + s/u) ^ f(x + 1/tι) ^ /(«). But if s —
ny f(x) = f(x + n/ri) g f(x + 1/w) ^ f(x). Therefore /has period

4* Certain polygonal approximations to subadditive functions*
Let us start with some elementary properties of subadditive functions
and follow this with a definition and some properties of a certain type
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of polygonal function.

LEMMA 1. If a > 0, b > 0, / is in Fp and g is in Fp, then
af + bg is in Fv.

LEMMA 2. If for each positive integer n, fn is in Fv and g is
a function such that for each number x, fn(x) converges to g{x), then
g is in Fp.

LEMMA 3. If c is a number, f is in Fcp and g is the function
such that for every number x, g(x) — f(cx)9 then g is in Fp.

Proofs to Lemmas 1, 2 and 3 may be found in [3, Chap. VII].

DEFINITION. For each positive number c and function / defined
on the set of all numbers, let P(c, f) denote the function h such that
(i) if n is a positive integer and nc — c g x ^ nc, then h(x) = mn(x —
nc) + f(nc) where mn = [f(nc) — f(nc — c)]/c and (ii) if 7b is a
negative integer and kc ^ x ^ kc + c, then h(x) = — mk(x — kc) + f(kc)
where mk = — [f(kc + c) — f(kc)]/c. Also let m0 = f(0)/c.

DEFINITION. For each function h defined on the set of all numbers,
let h* denote the transformation from the set of all ordered number
pairs into a number set such that for every ordered number pair (xr

y), h*{x, y) = h(x) + h(y) - h(x + y).

THEOREM 6. If f is in FQ and c is a number then P(c, f) is in
Fo.

This theorem is equivalent to Theorem 8 of [2].

NOTATION. When n is negative, let

n 0 I n I

Σ mP = Σ ™<P = Σ w_p .
p=0 ρ=n 2>=0

THEOREM 7. If f is a function defined on the set of all numbers-
and c is a positive number, then P(c, f) is in FQ if, and only if,,
for every integer n and integer k,

n + k n k

Σ mP ^ Σ mp + Σ mP
p=0 p=0 p=0

Proof. For each positive integer n, mn = [f(nc) — f(nc — c)]/c.
Hence cmn = f(nc) — f(nc — c) and f(nc) — cmn + f(nc — c). It fol-
lows by induction that
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f(nc) = cfimp

For each negative integer k, mk = — [/(&c + c) — /(&c)]/c. Hence
^m^ = — f(kc + c) + /(&<?) and f(kc) = cmk + /(&c + c). It follows
by induction that

f(kc) = c Σ mp + /(0) = c Σ mp .

In the proof of Theorem 6, it is shown that P(c, f) is in Fo if,
and only if, for every integer n and integer k, f(nc) + f(kc) — f((n +
k)c) ^ 0. Hence the theorem follows.

This theorem can be used to derive several of the well-known
theorems concerning the rate of growth of subadditive functions.
Notice that one could easily restrict the domain of / to the positive
or negative numbers. Note also the obvious fact that if / has period
nc, then Σ5=I™J> = °

THEOREM 8. If f is a function defined on the set of all numbers
and {cn} is a number sequence converging to 0 such that {P(cn, /)}
converges pointwise to /, then f is in Fo if, and only if, P(cn, f) is
in Fo for every positive integer n.

Proof. From Theorem 6, it follows that if / is in Fo and n is a
positive integer, then P(cn, f) is in Fo.

Under the hypothesis of the theorem, if P(cn, f) is in FQ for
every positive integer n> then by Lemma 2, / is in FQ.

5* Periodic polygonal subadditive functions* A type of polygo-
nal approximation to elements of F is described and these are shown
to have a finite basis. In fact, these polygonal approximations (for a
fixed n) form a function cone with finitely many extremal elements
(the basis). While an explicit representation is not given, the proof
of Theorem 9 shows how these extremal elements may be constructed.

THEOREM 9. For each positive integer n, there is an integer
M(n) and a finite sequence {anp} with M(n) terms such that

(i) if p is an integer and 1 fg p g M(ri), then for some function
f in Ff anv = P(l/nf f) and

(ii) if g is in F and h is the function P(l/n9 g), then there is
a sequence {ap} of nonnegative numbers such that h = Σ^i* avanv

Proof Suppose n is a positive integer. Let Fr denote the col-
lection to which h belongs if, and only if, there is a function f in F
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such that h = P(l/n, / ) . Note that if h is in F\ h is continuous,
h(l + p/n) — / ( I + p/n) = f(p/n) — h(p/n) for each integer p and hence,
h has period 1. By Lemma 1, if a ^ 0, g is in F', and /& is in F',
then αfir + h is in i*7'. It follows by induction that any linear combi-
nation with nonnegative coefficients of functions in F' is itself in F\

Let Zo denote the collection of all points (p/n, k/n) for p = 1, 2,
3, , n and k = 1, 2, 3, , n. For each h in ί7', ft* (a? + 1, y) =
ft*(#, y + 1) = ft*(#, 2/). Making use of part of the proof of Theorem
6, h* is nonnegative if, and only if, ft* is nonnegative at every point
of ZQ. Each point (p/n, k/n) of Zo such that h*(p/n, k/n) = 0, is
called a zero of ft*. If ft is in i*7', ft is said to be fundamental only
if for each function g in i*7' such that ft — fir is in i*7', there is a non-
negative number e such that g — ch.

Let us now show that when ft is in F'', the statement that ft* =
0 is equivalent to the statement that ft = 0. If A Ξ 0, then ft* = CL
Suppose ft* = 0. Then for every number x, h(2x) — 2h(x). Therefore
by induction h(x) = (2a?)/2 = = /^(^2?ι)/2w for every positive integer
n. Since h is continuous and periodic, there is a number JS such that
for any number w, | h(w) \ < B. As 0 ^ h(x) < JB/2W for every positive
integer n, h = 0.

Next let us show that if / is in F' and g is in F' then the
statement that / * = g* is equivalent to the statement that f—g. If
/ = g, then / * = g*. If / * = g* and λ = / - #, then h* = (f - g)* =
y** _ ^* = o but from the preceding h = 0 and hence f—g.

Next let us show that the function ft in Ff is fundamental if, and
only if, it is true that if g is in Ff and every zero of h* is a zero of
βr*, then every zero of g* is a zero of A*.

Case 1. Suppose /& is not fundamental. Then there is a function
fir in F such that fc — fir is in F'\ yet there is no nonnegative number
c such that fir = ch. Note that there is no zero z of Λ* which is not
a zero of fir* as (h — fir)* would be negative at z, which is impossible
by a previous result. There is a least upper bound c of all numbers
d such that h — dg is in ί7'. By Lemma 2, h — eg is in JF7', h — eg ^
0 by assumption. If fe* — cfir* is positive at every point z of Zo which
is not a zero of h*, then there is a number d > c such that fc* — dfir*
is positive at every such point z, which would contradict the fact that
c is the largest number such that h — eg is in F'. Hence h — eg is
a function such that every zero of fc* is a zero of (h — eg)* but some
zero of (h — eg)* is not a zero of h*. Note that since Zo is finite, it
now follows by induction that there is some fundamental function /
such that every zero of h* is a zero of / * . For each h in Ff such
that h* has a zero, let Zh denote the set to which z belongs only if
z is a zero of h*.
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Case 2. Suppose g is in Fr, g ^ 0 and Zh is a proper subset of
Zg. There is a positive number c such that the product of c and the
maximum value of g* on ZQ is less than the smallest positive value of
h* on Zo. Therefore h* — eg* is nonnegative at each point of Zo;
consequently h — eg is in F'. But iί h — dg is in i*7' for some number
d, then, as there is some zero z of #* which is not a zero of /&*,
/&* — d#* is positive at z and h — dg Ξ£ 0. Therefore /& is not founda-
mental.

Let C denote the collection to which / belongs only if / is a
fundamental function such that Σ P = I f(p/n) — l For each function
h in F except 0, there is a function f in C such that Z"A (if it exists)
is a subset of Zf. If / is a fundamental function and # is a funda-
mental function such that Zf = Zg then by a previous argument, there
is a positive number c such that / = eg. Therefore if / and g are
fundamental functions in C, Zf Φ Zg and neither is a subset of the
other. Since ZQ is finite, C is finite. Let M(n) denote the number
of functions in C and arrange these functions in a sequence {<xnp}.

It has been previously shown that any linear combination with
nonnegative coefficients of elements of F is itself an element of F.
Hence there remains only to show that every element h of F' can be
represented as a linear combination with nonnegative coefficients of
the functions {anP}. Let hx = axanl where ax is the largest number c
such that h — canl is in Fr. For each positive integer p ^ M(n), let
hp = hp_x + apanP where ap is the largest number e such that h — hp_x —
canp is in F'.

Let
M(n)

7 7 7 X~~̂
g — "* ^M(n) — "> ZΛ Up&nP

Unless g =Ξ 0 there is an integer k such that J£, is a subset of ^ Λ j f e .
There is a largest number d such that # — danh is in JF". feΛ — hk^λ +
Â̂wfc where αfc is the largest number c such that h — hk_λ — cank is

in JF7'. But if g — dank is in Fr, then (Λ — hn_λ — cank) — dank is in
Fr which is a contradiction. Therefore g = 0.

THEOREM 10. There is a sequence {an} of functions in F such
that f belongs to F if, and only if, there exists a sequence {gn}
converging uniformly to f such that for each positive integer n,
there is a sequence {anp} of nonnegative numbers such that gn = Σ?=i

Proof. Let {an} denote a sequence of functions in F such that
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for each positive integer n and positive integer p ^ M(n), there is a
positive integer k such that ak = anP where anp is the pth term of
the sequence {ocnV} of Theorem 9.

If / is in F, the sequence {D(l/n, /)} converges uniformly to /.
For each positive integer k, there is an integer n(k) and a sequence
{ttnoop} of nonnegative numbers such that P(l/k, f) = Σϊ=ί °W)Λ (by
Theorem 9). Let gm = Σ ? ^ αn(i)pα:p if w(λ ) ^ m < n(k + 1). Then
{̂ m} converges uniformly to /.

By using the fact that the sum of two continuous functions with
period 1, is a continuous function with period 1, Lemma 1, and in-
duction, it follows that if for some sequence {ap} of nonnegative
numbers and some integer n, gn — Σϊ=i anvav, then g is in F. If {gn}
converges uniformly to /, then / is a continuous function with period
1 and by Lemma 2, / is in F.

6* Some examples and comments* The examples in Theorem 11
are typical of the fundamental anchored polygonal elements in F; the
example in Theorem 12 shows that some functions in F are patholo-
gical.

THEOREM 11. Suppose 0 < k < 1 and f is the function with
period 1 such that if 0 ^ x ^ k, f(x) = x(l — k) and if k ^ x ^ 1,
f(x) = k(l - x). Then f is in F.

This theorem can be shown by computing /*. It is quite easy to
establish that /* ^ 0.

It follows from Theorem 11 and a well-known characterization of
continuous convex functions on an interval that if n is a positive
integer and / is a nonnegative convex function on [0, l/ri\, then / can
be extended to be subadditive with period 1/n. This result should
appear in the Pacific Journal in a paper by Richard Laatsch using
different methods (private communication).

THEOREM 12. There exists a totally nondifferentiable function
in F.

Proof. It follows from Theorem 11 that y = | Arcsin (sin πx)
represents a function in F. In a different setting and using a different
notation, there is a proof in [1, p. 115] that the function / defined by
/0*0 = Σ»=i I Arcsin (sin 2nπx) \ (π2n) is totally nondifferentiable. By
Theorem 10, / is in F.

Notice that the graph of Z — f{θ) exp (iθ) forms the boundary of
a simple G-set with no tangent at any point.
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As might be expected, when one considers G-sets which are not
necessarily simple, one finds some very complicated examples. The
following should illustrate this and also, should show some of the
aspects of G-sets.

Suppose M is a point set and Mf is the set to which Z belongs if,
and only if, for some point W of M and number O ^ ί ^ l , Z = tW,
i.e., M' is the smallest star-shaped set about the origin which covers M.
A slight modification of the argument for Theorem 1 would show that
if M is a G-set, then Mf is a G-set. Moreover, a modification of the
argument for Theorem 2 would show that if M is a G-set, then M is
bounded if, and only if, M is a subset of the unit disc, i.e., if Z is
in M, \ Z \ ^ 1 .

That the set Mf need not contain a domain can be seen by taking,
for some positive integer n, M to be then nth roots of 1.

Even when Mf is a bounded G-set, there is no requirement that
its boundary be the graph of Z — τ(θ) exp (id) for some positive con-
tinuous function with period 2π. This can be seen by taking M to
be, for some number k Φ 0, the graph of Z = exp ((k + i)θ) for 0 ^
θ < 2π.

Suppose R is a number set and g is a function defined on R such
that if x is in R and y is in R, then x + y is in R and g(x)g(y) =
g(x + y). Then if M denotes the set of all points Z = g(x)exp(ix)
for all numbers x in R, M is a G-set. It is well-known that such
sets Ry and even that countable sets R, exist along with additive
functions / defined on R which are dense in the plane. If g(x) —
exp (/(#)) then the corresponding set would be dense in the plane.

The methods of this paper may easily be applied to certain other
functional inequalities. For example, analogous theorems hold for the
solutions to f(2x) ^ 2f(x) and in most cases the arguments do not
need to be changed.
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WAVE OPERATORS AND UNITARY EQUIVALENCE

Tosio KATO

This paper is concerned with the wave operators W± =
W±(Hl9 Ho) associated with a pair Ho, Hi of selfadjoint opera-
tors. Let (M) be the [set of all real-valued functions φ on
reals such that the interval (—00, 00) has a partition into a
finite number of open intervals Ik and their end points with
the following properties: on each Ik, <f> is continuously dif-
ferentiable, φ1 Φ 0 and φ' is locally of bounded variation.
Theorem 1 states that, if Hi = Ho + V where V is in the trace
class T, then W'± ± W±{φ{H1\ φ(H0)) exist and are complete
for any φe(M); moreover, M'± are "piecewise equal" to W±
(in the sense to be specified in text). Theorem 2 strengthens
Theorem 1 by replacing the above assumption by the condi-
tion that φn(H0 = φn(H0) + Vnt VneT, where ψne(M) and ψn

is univalent on (—n, n) for n = 1, 2, 3 , . . . . As corollaries we
obtain many useful sufficient conditions for the existence and
completeness of wave operators.

1* Introduction* The present paper is a continuation of earlier
papers of the author on the theory of wave and scattering operators
and the related theory of unitary equivalence of selfadjoint operators.

We begin with a brief review of relevant definitions and known
results (see Kato [4> 5] and Kuroda [6]), adding some new definitions
for convenience. Let ξ> be a Hubert space and let H be a selfadjoint
operator in ξ> with the spectral representation H = $ XdE(X). A vector
u e ξ> is absolutely continuous (singular) with respect to H if (E(X)u,u)
is absolutely continuous (singular) in λ (with respect to the Lebesgue
measure). The set of all ueξ) which are absolutely continuous (sin-
gular) with respect to H forms a subspace of ξ), which we call the
absolutely continuous (singular) subspace with respect to H and denote
by &ac(&s) These two subspaces are orthogonal complements to each
other and reduce H. The part of H in ξ>ac($>s) is called the absolutely
continuous (singular) part of H and is denoted by HaG (Hs)

Let Hh j = 0, 1, be two selfadjoint operators in ξ) with the spec-
tral representation Hά — \ XdEj(X), and let P3 be the projection on the
absolutely continuous subspace ξ>y,αc with respect to Hά. If one or
both of the strong limits

( 1 . 1 ) W± = W±(HU Ho) = 8- lim exp (itH,) exp (-itHQ)P0
ί-»±oo

exist(s), it is (they are) called the (generalized) wave operator(s).

Received January 8, 1964. This work was sponsored (in part) by Office of Naval
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W+ is, whenever it exists, a partial isometry on ξ> with initial set
ξ>0,αc and final set Wl+ contained in φ l f α c . 2JΪ+ reduces Hl9 and the part
of Hτ in 30̂ + is unitarily equivalent to H0>ac, with

(1.2) E1(X)W+ = TΓ+£?o(λ) , - - < λ < + oo

The wave operator W+ will be said to be complete if the final set 2Ji+

coincides with ξ>i,αc.
W+ has the property that, whenever W+(HU HQ) and TF4(if2, HJ

exist, then TF+(2fa, So) exists and is equal to W+(H2, H^)W+{HU Ho).
If both W+(HU Ho) and W+(HQ, Hλ) exist, then they are complete and
are the ad joints to each other.

Similar results hold for W+ replaced by W_.
If Hx — Ho is small in the sense that H1 — Ho + V with V be-

longing to the trace class T of operators on ξ>, then both W±(HU HQ)
exist and are complete. The main purpose of the present paper is to
prove some generalizations of this theorem, which involve what we
shall call the principle of invariance of wave operators. Roughly
speaking, this principle asserts that the wave operators W±(φ(H1)9φ(HQ))
exist for an " a r b i t r a r y " function φ and are independent of φ for a
wide class of functions φ. Its precise formulation is given in Theorems
1 and 2 proved below.

The proof of these theorems is rather simple, depending essentially
on a single inequality proved in a previous paper (Kato [5]). It will
be noted that Theorem 2 contains as special cases most of the suf-
ficient conditions for the existence and completeness of wave operators
obtained in recent years (see Kuroda [6, 7], Birman [1, 2], Birman-
Krein [3].

2* Principle of invariance of wave operators* Consider the
wave operators W±(φ(H1), (Φ(HO)) where φ is a real-valued, Borel mea-
surable function on (— °°, + °°). The principle of invariance asserts that
these wave operators do not denoted on φ. Of course certain restric-
tions must be imposed on φ and on the relation between Ho and Hx

To this end it is convenient to introduce a certain class of functions.

DEFINITION. A real-valued function φ on (— ooy + oo) is said to
be of class (M) if the whole interval (— oo, + co) has a partition into
a finite number of open intervals Ik, k — 1, , r, and their end points
with the following properties: on each Ik, φ is strictly monotone and
differentiate, with the derivative φ' continuous, φf Φ 0 and (locally)
of bounded variation. {Ik} will be called a system of intervals associated
with φ (such a system is not unique).

THEOREM l Let Ho, Hλ be self ad joint operators such that Hx =
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Ho+ V with VeT. If φ is of class (M), W'± = W±(φ(Hλ)y φ(H0))
exist and are complete. Furthermore, W'+ are (i piecewise equal"
either to W± = W±(Hlf HQ) or to Wτ, in the sense that

(W'± - W±)E0(Ik) = 0 or (W'± - Wτ)E0(Ik) = 0, k = 1, , r,

according as φ is increasing or decreasing on Ik. In particular,
W'± — W±{W± = TFqz) if Φ is increasing (decreasing) in each Iky k=
1, — , r. (Here {Ik} is a system of intervals associated with φ e (M)
and E0(I) = EQ(β - 0) - E0(a) if 1= (a, β).)

Proof. It is known (see Kato [5]) that W± exist under the as-
sumptions of the theorem.

We take a fixed Ik and assume that φ is increasing on Ik. We
use the inequality (2.9) of the paper cited, which reduces for s = 0 to

(2.1) \\(W+-l)x\\^(8πm"\\V\\1)
lli

α +oo \ l / 4

HI V\ll2exv(-itH0)x\\2dt)
where x e ξ)0,αc is subjected to the condition that d(E0(X)x, x)/dX ^ m2

almost everywhere. Here | V\ is the nonnegative square roof of V2

and || F | | i denotes the trace norm of V, which is finite by assumption.
Now let u e !go,ac be such that E0(Ik)u = u and d(E0(X)u, u)/dX ^ m2.

We note that such u with finite m2 form a dense subset of E0(Ik)!Q0>ac =
Eo(Ik)PoίQ (see a similar proposition in loc. cit. when Ik is the whole
interval). If we set x=exp ( — isφ(H0))u, we have (E0(X)x, x) — (E0(X)ufu)
so that the assumptions on x stated above are satisfied. Hence (2.1)
gives

( 2.2 ) || (W+ - 1) exp ( - isφ(HQ))u || ^

(2.3) τ)(s) = (+ O O | | | F | 1 / 2 e x p ( - itH0 - isφ(H0))u \\2dt
Jo

= Σ I C I ( + Ί (exp ( - itHt - isφ(H0))u, /„) |Jdί ,
71 = 1 J O

where {/J is a complete orthonormal system of eigenvectors of F a n d
the cn are the associated eigenvalues.

The integrals on the right of (2.3) have the form (Al) of Appendix,
where w(X) is to be replaced by d(E0(X)u, fn)/dX which belongs to U(Ik)
with IΛnorm not exceeding m (see loc. cit.). Therefore, each term on
the right of (2.3) tends to 0 for s —> + co (Lemma A3, Appendix). On
the other hand, the series on the right of (2.3) is majorized by the
convergent series 2ττm2 Σ I cn I — 2πm21| V\\x. Hence r](s) —•> 0 for
s—> +oo and the left member of (2.2) must tend to 0 for s—> + c o .
Since (W+ — 1) exp ( — itφ(H0)) is uniformly bounded and the set of u
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with the above properties is dense in EQ(Ik)P0^> as remarked above,
it follows that (W+-ΐ) exp (-isφ(H0))P0E0(Ik) -> 0 strongly for s->+ oo.
But we have W+ exp (-isφ(H0)) = exp (~isφ(H1))W+ by (1.2). On mul-
tiplying the above result from the left with exp {isφ{H^), we thus
obtain

(2.4) 8 - lim exp (isφ(HJ) exp (-isφ(H0))P0EQ(Ik)

= W+P0E0(Ik) = W+E0(Ik) if φ is increasing on Ik .

Similarly we can show that

(2.4') s - lim exp (isφiHJ) exp (-isφ(H0))P0E0(Ik) = W_E0(Ik)
S—>-'Γoo

if φ is decreasing on 1 .̂

Since P0E0(X) is continuous in λ, we have Σ * PoEo(Ik) = P0 Ad-
ding (2.4) or (2.4') for fc = 1, •••, r, we thus arrive at the result

( 2.5 ) s - lim exp (isφ(HJ) exp (~isφ(H0))PQ = Σ W ^ W * ) ,

where W(±) means that W+(W_) should be taken if ^ is increasing
(decreasing) on Ik.

(2.5) shows that the wave operator W+(φ(HJ, Φ(H0)) exists and is
equal to the right member; it should be noted that the absolutely
continuous subspace for Φ(H0) is identical with ξ>0,αc = Poξ> (Lemma A5,
Appendix). Similar results hold for PΓ_(^(iί1), φ(HQ)); we have only
to take the opposite choice for Wi±) in (2.5). These wave operators
are complete since they also exist when Ho and iϊi are exchanged.

3* Generalization* Let us consider a question which is in a
sense converse to Theorem 1. Suppose ψ(H^ — ψ(HQ) belongs to T
for some function ψ; then do the wave operators W±(Hly Ho) exist?

The answer to this question is quite simple if ψ is of class (M)
and, in addition, univalent. Then the inverse function exists, with
domain Δ consisting of a finite number of open intervals and a finite
number of points. This inverse function can be extended to a func-
tion ψ of class (M) by setting, for example, ψ(λ) = λ on the com-
plement of A. Therefore, W±(HU Ho) = W±(^(ψ{H1))f ψ(H0))) exist and
are complete by Theorem 1.

If ψ is not univalent, we do not know whether the same resalts
hold. But we can show that this is true if there is an approximate
univalent sequence {ψn} of functions of class (M) such that ψn{H?) —
ψn(H0) e T. We call {ψn} an approximate univalent sequence if ψn is
univalent on ( — n9n),n= 1, 2,

More generally, we can prove
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THEOREM 2. Let Ho, Hλ he selfadjoint and let there exist an ap-
proximate univalent sequence {ψn} of functions of class (M) such that
ψn{Hλ) = fn(H0) + Vn with Vn e T, n = 1, 2, Then, for any φ e (M),
the wave operators W'± — W±(φ{H^), Φ(H0)) exist and are complete.
In particular, W± = W±(HU Ho) exist and are complete. W'± are
piecewise equal either to W± or to Wτ in the sense stated in Theorem
1.

Proof. I. The restriction of ψn to ( — n, n) has inverse function,
which can be extended to a | % G (M) in the same way as above.

Set Φn = Ψ°fn°ψn; then Φn(X) = Φ(X) for λ e (—n, n), and Φne (M)
by Lemma A4 (Appendix). We define the following selfadjoint opera-
tors, all functions of Hjfj = 0, 1:

= Lnj , (f,o|t)(ffy) = Hnj ,

φn{Hό) = Knj =

Since ϋΓwi = (φoψn)(Lnj) by operational calculus (see Stone [8], Theorem
6.9), where φoψne(M) and Lnί=Ln0+ Vn, Vn e T, it follows from
Theorem 1 that W'n± — W±(Knl, KnQ) exist and are complete.

II. For any function ψ of class (M), ^ (±oo) = limλ_±oo ψ(X) exist
(the values ±oo being permitted for these limits). Thus Φn(±co) and
(Ψn°ψn)(±co) exist. By replacing {φn} by a suitable subsequence (and
correspondingly for {ψn} and {ψn})> we may assume that a± limn_»oβ0w(±oo)
and /3 ± = lim^oo (ψ>%oτ/rj(±oo) exist (±oo being permitted for these
limits).

Let J be an open interval such that a± and Φ( ± co) are exterior
to J, and let S — φ~\J), Sn = Φn~\J). S and Sn are unions of a
finite number of open intervals and of points. Since K${H0) and Knj =
•Φn{Hά), we have (we denote by 2^(5) the spectral measure determined
from {Eό{X)})

( 3.2) Fά{J) = Ej(S) , FM) - ^ ( S . ) , 3 = 0,1.

S is bounded since ^(±oo) are exterior to J". Similarly, Sn is
bounded if n is sufficiently large, since a± are exterior to J.

Take an n so large that Sn is bounded and S cz(—n, n). Since
ίn(λ) = ^(λ) for λ e (—n, n), we have S = (—π, ti) (Ί SΛ. Further take
an m>n such that S w c ( — m, m). We have S = ( - m , m ) n S f f l as
above, so that S w n S, = Sm Π ( - m , m) n Sw = S n Stt = S. Hence

< 3.3 ) FMWmj{J) = FjiSJEASJ

= ^(S. n s j = J^(S)

III. Now we have, for any u e ξ)0>αc = Poξ> ,
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3.4 ) exp (itKnl)(l - Fnl(J)) exp (-itKJP0F0(J)

= (1 - Fnl(J)) exp (itKJ exp ( - itKn0)P0F0(J)

— (1 - Fnl(J))Wn+Fa(J) strongly for t — + co

Since (1 - Fnl(J))W'n+ = W'n+(1 - FM)) by (1.2) applied to W'n+,
and since F0(J) S Fn0(J) by (3.3), the last member of (3.4) vanishes.
On the other hand exp (— itKn0)F0(J) = exp (—itK0)F0(J) since Φn(X) =
Φ(X) for λ e {-n, n) and F 0 (J) = E0(S) g E0((-n, n)). On multiplying
(3.4) from the left by exp(— itKnl), we thus obtain

( 3.5) s - lim (1 - Fnl(J)) exp ( - itK0)P0F0(J) = 0 .

The same is true when n is replaced by the m > n considered above.
Now multiply the latter from the left by Fnl{J) and add to (3.5). In
view of (3.3), we then obtain

( 3.6 ) s - lim (1 - F^J)) exp ( - itK0)P0F0(J) = 0 .

Multiply again (3.6) from the left by exp (iίJKΊ); then

( 3.7 ) s - lim exp (UK,) exp ( - UKQ)P0F0(J)
ί-^ + oo

= s - lim F&J) exp (UKnl) exp (-itKJP0F0(J)
ί-»+o

where we have again used the relation

exp ( - UK0)F0(J) = exp (-itKJF0(J)

and similarly exp (itKJF^J) = exp (ίtKJF^J) = i^/) exp (itKnl).
(3.7) shows that lim^+o,, exp (itK^ exp (—itK0)u exists and is equal

to F^W'^u whenever u belongs to P0F0(J)&, where J is any interval
with the four points a± and Φ(±^>) in its exterior. Since such u
forms a dense set in Poξ), the existence of W+ — W+(KU Ko) has been
proved. The existence of W'_ can be proved in the same way. Since
Ko and JKΊ can be exchanged, all these wave operators are complete.

Incidentally, it follows from (3.7) that W'+u = Fx{J)Wf

n+u for
uePQF0(J)&. But \\W'+u\\ = \\u\\ = \\W'n+u\\ since TF'+ and W'+n

are isometric on PQ^ Since FX{J) is a projection, we must have
W\u = T^;

%+u. Similar result holds for W'_. Thus

(3.8)

Note that this is true for sufficiently large n (depending on J ) .

IV. To prove the piece wise equality of W'± and W± or W+, let
Ik be one of the intervals associated with φe(M). We may assume
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that φ' > 0 on 7/c; we have to show that (W'± - W±)E0(Ik) = 0. For
this it suffices to show that (W'± - W±)E0(I) = 0 for any finite sub-
interval 7 of Ik; we may further assume that β± are exterior to 7
and (x±9 Φ(±<χ>) are exterior to the interval Φ(I).

We set J — φ{I) and apply the preceding results to J. Since
S = φ~\J) z> 7, we have E^I) ^ ^ ( S ) = F,(J) and hence by (3.8)

(3.9) (W'± - W'n±)E0(I) = 0

for sufficiently larg n.
We have similar results when φ(X) is replaced by the identity

function λ (since β± and ± co are exterior to 7). Then W'±f W'n± are
to be replaced respectively by W± = W±(HU Ho) and Wn± = W±(Hnl, Hn0).
Thus

(3.10) (W± - Wn±)E0(I) = 0

for sufficiently large n.

We may assume that n is so large that Ia( — n9ri). I can be
expressed as the union of a finite number of subintervals Δv (and a
finite number of points) in each of which ψn is monotonic. Then ψ^
is monotonic on Δ'p = ψn{Δp) since ψn is univalent on (—n,n). φoψn

is also monotonic on Δ'p since Φf > 0 on fn{Δr

v) = 4P; it is increasing
or decreasing with ψv Since ϋΓwi = (^o^Λ)(LΛ, ), J ϊ n i = ψn(Lnj) and
^ 1 = ^ 0 + ^ , 7 , 6 ^ , it follows from Theorem 1 that (W'n±-
Wn±)EQ(Δp) = 0; note that EO(ΔP) ^ EQ(ψ~\Δ'p)) = G0(Λ) where {G0~(λ)}
is the resolution of the identity for Ln0 — ψn(H0). Adding the results
obtained for p — 1, 2, , we have

(3.11) (W'n± - Wn±)E0(I) = 0 .

The desired result (W'± - W±)E0(I) - 0 follows from (3.9), (3.10) and
(3.11).

4* Applications* A number of sufficient conditions for the exis-
tence and completeness of wave operators can be deduced from Theorem
1 or 2. We shall mention only a few.

(a) Let neither HQ nor Hλ have the eigenvalue 0. If Hϊp=H^p+ V
with Ve T for some odd integer p, then W±{Φ(H^, Φ(H0)) exist and
are complete for any φe(M).

The proof follows by applying Theorem 2 with ψn — ψ (independ-
ent of n) where f(X) — X~p for λ Φ 0 and ^(0) = 0.

(b) In (a) we may allow even integers p if we assume in addition
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that HQ and Hλ are nonnegative.
In this case we need only to replace the above ψ by ψ(X) =

(sign λ) I X \~p for X Φ 0.

(c) Let (Hλ — ζ)" 1 — (Ho — ζ)" 1 G Γ for some nonreal complex num-
ber ζ. Then W+iΦiHJ, Φ(HO)) exist and are complete for any φe(M).

For the proof we first note that, if the assumption is true for
some ζ = ζ0, then it is true also for all nonreal ζ. This can be seen
first for I ζ — ζ01 < I Im ζ01 by considering the Neumann series for the
resolvents. The result can then be extended to all ζ of the half-plane
(Im ζ)(Im ζ0) > 0 by a standard procedure. The other half-plane can
be taken care of by considering the ad joints.

Set now ψn(X) = - i[(n - iX)-1 - (n + iX)~τ] = 2X(n2 + λ2)-1. It
follows from the above remark that ψn(H^ — ψn(HQ) e Γ. But it is
easy to see that {ψn} is an approximate univalent sequence of functions
of class (M). Hence the proposition follows by Theorem 2.

(b) It should be remarked that the existence of W±(Φ(H^)9 Φ(H0))
implies the existence of

( 4.1) s - lim UlUτ* = W±(H19 HQ) ,

where U3 — (Hό — i)(Hj + i)~x is the Cayley transform of H3. In fact,
Uj = exp (iφ(Hj)) where Φ(X) = — 2 arccot λ, and φ belongs to (Jkf),
being strictly increasing on (-co, +oo).

Appendix* We prove here some lemmas which are used in the
text.

LEMMA Al. Let f, g be complex-valued, continuous functions on
a closed interval [α, b]. Let f be of bounded variation with total

g(X)dX and let MG = max | G(X) |, Mf =
a

max|/(λ)|. Then f(X)g(X)dX (Mf + Vf)MG.

The proof is simple and will be omitted.

LEMMA A2. Let φ be a real-valued differentiate function on
[a, b] such that the derivative φ' is continuous, positive and of bounded
variation. We have for any t, s > 0

1 exp (itX — isφ(X))dX
1 Jα c(t + cs)

where c = min φ'(X) > 0 and Vφ, is the total variation of φf.
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Proof. The integral in question is equal to

i(t + sφ\X))"1(d/dX) exp (~ίtX - isφ(X))dX .

We apply Lemma Al to estimate this integral, setting f(X) =
i(t + sψ'ix))-1 and g(X) = (d/dX) exp ( —ΐίλ - ίsφ(X)). Then Mf = (t + cs)"1,
Λίff ^ 2 and it is easily seen that Vf ^ sVφ,/(t + cs)2 ̂  Fφ//c(ί + cs).
This proves the desired inequality.

LEMMA A3. Let φ be of class (M) with an associated system of
of intervals {Ik} (see definition in text). For a fixed k, let iv e L2(Ik).
If φ is increasing on Ik, we have

exp (-itX - isφ(X))w(X)dX •0 , S—> + oo.(Al) [ °° dt
Jo

r-t°° # ro

// φ is decreasing on Ik, (Al) is true if \ dt is relpaced by dt.
Jθ J-co

Proof. We may assume that w e L2(— co, + oo), on setting w(X) =
0 for λ outside Ik. Let if be the self ad joint operator Hu(X) = λu(λ)
acting in L2(— co, + oo), and let U be the unitary operator defined
by the Fourier transformation. The inner integral of (Al) represents
the function (C/exp (— isφ(H))w(t), and the left member of (Al) is
equal to || EUexp (— isφ(H))w ||2, where E is the projection of L2(— oo,
+ °o) onto the subspace consisting of all functions that vanish on
( - oo,0). Thus (Al) is equivalent to that EUexp ( - isφ{H))w -^ 0,
s—> + 00. Since EUexι>( — isφ(H)) is uniformly bounded with norm
S 1, it suffices to prove (Al) for all w belonging to a fundamental
subset of L2(Ik). Thus we may restrict ourselves to considering only
characteristic functions w of closed finite subintervals [α, b] of Ika

Assume that φ is increasing on Ik. If we denote by vs(t) the in-
ner integral of (Al) for the characteristic function w of [a, b] c J A ,
we have by Lemma A2

\Vs(t) I g 2(c + V^ so that ί+" I vs(t) \2dt ̂  4 ^ + Vφ/^ > 0
c(t + cs) Jo c3s

for s —> + 00, where c is the minimum of ^'(λ) on [α, b] and Vψ/ is the
total variation of φ' on [a, b]. A similar proof applies to the case ^ ' < 0
on Ik, with \ά°°dt replaced by JLoώί.

L E M M A A4. Le i φ9 ψ be of class (M). Then the composed func-
tion φoψ also belongs to (M), and there exists a system of intervals
associated with φoψ such that, in each interval of the system, both
ψ and φoψ are monotonic.
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Proof. Let {Ik} and {Jh} be systems of intervals associated with
Φ and ψ, respectively. For each h, ψ maps Jh one-to-one onto an
open interval J'h. Let Jkh be the inverse image under this map of
J'h Π hk. Obviously all Jkh are open and mutually disjoint, and cover
the whole interval (-co, + oo) except for a finite number of points.
It is easy to see that φoψ is monotonic and continuously differentiate
on each Jkh, with (φoψ)'(X) = Φ'(ψ(X))ψ'(λ). Furthermore, (φoψ)' is.
locally of bounded variation on Jkh, for the same is true with φ' and
ψf by assumption. The intervals JkJι form a system stated in the
lemma.

LEMMA A5. Let Φ be of class (M). For any selfadjoίnt operator
H, the absolutely continuous subspace for Φ(H) is identical with the
absolutely continuous subspace for H.

Proof. Let H=[ XdE(X), Φ(H) = 1 XdF(X) be the spectral repre-
sentations of the operators considered. We denote by E(S), F(S) the
spectral measures constructed from {E(X)}9 {F(X)}9 respectively. For
any Borel subsets S of the real line, we have F(S)^E(φ-1(S)). If | S | = 0
(we denote by \S\ the Lebesgue measure of S), then \φ~\S)\ = 0 by
the properties of φe(M), so that F(S)u — 0 if u is absolutely con-
tinuous with respect to H. On the other hand, F(φ(S)) = Eiφ-^ΦiS)) ^
E(S). If ISI = 0, we have |φ(S) \ = 0 so t h a t 11E(S)u\\^\\F(φ(S))u | | = 0-

if u is absolutely continuous with respect to Φ{H). This proves the
lemma.
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INFINITE SUMS IN ALGEBRAIC STRUCTURES

PAUL KATZ AND ERNST G. STRAUS

The purpose of this note is an outline of an algebraic
theory of summability in algebraic structures like abelian
groups, ordered abelian groups, modules, and rings. ' 'Infinite
sums" of elements of these structures will be defined by means
of homomorphisms satisfying some weak requirements of per-
manency which hold in all usual linear summability methods.
It will turn out that several elementary well known theorems
from the theory of infinite series, proved ordinarily by methods
of analysis, (i.e. by use of some concept of a limit) are con-
sequences of algebraic properties.

1* Definitions and existence theorems* Let G be an abelian
group with a ring T operating from the left; we assume, without loss
of generality, that T contains the integers. Denote by Gω the strong
direct sum of countably many copies of G, i.e., the set of all infinite
sequences s — {gdT^i = (gl9 #2, •••,&, β) of elements of G, with the
natural definitions of addition and of left multiplication by elements
of T. Let Γ be the weak direct sum of countably many copies of G,
i.e., the subgroup of Gω consisting of all infinite sequences with at
most a finite number of coordinates different from 0 (the neutral ele-
ment of G). For s — {glyg2y •••,&, * ) e G ω , denote by s' the element
(0, gl9 g2, , gi-if 9if •); s ' will be called the translate of s.

DEFINITION 1. The T-subgroup S of Gω will be called admissible if

( 1 ) ΓaS

and if

( 2 ) 8 e S if and only if sr e S, where s' is the translate of s.

Obviously, both Γ and Gω are admissible, and any subset K of Gω

can be completed in a unique way to a minimal admissible subgroup
containing K.

DEFINITION 2. Let S be admissible, and φ a Γ-homomorphism
S —> G with the following properties:

( 3 ) 9>(σ,0,0, . . . ) = σ , (geG)

and

( 4 ) φ(8) = φ ( 8 ' ) , ( s e S ) .
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Then φ will be called a summation method on G with domain S,
and we shall refer to it briefly as the summation method [S, φ].

Using the fact that S is admissible, and by properties (3) and (4)
of the homomorphism φ, it follows immediately that

<p(9u92, •• ,0n, 0, 0, •••) = Σ Λ

for any summation method [S, φ]. Therefore, the (unique) summation
method [Γ, φ\ shall be called trivial. Furthermore, by (3), φ is always
a T-homomorphism onto G.

We ask first the following question:

When does there exist a summation method containing in its
domain a given seGωl

Denote by s(n) for any integer n the nth translate of s, i.e.

s{0) = s

*<•> = ( s ^ ) ' = (0, ---,0,glf9i,-- ) for n > 0
n

s{n) = (flr_w+1, #_w+2, •) for n < 0 .

Let S be the minimal admissible subgroup of Gω containing s.
The elements of S have the form

( 5 ) Σ tk8^ + yf

where m, n are nonnegative integers, the tk are arbitrary elements of
T, and 7 is an element of Γ. This representation of an element of
S is not necessarily unique, and a T-homomorphism φ: S —>G has to
be independent of it. But, since all summation methods agree on Γ,
one has to answer first the question when an expression of type (5)
will be in Γ. We may evidently assume m = 0 (changing s if neces-
sary); hence we shall study linearly independent expressions of type

(6) ίi = Σ ^ > = 7 ί G Γ ( i = 0 , l , 2 , . . . )
* = 0

where tik e T. For each i, the coefficients tu appearing in (6) form a
left ideal Tt of T, and To c Tx e . . .

We now assume that T satisfies an ascending chain condition,
so that each T{ is finitely generated, and that there exists an index
m such that Tm = Tm+1 = . Let Vi{ (j = 1, , nt) be a system of
generators of T{ (i — 1, •••, m). Then a finite system of equations
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implies all equations of (6) in the sense that each li in (6) is a linear
combination over T of the l{ and their translates.

A summation method φ on G with domain S exists if and only if
φ(s) satisfies all the equations

where the right side is independent of φ, since on Γ the homomorphism
φ is the ordinary sum of finitely many elements of G. Once φ(s) is
determined it extends by linearity (over T) to all of S.

This may be generalized easily for any finite number of elements
sί9 s2f '"ySr. Assume a summation method φ defined for the minimal
admissible subgroup Γ1 containing s1# We can now obtain a finite
system of relations of the type (6'), with s replaced by sa, and Γ by
Γx. This leads to a system of necessary and sufficient conditions for
φ(s2) compatible with <p(Si), which is analogous to (6") (the right side
there being already defined by the previous step). Proceed by induction.

As a consequence we can prove the following existence theorem:

THEOREM 1. For any abelian group G Φ {0} with ring of oper-
ators T satisfying an ascending chain condition, there exists a non-
trivial summation method.

Proof. Let g e G be Φ 0. Define s = (gn)n=1 by

[g if n = 2k

g —
(0 otherwise .

Let S be the minimal admissible subgroup containing s, and g any
element of G such that tg — 0 implies tg — 0 for alH e T (for example
g — g). Then obviously the only relations of type (6) are of the form
ts — 0 (because tg = 0), so that (6") reduces to t<p(s) = 0 whenever
tg = 0. These conditions are satisfied by setting φ(s) — g.

REMARK 1. From the 2*° sequences in Gω whose elements are g
or 0 one can pick a subset R, of power 2**° so that any relation
Σi?=o Σ£=i tii^ϊ5) e Γ f o r elements ti3 of T and r^R implies ti5g — 0
for all ttf. Thus we can define 22>*0 different summation methods for
the least admissible S which contains R by setting φ(r) to be 0 or g
arbitrarily for each reR, and then extending φ to all of S by linearity
(over T).

On the other hand, in a nontrivial group no summation method
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can assign a sum to all the sequences of elements of the group.

THEOREM 2. Let G Φ 0 he a T-group and g{eGf (i = 1, , n)
such that Σ?=i 9% ^ 0 Then there exists no summation method de-
fined for

s = (βit Q*> * * *f 9n> 9i9 Qv ' 9 9nf 9u # )

Proof. s{n+1) - s = (&, g2, , gn, 0, 0, . .) would lead to

φίn+v _ s ) = ^ c + D ) _ ^( 8 ) = φ) - ^( S) = 0 = Ol + g2 + . . . + gn ,

a contradiction.

THEOREM 3. If φlf φ2, , φn are summation methods on G with
domain S, and e19 e2, , en are T-endomorphisms of G so that
eλ + e2+ + en = 1, then e1φ1 + e2φ2 + + enφn is a summation
method on G with domain S.

Proof. Let φ = exφx + e2φ2 + + enφn. Then φ is obviously a
T-homomorphism S —> G. Since ^(s ') = <Pi(s)9 the same is true for φ,
and for a # e G we have φ(g, 0, 0, •) — g.

THEOREM 4. Lei [S19 ^ J , [S2, ^2] &̂  two summation methods on
G which agree on Do = S1f) S2. Then there is a summation method
φ on G with domain S = S± + S2, such that φ \ S{ = φ{ for i = 1,2.

Proof. The group S is evidently admissible. Denote Di =
(Si\D0) U {0}, i — 1, 2. Then any s e S can be written (not necessarily
uniquely)

( 7 ) 8 = d0 + di + d%, di G A , ί = 0,1, 2 .

Define <p by

= φi(d0) +

This definition is independent of the representation (7), since if s =
rf0 + dx + d2 with J^ € Di9 then A = φ(d0 + dλ + d2) — φ(d0 + dλ + J2) =
<Pi(d0 — d0) + ^i(di — dx) + ^2(d2 — d2). The element d2 — d2 is in S2f

but since d2 — d2 = d0 — d0 + dx — d19 it is in Do, and therefore
< 2̂(d2 - d2) = φ2(d0 - do + d1- dx). Hence A = φx{dQ - d0) + φ^ - dx) +
^(do — d0 + d1 — d j = 0. A similar reasoning is needed in order to
show that φ(s + s) = φ{s) + ^(S") for s, se S, since the sum of two
representations of type (7) is generally not of the same type. Property
(3) of φ is obvious, since Γ c Do, and (4) follows easily, since (7)
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implies sf — d'o + d[ + d2, where d[e Dif i = 0,1, 2. Since the decom-
position (7) can be extended to ts, φ is a T-homomorphism, which
finishes the proof.

REMARK 2. On the other hand, if [S19 φλ] and [S2, φ2] are sum-
mation methods which do not agree on Sτ Π S2, then there need not
exist a summation method for the admissible subgroup S± + S2. Take
Si and φx as S and φ in Theorem 1, and define s2 = (g*)n=i by

# __ JO if n = 2k

\g otherwise .

Again, if g is any element of G such that tg = 0 implies 0 = 0 for
any ί e Γ , then φ2{s2) — Ίj is a valid definition that can be extended to
a summation method on the minimal admissible subgroup S2 containing
s2. But Si + S2 can not be the domain of any summation method,
since it contains the element {g,g,g, •••)> *n contradiction to the con-
struction in Theorem 2.

REMARK 3. Let {Goύ)cύeAi where A is a set of indices, be a family
of abelian groups with operators T; assume that Sa is an admissible
subgroup of G% and that φΛ is a summation method on Ga with domain
S* for each a e A. Consider the (weak or strong) direct sum G =
(B<*6A G<*- Then it is easily shown that S = © Λ 6 4 SΛ is admissible for
G, and that φ = (9>α)«64 is a summation method with domain S on G.
It is clear that [S, φ] is nontrivial if and only if at least one of the
summation methods [Sa, φa] is nontrivial.

2 Subgroups and ideals* To each subgroup H of G we asso-
ciate the (left) annihilator ideal TH of ϊ 7 consisting of all te T such
that tH = 0. If i? is a Γ-subgroup of G, then Γ^ is a two-sided
ideal, since 0 == tH(tH) = (tHt)H for every £# e Γ f f and ί e Γ. Clearly
Ϊ V = ΓH.

Let [S, 93] be a summation method on G, and let H be a Γ-sub-
group of G. Then p(S Π Hω) — Hx is a Γ-subgroup of G which contains
H. We call this group the [S, φ]-extension of H. It is easy to see
that if Ήλ is an [S, φ]-extension of H, then THχ — Ts; since Hx ZD H,
we obviously have THχczTH. On the other hand, THZD TH<» = ΓH.
From this, it follows:

THEOREM 5. If H is a maximal Tsubgroup for the annihilate"
ideal TH, then H has no proper \β, φ]-extensions.

THEOREM 6. Let Hi be a denumerable Tsubgroup of G, and
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H2 > Hx a T-subgroup of G of cardinality not greater than 2**° such
that TΉl — TB2. Then there is a summation method [S, φ] on G so
that H2 is the [S, φ]-extension of Hx.

Proof. Let {h19 h2, •••} be an enumeration of H19 and let M be

an increasing sequence of integers. Define sequences sM}i = (flrΛii)»=i by

hi Ίi n — 2P?, me M, p{ — i t h prime

0 otherwise .

It is easy to find (see Remark 1) a set 2JΪ of 2*° sequences M such
that any relation of the form Σr,i*rjs£!j e Γ implies t^s^lj = 0 for all
r and j , which in turn implies that trj e THχ. Now, let {h(^}aeA be a
minimal system of generators of H2, that is Σ<* tJ1^ — 0 (finite sum)
if and only if taha = 0 for all a. For any choice of the subsystem
Ma of 3JΪ the definition (sM,a) = h{j] for a e A yields a summation method
on the minimal admissible subgroup S of Gω containing all the sMcύ.

REMARK 4. The restrictions on the cardinalities of Hλ and H2

can be removed if we allow summation methods using, instead of Gω,
the strong direct sum Gξ, where ξ is an arbitrary infinite ordinal.

EXAMPLE 1. Let G be a finite abelian group, and T the ring of
integers modulo the minimal annihilator N of G. To each subgroup
H of G corresponds the ideal generated by its minimal annihilator.
Clearly, to every divisor D of N, there corresponds a unique maximal
subgroup HΏ of G with minimal annihilator D. Each subgroup of G
can be [S, ^-extended to exactly one HD.

EXAMPLE 2. If G is the additive group of a ring R considered
as the ring of operators T on G, then T-subgroups of G are the left
ideals of R. Given now a subset MaR, it determines a left annihi-
lator ideal TM of M. Any finitely generated left ideal containing M
whose annihilator is Tu can be represented as an [S, <p]-extension of
the left ideal generated by M.

3* Ordered groups* Let G be an abelian group with a partial
ordering relation ^ satisfying: (1) there is a semigroup HaG con-
taining the zero element and at least one element Φ 0, in which the
binary reflexive and transitive relation ^ is defined; (2) if h, hxe H
and h > 0, then h± + h > hλ\ (3) the archimedean axiom: if hlf h2 e H,
hλ>0 and h2>0, then there is a positive integer n such that nhλ>h2.

DEFINITION 3. Let G be a partially ordered abelian group, s =
(Ou 92, •••, gn9 - )£Gω will be called positive if gne H and gn*z0 for
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n — 1, 2, , and if gnQ > 0 for at least one index n0. A summation
method [S, φ] will be called positive if se S and s positive imply
φ(s) > 0.

The positive elements of Gω or of S evidently form a semigroup.
Furthermore, if s is positive, so is its translate s\

THEOREM 7. Le£ G be a partially ordered abelian group, and
[S, 9?] a positive summation method on G. If s — (glf g2, ,gn, ) e G
is such that gkn ^ g > 0 for infinitely many indices kn, then s g S.

Proof. The hypothesis implies that s is a positive element. Assume
seS and c φ ) = 7, then 0 > 7 = φ(s) = £>(&, &,,•••, 0*Λ, 0, 0, •) +
<p(0, , 0, srfcw, flrΛw+1, -.) = Σ?=i Λ + ^(°» * * *, 0, flrΛn, flrfcw+1, ) > Wflr for
each positive integer n. This contradicts the archimedean axiom.

COROLLARY 7.1. There is no positive nontrivial summation
method for the group of integers with their natural ordering.

COROLLARY 7.2. Let G be an abelian group with a linear
ordering, and [S, φ\ a positive summation method on G. If s —
(919 92, - > 9nf 0 e S is positive, then g.l.b gn = 0 and φ(s) ^

From the last part of Corollary 7.2 it follows that if the partial
sums of a "series" with positive terms are unbounded, then the
"series" does not belong to the domain of any positive summation
method.

THEOREM. 8. Let G be a linearly ordered abelian group. Then
there is a nontrivial positive summation method on G if and only
if G contains an infinite sequence glf g2, , of positive elements and
an element g, such that gx+ + gn ^ g for all n.

Proof. The necessity follows immediately from Corollary 7.2. To
prove sufficiency, set s — (sΛ)~=1 and define

gk for n - 2k

0 otherwise .

Then the least admissible S which contains s has elements which can
be expressed uniquely in the form

t = 7 + o(i)
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where the a{ are integers and 7 — (Ύlf Ύ2, , 7m, 0, 0, •) e Γ. t ^ 0
implies a{ ^ 0 and Σ i U ^ > — (ΣΓ=o <*;)#• Thus if we define φ(s) = g
we obtain

where φ(t) ̂  0 whenever έ ̂  0, and φ can be extended in an obvious
way to a summation method, and is nontrivial.

THEOREM 9. Let G be a linearly ordered abelίan group and
[S, φ] a positive summation mothod such that S contains all the
positive elements s = G/f)H=i e G for which the tζ partial sums" Σ?=i 9%
are bounded for all n. Then φ(s) — l.u.b.1^w<oo Σ?=i 9% for anV posi-
tive se S.

Proof. By Corollary 7.2 we know that φ(s) ^ g = l.u.b.nΣ?=iί/<
Assume <p(s) > ^. Then φ(0, , 0, gN, gN+1, •) ̂  ^(β) — ̂  > 0 for
any iSΓ, and ̂  + flr^+i + + gN+k < 9 for all k. It follows that there
is a greatest positive integer nλ such that (2^1)(^r1 + + gk) < g
for all Λ. Determine n2 as greatest positive integer such that
(2n2)(g2 + + gk) < g — nxg for all k, etc. This defines a nondecreas-
ing sequence of positive integers ns with ns—+oo. Consider the element
s = (%flri)Γ=ie ^ ω I* ^s obviously in S, since the partial sums Σί=i nd9j
are bounded for all r . On the other hand

9>(β) > %(?(«) - 9)

for all i , which is in contradiction with the archimedean property of
the order in G.

4* Limits*

DEFINITION 4. Let [S, φ] be a summation method on the abelian

group G. The sequence {g19 g2f •••,£», •••} of elements of G will be

called [S, φ]-convergent to g (notation: g = limw ^ βrn, or ^ —-^ g) if

(1) s = {gn - gn-X^zS, and (2) φ(s) = βf. (Here ^0 = 0.)

The following properties are immediate:

THEOREM 10. (1) The sequence {g,g>g, •••} is [S, <p]-convergent

to g for any [S, φ]. (2) If gn — g and gn ^ - > g then gn Λ- gn - ^

g + g. (3) l im w *, (-ffn) = -Hm [ ( S ^ flrw. (4) If g = Yimίs,φ] gn and

, hk are arbitrary elements ofG, then the sequence {hu h29

hkf g19 92, -'-,9n, •} is [S, φ]-convergent to g.

The last part of Theorem 10 implies that if lim[jSl9] gn = g, then
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{θk,Qk+i9 •••} is [S, ^-convergent to g, too.

An arbitrary subsequence of an [£, <p]-convergent sequence will
not always be [S, φ]-convergent to the same limit, even if it is [S, φ]-
convergent.

EXAMPLE 3. Let G be an abelian group with an element g of
order > 2. Define S to be the minimal admissible subgroup of G"
containing the element

8 = ( 2 0 , - 2 0 , 2 0 , - 2 β r , • • • ) •

Since s' + s = (2g, 0,0, •) we may define φ(s) = g. Then the sequence
{2#, 0, 2#, 0, •••} is [S, <p]-convergent to g, but the subsequence {2g,
20, •} is [S, φ]-convergent to 2g.

This example shows that it is not always possible to define a
topology in G by means of [S, φ]-convergent sequences.

THEOREM 11. Let G he an abelian group. A non-trivial sum-
mation method [S, φ] on Gy with the property that every subsequence
of any [S, φ]-convergent sequence is [S, φ]-convergent to the same
limit, exists if and only if G is infinite.

Proof. Let G be finite. If a sequence of elements of G is not
eventually constant, then two different elements must occur infinitely
often. Hence no summation method [S9 φ] with the required property
is possible.

Assume G infinite, and distinguish among the following cases:

(a) G contains an element g of infinite order. Let S be the
minimal admissible subgroup of Gω containing all the sequences (^0)Γ=i
such that Σ ^ ΐ converges p-adically to a rational integer n. Define
then

φ((nig)T=i) = ng .

(b) There exists an element g Φ 0 of G of finite order divisible
by arbitrarily high powers of some prime p. Let M be the subgroup
of the additive group of rationale, containing all the sequences (p~klnan)~=1

where an and kn are integers, such that ^in=iP~kln^n converges to a
number of the form p~ka, a and k integers. Let S be the minimal
admissible subgroup of Gω that contains the sequence (p"knang)^=u and
define φ((p~κang)~=1) = p~kag.

(c) All elements of G are finite but not of bounded order, and
no element of G is infinitely divisible (by powers of some prime).
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Define Gn — nlG; let S be the minimal admissible subgroup of Gω con-
sisting of the sequences (flfj»=i so that there exists a g in G with
0 - 0i - 02 - - 0 W e Gn for w = 1, 2, . Define φ((gn)ϊ=1) = 0.

(d) Aϊi elements of G have bounded order ^ m. Then G must
contain an infinite subgroup, all of whose elements have order p for
some fixed prime p. Otherwise there would be a least divisor d of
m for which there is an infinite subgroup Gx of G such that dG± = 0.
If d is composite, then for every prime divisor q of d the group qGx

is finite, and hence the kernel of the homomorphism G1—>qG1 is an
infinite group G2 with qG2 — 0, contrary to the hypothesis.

Now, an infinite abelian group all of whose elements are of order
p is the direct sum of infinitely many cyclic groups of order p, say
Zip) φ Zip) © . Let S be the minimal admissible subgroup of Gω

containing the sequences {gn)n=i for which there exists a g e G such
that g - Λ gn e Z& 0 Zi% 0 • , and define φ((gX^) - g.
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ON AN EXTENSION OF THE
PICARD-VESSIOT THEORY

H. F. KREIMER

In previous papers, the author has extended the Galois
correspondences between difiPerential Picard-Vessiot extensions
and algebraic matrix groups to Picard-Vessiot extensions of a
wider class of fields with operators, the so-called M-fields.
In this paper, M-field extensions which generalize extensions
by integrals and by exponentials of integrals are studied.

These fields are found to be simple field extensions and
their structure in the case that the extension is algebraic is
investigated. Under suitable restrictions on the fields of con-
stants, the M-Galois groups of these fields are shown to be
commutative. Criteria are established for such solution fields
to be P-V extensions of M-fields of difference and differential
type. An extension obtained by a finite sequence of algebraic
extensions, extensions by integrals, and extensions by expo-
nentials of integrals, is called a generalized Liouville extension.
It is demonstrated that if the connected component of the
identity element in the ikf-Galois group of a regular P-V
extension is a solvable group, then the P-V extension is a
generalized Liouville extension, and if a P-V extension is
contained in a generalized Liouville extension then the con-
nected component of the identity element in the ikf-Galois group
of the P-V extension is solvable.

1, Terminology and notation are briefly considered in § 2, and a
preliminary result on the constants of an algebraic M-extension of an
ΛΓ-field is obtained. The structure of solution fields analogous to
extensions by integrals and criteria for the existence of P-V exten-
sions of this type are determined in § 3, and a similar study of solu-
tion fields analogous to extensions by exponentials of integrals is made
in § 4. In § 5, generalized Liouville extensions are defined, and solva-
bility of the Galois group of a P - V extension is interpreted in terms
of imbedding the extension in a generalized Liouville extension.

2Φ M-rings* The terminology and notaion of this paper are the
same as in [6] and [7]. Let C be an associative, commutative co-
algebra with identity over a ring W, which is freely generated as a
"PΓ-module by a set M. If w —> w is a homomorphism of W into a
ring S, let Cs be the S-module obtained from the Tf-module C by
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•dissertation presented for the degree of Doctor of Philosophy in Yale University.
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inverse transfer of the basic ring to 5. If p is a homomorphism of
a ring R into the algebra (C8)* = Hom# (C8, S); then for every me M
there is a mapping a —> αp(m) of i? into S, which will also be denoted
by m, and the set of these mappings will be called an M-system of
mappings of R into S. Let m —• 2 % peM zmnpn 0 p, where me M,
zmnp £ ^ a n ^ m̂wί> — 0 except for a finite number of elements n and p
in M, be the coproduct mapping of C into C®wC; if a,beR and
me M, (a + b)m — am + δm and (ah)m — Σw, p eir £^(cm)(δp). An M-
ring is a ring together with an M-system of mappings of the ring
into itself. An M-ring of difference type is an M-ring in which the
M-system of mappings consists of homomorphisms, and an M-ring of
differential type is an M-ring in which the M-system of mappings
consists of the identity automorphism and higher derivations of rank
one or greater.

An element c of an M-ring R is a constant if (ca)p — c-ap for
every ae R. The following are equivalent:

( 1 ) c is a constant of R,
( 2 ) cp = c lp,
( 3 ) (ca)m — c(am) for every ae R and me M,
( 4 ) cm = c(lm) for every me M.

The constants of R form a subring of R which contains the identity
element of R and this subring will be denoted by Rc. Suppose h, de R
and d is a unit in R, then bd~xe Rc if, and only if, d(bm) = b(dm) for
every me M. Consequently, if R is a field, so is Rc.

(2.1) LEMMA. Let K be an M-field which is an M-extension of
an M-field L. If K is an algebraic extension of L, then Kc is an
algebraic extension of Lc.

Proof Suppose de Kc and f(x) = xh + ah_λx
h~x + + axx + a0.

is the irreducible, monic polonomial over L for which d is a root. If
ra e M, 0=(f(d))m=(fm)(d), where (fm)(x) = (lm)xh + (ah_1m)xh-1+ +
(axm)x + αom. But then (fm)(x) must be a multiple of f(x), thus
(fm){x) = (lm)f(x) and aam — (lm)aΛ for 0 ^ a ^ h — 1. Therefore,
aae Lc for 0 ^ a g fc — 1 and ώ is algebraic over Lc.

Let S'{M) be the free semi-group with identity generated by the
set M. Operations by elements of S'(M) on an M-ring i? are defined
as follows: the identity element of S'(M) operates on R as the identity
automorphism of R, and any other element of S'(M) operates on R
as the resultant of the operations on JB by its factors. If h is a
positive integer, rlf r2, , rh are h elements of R, and s19 s2, , sh

are h elements of S'(M); denote by W(rlf r2, , rh; slf s2, , sh) the
determinant:
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s, r,s2 . . . rλsh

Sχ ' 2"2 * ' 2"Λ

rhs2 rhsh

An M-field K which is an M-extension of an M-field L is a solu-
tion field over L if there exists a positive integer h and h elements
kl9 k2, , kh of K, such that K = Lζkly k2, - , khy and, for some
choice of h elements t1912, « , th in S'(M), W(kx, k2, «« , &A; ίx, t2, , ίA) =
ΫF0 ^ 0 while W^~1W(k1, k29 , ftΛ; ί̂  - , tΛ_19 tΛ+19 , th, t) e L for
H ί r ^ λ and t = 1 or t =tβm, me M and 1 ̂  β ^ h. The set of
elements k19 k2, , kh is a fundamental set for K over L. K is a
Picard-Vessiot extension of the M-field L if K is a solution field over
L and, additionally, iζ, = Lc and Lc is an algebraically closed field.

3* Extensions by integrals*

(3.1) THEOREM. Let K, L and Lo be M-fields such that K is
an M-extension of L and L is an M-extension of L09 and assume
there exists ke K such that km — (lm)k — ame Lo for every me M.

( i ) Lζky is a solution field over L.
( ii) If Kc~ L(βyc, then Lζky is invariant under M-automor-

phisms of K over L; and, if Lζkyc — Lc, then the M-Galois group
of Lζky over L is commutative.

(in) As abstract fields, Lζky is a simple extension of L by
adjunction of the element k.

(iv) Lζkyc — Lc if, and only if, L{k}c — Lc.
( v ) If k is algebraic over L but k& L and Lζkyc — (L0)c, L is

a field of characteristic p Φ 0 and k is a root of an irreducible
polynomial over L of the form xph + c^xv71"1 + + cxx

v + cox + b,
where h is a positive integer, cω e (L0)c for 0 gΞ a ^ h — 1, and bm —
(lm)be Lo for every me M.

(vi) If L is a field of characteristic zero and k is transcendental
over L then Lζkyc — Lc if, and only if there does not exist be L
such that bm — (lm)b — am for every me M.

(vii) If Lζky is a P~V extension, such an extension is unique.

Proof, (i) If Lζky — L, then Lζky is trivially a solution field
over L with fundamental set consisting of 1. Therefore, assume kg L.
If am = 0 for every me M, then ke Kc and Lζky is a solution field
over L with fundamental set consisting of k. If there exists ne M

1 ksuch that an Φ 0, then the determinant In kn = an Φ 0 while 1 and

k are solutions of the equations xm — ama~\xn) + ((lm) — (ln)ama~ι)x
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and (xn)m = (anm + Σ J α » X&w) + ((ln)m —
where Σ m = Σ«,reM zmqr((ln)q)ar, for every meM. It is then readily
established that Lζky is a solution field over L with fundamental set
consisting of 1 and k.

(ii) An ikf-isomorphism φ of Lζky over L into K is completely
determined by its action on k, and (kφ — k)m — {km)φ — km =
(αm + (lm)fc)<p — αm — (lm)fc = (lm)(kφ — &) for every meM. There-
fore kφ — k e Kc or kφ = k + c for some constant c. If Kc — Lζkyc,
then Lζky is invariant under M-automorphisms of K over L; and, if
IXJc^e — Lc, then the ikf-Galois group of L(ky over L is isomorphic to
a subgroup of the additive group of constants of L.

(iii) The subring L[k] QK of polynomials over L in k is an M-
stibring of K, and Lζky is simply the field of fractions of L[k] in K.
(See Corollary (4.2) of [6]).

(iv) If LKkyc — Lc then certainly L{k}c — Lc. If & is algebraic
over L, then Lζl^y = L[k] = L{k} and the converse is true. Let k be
transcendental over L. An element of Lζky may be represented as
the ratio of a polynomial f(k) e L[k] and a monic polynomial g{k) e L[k].
Suppose f(k) (g{k))~1eKc and is expressed in lowest terms, i.e., f(k)
and g{k) are relatively prime. Then g(k)-((f(k))m) — f(k)-({g(k))m)
for every meM; and, were (g(k))m Φ (lm) g(k) for some meM, then
/(fc).(^(fc))-1 - ((f(k))m - (lm)f(k)).((g(k))m - {lm)g{k)T\ This last is
impossible since the degree of (g(k))m — (lm)g(k) is less than the degree
of g(k). Thus (g(k))m = (lm)g(k) and (f(k))m = (lm)f(k) for every
meM, consequently /(&), #(&) e L{fc}c. Therefore, if L{k}c = Lc, then

(v) Suppose & is algebraic over L. If L[y] is the ring of poly-
nomials over L in an indeterminate y, determined as an ikf-extension
of L by setting ym = αm + (lm):?/ for every me M; there is a canonical
ikί-homomorphism ^ of L[y] over L into K such that 2/17 = k. Let /
be the kernel of η, and let f(y) be the monic polynomial which gener-
ates I, i.e., the minimal polynomial for k over L. Because I is an
M-ideal, (f(y))m must be a multiple of /(#) and computation shows
that (f(y))m= (lm)f{y)9 for every meM. Therefore f(y)eL[y]ΰ.
Suppose L</c>c = Lc and 0(2/) e L[y]c. Then #(&) G Lζkyc = Lc, say
gf(fc) = c, and fc is a root of g(y) — c. Therefore g(y) — c is a multiple
of /(^/) and, if g(y) has positive degree, it is not less than the degree
of f{y). Subsequently assume only that L[y]c contains polynomials of
positive degree, and f(y) is such a polynomial of least positive degree.
If d e Lc, (y + d)m = (lm)(y + d) + am and (f(y + d))m = (lm)f(y + d)
for every meM. Therefore f(y + d) and f(y + d) — /(̂ /) are elements
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of L[y]c. The degree of f(y + d) — f(y) is less than the degree of
f(y) and, therefore, cannot be positive. Thus f(y + d) — f(y) =
f(d) — /(0); but this identity can be valid only if f(y) is a polynomial
of degree not greater than one, or L is a field of characteristic p Φ 0
and f(y) — b + J,Lo ^aypOί>

f where h is a nonnegative integer and b
and Ca>, 0 ^ a ^ hf are elements of L. If p is the representation of
L[y] in (CzCy])* associated with the ikf-system of mappings on L[y]9

then yp = a + yΛp where a is that element of (CLίy])* such that a(m) =
αm for every me M. If L is a field of characteristic p Φ 0 and /(]/) =
6 + Σά=oc*y*", then /(?/) lp = (f(y)Y = 6P + Σ£=o <£<*** + ΣiU»**•<£.
Therefore cΛ lp = cp and c , e L c for O^a^h and, if ^ ( L o ) , for
0 S a S hy then 6m — (lm)δ = — Σ L o (cpapOi)(m)e LQ for every me M.
The assertion in (v) is now immediate.

(vi) Suppose L is a field of characteristic zero and k is transcen-
dental over L. If L<7c)>c ^ Lc, then L{k}c Φ Lc and there is a poly-
nomial over L in & of positive degree which belongs to L{k]c. Let
f(k) be such a polynomial of least degree. By the argument in part
(v), the degree of f(k) is one. Then f(k) generates a prime M-ideal
1 in L{k) and L{k}/I is Λf-isomorphic to L. If b is the image of k + 7
under such an M-isomorphism, then bm — (lm)δ = αm for every me M.
Conversely, if there exists be L such that bm — (lm)b ~ am for every
me M, then k — be L{k}c and L<&>c =£ Lc.

(vii) Let L<(/c)> be a P - F extension of L and let LζkfS) be a second
P - F extension of L such that A'm — (lm)kr = am for every me M.
If fc and /c' are transcendental over L, there is an isomorphism ψ of
Lζky over L onto Lζk'y such that ^ = A:' and φ is an M-isomorphism.
Suppose k is algebraic over L and either &' is transcendental over L
or algebraic over L but of degree over L not less than the algebraic
degree of k over L. If /(#) is the monic minimal polynomial for k
over L, then /(&') e L(kryc = Lc by the argument in part (v); say
f{k) — d. Then k! is a root of f(x) — cZ and fc' is algebraic over L
with the same degree over L as k. If the degree of k over L is one,
then Lζky — L ~ L(kfS}. If the degree of k over L is greater than
one, then L is a field of characteristic p Φ 0 and f(x) — x?71 +
ch^xvlι~x + +c±xp + cQx + 6 where /& is a positive integer and ca e Lc

for 0 ^ α ^ fe — 1. Let c be a root in the algebraically closed field
Lc of x*h + c^x?71-1 + + cxx

p + cox + d. Then /(&' + c) = /(&')
— d — 0 and there is an isomorphism 9? of L<(&)> over L onto LζkfS}
such that kφ ~ kr + 0. φ is an ikί-isomorphism.

(3.2) COROLLARY. Let L be an M-field of characteristic zero
such that Le is algebraically closed, and let am, me M, be elements
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of L. There exists a P-V extension Lζky of L such that km—
(lm)k = am for every meM if, and only if (1) there exists an element
be L such that bm — (lm)b = am for every meM, in which case
Lζky = L, or (2) if L[y] is the ring of polynomials over L in an
indeterminate y, determined as an M-extension of L by setting ym =
am + (lm)y for meM, and L(y) is the field of fractions of L[y],
then there is a structure of an M-field on L(y) such that L(y) is an
M-extension of L[y], in which case Lζky and L(y) are M-isomorphic.

Proof. If there exists b e L such that bm — (lm)b = am for every
me M, set k = b to obtain a trivial P-V extension of L. If there
does not exist be L such that bm — (lm)b = am for every meM, but
there is a structure of an M-field on L(y) such that L(y) is an M-
extension of L[y]; then L(y)c = Lc by part (vi) of Theorem (3.1) and,
setting k~y, Lζky — L(y) is a P-V extension of L. The converse
is immediate from parts (iii) and (v) of Theorem (3.1).

If L is an M-field of differential type and of characteristic zero
such that Lc is algebraically closed, Corollary (3.2) may be applied to
establish the existence of P - V extensions by adjunction of integrals.

(3.3) COROLLARY. Let L be an M-field of difference type such
that Lc is algebraically closed, and let am, meM, be elements of L.
There exists a P-V extension Lζky of L such that km — k — am for
every me M if, and only if, the characteristic is 0 or the following
condition is fulfilled when the characteristic is p Φ 0: that there do
not exist a nonnegative integer h, C&e Lc for 0 ^ a ^ h, and be L,
such that bm — b + Σϊ=ocΛam)p (* = dme Lc for every meM, where
{dm I m e M) is a finite set not equal to {0}.

Proof. Let L[y] and L(y) be as in Corollary (3.2). The M-system
of mappings on L[y] consists of isomorphisms and these can be extended
to L(y), so that L(y) is an M-field which is an M-extension of L[y].
Because of Corollary (3.2), only the case when L is a field of charac-
teristic p Φ 0 need be considered. If L[y]c — Lc, then L(y)c = Lΰ by
part (iv) of Theorem (3.1) and, setting y = k, Lζky — L(y) is the
desired P - V extension of L. If there exists an irreducible polynomial
in L[y]c of positive degree, this polynomial generates a proper prime
M-ideal I in L[y], The M-field L[y)/I is an algebraic extension of L
and (L[y]/I)c = Lc by Lemma (1.1), since Lc is algebraically closed.
Setting k = y + I, L<&> = L[y]/I is the desired P-V extension of L.
Therefore, assume that there exist polynomials of positive degree in
L[y\c, let f(y) be such a polynomial of least positive degree, but
assume f{y) is reducible. Analyzing f(y) as in the proof of part (v)
of Theorem (3.1), f(y) must have the form f(y) = V + Σί=o c'ay** where
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i is a nonnegative integer and cf

a e Lc for 0 :§ a S i Let g(y) be an
irreducible monic polynomial which divides f(y), and let ζ be a root
of g(y) in a splitting field for f(y) over L. The roots of f(y) are the
elements ζ + e where e is a root of /(#) — br and lies in the algebrai-
cally closed field Lc. The roots of g(y) are those elements ζ + e where
^ is a root of #(ζ + y). Let e and e' be roots of #(ζ + y); there is an
automorphism of the splitting field of f(y) over L which maps ζ to
ζ + e' and its inverse maps ζ + β t o ζ + β — β'. Then #(ζ + β — e') = 0,
e — e' is again a root of #(ζ + y), and the roots of g(ζ + #) form an
additive subgroup of Lc. Therefore g(ζ + y) must be a ^-polynomial
over Lc, say g(ζ + y) — Σ*-=o c«2/p" where ϋ is a nonnegative integer
and cΛ e Lc for 0 ^ a ^ fc; and (/(?/) = g(ζ + (y — ζ)) must have the
form g(y) ~ b + Σ»=o cc*yp<ύ' Any irreducible monic polynomial which
divides f(y) will have the form g(y + e) where e is a root in Lc of
f(y) - V. If me M; (f(y))m = /(y), (flr(y))m = flr(y + e J - g(y) + dn,
and bm + ΣLoc«(^m)p£" = δ + ^ w , where dm = g(ej — beLc and ew is
a root of /(T/) — b\ Since 0(2/) is a proper factor of /(#), g(y) g L[?/]c

and dm ^ 0 for some me M.

Conversely, assume there exist a nonnegative integer h, c* e Lc for
Q ^ a ^ h, and 6 e L, such that bm — b + Σ*=o cΛ(αTO)pα = dmeLc for
every meM, where { d m | m e M } is a finite set not equal to {0}. Let
E be the additive subgroup of Lc generated by {dm | m e M}, let g(y) =
b + ΣiLoW", let f(y) = n.e*(v+j), and let f(y) = f(g(y)). f(y)
will be a p-polynomial over Lc, i.e. /(T/) will be a finite linear combina-
tion over Le of monomials ypβ, β a nonnegative integer; f(y) will have
the form f(y) = bf + Σ^=o ̂ l?/pQ5 where i is a nonnegative integer and
cf

ae Lΰ for 0 ^ α ^ i; and /(i/)e L[y]e. If the desired P - F extension
Lζky existed, f(k) would be an element of LζUye — Lc. If c is a root
in Lc of f(y) - bf + f(k), then f(k + c) = 0 and some factor #(fc + c) +
β = 0. But then 0 = (g(k + c) + e)m = g(k + c) + e + dm — dm for
every meM, contrary to the assumption that {dm | m e M] Φ {0}.

(3.4) COROLLARY. Let L be an M-field such that the M-system
of mappings on L consists of the identity automorphism m0 and
infinite higher derivations and Lc is algebraically closed. If am, meM
and m Φ m0, are elements of L, there exists a P-V extension of
differential type Lζky of L such that km = am for every me M,mΦ m0.

Proof. Let amo = 0, and let L[y] and L(y) be as in Corollary
(3.2). The M-system of mappings on L[y] consists of the identity
automorphism m0 and infinite higher derivations, and these can be
extended to L(y) so that L(y) is an M-field of differential type which
is an M-extension of L[y]. By repetition of the argument in the
beginning of the proof of Corollary (3.3), only the case when L is a
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field of characteristic p Φ 0 and L[y]c contains polynomials of positive
degree need be considered. Let f(y) e L[y]c be a polynomial of positive
degree, and let g(y) be an irreducible factor of f(y), say f(y) =
Q(y)'(g(y))h'pl where h is a positive integer not divisible by p, i is a
nonnegative integer, and q(y) is not divisible by g(y). Let {D1,D2,D3, •}
be an infinite higher derivation on L[y] contained in the Λf-system of
mappings on L[y]. If Do = m0, (g(y))D0 = g(y). Let i be a positive
integer and assume that (g(y))Da is a multiple of g(y) for 0 ^ # < i .
Observe that {g(y))v%Da = 0 for every positive integer α which is not
divisible by pι and {g{y))Ί>τDoύ.pi = ((g(y))Da)

p% for every nonnegative
integer a. Then 0 = (f(y))Dd.pi which is equal to a sum of terms
divisible by (g(y))κ'pi plus the term hq(y)'(g(y)Yh-1^i'((g(y))Djy\ and
(g(y))Dj must be divisible by g(y). Consequently g(y) generates a pro-
per prime M-ideal I in L[y], L[y]/I is an algebraic extension of L
and, setting k — y + I, Lζky = L[y]/I is the desired P- V extension
of L.

4* Extensions by exponentials of integrals*

(4.1) THEOREM. Let K, L, and Lo be M-fields such that K is an
M-extension of L and L is an M-extension of LQ, and assume there
exists a nonzero ke K such that km = amk, where am e Lo, for every
me M.

( i) L<#> is a solution field over L.
(ii) If Ke = Lζkyc, then Lζtiy is invariant under M-automor-

phisms of K over L; and, if Lζkye — Lc, then the M-Galois group
of Lζky over L is commutative.

(iii) As abstract fields, Lζky is a simple extension of L by
adjunction of the element k.

(iv) Lζk>e = Lc if, and only if, L{k}c = Lc.
(v) If k is algebraic over L and L(kye = Lc, then k is a root

of an irreducible polynomial over L of the form xh + b, where h is
a positive integer, b Φ 0 and (6m)&~1 e Lo for every me M.

(vi) If Lζky is a P-V extension, such an extension is unique.

Proof. ( i ) It is easily verified that Lζky is a solution field over
L with fundamental set consisting of k.

(ii) An M-isomorphism φ of Lζky into K is completely deter-
mined by its action on k, and k{{kφ)m) = k{(km)φ) = k((ajc)φ) —
(amk)-(kφ) — (kφ)-(km) for every meM. Therefore {kφ)k~ιeKc or
kφ = ck for some nonzero constant c. If Kc — Lζk!yc, then Lζky is
invariant under M-automorphisms of K over L; and, if L<A>0 = Lc,
then the M-Galois group of Lζky over L is isomorphic to a subgroup
of the multiplicative group of nonzero constants of L.
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(iii) The argument is the same as in part (iii) of Theorem (3.1).
(iv) If Lζkye = Lc then certainly L{k}c = Lc. If fc is algebraic

over L, then Lζky = L[k] = L{k} and the converse is true. Let k be
transcendental over L. An element of Lζky may be represented as
the ratio of a polynomial f(k) e L[fc] and a nonzero polynomial <7(fc) e L[k]
with either /(0) = 1 or g(0) = 1. Suppose /(fcH^fc))"1 e ifc and is
expressed in lowest terms. Then g(k) ({f(k))m) = f(k) ((g(k))m) for
every meM; and, were (g(k))m Φ (lm)g(k) for some meM, then
/(fcH^fc))-1 = ((/(fc))m - (lm)/(fc)) ((#(fc))m - (lmMfc))-1. This last is
impossible, since it follows from the equations /(0) ((g(0))m — (lm)#(0)) =
<7(0) ((/(0))m - (im)/(0)) = 0 that (/(fc))m - (lm)/(fc) and (</(fc))m -
(lm)g(k) are both divisible by fc. Thus (g(k))m — (lm)g{k) and (f(k))m —
(lm)f(k) for every meM, consequently f(k), g(k)e L{k}c. Therefore,
if L{k}c = Lc then

( v ) Suppose A; is algebraic over L. If I/[τ/] is the ring of poly-
nomials over L in an indeterminate y, determined as an M-extension
of L by setting ym = amy for every meM; there is a canonical Af-
homomorphism 7] of L[τ/] over L into X such that y^ = fc. Let J be
the kernel of jy. Since k Φ 0, i/?/. Let /(#) be a polynomial such
that f(y) generates I and /(0) = 1. Because I is an Λf-ideal, (f{y))m
must be a multiple of f(y) and computation shows that (f(y))m =
(lm)f(y), for every meM. Therefore /(#) e L[τ/]c. Suppose L<(A;X = L c

and g(y) 6 L[i/]β. Then gf(fc) e L<fc>c = Lc, say g{k) = c, and fc is a
root of ^(T/) — c. Therefore g(y) — c is a multiple of /(T/) and if #(#)
has positive degree, it is not less than the degree of f(y). Subsequently
assume only that L[y]c contains polynomials of positive degree, and
f(y) is such a polynomial of least positive degree. If b^y71 is the
highest term of f(y) and meM, then the identity (f(y))m = (lm)f(y)
implies {b~Ύyh)m = {lm)b~ιyh. Therefore b~λyh and f(y) — δ"1^^ are ele-
ments of L[^/]c. The degree of f(y) — b~λyh is less than the degree of
f(y) and, therefore, cannot be positive. Thus f(y) — b~τyh — /(0) =
ce Lc or f(y) = b~λyh + c. Since ZrV e ^Mo, ί>(^m) = i/Λ(6m) or
(6m)6"1 = (yhm)y~h e LQ for every meM. The assertion in (v) is now
immediate.

(vi) Let L<#> be a P - 7 extension of L and let Lζkfy be a second
P-Fextension of L such that kf Φ 0 and &'m = αmfc' for every meM.
If A; and fc' are transcendental over L, there is an isomorphism φ of
Lζky over L onto Lζk'y such that fc^ = fc' and φ is an ikf-isomorphism.
Suppose fc is algebraic over L and either fc' is transcendental over L
or algebraic over L but of degree over L not less than the algebraic
degree of fc over L. lί xh + b is the minimal polynomial for fc over
L, then b~\kr)h + 1 e L<(fc'X = ί/c by the argument in part (v); say



200 H. F. KREIMER

b~\k')h + l = d. Then k' is a root of xh + 6(1 - d) and d Φ 1. Let
c be a root in the algebraically closed field Lc of xh — (1 — d)~ι. Then
{ckf)h + 6 = 0 and there is an isomorphism φ of Lζky over L onto

such that A;*5" = ckf. φ is an M-isomorphism.

(4.2) COROLLARY. Let L be an M-field of difference type such
that Lc is algebraically closed, and let am, me M, be elements of L.
There exists a P~V extension Lζky of L such that k Φ 0 and km ~
amk for every me M, if and only if am Φ 0 for every me M and
there do not exist positive integers h and i and a nonzero be L, such
that bm = cm(am)hb for every me M, where cm is an ΐth root of unity
and some cm Φ 1.

Proof. If the desired P - V extension Lζtiy exists and me M, m
is an isomorphism on Lζky. Since k Φ 0, km — amk Φ 0 and am Φ 0.
Therefore assume am Φ 0 for every me M. Let L[y] be the ring of
polynomials over L in an indeterminate y, determined as an M-exten-
sion of L by setting ym = amy for every me M, and let L(y) be the
field of fractions of L[y\. The ikf-system of mappings on L[y] consists
of isomorphisms and these can be extended to L{y), so that L(y) is
an M-field which is an Λf-extension of L[y]. If L[y]c = Lc, then
L(y)β — Lc by part (iv) of Theorem (4.1) and, setting k — y, Lζtiy =
L(y) is the desired P-V extension of L. Suppose f(y)Φy is an
irreducible polynomial in L[τ/]c of positive degree. f(y) generates a
proper prime M-ideal I in L[y\, L[y]/I is an algebraic extension of L,
7/ ί I and, setting k — y + I, L<fc> = L[y]/I is the desired P - F exten-
sion of L. Consequently, assume that there exist polynomials of
positive degree in L[y]c, let f(y) be such a polynomial of least positive
degree, f{y) may be chosen so that /(0) ^ 0, but assume f{y) is re-
ducible. Analyzing f(y) as in the proof of part (v) of Theorem (4.1),
f(y) must have the form {b')~ιyι + c' where i is a positive integer.
If g(y) is an irreducible factor of f(y) such that #(0) = 1, then g(y)
has the form g(y) = b~ιyh + 1 where h is a positive integer, and all
other such factors of f(y) have the form g(dy) where d is an ith
root of unity in Lc. If meM; (f(y))m = /(#), (g(y))m = g{dmy) =
c^b^y*1 + 1 and &m — cm{am)hb, where cm = (dm)~λ and dw is an ίth
root of unity. Since g(y) is a proper factor of f(y), g(y) £ L[y]c and
cm Φ 1 for some meM.

Conversely, assume there exist positive integers h and i and a
nonzero b e L, such that bm = cm(am)hb for every meM, where cm is
an ΐth root of unity and some cm Φ 1. Let 0(2/) = ί r V + 1, and let
f{y) be the product of the distinct polynomials g(dy) where d is an
h-iih root of unity. f{y) will have the form (b'^y^ + l and f(y) e L[y]c.
If the desired P~V extension iXky existed, f(k) Φ 1 would be an
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element of L<fc>c = Lc. If c is a root in Lc of yh'{ - (1 - f{k))~\
then f(ck) = 0 and some factor g(cdk) — 0. But then 0 = (g(cdk))m =
Cmlb~ι(cdk)h + 1 = 1 — c"1 for every me M, contrary to the assumption
that some cmφ 1.

(4.3) COROLLARY. Let L be an M-field of differential type and
of characteristic zero such that Le is algebraically closed. If mQe M
is the identity automorphism on L and am, me M and m Φ m0, are
elements of L, there exists a P-V extension of differential type Lζky
of L such that k Φ 0 and km = amk for every me M, m Φ m0.

Proof. Let amo = 1, and let L[y] and L(y) be defined as in the
proof of Corollary (4.2). The M-system of mappings on L[y] consists
of the identity automorphism m0 and higher derivations, and these
can be extended to L(y) so that L(y) is an M-field of differential type
which is an M-extension of L[y]. By repetition of the argument in
the beginning of the proof of Corollary (4.2), only the case when
L[y]c contains polynomials of positive degree need be considered. Let
f(y) e L[y]c be a polynomial of positive degree, choose f(y) so that
/(0) Φ 0, and let g(y) be an irreducible factor of f{y), say f(y) —
Q(y)'(9(y))h where h is a positive integer and q(y) is not divisible by
g(y). Let {Da} be a higher derivation on L[y] contained in the M-
system of mappings on L[y]. If Do — m0, (g(y))DQ = g(y). Let i be a
positive integer not greater than the rank of {£>*} and assume that
(g{y))D» is a multiple of g(y) for 0 ^ a < i. Then 0 = {f(y))Di

which is equal to a sum of terms divisible by (g(y))h plus the term
hq(y)'(g(y))h~κ((g(y))Di)f and {g(y))Di must be divisible by g(y). Con-
sequently g(y) generates a proper prime M-ideal I in L[y], L[y]/I is
an algebraic extension of L,y$ I and, setting k = y + /, L(β} =
L[y]/I is the desired P-V extension of L.

(4.4) COROLLARY. Let L be an M-field, such that the M-system
of mappings on L consists of the identity automorphism m0 and
infinite higher derivations and Lc is algebraically closed. If amf

me M and m Φ m0, are elements of L, there exists a P-V extension
of differential type Lζky of L such that k Φ 0 and km = amk for
every me M, m Φ m0.

Proof. Because of Corollary (4.3), only the case where L is a
field of characteristic p Φ 0 need be considered. Let amo — 1, and let
L[y] and L(y) be defined as in the proof of Corollary (4.2). The argu-
ment is then analogous to the proof of Corollary (3.4).
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5* Generalized Liouville extensions*

(5.1) DEFINITION. An M-field K which is an M-extension of an
M-field L is a generalized Liouville extension of L if there exists a
positive integer i and i + 1 intermediate M-subfields of K, L —
Lo S Lλ S Q L{ — Kf such that for each integer α, 1 ^ α :g i,
there exists ke La such that LΛ — La_xζky and

(1) LΛ is an algebraic extension of LΛ_χ, or
( 2 ) &m — (lm)k = α m e Lα_x for every me M, or
( 3 ) /cm = αm& where αme La_x for every me M.
If L is an M-subfield of an ikf-field K, let AK(L) denote the M-

Galois group of K over L. If G is a subgroup of AK(L), let /(G)
denote the set of all elements of K left fixed by the automorphisms in
G; I(G) is an Λf-subfield of if and L g I(G) S K. Suppose K is a
solution field over an M-field L such that Kc = Lc and &!, Λ2, , ik̂
is a fundamental set for i ί over L. If φ e A ^ L ) , then kaφ —
Σβ=i c«β^β, 1 ^ α ^ i, where {caβ)1^cύ}β^j is a matrix over Kc — Lc, by
Theorem (3.2) of [7]. The structure of AK(L) may be determined
analogously to the analysis of the differential Galois group presented
in Kaplansky's An Introduction to Differential Algebra*. The results
needed in the sequel will be summarized here. AK(L) is an algebraic
matrix group over Lc and the algebraic subgroups of AK(L) are the
subgroups Aκ{Lr) where Lr is an intermediate ikf-subfield of K, L S=
V £ K. If H is the connected component of the identity element of
AK(L), then H is an algebraic subgroup of finite index in AK(L).
Therefore H = AK(L) where L — I(H) and L is a finite dimensional
algebraic extension of I(AK(L)). Moreover, L is algebraically closed in
K. Indeed, if k e K is algebraic over L, then Aκ{Lζky) is an algebraic
subgroup of finite index in H since the left cosets of H mod Aκ(L(ky)
are in one-to-one correspondence with the distinct images of k under
the automorphisms in H. Because H is connected, Aκ{L(ky) — H and
ke L.

(5.2) THEOREM. Let K be a P-V extension of an M-field L.
If the connected component of the identity element in AK(L) is a
solvable group, then K is a generalized Liouville extension of I(AK(L)).

Proof. Let H be the connected component of the identity element
in AK(L) and let L — I(H). L is a finite dimensional algebraic exten-
sion of I{AK{L)). Since H is a connected, solvable algebraic matrix
group over the algebraically closed field Lc, a fundamental set ku k2, ,
kj for K over L may be chosen so that the M-automorphisms of H
are represented by triangular matrices, say kaφ — YJβ=a caβ(φ)'kβ for
φe H and 1 ^ a ^ j , where the coefficients caβ{φ) e Lc. It me M and
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", then ((kύm)kj1)φ = ((kjφ)m)(kjφy1 = ((Cjj(φ) (kjm))(cjj(φ)'kj)~1 =
(k^kj1 and (kjm)kj1e L. Thus kάm = amkj where ameL for every
me M. Ii me M and φe H, let K(m) — {kjqλ)m — (Xm)kjqλ and

for a ^ /3 ̂  j 1 — 1 and 1 ^ α ^ j" — 1; then

(K(m))φ =

Σ
β

By Theorem (3.2) of [7], K is finitely generated as an abstract field
over L 2 L; therefore every intermediate subfield is also finitely gener-
ated over L. Consequently, if V is the M-subfield of K generated
over L by the K(m), me M and 1 ^ a ^ j ~ 1, then there are finitely
many me M such that U is generated as an M-field over L by the
kr

ω(m) for these m and 1 ^ α: g j - 1. By induction on j , it may be
assumed that V is a generalized Liouville extension of I(AK(L)). Since
(kcckj^m — (lm)/^/ 1 = A^(m)e L' for every me M and 1 ^ ^ ^ i — 1
while kάm = α m ^ where α m e L g L ' for every me M, it follows that
iΓ is a generalized Liouville extension of I(Ak(L)).

In connection with this theorem, it should be noted that I(AK(L)) —
L if K is a regular field extention of L. If if is an ikf-field of dif-
ferential type, then I(AK{L)) ~ L provided only that if is a separable
field extension of L.

(5.3) LEMMA. Let Kf, K, V and L be M-fields such that Kf is
an M-extensίon of L, K and U are M-subfields of Kr and contain
L, and Kr is generated by its subfields K and V'.

(i) If K is a solution field over L, Kr is a solution field over
V and a fundamental set for K over L is a fundamental set for
K' over U.

(ii) If K and I! are linearly disjoint over L, there is a canonical
isomorphism of AK(L) into AK,{U). Moreover, if K is a solution
field over L, Kc — Lc, K'c = Un and AK(L) and Aκ,{Lf) are represented
by matrices with respect to the same fundamental set for K over L
and Kf over U\ then this canonical isomorphism is the identity map
on matrices.

Proof (i) The verification is immediate from the definition of
solution field.

(ii) If K and V are linearly disjoint over L, automorphisms of
K over L extend uniquely to automorphisms of K' over 1/ and M-
automorphisms of K over L extend to M-automorphisms of Kr over
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U, yielding an isomorphism of Ak{L) into AK,(L'). The remaining
assertion is immediate.

The converse of theorem (5.2) is a consequence of

(5.4) THEOREM. If Kf is a generalized Liouville extension of
an M-field L and K is an intermediate M-subfield of Kf such that
K is a P-V extension of L, then the connected component of the
identity element in AK(L) is a solvable group.

Proof. By Corollary (2.3) of [7], K and K[ are linearly disjoint
over Kc = Lc, whence K and L(K'C) are linearly disjoint over L. By
Lemma (5.3), K(K'C) is a solution field over L(K'); and there is a
matrix representation for the algebraic group AK(L) over Lcy a matrix
representation for the algebraic group Aκ(K')(L(Kc)) over K'c 3 Lc, and
a canonical isomorphism of AK{L) into Aκ{K'e)(L(Kl)) which is the identity
map on matrices. If H is the connected component of the identity
element in AK(L), then H is an irreducible component of AK(L)
and its image in Aκ{κf){L(K'c)) is irreducible, hence connected, since
Lc is algebraically closed. Therefore H is mapped into the connected
component of the identity element in Aκ(κ>e)(L(K!))f and it will suffice
to prove the theorem under the assumptions that K is merely a solu-
tion field over L but K'c ~ Lc.

Let L = Lo g Lt S S L = Kf be as in definition (5.1), and let
k e Lλ be such that Lλ — L<(ky and

( 1 ) L2 is an algebraic extension of L, or
( 2) km — (lm)fc = ame L for every me M, or
( 3 ) km — amk where ame L, for every me M.
Be induction on i, it may be assumed that the connected component

of the identity element in Aκ{ky(L^) is solvable. Let L — I(H), where
again H denotes the connected component of the identity element in
AK(L). K is a regular extension of L, since L is algebraically closed
in K and L is the fixed field of a group of automorphisms of K whence
K is a separable extension of L. If L1 is an algebraic extension of
L, then Lζti} is an algebraic extension of L and K and Lζky are
linearly disjoint over L. The canonical isomorphism of H = AK(L) into
Aκ<ky(Lζky) given by lemma (5.3) must map H into the connected com-
ponent of the identity element in Aκ<k>(L^f whence H is solvable.

Assume L1 is not an algebraic extension of L. If /c is transcen-
dental over K, then Lγ = L(fc) and iΓ<fc> = ΐΓ(Jfc) by Theorems (3.1)
and (4.1). K and L1 are linearly disjoint over L, so again there is a
canonical isomorphism of H into the connected component of the iden-
tity element in Aκ{ky{L^) and H is solvable. Suppose k is algebraic
over K. If fcm = ajz where ame L for every m e M , then fcfe + b — 0
where A is a positive integer, 6 e K and again (6m)6~1 e L for every
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me M. If km — (lm)fe = ame L for every me M, then L is a field
of characteristic p Φ 0 and fcpΛ + c^Jc^"1 + + cjfc* + cQk + 6 = 0
where h is a positive integer, cae Kc — Lc for O ^ α ^ f c — 1, be K
and again 6m — (lm)be L for every me M. In either case L< )̂> is
invariant under the automorphisms in AK(L) and AL<b>(L) is commuta-
tive, by Theorems (3.1) and (4.1). Therefore, Aκ(L^by) is an invariant
subgroup of AK(L) and the factor group, which is isomorphic to a
subgroup of AL<b>(L), is commutative. Lx is an algebraic extension of
Lζby and, by a preceding argument, the connected component of the
identity element in Aκ(Lζby) is canonically isomorphic to a subgroup
of the connected component of the identity element in Aκ{ky{L^) and is
solvable. Therefore H, the connected component of the identity ele-
ment in AK(L), is solvable by Lemma (4.9) of [3].
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ON A LINEAR FORM WHOSE DISTRIBUTION IS
IDENTICAL WITH THAT OF A MONOMIAL

R. G. LAHA AND E. LUKACS

Several authors studied identically distributed linear forms
in independently and identically distributed random variables.
J. Marcinkiewicz considered finite or infinite linear forms and
assumed that the random variables have finite moments of all
orders. He showed that the common distribution of the random
variables is then the Normal distribution. Yu. V. Linnik
obtained some deep results concerning identically distributed
linear forms involving only a finite number of random vari-
ables. The authors have investigated in a separate paper the
case where one of the linear forms contains infinitely many
terms while the other is a monomial. They obtained a
characterization of the normal distribution under the assumption
that the second moment of the random variable is finite. In
the present paper we investigate a similar problem and do not
assume the existence of the second moment.

1* We prove the following theorem:

THEOREM. Let {Xά} be a finite or denumerable sequence of in-
dependently and identically distributed nondegenerate random vari-
ables and let {a^} be a sequence of real numbers such that the sum
Σ i ajXj exists1. Let a Φ 0 be a real number such that
( i ) the sum ^ a>jXj is distributed as aXλ

j

(ii) Σaj^a2.
3

Then the common distribution of the X3 is normal.

REMARK. The converse statement is evidently true provided that
2 J a3- = a if the sum Σ i α Λ contains more than two terms or S(Xj) — 0
in case ΣJ ajXj has only two terms.

In § 2 we prove three lemmas, the third of these has some in-
dependent interest. In § 3 the theorem is proved.

Received October 14, 1963, and in revised form March 10, 1964. The work of the
first author was supported by the National Science Foundation under grant GP-96.
The work of the second author was supported by the U.S. Air Force under grant
AF-AFOSR-473-63.

1 We say that the infinite sum Σj ajXj exists, if it converges almost everywhere.
It is known (see Loeve [3] pg. 251) that for a series of independent random vari-
ables the concepts of convergence almost everywhere and weak convergence are
equivalent.
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2* Lemmas* We denote the common distribution of the random
variable X3- by F(x) and write f(t) for the corresponding characteristic
function.

LEMMA 1. Suppose that all the conditions of the theorem except
(ii) are satisfied. Then sup,- | a3 | < | a |.

According to the assumptions we have

(2.1) Π /(α, ί) = Rat) .
j

We set bj — a3/a (j — 1, 2, •) and obtain

(2.2) Π/(M) = /(«)•
3

The lemma is proven if we show that | &, | < 1 for all j . First we
note that if | b3 \ — 1 for at least one value of j , then X3 has neces-
sarily a degenerate distribution. We consider the case where \bk\ > 1
for at least one value k. We see then from (2.2) that

which means

1 ^ I f{t) I ̂  I f(t/bk) I ̂  I f(t/bl) I ̂  . . . lim I /(ί/6;) | - /(0) = 1 .
n—*o»

Therefore | f(t) \ = 1 and the distribution of Xά is again degenerate.
We conclude therefore that

(2.3) | 6 y | < 1 ( y = l , 2 . . )

LEMMA 2. Suppose that all the conditions of the theorem, except
(ii), are satisfied then the function f{t) has no real zeros.

We first remark that the existence of the infinite sum Σ , ajXj
implies that the sequence of random variables SN = ΣΓ=JV+I

 ajXj con-
verges to zero (as N—> oo) with probability 1. It follows from the
continuity theorem that

(2.4) lim Π /(αyί) = l

uniformly in every finite έ-interval.
Let ε > 0 be an arbitrarily small number and let T be a positive

number. It follows then from (2.4) that there exists an NQ = N0(ε, T)
such that for all N ^ No the inequality
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(2.5) Π < e

holds uniformly for 11 | ^ T.
We give an indirect proof of Lemma 2. Suppose that the function
f(t) has real zeros and let t0 be one of the zeros of f(t) which is
closest to the origin. Then

Π /(Mo) = f(Q = o ,

so that either f{b3tQ) — 0 for at least one value of j or the product
is infinite and diverges to zero at the point t — t0. The first case is
impossible by virtue of (2.3) while the second contradicts the uniform
convergence of the infinite product so that Lemma 2 is proven.

LEMMA 3. Let {Xj} be a finite or denumerable sequence of in-
dependently and identically distributed nondegenerate random vari-
ables and let {a3) be a sequence of real numbers such that the sum
Σ i ttjXj exists. Let a Φ 0 be a real number such that sup^ | a3 \ < | a |.
Suppose that the sum Σ i ajXj has the same distribution as aXlf then
the common distribution of each X3 is infinitely divisible.

To prove Lemma 3 we write (2.2) in the form2

(2.6) f{t) = f(ht)f(Kt) • • • f{bNt)ΦN{t)

where

(2.7) ΦN(t)= Π fφjt)

and where N is so large that the inequality (2.5) holds. Using (2.6)
we see that

(2.8) f(t) = Π f(b)t) fi
i = l j,k=l

3>k

We repeat this process n times and obtain

(2.9) /(*) - { Π [f(b{i biΠ)

•in π [ΦΛM
U = l 3'ι+••' + 3N =n-k

Here all jk ^ 0 and (m j\ jN) — ml/jj jNl. Formula (2.9) in-
dicates that the random variable X, whose characteristic function is/(£),
is the sum of kn = Nn + Nn-λ + + N2 + N + 1 independent random

2 If the sequence {Xj} is finite then N is equal to the number of variables
so that ΦN(t) = 1.
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variables Xn,k(k — 1, 2, , kn), that is X = Σ**i -^n.* f o r every w.
Such sequences of sums of independent random variables occur in

the study of the central limit theorem, and we give next a few results
which we wish to apply.

We say that the summands Xnιk are uniformly asymptotically negli-
gible (u.a.n), if Xn>k converges in probability to zero, uniformly in k,
as n tends to infinity; this means that for any ε > 0

(2.10) lim max P(\ XnΛ | ^ e) = 0 .

It is known (see Loeve [3] pg. 302) that condition (2.10) is equi-
valent to

(2.11) lim max | / n , * ( ί ) - 1 | = 0
l^k^k

uniformly in every finite ί-interval.
Let Xntk (k = 1, 2, , kn) be, for each n, a finite set of inde-

pendent random variables and suppose that the Xnik are u.a.n. Then
the limiting distribution (as n tends to infinity) of the sums Σ*=i Xn,k
is infinitely divisible.

For the proof we refer the reader to Loeve [3] (pg. 309).
We turn now to the proof of Lemma 3 and show that the factors

of (2.9) satisfy condition (2.11).
Let e > 0 be an arbitrarily small number and T > 0. We see

from (2.5) and (2.7) that we can select a sufficiently large N such
that

(2.12) I ΦJjb) - 11 ̂  ε

uniformly in 11 | ^ T. Since | b3-1 < 1 we have

|&ί'i ••• bp*t\ < T

so that, according to (2.12),

(2.13)

uniformly in 11 \ ̂  T for the chosen value of N.
We consider next a typical factor /(&£ b£H) of the product in

the first brace of formula (2.9). Here j \ + j 2 + + j N = n and j k ^ 0
so that at least one of the j k is positive. We, show now that it is
possible to choose an n0 — no(ε, T) such that for n ^ n0

(2.14) Ύh...jjt) =

uniformly in 11 \ ̂  T.
Clearly,
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(2.15) Ίh...JίΓ{t) ^ I ( {exp [i&ίi b^tx] - l}dF(x)

{exp [iδ'i b£*tx]4-

We choose 4̂ so large that

{
\x\<Λ

(2.16)

We note that

{exp [i&fi
4

(2.17)
\x\<A

{exp [ifefi biΠx] - l}dF{x)

dF(x) 5S ± .
A Zi

Γ A .

We select now an n* = n*(ju , ;?V, T, ε) so large that for n ^ %%

the inequality

(2.18) bί" I TA £ ±

holds. This is possible in view of (2.3). There are altogether Nn

terms of the form fφi1 b^t) in (2.14) and we choose

(2.19) n0 = no(e, T) = max n*(jlf , i lV; 2\ ε)

then (2.14) follows from (2.16), (2.17), (2.18) and (2.19).
We see therefore that the set of independent random variables

Xn>k satisfies the u.a.n. condition (2.11). Therefore the distribution
of X is infinitely divisible and Lemma 3 is proven.

Since f(t) is an infinitely divisible characteristic function, it admits
the Levy-Khinchine representation

(2.20) ln/(ί) = ίat- βf/2 eitx - 1 -
itx

J+0\

1 +
itx

-dG(x)

1 + or
1 + -dG(x)

where a and β are real numbers, β *zθ, and where G(x) is a non-
decreasing, right-continuous function such that G(— oo) = 0 and G(+co)
— K < co. Let now f(t) be the characteristic function of an infinitely
divisible symmetric distribution, so that f(t) — f( — t). In this case one
sees after some elementary transformations of the integrals in (2.20)
that

(2.21) G(x) + G(-x - 0) - C

for all x Φ 0. Using (2.20) and (2.21) we see that the characteristic
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function of a symmetric infinitely divisible distribution admits the
representation

(2.22) ln/(ί) = -βtf/2 + [+~(cos tx - l)±±l£dH(x)
J+o χ2

where

(2.22a) S(,) = I * " * ' * C f 0 Γ ί C > °
' (0 for x < 0 .

Thus H(x) is a non decreasing, right-continuous, bounded function
and H(x) and G(x) determine each other uniquely.

3* Proof of the theorem* We introduce the function

(3.1) g(t) = f{t)f(~t)

and conclude from (2.2) that the relation

(3.2) Π fir(δyt) - 9(t)
3

holds for all real t. Here g(t) is the characteristic function of a sym-
metric distribution and is therefore a real and even function. It is no
restriction to assume that

(3.3a) 0 ^ 6 , < l (j = l,2, . . . )

where

(3.3b) Σ δj ̂  1 .
3=1

According to (2.22) we have then the representation

(3.4) In g(t) = -βtf/2 + (°° (cos tx - 1)1 + X"dH(x)

where β ^ 0 and where Jϊ(ίc) is a nondecreasing, right-continuous and
bounded function. We use (3.4) and (3.3b) and obtain from (3.2) the
relation

(3.5) Σ Γ (cos bjtx - l)λ±J^.dH(x)
H J + O x2

= K— + (°° (cos tx - \)λ±J^dH{x) .
2 J +o cc2

where
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We define the sequence {ψv(ί)} by

(3.6) ψy(t) = Σ Γ (cos bjtx - l)λ±J^dH(x)

so that

(3.7) l im ψy(t) = ψ(t) = K— + Γ (cos tx - I ) 1 + x" dH{x)
v->~ 2 J+o χ2

for every real ί.
Since ψ(t) is the characteristic function of an infinitely divisible

distribution it follows that K S 0, so that we conclude from assump-
tion (ii) that K •=• 0 and ΣΓ=i 6| = 1-

By a change of the variable of integration in (3.6) we obtain

ψy(t) = Γ (cos tx - l ) l ± f ί Γ Σ ^ ^ d ί r ( α ? / 6 y ) ] .
J+o x2 Li=i 1 + $2 J

We write

„ , x (Γ Γ± ̂ pζ-dHiy/bj)] for α; > 0
(3.8) iϊvW = jJ+oϋ=i 1 + /̂2 -1

(θ for x < 0 .
Therefore we have, for every v,

(3.9) ψv(ί) - [+00(cos tx - λ±J^
J+0 XΔ

It follows then from (3.7) and (3.8) that

(3.10) lim Hv(x) = H(x)

for every x which is a continuity point of H(x). The proof is carried
in the same way in which the convergence theorem is proven (see
Loeve [3] pp. 300-301).

In view of (3.3a) we have

/ + V

i) ^ b) (j = 1,2, . . . )

so that we conclude from (3.8) that

(3.11) Hv(x) ̂  ± m

for all v.
It follows from (3.10) and (3.11) that
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for all x > 0 which are continuity points of H(x).
Using equation (3.3b) we obtain

(3.12) %

Since H(x) is a nondecreasing function, we see from (3.3a) that

(3.13) H(x) <ί ff ( |-) .

It follows from (3.12) and (3.13) that

for every x > 0 which is a continuity point of H(x). Therefore

H(x) = iϊ(+oo) = C

for x > 0. We now turn to equation (3.4) and get

(3.14) lnflf(ί) = -/Sf/2 .

The statement of the theorem is an immediate consequence of (3.1)
and of Cramer's theorem.
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SINGULARITIES OF SUPERPOSITIONS
OF DISTRIBUTIONS

DONALD LUDWIG

Distributions of the form

( 1 ) F(x,X)= / . \ . . \ I / ( * , u) I »• g(x, u)duΓ(Ψ")]

are considered, where x and u belong to Rp and Rn respectively.
The parameter λ is complex, and F(x, X) is evaluated for
Re(λ) < 0 by analytic continuation. Such integrals arise in
solution formulas for partial differential equations. In case
n = 1 or n = 2, F is expressed in terms of homogeneous distri-
butions of degree >λ + a, where a is nonnegative and depends
upon the geometry of the roots of /. The case of general n
is also treated, in case the Hessian of / with respect to u is
different from zero. The results lead to asymptotic expansions
of analogous multiple integrals.

We assume that / and g are C°° real-valued functions, and we

assume that the gradient of / with respect to x does not vanish in

the region of Rp x Rn under consideration. Integration is taken over

a compact region U(zRn, and we assume that g has its support in

the interior of U. For Re(X) > 0, the operation of F on a test func-

tion <p is defined by 7(λ) = \Fφdx. For other values of λ, I(λ) is

evaluated by an analytic continuation in λ. The factor 1/Γ[(X + l)/2]
ensures that J(λ) is an entire function of λ. We actually require only
a finite number of derivatives of / and g, provided that Re(\) is
bounded from below.

It is easy to see that, after a change of variables in α -space,
Fλ{x19 λ; x2, , xp) — F(x19 x29 , xp, λ) is a distribution in x19 with
x2,

 β, xP regarded as parameters. In case n = 1 or n — 2, we show
that Fx may be expressed as a sum of homogeneous distributions, plus
a smooth remainder. Each term in the expansion of Fx is associated
with a point or points where f(x, u) — 0 and (df/θu)(x, u) — 0. Ex-
pressions such as (df/dx) and (θf/du) denote the gradients with respect
to the x and to variables, respectively. In case n ~ 1, the most singular
term of F1 has the degree λ + (1/m), if / has order m with respect
to u at the corresponding point. In case n — 2, the degree of the
most singular term of Fx depends upon the geometry of the real roots
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of /, regarded as functions of (u19 u2) for fixed x. The degree of the
singularity varies between λ + (1/m) and λ + (2/m), if / has order m
with respect to u at the point in question. The extreme values of
the degree are assumed in case all roots of / are coincident, or distinct,
respectively. We also consider higher values of n, in the case where
the Hessian matrix (Θ^/duβUj) is nonsingular, which frequently arises
in applications. In this case, the most singular part of F is homo-
geneous of degree λ + (n/2).

Integrals of the form (1) arise in representations of solutions of
hyperbolic partial differential equations, specifically the Herglotz—
Petrovsky formula and its generalizations. (See I. M. Gelfand and
G. E. Shilov [7] pp. 137-141, and R. Courant [2], pp. 727-733.) We
shall apply the results of the present paper to the analysis of the
singularities of fundamental solutions of linear hyperbolic equations in
a forthcoming revision of [10].

Our results also have implications for the asymptotic behavior of
single and double integrals, using a device of D. S. Jones and M. Kline
[8]. Let

= \ exp [ikf(u)]g(u)du .

Then

I(k) = ί eikt h(t)dt , where h(t) = [δ(t ~ f(u))g(u)du .

Here 3 represents the one-dimensional Dirac function. The behavior
of I(k) for large k is determined by the singularities of h(t) (see A.
Erdelyi [4], pp. 46-51.) But h(t) is of the form (1), if we set λ = - 1 .
For double integrals, our results extend those of D. S. Jones and M.
Kline [8] and J. Focke [5] to give asymptotic expansions in cases where
all derivatives of / of second order vanish at some point.

The outline of our work is as follows: the first section is devoted
to preliminary remarks, which apply for any n. We show that F is
a distribution in a single variable, and that singularities of i*\ at x0

are associated with points u where f(x0, u) = 0 and (df/du)(x0, u) = 0.
In the second section, we reduce the case n ~ 1 to consideration of
an integral of the form

( 2 ) I(x, λ, a) = 7(λ) Γ I x + u |λ u^-'du ,
Joo

where a is a real number. Here and henceforth, we write γ(λ) =
1/Γ[(λ + l)/2]. We analyze the singularities of (2) for arbitrary com-
plex λ, and for Re(a) > 0, using analytic continuation in both λ and
a. The result is that I(x, λ, a) is the sum of a homogeneous distri-
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bution of degree λ + a, and a smooth function. In the third section,
we consider double integrals. We resolve the singularities of the
zeros of / by a series of quadratic transformations, and reduce the
problem to consideration of integrals of the form

( 3 ) I(x, λ, a, β) = 7(λ) f f I x + u»vβ | V " V " 1 ^ , v, X)dudv .

In the fourth section, we expand (3) in powers of x. The integral is
reduced to the form (2), or

(2r) Γ(x, λ, a) = 7(λ) \\x + uYu*-1 log udu .
Jo

Γ(x, λ, a) is just the derivative of I{x} λ, a) with respect to a. The
fifth section is devoted to the simpler case of integrals where the
Hessian of / with respect to u does not vanish. In this case, the
leading singularity of F has degree λ + (n/2).

Our procedures, especially in the case of double integrals, would
be rather unwieldy for purposes of calculation. A simpler scheme is
presented by G. F. D. Duff [3]. Our results may be regarded as a
justification of certain of his methods. Our methods and results, es-
pecially in §§ 2 and 5, have much in common with L. Garding [6].

1* General remarks. In this section, we shall first show that
integrals of the form (1) define distributions in a single variable, with
smooth (in distribution sense) dependence on the other variables as
parameters. Then we show that the singularities of such integrals
are associated with points where / and df/du both vanish. This fact
is the analog of the principle of stationary phase for asymptotic ex-
pansion of integrals.

To show that F, given by (1), is a distribution in one variable,
we assume that df/dx1 is bounded away from zero in the region under
consideration. Recalling our assumption that (df/dx) Φ 0, we can
arrange that (df/dxj Φ 0 by taking a partition of unity in x, u space,
and then rotating coordinates in ίc-space.

THEOREM 1.1. //, for ueU, a^x^b, and for (x2, , xp)
belonging to an open subset of R13-1, we have | (df/dxΊ) \ Ξ> a > 0, and
if φ(xλ)e C°° with support in (a, 6), then J(λ), given by the continu-
ation of

(1.1) I(λ) - 7(λ) j F(x, X)φ(x1)dx1 ,

depends continuously on φ in the Co°° topology, and smoothly on
%2, " , xP. J(λ) is an entire analytic function of λ. We recall that
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7(λ) - 1/Γ[(λ + l)/2].

Proof. We may rewrite (1.1) as a double integral, first choosing

Re(X) > 0. Then

I I f(x, u) | λ g{x, u)duφ(x1)dx1

Now we introduce / as a variable of integration;

J(λ) = 7(λ) [ Γ| /l λ ψ(f, u, x2, , xp)dfdu ,

where

dxλ

 v ' '

Xj — %3'(θ — 2, , p), and Xx(f, u,x2j , xp) is defined by the relation
f(X, u) — f. Clearly ψ and its derivatives with respect to x2, , xv

are in Co°° with respect to /, depending continuously on φ in the
topology of test functions. Hence it suffices to show that an integral
of the form

(1.2)

defines an analytic functional of ψ. Following I. M. Gelfand and
G. E. Shilov [7], we write, with an arbitrary positive integer k,

J(λ) = 7(λ) [ I /|* \ψ(f) - Σ ψ<«(0)-£-]d
J-i L i=o j ! J

+ γ(λ) Σ Ψu\0) [ \f\λ4^df+ τ(λ) ( I f\* ψ(f)df.Σ
3=0

The first and third terms are regular in λ for Re(X) > — & — 1; the
second term is easily evaluated as

7(λ) Σ f(2 X

fc r (λ + 2ί

Hence, since 7(λ) has zeros for λ = — 2Ϊ — 1, I ~ integer ^ 0, J(\) is
an entire functional. Thus I(λ) is also an entire functional.

According to the principle of stationary phase, the singularities of
F arise from interior points where both / and df/du vanish, or from

^boundary points where / vanishes and df/du is normal to the boundary.
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(See D. S. Jones and M. Kline [8].) We wish to consider only interior
stationary points, and hence we assume that the support of g(x, u) is
in the interior of U.

THEOREM 1.2. If the support of g(x, u) is in the interior of U,
and if at a point x09 f(x0, u) and (Θf/du)(x0, u) do not both vanish
anywhere in U, then there exists a neighborhood of x0 in which
F(x, λ) is smooth for all λ.

Proof. Let K = mίueu {| f(x0, u) |2 + | (θf/du)(x0, u) |2}. At each
point uoe U, we have either

(a) \f(xo,uo)\*^K/2, or
(b) I (θf/du)(x09 u0) I ̂  K/2.

Hence vv

τe can find a neighborhood of (x0, u0) in which either
(a) |/ ί 2 >ϋΓ/4, or
(b) ! θf/θu I2 > K/A.

Such a neighborhood contains the product of an open ball B(x0) c Rp,
with center at xθ9 and an open ball B(u0) aRn, with center at u0.
The set of such balls B(u0) forms an open covering of U, which can
be reduced to a finite covering since U is compact. The intersection
of the corresponding B(x0) is open. We denote this intersection by
C(x0).

Thus, to each uoe Uis associated an open set N(u0) in which either
(a) | / | 2 > i Γ / 4 , or
(b) I df/du |2 > JSΓ/4, for x e C(x0), u e N(u0).

We choose a C°° partition of unity subordinate to our finite covering
of U. In sets of type (a), the integrand in (1) is C~ for xeC(x0),
for all λ. In sets of type (b), we may introduce / as variable of
integration and proceed as in the proof of Theorem 1.1. Here x plays
the role of a parameter. Thus integrals over sets of type (b) define
functionals which are entire in λ, and which are C°° with respect to x.

2. Single integrals* In this section, we consider the case n = 1,
i.e. where U is an interval of the real line. We shall obtain a
description of the singularity of i^near x0, associated with a neighborhood
of a point u0 where f(xQ, uQ) — 0 and (df/du)(x0, u0) = 0. According to
Theorem 1.2, every singularity of ^corresponds to such a neighborhood.
First we make a change of variables involving both x and u, and
obtain an integral of the same type, where f(x, u) = xλ + ιιm. Theorem
2.1 states that, for fixed λ, F(x, λ) is bounded if g(x, u) vanishes
sufficiently rapidly at u = 0. Thus, applying Taylor's theorem to g as
function of u, we see that the singularities of F arise from terms of
the form \\ xλ + um \κukdu. Finally, Theorems 2.2 and 2.3 show that
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such an integral is the sum of a distribution homogeneous of degree
λ + (k + l)/m and a regular function.

Without loss of generality, we may assume that x0 = 0 and u0 = 0,
and (df/dxJiO, 0) ^ 0. We assume further that, at (0, 0),

/= *£ = ... g"-1/ -o J ^ Z
0% ^ m ~ x ' ml dum x ' '

We fix x2 = xp = 0, and denote xx by x. From Taylor's theorem,

τ(rv> /Ίl\ τ(C\ Ίl\ I sγ*O (Ύ* Ή\

— £> (sy* oj^\l o* —I— ^ ^ ^

V ex(x, u)

Here βj. is a smooth function; ^(0, 0) = (0//$#i)(O, 0). Since / is of
order m at the origin, we may write

f(x, u) = ^(α;, ^)(a; + nme2{x, n)) ,

where βa(a?, u) is smooth, and βa(0, 0) = {[dmf(0, Q)ldum]l[ml(df 18x^(0,0)]}.
If x and % are sufficiently small, the implicit function theorem implies
that we may introduce a new variable of integration, v — u \ e2(x, u) \llm;
thus we obtain

(2.1) Ύ(X)^\f\λgdu - 7(λ)J|a; ± ^m!λ^x(α;, v; X)dv ,

where
(ill

g^x, v;X) = \ ex{x, u) \λ g(x, u) — .
dv

By replacing x by — x if necessary, we may bring (2.1) into the form
where the plus sign holds.

Now we wish to apply Taylor's theorem to g±(x, v; λ), obtaining a
polynomial in v, with a remainder which vanishes rapidly as v —> 0.
First we show that, for fixed λ, the corresponding term in the ex-
pansion of F will be continuous, and can be made as smooth as desired.

THEOREM 2.1. If g{x, u; λ) has I derivatives with respect to u,
and if Re(X) ~ X1 > — I — 1, and if m\x + k + 1 > 0, then

(2.2) I(x, λ) = γ(λ) \a\ x + um | λ ukg(x, u, X)du
Jo

is continuous and bounded as a function of x.

Proof. We set ξ = | x |1/w, and write / = Ix + I2, with

(2.3) Ix = τ(λ) Γ? | x + um | λ ukg(x, u, X)du ,
J
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ί a

I x + um | λ ukg(x, u, X)du .
2ξ

221

In (2.3), we introduce u — ζv. Then

ϋ = 7(λ) I x \^k+^m [) sgn x + vm\λ vkg(x, ξv, X)dv .
Jo

Continuing this expression with respect to X in the usual way (see
proof of Theorem 1.1), we see that if mX1 + k + 1 > 0, Ix is continuous
and bounded. We may rewrite (2.4) as

S a

21 u

λg(x, u; X)du .

sup [ g(x, u; X) \ \ uk+mλ^du ,

Hence,

which is clearly bounded if k + mXx + 1 > 0. The continuity of I2

follows similarly from the uniform continuity of the integrand.
We remark that smoothness of (2.2) for sufficiently large k follows

from formal differentiation of (2.2), and application of Theorem 2.1.
Applying Taylor's theorem to gx(x, v; X) appearing in (2.1), we see

that

(2 5) > u> = Σ

7(λ) j | x + vm
xf v, X)dv .

Theorem 2.1 implies that the remainder is smooth in x for fixed λ, if
k is sufficiently large. Evaluation of the singularities of F is therefore
reduced to evaluation of the singularities of integrals of the form

(2.6) I(x, X) = mτ(λ) I x + vm | λ vn~xdv .
Jo

A change of variables yields an integral of the form

(2.7) I(x, X) = 7(λ) Γ| x + u \λ u«-λdu ,
Jo

where a = (n/m).
In order to describe the singularities of (2.7) and related integrals,

we shall require some facts about certain homogeneous distributions.
We set

x+ — max (x, 0) , #_ = max (—x, 0) .
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LEMMA 2.1. The functional [1/Γ(λ + l)]x\ and [1/Γ(λ +
entire analytic functionals. Moreover,

ΪL are

(2.8)

λ=~ί>

The proof is in I. M. Gelfand and G. E. Shilov [7], pp. 56-65. It
is similar to the latter part of the proof of Theorem 1.1.

The following theorem leads immediately to results about (2.7).

THEOREM 2.2. If Re(a) > 0, the integral

(2.9) , X)
Γ(X Γ(a)

du

may be represented in the form

(2.10)
J+(x, λ) = α+(λ, a)

Γ(λ + a + 1)

α_(λ, α)
Γ(λ + α: + 1)

+ R(x, λ,

R(x, λ, α) is α smooth function of x for small x, which is regu-
lar in λ and a, except for simple poles where λ + a is a nonnegative
integer. The coefficients a+ and α_ are regular except for simple
poles where λ + a is an integer. The sum of the residues at the
poles is zero, since J+{%, λ) is regular. We have

(2.11) α+(λ, a) = sinπλ
sin τr(λ + a)

We also have, for small x,

(2.12) J ^ x )

α_(λ, a) = -sin:
sin π(λ +

Γ(λ + α + 1)

Proof. We shall use analytic continuation in λ and a. First we
assume that ~ 1 < Re(\)< -1/2, 0 < i?e(α)< 1/2. Then we may
write

(2Λ3)

with

/ + M = r<* +
Γ(λ

du + i?(«, λ, α) ,
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(2.14) R(x, λ, a) = - Γ ( x + u ) + -^—- du .
v ; v ' ' J )a Γ(λ + 1) Γ(α)

The first integral in (2.13) may be treated by setting u — \x\v. The
resulting coefficient of | x \λ+<* may be evaluated in terms of Γ-ίunctions,
to produce (2.11). To see that R(x, λ, a) is smooth in x, we introduce
v — (1/u) as variable of integration in (2.14); thus

dv.
Γ{a)

We may apply Taylor's theorem to (1 + vx)+, obtaining a polynomial
in vx, plus a remainder which vanishes rapidly for v = 0. Hence, the
residues of R at its poles are powers of x, and the remainder is
smooth in x.

Now we continue our representation (2.13) for Re(a) > 0. Equation
(2.9) shows that J+(x, λ) is regular for — 1 < λ < —1/2 and Re(a) > 0.
On the other hand, the coefficients a±(x, a) have simple poles for
λ + a = integer. The residues at these poles are determined by the
behavior at OD of the integrand in (2.13). Comparing (2.13) and (2.14),
we see that the sum of the residues at the poles is zero.

Now we are ready to continue in λ, for fixed a, with Re(a) > 0.
First we assume that a is not an integer. From (2.10) and (2.11), it
is apparent that the only possible singularities of the representation
(2.10) are where λ + a is an integer. The case where λ + a is a
nonnegative integer has already been discussed. If λ + a is a negative
integer, then both J(x, λ) and R(x, λ, a) are regular. It follows that
the sum of the residues of

a+ X+ and α x~
Γ(x + a+ 1) Γ(λ + a + 1)

must be zero. This can be verified by a direct calculation, using
Lemma 2.1.

If a is a positive integer, a — I, we obtain

a+(x, I) = (-1) 1 , α_(λ, ί) = 0 .

In this case, R is regular in λ, because of the factor 1/Γ(λ + 1).
The fact that (x + u)\ + (x + u)i = \x + u\λ immediately implies

THEOREM 2.3. If

(2.15) I(x, λ) = τ(λ) \a\x +
Jo

we may write

u | λ u'-
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,2.16, 7feX) = M X , t t ^

Here

i (λ + α + l)

(2.17) δ+(λ, a) = Γ(α)7(λ)Γ(λ + 1) — sin
sin π(λ + α)

(2.18) δ_(λ, α) = Γ(α)τ(λ)Γ(λ + 1) Γl — . *ilθL

(

πa 1 ,
L sin π(λ + α) J

and R(x, λ, α) is a smooth function of x, with poles if X + a is a
nonnegative integer.

REMARK. Equation (2.16) may be differentiated with respect to
a, to obtain results for

I x + u \λ u"'1 log udu .
o

We omit the calculation.
It may be useful to give our results for the leading, or most

singular term in the expansion of (1) an explicit form. In this term,
only the values of ψf/dxJiO, 0) = 6, (l/m!)(dm//6>um)(0, 0) = c, and g(0, 0)
enter. Taking the most singular term only,

F1(x1) - 7(λ) f" I ±bx+ I c I um | λ dug(Q, 0) .
J — a

Setting v — \c |1/m u, and z — b sgn (c)sc,

\z + vm \λdv •

If m is even,

jPiίa i) ^ 27(λ) \ β l | « + ^ m | λ dv •

> 0 )

c | —
m

m

and if m is odd,

7(λ)
lei-

m

These integrals may be evaluated by means of Theorem 2.3.
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3* Reduct ion of double integrals to a standard form* We
shall consider the integral (1), in the case n = 2. As before, the
singularity of F near a given point x0 is associated with points u0 such
that f(x0, u0) = 0 and (df/du)(x0, u0) = 0. Such points u0 may be isolated,
or may lie on a curve. In order to evaluate the contribution from a
neighborhood of such a curve, we would have to cover it by a system
of sufficiently small neighborhoods, taking particular notice of singular
points of the curve, and then apply the theory of this section.

Without loss of generality, we may assume that x0 — 0 and uQ = 0.
We set fQ(u) = /(0, u). Our method consists in dividing the w-plane
into regions, in such a way that distinct roots of fQ appear in different
regions. After a change of variables, f0 may be represented as the
product of a monomial and a nonvanishing function, in each region.
The shapes of the regions involved are determined by the Puiseux
expansions of the roots of /0. We obtained the required regions by
an iterative process. If fQ is analytic, then the process will terminate.
In fact, if distinct roots of fQ have distinct Puiseux expansions, then
the process will terminate if foeC°°. Since the process involves only
a finite number of derivatives of fQ, it will terminate if f0 has enough
derivatives so that distinct roots have distinct truncated Puiseux ex-
pansions.

The integral over a single region assumes the form

(3.1) 7(λ) [ [I x + u°vβ | λ uy-1vδ~1g(uf v; λ, x)dudv .

Integrals of this form will be treated in §4. Finally, (Lemma 3.1)
we show that if f0 has order m at the origin, then min (Ύ/OC, δ/β) ^ 1/m.

As before, we assume that (df/dx^φ, 0) Φ 0, we set x2 — xz —
. . . Xp = 0, and we write x1~x. Then we may write

f(x9 u) = fo(u) + xex(x, u) = ex{x, u)(x + fQ(u)E(x, u)) .

Functions denoted by e{ or E{ are different from zero at the origin.
We first consider the simplest case, where the roots of f0 have distinct
tangents at the origin. We write ux = u, u2— v. Then fo(ulf u2) =
Pm(u, v) + Q(u, v), where Pm is a homogeneous polynomial of degree
m, and Q is of order m + 1 at the origin. By our assumption, the
real roots of Pm are distinct. We introduce a partition of unity on
the circle, symmetric about the origin, such that each function of the
partition has its support in a region where either Pm(cos θ, sin θ) Φ 0,
or (d/dθ)(Pm(cos θ, sin θ)) Φ 0. Regions of the first type give rise to
an integral of the form

(3.2) τ(λ) j jI x + rmElx, r, θ) |λ | e1 |
λ g1rdθdr .
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In regions of the second type, we may introduce V — PJβ) + rQ(r, θ)
as a variable of integration; we obtain an integral of the form

(3.3) τ(λ) J JI x + rm VE1 |
λ gλ(x, r, V, X)rd Vdr ,

if r is sufficiently small in the support of gx.
Now we consider the general case, where Pm may have multiple

roots. We shall obtain integrals similar to (3.2) and (3.3), which may
be reduced to the form (3.1). By the term "sector" we shall mean a
region generated by rotating a line about the origin. Thus a sector
will consist of two wedge-shaped regions. By a "strip" we shall mean
a region generated by displacement of a line parallel to the %-axis.
By a "quadratic transformation" we shall mean a transformation of
the form u — uu v — u{ox. Under a quadratic transformation, a sector
in the u, v plane which does not contain the 'y-axis is transformed
into a strip in the ul9 vt plane. We shall be integrating over strips
and sectors, and we would like to decompose an integral over a strip
into a sum of integrals over sectors. We accomplish this by formally
extending all integrations over the whole plane. First, we assume
that the integrand in (1) has support in a finite disc about the origin.
Given any open, finite covering of the unit circle, we can find a C°°
partition of unity, such that each function φs{θ) has its support in
one of the covering sets. The functions φ3 (2θ) provide a partition of
unity which is constant on lines through the origin, and such that
each function of the partition has its support in a sector. After
rotation and application of a quadratic transformation, each of the func-
tions <ps will have support in a strip. Thus, after quadratic transfor-
mation, our original integral is transformed into a sum of integrals
over strips. Integration over each strip may formally be extended over
the whole plane, which in turn may be decomposed into sectors by a
partition of unity. This process may be repeated as often as desired.
In this way the burden of the complexities of the actual region of
integration is thrown on the structure of the final partition of unity.

We cover each of the real roots of PJu, v) by a sufficiently small
open sector, and choose a covering of the remaining sectors which is
finite and does not intersect the roots of Pm. We choose a partition
of unity subordinate to this covering. Integrals over sectors which
do not contain a root of Pm, or which contain a simple root of Pmf

may be treated as before, leading to integrals of the form (3.2) or
(3.3). A sector which contains a multiple root of Pm may be rotated
so that the root coincides with the new %-axis. Under such a transfor-
mation, an expression of the form u"vβE(u, v), where i?(0, 0) Φ 0, is
transformed into a similar expression. Such expressions remain of the
same type under a quadratic expression as well. Hence, after a rotation
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and a quadratic transformation, we have

E(u, v, x)fQ(u, v) = E(Pm + Q) = u?E,[Pmi(uu vx) + QJ .

Here we have divided Pm + Q by ^Γ and collected terms of lowest
degree in uλ and vx to obtain Pmi(uu vj. Observe that m1 is less than
or equal to the multiplicity of the root of Pm in question.

Now we apply a similar procedure to Pmι instead of Pm. A second
application of the procedure may result in an expression of the form

Ef0 = uζvξE2[Pn2 + Q] ,

if vλ divides P m i , but further applications of the procedure do not
result in expressions of more complicated form. We temporarily halt
our procedure if Ef0 assumes the form

(3.4) Ef0 = ufflEfa + aux + )γ ,

where a Φ 0. This situation will always occur if distinct roots of f0

have distinct (truncated) Puiseux expansions. In particular, if fQ is
analytic, we may apply the Weierstrass preparation theorem to f0 (see
G. A. Bliss [1], pp. 53-55.) Thus after rotation,

fo(u, v) = E(u, v)[um + a^u™-1 + + am(v)] ,

where E(u, v) and a,j(v)(j = 1, , m) are analytic and £7(0, 0) Φ 0.
Since the field of fractional power series is algebraically closed, the
roots of /0 may be expanded in Puiseux series (see R. Walker [12],
pp. 97-102.) Thus after a finite number of quadratic transformations,
the distinct roots of f0 must belong to distinct sectors, and f0 will
appear as a product of powers of factors whose lowest term is of
degree one, multiplied by a nonvanishing function, as shown in (3.4).
Hence, after a final rotation and quadratic transformation, we are led
to integrals of the form

γ(λ) 11 x + u*vβE(u, v, x) | λ ̂ "•"V"1^, v, x, X)dudv ,

where 7 ^ 1 , 3 ^ 1 . The factor u ^ V " 1 arises from the Jacobians
of the quadratic transformations. Now, using the implicit function
theorem, we set v1 = v | E(u, v, x) \yβ

9 for u, v, x sufficiently small and
obtain an integral of the form

(3.5) γ(λ) ίfI ±χ + u"vζ | λ u ^ v t W u , vl9 x, X)dudv1 .

Thus after appropriate changes of variables, and a partition of unity,
the evaluation of (1) is reduced to evaluation of integrals of the form
(3.5).
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We shall see in the next section that the leading singularity of
(3.5) is determined by μ — min (y/a, δ/β).

LEMMA 3.1. // f0 has order m at the origin, and g(uy v, s, λ)
has the form u^v^g^u, v, x, λ), then in all integrals of the form
(3.5) which arise by the preceding process, we have μ ^ min (y/m, δ/m).

Proof All integrals which arise are of the form

In = τ(λ) f f I x + uoύvβE(Pι + Q) ̂ uv-ψ-'giu, v, x, X)dudv .

For such an integral, we define μn — min [y/(a + I), δ/(β + Z)]. We show
that μ is a nondecreasing function under rotations, quadratic transfor-
mations, and (clearly) if a monomial is factored out of Pt + Q. The
only nontrivial case is a quadratic transformation. Under quadratic
transformation,

+ urβ+ιv?E(Ph + Qa) ̂ uΓ^vl-'giu,, uxvlf x, X)du1dv1 .

Hence, μn+1 = min [(y + δ)/(a + β + Z + lλ), δ/(β + Zj)]. Since I, ̂  ^
we have δ/(β + ZJ ^ /in, hence also (y + δ)/(α + β + I + k) ^ μn.

4* Expansion of double integrals* In this section, we shall
expand double integrals of the form

(4.1) I(x) = 7(λ) ί ί I x + u«vβ |λ ut-^^giu, v; λ,

in powers of x, using the results of § 2. First we prove Theorem 4.1,.
which asserts that I(x) is continuous in x if y + <xRe(λ) > 0 and
δ + βRe(X) > 0. Thus if g(u, v; λ, a;) is written as a sum of functions,
with remainder multiplied by a large power of both u and v, then the
remainder will give rise to a continuous function of x. The major
portion of this section is devoted to expansion of integrals of the form

(4.2) J(x) = 7(λ) ί 1 I x + u"vβ |λ u^v^giv; λ, x)φ{u)dudv ,
J Ju^o

§0

where g(v) and <ρ(̂ ) have compact support, and φ(μ) = 1 for small %..
The results are summarized as Lemma 4.2. An appropriate expansion
of g(u, v; λ, x), together with Lemma 4.2 then implies an expansion of
(4.1) in powers of xf specified in Theorem 4.2. Finally, we give a
more or less explicit formula for the coefficient of the leading or most
singular term in the expansion of (4.1).

THEOREM 4.1. If a, β ^ 0, y, δ > 0 and if y + aRe(X) > 0 and
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δ + βRe(X) > 0, and if g(u, v; X) has enough derivatives with respect
to u and v, and has compact support in u and v, then the integral
(4.1) is bounded and continuous in x, for small x.

Proof. Let ξ = | x \1/a. We write

[ I x + u"vβ |λ ut-ψ^
J J\u\£kξ

τ(λ) if \x + u«vβ |
J Jw>/ί£

«vβ | λ u^v^

We shall specify fc presently. In the first integral, we set u — ξμ.
Then

J J ±1 | λ μy-ψ'-

Now we choose k so small that ± 1 + μ*vβ does not vanish for | μ \ g fe,
if v is in the support of 0. As in the proof of Theorem 2.1, it follows
that Ij is continuous in cc.

In the second integral, we divide by | u |Λ; thus

u i

Now we may apply Theorem 2.1 to the inner integral taken over v,
since x \ u |~* is bounded. Since βRe(X) + δ > 0, the inner integral is
continuous in x and u for u bounded away from zero, and bounded
for u in the region of integration. Hence, since aRe(X) + 7 > 0, the
double integral is continuous in x.

We proceed to the statement and proof of Lemma 4.1. Starting
with (4.2), we set μ = ua

y v — vβ, p — y/a, q = δ/β, r = 1//3, <Pi(μ) =
φ(μ1!"). Thus

J(x) = 7(λ) \\ I x + μv |
o

>'; x, X)φλ{μ)
aβ

We recall that φx(μ) = 1 for small μ. Introducing w — μv as a new
variable of integration, we have

(4.3)

where

(4.4)

J(x) = 7(λ) I I a; + w \λ k(w; x, X)dw ,
J

k{w; x, X) =

For w Φ 0, the integral exists and is smooth, since g and <£Ί have
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compact support. For the same reason, k has compact support in w.
It follows that the singularities of J(x) for small x are determined by
the behavior of k(w; x, λ) for small w. This is precisely the statement
that the singularities of (4.2) are associated with the u and v axes.
Since x and λ play the role of parameters in the following, we shall
usually not indicate their presence.

LEMMA 4.1. For small w, the function k(w), defined by (4.4),
with p,q,r > 0, may be represented in the form

k(w) — a^wv~1 + a\wv~x log w
(4.5)

1=0

for any L, if g has enough derivatives. The coefficients α0, αj, bt

depend on x and λ, and are given by certain of the formulas (4.6-
4.23). The coefficient a] vanishes unless p — q + Jr, for some integer
J ^ 0. The remainder R(wr) is smooth for small values of its
argument.

Proof We distinguish three cases:
(A) q > p,
(B) q < p, p Φ q + Jr for any integer J, and
(C) q — p + Jr, J — integer ^ 0.

A. If q > p, we define

. μr /' aβ

If w Φ 0, this integral exists, since g has compact support. Making a
change of variables,

Jo aβ

Hence, we have ko(w) = ^ ^ ^ ( x , λ), with

(4.6) ao(x, λ) = I g(vr; x, λ ) ^ ^ " 1 - ^ - .
Jo aβ

Now we may write

(4.7) k(w) — a^wv~x + wq~

We observe that φx{μ) — 1 vanishes for small μ. Hence, g may be
expanded in powers of wr/μr, leading to an expansion of k(w) in powers
of wr. We have
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(4.8) &,(*, λ) = i - (^-)g(v; x, λ)
aβ

B. If q < p, q + (J ~ l)r < p < g + Jr, for some positive integer
e7, we write

g(v)φ(μ) = Σ + - Σ

, λ) = — (-?-) g(v; x, λ)

here

aAx. X) =
ί! \dv

Thus k(w) — k^(w) + k2(w) + k3(w), with

(4.9) h(w) - Γ £ 9ι ̂ r- φι{μ)wq~
Jo i=o μ.lr

(4.10) /

(4.11)

The integral (4.9) exists, since for 0 ^ I ^ J — 1, p — ir — g > 0 , and
<£>! has compact support. In fact, we have

1-0

with

(4.12) bt(x9 λ) = gr,(ί», λ) I φλ(μ)μ
Jo

- 1 - ^ > (og^J-i).

The integral (4.10) exists for w Φ 0, since, for small μ, g(wr/μr)
vanishes, and p — Ir — q > 0. For large μ, the quantity inside the
brackets may be written as wJμ~Jh(w/μ), where h is a smooth function.
Hence, k2 is integrable at ω . A change of variables shows that

k2(w) = ; x, λ) - Σgι(x,
aβ

thus

(4.13) , λ) = \[g(V; x, λ) - Σgι(x,
Jo
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Finally, we observe that (4.11) may be written in the form

(4.14) Jφo) = «"+"

This integral may be treated in the same manner as (4.7).

C. If p = q + Jr, J is a nonnegative integer. This case is
similar to the preceding one. We shall use the Heaviside function

( if v < 1 .

We may write

φ(u)g(v) = Σ (S^VM + \g(v) - Σ9ιvι - H(l - v)g,>A
1=0 L 1=0 J

Σ 9ιvι - H(l - v)9jv
J][<p(u) - 1]

- v)gjv
JH(l -u) + H{1 - v)gjv

J[φ(u) - H(l - u)]

Thus k(w) = ΣS =i kά{w), with

(4.15)
aβ

(4.16) k^w) = 5"[ff(w>rA£"τ) - Σg^μr"

- H(l - wμ-ι)gwJψ-3r}w'>-ιμv-' -1 ^- ,
aβ

μ4lL ,

(4.18) [Ή( ) ^—)gjWμH(l μ ) W μ ^ - ,
μJ aβ

(4.19) k > ^ = S " 2 ^ 1 ~ ^ ^ " 1 ) ^ w J r / < " J r

The integral (4.15) is identical with (4.9); thus the coefficients
bι(l — 0, , J — 1) are given by (4.12). The integral (4.16) is similar
to (4.10). By analogous reasoning, we conclude that kt(w) = w"~1c0(x, λ),
with

(4.20) co(x, λ) = \~[g(tf) - Σgy ~»~-H{l-v)gy\v-lrJ %
Jo aβ
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the coefficient ao(x, λ) will also involve a contribution from kδ(w). In
the integral (4.17), we observe that the integrand vanishes for small
μ. Hence, for small w, H(l — wμ~ι) == 1, in the region of integration.
Thus, if vJ+1h(v) — g(v) — Σo7 QιVι, we may write

(4.21) Ίφo) = wp+'

for small w. Thus ks(w) may be expanded in powers of wr, in the
same manner as (4.7).

The integral (3.22) exists for w Φ 0, since integration may be
taken over a finite segment excluding the origin. After a change of
variables,

Jc4(w) — — - ^ - wp~τ log w .
aβ

Hence

(4.22) a](x, λ) - - ~
aβ

Finally, for small w,

kδ(w) - w^
aβ

Combining this result with (4.20), we have

(4.23) ao(x, X) = co(x, X) + gΛχ, X) \" ^ ) - H(l - μ) dμ_ ̂
Jo μ aβ

This completes the proof of Lemma 4.1.
Now we may apply Theorem 2.2 to the integral (4.3). Lemma

4.1 immediately implies

LEMMA 4.2. J(x)9 given by (4.3), has an expansion in distri-
butions homogeneous of degrees λ + p, λ + q + lr(0 S I 1=k L), possibly
including a term of the form a}Qc±x++p log \x\.

It follows that there is a similar expansion of I(x), given by (4.1),
provided that g(u, v; x, λ) can be represented as a sum of terms of
the form g(v; x, X)φ(u), plus a remainder multiplied by large powers
of both u and v. We define the second difference quotient

\ —^— (us, vt; x, X)dsdt
oJo dudv

— [g(u, v) - g(u, o) - g(o, v) + gr(o, o)] .
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Hence

(4.24) g(u, v) = g(u, o) - g(o, v) - g(of o) + uvgjμ, v).

Clearly, g12 is smooth if g is smooth. Unfortunately, the terms on
the right hand side of (4.24) do not have compact support in u and v.
Although this difficulty could be circumvented by a systematic use of
finite-part integrals, we prefer to work with functions with compact
support.

Let φ be a C°° function with compact support, which is even,
and such that φ = 1 in a neighborhood of the origin. We define
h(u, v) by the equation

(4.25) g(uf v) = g(u, o) φ (v) + g(o, v) φ(u) - g(o, o) φ(u) φ{v)

+ uvh(u, s).

Using (4.24), we may write

h(u, v) = ) (

+ g(0, o) ( *"> - 1 ) (VM^L) + gn(u> υ).V u / V v J

hence k is a smooth function. We may apply the same process to
h(u, v), and thus obtain a remainder for g with the factor uV. The
process will terminate only if g ceases to have the required derivatives.

We conclude that, after breaking the region of integration into
quadrants, I(x) may be represented as a sum of integrals of the form
(4.2), plus a smooth remainder. Thus we have

THEOREM 4.2. I{x), given by (4.1), has an expansion in distribu-
tions homogeneous of degrees

λ + 7 + m (0 S m ^ M), λ + A±J (O^ί^L)
a (0 S m ^ M), λ + ( O ^ ί ^ L ) ,
a β

plus terms of the form d±x± log (x), in case (7 + m)ja = (δ + 1)1 β — σ
for certain I and m. The remainder has order greater than
min [(7 + Jlf)/α), (δ + L)/β)].

Now we shall compute the most singular term in the expansion
of I(x). We break the region of integration into quadrants, and
evaluate the contribution from a single quadrant. The complete result
would depend on the parity of a, β, 7, d. As before, we write p = y/a,
q — §/β. Observe that a lower bound on p and q is given by Lemma
3.1.
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A. If p < q, we write, from (4.25),

g(u, v) = g(o, v) φ{u) + [g(u, o) - g(o, o) φ(u)] φ{v) + uvh(u, v).

Since g(u, o) — g(o, o) φ(u) is smooth and vanishes for u = o, the leading

term arises from g(o, v) φ{v). From Lemma 4.1, we obtain

v>0

x + w

IM+(X) — 7(λ) II I x + uoύvβ l^ 7 " 1 ^ 8 " 1 flr(tt, v; x, X)dudv

= 7(λ) I
Jo

f rom (4.6) we have

ao(x, λ) = Γ g(o, v; x, \)v*~™" -^- .
Jo a

The leading t e r m of I++(x) is given by Theorem 2.3.

B. If q < p , we have, similarly,

o

with

bo(x, λ) = 1 g(u, o; x, λ) u ^ " 8 ^ — ^ - .
Jo /9

C. If p — q, we wr i te

g(u, v) = g(u, o) φ{v) + g(o, v) φ(u) — g(o, o) φ{u) φ{v) + uvh(u, v).

Applying Lemma 4.1 to each of the first three terms, we obtain

I++(x) = 7(λ) I I x + w | λ [CLQW^1 + alw9'1 log | w \ + o(wp~1)]dw,
Jo

with

Γsr(o, v) - £Γ(1 -- v) g(o, oYiv'1

o a

+ [g{u, o) - i ϊ ( l - u) g(o, o)]^-1 - ^ ,
Jo β

and

Λ I ^ \) — — ff(°> °; g?» λ )
aβ
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We remark that the preceding integrals are the finite parts of the
integrals

f°° dv Γ°°

1 g(o, v) , and 1 g(u, o)
Jo CCV Jo

βu

5 Integrals with nonvanishmg Hessian* We consider integrals
of the form

(5.1) F(x, λ) = 7(λ) [ I f(x, u) | λ g(χ, u)duy

where xeXcz Rp, ueU c Rn, and g has support in the interior of
the bounded set U. We assume that the Hessian matrix [d*f/(dv,iduk)]
is nonsingular for all xe X and ue U. In this case, a rather simple
description of the singularity of F can be given, using only the results
of § 2. Our method consists in a change of variables of integration,
which enables us to write f(x, u) = f(x) ± U\± Ul. An applica-
tion of Theorems 2.2 and 2.3 then shows that F can be expressed in
terms of /* + n / 2 . Similar results have been obtained by a number of
authors, for example J. Leray [9], L. Garding [6], G. F. D. Duff [3],
D. Ludwig [10].

Theorem 1.2 implies that the singularities of F are associated with
points XQ,UQ where both f(x0, u0) — 0 and [(df/du)(x0, u0)] — 0. Thus we

may analyse the singularity of F near x0 by covering the associated
point or points u0 by a finite collection of sufficiently small neighbor-
hoods and choosing a partition of unity. We shall assume that this
has been done. The size of the neighborhoods will be determined from
the following discussion.

Since the Hessian matrix is nonsingular, we may determine u =
uo(X) from the equations (df/du)(x, u) — 0 in a neighborhood of xQm

We write u = uo{x) + v, fλ(x, v) — f(x, uo(x) + v). We can perform a
rotation in the i>-space so that the matrix [d2fJ(dVidvk)] is diagonal at
x = x0, v — 0. Now we determine vx(x, v2, , vn) from the equation
9fjdv1 = 0. Hence

/iθ, v) = fax, vu v2, , vn) + (v - vτγ e^x, v),

where ex(x9 v) does not vanish for x near x0, if v is small. Applying
this process to v2, , vn in succession, we obtain

n

/i(», v) = fx{x, 0) + Σ (^i - Vjf eά{x, v),
i=i

for x near x09 and for v sufficiently small. This type of result is known
as Morse's lemma (see M. Morse [11].) We set

γ . = (Vj - vj) I ej(x, v) 1/2
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and

f(x) = fx(x, 0) = f(x, uo(x)).

Introducing V as variable of integration, we have F as a sum of
integrals of the form

(5.2) I(x, λ) = τ(λ) J| f(x) ± VI • ± VI \λ

gi(x, V)dV.

We note that

fr(α, 0) = g(x, uo(x)) 2nl2 A~ll\

where

A = det

This integral could be handled by an application of Theorems 2.2
and 2.3 n times; we prefer to apply the theorems only twice. After
rearrangement of indices, we may assume that

eλ(x, v) > 0, ek(x, v) > 0,

e*+iO», v) < 0, ek+ι(x, v) < 0. Here k + I = n. We write

rl^VlΛ- ••• VI; 1*= Vi+ι + ••• F J + I .

Then

Here a*! and ω2 represent the corresponding angular variables. Inte-
grating first over these angular variables we obtain

I(x, λ) - τ(λ) J jl /(a?) + r? - rl |λ^2(x, r?f r^r^1 r^drβr,.

We note that ^2 is regular in τ\ and rj, and

g2(x, 0, 0) =

Now we may expand g2 in integral powers of r\ and rj; for fixed
λ the remainder will be smooth in x if enough terms are taken. It
therefore suffices to find the singularity of a single term of the form
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(5.3) J(χ, λ) = 7(λ) 1 f(x) + 8l - s2

The leading term of I(x, λ) will have precisely the form (5.3),
multiplied by

(2π)nl'

-ΊM1
g(x, uo(x)) .

Now applying Theorem 2.3, we see that

sinπλ

sin π ( λ + —

sin π[ λ H j — sin π —

sin τr( λ + —-
2

(x, λ),

where

λ + -i-

and i2(cc, λ) is regular. Now applying Theorem 2.2 to I±, we find that

f+\+mi2)

J(x, λ) = Γ (A) r ( A ) 7(λ)Γ (λ + 1)

x

sinτr( λ + —) — sin Γ —1 2 / 2
tγi

sinττ( λ + —

k \ k
sin π( λ + — — sin π —

2/ 2sin π( λ + —
V 2

Γ( λ + | -

Hence the leading term of I(x, λ) is given by

(5.4)

X

! g(x, uo(x))

J+
7 λ+nβ

Γ( X + -^ + 1

R2(x,X).

with
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(5.5) d+ = 7(λ) Γ(λ

sin π[ λ + —) — sin π —
2/ 2

(5.6) <L = γ(λ) Γ(λ + 1)

The coefficients d+ have simple poles as functions of λ according to

the following scheme:

If k and I are both even, there are poles if λ is of the form

— 2(7, g integer Ξ> 0.

If A and Z are both odd, there are poles if λ = — 2q — 1, q integer

^ 0.

If k + I is odd, there are poles if λ = q + 1/2, # any integer.

Since /(#, λ) is regular for all λ, of course the sum of the residues

at these poles is zero.
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NORMS AND INEQUALITIES FOR CONDITION NUMBERS

ALBERT W. MARSHALL AND INGRAM OLKIN

The condition number cφ of a nonsingular matrix A is
defined by cφ(A) = φ(A)φ(A-ί) where ordinarily φ is a norm.
It was proved by 0. Taussky-Todd that (c) cφ(A) ^ cφ(AA*)
when φ(A) = (tr AA*)1/2 and when φ(A) is the maximum abso-
lute characteristic root of A. It is shown that (c) holds when-
ever p is a unitarily invariant norm, i.e., whenever φ
satisfies ψ(A) > 0 for A Φ 0; φ(aA) = | a \ ψ(A) for complex α;
ψ(A + B) ^ p(A) + p(J3); p(A) = p(Aϊ7) = ψ(AU) for all unitary
Z7. If in addition, φ(Eij) = 1, where £7̂  is the matrix
with one in the (i, i)th place and zeros elsewhere, then
cφ(A) ^ [^(AA*)]1/2. Generalizations are obtained by exploiting
the relation between unitarily invariant norms and symmetric
gauge functions. However, it is shown that (c) is inde-
pendent of the usual norm axioms.

l Introduction* The genesis of this study is the proposition that
under certain conditions, the matrix AA^ is more "ill-conditioned" than
A. More precisely, the condition number cφ(A) is defined for nonsingular
matrices A as

cφ(A) = ψiAMA-1) ,

where ordinarily φ is a norm. The statement concerning ill-condition-
ing of A A* is the inequality

(c) cφ(A) S cφ{AA*) .

Where φ{A) is the maximum absolute characteristic root of A and
where φ(A) — (tr AA*)lβ, inequality (c) was proved by 0. Taussky-Todd
[7]. This raises the question of whether (c) is true for all norms. In
this paper, we show that quite the contrary is true; (c) is independent
of the usual norm axioms. However, we also prove that (c) does hold
for a quite general class of norms.

In the course of proving these results, we obtain some inequalities
for symmetric gauge functions, which may be of independent interest.

2* Gauge functions and matrix norms* We call φ a matrix
norm if

( a l ) <p(A) > 0 when A Φ 0 ,
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242 ALBERT W. MARSHALL AND INGRAM OLKIN

(all) φ(aA) = | a \ φ{A) for complex a ,

(alii) φ(A + B) ^ φ(A) + φ(B) .

In addition to these basic axioms, various other conditions are some-
times imposed:

(alV) φiEv) = 1 ,

where Ei£ is the matrix with one in the (i, j)th position and zero
elsewhere,

(aV) φ(AB) rg φ(A)φ(B) ,

(aVI) φ{A) — φ( UA) = φ(A U) for all unitary matrices U .

If φ satisfies al, all, alii, and aVI, φ is called a unitarily invariant
norm.

There is an important connection between unitarily invariant norms
and symmetric gauge functions. A function Φ on a complex vector
space is called a gauge function if

( b l ) Φ(u) > 0 when u Φ 0 ,

(bll) Φ{au) = I a \ Φ(u) for complex a ,

(bill) Φ(u + v) ^ Φ(u) + Φ{v) .

Often it is convenient to assume, in addition, that

(blV) Φ{ed = 1 ,

where e{ is the vector with one in the ith place and zero elsewhere.
If, in addition to bl, bll, and bill,

(bV) Φ(ult , un) = Φ{exuil9 , enuin)

whenever ε̂  = ± 1 and (ίl9 , in) is a permutation of (1, , n), then
Φ is called a symmetric gauge function.

It was noted by Von Neumann [8] that a norm φ is unitarily
invariant if and only if there exists a symmetric gauge function Φ
such that φ{A) = Φ(a) for all A, where al, , a\ are the eigenvalues
of AA*.

If Φ is a symmetric gauge function and u, v satisfy u{ ^ vi9 i —
1, " ,n, then it follows [6, p. 85] that

(2.1) Φ(ulf , un) ^ Φ(vlf , vn) .

If Φ is a symmetric gauge function satisfying blV, then [6, p. 86]

n

(2.2) max luA ^ Φ(uu , un) ̂  Σ I uι I
i i l
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If φ is the unitarily invariant matrix norm determined by Φ as above,
then it follows that

φ(AB)
φ(A)φ(B) [max Xt

* 3

n max λ, (J55MM)

[max X{ (AA*)][max λ, (BB*)]
i j

^ n ,

where λ^M") are the eigenvalues of M. Thus, for any k Ξ> n, kφ is
a unitarily invariant matrix norm also satisfying aV. Of course, φ
itself satisfies alV (since Φ satisfies bIV)? and this property is destroyed
by the renormalization.

3* The condition number inequality*

THEOREM 3Λ. If φ is a unitarily invariant norm, then

< c ) cφ(A) ^ cφ(AA*) .

If Φ is a symmetric gauge function which determines φ, then we
may rewrite (c) in the form

, an)Φ(ar\ , α--1) ^ Φ(a\, , a\)Φ(a?9 , a~2) .

Thus, Theorem 3.1 is a very special case of

THEOREM 3.2. If Φ is a symmetric gauge function, then
Φ(a{, , ar

n)Φ{aϊr, , α~r) is increasing in r > 0, where at > 0.

The proof of Theorem 3.2 is embodied in the lemmas below.

Following [2] we say (a19- -,an) is majorized by (&i, •••,&„),

written (a) -< (b), if

( i ) a, ^ . ^ an > 0, 6X ^ . ^ 6n > 0,

(ϋ) i > ; ^ Σ & ; , fc=l, . . . , n - l ,
1 1

(iϋ) Σ «ί = Σ &*
1 1

LEMMA 3.3. 7/ (a) •< (b)? α̂ c? Φ is a symmetric gauge function,
then

(3.1)

(3.2)

Proof. Proofs of (3.1) have been given by Fan [1] and Ostrowski
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[3]; by an argument similar to that of Fan, we prove (3.2).
First, note that we can assume for h and j fixed, h < j ,

( 3 . 3 ) ah = abh + ( 1 - a)bj9 aά = ( 1 - a)bh + abjf a, = bi9iΦ h , j .

That this is true follows from the fact that if (a) -< (b), then a can
be derived from b by successive applications of a finite number of
transformations of the form (3.3) (see [2, p. 47]).

Let 6 = (6i, , bh_19 bjf bh+l9 , bd_19 bh9 bj+1, , 6Λ), so that Φ(bl9 9bj
= Φ(b19 , bn). By convexity,

(abt + (1 - a)^)-1 ^ αδΓ1 + (1 - α^Γ 1 .

Then using (2.1) and the convexity of Φ, it follows that

Φ(ar\ , a-1) = (PKα^ + (1 - α)^)- 1 , , (αδΛ + (1 -

^ Φ{abτι + (1 - αjδf1,

^ aΦφτ\ , 6^x) + (1 - a

As a consequence of Lemma 3.3., we have that if (a) -< (b) them

Φ{aλ, , an)Φ(ar\ , α"1) ^ Φ(blt , δJ^ίδΓ1, , 6Γ1) .

The proof of Theorem 3.2 is completed by the following

LEMMA 3.4. If ax ^ . ^ an > 0 and a, = a\IΣoCU9 b, = a\jΣas^
0 < r < s, then (a) •< (b).

Proof. We must show that for all k,

s >

which is true if and

k

1

only

*

if

<r
Σ«!

1

Σ ocl Σ «5 - Σ αί Σ «5 = Σ«I Σ «ϊ(αrr - «Γr) ̂  0 .
1 Λ+l 1 A+l i=l j~k+l

The latter follows from at ^ α,-, i < j . ||
Observe that by (3.1) and Lemma 3.4, we have

In view of (2.2), it is perhaps natural to expect that

( 8 4 ) or, y , . , < ) sμ_ 0<r< ai^...^
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for any symmetric gauge function Φ. To see this we need only prove
the left hand inequality, which may be written in the form

and which is a consequence of (2.1).
An interesting counterpart to Theorem 3.2 can be obtained from

(3.4).

THEOREM 3.5. If Φ is a symmetric gauge function satisfying
blV, then [Φ(ar

u , ar

n)]llr is decreasing in r > 0 whenever ai > 0,
i — 1, 2, , n. Thus [Φ(a[, , ar

n)Φ(aΐr, , a~r)]llr is decreasing
in r > 0.

Proof. We have that

the first inequality by blV and (2.1). The second inequality is (3.5).
Thus

so that

The theorem now follows from bll. ||

Theorem 3.5 can, of course, be specialized to yield a kind of con-
verse to (c).

THEOREM 3.6. If φ is a unitarily invariant norm satisfying
alV, then

(c*) [cφ(AA*ψ2 ^ cφ(A) .

Condition (c*) can also be obtained under somewhat different hy-
potheses. In particular, if ψ satisfies aV, then

cφ{AA*) -
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If also φ(A) = <p(A*), then (c*) follows. Of course, φ{A) = φ{A*) if
φ is unitarily invariant.

4* Independence of the norm axioms and (<:)• It is our pur-
pose here to show that the condition number inequality (c) does not
follow from the usual norm axioms al — aV. In fact, all, alii, alV,
aV and (c) are independent.

REMARK. It has been shown by Ostrowski [4] that al is implied
by all, alii, aV, together with φ(A) ^ 0, so that al is not included
in the list of independent properties. Rella [5] has shown that all,
alii, alV and aV are independent, and we add (c) to this list.

The results which prove the independence of all — aV and (c) are
summarized in the following table, where +( —) indicates that a
property is true (false).

φ(A)

1

(rank A)(tτ AA*)1'2

n max

max

all

—

+

+

+

+

alii

+

—

+

+

+

alV

+

+

—

+

+

aV

+

+

+

—

+

(c)

+

+

+

+

—

An example which serves in the last line of the table just as well
as Σ I ai3 | is the norm max̂  ^y I aij I = SUP* Φ(%A)/Φ(x)9 where Φ{x) —

xi |. Norms of this form are called "subordinate" or "lub" norms,
and in this case Φ is a symmetric guage function.

The remainder of this paper is devoted to proving the propositions
indicated in the table.

The results for φ(A) = 1 are obvious, so we begin by considering
φ{A) — (rank A)(tr AA*)1'2. In this case, all and alV are obvious, and
(c) follows from Theorem 3.1, since (tr AA*)112 is unitarily invariant.
As is well known, (tr AA*)112 satisfies aV; this together with rank AB ^
(rank A)(rank B) yields aV for φ(A) = (rank A)(tτ AA*)112. That alii
is violated may be seen by taking A — I and B the matrix with a
unit in the (1, l)th place and zeros elsewhere.

For <p(A) = n maxί(i | ai3 | and maxΐfi | aί31 the first four columns
of the table are well known, and we need only prove (c). Let ei be
the row vector with one in the ith position and zero elsewhere. Denote
M~λ — (mίj) where M= {mi3), and let U— AA*. By Cauchy's inequality,
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, aiS I I a« I - ! e.Aef 11 β ^ β j I ̂  [(eiUeT)(eri){eae*)(eβU-1etψ*

Hence,

max I a{j | max \aaβ\ g (max | uu | max | ua<* | ) 1 / 2 ,
ί j Cύ β ί Cύ

or

cφ(A) ^ M

Since U = AA* is positive semi-definite,

and it follows that cφ(AA*) ^ 1. Thus, we have that

(4.1) cφ(A) ^ [cφ(AA*)]112 ^ cφ(AA*) ,

which gives (c).
Note that the left inequality of (4.1) is a reversal of inequality

(c*). That (4.1) also holds if φ(A) is the maximum of the absolute
values of the characteristic values of A was proved by 0. Taussky-
Todd [6].

Since the first four columns of the table are well known for φ(A) =

Σ\ai3-\f we again need consider only (c). If A=(n o τ \ where B —

p). Then (c) is violated. This same example shows that (c) is

violated for φ(A) — max; 2JJ I aa l
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FINITISTIC GLOBAL DIMENSION FOR RINGS

HORACE MOCHIZUKI

The finitistic global dimensions lfPD(R),lFPD(R), and
IFID(R) are defined for a ring R. We obtain the following
results for R semiprimary with Jacobson radical N. C is
a simple left j?-module and I. dimRC < oo, and suppose
that I. άimR W-'IN* < oo for ^ 3 . Then m ^ lfPD(R) =
IFPD(R) ^ (m+1). Theorem 2: Suppose that I. inj. dim* P ^
I. inj. dimR R/N2 < oo for every projective (jβ/iSΓ2)-module P
and that Z. inj. dim* N^N* < oo for i ^ 3. Then IFID(R) =
I. mj. dimRR < oo. The method of proof uses a result of
Eilenberg and a result of Bass on direct limits of modules
together with the lemma: If M is a left ϋJ-module such that
Nk~ιM Φ 0 and NkM= 0, then every simple direct summand
of N^1 is isomorphic to a direct summand of Nk~1/Nk.

1* We begin by discussing some further properties of perfect and
leftjperfect rings. The rest of the paper is devoted to giving sufficient
conditions for finiteness and equality of certain finitistic global dimensions
for a semi-primary ring.

Let R be a ring (with identity). By an .R-module we shall always
mean a left unitary module over R. In ([7]) and ([10]), Eilenberg and
Nakayama define what they called minimal epimorphisms. Bass ([1])
altered this definition to call minimal epimorphisms protective covers.
Eilenberg ([7)] studied the dimension theory for modules having minimal
epimorphisms and said that a category of modules is perfect if every
member of the category has a protective cover. Thus Bass ([1]) called
a ring R for which every iϋ-module has a protective cover a left perfect
ring. There are two special types of left perfect rings about which
we are particularly interested. One is the semi-primary ring R where
the Jacobson radical (/-radical) N is nilpotent and R/N is semi-simple
with minimum condition (semi-simple), and the other is a ring with
minimum condition on left ideals (left Artinian ring).

We define the following finitistic global dimensions for R, using
the definitions and notation of ([1]) and ([3]). IFPD(R) = sup I. dim^M
for all i?-modules of finite projective dimension, lfPD(R) = sup I. dimBM
for all finitely generated (f .g.) iϋ-modules of finite projective dimension,
IFWD(R) = sup w.l. dirnβ M for all ϋί-modules of finite weak dimension,
lFID(R) = swp I. inj. dim^Mfor all iϋ-modules of finite injective dimension.

In § 2 we discuss some further properties of left perfect and perfect
rings.
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In § 3 we give a partial answer to the following questions of
Rosenberg and Zelinsky.

(1) Does lfPD(R) = lFPD{R)el
(2) Is lfPD(R) finite?

We prove that if R is a semi-primary ring with J-radical N such that
N{/Ni+1 has finite protective dimension for i ^ 2, then m ^ lfPD(R) =
IFPD(R) 5g (m + 1) where m = sup {L dim^ C: C is a simple iϋ-module
of finite protective dimension}.

In § 4 we prove in a manner similar to § 3 that if R is a left
Artinian ring with J-radical N such that N*/Ni+1 has finite injective
dimension for i Ξ> 2 and 22 has finite self-injective dimension, then
IFID(R) — I. inj. dim^i?. We also show that if R is a ring such that
the direct product of projectives is protective, if the J-radical N of R
has the property that N^/N**1 has finite injective dimension for i ^ 2,
and if i? has finite self-injective dimension, then IFID(R) = I. inj. dim^i?.
We conclude by giving examples for the above theorems.

This paper is essentially the first half of the author's dissertation
at the University of Washington, Seattle, and was written during his
tenure as a National Science Foundation Cooperative Graduate Fellow.
The author wishes to express his gratitude to Professor James P.
Jans for his advice and encouragement during the preparation of the
dissertation.

2 Left perfect rings* Eilenberg ([7]) and Bass ([1]) introduced
the following concepts.

DEFINITION 2.1. A submodule B of an i?-module A is called
superfluous if B + C — A implies C — A whenever C is a submodule
of A. An i?-homomorphism /: A —> Z) is called minimal if Ker / is
superfluous in A. If A is projective and / is an epimorphism, then /
is called a minimal epimorphism. The ring R is called left perfect if
every iϋ-module has a minimal epimorphism.

DEFINITION 2.2. An ideal N of a ring R is called left (right)
T-nilpotent if given any sequence {αj of elements in N, we can find
an n such that αxα2 an = 0 (an α ^ = 0).

Bass proved the following theorem.

THEOREM 2.3 ([1, Theorem P, p. 467]): Let R be a ring and N
its J-radical. Then the following are equivalent.

(1) N is left T-nilpotent and R/N is semi-simple.
( 2 ) R is left perfect.
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( 3 ) Every R-module has the same weak as projective dimension.
(4) A direct limit of R-modules of projective dimension ^ n has

projective dimension ^n.
(5) R has no infinite sets of orthogonal idempotents, and every

nonzero right R-module has nonzero socle (sum of all simple submodules
of the right R-module).

In [7] Eilenberg generalized the concept of semi-primary ring, and
generalized a number of theorems of M. Auslander. We state two of
them here in a slightly more restricted situation.

PROPOSITION 2.4 ([7, Theorem 11, p. 333]). Let R be a left perfect
ring with J-radical N. If A is an i2-module? then the following are
equivalent.

(1) Extβ+1 (A, R/N) — 0 where R/N is considered as an iϋ-module.
( 2 ) Torf+1 (R/N, A) — 0 where we consider R/N as a right R-module.
(3)

PROPOSITION 2.5 ([7, Theorem 12, po 334]): Let R be a perfect
(i.e., left and right perfect) ring with J-radical N. Then the following
are equivalent.

(1) I. gl. dim R^n.
(2) I. dim^ C — w.l. dimβ C ^ n for all simple i?-modules C.
( 3 ) I. dimβ (R/N) = w.l. (R/N) ^ n where we consider R/N as an

.β-module.
( 4 ) I. dim^ N — w.l. dim^ N ^ n.
( 5 ) I. inj. dim^ (R/N) g n where R/N is considered as an iϋ-module.
( 6 ) r. dirnβ (R/N) = w.r. dim^ (R/N) ^ n where we treat R/N as

a right iϊ-module.

REMARKS. From Proposition 2.4 it is clear that for a left perfect
ring R, I. gl. dim R ^ w.r. dim,, (R/N) ^ r. dim^ (R/N) ^ r. gl. dim R.
By interchanging the I and the r in Proposition 2.5, we see that
I. gl. dim R — r. gl. dim J? = gl. dim R for a perfect ring R.

The following proposition asserts that the simple modules of a right
perfect ring serve as test modules for determining injective dimensions
of modules.

PROPOSITION 2.6. Let R be a right perfect ring with /-radical N.
If A is an JS-module, then the following statements are equivalent.

(a) Ext£+1 (C, A) = 0 for all simple Λ-modules C.

(b) ExtS+1 (R/N, A) = 0.
(c) L inj. dimβ A ^ n.

Furthermore iin^l, then (b) becomes Ext£+1 (R/N, A) = Έxt%(N9A) = 0.
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Proof, (a) <=> (b) and (c) => (a) are obvious. We shall show that
(a)=>(c)

It is well known ([6]) that we can embed any i?-module in an
injective i?-module. Thus it is possible to form the exact R-sequence:

Π A do Π d l Π dz dn-i ^ dn -> _

w h e r e Qi9 0 S i ^ (n - 1), a re inject ive. E x t £ + 1 (M, A) ^ Ext1* (M, Qn)
for all i2-modules M w h e r e we use t h e exact sequences

0 > A > QQ • Imd, > 0

and

0 > Imdi > Qi > Imdi+1 > 0 , 1 5£ i ^ (n ~ 1) .

If we can show that Qn is injective, then A would have injective
dimension ^n.

It is well known ([3, Chapter I, Theorem 3.2, p. 8]) that Qn is
injective if and only if for each left ideal L, each i?-diagram

Qn

with j the embedding map can be embedded in a commutative diagram

A/ •
Qn

By using Zorn's Lemma (as in the proof of Theorem 3.2 in [3]), we
can show that there exists a left ideal LQ of A containing L such that

(k the embedding map) is commutative and that / cannot be extended
to any left ideal of R properly containing Lo. If Lo — R, then we are
done. If Lo Φ R, then R/Lo Φ 0. According to Theorem 2.3, R/Lo has
nonzero socle S(R/L0) — S.

S — ®ΣCi is the direct sum of simple /^-modules. It is well-known
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that Ext^ ( φ ΣCi9 Qn) ~ ΠΈxt^iCi, Qn), which is the zero module.
There exists a left ideal Lx of R containing LQ such that LJLQ = S.
Exti (S, Qn) = 0 implies that we can extend / (and g0) to Lx, contra-
dicting the maximality of LQ. Qn is therefore injective.

COROLLARY 2.7. If R is a right perfect ring with J-radical N,
then I. gl. dim R = I. dim^ ΛJ/iV ^ r. gl. dim i?.

Proof. Since L gl. dim R is the supremum of injective dimensions
of all the iϋ-modules and since I. gl. dim R ^ I. dim RR, it follows from
Proposition 2.6 that Z. gl. dim R~ I. dim ^ β . The second part is essentially
contained in a theorem proved by Eilenberg ([7, Theorem 12, p. 334]).

In [4] Chase proved some necessary and sufficient conditions that
direct products of protective modules be protective. A module A of a
ring R is called finitely related if there exists an exact sequence 0—>
K-^F—>A—>0of i2-modules where F is free and both F and K are f.g.

PROPOSITION 2.8 ([4, Theorem 3.3, p. 467]). For any ring R the
following statements are equivalent.

( 1 ) The direct product of any family of protective iϋ-modules is
protective.

( 2 ) i? is left perfect and finitely generated right ideals of R are
finitely related.

Let R be a ring satisfying (1) and (2) in Proposition 2.8. Let
QΣRa(ae X) be a direct sum of copies of R as an iϋ-module.
Considering the exact sequence

0 > 0 ΣRa > ΠRa > (ΠRa)/(® ΣRa) > 0 ,

we note that (ΠRa)/(@ ΣRa) is the direct limit of protective i?-modules
and is therefore projective. The sequence splits, and φ ΣRa is embedded
as a direct summand of ΠRa.

PROPOSITION 2.9: Let R be a ring satisfying (1) and (2) of Proposition
2.8. If P is projective, then L inj. dimβ P g I. inj. dim^ R.

Proof If P is projective, then P is a direct summand of a direct
product ΠRa copies of R. It then follows by an exercise in C and E
([3, Chapter VI, Exercise 7, p. 123]) that I. inj. dimβ R.

COROLLARY 2.10. Let R he a ring as in Proposition 2.8. If
IFID(R) and l.mj.dimBR are both finite, then they are equal.

Proof. I. inj. dim^ P^l. inj. dim^ R £Ξ IFID(R) = n where P is any
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protective iϋ-module. Let A be an iϋ-module such that I. inj. dimβ A =
n. Considering an exact sequence 0—> K—> P —> A—> 0 where P is
protective, we note that I. inj. dim^ K fg n. Thus we get part of the
exact sequence in Ext as follows:

ExtJ (B, K) > Ext£ (B, P) > Ext£ (S, A) > 0 ,

where B is an arbitrary i?-module. But then Ext£ (£>, P) Φ 0 for an
i2-module B such that Ext^ (5, A) Φ 0. Hence w ^ J. injβ dirn^P ^
I. inj. dimwit! ^ w.

COROLLARY 2.11. Let R be as in Proposition 2.8. IflFID(R) =
I. inj. dim^ R = 0, ί/^e^ i2 is left Noetherian, i.e., R is quasi-Frobenius
([9, Theorem 18, p. 11]).

Proof According to theorem of Bass ([2, Theorem 1.1, p. 19]) R
is left Noetherian if and only if the direct sum of injective i?-modules
is injective. Let {Q{: ie 1} be a collection of injective i2-modules. For
each ie I, we consider an exact sequence 0 —> K{ —> P{ —* Q{ —-> 0 where
P4 is projective and thus injective. Since I. inj. dim^ Ki is finite, Kt is
injective, and the sequence splits. Thus Qt is also projective, and

e I) is a projective iϋ-module and hence an injective i2-module.

3. Sufficient conditions that lfPD(R) = IFPD(R) < coφ In this
section we attempt to give relatively simple sufficient homological
conditions to answer questions (1) and (2) of Rosenberg and Zelinsky
(appearing in the introduction) in the affirmative. We have the following
theorem.

THEOREM 3.1. Let R be a semi-primary ring with J-radical N.
If I. dim,, (N'-W) < - for r ^ 3, then m ^ lfPD(R) = IFPD(R) ^
(m + 1) where m — max {L dim^ C : C is a simple R-module of finite
projective dimension}.

Before we begin the proof of 3.1 we need a preliminary lemma.

LEMMA 3.2. Let R be a semi-primary ring with J-radical N
such that Nφ 0. If M is an R-module such that N'^M Φ 0 and
NrM = 0, then Nr~λM is the direct sum of simple R-modules which
appear as direct summands of Nr~λ/Nr. Thus Nr~sM/Nr~s+1M, r ^
(s — 1), is the direct sum of simple R-modules which appear as direct
summands of JSfr-s/Nr~s+1.

Proof. The second part follows easily from the first part by noting
that Nr-S+1(M/Nr~s+1M) = 0 and Nr-S(M/Nr~s+1M) Φ 0.
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We first observe that (N^/N^M = φ ΣCi (i e I) is the direct sum
of simple iϋ-modules Cίβ Let xeM. Then the map fx;a—>ax,ae iVr~7iVr,
is an i?-homomorphism of iVr~7iVr onto {Nr~1INr)x. Let Ci9 i e I, be one
of the direct summands of (Nr"1/Nr)M. If xoe Ci9 then x0 — ΣdjXj (1 S
j ^ w) where % G JVr~7iVr and cCj G M. Furthermore x0 generates C{.

Let 99: L = ®Σ(Nr-1/Nr) (n copies) -> Γ = {Nr-1/Nr)xj (1 £ j ^ n)
be the iϋ-epimorphism given by φ (Σa3- (1 ^ j ^ n)) = I t e ^ (1 ^ j ^ n).
Since 1/ and ϊ7 are both modules over the semi-simple ring R/N, L =
Ker φ 0 T. Ci is a direct summand of L. By a well-known theorem
([10, Chapter IV, Theorem 2, p. 64]) C{ is isomorphic to a direct summand
of N'-'/Nr.

Proof of Theorem 3.1. Let M be an i?-module of finite projective
dimension. If NM — 0, then M is a direct sum of simple lϋ-modules
of finite projective dimension. Thus M has projective dimension g m
([3, Chapter VI, Exercise 7, p. 123)].

Suppose then that NM Φ 0. We assert that I. dimR NlM ^ m for
i ^ 2. If iVW = 0, then there is nothing to prove. Hence assume
N2M Φθ. Let t be the integer such that NιM = 0 and N^M Φ 0.
We have the submodules N^^'M, 1 ^ j ^ (ί — 2) to examine. We induce
on the integer j . If j = 1, the iV^W is the direct sum of simple
i?-module of projective dimension ^ m by Lemma 3.2 and the hypotheses
of the theorem. I. dim^ (Nt~1M) ^ m, as above. Assume that
I. ά\mR (N*-ί+1M) ^ m v/here 1 < j ^ (t - 2). (N^M^iN^^M) has
finite projective dimension ^ m, being the direct sum of simple i?-modules
of projective dimension ^ m (Lemma 3.2 and the hypotheses of the
theorem). From the exact sequence in Ext in the first variable for
the exact sequence 0 -> N'-t^M-* N^jM—(Nt-jM)/(Nt-j+1M) — 0 we
see that I. dim^ (Nϋ~jM) :§ m. We have therefore proved our assertion.
Since L άimR(N2M) ^ m9 from the exact sequence 0 -+N2M-^ Λf—•
M/N*M-+0 we conclude that Z. dim^ M/JV2ikf < oo.

From the exact sequence 0 —> ΛΓ2 —> R —> i2/ΛΓ2 —> 0 we notice in
particular that I. dim^iV2 ^ m and that i. dim^ (R/N2) ^ m + 1. Now,
iϋ/ΛΓ2 as a ring is semi-primary with /-radical N/N2, and M/N2M is an
i2/7V2-module. Thus M/N2M has a minimal epimorphism as an R/N2

module. Let 0 —> J5Γ—> P—> M/N2M-+ 0 be the minimal (i2/iV2)-epimorphism
for M/N2M. Then i. dim^ P <* m + 1 (since P is a direct summand
of a direct sum of copies of R/N2 as an iϋ-module), and K S (N/N2)P
([7, p. 330]). i Γ = φ l C J α e / ) is a direct sum of simple iϋ-modules
•Ca, and I. dimBK< oo. Again applying an exercise in C and £7 ([3,
Chapter VI, Exercise 7, p. 123]), we see that I. dim^ Ca < oo for all
α e l . Therefore Z. d i m ^ i ί ^ m. Using the exact sequence in Ext for
the exact sequences 0 -* K-> P—> M/N2M-^ 0 and 0 -+N2M-> M-*
M/N2M-> 0,ΘΛY conclude that L d i m ^ I ^ L dimβM/N2M ^ (m + 1).
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Lastly we assert that M/N2M is the direct limit of f.g. iϋ-modules
of finite projective dimension. Let P — @ΣPa (ae Γ) be a direct
decomposition of P into f.g. projective (i?/iV2)-modules (each of projective
dimension ^ m + 1). This fact follows from a result of Eilenberg ([7,
Proposition 3, p. 330]). If A is an arbitrary finite subset of Γ and if
J i s any finite subset of I such that φΣCa(ae J) £ QΣPa(aeA), then
M/N2M is the direct limit of f.g. ^-modules S(A, J) where 0 ->
© ΣCa(a e J) -> φ ΣPJφc e A)-+S(A, J)~-*0 is exact. Since the first two]
both have finite projective dimension, so does S(A, J). From Theorem
2.3 it follows that LάimBM g I. dimB (M/N2M) ^ lfPD(R). Since M
was arbitrary with finite projective dimension, we can write that m g
lfPD(R) SL IFPD(R) ^ (m + 1).

4* Sufficient conditions that IFID(R) < oo. We state the main
theorem of this section.

THEOREM 4.1. Let R be a semi-primary ring with radical N such
that

(a) for any projective (R/N2)-module P,

I. inj. dim^ P ^ I. inj. dim^ R/N2 < oo .

(b) if r ^ 3, then I. inj. dimΛ (N'^/N*) < oo.

Then I. inj. dim^i? < oo, and IFID(R) = I. inj. dimβi2.

Proof. Let M be an iϋ-module of finite injective dimension over
R. Then it follows, in a manner similar to the proof of Theorem 3.1,
that I. inj. dim^ N2M ^ m where m = max {I. inj. dimΛ C : C is a simple
J?-module of finite injective dimension}. From the exact sequence
0 -> AP -> i? — i2/iV2 —> 0 it is evident that Z. inj. dimfi N

2 ^ m and
ϊ. inj. dim^ i2 ^ max (m, n) < oo.

Obviously, ϊ. inj. dimΛ (AΓ/JVW ) < oo. M/N2M is an J?/iV2-module
and therefore has a minimal jR/AP-epimorphism 0 —* K—+ P—• ikί/iV2 —> 0.
As in the proof of Theorem 3.2, i£ is the direct sum of simple R-
modules of finite injective dimension. K is thus a direct summand of
a direct product of simple JK-modules of finite injective dimension, and
we have that I. inj. dimΛ K^ m ([3, Chapter VI, Exercise 7, p. 123]).
From the exact sequence in Ext for the second variable applied to the exact
sequence 0 -* K-> P-> M/N2M-+ 0 we deduce that I. inj. άimB(M/N*M) ^
max (m, n) and hence I. inj. dim^ M ^ max (m, n).

IFID(R) ^ max (m, w)< oo ,

and by Corollary 2.10, IFID(R) = ϊ. inj. άimBR.
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We remark that a semi-primary ring R satisfies condition (a) of
Theorem 4.1 if R is a left Artinian ring with I. inj. dim^ (R/N2) —
n< °o, or if R/N2 satisfies (1) and (2) of Proposition 2.8 and
1. inj. dim^ R/N2 = n < °°. In the first case we apply the well-known
fact ([2, Theorem 1.1, p. 19]) that the direct sum of modules of injective
dimension ^ n has injective dimension gL n for Noetherian rings. Thus
P a direct summand of a free .B-module implies that the injective
dimension of P is less than or equal to the injective dimension of R.
In the second case we use the remarks prior to Proposition 2.9 together
with an exercise in C and E ([3, Chapter VI, Exercise 7, p. 123]) to
find that free iϋ-modules and therefore projective iϋ-modules have
injective dimension less than or equal to the injective dimension of R.

5* Examples* In this section we give examples which satisfy
Theorems 3.1 and 4.1 respectively. The construction is essentially that
given by Chase in [5].

Let Rr and R" be rings and X a left R'-, right i2"-bimodule.
We form the ring R consisting of matrices (α', x, 0, z") where a! e R\
x e X, and α" e R". Addition is componentwise and multiplication is
given by the equation

(αj, xlf 0, a")(ai, x29 0, α") = (a[a[, a[x2 + s^α", 0, a"a") .

Chase proved the following proposition.

PROPOSITION 3.7 ([5, Lemma 4.1, p. 17]). Let R be as above, and
suppose further that Rf is semi-primary (respectively Artinian) with
radical Nr and R" is semi-simple (with minimum conditions). Then
R is semi-primary (respectively Artinian) with radical N consisting of
the matrices (a', x, 0, 0) where o! e Nr and xe X. Moreover gl. dim R =
max (gl. dim R\ 1 + L dim^ X).

If G is the finite group of order 2 and K is a field of characteristic
2, then K(G), the group algebra, is a quasi-Frobenius algebra with
nonzero radical N(G) such that N(G)2 = 0 ([9, p. 7]). Eilenberg et al.
([8, Proposition 15, p. 94]) have shown that for each positive integer
m, there exists a semi-primary ring Rf

m with radical N'm such that
gl. dim JR; = m and (NLf Φ 0. Let Rf = K{G) © R" (ring direct sum).
The radical of Rr is Nf = N(G) + NL. We can suppose that R'm is a
finite dimensional algebra over K. Then Rr is a vector space over K+

(i) Let R' = R',X= N' and R" = K in Proposition 3.7. Then
the following facts hold.

(a) gl. dim R = I. dim^ N — co.
(b) I. dim^ Nj = I. dim,,, (N'Y ^ (m - 1) if j ^ 2.
(c) I. inj. diniβ R = max {I. inj. dim^ R', I. inj. dim^ N'}

= I. inj. dim^ N' — <*>.
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Thus we have an example of a semi-primary (Artinian) ring satisfying
the hypotheses of Theorem 3.1 but not those of Theorem 4.1.

(ii) Suppose that (N')q = (N^Y Φ 0 and (N'y+1 = (N^y+1 = 0 where
q ^ 2. Let R' = R', X = (JV')? and i2" = J5Γ in Proposition 3.7. Then
the following facts hold.

(a) gl. dim R — I. dimΛ N = °°.
(b) i. inj. dim^ R — I. inj.^ 12' = m.
(c) I. inj. dim JY* = I. inj. dim^ (iV')5 ^ w.

This gives an example of an Artinian ring satisfying the hypotheses
of Theorem 4.1.
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THE COLLINEATION GROUPS OF DIVISION RING
PLANES II: JORDAN DIVISION RINGS

R. OEHMKE AND R. SANDLER

In this paper the authors continue their study of the col-
lineation groups of division ring planes (The collineation groups
of division ring planes I. Jordan division algebras, J. Heine
and Angew. Math. vol. 216, 1964). Some of the results
obtained for finite dimensional Jordan division algebras are
extended to a special class of infinite dimensional algebras.

As is well-known the study of the collineation group of a
projective plane % coordinatized by an algebra £% can be
reduced to the study of the autotopism group of & or the
group of autotopic collineations of π, S%f(π). The pair {a, b),
a, be&, is defined to be admissible if and only if there
exists an element a in ^iπ) with (1, l)α = (α, b). Modulo
the automorphism group of . ^ , the determination of 3ίf(jt)
is equivalent to the determination of all admissible pairs (α,
b) and coset representatives ^ , 5 6 ^ ( 7 1 ) such that (1, l)φa,b =
(α, b). With either the assumption & algebraic over its center,
or the assumptions characteristic of & not equal to 0 and
the centers of & and &1 (the algebra of all elements of &
algebraic over the center of ^ ) equal, the admissible pairs
(α, b) are determined. Use is made of Kleinfeld's result on
the middle nucleus of Jordan rings (Middle nucleus = center
in a simple Jordan ring, to appear.) We also prove and use
the result that the algebra £f consisting of all right multi-
plications R/ is commutative, where / is in the subalgebra
generated by a and a~ι over the base field.

Let 9ΐ be any nonalternative division ring (i.e., (3ΐ — {0},•) is a

loop), and let τr(3ϊ) be the protective plane coordinatized by ίft. Then,

as is well known, the study of the collineation group of π, G(π), can

be reduced to the study of the autotopism group of 3t, or the group

•of autotopic collineations of π, H(π). If a is a collineation of π, then

aeH(π) if and only if (oo)a = (00), (Q)a = (0), (0, ΰ)a = (0, 0). Now, in

[3], the pair (a, h) was defined to be admissible if and only if there exists

an element aeH(π) with (1, l)a = (a, b), and it was shown that,

modulo the automorphism group of 9ΐ, ^(91), the determination of

H(π) is equivalent to the determination of all admissible pairs (a, b)

and coset representatives φa>b e H(π)\

( 1 ) (1, l)9>..6 = (α, 6) .
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The second part of [3] was concerned with planes coordinatized
by finite dimensional Jordan division algebras, and it was proved that
if 3ΐ is a finite dimensional Jordan division algebra of characteristic
Φ 2, 3, then (α, b) is admissible if and only if a and b are elements
in the center of 3ΐ, and coset representatives of φa,b were obtained
for a, b in the center of 31. In this paper, we shall prove the follow-
ing theorem:

THEOREM A. If id is a Jordan division algebra of characteristic
Φ 2, 3, and if either

(a) 3ΐ is algebraic over its center, Z; or,
(b) 3Ϊ has characteristic Φ 0, and the center of 3ΐ is equal to

the center of 3ΐ'—the algebra of all elements algebraic over Z;
then (α, b) is admissible if and only if a and b are both in Z.

We shall need a recent result of Kleinfeld in the proof of Theorem
A, and quote it here:

THEOREM 1 [2]. If ΪR is a simple Jordan ring of characteristic
Φ 2, the three nuclei of 3ΐ are equal.

This generalizes Theorem 15 of [3] and is useful in that with this
result we need only show that an element, α, is in any one of the
nuclei of 3ΐ in order to prove that a is in the center of 3ΐ.

Our first step will be to prove some results about Jordan division
rings which are analogous to known theorems about finite dimensional
Jordan algebras, and which are necessary tools for this paper. Recall
that the linearized form of the Jordan identity can be written [1],

= RZWRX + RXZRW + RXWRZ

— Rχ(zw) + RzRχR>w + RWRXRZ

where Rx is the linear transformation corresponding to multiplication
in 3ΐ by the element x.

We now prove

THEOREM 2. Let a be an element of a Jordan division algebra,
9ΐ. Then a and or1 generate an associative subalgebra of 3ΐ.

Proof If 5t is finite dimensional over Zf this result is a trivial
consequence of the well known result [1] that any Jordan algebra is
power-associative. For the infinite-dimensional case, it suffices to prove
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< 3) arW = α*-* for all i, k ^ 1.

For i — 1, set # = α&, 2 = w = α in (2), and apply the last two result-
ing transformations to α"1 to obtain

a-1 (Rak+2 + 2RaRakRa) = ar\RaM + RakRaRa + RaRaRak),

or

α~V+2 + 2ak+1 = α-V+ 2 + [(αrV)cφ + α*+1,

which implies ak+1 = [(α~V)α]α = akRa — [(α~V)α]i2α. Since 3ΐ is a
division ring, iϋα is nonsingular, and the last equation implies ak =
{a~λak)a = (α*""1)!?,, = (a^a^Ra, which, in turn, implies ak~λ = α~V.
Thus, (3) is verified for i — 1. For i > 1, set a? = α"1, y — a, z — ak

in (2) and apply the first two resulting transformations to a~~ι\

a~τ(Ra-iRak+i + Rak + RaRak-ι)

= a-'iR.k+iR.-i + J?αfc + Rak-iRa) ,

or,

< 4 ) α- ( ΐ + 1 )α*+ 1 + α~V + [(α-Oeφ*-1

If we assume a~jak = αfe~J" for all fc and all j < i + 1, (4) becomes

which implies a~{i+1)ak+1 = αfc~% which together with the truth of (3)
for i — 1 and all fc, completes the inductive proof of the theorem.

Another result which is analogous to a well-known theorem for
finite-dimensional Jordan algebras [1] is:

THEOREM 3. If "St is a Jordan division algebra over a field %
of characteristic Φ 2, and if a is any element of 9ΐ, then the algebra
@ generated by all Rx, for xe%{a, α"1], is commutative.

Proof. In (2), set x — α""1, w — α, z = a\ and get

{ 5 ) Ra~lRaί+l + RaRai-l + -Bα« —

In [1], it is shown that the Jordan identity implies that Rxi, Rxj
commute for any x, and all i, j ^ 0. Thus, for i ^ 1, (5) can be
simplified to

( 6 ) Ra-iRai+i — Rai+iRa-ι .

Next, let x — a~\ w = a\ z = α in (2), and get
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( 7 ) Ra-2Raί+i + RaiRa-ι + RaRaί-2

= Raί+iRa-2 + Ra~iRat + Rai-2Ra o

If i ^ 2, we can use (6) and the fact that RaRaι-2 ~ Raι-2Ra to simplify
(7) to

( 8 ) Ra-2Rai + l = Rai+lRa-2 .

Thus, for all i ^ 3, j?α* commutes with all elements in @ generated
by J2β-i and iία-2. Since the set of all Rf, fe ^[a~τ], is generated by
i?α-i and i2α-2 [1], we can conclude that for i ^ 3, i?αi is in the center
of ©. Similarly, we can show that for i i> 3, Ra~i is in the center
of @. Next, we substitute in (2), x = z = α2, ̂  = α""4, and, using the
fact that Ra-i is in the center of @, we conclude

( 9 ) Ra2Ra-2 = Ra-2Ra2 .

Finally, substituting x — z — a, w = a~\ and using (9), we can deduce

(10) RaRa-ι -= Ra-iRa .

But from (6), we know that Ra-iRa2 = Ra2Ra-i. Thus, we see that
Ra-i commutes with Ra, Ra2, Ra-i, and Ra~2, and hence that Ra-ι is in
the center of @. Similarly, we can conclude that Ra, Ra2, Ra-2 are
also in the center of @, and thus that @ is commutative.

We now turn to the proof of Theorem A. Recall that in [3] the
admissibility of (α, b) for any nonalternative 5R was seen to be
equivalent with the isomorphism of 3ΐ and a certain isotope of 3ΐ, β5α,6,
obtained by recoordinatizing π with the new coordinate points (<»)' =
(oo), (0)' = (0), (0, 0)' = (0, 0), and (1, 1)' - (α, 6). Now, in [3],
(Sec. 9) the following theorem was proved but not stated explicitly.

THEOREM 4. If 3ΐ is commutative, and if the middle nucleus of
3ΐ is equal to the center of 3ΐ' and if %[Rxi] is commutative for all
xe R, then if @o>6 is commutative, @α>6 can be represented as follows:
@α,δ ~ (9Ϊ, Θ, *), where

(11) x 0 y = x + y ,

and multiplication in @α,δ is given in terms of multiplication in sJt:

(12) (y*x) = [(yR

Also, a'b-'eZ.

Notice that (12) is equivalent to

(13) βu - R-iJt
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Since if &atb is to be isomorphic with 31, @α,6 must be commutative
and using Theorems 1 and 3, we have the validity of Theorem 4 in
our present study. From this point on, then we assume that @α,6 is
of the form given by Theorem 4 and wish to determine under what
conditions on the element a, 31 and @α>6 are isomorphic.

We begin with

THEOREM 5. Let 31 be a Jordan division ring, of characteristic
Φ 2, 3, and let &a,b be as in Theorem 4β Then if @α,6 satisfies the
Jordan identity, ive have

(14) Rai - Ri MT - I) + I] for any i ^ 0 ,

where

(15) T = RaRa-i ,

and

(16) qt = ^ ^ - .

Proof. This theorem for 3ΐ finite dimensional is contained in [3]
(Sec. 10, Lemma 2). The proof for the infinite-dimensional case is
exactly the same, keeping in mind that Theorem 3 must be invoked
to let us permute elements of the form Rai and Ru-j.

Assume now that 9ΐ has characteristic p Φ 0o We shall prove
that Theorem 5, together with the Jordan identity for 9ϊ imply that
a is algebraic over Z if &a,b satisfies the Jordan identity. To see this,
observe first that for any k, (14) implies the equalities

(17) Rakp = Rk

a* = Rw - {RlY ,

since qhp — 0.

Thus, if c — ap, we have

(18) Rck = Rk

c, for all k ^ 0 .

Next, recall [3] that the linearized form of the Jordan identity for
@α>6 can be written

(19) = R{zw)R-χRx + R{ZX)R-1R-1RW + R^R^R^R,

= R^R^RJR-1 + RzR^RsR-'Rn + RVR?R.R?R,

We wish to prove a commutator identity:

THEOREM 6. If @α>5 satisfies the Jordan identity, then
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(20) [Rm9 Rci+i] = (ΐ + 1) [RΛβι, Ra] ,

for i ^ 0, c — av, and for all x e 3t.

Proof In (19), let w = c, « = c*. Then we have

RxRci+i + RCRXC% + RGiRxc

= Rci+iRx + RxciRc + RxcRcί ,

or,

(21) [ΛΛ+i] = [Λ Λ Λ J + [ Λ . Λ ]

Thus (20), for i — 1 is verified. If i > 1, we apply our induction
hypothesis to the right hand side of (21), and write

(22) [RXC,RA = Φ*<.β)β<-i,iy - i[

But by (18), we can write RcRci-i = i^Bί""1 = #* = Rci, so (22) becomes

(23) [β.β,Λc*] ^ *[#.«*,#*] ,

which allows us to write (21) as

(24) [Λ.,^+1] = (i + 1) [Λ.β*,ΛJ ,

and complete the inductive proof of Theorem 6.
Now in (20), if we set i — p — 1, we obtain

(25) [RX,RA = 0, for all xe 3t,

but this is equivalent, in our case, to asserting that c = ap is in the
center of 31. Thus, as promised, we demonstrated that if @α>6 is a
Jordan ring, then ap = c e Z, and a is algebraic over Z.

The completion of the proof of Theorem A is quite simple. If
@α>6 satisfies the Jordan identity, and if a is algebraic over Z, then
ae$V—the algebra of all algebraic elements. Now, let α', a" be any
two elements of 3t', and consider 9t[α, α', α"], the subalgebra of 31'
generated by a, a', a". Since (19) holds for all x, y, z e 9ΐ, it certainly
also holds for all x, y, ze$ί[a, a', α"]. But in [3], it was shown
that if (2) and (19) hold for any commutative algebra, then a is in
the center of that algebra. Thus, a is in the center of 3ϊ[α, α', α"]
for any a', a" e 3ΐ', which completes the proof of Theorem A.

As a final remark, we observe that [3] (Sec. 14), a coset re-
presentative φa>h for Hirf/Hffi) was explicitly determined for every
admissible pair (α, b) for which both a and b were in the center.
Thus, for those algebras satisfying the conditions of Theorem A, all
the coset representatives are actually known, and the collineation group
for such a plane is thus completely determined modulo the auto-
morphism group of the algebra.
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ON NON-CONVEX POLYHEDRAL SURFACES IN E2

GEORGE H. ORLAND

In this note only the simplest type of non-convex polyhedral
surface will be examined. These surfaces will be characterized
as the only non-convex polyhedral surfaces which have a con-
vex polar.

Proofs will depend upon the possibility of associating convex sur-
faces to the non-convex ones. Thus, by comparing a non-convex sur-
face with its convex "second polar", it will be possible to discover
how bending affects the angles of the non-convex surface. In a similar
way the Gauss-Bonnet relationship will be verified.

The tools of vector analysis provide simple and efficient means for
keeping track of the sizes of angles on one side of a non-convex poly-
hedral surface. The triple scalar product, together with the rules for
its manipulation and expansion, will be used a great deal. Thus Lemma
1 expresses known facts in terms of these products. In this connection,
sgn [M2£3] is to mean the algebraic sign of the triple scalar product
[ίiί2ί3] of the vectors tlf t2, and ί8. Furthermore sgn [ί^g] will only
be written when \txt2t^ Φ 0.

Polyhedral corners* Let tu , tk be an ordered set of vectors
in Es where k Ξ> 3 and any three consecutive vectors t^ly ti? and ti+1

are linearly independent. (All indices will always be reduced modulo
k.) The set of all vectors which are linear combinations of ti and tiV1

with nonnegative coefficients will be denoted by IL,*+i Furthermore
let the intersection of ΓL-i,* a n d ΓL,i+i be no more than the origin
unless i — jfi — 1 = j + 1, or i — 1 = j . When these conditions are
satisfied the collection of all vectors in the IL,»+i's will be called a
polyhedral corner. The origin is the vertex, the t/s are the edges,
and the IL,<+i's are the faces of the polyhedral corner. The angle
between t{ and ti+1 is the face angle φiti+1 of EL +i The normal to
the face IL,;+i is the vector nifi+1 — ί< x ti+1. The exterior angle et

formed by IL-i,* a n ^ IL,ί+i will have the magnitude of the angle be-
tween n^lti and niti+l9 and the sign of [£ί_1£ί£ί+1]. The dihedral angle
δ{ formed by Π*-i,ΐ a n d IL,;+i is 180° — e{. A polyhedral corner Σ
will be called convex if for each i, the plane of IL,;+i is a plane of
support for Σ.

LEMMA 1. Let Σ—Σ^) be a polyhedral corner. Then Σ is convex
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if and only if sgn [^-1^+1] i>s constant.

Proof. Suppose Σ is convex. It is sufficient to show that

sgn [ ί^^ί i+J = sgn [tiU+Ji+i]

for any i. However t^ and ti+2 must lie on the same side of the
plane of ΐ[i>i+1, so this equality holds.

The "if" part of this lemma will not be used in what follows and
is only mentioned for completeness. For this reason the proof, which
is not trivial, will be omitted.

LEMMA 2. An ordered set of vectors {tlf , tk} determines a
convex polyhedral corner if and only if sgn [ί ΐ_1ί ΐίy] is constant for
all i and all 3 different from i — 1 and i.

Proof. If Σ = Σ(ti) is a convex corner, then sgn [^-A^+i] is con-
stant for all i. For any particular i, the plane of IL-i,* supports Σ
so that sgn [**_!<<*,•] = sgn [^-iM +i] for all 3 different from i — 1 and i.

To prove the converse we must first show that the ί/s determine
a polyhedral corner. Since [ίi_iM»+i] Φ 0 for all i, any three consecu-
tive vectors are linearly independent. Now suppose the faces Π»-i,» a n d
Πy,i+i a r ^ distinct, and i Φ 3 and i — 1 Φ 3 + 1. Any vector common
to both of them is of the form at{_Y + ,S£< = Ίtά + Stj+U where a, β, 7, 8
are nonnegative. By taking the inner product of both sides of this
equation with t{_x x ti we get

0 = 7fo_M ] + δfc-xMi+J ,

so that 7 = δ = 0 and Π»-i,< Π Πi,i+i = 0. Thus we have a polyhedral
corner Σ(t^. The hypothesis now implies that Σ(t^ is convex.

Corners and polars* Starting with some given polyhedral corner
Σ — Σ(ti) we may ask whether or not the vectors nkfl, nlf2, , nk_ltk

form the edges of a new polyhedral corner. For this to occur we
must first of all have every consecutive set of three of them linearly
independent. However

[ni^ltiniti+1ni+lti+i] = [t<t<+iti+2][ίi-A*<+i] Φ 0 ,

so that this is automatically satisfied. The second condition, that non-
adjacent faces intersect in exactly the origin, need not be satisfied in
every instance. When the normals do form a new polyhedral corner
we call it the polar polyhedral corner, or just the polar of Σ, and
denote it by Σp.
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LEMMA 3. A polyhedral corner Σ = Σ(t{) is convex if and only
if it has a polar Σv which is convex, and has sgn [^~i,^,m%,j+i]
positive for all i and for all j different from i — 1 and i.

Proof. Suppose Σ is convex. Using Lemma 2, the existence and
convexity of Σp will follow from the positivity of sgn [%_1)^,ί+1%i>i+1]
for all i and all j different from i — 1 and L This in turn follows
by expanding

[^i-i,i^i,i+Λ ,i+i] = [(£i-i X U) X (ti X ti+Jl itj X tj+1)

and noting that, by Lemma 2, it is positive.
To prove the converse let sgn [%_1>ί%,ίιl%,y+1] be positive for all

i and all j different from i — 1 and i. The preceding equation tells
us that sgn [ίί__1tfίί+1] = sgn [^ίyίy+J for those same ΐ ' s and j's. One
more application of Lemma 2 shows that Σ(t{) is convex.

There is still another way for a polyhedral corner to have a con-
vex polar. This would occur if the sign in Lemma 3 were taken to
be negative.

LEMMA 4. Let Σ — Σ(ti) be a polyhedral corner with at least
four edges. Then sgn [titdtj+1] is constant as a function of j , where
j is different from i ~ 1 and i, and alternates as a function of i if
and only if sgn [ni_ltiniti+1njtj+1] is negative for all i and all j dif-
ferent from i — 1 and i. When this is the case Σ has a convex
polar. In fact Σ has exactly four edges.

Proof. The equivalence can be shown, in the following way, to
be a consequence of the identity

First suppose sgn ftί^+J satisfies the hypothesis. Then

= - s g n [ t i t i + 1 t i + 2 ] = -

and sgn [^-i,ί%,ί+i%,i+i] is negative. Conversely the negativity of
sgn [ni^Uiniti+1njtj+^\ shows that sgn [t ΐt it i + 1] is constant as j varies,
and also that sgn [ ί ^ +J = - s g n [^_A^+1] = - s g n [ί i_1^ ί j + 1 ].

When these hypotheses are satisfied, Lemma 2 shows that Σp exists
and is convex.

The expansion of (tλ x t2) x (t3- x tj+1) can be performed in two
ways to yield the identity
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By hypothesis sgn [ ί ^ +J = sgn(—[ί^ί,-]) and

sgn [t 1^ i + 1] ( [ i ^

Now should sgn [ίAίj +J = sgn [ί 1 ί i ί i + 1], then the faces Πi,2 and Πj,y+i
would intersect in points besides the origin. We conclude that

s g n [ ^ 2 t i f i ] = ~Bgn[t1tjtj+1]

when neither j nor j + 1 is equal to 1 or 2. Now suppose Σ has five
or more edgeso Then

sgn [tMa] = sgn \t2tst6] = sgn [t3tj>δ] = sgn [ ί ^ J

which is impossible. (It is easy to give examples of four-edged poly-
hedral corners which do satisfy the hypothesis.)

We shall call such non-convex polyhedral corners, which have con-
vex polars, saddle corners.

Bending a saddle corner. Starting with a saddle corner Σ = Σ(t?)
we shall form Σvv', the polar of the polar of Σ, and see how it is related
to Σ. An edge of Σp is niti+1 = t{ x ti+1 and a corresponding edge of
Σpp is

Corresponding to the face angle φiti+1 = ^C(ίi, t i+i) of Σ is the face angle

of J ^ . Since

sgn [ ί^^ί i+J = - s g n [ίiίi+A+a] ,

<Pi,i+i — 180° — φiti+1. Corresponding to the dihedral angle

δt = 180° - sgn [tί^Mi-Hl < (^i-i.i, ^i,i+i)

of Σ, the dihedral angle of Σpp is

δ; = 180° — sgn [mi^mimi+i] <£ (^Vi x ^ , m { x mi+

Now

sgn [m^^imί+il

and
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x mi9 mi x mi+1)

Thus

a; = 180° -

The second relation will be used to obtain the following result. The
first will be used later.

BENDING THEOREM. Let Σ = J?(ίf) and Γ = Γir^ be two saddle
corners whose corresponding face angles are equal. Let δ{ be the
dihedral angle of Σ at tί and 7* be the dihedral angle of Γ at r{.
Then sgn (δt — 7{) alternates as a function of i, in the case where
for all ί, sgn[ri_1riri+1] = — sgn [^_A^41], In the case where for
all i, sgn [ r ^ ^ r ^ J = sgn IA-I^-M], either all S{ — 7< have the same
sign or they are all zero.

Proof. The normal ri x ri+1 to a face of Γ will be called siti+1.
In the case where sgn [ r ^ r ^ + J =

δ4 - 7< = [180° - sgn [ί i _ 1 ί i ί i + 1 l < K _ l f i , w<(ί+1)]

- [180° - sgn [r^r^^] < (s^, sifί+1)]

which alternates as a function of i. In the case where

sgn [r^r^^] = sgn [t^tji+i] ,

δi - 7̂  = sgn [ r ^ r ^

= sgn [ r ^ r ^

- [180° -

where δj and Ί[ are dihedral angles of Σpp and Γ^5 respectively, cor-
responding to δi and 7* respectively. We are now able to apply a
well-known "four vertex" theorem [1, Chapt. II, p. 12] to the two
convex polyhedral corners Σpp and Γpp. For the situation we are con-
sidering, this theorem states that either δ\ — Ί\ is zero for all i, or
is zero for no i and alternates in sign as a function of i. Since
[ri^r^i^] also alternates in sign, the assertion is proved.

This theorem has the following interpretation when we think of
the saddle corner as having hinged edges. Picture the corner being
bent and thereby having its dihedral angles altered. Then all of its
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dihedral angles will be altered in the same direction provided it remains
a saddle corner throughout the process.

The case where the signs alternate arises in the following way.
Take a saddle corner, form a mirror image of it, and "bend" this
mirror image. Then compare this last corner with the original one.

The Gauss-Bonnet result* In [2] Polya discussed and proved a
version of the Gauss-Bonnet theorem for convex polyhedral surfaces.
We shall extend his Lemma II to saddle corners. (His Lemma II is
just the statement of the G — B theorem for convex corners.) Other
methods will probably be needed to extend this lemma to general
non-convex polyhedral angles.

Let Σ be a saddle corner so Σp is convex. Call — Kthe (negative)
total curvature of Σ which is, in magnitude, equal to the solid angle
included by Σp. Since (Σpp)p is Σp (or its mirror image), the total
curvature of Σvp is just K. The total geodesic curvature can be found
by taking a polygonal path around a polyhedral corner and computing
the total change in direction along this path. This turns out to be
exactly the sum of the face angles for that corner. The G — B theorem
is valid for Σpp so K + φl,2 + + φ[Λ = 360°. The sum of the face
angles of Σ is

?>i.i + + 9>4.i = (180° - φ[,2) + . . . + (180° - φ[Λ)

= 720° - (φ[>2 + . . . + φ[Λ) .

Therefore

= -K+ 720° - (cpί,2H

= 720° - 360° = 360°

and the G — B theorem is valid for Σ.
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COLLINEATION GROUPS
OF SEMI-TRANSLATION PLANES

T. G. OSTROM

This paper consists in an investigation of the collineations
of a class of planes constructed by the author. The construction
consists of replacing the lines of a net embedded in a given
plane by subplanes of the same net.

For the case in question, the given plane is the dual of
a translation plane. The full collineation group of the new
plane is isomorphic to a subgroup of the collineation group
of the original plane. The main point of the argument is to
show that the new planes admit no collineations displacing
the line at infinity.

I. In [2], the author introduced a new class of affine planes. These
new planes were obtained by a construction which consists of starting
with a plane which is the dual of a translation plane and modifying
some of the lines. By the very process of construction, a part of the
collineation group of the original plane is carried over to the new
plane.

However, the full collineation group for these new planes has not
been previously determined; in particular, it has not been known
whether there are any collineations displacing the line at infinity. In
this paper, we show that (with mild restrictions on the nature of the
original plane) the full collineation group on each new plane is precisely
the group "inherited" from the original plane.

II* Preliminary definitions and summary of previous results*
We shall be using Hall's ternary [4] and certain slight modifications
of the ternary as coordinate systems for planes. The point at infinity
on the line y = xm will be denoted by (m); the point at infinity on
x = 0 will be denoted by (°°).

In any case where the coordinate system contains a subfield % it
should be understood that small Greek letters (with the exception of
p and σ) denote elements of %.

For any affine plane 77 and any set @ of parallel classes, the
system consisting of the points of 77 and lines belonging to the parallel
classes in @ will be called a net N embedded in 77. If (m) is the
point at infinity corresponding to some parallel class in JV, we shall
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find it convenient to speak of (m) as "belonging to N."
A quasifield (Veblen-Wedderburn system) will be said to be a left
quasifield if the left distributive law, a(b + c) — ab + ac, holds.

Let % be a coordinate system with associative and commutative
addition. If % contains a subfield $ such that

( 1 ) a(a + β) = aa + aβ

( 2 ) (aa)β=a(aβ)

( 3 ) (a + b)a = aa + ba ,

for all a, b m % and all α, /S in %, we shall say that % is a right
vector space over %.

If lines whose slopes are in g can be represented by equations
of the type y = xa + 6, we shall say that X is linear with respect to

Now let S be a left quasifield of order q2 (q > 4). Suppose that
£ is a right vector space over a subfield f$ of order q. Let /7 be the
affine plane coordinatised in the usual sense by %. (Note: The line
of slope m through the origin is written y — xm rather than with m
on the left.)

We can then define another plane Π [2] whose points are
identical with the points of 77. The lines of Π are of two kinds:

( 1 ) Lines of Π which have finite slopes not in g

( 2 ) Sets of points (x, y) such that x — aa + c, y = aβ + d,

where a Φ 0, c, d are fixed elements of S while a and β vary over

%.
Now the lines of type (2) may be identified with subplanes (of

order q) of Π. If a permutation σ on the points of Π induces a
collineation of either Π or Π which carries lines of type (1) into lines
of type (1), then σ induces collineations of both planes. If σ is a
translation (elation with axis LM) of either plane, then σ is a transla-
tion of both planes [3].

Now let ί be a fixed element of % which is not in %. Each
element of % can be written uniquely in the form ta + β. The lines
of Π can be written in a more convenient form if each point is
assigned new coordinates as follows:

If (x, y) = (ί& + f2, tηt + %), let

(x, y) = (*& + ft, ίfa + ft).

Define a new operation * such that

(tξ1 + ft)*(ίλi + λ2) = tξ2 + ft is equivalent to

= tfxλ, + ftλ2 ,
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where λ2 Φ 0 and \λ{tμλ + μ2) = t + λ2.
See reference [3].

Then the lines of 77 can be represented by equations of the fol-
lowing forms:

Type ( 1 ) : y = (x — a)*m + β, m $ g
Type ( 2 ): y = xδ + b or x = c.

Let /70 denote the affine subplane of 77 which is coordinatised by %
in Z; let 770 be the affine subplane of 77 which is coordinatised by g in
T. Then 770 is the set of points for which x — 0; 770 is the set of
points for which x — 0.

The plane 77 admits all translations of the form (x, y) —> (x, y +
b). The points of Π0(x — 0) are in a single transitive class under this
group of translations—which also acts as a group of translations on
77. There will be further translations if and only if there is some
element c such that (x + c)m = xm + cm for all x and all m. If
there are no further translations, 77 is what we call a strict semi-
translation plane; we shall say that T is a strict left quasifield.

IΓL The collineation group* It is well known that a net can
be coordinatised in much the same fashion as a plane. If the net is
embedded in a plane, a coordinate system for the plane induces a
coordinate system for the net, provided the lines x = 0, y — 0 and
y — x all belong to the net. Conversely, any coordinate system for
the net can be extended to form a coordinate system for the whole
plane.

LEMMA 1. Let N be a net with q + 1 parallel classes. Let N
be coordinatised by a system S, let F be the subset of © such that
xa is defined for all x in (£, all a in %. Suppose that

( 1 ) Addition in (£ is associative.
( 2 ) F is a field of order q ivith respect to addition and

multiplication in (£.
( 3 ) The additive group in & is a right vector space over F.
( 4 ) (£ is linear.

Then N can be embedded in a Desarguesian plane.

Proof. The additive group is isomorphic to the additive group of
a field $ which is a quadratic extension of %. For instance, if q is
odd, multiplication in & may be defined as follows

(ifi + ξ2) o (ίλi + λ2) = ifoλ, + ξ2λi) + (δξ1X1 + f2λ2) ,

where δ is a fixed nonsquare element of % and ί is a fixed element
not in %. Then the net N will be embedded in the Desarguesian plane
coordinatised by ί£.
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LEMMA 2. Let % be a left quasifield coordinatising a plane Π
of order q2. Suppose that (1) % is a right vector space over a
subfield % of order q and (2) X is linear with respect to %. Let X'
be any other coordinate system for Π subject to the following condi-
tion (a). The point (oo) is the same for both % and X\ (b) X' is an
extension of a coordinate system for the net N consisting of those
parallel classes whose slopes in X are infinite or belong to %.

Then Xf is also a left quasifield satisfying conditions (1) and (2).

Proof. The plane Π is a dual translation plane with special point
(oo). This implies that X' is a left quasifield.

It follows from Lemma 1 that any coordinate system for N must
have properties (1) and (2). These properties will carry over to X'.

We now return to the construction discussed in part II. It is to
be understood that X is a left quasifield of order q2 which is a right
vector space over a subfield of order q, that T is linear with respect
to $, and that Π is the new plane introduced in part II.

Since we shall ultimately be concerned with collineations which
might displace the line at infinity, we shall want to deal with the
protective version of Π. We modify our previous notation so that (m)
denotes the point at infinity on y = x*m.

THEOREM 1, If X is a strict left quasifield, then the affine
collineations of Π are precisely those which it shares with Π.

Proof. For each a in %, there are exactly q translations of ZΓ
with center (a). Likewise, there are q translations with center (oo).
If X is a strict left quasifield, so that Π and Π admit exactly (f
translations, we have exhausted the translations in Π.

This implies that no affine collineations of Π carry a line of type
(1) into a line of type (2). Hence every affine collineation of Π is a
collineation of 77.

LEMMA 3. Suppose that Π admits a collineation which carries
the line at infinity into some line L. Then, without loss of
generality, we may take L to be x = 0.

Proof. By Lemma 2 of [3], L is some line of type 2, hence L
consists of the set of points of an affine subplane of Π. By Lemma
2, we can choose a new coordinate system X' for Π such that this
subplane is coordinatised by a field of order q and Xr is a left quasifield
satisfying (1) and (2) of Lemma 2. If X is initially chosen in this.
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way, L has the equation x = 0. Since the basic construction consists
of replacing lines by subplanes (see [3]), the change of coordinate
system for 77 does not alter the nature of 77.

LEMMA 4. If Π admits a collineatίon carrying L^ into x = 0,
multiplication in T takes the form

(ta1 + A) * (tαa + A) = t[h(alf a2) - βxa2 + aβ2]

+ [Aar1 h(aJ9 a2) + k(alf a2)

and

βL * (to2 + ft) - to2 βλ + & &

where h, k, and R are functions from % x g ^^° S

Proof. By Lemma 2 of [3], (<*>) is the center of q elations with
axis x — 0. These collineations act on Π in such a way as to leave
Πo pointwise fixed. Since x — 0 is fixed in 77, 770 is fixed (not
point wise) in 77. Thus we have a group of elations of 77 which is
transitive on the q points of ΠQΠL^ — (co).

There is a similar group of elations in 77 which has center (co),
axis x — 0, and is transitive on the points at infinity of 770 (excluding
the point at infinity of x ~ 0). These collineations carry over into 77,
appearing as collineations which leave 770 pointwise fixed. The col-
lineations leaving 770 pointwise fixed impose automorphisms of T which
fix each element of F. The elations of 77 with center (oo) and axis
x = 0 impose the "partial distributive law" α*(6 + a) = ab + αα α, b e £,
# € $ , on T. Lemma 4 then follows from Theorem 2 and 3 of [1],

LEMMA 5. Under the conditions of the previous Lemmas, X has
the property that ifb*a= — 1, then b * (α * m) = (— 1) * m for all

m in S.

Proof. The proof is essentially the same as the proof of Theorem
11 in [1].

LEMMA 6. Under the conditions of the previous lemmas, there
exist functions f and g such that h(au a2) = f(a^a2y k(alf a2) = g(ax)a2.

Proof. Given taλ (aτ Φ 0), let ta2 + β2 be determined so that
taλ * (ta2 + β2) = — 1. By Lemma 4, h(al9 a2) + aj32 = 0
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By Lemma 5, we have tar * (ta2y + β2y) = — 7, which is equivalent
to the pair of equations

h(au a{ί) + aβ{ί = 0

k(au a2j) = — 7.

Now, by Theorem 11 of [3], f is a right vector space over $. In
particular, (ta± + &) * β2 — taβ2 + / S ^ . From this, and our definition
of α2, we know that a2 Φ 0. We easily get k(au a2j) = &(#!, α2)7 for
each nonzero aλ and 7 in ί7, where α2 depends on alm Letting a2y =
a, we get fc^, a) — k(a19 a^a^a = gia^a. Moreover, /̂ (αfi, 0) = 0.
This establishes the part of our Lemma that pertains to k. A similar
argument works for h.

THEOREM 2. Under the hypotheses of Theorem 1 and the addi-
tional requirement that q > 4, Π admits no collineations displacing
Loo) the full collineation group of Π is the group of affine collinea-
tions which it shares with Π.

Proof. The relations between the multiplications in T and T is
reciprocal, i.e.

(tξi + Vι) (*λi. + λa) = tξ2 + 7]2 —

(^ 1 + ξ2) * (ί/ix + /*,) = tηx + V2 if λ, Φ 0 ,

where λx * ( ί ^ + /i2) = t + λ2 .

Let us assume that Π does admit a collineation displacing LM. We
shall show that we must have q ^ 4. Now let λ2 = 0, ξ1 Φ 0, λx ^ 0.
We have:

(if 1 + ft) (ίλj = ί

is equivalent to

(if 1 + f 2) * (ίλΓ1 - λΓ1 i2(λx, λΓ1)) = tft + η2,

which is in turn equivalent to the pair of equations (by Lemmas 4
and 6)

ft = /( f i )V - IΛΓ1 - fΛΓ 1 ^^, λΓ1)

% = f2IΓ1 /(f JλΓ 1 + g(ξJλΓ1 - fS fΓ1 λΓ1 - f2 λΓ1 i2(λ,, λΓ1).

Let i?(λi, λΓ1) = S^λj). Solving for f2 and η2y we get

(if 1 + ft) («O - *[/(f 1) --f 1 S(\) - ft λj

f JλΓ1 + /(f JftfΓ1 - ft
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By hypotheses, X is a left quasifield which is a right vector space
over g. Hence

y1) (tx)

Carrying out the multiplications in the above equation and separating
the components, we get the two equations

/(fi) ~ fi S(\ + μ) - Vi (λ + μ) = [/(fx) - ξ1 S(X) - ftλ]

[ f ( ) S

+ μ) - ^ ^ ( λ +

-1 + /(fO^fx"1 - y1 S(x) - η\ ξ-λ]
1 + /(fi) Viξl1 -

Eliminating /(&), we find that the terms involving S also drop "out
and we get

0(f i) (λ + ^)- 1 - g (f r) λ-1 + βr(ei)^-1.

Now if £(&) = 0, then (tξ,) (tx) = ί[/(f J - ξ.SiX,)]. But the solutionjof
any equation of the type (tζ) x = tβ is x = ξ^β, which is in g.

Since ίλ ί g, we have a contradiction. We conclude that gfa) Φ 0.
Hence we must have (λ + μY1 = X~λ + μ~λ for all λ, μ in % except in
the cases that λ, μ, or λ + μ is zero.

With μ = 1, this equation is equivalent to

λ2 + λ + 1 = 0, λ Φ 0, - 1 .

Hence % can contain at most 4 elements. Since we assumed q > 4,
the theorem is proved.
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ON ANTI-COMMUTATIVE ALGEBRAS AND
GENERAL LIE TRIPLE SYSTEMS

ARTHUR A. SAGLE

A general Lie triple system as defined by K. Yamaguti, is
considered as an anti-commutative algebra A with a trilinear
operation [x, y, z] in which (among other things) the mappings
D(x, y) : z—>[x, y z] are derivations of A. It is shown that
if the trilinear operation is homogeneous, and A is irreducible
as a general L. t. s. or irreducible relative to the Lie algebra
I(A) generated by the D(x, y)'s9 then A is a simple algebra.
The main result is the following. If A is a simple finite-
dimensional anti-commutative algebra over a field of charac-
teristic zero which is a general L. t. s. with a homogeneous
trilinear operation [x, y, z], then A is (1) a Lie algebra; or (2)
a Malcev algebra; or (3) an algebra satisfying J(x, y, z)w =
J(w, x, yz) + J(w, y9 zx) + J(w, z, xy) where J(x9 y9 z) = xy z +
yz-x + zx-y. Furthermore in all three cases 7(A) is the deriva-
tion algebra of A and I(A) is completely reducible in Ac

1* A general Lie triple system (general L. t. s.) has been defined
in [6] to be a vector space V over a field F which is closed with respect
to a trilinear operation [x, y, z] and a bilinear operation xy so that

(1.1) [x, y, z] = 0,

(1.2) x2 = 0,

(1.3) [x, y, z] + [y9 z, x] + [z, x, y] - (xy)z - (yz)x - (zx)y = 0,

(1.4) [wx, y, z] + [xy, w, z] + [yw, x, z] = 0,

(1.5) [[u, v, w], x, y] + [[v, u, x]f w, y]

+ [v, u, [w, x, y]] + [w, x, [u, v, y]] = 0,

(1.6) [w, x, yz] + z[w, x, y] + y[x, w, z] = 0.

A general L. t. s. is an extension of a Lie triple system used in dif-
ferential geometry and Jordan algebras. Next we note that if V is a
Lie algebra with multiplication xy9 then V becomes a general L. t. s.
by setting [x, y, z] = (xy)z. As an extension of this it was shown in
[7] that if V is a Malcev algebra [2] with multiplication xy, then V
becomes a general L. t. s. by setting [x, y, z] — — (xy)z + (yz)x + (zx)y.
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In this paper we shall take the point of view that a general L. t. s.
is an algebra A with multiplication xy satisfying (1.1) — (1.6); that is,
A is an anti-commutative algebra with linear transformations

D(x, y): A -> A : z -> zD(x, y) = [x, y, z]

for all x, ye A satisfying (1.1)-(1.6). Thus from (1.6) we see that
each D(x, y) is a derivation of A satisfying various identities. Motivated
by the above examples we shall assume that the trilinear product
[x, y, z] is a linear homogeneous expression in the products of x, y
and z. Thus using anti-commutativity we assume there exist fixed a,
β, 7 e F so that
(1.7) [x, y, z] = axyz + βyz x + 7zx-y.

With (1.7) as the form for the trilinear operation, we next consider
irreducibility conditions on A. First suppose A is irreducible as a
general L.t. s.; that is, A has no proper general L. t. s. subspace B
so that [B, A, A]aB, then 4 is a simple algebra. For if B is a
proper ideal of A, then from (1.7) B is general L. t. s. subspace so
that [B, A, A]cB. Next let I(A) be the subspace of the derivation
Lie algebra D(A) generated by all derivations of the form D(x, y),
then from (1.5) I(A) is a Lie subalgebra of D(A) under commutation.
If A is /(A)-irreducible, then by (1.7) A is a simple algebra.
Motivated by these remarks the main result is the following

THEOREM. If A is a simple finite dimensional anti-commutative
algebra over a field of characteristic zero with a nonzero trilinear
operation [x, y, z] satisfying (1.1)-(1.7), then

(1) A is a simple Lie algebra with β — 7, a — β = 1; or
(2) A is a simple Malcev algebra [4] with a = — 1, β = y = 1; or
(3) A is a simple algebra satisfying J(x, y9 z)w — J(w, x, yz) +

J(w, y, zx) + J(w, z, xy) with a = 1/2, β = 7 = 1/4 and J(x, y, z) —
xy-z + yz x + zx y.
Furthermore in all three cases I(A) is the derivation algebra of A
and I(A) is completely reducible in A.

It should be noted that since the trilinear operation [x, y, z] given
by (1.7) is homogeneous, any nonzero scalar multiple would also be an
admissible trilinear operation. Therefore all superfluous nonzero scalars
will be eliminated to obtain the final above normalizations for a, β
and 7.

2. Identities* We investigate the identities (1.1)-(1.7) with the
assumption that A is a simple finite dimensional anti-commutative
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algebra over a field F of characteristic zero and with multiplication
denoted by xy. From (1.1),

0 — [x, x, y] — a xx y + β xy x + 7 yx x

— (β — T) xy x.

Thus 7 = β or xy x = 0 for all x, ye A. Suppose this last equation
holds then we must have

xy z + x yz = 0 x, y, ze A.

Now let 0 Φ b e A and consider B = bA. B is an ideal of A; for if
y, ze A, then by z = — b°yz. Thus B — 0 or B — A. B — 0 implies
6F is an ideal of A and therefore 4̂ = bF. This implies A2 = 0, a
contradiction to the simplicity of A. But if Rx or i2(#) denotes the
mapping a —> αcc, then B — A implies i?6 is surjective and since A is
finite dimensional, Eb is injective. This contradicts bRb ~ 0 with b Φ 0.
Thus we must have 7 = β.

From (1.2), xy — — yx which is just the statement that A is
anti-commutative.

From (1.3), 7 - / 3 and setting J(x, y, z) = xy z + yz x + zx y we
have

J(x, y, z) = a(xy-z + yz-x + zx y)

+ β(yz-x + zee-2/ + ίπ/ z)

+ 7(zx y + cπ/ 2 + yz x)

= (a + 2β) J(x, y, z) .

Thus if A is not a Lie algebra we have

(2.1) 1 = a + 2/9 .

In case A is a Lie algebra, then β = 7 and D(£, y) = (β — a) R(xy).
The remaining identities give no more information and therefore the
first part of the main theorem is proved by setting β — a — — 1.
Henceforth A is assumed to be a non-Lie algebra.

From (1.4) we obtain

0 = a[(wx>y)z + (xy w)z + (yw x)z]

+ β[yz-wx + wz'xy + xz yw

+ (z wx)y + (z xy)w + (z-yw)x]

= a J(w, x, y)z

+ β [yz-wx + (z'wx)y + (wx-y)z — (wx-y)z

+ wz xy + (z xy)w + (xy w)z — (xy w)z

+ xz yw + (z yw)x + (yw x)z — (yw x)z\
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= a J(w, x, y)z — β J{w, x, y)z

+ β [J{y, z, wx) + J(w, z, xy) + J{x, zf yw)] .

Thus

(2.2) (α - β) J{w, x, y)z = β [J(z, w, xy) + J(z, x, yw) + J(z, y, wx)].

From (2.2) we see that β Φ 0. For suppose β = 0, then from (2.1),
a — 1 and from (2.2), J(w, x, y)z — 0. Now if J(A, A, A) denotes the
subspace spanned by the elements J(w, x, y) for all w,x,yeA we see
that J(A, A, A) is a nonzero ideal of A and so A — J (A, A, A). But
J(w, x, y)z = 0 implies A2 — 0, a contradiction.

We rewrite (1.5) in terms of the derivations JD(%, V) by operating
on y in (1.5) to obtain

(2.3) [D(w, x), D(v, u)] = D{wD{v, u),x) + D(w, xD{v, u)) ,

where for linear transformations S and Γ, [S,T] = ST — TS. We
shall not use this identity since a straightforward computation, as
suggested by the referee, shows (1.6) and (1.7) imply (1.5).

Next using [x, y, z] — (a — β)xy z + βJ(x, y, z) we obtain from

(1.6),

0 = (a — β) wx-yz + βJ(w, x, yz)

+ (a — β) z{wx-y) + β z J{w, x, y)

+ (a — β) y(xw z) + β y J(x, w, z)

and therefore

(2.4) {a - β) J(wx, y,z) — β J{yz, w, x)

= β[J(w, x, z)y - J(w, x, y)z] .

3* P r o o f of m a i n t h e o r e m * We shal l i n v e s t i g a t e first t h e
r e s t r i c t i o n s imposed b y (2.2) a n d (2.4). I n (2.4) se t w = y a n d z—x
t o o b t a i n

(a - 2/3) J{xy, x, y) = β[J(y, x, x)y - J(y, x, y)x]

= 0 .

Thus we have

CASE I. J{χy, χf y) = 0, or

CASE II. a = 2/3 .

We shall show that in Case I, A must be a non-Lie Malcev algebra
(since we are assuming A is not a Lie algebra) and that Case II yields
an anti-commutative algebra satisfying J{x, y, z)w = J(w, x, yz) +
J(w, y, zx) + J(w, z, xy) .
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For Case I we linearize J(xy, x, y) — 0 to obtain

(3.1) J(wx, y, z) + J(yz, w, x) = J(wy, z, x) + J(zx, w, y),

(3.2) wJ(x, y9 z) — xJ(y, z, w) + yJ(z, w, x) — zJ(w, x, y)

= 3 [J(wx, y, z) + J(yz, w, x)].

Using (3.2) and (2.2) we have

3 (a - β) [J(wx9 y, z) + J(yz, w, x)]

= (a - β) [ — J(xf y, z)w + J(y, z, w)x - J(z, w, x)y + J(w, x, y)z]

= β[—J(w, x, yz) - J(w, y, zx) - J(w, z, xy)

+ J(x, y, zw) + J(x, z, wy) + J{x, w, yz)

— J(y, z, wx) — J{y, w, xz) — J(y, x, zw)

+ J(z, w, xy) + J(z, x, yw) + J(z, y, wx)]

= β[2J(xy, z, w)+ 2J(zw, x, y)

— 2J(wx, y, z) — 2J(yz, w, x)

+ 2J(wy, x, z) + 2J(xz, w, y)]

= — 6/9 [J(wx, y, z) + J(yz, w, x)] , using (3.1).

Thus a-β=-2βΦ0 or

(3.3) J(wx, y, z) + J(yz, w, x) — 0.

Now in case a — β = — 2/5 we have from (2.2),

2zJ(w, x, y) = J(z, w, xy) + J(z, x, yw) + J(z, y, wx)

and using this identity with (3.1) we have

2wJ(w, x, y) = J(w, x, yw) 4- J(w, y, wx)

= 2J(w, x, yw) .

Thus A is a Malcev algebra. Using the results of [3] we may assume
a—— 1, β = 7 = 1. Also from [3] the derivation algebra equals I(A)
and I(A) is completely reducible in A.

So we next assume A satisfies (3.3), then using (2.4)^ we obtain

a J(wx, y, z) = β[J(w, x, z)y — J(w, x, y)z] ,

and therefore

a(a — β) J(wx, y, z) = β(a — β) [J(w, x, z)y — J(w, x, y)z]

= β\J(y, w, xz) + J(y, x, zw)

+ J(y, z, wx) — J(z, w, xy)

— J(z, x, yw) — J(z, y, wx)], using (2.2)

= 2/32 J(wx, y, z), using (3.3).
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Thus J(wx, y, z) = 0, or

a(a - β) = 2β\

In the first case, A is a Lie algebra which is a contradiction and in
the second case a — — β or 2/3. Thus as subcases we have

Case A. a — — β and therefore a — — 1, β = 7 = 1;

Case B. α = 2/3 and therefore a = 1/2, J5 = 7 = 1/4.

First consider Case A, then from (2.2) and (3.3) we have

2wJ(w, x, y) = J(w, w, xy) + J(w, x, yw) + J(w, y, wx)

— 2J(w, x, yw)

and therefore A is a Malcev algebra. We shall next show that this
Malcev algebra of Case A actually does not exist. First for any
anti-commutative algebra A define the linear transformation Δ(x, y) by

z Δ{x, y) = J(x, y, z)

and let Δ(A, A) be the linear space of transformations spanned by
these Δ(x,yy& for all x,yeA. Using (3.3) we have

0 = J(wx, y, z) + J(w, x, yz)

= w(Rx Δ{y, z) + Δ(x, yz))

and therefore

(3.4) Rm Δ(y, z)=- Δ(x, yz) e Δ(A, A) .

From identities (2.32) and (2.34) of [2] we also have

2 Δ(y, z)Rx = 2RX Δ(y, z) - 2R(J(x, y, z)) - 4 Δ(yzf x) e Δ(A, A) ,

using also the preceding identity. Thus we see from these identities
that Δ(A, A) is an ideal in the transformation algebra T(A) which is
generated by R(A) — {Rx: xe A}. But since A is simple, T(A) is a
simple associative algebra and therefore Δ(A, A) = 0 or T(A) = Δ{A, A).
But Δ(A, A) ~ 0 implies A is a Lie algebra and therefore Δ(A9 A) is
a simple associative algebra. But we shall next show that Δ(x, yf =
0 and therefore conclude that Δ(A, A) have a basis consisting of
nilpotent elements. Thus Δ(A, A) must be a nilpotent associative
algebra, a contradiction to the simplicity of Δ{A, A). Hence Case A
does not exist. So to show Δ(x, yf = 0 we have

— 2z Δ(x, y) R(xy) = 2xyJ(x, y, z)

= J(xy, x, yz) + J(xy, y, zx)

+ J(xy, z, xy)
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= — J(x-yz, x, y) — J{y-zx, x, y)

— J(z-xy, x, y), using (3.3)

= J(J(x, y, z), x, y)

= s Δ(x, vf ,

that is, Δ(x, yf = - 2 4(&, T/) JK(CC3/). But from identity (2.33) of [2],
Δ(x, yf = — 3 J(cc, ?/) i?(ίcy) and therefore 4(cc, τ/)2 = 0.

Next we derive more identities for Case B and use methods similar
to those used in Case A to show Case B does not exist either. Using
the notation from Case A we obtain again from (3.3) the identity (3.4).
Also with a = 1/2, β = 1/4 in (2.2) we obtain

(3.5) J(w, x, y)z = J(z, w, xy) + J(z, x, yw) + J(z, y, wx) .

From (3.5) and (3.4) we have

Δ(x, y)Rz = -Δ(z, xy) - Ry Δ(z, x) + Rx Δ(z, y) e Δ(A, A) .

Thus as in Case A we see Δ(A, A) = T(A) is a simple associative
algebra. Next from (3.5) we also have

(3.6) R{J{w, xf y)) = Δ{wx, y) + Δ(xy, w) + Δ(yw, x),

and using (3.4) we obtain

Δ(x, yf = [R9, Ry] Δ(x, y) - R(xy) Δ{x, y)

= RJRy Δ(x, y) - RyRx Δ{x, y) + Δ(xy, xy)

= Δ(x, y-xy) — Δ{y, x xy) + Δ(xy, xy)

= - Δ(xy-x, y) - Δ(xy} xy) - Δ(yxy, x)

= - R(J(xy, x, y))

= 0 ,

where the last equality follows from (3.3). Thus as in Case A, we
conclude that Case B does not exist, this completes Case I.

Next consider Case II where a = 2/3 Φ 0. From (2.2) and (2.4)
we see that A satisfies (3.5) and

(3.7) J(wx, y, z) — J(yz, w, x)

= J(w, x, z)y - J(w, x, y)z .

Next we rewrite (3.5) and (3.7) in terms of right multiplications to
obtain (3.6) and

Δ(z, wx) — Rz Δ(w, x) = — R(J(w, x, z)) — Δ(w, x)Rz ,

by operation on y in (3.7). Using this and (3.6) we have

Δ(w, x)Rz — Rz Δ(w, x) = — Δ(wx, z) — Δ(xz9 w)
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— Δ(zw, x) — Δ(z, wx)

= Δ(zx, w) — Δ(zw, x)

(3.8) [Δ(w, x), Rz] = Δ(zx, w) - Δ{zw, x) .

Now using (3.8) and the Jacobi identity we have

[Δ(w, x), Δ(u, v)] = [Δ(w, x), [Ru, i?J] - [Δ(w, x), R(uv)]

= - [[Ru, Δ{w, x)l Rυ] - [Ru, [Rυ, Δ{w, x)]

- [Δ(w, x), R(uv)] e Δ{A, A) .

Thus defining the Lie transformation algebra of A, denoted by L(A),
to be the Lie algebra generated by R(A) — {Rx: xe A} [5], the above
calculations prove

LEMMA 3.9. Δ(A, A) is a Lie algebra and L(A) — Δ(A, A).

For clearly Δ(A, A) c L(A) = 2,M, where Mλ = R(A) and Mt =
[M{_lf Mi] for i > 1. But also since A — J(A, A, A) we have from
(3.6) that Mj.czΔ(A, A) and since Δ(A, A) is a Lie algebra, M^czίίA, A);
thus L(A)czΔ(A, A).

Next we consider the center C of L(A) = Δ(A, A). Since A is
simple, Δ{A, A) is an irreducible Lie algebra over a field of charac-
teristic zero and therefore from [1, Th. 1], Δ(A, A) — C0zf' where
Δ* is a semi-simple Lie algebra and C = {Δ e //(A, A): [Δ, T] — 0 for
all T e

LEMMA 3.10. C — 0 αncί therefore Δ(A, A) is a semi-simple Lie
algebra.

Proof. Let Δ — ^{ Δ(xif y{) 6 C, then for any % , ι ; e 4 we have

(uv)Δ = — vRu Δ

— — vΔ Ru, since Ru e Δ{A, A)

— — vΔ u

= u vΔ .

But next we have

(vu)Δ = Si v ^ (a?<, I/*)

= Si J(vu, xiy yζ)

= Si [«/•(»<!/<, v, %) - J(xi9 yif u)v + J(xi9 yif v)u] ,

using (3.7)

= J(z, v, u) - ^uΔiXt, y{)v + ^vΔiXi, yju,

where z = Ίixiyi
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= J(z, v, u) — uΔ-v + vΔ-u

= J(z, v, u) + v uΔ — u vΔ

= J(z, v, u) + (vu)Δ — (uv)Δ.

Therefore (uv)Δ — J(z, v, u) where z =

Case 1. 2 = 'ΣXiVi = 0. Then (wv)̂ / = 0 and since A — A2 we have
-4 = 0.

2. z = 2 â i/i =̂ 0. Then there exists w e i with a = zw ^ 0;
otherwise zF would be a nonzero ideal in A. Therefore

aΔ = (3w)z/ = J(z, w, z) = 0

and ίΓ = ker J^O. But if is an ideal of A. For if #€ if, ye A, then
(τ/#)J = T/ XJ = 0 and therefore KAaK. Thus K= A which means
Δ — 0. From both of these cases we conclude C — 0.

Next as for Malcev algebras we have the following

DEFINITION. The set N = {n e A : J(n, A, A) = 0} is called the
J-nucleus of A.

LEMMA 3.11. If a, be A are such that J(a, b, A) = 0, then abe N.

Proof Suppose J(α, b, u) — 0 for all ue A, then from (3.7)

J(ab, y, z) = J{yz, a, b) + J(a, δ, z)y — J(a, b, y)z

= 0.

COROLLARY 3.12. JV is an ideal of A which is a Lie algebra
and therefore N= 0.

COROLLARY 3.13. Rx is a derivation of A if and only if
xeN= 0.

Now let

i.e. zD(x, y) = [x, y,z] = — xy-z + — (yz x + zx y) .

Then D(x, y) is an inner derivation, that is, D(x, y) e L(A) — Δ(A, A).
If I(A) denotes the linear subspace spanned by all such D(x, y)Js, then
we have

LEMMA 3.14. The derivation algebra of A equals I{A) and I(A)
is completely reducible in A.
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Proof. First we shall show that any derivation D of A in Δ(A, A) is
actually in I(A). For let D = Rz + (1/4) S4[i?β|> Ru] e Δ(A, A) = L(A).
Then write D = i2(z + (1/2) S< &<#<) + Si-Dfo,^). From this equation
i?(£ + (l/2)Si ίUί̂ /ΐ) is a derivation and therefore by Corollary 3.13 it
equals zero. Thus DeΙ(A).

Next we shall show any derivation of A is in I(A). Since D is a
derivation [iίβ, D] = R(xD) and therefore using the Jacobi identity we
obtain [Δ{A, A), D](zΔ(A, A). Now the map

is a derivation of Δ(A, A). But since Δ(A, A) is a semi-simple Lie
algebra all derivations are inner and therefore there exists T e Δ(A, A)
so that

(3.15) [X, D] = [X, Γ] for all Xe Δ(A, A).

Now since Δ{x, y) — [JBβ, i?^] — R(xy) = 4 D(α;, T/) + J2(a?3/) we have,
using Corollary 3.13,

(3.16) Δ(A, A) = 12(A) ®/(A)

as a vector space sum. Therefore let T = JKβ + D1 where Dx e I(A)
and ze Ay then for any x e A,

[Raf R,] = [R., T - A ]

= [Rmf T] - [Ru, A ]

= [RΛ9 D - A ] , using (3.15)

= R(χβ),

where D = D — Dτ is a, derivation. Therefore

12 (x(D - 2RM)) = R (xD) - 2R (xz)

= [Rx,Rz]-2R(xz)

= 4D(x, z) .

Thus JB (X(D — 2J?Z)) is a derivation and using Corollary 3.13 we have

xφ - 2RZ) = 0 for any xeA.

However this implies 2RZ = D is a derivation and therefore 0 = 2 ^ = D.
Thus from the definition of D we have D — D±e I(A) so that every
derivation of A is in I(A).

The last part of the main theorem is proved in a manner analogous
to the proof of Theorem 9 in [1]. We note from (3.16) that the
completely reducible Lie algebra Δ(A9 A) is such that the subalgebra
I(A) is splittable and has a complementary subspace, namely R(A),
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which is /(^-invariant (because [Rx, D] = R(xD)). Thus from [1, Th.
5], I(A) is completely reducible in A and the proof of the main
theorem is complete.
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A CHARACTERIZATION OF FREE PROJECTIVE PLANES

L. C. SlEBENMANN

A characterization of free projective planes is given that
is more symmetrical than the original definition of M. Hall.
It tends to very simple proofs of two fundamental theorems
due to M. Hall and L. I. Kopejkina-one being the result that
every subplane of a free plane is free.

In a fundamental paper Marshall Hall defines a free plane to be
a projective plane which either is degenerate or is generated as follows
from a 'basis configuration/ ττ0, consisting of at least two points on
a line together with two isolated points. For each pair of points not
already joined in π0 create a distinct line that joins them and add it
to 7Γ0. In the resulting configuration, πlf consider pairs of lines that
do not intersect, and for each create a distinct intersection point and
add it to πu thus forming π2. Continuing, construct 7Γ3, τr4, πδ, π6, etc.
adding alternately lines and points as indicated above. Then π = U*^*
(with the obvious incidence relation) is a projective plane. It is by-
definition a free plane. Hall proved that a free plane contains no
confined configuration, that is, no finite configuration that, like the
Desargues configuration, has ^ 3 points on each line and ^ 3 lines
through each point. Further, using a complicated argument, he showed
that, if a finitely generated plane contains no confined configuration,
it is free. It follows that any finitely generated subplane of a free
plane is free.

L. I. Kopejkina [2] proved, shortly after, that an arbitrary sub-
plane of a free plane is free. (Of interest is the analogy with free
groups.) An exposition of Kopejkina's theorem appears in [3].

Because it suggests a more symmetrical definition of free plane
that leads to very direct proofs of the above theorems, we introduce
the notion of an extension process.

DEFINITION 1. An extension process is a well ordered nested
sequence of partial planes π0 c πλ c c πn c (the subscripts
0,1, •••,%, ••• belonging to a well ordered set) such that if a point
p and a line I appear in a term πn9 n > 0, and in no earlier term then
p is not incident with I—in other words, the new elements in πn may
be incident in πn with elements appearing in earlier terms, but have
no incidences among themselves. From this point we adopt as definition
the characterization of free plane we aim to justify.
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DEFINITION 2. A free plane is a (possibly degenerate) protective
plane, π, for which there exists an extension process π0 c πx c
C πn c with τr0 = 0 (the empty plane) and π = U» ^» s u ^ h that
every new point [or line] in a term πn is incident in πn with at most
two lines [points].

Immediately we can prove

THEOREM I (Kopejkina). Every subplane of a free plane is free.

Proof. If π is a free plane and π0 c π± c c πn c is an
extension process as above for π, then, given any subplane π', the
sequence π0 Π π' c ^ Π TΓ' c c πn Π πf c . is visibly such an ex-
tension process for π'. So πf is free. |

Some definitions and notations are collected in § 2. In § 3 the
result of Hall is proved. Our definition of a free plane is apparently
broader than M. Hall's. In § 4 we prove that the definitions are
equivalent.

2* A set of elements consisting of points and lines, together with
a relation of incidence between points and lines is said to form a
partial plane (or configuration) if every two distinct lines [points]
are together incident with at most one point [respectively line], (which
when it exists we call their join). If every two distinct lines [points]
are together incident with exactly one point [respectively line] the
system becomes a (protective) plane. A plane is said to be non-
degenerate if it contains 4 points no 3 of which are incident with the
same line, and otherwise is said to be degenerate.

If p and σ are subpartial planes of the partial plane π, then
p + σ (or p U 0"), p Π σ, and p — σ are subpartial planes of π defined
in the obvious way.

A configuration p in a plane π is said to generate the least sub-
plane containing p. This subplane is denoted by [p]π (or [p]) and is
called the completion of p in π. The plane π is finitely generated if,
for some finite configuration pan, [p] = π.

An extension process, §f, is regularly presented in the form g7 =
{πn; ne N} where N — {0,1, , n, •} is a well ordered set. πn_ will
denote \Jm<nπm- ^ is said to act on π0 and have the result ^(πQ)~
\Jnrcn. It should be pointed out that the partial plane if(ττ0) need not
be a full projective plane. The g"-stage (or simply stage) of an ele-
ment xe &(πQ) is the least n such that xe πn. If n > 0, x is said to
appear at &-stage n; it is incident in πn with certain elements called
its ^-bearers (or bearers), and these must all lie in πn_ = \Jm<nπm.
Elements in πQ (by convention) have no bearers. Observe that if x g π0
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is incident with y, and y is not a bearer of x, then x must be a bearer
of y, for they cannot both appear at the same stage.

If p is a subpartial plane of π = ξ?(π0), there is a naturally defined
restriction of g7 to p, denoted g5 Πp, viz. {τr% 0 p\ ne N}. This is
apparently a process that acts on π0D p with result p. Also there is
a naturally defined saturation of i? by p, denoted g7 + p, viz.
{τrw + />; n e JV}. It apparently acts on π0 + p with result π. We make
two simple but important observations.

(1) The bearers in ^Πp of an element ^ e ^ are just those £f-
bearers that lie in p.

(2) The bearers in ^ + /> of an element x g τr0 + p include its
g* -bearers and in addition any elements of p incident with x in TΓ.

If if and _ ^ are extension processes, g7 acting on ττ0 and
acting on if (π0), then there is a naturally defined composition of
with g7 denoted ^ o ^ ,

We call a process, g% (a) bound; (b) free; (c) hyper free if for all
w > 0 every new element of πκ has (a) Ξ> 2; (b) 2; (c) 5£ 2 bearers.
Of course an extension process need not fall into any of these categories.
A free plane is by definition a plane which is the result of a hyper-
free process acting on the empty plane, 0 .

A bound process g% whose result, if (π0), is a full protective plane,
is called a completion process for τr0. If p is a configuration in a
plane π, there is a canonical completion process if = {pn; n e J + },
indexed on the integers 2:0, that acts on p with result l/)]^ In fact
p0 — p and pn is defined inductively as the subpartial plane of π whose
elements are those of p Λ - 1 together with all points [lines] of π that
are joins of lines [or points] of pn__1 resp. as n is even or odd.

3* Now we prove Hall's result. Suppose π is a finite partial
plane having P points, L lines, and I incidences between the points
and lines. The rank of π as defined by Hall is

r(π) = 2(P + L) - I.

LEMMA 1. Any finite partial plane, π, which contains no confined
configurations is the result of a hyper free process.

Proof. Set τrw = π where m is the number of points and lines in
π. Since τrw is not confined, there exists some element xm e πm which
is incident with g 2 elements in τrm. Define πm^1dπm to be πm less
the element xm. Since πm_t is not confined, the process may be re-
peated, and after exactly m steps we obtain π0 = 0 . Then
{π^ i = 0,1, , m} is hyperfree and ^"(0) — π.
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COROLLARY. The rank of a finite partial plane containing no
confined configuration is nonnegative.

Proof. In fact r(π) ^ r(πm) ^ ^ r(π0) = 0. |

THEOREM II (Hall). A free plane contains no confined configu-
ration. A finitely generated plane that contains no confined configu-
ration is free.

REMARK. Kopejkina [2] constructed a plane (not finitely generated)
that contains no confined configuration, but is not free.

Proof. Suppose first that π is a free plane and ^ — {πn; ne N}
is a hyperfree process such that ^ " ( 0 ) — π. If p is any finite con-
figuration in π, there is an element x e p having maximal ,^-stage,
m. Since x is incident with at most two elements of τrm, it obviously
cannot be incident with at least three elements of pcπm. Thus p
cannot be a confined configuration.

The proof of the second assertion depends essentially on our defi-
nition of free plane. Suppose that the plane π is generated by a finite
configuration π0 and that π contains no confined configuration. Let
if = {πn; n e J+} be the canonical completion process for π0. Observe
that each partial plane πΛ is finite and i?(π0) = π. Since if is bound
r(π0) ^ r{π^) ^ ^ r(πn). But by the corollary above r(πn) ^ 0 for
all n. Hence for some integer m the minimal rank be attained, and
thereafter r(πn) will have this minimal value. But this means that in
the bound process Sf = {τcn; n ^ m} every element has exactly 2 bearers
i e., £f is free. Now, by Lemma 1, πm = ^~(π0) where J?~ is hyper-
free. So composing £f with ^~ we obtain a hyperfree process with

4* This last section is devoted to proving that the adopted defini-
tion of free plane is equivalent to HalPs.

LEMMA 2. Suppose J^ is hyperfree and π = ^(πQ) is a plane.
Then

(1) JF[ — J?~ Π [π0] is a free completion process for π0 in π; in
fact, for xe[π0], the J^-bearers lie in [7ΓO] and coincide with those
in any completion process for πQ in π.

(2) ^=^+[7Γ0] is still hyperfree; in fact, for xί[πo]9 the
coincide with the JF'-bearers.

Proof. (1) Let if be any completion process for πQ in π. If the
first assertion is false, let x be an element of least g7-stage, m, for
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which the if-bearers do not conincide with the ^ - b e a r e r s . Clearly
m > 0. Then at least one of the ^ 2 if -bearers of x, say y, must
fail to be an ^ - b e a r e r . Since x£π0, y must have x as an ^ - b e a r e r .
But y doesn't have x as an if -bearer and y has if-stage < m . This
is a contradiction.

(2) Supposing the second assertion false, we have some x & [π0]
with an ^"-bearer y that is not an .^"-bearer and (hence) lies in
[τr0] — 7ΓO. But x is incident with y $ τr0; so x £ [πQ] must be an ^
bearer of ye [π0] in contradiction to (1). |

REMARK. This lemma has a useful generalization in which πQ is
replaced in (1) and (2) by a partial plane paπQ that is 'complete' in π0

(see [1, 4.3]). Then, in the proof of (1), the possibility that xeπ0

must be eliminated.

DEFINITION 3β A free completion of a partial plane, π0, is a plane
π which is the result of a free process acting on π0.

Again this seems less restrictive than Hall's definition, but

THEOREM III. Any two free completions of a partial plane π0

are related by a unique isomorphism that fixes π0.

Proof. Let t_^r be a free completion process for 7Γ0, and let gf be
the canonical completion process for τr0 in ^"(πQ). Clearly if (τr0) =
[π0] = ^(TΓo); and according to assertion (1) of the above lemma, if
is free. The theorem now follows from the fact that, if if and if'
are two canonical free completion processes for 7Γ0, there is a unique
isomorphism of if (π0) onto i?'(π0) that fixes π0. |

In a free extension process {τr0, TΓJ of just two terms we say that
7ϋ1 is derived from π0 by a free addition, and τr0 from τc1 by a /rβe
subtraction. Two partial planes are /ree equivalent if the one can be
derived from the other by a finite sequence of free additions and
subtractions. Free equivalent partial planes evidently have isomorphic
free completions.

Recall that a basis configuration consists of a number of points
on a 'base' line and two isolated points.

THEOREM IV. Every nondegenerate free plane contains a basis
configuration of which it is a free completion.

Proof. Suppose π = ^ ( 0 ) is a free plane, where ^ = {πn; neN}
is a hyperfree process. We may assume without loss of generality
that at each stage one element and no more is added, i.e., πn — πn_ + xn,
where xn is an element that has 0, 1, or 2 bearers.
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Applying Lemma 2 to j ^ ~ for stages ^n we find that
+ \πnΛ i s hyperfree; applying the same lemma to j ^ ' for stages

>n we find that ^"' ΓΊ [πn] free completes [τrw_J + xn to [TΓJ.

Now let a be the first stage such that [πa] is nondegenerate. Then
[ττα_] must be a degenerate plane, and, as we have observed, [πa] is a
free completion of [πα_] + xa By an inspection of the various cases
one shows that [πa_] + xa is in every case free equivalent to some basis
configuration π?. This implies that [πa] is a free completion of π?.

For n > α, one readily shows (cf. [1] or [3]) that [πn_] + #w is
free equivalent to [πn_] with a set μw of points adjoined to the base
line, I, of π". (The set μw consists of 2 or 1 points if xn is incident
with 0 or 1 elements in [πΛ_], and of course μn is empty when xne [τrΛ_].)
Thus [7rΛ] is a free completion of [πn_] + μn.

We will show that π is a free completion of the basis configu-
ration πξ = π£ + Uw>α J"«. Let {([7ΓW_] + μn)

k; k e J+} be the canonical
process that free completes [πn_] + μn to πn, and form the composition
of all these processes to obtain £^= {([πn_] + μn)

k; (n, k)e N x J + , w ^ α}
where ([7Γα_] + μa) is to be read as πf, and N x J+ is well ordered
lexicographically. This is a hyperfree process acting on π% with result
π. The saturation ^ = 6? + π^ is the desired free completion process.

Clearly <^(π$) — π; and £f is a bound process since all elements
with < 2 ^-bearers lie in πξ. To show that & is actually free
observe that every new element, x, of 6f appeared in 6^ with exactly
2 bearers. If x has an extra bearer, y, in £f, then j/ 6 μn where x
has ^-s tage (m, k)e N x J+ and n > m. But y is incident with both
α? and base line Z of πζ, i.e., 7/ is the join of x and I. Then T/G [πm]
in contradiction to y e μn. So & must be free. |

This completes the proof that the definition of free plane we have
proposed coincides with M. Hall's definition.
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SIMPLE AREAS

EDWARD SILVERMAN

Let λ Ξ> 1, E = EN and g be continuous on E x E X E with
g(a,-,') convex, g(a,kb,kc) — k2g(a,b,c) for all real k and
(b2 + c2)\λ ̂  #(α, b, c) g Λ(δ2 + c2) for all a,b,ceE where ό2 =
11 6 112. If /(α, d A e) = min&Λc=dΛe #(&> b, c) then / is a permis-
sible integrand for the two-dimensional parametric variational
problem.

Let γ be a simple closed curve in E, B be the closed unit
circle in the plane, C be the collection of functions x continuous
on B into E for which x \ 3B e γ and D = {x e C \ x is a D-map}.
Suppose that D is not empty. It was shown in Ά problem of
least area', [7], that the problem of minimizing !(/) over D
is equivalent to minimizing I(g) over D where /(/, x) =

11/(a?, 2? Λ #), ̂ J ») = \ \ff(x> P> V)> V = χu, q = xv and both

integrals are taken over B. The minimizing solution of I(g)
is known to have differentiability properties corresponding to
g, and this solution also minimizes /(/).

The function / is simple, that is, for each aeE, each
supporting linear functional to /(α, •) is simple. If N = 3,
then, of course, each parametric integrand is simple. In this
paper we show that for each simple parametric integrand F
there exists G, satisfying the conditions imposed upon g, such
that F is obtained from G as / was obtained from g.

In [7] we showed that the two-dimensional parametric problem in
the calculus of variations considered by [1, 2, 4> 5, 6] could be reduced
to a nonparametric problem provided the parametric integrand / was
properly related to a suitable nonparametric integrand g, f = Ag. When
this occured, not only the existence of the minimizing solution x was
given by the nonparametric theory [3] but also its smoothness, if g
was smooth. Furthermore, we saw that Ag was simple for each g,
that is, each supporting linear functional of Ag was simple. We shall
show here that whenever / is simple then there exists g such that
f=Ag.

Let E= EN. If aeE or aeE* let a2 = \\a\\\ Let 2\ = E A E
with norm Nlf thus Nx(a A h) is the area of the parallelogram spanned
by a and 6, and let T2 = E x E. We define N2 on Γ2 by N2(a, b) =
(a2 + 62)/2. Let T* be the set of all simple linear functionals over T1

which have norm one. Hence, if ζeT*, there exist ξ and Ύ) in E*
such that ζ = ξ A η with ? = ??2 = 1 and f ' ί? = 0. We frequently
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write ξa for ξ(a).

If φ is defined on P x Q then <pp is defined on Q by φP(q) — φ(p, q)
for all pe P and qe Q.

Let j y be the set of all continuous real-valued functions / on
E x Tλ for which there exists λ = λ(/) ^ 1 with NJX S faS λiS^ and
such that /α is convex and positively homogeneous of degree one for
each α e E. Let <&0 be the set of all continuous real-valued functions
g on E x T2 for which there exists λ ^ 1 with NJ\ ^ ga g λiV2 and
such that ga is convex and homogeneous of degree two for each ae E.
For our purposes, ϋ ^ gives nothing more than ^ ^ {he &0 | there exists
g e ^ o such that h(a, 6, c) — max*, #(α, bcosθ — c sin 0, 6 sin θ + c cos 0)}.

If g e Si then let Ag(a, δ Λ c ) = mind Λ e = b Λ C #(α, 6, c) and

= inf J Σ ^#(α, 6< Λ Σ &, Λ c{ = a\
i=i J

for all α e ϊ 7 ! . We saw in [7] that Agestf and that Ag is simple.
Evidently Ag(a, b Λ c) = minr7,ogr(a, rδ, s6 + r^c).

If g e J2? then 2gα

α

/2 is convex and positively homogeneous of degree
one. Suppose that ξ,ηeE*, and so (ξ,η)eTf. We say that (ξ,η)
supports 2gT at (6, c) if f6 + ψ = 2[βr(α, 6, c ) P and if ξd + ψ ^
2[g(a, d, e)]m for all (d, e). Furthermore, (ξ, η) supports 2gT properly
at (6, c) if (ξ, Ύj) supports 2gψ at {b, c) and if ξb = 77c, fc = 576 = 0.

The following lemma appears in [7]

LEMMA 1. / / (ξy η) supports 2gl12 properly at (b, c) then g(a, b, c) —
Ag(a, b A c) = [b A c, ξ A η\ where [d A e, p A σ] = p(d)σ(e) - p(e)σ(d).

Proof. If r Φ 0 then 4ff(α, rδ, sb + r^c) ^ (rf(6) + r
(r + r-χ)2(f6 + ^c)2/4 ^ (fb + ψf = 4flf(α, 6, c) and #(α, 5, c) = [6 Λ c, ξ A η\.

Now suppose that ξ, 77 G E*, ξ2 = )?2 = 1 and £ . 17 = 0. Let
•H"e,,(6, <0 = [(ί& + ^ ) 2 + (ξc - >7ί))2]/4. It is easy to see that Hζ>γ) = Hp>σ

if ξ A 7] = /> Λ σ, p2 — σ2 — 1 and /> σ = 0. Hence we can define
hζAΎ) = iί f,,. It quickly follows that hζ(b cos θ — c sin 0, 6 sin 0 + c cos 0) =
Jtf(6, c) for all ζ e T* and all real θ. As the sum of squares of linear
functional, h is continuous, convex and homogeneous of degree two.
An easy computation shows that p A σ = ζ if {p, σ) supports 2hψ at
(6, c) where hζ(b, c) Φ 0.

We define Ahζ(b Λc) = infdAe=6AC Af(d, e).

If ^ is a real number let Φ+ — max{^, 0}.

LEMMA 2. Ahζ(b A c) = [6 Λ c, ζ ] + .
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Proof. Suppose that ζ = ξ A rj where ξ2 = η2 = 1 and ξ η — 0.
If [6Λc, f Λ^] = l then (f,3?) supports 2hll2=2hf properly at (V(c)b-7j(b)cf

-ξ(c)b + ξ(b)c). If [b A c, ξ A y] = -I then ξ2Φ) + η\b) = d2 for some
8 > 0. If J?(δ) = 0 let V = b/ξ(b) and c' = -ξ{c)b + ξ(b)c; if η(b) Φ 0
let 6' = b/δ and c' = -[£(&) + δ2^(c)]6/[δτ7(6)] + <5c. In both cases Λ(δ', c') =
0 and V A cf = 6 Λ c. If [6 Λ c, £ Λ rj\ = 0 let ε > 0. If 27(6) Φ 0 let
V = eb and c'= [-η(c)b + 7}(b)c]/[εη(b)]. Then h(b', cf) = εΨ/4. If 7(6) =
0 and f (6) = 0 let V = δ/e and c' = εc; now ft(δ\ c') = ε2[ξ\c) + )?2(c)]/4.
If η{b) = 0 and f(δ) ̂  0 then let 6' = εb and c' - - [ξ(c)b]/[εξ(&)] + c/e
to obtain λ(6', c') = ε2f2(6)/4. The lemma follows by positive homogeneity.

LEMMA 3. Let λ ^ 1, k be continuous on E into [λ"1, λ], ge !3$
<mdf(α, by c) = max {g(α, b, c), k(ά)hζ(b, c)}. Thenfe Stand Af(a, b/\c) —
max {Ag(a, b A c), k(a)Ahζ(b A c)} for all a,b,ce E.

Proof. That fe £&is evident as is the fact that A / ^ m a x {Ag, kAhζ}.
Choose a,b,c with b A c Φ 0. Then there exist d and e with d A e =
b A c and Af(a, d A e) = /(α, d, e), and there exist (/>, σ) which supports
2/α

1/2 properly at (d, e), [7]. Assume, at first, that f(a, d, e) =
g(a, d, e) > k{a)hζ{d, e). If (p, σ) did not support 2gψ at (d, e), then
there would exist (dn, en) —* (d, β) such that k(a)hζ(dn, en) > g(a, dn, en)
and this is impossible for large n. Hence (p, σ) supports 2gτJ2 properly
at (d, e) and Ag(af d A e) — g(a, d, e) — /(α, d, e) = Af(a, d A e). If
/(α, d, e) = k(a)hζ(d, e) > #(α, d, β), a similar argument, together with
the fact that p A σ = fc(α)(f Λ ^), gives k(a)Ahζ(d A e) = A/(α, d Λ e).
If r̂(α, d, e) = k(a)hζ(d, e), let ε > 0 and 0 = max {(1 + ε)2#, & hζ}.
Obviously (̂ 1 + e)p, (1 + ε)σ) supports 2φψ properly at (d, e) and
(1 + εfg(a, d, e) > k(a)hζ(d, e). Hence Af(a, d A e) ^ A^(α, d A e) —
(1 + e)2Λflf(α, d Λ e) and the lemma follows.

Let fe Szf and λ = λ(/). We define k on E x [T? - {0}] by
l/fc(α, ζ) = supΛ^0 [α, ζ]//(α, α). Then fc is continuous, range k c [(λ || ζ H)"1,
λ | | ζ II"1], it"1 is convex and

/(α, a) = max fc(α, ζ)[α:, ζ] .

If /(α, a) — max^gr* fcία, ζ)[α:, ζ] then / is simple.

THEOREM. Let k be as above and f(a, a) = m&Xζeτ* k(a, ζ)[a, ζ].
, 6, c) = max^6Γ* jfc(α, ζ)hζ(b, c) is in & and f = Ag.

Proof. Let {ζp} be dense in T* and λ be as above. Let

gx(a9 b, c) = max {N2(b, c)/λ, &(α, ζjh^b, c)}

and
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gP+1(a, 6, c) = max {gp(a, b, c), k(a, ζp+1)hp+1(b, c)}

where hp — hζp.

By the last lemma,

Agp(a, bΛc) = max ίN& A c) , max k(a, ζm)[b A c, ζj\ £ f(a, b A c)

for each p. Hence lim Agp ^ /. On the other hand, for fixed α, b, c
and arbitrary ε > 0 there exists r such that f(a, b A c) < fc(α, ζr)[b A c, ζr] + ε
and so / = lim Agp.

A little arithmetic shows that

, s) - hψ(uf v)\^\\(r,s)- (u, v) || .

Hence {gψ} is equicontinuous and g0 = lim gp is continuous. It is clear
that go~g and that g e 3f. Furthermore, if K and L are compact
subsets of EN and Γa, respectively, then, by a theorem of Dini, gp

converges uniformly to g on K x L.
It remains to show that A# = lim Agp. Choose a,b, ce E and ε > 0.

There exist (bp, cp) withi\r2(6p, cp) g λAβr(α, b Ac) such that ^ ^ ( α , bpAcp) —
gp(a, bp, cp) and bp A cp — b A c. By passing to a subsequence, if
necessary, we can suppose that there exists (60, c0) such that (bp, cp) —•
(60, c0). Let p be so large that gp{a, r, s) > g{a, r, s) — ε for N2(r, s) ^
λ ^ ( α , b Ac) and so large that || (6P, cp) — (60, c0) [| < ε. Then Ag{a, b A c) =
Ag(a, b0A c0) ^ g(a, b0, c0) < gp(a, b0, c0) + ε < [gψ{a, bp, cp) + λ1/2ε]2 + ε =

[Agψ(ay bp A cp) + λ1/2ε]2 + ε. Hence Ag ^ lim Agp, and the opposite
inequality is evident.

If π is a projection of E onto a plane PcE, then there exist ξ
and 3? in # * such that ξ(πe) = f(e), ^(πe) = ^(e) and [6 Λ c, f Λ )?] Φ 0
whenever 6 and c are linearly independent points of P. A computation
gives [b A c, ξ A y](πe) — [e A cy ξ A η\b Λ- \b A e9 ξ A rj\c and we can
identify π with ξ A η. Since we can also suppose that ξ2 = rj2 — 1,
ς . η = 0, we can identify the set of projections with the elements of Γ*.

THEOREM 2. Lβ£ / e j ^ and suppose that for each ae E and each
5 A c Φ 0 ίAerβ exists a projection ζ0 (in T*) onto the plane determined
by b and c such that [b A c, ζ0] > 0 and such that f(a, ζo(d) A ζo(e)) ^
/(α, d Ae) whenever [ζo(d) A ζo(e), ζ0] > 0. Then f is simple and
/(α, 6 Λ c) - fc(α, ζo)[6 Λ c, ζ0].

Proof. There exist <2 and e such that l/&(α, ζ0) = [d A e, ζo]/f(a, d, e).
Hence
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, Co) f(a, d A e)

Λ ζ,(β), ζ,] _

~ f(a, Ud) A ζo(β)) /(α, b A c) ~ k(a, ζ0)

It is evident that the converse of this theorem holds.

REFERENCES

1. Lamberto Cesari, An existence theorem of calculus of variations for integrals on
parametric surfaces, Amer, J. Math. 74 (1952), 265-295.
2. J. M. Danskin, On the existence of minimizing surfaces in parametric double integral
problems of the calculus of variations, Riv. Mat. Univ. Parma, 3 (1952), 43-63.
3. C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and
related topics, University of California, 1943.
4. , The parametric variational problem for double integrals, Comm. Pure Appl.
Math. 14 (1961), 569-575.
5. Ju. G. Resetnjak, A new proof of the theorem of existence of an absolute minimum
for two-dimensional problems of the calculus of variations in parametric form, Sibirsk*
Mat. Z. 3 (1962), 744-768.
6. A. G. Sigalov, Two-dimensional problems of the calculus of variations, Uspehi Matem.
Nauk (N.S.) 6, 42 (1951), 16-101.
7. E. Silverman, A problem of least area, Pacific J. Math., 14 (1964), 309-331.





PACIFIC JOURNAL OF MATHEMATICS

Vol. 15, No. 1, 1965

CHEBYSHEV APPROXIMATION TO ZERO

JAMES M. SLOSS

In this paper we shall be concerned with the questions
of existence, uniqueness and constructability of those poly-
nomials in k + 1 variables (xί9 x2, , xk9 y) of degree not
greater than ns in xs and m in y which best approximate
zero on Ji x J2 x X h+i, Is = [—1, 1], in the Chebyshev
sense.

It is a classic result that among all monic polynomials of degree
not greater than n there is a unique polynomial whose maximum over
the interval [ — 1,1] is less than the maximum over [—1,1] of any
other polynomial of the same type and moreover it is given by Tn(x) =
2λ~n cos [n are cosx], the normalized Chebyshev polynomial.

Our method of attack will be to prove a generalization of an in-
equality for monic polynomials in one variable concerning the lower
bound of the maximum viz. m a x ^ ^ ^ | PJx) | ^ 21~n where Pn(x) is
a monic polynomial of degree not greater than n. The theorem will
show that the only hope for uniqueness is to normalize our class of
polynomials. This is done in a very natural way viz. by considering
only polynomials, if they exist, of the form:

(0.1) P(xu x2, , xk, y) = Am(xl9 , xk)ym

for which Am{xu x2, , xk) is the best polynomial approximation to
zero on Iλx I2x x Ik. Thus if k = 1, we consider only polynomials
of the form:

(0.2) P(xu y) = fn(xdym + Am_1(x1)r~1 + + 4,(«i)

We find in the case of (0.2) that there is a unique best polynomial
approximation and it is given by Tn{x^)fm(y). Thus we can consider
the question of existence, uniqueness and constructability of a polyno-
mial of the form:

(0.3) P ( x l 9 x 2 , y) = f ^ 4

+ A m ^ ( x l 9 x2)ym-1 + + A0(xlf x2)

that best approximates zero. We find in this case there is a unique
best polynomial approximation and it is given by T^x^T^x^TJty).
Continuing in this way we shall show that the question is meaning-
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ful in general and that there is a unique best polynomial approxima-
tion to zero of the form (0.1) given by f^fa)T%2(x2) ••• Tnjc(xk)Tm(y).

The uniqueness and constructability are the most surprising results,
since as Buck [1] has shown, F(x, y) = xy has amongst those polyno-
mials of the form

p(x, y) = α0 + cφ + y) + a2(x2 + t)

infinitely many polynomials of best approximation which are given by:

α/i + βf* , « ^ 0 , /3 ̂  0 , α + £ = 1

where

/ ( a 1/) = (*2 + 2/2)

A(χ, y) = χ + v - -|-(*2 + t) - ~-.

We shall finally normalize the polynomials in a different way and
show by construction, the existence of a polynomial, of best approxi-
mation in this class. However in this case the question of uniqueness
remains open.

1* NOTATION. Let nί9 n2, , nk be positive fixed integers. Let
σ be the finite set of "vectors {(xUl, x2j2, , %kjk)}, where j u j 2 , -- ,jk

are integers with 0 ^ j \ ̂  nlf 0 ^ j 2 ^ n2, , 0 ^ j k ^ nk; and where
also - 1 ^ xUi ^ 1, — 1 ^ x2J2 g 1, , — 1 <* ̂ yfc ^ 1 and no two of
the xl5l are the same, no two of the x2J2 are the same, , no two
of the xkJ k are the same. Let Q(x, y) — Q{xu x29 , %, y) be any
polynomial in xux2, ' ,%k and y of d e g r e e ^ ^ + n2 + + nk + m — 1
where Q is of degree ^ %, in a?β, s = 1, 2, , Jk and of degree ^ m in
2/. Let π be the set of all such polynomials. Thus if Q(x, y) is in π

Q(χ, y) = pm(χ)ym + vm-ι{%)ym~x + + po(«)

where 2>m(#) is a polynomial in xu x2, , xk of

degree ^nι

Jrn2+ + wΛ — 1

and pa(x), 0 ^ s ^ m — 1, are polynomials of degree ^ nx + n2 + + nk

in ajj, a;a, , xk. Let

AbOT; π, σ] = min | xΓ1^^ — a?ϊ* — pjajj, aja, , xk)
x in σ

which does not depend on the particular Q, but only on the class π
and the leading coefficient polynomial of y.
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THEOREM 1. If Q(x, y) is any polynomial in π and if σ is any
set of the type described above then

max I xpxp xί*ym - Q(xu x2, , xk9 y) | ^ A[pm; π, σψ~m .

Proof Assume not. Then there exists a Q*(x,y) in π and a set
σ of the type described such that:

max I x^xp xn

k

kym — Q*(x, y) \ < A[pm; π, σ]21~m

consider the polynomial:

P(χ9 y) = χ«iχ»* χn

kky™

- Q*(χ, y) - [xΐ'xp %l« - pΛ%)]Tm(y)

where pm(x) is the coefficient of ym in Q*(x, y) and where

( 1 ) Tjy) = 21~mTm(y) = 21"™ cos [m arc cos y] .

Then P(x,y) is a polynomial of degree ^ m — 1 in y and thus can be
written:

P(χ, v) = ^ - i W f " 1 + qm~2(%)ym~2 + + ?oO*0

where ^β(ίc), 0 ^ s ^ m — 1, are polynomials in xu x2j , xk of degree
S nλ + n2 + + wfc.

Let (£ l i i ? x2J 2, , ccΛj Λ) belong to σ and /̂r be one of the points

rTC
yr = cos — , 0 ^ r ^ m , r = integer .

m

Then Γm(τ/r) = (-l)^ 1 -^ and we can show that the sign of

±\Xijιy X232> *' t %k3kt yΛ

i s t h e s a m e a s t h e s i g n of -[x^ x \ ) h - pm{yljχ, --9xk3 k)]. Tn(yr).
To see this note that:

I Tm(yr) I I x\)λ xll - pm(xlh, , xkjk) I

^ A[pm; π, σφ~™ .

But by the assumption

max I αtfi x\*ym - Q*(x9 y) \ < A[pm; π, σ\2χ-m

.and thus a fortiori
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I sΓΛ xljkVr - Q*(xul9 , Xujk, Vr) I < Λ[pm; π, σψ~m .

If we fix x in σ then P{x,y) is a polynomial of the one variable
y and of degree ^ m — 1. And as 2/ takes on the values yr — cos (πr/m),
P{x, y) changes sign m + 1 times. Thus P(x, y) has m zeros, which
means qm^(x) = 0, gm_2(x) = 0, - ,qo(x) = 0 since P(a;, j/) is only of
degree ^ m — 1.

Since $ was an arbitrary point of σ, then

Q,[xu\9 %2j2, , a?*i J = 0 , 0 ^ s ^ m - l

where 0 ^ ^ ^ w1? 0 ^ i 2 ^ w2, , 0 ^ ^Λ ^ nk. But gs(α?) is a polyno-
mial of degree rg nλ in a?!, of degree ^ n2in x2, , of degree ^ w^ in xΛ

and thus

qs[xu x2, , xk] = 0 , 0 ^ s ^ m — 1 .

From which we see P(x,y) = 0 and thus :

xΓ1 α?ϊ*2r ~ Q*(», ») = [xΐ1 '"Xΐk- pΛ%)]Tm(y) .

But clearly:

max I xp x ^ - pm(x) \ \ T(y) \ ̂  A[pm; π, σ]2'-m

which is a contradiction and thus the theorem is proved.
Let us now consider the subset of polynomials π0 of π for which

Q{x, y) belongs to π and pm(x) — 0. Then by the above theorem, a
lower bound for the maximum is

A[0; π, σ] — min | x\ 1 xp \ < 1
x in σ

which clearly depends on the set σ. We shall next show that for
this subset 7Γ0, we get a lower bound for the maximum that is in-
dependent of σ and moreover the lower bound is larger than A[0; π, σ]
for all σ, namely it is unity. In the third theorem we shall show
that unity is the best possible lower bound i.e. there is a polynomial
in τr0 for which the maximum is 21~m.

THEOREM 2. Let Q(x, y) be any polynomial in π0, then

max I xpxp xpym - Q(xl9 x2, , xk, y | ^ 21~m .

Proof. B y c o n t r a d i c t i o n . A s s u m e t h e r e e x i s t s a Q(xlf •••,%,?/>
in 7Γ0 s u c h t h a t :

max I xl^xl^ xlkym — Q(xlf , xk, y) \ < 2 1 - w .



CHEBYSHEV APPROXIMATION TO ZERO 309

Then there exist <5s's, 1 ^ s ^ k, 1 > <?s > 0 such that:

m a x I xp xpy" - Q(xu ---,xk,y)\< 2^m Π δ j .

Let Tm(y) be given by (1) and consider the polynomial

P(χ» , &*, i/) = &Γ1 %lkvm-Q(χi,•••,&*,»)-%lι %lkTm{y).

P(xlf , xk, y) is a polynomial of degree ^ m — 1 in ?/ and of degree ^ wβ

in xs 1 ^ s ^ k.
Let σ* = {(x^, x2J2, , %i;,)} where j l 9 , j k are integers with

0 ^ j , rg ^ + 1, 0 ^ i 2 ^ n2 + 1, , 0 S j k ^ nk + 1;

δi < ^ ^ 1, δ2 < £2 i 2 ^ 1, , δk < xkjfc ^ 1

and the x ^ are distinct, •••, the xk3 k are distinct.
Note that for x in σ*, the sign of P(x13'lt , xkjv y) is the same

as the sign of —xΊ}x xn

k

k

nkfm{yr) for yr = cos (rπ/m), r = 0,1, , m.
This follows from the fact that:

I ̂  ^ ^ Γ - Q(Si, , »*, ^ ) | < 21— Π §nss

and the fact that:

~ k k

I ^ 3 J ! Xk3k

1 m\Vr) — Δ I I Xsjs > * LL °sS '

Thus we conclude that P(x13-l9 , aJΛift, i/) has m + 1 sign changes

for (xUl, •• ,ίCfciA.) i n ί 7* Let us write

P(χ, y) = Pm-iWy™-1 + Pm-2(χ)ym-2 + + po(»)

where pa(x), 0 ^ s ^ m — 1, are polynomials of degree ^ ^ s in a?β, 0 ^ s ^ Λ.
For each x in σ**, P(x, y) has m + 1 sign changes and thus pm-i(χ) — 0,
pm-*(x) = 0, , po(») = 0 for each x in σ*. If for (x l i i ? x2J2, , xkj})
in σ*, we fix all but the first component, we get nx + 2 values in σ*
for which ps(x) = 0 , 0 ^ s ^ m — 1, but these p8(x) are of degree ^ nλ

in α?! and thus ps(xlf x2J2, x3J3, , ίcAj fc) = 0 for all real xx. Continuing
in this way, we see that ps(xlf x2, , %k) = 0 for all (xu x2, , xk), xs

real. Thus:

P(xl9x2, •••,%, y) = 0

for all real xs and real y. Thus

But
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max ix^ 'Xpfjy)] =

which gives a contradiction and the theorem is proved.

2* Normalization of competing polynomials and construction
of the best polynomial* We shall now consider a subset π(β) of the
set of polynomials π. We shall then answer the question of existence,
uniqueness and constructability of the best polynomial approximation
in the maximum norm to zero within this class π(β) on the cube

It is apparent from Theorem 1, that if we want uniqueness independent
of σ, it is necessary to consider some subset of π.

DEFINITION. A polynomial

Q(x, y) = pjxlt x2, - ,xk)ym

+ Pm-i(Xu aa, , a*)!/1""1 + + Po(x» %2, , xk)

which is in π and for which

xfrp . . - a ; * - pm(xl9 x2 xk) = T^xJT^x,) T%k{xk)

is said to be in π{β).

LEMMA. Let q(y) be a polynomial in y, let yQ > yx> > ym,
be any set of real numbers for which

Q(Vo) ̂  0, q(yi) ^ 0, q(y2) S 0, . . . (-l)mq(yj ^ 0 .

Then q(y) has m zeros including multiplicities on [y0, ym].

Proof, (by induction): For m — 1 obvious. Assume theorem to
be true for m ^ k. Let y0 > yλ > y2 > > yk+1 be any set of real
numbers such that

Q(Vo) ̂  0, q(Vl) ^ 0, (-l)kq(yk) ^ 0, (-l)k+1q(yk+1) £ 0 .

Case 1. q(ys) Φ 0 for some 1 ^ s ^ k. Then by the induction
hypothesis q(y) has s zeros on [y0, y8] and has k + 1 — s zeros on
h/8,1/fc+i]. But q(y8) Φ 0 thus q(y) has s zeros on yo^y^y8 and thus

has s + {k + 1 — s) = k + 1 zeros on [τ/0, Vk+i]-

Case 2. Q(^/0) < 0. Then unless q(y8) = 0 for 1 ^ s S k we are in
Case 1 and we are finished. Therefore, assume q(y8) = 0,1 ^ s ^ Jfc..
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We may as well assume q(y) < 0 on (y0, yj since if not then q(y) has
a zero there because q(yQ) < 0, and we are finished. Also, we may as
well assume q(y) > 0 on (ylf y2) since if not and q(y) has no zeros on
(Vu yd (if does have a zero then we are finished) then since q(y0) < 0
and q(yΊ) — 0, we must have that q(y) has 2 zeros in (yOf y2), continu-
ing in this way we see that we may as well assume that ( — l)sq(y) < 0
on (y8f y8+1) for 0 g s £ k. In particular ( — l)kq(y) < 0 for y on (ykf yk+1).
But by assumption (—l)*+1(7(2/fc+i) ^ 0. Thus by the continuity of q(y),
we have q(yk+1) = 0 and q(ys) = 0 for l ^ s ^ f c + 1 i.e. q(y) has k + 1
zeros on [y0, yk+1].

Case 3. q(y0) = 0 proof is obvious making use of Case 1.

THEOREM 3. There exists a unique Q*(x, y) in π(β) such that

max 1 x^xp xv

kkym - Q*(χf y) \

is a minimum. Moreover:

Q*(x, y) = - T^ixdf^x,) Tnk{xk)Tm{y) + tipx? χ%*y~ .

Proof. Existence by construction. Let the σ of Theorem 1 be
the special set of vectors

σ(β) •=. {(χlh, χ2h, . . , χkj})}

where

xlh = cos (ofc/n^, x2h, , xk3 k = cos (jkπ/nk)

0 ^ j 1 ^ nu 0 ^ j 2 ^ n2, - -, 0 ^ j k ^ % .

Then

| ^Γ%W 2 — α?J* — ̂ m f e , x2, ,
α in σ(β)

= min \Tni(xί)T4x1) - Tnk{xk)\
x in σ(β) λ 2 Λ

= 21~Wl21~W2 21~nk .

Thus by Theorem 1
max I &Γ1&J2 %lkym - Q(a?, y) \ ̂  21~^21~n2 . . . 21~^21~

But the polynomial

Q*(», V) = ^Γ%n2 ^ * r ~ T^T^x,) . . Tnk(xk)TJy)
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clearly belongs to π(β) and

max I xpxp %\*ym - Q*(&, y) | = 21

Thus Q*(x, y) is a best approximation from the set π(β)

Uniqueness. Let Q*(x,y) in π(/3) be a polynomial of best
approximation and let

P(χ, y) = xΐ1^2 χtkym - Q*(χ, y) - f

= [xfrcp xp - pm(tf)]?/m - Vm-i(%)ym~x

,)-.- fnk(xk)Tm(y)

where gm_!(aj), , ?0(») are polynomials of degree ^ ^ s in xs 0 ^ s g fc
since O*(a?, y) is in π(β).

Let cc* = (x*> x*, , a?*) be a fixed but arbitrary element of σ{β).
Then we claim that P(x*,y) has m zeros including multiplicities in
[—1,1]. To see this let ys = cos (sπ/m), 0 S s g m, then since

P(α*, 2/o) ^ 0, P(a?*, ^ ) ^ 0, ( - 1 ) » P ( O J * , j / J ^ 0 .

By the lemma P(x*, y) has m zeros counting multiplicities for — 1 ^ y ^ 1.
Thus P(#*, 7/) has m zeros but is only a polynomial of degree m — 1,

thus P(&*, 1/) = 0. But this holds for all x* in σ(/5), thus P(», y) = 0
and the theorem is proved.

We could formulate Theorem 3 in the following way. Let 7ί(k),
k ^ 1, be the set of polynomials of the form

Q(x, y) = pm(xu , xk)xf+1 + pm-i(Φΐ+i + + po(x)

which is of degree g ns in xs, 1 ^ s ^ & and for which pm(xx xk) is
a polynomial that best approximates zero, if such exists, on the cube
Ixx I2x x Ik, Is = [-1,1], 1 S s ^ k.

Theorem 3 alternate. For Jfc = 2, 3, 4 , the following is true:

Statement k. π(k — 1) is not empty and there exists a unique
Mk(xlf x2, , xk9 xk+1) in π(k) such t h a t :

max [ Mk(xl9 x2, , α?Λ, xk+1) \

- 1 ^ 2 / ^ 1

is a minimum. Moreover:
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Mk(xu x2, ••-,&*, Xk+i) = Tni(xΊ)Tn2(x2) fnk(xk)fnk+1(xkn+1) .

Proof. Obvious.

Finally we wish to prove:

THEOREM 4. There exists a monic polynomial

P(%i, •••,»*,») = ^Γ1 %lkVm ~ Q(a?i, , xk, V)

where Q(x, y) belongs to π0 that best approximates zero on the cube

It x J2 x x Ik+U Is — [ — 1, 1]. The polynomial is

Proof. By Theorem 2

max \P(xlf •••, xfr,y)

But x^1 ••* %lkTm{y) is a monic polynomial of the correct form with

max I xΓ1 xΐkfm(y) \ = 2x~m .

Thus the theorem is correct.

The question of uniqueness in this case is an open one.
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ISOMETRIC ISOMORPHISMS OF MEASURE ALGEBRAS

ROBERT S. STRICHARTZ

The following theorem is proved:
If Gi and Gz are locally compact groups, Ai are algebras

of finite regular Borel measures such that L^Gi) g Ai£ ^(Gi)
for i — 1, 2, and T is an isometric algebra isomorphism of Ai
onto A2, then there exists a homeomorphic isomorphism a of
Gί onto G2 and a continuous character χ on Gi such that
Tμ(f) = /<χ(/ oα)) for jueAi and /eC0(G2).

This result was previously known for abelian groups and
compact groups (Glicksberg) and when Ai = Lι(Gi) (Wendel)
where T is only assumed to be a norm decreasing algebra
isomorphism.

A corollary is that a locally compact group is determined
by its measure algebra.

If G is a locally compact group with left Haar measure m, then
the Banach space ^t(G) of finite complex regular Borel measures (the
dual of the Banach space C0(G) of all continuous functions vanishing
at infinity on G) can be made into a Banach algebra by defining multi-
plication of two elements μ, ve ^f(G) to be convolution:

μ*v(f) = J j f(st)dμ(s)dv(t) for fe C0(G) .

The subspace L\G) of all measures absolutely continuous with respect
to m is a closed two-sided ideal and hence a subalgebra.

In [1; Theorems 3.1 and 3.2] it is shown that if Gx and G2 are
either both abelian or both compact, then any algebraic isomorphism
JΓ of a subalgebra Ax of ^(G^ containing L\G^) onto a subalgebra
A2 of ^/f(G2) containing L\G^) which is norm-decreasing on L\G^) has
the form

( * ) Tμ{f) = μ(χ(fo a)) μeAλ fe CQ(G2)

where a is a homeomorphic isomorphism of Gλ onto G2 and χ is a
character on Gx. In this note we shall prove that (*) holds where T
is assumed to be an isometry but Gτ and G2 may be arbitrary locally
compact groups. Our starting point will be the theorem of Wendel
[2; Theorem 1] that any isometric isomorphism T: L 1 ^)—> L1(G2) is
of the form (*).

THEOREM. / / Gλ and G2 are locally compact groups and T is an
isometric isomorphism of a subalgebra Ax of ^/S(G^) containing

Received March 8, 1964.
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onto a subalgebra A2 of ^f(G2) containing L\G2) then T has the
form (*)• Conversely, the equation (*) defines an isometric isomor-
phism of ^€(β^) onto ^€^(G2) for every choice of a and χ.

L E M M A . 1 Let μ, v e ^t(G). Then μ ±v if and only if \\μ + v\\ =

Proof Suppose μ J_ v. Then there exists a disjoint partition of
G into sets A, B such that | μ \ (B) = \ v \ (A) = 0. Thus

C o n v e r s e l y , a s s m e \\ μ + v \\ = \\ μ - v \\ ^ \\ μ \ \ + \\v \\. L e t μ =

fv + μs where fe L\v) and μs _L v be the Lebesgue decomposition of
μ with respect to v. Then

B u t \ \ μ ± v \ \ = \ \ ( l ± f ) i > \ \ + \\μ.\\ s o || ( 1 ± f)v \\ = \\fv \\ + \\ v | | .

Thus / = 0 a.e. with respect to v hence μ _L v.

Proof of theorem. The converse is an easy verification. Let T
be an isometric isomorphism of Aλ onto A2. We shall show first that
T maps L\G^) onto L\G2) and hence has the form (*) when restricted
to L\G^9 and then that (*) extends to all of A±.

Indeed L\Gi) i = 1, 2 will be shown to be the intersection of all
nontrivial closed left ideals I g A ^ which satisfy
{**) μ e I, ve Ai and i l λ whenever μ _L λ and λ 6 A{ imply y e l .

T and Γ"1 clearly preserve the property of being a closed left
ideal and by the lemma they preserve (**). Thus T maps ^(G^ onto
L\G2).

Now for μ6 L\G^9 the condition vo. Ai and v _[_ λ whenever X e ^
and μ _L λ is equivalent to v < μ. Clearly v < μ implies it, and con-
versely any v satisfying it must be orthogonal to its singular part λ
in its Lebesgue decomposition v = fμ + λ with respect to μ since XG A{.
So ^(Gi) is a closed left ideal satisfying (**). Let I SA{ be any non-
trivial closed left ideal satisfying (**). Then I must contain a nonzero
L1 measure since a*μ e L1 and is nonzero for μ Φ 0 in I and a is a
suitable element in an L1 approximate identity. The total variation
of this measure is absolutely continuous with respect to it, hence in
J. By convolving this with an appropriate L1 approximation to a point

1 I am indebted to George Reid for suggesting this lemma.
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mass, we get a measure ve I strictly positive in a neighborhood of
the identity (the convolution of an L1 and an L°° function is continu-
ous). But there is an L1 approximate identity absolutely continuous
with respect to v, hence in 7. Since I is a closed ideal, L1 gΞ I.

Thus we have (*) holding for all veL\G^. Let μeAlf and
v e L\Gλ). Then μ*v e L\GX) so

\\f(φt))χ(st)dμ(s)dv(t) = T(μ*v)(f) = (Tμ*Tv)(f)

= \\x(t)f(rat)dTμ(r)dv(t)

so (*) holds for μ and all functions in C0(G2) of the form \f(rat)χ(t)dv(t)

where / e CQ{G2) and v^Lι(G^). This class of functions is dense in

C0(G2) since v may be taken in an L1 approximate identity. Thus (*)

holds for all C0(G2) by continuity, which proves the theorem.

COROLLARY. A locally compact group is determined by its measure
algebra.

This corollary was obtained independently by B. E. Johnson (Proc.
Amer. Math. Soc. 1964). His results imply the main theorem under
the hypothesis that each A{ contains all point masses.
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CHARACTER SUMS AND DIFFERENCE SETS

RICHARD J. TURYN

This paper concerns difference sets in finite groups. The
approach is as follows: if D is a difference set in a group G,
and χ any character of G, χ(D) — Σχ>x(ί7) is an algebraic integer
of absolute value V~n in the field of mth roots of 1, where
m is the order of χ. Known facts about such integers and
the relations which the χ(D) must satisfy (as χ varies) may
yield information about D by the Fourier inversion formula.
In particular, if χ(D) is necessarily divisible by a relatively
large integer, the number of elements g of D for which χ(g)
takes on any given value must be large; this yields some non-
existence theorems.

Another theorem, which does not depend on a magnitude
argument, states that if n and v are both even and α, the
power of 2 in v, is at least half of that in n, then G cannot
have a character of order 2α, and thus G cannot be cyclic.

A difference set with v = An gives rise to an Ήadamard
matrix; it has been conjectured that no such cyclic sets exist
with v > 4. This is proved for n even by the above theorem,
and is proved for various odd n by the theorems which depend
on magnitude arguments. In the last section, two classes of
abelian, but not cyclic, difference sets with v = in are exhibited.

A subset D of a finite group G is called a difference set if every

element Φe of G can be represented in precisely λ ways as dxd^, d{ e D.

If χ is any nonprincipal character of G, we must then have | ̂ jdeD χ(d) \ —

Λ/ΊΪ, n — k — λ, where k is the order of D. We shall write χ(D) for

ΣidβD lid) (as in [8]). If G is abelian and | χ{D) \ = V~n for some

subset D and all nonprincipal characters of G, D is a difference set in G.

This work originated in a search for difference sets with G cyclic

of order v, and the parameters related by v = in. Because in this case

every divisor of n is a divisor of v, Hall's theorem on multipliers, [5],

one of the main tools in the study of difference sets, cannot be applied.

The method presented here is particularly suitable for computation of

difference sets if v and n have common factors. It is roughly as

follows: the numbers X(D) are algebraic integers of absolute value

V~n in the field of mth roots of 1, where m is the order of χ (as an

Received March 17, 1964. Presented to the American Mathematical Society,
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element of the character group of G). We use the known facts about
such algebraic integers, together with elementary combinatorial in-
formation about these numbers which depends on their being sums of
characters taken over the difference set, and the relations which must
hold between the various character sums. We may then use the ortho-
gonality of characters (Fourier inversion formula) to obtain information
about the characteristic function of D.

The difference sets with v = An correspond to (unnormalized)
Hadamard matrices. The only known cyclic (i.e., with G cyclic)
difference set of this type is the trivial one with v — 4. Although we
did not succeed in proving that no such cyclic sets exist if v > 4, a
number of nonexistence theorems are proved; these give bounds on the
orders of the cyclic ^-subgroups of G, where p \ (n, v). The proofs
depend only on the existence of characters of certain orders.

In his survey of cyclic difference sets with k ^ 50, [5], Hall had
left twelve sets of values of (v, k, λ) undecided; it was not known
whether a cyclic difference set with these values of (v, k, λ) existed.
For all but one of these, (v,n) > 1. Nine of these were shown not to
correspond to cyclic sets in [14]. Ten have since been shown not to
correspond to cyclic sets by Mann ([8]). Of the twelve sets of values,
one is left unresolved by [8] or [14], and it is shown here that it
cannot correspond to an abelian set.

On the constructive side, we derive two classes of abelian, but not
cyclic, difference sets, both with v = An. One class, for which v = 36,
contains a set recently found by Menon [10]; the other class, for which
v — 4*, was suggested by one of the sets with v — 36.

Some of this work appeared in [13] and [14]. However, the use
of the full force of Lemma 3 was suggested to me by my reading of
Mann's paper [8]. I would like to express my gratitude to Professor
Gleason for the large amount of time he spent reading this work; he
pointed out a number of errors and is responsible for a great improve-
ment in the quality of the exposition.

We assume throughout that the reader is familiar with cyclotomic
fields (see e.g. [15]). We recall in particular the following facts:

(1) The field of mth roots of 1 is of degree φ(m) over Q (the
field of rationale); thus the field of mnth roots of 1 is of degree ψ{m)
over the field of nth roots of 1 if (m, n) = 1. If (m, n) — 1, any φ(m)
consecutive powers of ζ, a primitive mth root of 1, form an integral
basis for the field of mnth roots of 1 over the field K of nth roots of
1; the Galois group of K(ζ) over K is isomorphic to the multiplicative
group of integers relatively prime to m (mod m). The automorphism
σ3 which corresponds to j is defined by oό(ζ) — ζj for (j, m) = 1. In
particular, complex conjugation is σ_x.
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( 2 ) If p is prime, the factorization of p in the field Q(ζ), ζ a
primitive mth root of 1, is as follows: if {p, m) — 1, and we assume
4 I m if m is even, let σp be the automorphism given by σp(ζ) = ζv.
Then if P is any prime ideal divisor of (p) (where (A) denotes the
principal ideal generated by A) σp is a generator of the subgroup of
automorphisms τ for which τ(P) — P. The prime ideal divisors Pi of
(p) are in one-to-one correspondence with the cosets of this subgroup,
and (p) = TΓP . Thus if (p, m) — 1, (p) is not divisible by the square
of any ideal ^(1). If m = pan, a >̂ 1, (p, n) — 1, and ζ is a primitive
path root of 1, then in Q(ζ) (p) = (1 — ζ)φ, # = 0(pα); Φ always denotes
the Euler function. In the field of mth roots of 1, 1 — ζ factors just
as p does in the field of nth roots of 1.

( 3) If ζ is a root of 1, ζ Φ 1, 1 — ζ is a unit unless ζ is a primi-
tive pnt\ι root of 1, p a prime, w Ξ> 1, and then 1 — ζ\p. p\l — ζ
only for p = 2, ζ = - 1 . (A proof follows from ΠΓ^O- ~ CO = m, ζ
a primitive mth root of 1, and the Mobius inversion formula.)

( 4) Suppose A and B are algebraic integers in a cyclotomic field,
I A I = I B I and (A) = (B). Then A/B = w i s a root of 1. This follows
from the theorem of Kronecker which asserts that an algebraic integer
all of whose conjugates have absolute value 1 are roots of unity. The
fact that I σw \ — 1 for any automorphism σ follows from the lemma
below (with m = 1).

LEMMA 1. If\ w \w e Q for some integer m ^ 1, and σφv) — cσ(w),

where c denotes complex conjugation, then \w\~ \σ(w)\.

For

w | 2 m = wm(c{ιvm)) e Q .

Therefore

I w | 2 m = σ(wmc(wm))

— σ(ιv)mσ(c{wm))

= σ{w)mc{σ{w)m)

= I σ(w) \2m .

We use the following notations: if G is a group, p a prime,
σp(G) = a if a is the largest integer m such that G has a character
of order pm. If n is an integer, pa\\n if pa\n, pa+1)fn. Zn is the
cyclic group of order n. w, with or without subscripts, will denote a
root of 1. χ0 always denotes the principal character of G, i.e., χo(g) — 1
for all g e G. If a and b are integers, we say that a is semiprimitive
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mod b if there exists an integer c such that ac = — l(modί>). a is
self-conjugate mod b if all prime divisors p of a are semiprimitive
mod bp~ez>, where b = Πp6?.

Difference sets* A (v, k, X) configuration is a set of v points and
b subsets, called blocks, each containing k points, such that the inter-
section of any two distinct blocks consists of λ points. Defining n to
be k — λ, we have also k2 — Xv — n. If M is the incidence matrix of
the configuration (m^ = 1 if point i is in set j , mi3- — 0 otherwise), an
equivalent definition is that

M'M = nI+Xj,

where J is the matrix with all entries = 1. Since {Mr — (Xj/k)}M —
nl, M{M' — (XJ/k)} = nl. The entries mi5 of M are all 0 or 1, hence
m2

i3- = mi3, and thus the ί i term of the last equation shows that
Σy w i 5 = k, and therefore MΛf' = nl + λ J = M'JIf.

Assume a (v, ifc, λ) configuration has a regular transitive group of
automorphisms; that is, assume there exists a transitive group G of
order v of permutations of the v points, each permutation taking blocks
into block; if D is the subset of G of those σ for which σ(P) e B, where
P is a fixed point and B a fixed block, any element a Φ e of G can be
represented in precisely λ ways as τσ"1, with τ, σ in Zλ We must
show aB Π B contains precisely λ points. This will happen unless
aB — B, since aB is a clock of the design. So there are at least X
pairs for which τα" 1 = a with τ, σ e D. But since &(fc — 1) = X(v — 1)
and there are k(k — 1) ordered pairs τ, σ and v — 1 elements in G not
the identity, we cannot have aB = B for a Φ e (cf. [1]). Replacing P
by τ x P and B by τ2i? replaces D by τJDτΐ1.

Let Γo be the characteristic function of D,yσ—1 for σe Ό.y^ = 0
for a ί Z λ

We then have

Σ VoVra- = X τ Φ e
σβΘ

as an equivalent formulation of the condition that D Π TD have precisely
λ points for all τ.

A subset D of a group G is called a difference set if it satisfies
the above conditions; D is cyclic or abelian if G is. The sets σD as
<7 ranges through G form the blocks of a (v, fc, λ) configuration. The
complement of a difference set is a difference set, and hence we may
assume k ^v/2.

We shall always assume the difference set is nontrivial, i.e.,
1 < k < v — 1, from which it follows that v ^ 7.

Suppose G is abelian. Let / be a function defined on G, χ a
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character on G, and let

< i ) / ( % ) - Σ/(</)%(</)

The set of equations

( 2 ) Σ /(#)/(fc#) = c(h)
geo

is equivalent to

(3) f(X)f(X) = Σiθ(h)χ(h)
heβ

or if / is real-valued,

= Σ c(h)χ(h).

This shows D is a difference set, with parameters v,k,X, n = k — λ,
if and only if

( 4 )

Σ Valiϋ) = V n for all χ Φ χ0 .

It also shows that \f(χ) \ = c for all χ if and only if Σ<?/(#)/(έ^) = 0
for hφe.

Finally, D is a (v, k, λ) difference set if and only if we have, in
the group algebra of G,

( 5 ) ( Σ O)(Σ ί/-1) = ne + λG , G = Σ 9 .
D

The orthogonality relations for characters imply that if / and / are
related by (1), we must have

(6) /(</) =-Σ/(X)X(<7).
v %

Let / be a function on a group G and restrict χ to a subgroup JT"
of the character group. If H is the kernel of H, i.e., all h such that
χ(Λ) = 1 for all χ in H, we may define a function F on G/iί by sum-
ming / over the cosets of H and apply the preceding formulae to F.

We note the following special cases:

(1) Let χ be a character of order pb, p prime, b Ξ> 1, ζ a primitive
pbth root of 1, / a function on G with values in a field K such that
[ίΓ(ζ): K] - ζ%&) = φ. Let ^ = 2y(</), over all g with χfo) = ζ\ and
let S< = Σ^l Fi+qjΊ q = p6-1. Then if
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1 1

with Ai € K, so that the A{ are uniquely determined, we have

p-2

Σ Λ+«) ^ * ^
P i=o /

\ • ) 1 / P-2

F^-LfSi-Z
P V 3=0

the formula whose repeated application is equivalent to the inversion
formula (6) for a cyclic group.

(2) Let f(g) be as before, χx and χ2 two characters of order p
which generate a subgroup of order p2, ζ a fixed primitive pth root
of 1.

We let i ^ = Σ/(<7) over all g with .χx(g) = ζ\ χ2(g) = ζ>'. Let
= S, and let

for A = 1, p, co(l + coj — j). The Sm,fc can be determined by (7)
from S and the sum

Then

(8) ** = - ( Σ

( 3) If f(g) is an algebraic integer for all g e G and χ ranges over
a coset of a subgroup Jϊof the character group of G, order of H— my

then

(9) m Σ/(</)%(</)•

For if χ1 is a fixed character in the coset, the sum in question is
Σne£f(9)X(9)XM=f(9)Ug)ΣneέX(9) and Σxe* Zfo) is m if χ(^) - 1
for all % e if, 0 otherwise.

If i ί is a subgroup of G, we will always denote by H the set of
all characters χ such that %(h) = 1 for all he H, and vice versa.

If G is abelian, the group algebra of G is a direct sum of fields;
in fact the elements Σ# 9X(9~1) are eigenvectors for all the elements
of the regular representation of G. The eigenvalues of the incidence
matrix of a (v, k, λ) configuration have absolute value l/n, except for
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one which is k; equations (4) are an explicit restatement of this fact
for abelian difference sets.

Call a subset D of a group G nonperiodic if D = Da implies a = e.
A difference set is nonperiodic. A multiplier of D is an automorphism
σ of G such that σ(D) = Daσ for some aσ in G. (a* is unique if D is
nonperiodic.) When G is cyclic, all the automorphisms of G are of the
form σ(g) — gm, (with m relatively prime to the order of G) and the
integer m is called a multiplier of D if σ(D) = Da. The above defini-
tion is the obvious generalization to noncyclic groups of the notion of
multiplier (see [1]).

LEMMA 2. The multipliers of D are a subgroup M of the auto-
morphism group of G; aτa. — αττ(ασ) for σ, τ e M. σ leaves a translate
Db of D fixed if and only if a^ — bσ{b)~ι.

The lemma is obvious.

COROLLARY. If G is of prime order p, every set DξΞ=G has a
translate which is left fixed by all the multipliers of D.

If G is of prime order, written additively, the only periodic subset
of G is G. Since the multipliers are a cyclic group, we may pick a
generator σ of the multiplier group. If this is given by σ(i) = ki
(modp), 1 — k has a multiplicative inverse mod^, so if σD — Da,
(1 - k)b = a, then τ(Db) = Db.

The quadratic residues modulo any prime = —1(4) form a difference
set. In [7], E. Lehmer considered the existence of other difference
sets defined by power residues (mod v) if v is an odd prime. In parti-
cular, it was shown in [7] that if v — ef + 1, a prime, and if the eth
powers, or eth powers and 0, form a difference set (mod^), then the
multipliers are precisely the eth powers. The corollary proves a more
general statement.

THEOREM 1. Let D be a subset of Zp, p a prime, which is a union
of m multiplicative cosets of the eth powers, plus possibly 0. / / e is
the least number for which this is true, and e > 1, the eth powers
are all the multipliers of D. If D is a difference set and q \ (m, e)
then qa | e implies qa \m.

Proof. Replace D by a translate left fixed by all the multipliers.
Lemma 2 shows that if D has a nontrivial multiplier there is a unique
translate of D which it leaves fixed. Thus e > 1 shows D must be a
set of multiplicative cosets of the set of multipliers, plus possibly 0.
Since the eth powers are certainly multipliers, the first statement
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follows from the minimality of e. If D is a difference set, we may
assume by taking the complement of D that 0 & D. Then k = m/, and
w/(m/ — 1) = ^ef> λ = m(mf — ΐ)/e. Since mf — 1 is prime to m, gα | e,
# I m implies qa \ m.

In the second part of the theorem, we did not have to assume e
minimal. For example, if e — 4, m = 2 is impossible; in particular the
squares cannot form a difference set mod a prime of the form 4k + 1.
Hall [5] has constructed a family of difference sets with m — 3, e — 6.

Character sums* We first prove a well known theorem of a type
originally proved [2] for (v, k, 1) configurations (finite projective planes).
(See [3], [4].) The proof given is very direct and yields more in the
special case of abelian difference sets.

LEMMA 3. If rj is an algebraic integer such that | ΎJ |2 = n for
some integer n and (η) — ΠP?\ Pi prime ideals, then /7(P;P;)αί = (n).
If y] belongs to the field of mth roots of 1 and p is a prime divisor
of n semiprimitive mod m then p occurs to an even power in n, say
p2b || n, and pb \ rj.

Proof. The first statement is obvious since rjη = n. If p is semi-
primitive mod m the prime ideal divisors of (p) in the field of mth roots
of 1 are invariant under complex conjugation, (p, m) — 1 implies that
(p) is not divisible by the square of any prime ideal, which proves the
lemma (cf. [8]).

We remark at this point that, with the notations of the lemma, if
d21 n and d is self-conjugate mod m then d \ η. For if p \ (d, m), pa || m,
(p) is a power of a single prime ideal in the field of pαth roots of 1,
and this ideal factors into distinct prime ideals invariant under complex
conjugation in the field of mth roots of 1.

THEOREM 2. Let G be abelian, D a v, k, λ difference set in G.
If v is even, n is a square. If p is a prime which divides n to
an odd power and q Φ p is a prime divisor of v, p has odd order in
the multiplicative group mod q.

(The conclusions that v even implies n is a square, and that p is
a quadratic residue mod q are known for arbitrary v, kf λ configurations.)

Proof. If v is even, G has a character χ of order 2. | χ(D) |2 = n
implies n is a square, since χ(D) is rational. To prove the second part,
let χ be a character of order q. Since | χ(D) |2 = n, Lemma 3 shows
that p cannot be semiprimitive mod q; the semiprimitive numbers are
precisely those which have even order in the multiplicative group mod q.
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THEOREM 3. If v is a prime and D is a difference set mod v,
inversion is not a multiplier of D. Ifv — ef+1 and D is a union
of m multiplicative cosets of the set of eth powers mod v, plus possibly
0, then f is odd.

REMARK. Inversion is not a multiplier under much more general
conditions (see [8]; never if G is cyclic). The conclusion that / is odd
is proved for the eth powers, and the eth powers and 0, in [7].

Proof. Replacing D by its complement if Oefl, we may assume
0 g D. Now replace D by a translate left fixed by all the multipliers.
Since inversion is a multiplier χ(D) must be real for all χ, and thus
= ±Vrn if χ Φ χ0. This shows χ(D), which lies in the subfield of
degree 2 over Q is left invariant by the subgroup of index 2 of the
Galois group of the field of vth roots of 1, i.e., by all the automor-
phisms of the form σ(ζ) = ζr, ζ a primitive vth root of 1, r a quadratic re-
sidue mod v. Therefore χ(D) = Σ Γ 1 y£ = Σ Γ 1 V£\ and Σ Γ 1 {Vi -VrX* = 0.
Therefore yi = yrί for all i and any quadratic residue r. This shows
D consists of the set of quadratic residues or nonresidues (if D is non-
trivial). But this can happen only for v of the form Ak — 1, and then
inversion is not a multiplier since it takes the residues into the
nonresidues.

If D is a union of multiplicative cosets of the set of eth powers
mod v and / is even, —1 is an eth power and hence a multiplier, which
we have just shown is impossible. This proves the last part of the
theorem.

If σ is a multiplier of D, σD = Da, and we have χ{σD) = χ(a)χ(D);
in particular the factorization of the ideals (χ(D)) is unchanged if we
replace D by σD. The following theorem is a partial converse.

THEOREM 4. Suppose D is a difference set in G, G abelian, and
σ is an automorphism of G such that the ideals (X(D)) and (χ(σD))
are the same for each character χ. Then if there exists m such that
m\n, m > λ and (m, v) — 1, σ is a multiplier of D.

REMARK. We give below an example of a difference set in which
every automorphism leaves the principal ideals generated by the charac-
ter sums invariant, but the multiplier group has order 2 while the
automorphism group has order 96.

Proof. The theorem follows from the generalization of Hall's
theorem ([5]; see also [8], [9], [12]). We repeat the proof, essentially
the one in [8]. In the group algebra of G, we let H = D~\σD) — XG
(where D'1 = ΣgeD9~\ <?D = Σeei? #(#))• Each character of G extends
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to a homomorphism of the group algebra, and χ(H) is nw(χ), with w(χ)
a root of 1 for every character χ. If χ = χ0, this follows from the

formula k2 - Xv = n. If χ =* χ0, we have χ(H) = χφ-^χίσD) =~X(D)χσ(D).
Since (χ(σD)) has the same factorization as (χ(D)), and χ{D)χ(D) = π,
we conclude that (χ(iϊ)) = O) Since | χ(jHΓ) | = w, χ(iί) = nw(χ), with
w(χ) a root of 1.

By the inversion formula (6), if H = Σhgg, we have

Λ = - Σ χ(^)χto) = - Σ M%)%(</).
V x V %

Since m | w, (m, w) = 1, we conclude m \ hg. Since m > λ and hg ^ —X
by the definition of H, hg ^ 0 for all #. We have seen before that

X(H) I = % for all characters χ is equivalent to the assertion ^g hghgs = 0
for all s ^ e. Therefore only one hg Φ 0, since all hg ^ 0. Clearly
that hg is n. Now

Multiplying by D, we get

(we + xG)σD = A λG + ngQD

ne(σD) — ng0D

so σD = ^o"1^.
We note here a consequence of (9).

THEOREM 5. Assume D is a difference set in G and that (χψ(D)) —
(ψ(D)) for some nonprincipal character ψ and all characters X in a
group H. If the order of H is relatively prime to n and the order
of ψ, there exists g in G such that χψ(Dg) — ψ(Dg) (or χ(g)χψ(D) —
f{D)) for all χ in H.

Proof. We shall first prove the theorem for a cyclic group of
prime power order. Let χ be a generator of H, of order pr; we may
assume r is the least integer for which the theorem is not known.
Assume D is translated so that χjpψ(D) — ψ{D) for all j , and let
χψ(D) — wιζψ(D), where ζ is a p rth root of 1 and wλ is a root of 1 of order
prime to p. Then Xjf{D) = wLζjψ(D) if (j, p) = 1 because χjψ(D) is
the conjugate of Xψ{D) under the automorphism which is the identity
on the field of roots of 1 of order prime to p (to which wλ and ψ(D)
belong) and takes p rth roots of 1 into their /th powers. Therefore
Σχjψ(D) = wxf(Ό)trζ, the sum over all j with 0 < j < p\ {j, p) = 1.
trζ is φ(pr) if ζ = 1, — pr~λ if ζ is a primitive pth root of 1, and 0
otherwise. Since χjψ(D) — ψ(D) if p | j , we get
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(p, n) — 1, Ί/Γ(D) I % implies pr \pr x + wjrζ, and therefore trζ Φ 0,

ζp — 1, and Wj = 1 (since p | 1 — wlf and p — 2 implies wλ Φ — 1). If

ζ = 1, the theorem is proved; if ζ ^ 1, take any # such that χ(g) — ζ" 1 .

Then χjpψ(Dg) = f(Dg) because ζp = 1, and Xjψ(Dg) = f(Dg) for
0", p) = 1 because XΨ(Dg) = ψ(Dg).

An arbitrary group if may be expressed as a direct product of
cyclic groups Hi9 with generators χi% It is clear from the above proof
that we can find g{ in G such that χiψ(Dgi) — ψ(Dg^ for all j , and
Xy(#ΐ) — 1 ί ° r ^ ^ J> since the construction of g{ involves only the value
of XiiQi). Then if g = 77^, we have χίψ(Dg) = f (ΰgf) for all ί, j .
Replacing J5 by Dβί for simplicity, we shall now show that Xψ{D) —
| ( ΰ ) for all χ in if. Let F be the set of all χ with this property.
If χ19 χ2 are elements of F of order pr

y p% respectively, and generate a
group of order pr+s

9 p prime, r Ξ> s ;> 1, we show that this group is
contained in F. We may assume that r rnd s (and the χ j are picked
so that χi%| G .F7 if p | ij, i.e., we take a minimal group for which the
theorem is not known. The Φ(pr)Φ(ps) — Q characters χ\χi with (ij, p) ~ 1
fall into Φ(ps) equivalence classes, each consisting of all χm, (m, p) — 1
for some χ. The preceding result shows that Σ(m,p>=i Xmψ(D) = A^(D),
with A one of Φ(pr), —pr~λ, or 0. Now

PT+S I Σ zάίVΦ) = (pr+s - g)ψ(D) + t Φ ) Σ A

the first term being the sum over all χ\χί with p \ ij, ψ(D) Σ A being
the sum over the Φ(ps) equivalence classes. Since ψ(D) \ n, (p, n) — 1,
we have pr+s \ ΣA — q. Since 0 ;> ΣA — q ^ — pr^(s) > — pr+s because
— pr~τ ^ A ^ ^(pr) for all A, we must have A — Φ(pr) for all A, which
means all χ\χί £ F. We now conclude that F contains all characters of
prime power order, by induction on the number of components.

An arbitrary character χ in H may be expressed as Πi X%, with χ{

of order qif the q{ distinct prime powers. We prove by induction on
r that χ e F. We have seen that if r = 1, χ e F. If the theorem is
true for r — 1, we have Xψ(D) = ζ1χ1χψ(D) with ζx a gx root of 1, by
the first part of the theorem, and χλχψ(D) = ψ(D) by the inductive
assumption. But Xψ(D) — ζχ1ψ(D) by applying the theorem for r — 1,
with χλψ playing the role of ψ, and ζ a ] ] 5 ^ root of 1. Since χxψ(D) =
ψ(D) we conclude ζ1 = ζ, which implies ζλ — ζ = 1 and χ G F.

Abelian Hadamard matrices* An Hadamard matrix is a square
matrix H of order h with entries ± 1 , any two distinct rows of which
are orthogonal, i.e., such that HHf — hi. An Hadamard matrix may
be normalized to have first row and column consisting of just + l ' s .
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The remaining matrix of order h — 1 has the property that the dot
product of any two rows is — 1, and that the sum of the entries in
any row is — 1 .

Let M be the incidence matrix of a (v, k, λ) design, and J the
matrix with all entries = 1 . The matrix 2M — J has entries 1 where
M has entries 1 , - 1 where M has entries 0 and

(2M - J)(2M - jy = AMMr - AkJ + vj = AnI + J(v - An) .

Thus the dot product of two distinct rows of 2M — J is v An. It
is clear that the matrix of order h — 1 derived from an Hadamard
matrix of order h > 2 by normalizing the first row and column is
equivalent to the incidence matrix of (v, k, λ) configuration with
v + 1 = An, k = 2n — 1, λ = n — 1. Several classes of abelian differ-
ence sets with these parameters are known.

However, the question of the existence of difference sets whose
incidence matrix generates an Hadamard matrix without the normali-
zation has not been considered extensively in the literature. By the
preceding, these are defined by the condition v = An. In a recent paper
[10] Menon constructed two such difference sets (one for the direct product
of two dihedral groups of order six, the other one for the abelian group
Z6 x Z6 and noted the product theorem (Lemma 4 below). In [9] Menon
constructed such sets for the direct product of an even number of copies
of Z2. The connection with Hadamard matrices is mentioned in neither
paper. The author's interest in the question is partly due to the
following theorem ([11]): if xi = ± 1 , l ^ i ^ v and | Σ U XiXi+j I ̂  1
for all j > 0, then if v is odd, v ^ 13; if v is even and >2, the i for
which Xi = 1 (or —1) form a difference set (mod v) with v — An. (The
problem partly answered by [11] arose in radar design.)

By an abelian Hadamard matrix we mean the Hadamard matrix
derived from a difference set in an abelian group with v — An. (Then
n = N2, v = AN\ k = JSΓ îV - 1), λ - N(N - 1), if we normalize so
that 2k < v. We shall call such sets H sets for brevity. Note that we
have the formula k — (v — λ/v(v — An) + An)/2; v even implies n must
be a square, and therefore the choice v — An leads to a simple family
of values for v, k, λ.

LEMMA 4. Let D{ be H sets in Gi9 i = 1, 2. Then (Dly D2) U (A, A )
is an Hadamard difference set in Gx x G2. Conversely, if A i>s a

difference set in G{ (A, A) U (A, A ) is a difference set in Gλ x G2 if
and only if both A ° ^ H sets. (A denotes the complement of A )

The first statement follows from the fact that the direct product
of two Hadamard matrices is an Hadamard matrix; the second from
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the fact that if A+A'i = vj + (v, - 4^)(J - I) for i = 1, 2, % Φ 0, then
(Λ x A2)(A[ x A0 = (^1 + (Vl - 4^)(J - I)) x (vj + (v2 - An2)(J - I))
is of the form vl + cJ only if ^ — 4% = 0 for i = 1, 2.

A more involved proof is given in [10].

Nonexistence theorems* In this chapter we shall prove several
theorems of the following general nature: if D is a (v, k, λ) differ-
ence set in G and (n, v) > 1, there are bounds on the orders of charac-
ters of G. For example, if 2 | (n, v), we can prove that under suitable
assumptions σ2(G) must be less than the exponent of 2 in v; in particular,
G cannot be cyclic. Our main interest is the nonexistence of H sets;
we use the previous notations: v = 4ΛP, n = N2.

We remark that p \ (n, v) implies that p\k,X and that (k, vf | n,
since n — k — λ and k2 — Xv = w. We also note that if p is odd and
6 >̂ 1, g semiprimitive mod p implies that q is semiprimitive mod ph.

If χ is a character of G of order s and D gΞ G, ζ a primitive sth
root of 1, then %(D) = Σ ί ^ ζ % where F, is the number of elements
^ in D such that χ(g) = ζ\ Thus 0 ^ Y{ ^ v/s. The proofs of the
first two theorems below depend on this statement about the magnitude
of the Yt and would have direct analogues if the yg were not restricted
to be 0 or 1, (i.e., if we allowed multiplicities in D).

THEOREM 6. Let D he any subset of G such that m | XXt(D) for
all characters χ in a group H of order v2, (m, v2) ~ 1, ivίth χ1 a
character of order vx > 1, χ{ ί H9 for 1 ^ j < vlf and where not all
χχ^D) — 0 for χ e H. Then 2r"Ύv ^ m v ^ , where r is the number of
distinct prime divisors of vλ. If v± = 1, v ^ mv2.

Proof. The inversion formula (6) shows that each of the v2 sums
ΣygXι(g) taken over a coset of the kernel H of H is divisible by m,
since the sum over Hh is

— Σ

and m \ %Xi(D) for all χ in ίί, (m, v2) = 1. Not all these v2 sums are
0 since then, by another application of (6), all Xχλ{D) would be. Let
So be one of these v2 sums which is not 0. If v1 = 1, So is a sum of
the yg over a coset of H} So Φ 0, and m | So. Thus So ^ m, and since
^M ^ So, v ^ mv2.

For the rest of the theorem, we shall require the following lemma:

LEMMA 5. Let G be a finite cyclic group, f a function on G
with integral values, and χ a generator of the character group of G.
Assume m\f{χ) = YίgeGf{g)χ{g),f{χ)Φb. Let r be the number of
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distinct prime divisors of the order of G. If 0 g f(g) g b for all
g,m^ 2ί"-16; if \f(g) | ^ 6, m ^ 2rδ.

Proof. Let G — Gx x HfG1 cyclic of order g = p*, order of i ϊ
prime to g. Let ί be a generator of Gτ; χ(g) = ζ is a primitive gth
root of 1. Then f(χ) = Σ ί TOC\ with F(i) = Σ . e * f(ht?)χ(h), m \ f(χ) =
Σt(F(i) - F(j(i)))ζ% where ^ = ^(g) and 0 < i(i) ^ g, j(i) = iimodp8"1).
Since the order of H is relatively prime to g, ζ is of degree Φ over
the field generated by the F(i) over Q. Thus m | J^i) — F(j(i)) for
all ΐ, and at least one of the F(i) — F(j(i)) is not 0; we pick one
such index i. Now if r = 1 the lemma follows because F(i) — F(j(i))
is an integer divisible by m and bounded by 5 if 0 ^ f(g) g δ, by 26 if
I f(g) I ̂  δ. If r > 1, if is a cyclic group whose order has r — 1 distinct
prime factors, and χ restricted to i ί is a generator of the character
group of H. But m | F(i) - F(j(i)) - Σ , e ^ (/(Aί*) - f(ht^))χ(h)9 and
the lemma follows by induction on r since now | f{htι) — f(htj{i))) \ S b
if 0 ^ f(g) S b, ^ 2b if I f(g) \ ̂  6.

Returning to the proof of the theorem with vλ > 1, we pick >S0 as
before. We may write So = Σ ϊ 1 i^CS with ζ a primitive ^ t h root of
1 and Yi the number of elements g of D in the chosen coset of the
kernel of the group generated by H for which χx{g) — ζ\ Since %λ

and H generate a group of order v1v2, there are v/vτv2 such elements
in G, and therefore at most that many in D. Thus 0 ^ F^ ^ vlvxv29

and Lemma 5 implies that m g 2r~1(^//y1τ;2), which proves the theorem.

This proof depends on the simple structure of the irreducible poly-
nomial for a pmt\ί root of 1.

COROLLARY 1. Let D be a difference set in a group G ivhich has
a character of order vL. If m2\n and m is self conjugate mod v19

then vxm g 2r~λv, where r is the number of distinct prime divisors
of (m, vj.

If D is a difference set χ(D) Φ 0 for all χ. Let χ be a fixed
character of order v19 and let χ — χxχ2, where the order of χλ is the
product of the distinct prime power divisors g, of vL for which (qi,m)>l,
and the order of χ2 is relatively prime to the order of χ1# If follows
from the remarks after Lemma 3 that m \ χ{D) for any character χ of
order dividing vlf and thus in particular m | χiχ^D) for all i . Theorem
6 shows that 2r~x?; ^ mv1(

In [5], Hall listed twelve sets of (v9 k, λ) with k ^ 50 for which
the existence of a cyclic difference set had not been decided. The
theorems in [8], [13], [14] showed there were no cyclic difference sets
for all the sets of (v, k, λ) with the exception of (120, 35, 10).
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As an example of the above corollary, we see that there is no
abelian difference set with the parameters (120, 35, 10). For an abelian
group of order 120 = 23 3 5 must have a character of order 30. Since
n — 25 and 5 = — 1 (mod 6), the existence of such a difference set
would imply 30 5 ^ 120 by the corollary (m = 25, vλ = 30).

COROLLARY 2. There is no cyclic H set if N is a prime power.
If an H set exists with N = 2a(v = 22α+2) we must have σ2(G) ̂  a + 2.
/ / and H set exists with N — 3α, σ3(G) :g a + 1; if we assume also
that σ2(G) ̂  1, we can conclude σjfi) ^ a. If an H set exists with
N = pa, p a prime ^ 5 , σv(G) ^ a.

Proof. If there is an H set with N = 2α, σ2(G) = 6, put vx = 2\
m = N in Theorem 6: we conclude 22α+2 ^ 2a+b, or b ^ a + 2. If
N ~ pa, p an odd prime, and ov(G) = 6 we conclude similarly 4p2α ^
pa+b, or pb ^ 4pα. Thus ph~a g 4, so B α if p ^ 5, 6 ̂  α + 1 if
p — 3. If also σ2(G) ^ 1 (as when G is cyclic) there is a character of
order 2 and we can put vλ — pb, m — N, v2 = 2 in Theorem 6: we get
4p2α ^ 2pα f δ, or p6 g 2p\ and 6 ̂  α for p > 2.

COROLLARY 3. If there is an H set with N — paM1M2y with Mλ

self conjugate mod pb and pb~a > 4Λί1M2

2, then σp(G) < b.

Proof. Apply Theorem 6 with vλ — pb

y m — paMlf v2 ~ 1; we con-

clude 4p2αM1

2M2

2 ^ pa+bMτ.

COROLLARY 4. There is no cyclic H set if N — paMιM2, p odd,
M1 self conjugate mod p, and pa > 2M1M2

2. / / p and all prime divisors
of M1 are of the form 4k — 1 there is no cyclic H set if pa > MΎMl.

Proof. The first statement follows from Theorem 6 with v2 — 2,
v1 — p2a

y m — paM1. For the second statement we first make the
following observation: if V = — 1 (mod A), ts ΞΞ —1 (mod B), then t
is semiprimitive mod AB if and only if the same power of 2 divides
both r and s. If p = 4ft - 1, (l/2)ψ(p2a) = r is odd. Now if q = - 1
(mod 4), q = — 1 (modp), we conclude gr = — 1 (mod4p2α). Now put
v2 = 4 , vτ = p2a, m = paM1 in Theorem 6. We conclude MJdξ ^ pa,
contradicting the hypothesis.

Theorem 6 also gives a simple proof of Theorem 7 of [8]:

COROLLARY 5. If p\ (n, v), v = pavi with p semiprimitive
then there exists no cyclic difference set with parameters {v, ft, λ).

Putting pα, v19 p
b of the corollary equal to vlf v2, m, respectively

in Theorem 6, we conclude pav1 ^ pa+bvlf or 1 ^ pb.
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Other examples of Theorem 6 can easily be given. For example
(since 32 = — I(mod5), 5= — 1 (mod 3)), there is no cyclic set with
N = 3a5bM if Sa5b > 2M\

We note an analogous theorem which can be proved in the same
fashion.

THEOREM 7. If χ is a character of G of order vλ > 1, vL — Πί Q%
with q{ powers of distinct primes and D is a subset of G such that
χ(D) — w Πj=i ( Σ & - ) A,iC5)Λ,i rational integers, ζ, a primitive ĝ  th
root of 1, then 2r~xv ^ vλ Π5=i rciax^ Aitj.

The preceding results depended on elementary considerations about
the magnitude of the characteristic function of a difference set summed
over a subset of the group. We shall now prove a result which depends
only on the fact that the characteristic function has integer values,
with no restrictions on the size of the integers.

It is easy to see that the only algebraic integers in the field of
2wth roots of 1, m Ξ> 3, of absolute value 3α are of the form
wSa~b(l ± Zλ/^y, 0 ^b ^ α. (Note that τ / ^ 2 = ζ + ζ3, ζ a primitive
8th root of 1.) Thus, since | A + Bl/^l = 3m implies A2 + 2B2 = 32m,
max A2, B2 ^ 2^m~1, and theorem 7 implies there are no H sets with
σ2(G) = 2t + 2 if N = 2*3* and 22ί > 32*+1. However, we shall remove
any magnitude restrictions and prove that there are no H sets with
σ2(G) = 2ί + 2, t ^ 1 if 2*||JV.

We first make the following remarks: if p is a prime and k, λ, v
are integers such that k2 — Xv = n, k — X = n, and p | (w, v) then p | (fc, λ);
since k(k — 1) = X(v — 1), and p does not divide k — 1, v — 1, p divides
k and λ to the same power, say pr\\k, X. Thus pr\n. Assume that
ps \\n; then

(a) 2r > S implies ps~r \ \ v
(b) 2r < S implies pr\\v

and in either case the power of p which divides v is less than S/2.
Finally

(c) 2r — S implies pr | v.
In case (c), assume further that p — 2. Then n is a square (by

Theorem 2); if k = 2rklf n = 2 2 r ^ with ^ , % odd we get 2 2 r(^ - n\) =
λv Since 2 r | | λ , we conclude that 2r+31 v, as &? — w2 = 0 (mod 8).

We shall now show that if D is a difference set such that 2 | (n, v),
and 2 divides k2 and w to the same power, then the group G cannot
have a character of order 2α, where 2 α | | ^ ; in particular, G cannot be
cyclic.

Let D be a difference set, and assume p* || k, Vn, pt+s\\ v with t ^ 1.
Then we know that for p = 2, S Ξ> 3. Let χ be a character of G of
order p ί +^, and let F i be the number of elements g of D such that



CHARACTER SUMS AND DIFFERENCE SETS 335

χό(g) = χ2'+*-; = ζ ? > where ζh = exp (2πi/2h), for 1 ^ h ^ t + S. Then

χ,(7?) = Σ Γ Ή ζ j \ Γ = 2'.

LEMMA 6. 7/ 2*-α || F* /or some m, a > 0 ί/wm 2'-°-' || Γ£+' /or
A + j ^ t + S.

Proof. We note the formula

Y h i V^ + V Λ +

i j ^ Π £ . „ , - _ _ m ~ Γ -t m •* m + φ

which follows from Γ^ = Γ ^ 1 + Γifψ. But χ,+1(£>) = Σ f ( ^ + 1 -
Ym+φ)ζh+1. Since 2* | | χh+1(D) \ and there is only one prime ideal which
divides 2 in the field Q(ζh+1), we conclude t h a t 2t \ %h+1(D) and therefore
2* I Yi+1 - Γifψ, 1 ^ m ^ 0, since the ζ*A+1, 1 g i ^ ^, form an integral
basis for Q(ζh+1). Thus 2 ^ || Γ^, α > 0 implies 2 ί - α - 1 | | Γ ^ + 1 and by
induction 2t~a~i \\ Yt+j for h + j St + S.

COROLLARY. 2* | Yi for all m.

For if not, put j — t in the lemma; this would imply Y^+s is not
an integer.

L E M M A 7. Assume D is a difference set such that 2\n,v, 2U \\ n>k2,
2t+s\\v, S ^ 0. Then S Ξ> 3, and there exist integers Zm such that

£h^S, T = 2s

(11)

KM odd

T

Σ-

integers,

T

2-1 ^i
1

2s II

= M

- M\

Proof. We have seen t h a t 2*\YZ. Let ZfΛ = 2~tYl,k1 = 2~%
M2 = 2~2ίw. Then equations (11) are a summary of the known properties
of D; the fact t h a t 2s\\k\~M2 follows from &2 - n = λv, and
2*|| jk, λ, l/ ίΓ.

THEOREM 8. There are no sets of integers Ziy klf M which satisfy
(11) for S ^ 3.

Proo/. Let Z, = Σ Γ ̂ w ζ Γ , 0 ^ i ^ Γ - 1. Then Zo = ^ , 1 ^ 1 =
.Λf for i > 0. The latter equations imply (e.g., by (3)) t h a t

Tj.2 Ά/Γ2

z2 — M2 -4- * ~
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The assumption 2s\\k\- M2 implies therefore that ΣZ2

m is even. Since
the Zm are integers and ΣZm is odd, this is impossible.

COROLLARY. IfDίsa difference set and 2t\\k, Vn^2t+S\\ v , t ^ l

then o2{G) < t + S. In particular, there are no cyclic difference sets

for such values of v, k n.

This follows from the theorem and Lemma 7.
We remark that Lemma 6 holds for arbitrary primes.

Existence theorems* We shall now give some existence theorems
for H sets. We denote Z2 x Z2 by if4.

THEOREM 9. The following are abelian H sets for N — 2h~1, h > 1:
(1) All h-tuples with an odd number of zero components, G =

(2) The subset of GF(2h) x GF{2h) consisting of all pairs (m1 +
m2, mxm2), mi e GF{2h).

Proof. The set {0} is an H set in K4 or Z4; by Lemma 4 (taking
Kronecker products of the Hadamard matrices) we get the first state-
ment.

To prove the second statement, let q — 2h. The set D = all (m1 +
m2, m1m2) is easily seen to be the set of points which lie on one of
the q + 1 lines in the affine plane GF(q) x GF(q)

L^: X = 0

Lm: Y = mX + m2 me GF(q) .

All these lines have distinct slopes, and it is easily verified that
each point in D lies on precisely two of these lines. The number of
points in D is q(q + l)/2, since there are q + 1 lines of q points each,
and each point lies on two lines. (Note that here 2k > v.) We now
consider D f] D + a for aeG, a not the identity. If the vector a is
parallel to La (where aeGF(q) or a— oo), then PεLa implies P +
a € La. If β Φ a, Lβ n Lβ + a will be empty, since Lβ + a has the
same slope as Lβ9 but Lβ + a = Lβ only if the slope of a = the slope
of Lβ. Any line not one of the Ly contains q/2 points of D; for it
intersects q of the lines La, and each point of intersection lies on
precisely two of the Ly. Count all the points of D f] D + a twice:
there are q points on La, and q/2 on each of the other q lines. There-
fore D Π D + a contains q + q{q/2) points each counted twice, and the
order of D Π D + a is (<f + 2g)/4 for a Φ 0, independent of α; clearly
n= g2/4, v = An.
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If D is a difference set with v even, n is a square, and an obvious
possible value for the χ(D) is w{χ)V~n for χ Φ χ0, with w(χ) an ap-
propriate root of 1 for each χ. (w(χ) must have order dividing the
order of χ, or twice it if the order of χ is odd; (m, v) = 1 implies
w(χm) = w(χ)m.) If v = 4ΛP, k = N(2N - 1) we must have

y, =

if χ(D) — w(χ)N, where | w(χ) | = 1 for any H set, and w(χ) is a root
of 1 if we assume (χ(D)) = (N) for χ φ χ0.

We now note a simple lemma.

LEMMA 8. Let D be an H set in G, Gλ normal in G of index 4.
If (X(D)) — (N) for X Φ Xo and Gx in the kernel ofχf then the numbers
of elements in the cosets of Gx are

ΛP 1P_ ΛP N(N - 2)

2 ' 2 ' 2 ' 2

or

(N(N - 1) N(N - 1) N(N - 1) N(N + 1)
V 2 ' 2 ' 2 ' 2

second case can arise if N is odd.

This is a trivial application of, for example, formulae (7) and (8).
The first case arises if G/G, = Z, and χ(D) = ±iN or if G\GΎ = Z2 x Z2

and the three characters of order 2 on G/G1 do not give equal character
sums. The formula (12) does not yield integers if N is odd.

This lemma is proved incorrectly in [10]; the assumption on χ(D),
if G/G± = Z4 is not explicitly stated.

We shall now describe certain difference sets in the abelian groups
of order 36 which have no elements of order 9. It will be convenient
to consider Zz x Zz as an a ffine plane (over the field Z3); we denote it
by A5. We shall refer to these sets as Q sets.

Let G4 be K, or Z,, and let 0, 1, 2, 3 be the elements of G4. In
the affine plane A3 take four lines L{, 0 ^ i S 3, one of each slope
(i.e., four distinct mutually intersecting lines). Let SQ be the comple-
ment of Lo in A?, S{ = Li for i = 1, 2, 3. We let D be the subset of
G4 x A3 consisting of all pairs (i, x) with xe Sif 0 ^ ΐ ^ 3. It is not
hard to verify that D is an H set; this will be shown in the course
of Theorem 12.

We now enumerate Z± in the usual manner by i — 0, 1, 2, 3, and
let 0 = (0, 0), 1 = (0, 1), 2 = (1, 0), 3 = (1, 1) in K4. We let Q, be the
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Q set in Z± x A* for which Lo is X = 0, ̂  is 7 = X, L2 is Γ == 2X
and I/3 is Y" = 0. Q2 is like Qx except that Lo is X = 1. Q3 is like
d except that L3 is Y = 1. QJ, Q2, Q3 are the Q sets in if4 x A3 defined
like Qlf Q2, Q3.

We call two subsets Du D2 of a group G equivalent if D2 — (σDJa,
where σ is an automorphism of G and aeG.

THEOREM 10. Any Q set is equivalent to one of Q{ or Q , i =
1, 2, 3; these are inequivalent.

We first prove a simple lemma.

LEMMA 9. Assume there are N + 1 distinct mutually intersecting
lines L{ (i.e., one of each slope) in the afjϊne plane GF(N) x GF(N),
(N any prime power), such that any point in the plane lies on not
more than two lines) then N is even.

To prove the lemma, fix one of the N + 1 lines, say Lo. It con-
tains N points of the plane and intersects N of the lines L{. Since a
point lies on at most two of the Liy each point of Lo lies on precisely
two of the lines Lim This proves any point of the plane lies on none
or two of the lines L{. Now take a line parallel to LQ, but φL^ It
must intersect all the Li except Lo; each point of intersection is on
two of the Lif and there are N intersections; thus N is even.

We now return to the proof of the theorem.
Every automorphism σ of G4 x Az induces automorphisms σ4, σ3 on

6r4 and A39 respectively. In an arbitrary Q set, the element of GA

which corresponds to So is determined (it is the only element x of G4

for which there are six elements (x, y) in the set). Lemma 9 shows
that the four lines Li have a point P of triple or quadruple intersection,
necessarily unique, and it is also uniquely determined by the Q set.
Since Lo is uniquely determined by the set, we see that the sets Qit

Ql are indeed inequivalent. To show that any Q set is equivalent to
one of Qi9 Ql, we first translate the Q set so that the identity element
of G4 corresponds to Lo and the point P of A3 corresponds to the origin
of A3. We now observe that the automorphism group of A3 is transitive
on quadruples of distinct slopes: given four distinct lines through the
origin, we may clearly transform the first and second into X = 0 and
Y = 0, respectively, by an automorphism (since A3 is a vector space).
If it is necessary to interchange the other two slopes, the linear
transformation S which takes (x,y) into (x, —y) ((x,y)eA9) will leave
the X and Y axes invariant but will interchange the other two lines
through the origin. If four of the lines Li go through P, we have
shown the Q set is equivalent to Qx or Q[. If one of the L i does not
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contain P, we first apply an automorphism to A3 which will transform
the slopes to correspond to the slopes of Qi or Q'i9 i — 1 or 2. If the
line Li which does not contain P now coincides with the corresponding
line in Qi or Q[ we have shown the desired equivalence; if it does not,
we apply the inversion automorphism to Az. This will leave invariant
the lines through the origin, and take a line not through the origin
into the other line parallel to itself and not through the origin.

THEOREM 11. The multiplier groups of Qlf Q2, Q3; Q[, Qf

2, Q[ are
of orders 4, 2, 2; 12, 6, 6, respectively.

It is clear that a multiplier of any of the Qi9 QI must leave the
sets fixed, since we have seen that identity elements of G4 and A3 are
special elements of the sets. We have also seen that the automorphism
group of A3 is transitive on quadruples of slopes, and only the trans-
formations ± 1 of Az leave all the slopes invariant. A multiplier of
one of the Q{ or QI restricted to G4 is a permutation τ of 0, 1, 2, 3
(which leaves 0 fixed); the permutation of the slopes of the Li in A3

must induce the same permutation of 0, 1, 2, 3. We can always find
precisely two automorphisms of A3, σ and (-Ι)σ, which leave the Y
axis fixed and take the slope of Li into that of L^, i — 1, 2, 3. If
the Li all go through the origin both (τ, σ) and (τ, ( — I)σ) will be
multipliers. However, if one of the Li does not go through the origin,
only one of these two automorphisms will take Qi or Q[ into itself
(the other will take the L{ not through the origin into the line (-I)Li).
The theorem now follows because Z± and K± have 2 and 6 automorphisms,
respectively.

THEOREM 12. The only H sets for which N is an odd prime,
satisfying the condition (χ(D)) = (N) for all χ Φ χ0 are the Q sets
described above and their complements, if G is abelian.

Proof, We have seen that if N is an odd prime and an H set
exists with n = N2 then σN{G) < 2, (Corollary 1 of Theorem 6). Thus
G must be K4 x ZN x ZN or Z4 x ZN x ZN.

We shall assume that k = N(2N — 1) (by taking the complement
of the H set D if necessary). We consider first G — KAX ZN x ZN,
a n d w r i t e abed for y{a,h,c,d) w i t h a,be Z2,c, de ZN. W e let χa$ χβ b e

the characters of order 2 defined by χ«((l, b, c, d)) = χβ((a, 1, c, d)) =
— 1, for all α, δ, c, d. We may assume D is translated so that %JJD) =
χβ(D) — N (since they are both ±N, being rational integers of absolute
value Λ )̂β Lemma 8 then shows that χaχβ{D) = N, since N is odd.

Let ζ be a fixed primitive Nth root of 1, and define χNf X^ by
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χN((a, b, c, d)) = ζc

χj{a9 b, c, d)) = ζ«

c, d being integers (mod N). For 0 < k < N, let

Xk — XNXOO

For any nonprincipal character χ, (X(D)) = (JV) and | χ(D) | = N, so that
χ(D) — wN for some root of 1, w. We may thus write

χk(D) = ^ζ β *t f

for A; = 1, , N, oo, ̂  = + 1 . By Theorem 5, if χy is any character
of order 2 we have χyχk(D) = ±χk(D) (put χfc = f in Theorem 5), We
may therefore write

with vΛ, wfc, ίΛ = ± 1 .
We first prove that Σ * ^* = — 1 ± iV(fc = 1, , N, oo). For

i^21 Σ ί i ZίrZiΦ) = ^(2iV - 1) + Σ * Σ ^ o Xi(D), i, j (mod N). But if
χk(D) = wΛζ

β*ΛΓ then χi(D) = ukζ
ie^N for i Ξ£ 0(mod iV) (as in the proof

of Theorem 5) and therefore Σ*#>JβΦ) = ukN{-l + δo,ekN). Thus
iV21 -iV + Σ * - ^ ^ and iV 11 + Σ ^ %• Therefore Σuk = - l(mod JV),
and -Σ7^ is not more than N + 1 in absolute value, since uk = ± 1 for
all &. Since N is odd, JUfc is even, and therefore Σuk — —1 — N or
— 1 + N. Thus all the uk are —1 or all but one are + 1 .

Similarly each of Σvk, Σwk, Σtk is 1 ± N; the argument is the
same, but the term which corresponds to i = j = 0 in e.g., the sum
Σ*,i X«XNXUD) is now N instead of N(2N - 1). The ^ are all + 1
or all but one are — 1 ; the same is true, independently for the wk

and for the tk.
We shall write δk for δc+kd>ek, and Δ for Σ & δk. Δ and the dk

depend on c, d. We shall refer to the set of c, d such that c + kd =
ek as line A; these are the points of A3 for which δk = 1. J is the
number of the lines A; on which the point c, d lies.

Now the inversion formula gives

OOcd = ^ ± i + -^L. Σ(Ndk - l)(wA + ^ + wk + tk)

Σ (Nδk - 1)(% + ^ - wA - tk)

+ wA - ^ - tk)

Σ

Σ
lied - ^ = 1 + J^^iNδ, - 1)(% + tk -
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The first of the above formulae, for example, is

4iV2

Σ ΣAN2 k t £

• χ|((0, 0, c, d)) + _ L _ ( χ o ( £ ) + lω{D) + χβ(£) + χ.χβ(J9))
AN2

since χfc(0, 0, c, d) = χ7χfe(0, 0, c, d) for any χ7 of order 2. The last
term is (N(2N - 1) + 3iV)/4JV2, the first term in the formula for
OOcd; the sum is clearly (l/4iV2) ^k Σ ô (uk + vk + wk + tk)Ce*N ζ-c-fcd

(with the convention ζ-c~-°°d = ζ-«) which reduces to the first formula.
The above follow similarly, except that e.g., %«%*((!., 0, c, d)) =
U Λ ( ( l , 0 , c , d ) ) = -χ,(( l ,0,c,d)).

It is clear that finding an H set D of the required type is precisely
equivalent to finding uk, vkJwky tk all ± 1 , and ek mod N which yield 0
or 1 in all the above equations. We shall now consider all the possible
types of solution (using the symmetry of the vkJ wk, tk in the problem).

I. uk — —l,vk = wk — tk — 1 for all k.

Then

OOcd = —
2

lOcd = Olcd - lied = 1 - — .
2

Since OOcd must be 0 or 1, any point c, d must lie on none or
two of the lines Jc; but Lemma 9 then shows N is even. For another
proof, note that these formulae show the resulting Hadamard matrix
would be equivalent to a direct product of an N x N matrix
((2(00cd) — 1)) by the 4 x 4 matrix 21 — J, which requires the N x N
matrix to be Hadamard, i.e., N = 1 or N even. This case suggested
the construction in Theorem 8.

II. uk = —lfvk — wk = 1, tk — —1 for all &, except tm = 1 .

Then

OOcd = 1 ( 1 + δ j

Δ

and OOcd = 1/2 for cd not on line m, which is impossible.

III. uk— —lfvk = l,wk — tk— —1 for all k, except w5 = tm — 1 .
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Then

lOcd = 1 - — {Δ - 3j + δj .
Δ

If j = m, lOcd is fractional unless each point which lies on one
of the lines k lies on at least one other. But this would mean each
point of one of the lines k would lie on precisely two, and by Lemma
9 this would mean N is even. If j Φ m, the formula

shows that any point on one of the N — 1 lines k, but Φj, m must
lie on another. Since any one of these N — 1 lines intersects the
others in at most N — 2 points, this is impossible.

IV. uk = vk = wk = tk = —1 for all k, except tm = wά — vn = 1 .

Then

lied = -1(1 + g w - 3 n _ 8 . ) .

If cd is on none of the lines j , m, n we have lied = 1/2, which
is impossible. But these three lines contain at most 3(ΛΓ — 1) + 1
points, and for N > 2, N2 > SN — 2, so such a point exists.

V. uk = vk — wk — tk — 1 for all k, except uh = — 1 .

- — + // - A_
2 2

and OOcd is not an integer for cd not on line h.

VI. uk = vk — wk = lftk = —1 for all &, except u λ = — 1 , ίm = 1

OQcd = ±-(4 - δh + SJ .
Δ

If m = h, N is even by Lemma 9. If m Φ h, Σnc^m^ Sk must be
an integer for all cd which was shown impossible in III.

VII. uk = vk = 1, tk = wk= -1

for all k, except uh — —l9tm = ιv3- — 1 .

so for a point not on lines h, j , m we would have OOcd = 1/2, as in
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VIII. uk = l,vk = wk = tk = - 1

for all k, except uh — — 1, tm = wά — vn — 1 .

We have

Δ

- δh

and the two formulae analogous to Olcd. First, we note that ft is
not equal to any of j , m, n: for if say j = ft (by symmetry), we would
have Olcd = (1/2)(J - δm - ίn) - (1/2) Σ ^ m , n δ, and this is shown im-
possible in III. Second, we note that j , m, n are distinct: again, by
symmetry, if say j = m we would have Olcc? = (l/2)(z/ — dh — §n) as
before. Therefore i , m, w, ft are all distinct. But then Olcd =
(l/2)(Σ/^m,^,; δΛ) + δy and the sum in parenthesis must be an even
integer for all cd. This is impossible (as in III) if there are more
than 4 lines in the plane; but if N = 3, the sum is zero, and the
formulae reduce to

OOcd = 1 - dh

Olcd = δd

lOcd = δn

lied = δm

which clearly give 0, 1 values for any choice of the lines ft, j , m, n
(one of each slope) for all c, d.

We now turn to the group Z4 x ZN x ZN = Z4 x ^4^. We write
αδc for y{a,h,C), ae Z4,b, ce ZN. We define the characters χk k =
1, , iV, co of ^ x ZN as before. We let ψ be a fixed character of
order 4. We have

χk(D) = ukNζe«

ψ*χk(D) = vkNζ«>

with uk, vk= ± 1 . Again we get Σ * ^* = ~ 1 ± ^ Σ * ^ = 1 ± N.
By Theorem 5, (with χk = α/r) we conclude that χfc(D) = wχk(D) with
w a fourth root of 1; write ψχk{D) = wkNiakζβk, with % = 0 or 1, and
Ma = ± 1 . Lemma 8 shows we may normalize the set so that ψ(D) =
ψ\D) = N.

We use the Σ/> Σ// °̂ denote the sum over those values of k for
which ak = 0 or αΛ = 1, respectively. As before, the inversion formula
gives
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Obc = ^2ΛΓ + W ? { U k + Wk)(Ndk ~

2bc = ^ Λ Γ + w " ? { U k ~ Wk){Ndk ~

3δc = ̂ r + w 5 ( t t * ~ Wk)(Nδk ~
since for example, in the first formula, ψχk(D) + ψzχk(D) = 0 if
ψχk(D) = ±ίζe*N. (As in Theorem 5, ψdχk(D) is the conjugate of
ψχk(D) under the automorphism (7 defined by o(i) — —i,σ(ζ) — ζ).
But then, since 4 | χk{D) + f 2χ,(Z>) + ψχk(D) + ψ*χk(D), 4\(uk + vk)Nζe«,
so uk= -vk if f χk(D) = ±iχk(D). If ψχfc(J3) = ±χk(D), we conclude

By considering 06c ± 2bc for any 6c we conclude that 2 7 i6fc =
0(mod N), and Σ / wk = 1 (mod iV). The second of these shows there
exist values of k which occur in 2/> i eM for which ψχk{D) = ±iχk(D).
Since Σ * ^^ + Σ π ^ = Σ ^ = — 1 ± iV", we conclude Σ// ^^ =
— l(modiV), so that there exist values of k which occur in Σ u
The formula for 16c — 3δc shows ^nwk ~ O(modΛΓ).

Σ u>k = - 1 ± N; if Σ nk = - 1 - N, uk = - 1 for all fc, and
Σz ufc Ξ 0 (mod iV) implies there are N values of k which occur in
Σz (since there is at least one). We would then have precisely one
value of k in Σ 7 J , which would imply Σ// wk = ± 1 ; but Σ / / ^ Ξ

O(modiV). Therefore we must have Σ ^ Λ = —1 + -ίV. Now Σ / ^ * Ξ

0(mod iV) would imply Σ / uk = ^ or 0. The first of these would
imply there are JV values of k in Σ/> therefore Σ π w * = ±1> which
would contradict Σ / / w * Ξ O(modiV). Therefore Σ / ^ — 0, and there
are two values of k in Σ/> V̂ — 1 in Σi/ But since Σ ^^ = l(mod JV),
Σ wk — 1 ± N, to get Σ// ^λ Ξ 0(mod ΛΓ) we must again have ^uwk =
0, and there are two values of k in Σ u Therefore N = 3.

There are two values of & in Σ/> a n d Σ i ^ — 0. Pick the two
generators of ZN x Z^ so that ud — — 1, u^ = + 1 , with 3, oo the
values of A; in Σ/, i e , lk{D) ± χ,χk{D) for A; = 3, co. w8 + W β β =
1 — 3 = — 2, so w8 = I*;*, = — 1. Therefore ^ + ^ 2 — 0, and by ap-
plying the automorphism (x, y, z) —> (a?, y, —«) we may assume ^ = 1,
w2 = — 1 .

The formulae now reduce to (with notations as in the first part
of the theorem)

06c = 1 - δ3

26c = δ^
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16c = d,

Sbc = d2 .

Clearly, any choice of the lines gives a difference set.

COROLLARY. The Q sets are the only abelian H sets with N a
prime of the form 4& — 1.

Proof By Corollary 1 of Theorem 6, we must have σN < 2. The
characters of G must all have order dividing AN; if N is a prime of
the form 4k — 1, N remains prime in Q(i), and the only integers of
absolute value N in the field of 4iVth roots of 1 are wN, w a root
of 1. Thus (χ(Z>)) = (N) for all χ Φ χ0, and the corollary follows from
Theorem 12.

We remark that given a set of values of vyk,X and an abelian
group G of order v, one often very useful way of constructing differ-
ence sets in G with the given parameters is to construct first all the
sets of algebraic integers which might be the X(D), and then to con-
struct D from these. Theorem 12 is an example of this procedure.

THEOREM 13. Let G = Πί Z2 Hi Z, Πί Z8 H\q ZZ1 with r ^ ί, r - t
even, r — t + 2s ^ 2q. Then there is an H set in G.

Proof The following two subsets of Z8 x Z2 are inequivalent H
sets:

(00, 10, 20, 50, 01, 61)

(00, 10, 21, 51, 01, 61) .

The theorem now follows from the previous theorem by Lemma 4.
It is easy to check that all the H sets of Theorem 13 satisfy the

condition (χ(D)) = (N) for all χ Φ χ0.

Addendum. "The case r = 1 of Theorem 6 has been obtained
independently by methods similar to those of this paper: K. Yamamoto,
Decomposition fields of difference sets, Pacific J. Math., 13 (1963),
337-352, and R. A. Rankin, Difference sets, Acta Arithmetica, 9 (1964),
161-168. The second paper also contains a special case of Theorem 5."
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CONCERNING KOCH'S THEOREM ON
THE EXISTENCE OF ARCS

L. E. WARD, J R .

A theorem of R. J. Koch asserts that if X is a compact
space endowed with a partial order Γ such that

( i ) Γ is a closed subset of X X X,
(ii) there exists O e l such that (0, x)eΓ for each xeX,

and
(iii) for each xeX the set L(x) = {y:y ^ x] is connected,

then each point of X lies in a connected chain containing 0.
In particular, X is arcwise connected. This is a corollary of
the theorem: if X is a compact space and Γ is a partial order
satisfying (i), and if W is an open subset of X such that each
neighborhood of each point x of W contains a point y Φ x
with (y, x) G Γ, then each point of W is the supremum of a
connected chain which meets X— W. A new proof of these
results is presented.

The first of these theorems is generalized in several ways.
The compactness is relaxed to local compactness and the as-
sumption that each closed chain has a zero. Moreover, the
existence of a zero need not be assumed. If the set E of
minimal elements is closed, then E is joined by connected
chains to all other points of X. If the set function L is
continuous, then E is necessarily closed.

1* A classical problem of topology is to determine when a space
is arcwise connected. Here it will be convenient to adopt the termi-
nology of A. D. Wallace [6] and call a subset A of a space an arc if
A is a continuum with exactly two noncutpoints. If A is also sepa-
rable then it is a real arc.

A few years ago R. J. Koch [4] proved a remarkable theorem of
this type. He showed that a compact partially ordered space is arcwise
connected if certain natural conditions are imposed on the partial order.
It is the purpose of this paper to study Koch's result in detail. His
proof, although ingenious, is long and very complicated. Since the
theorem is fundamental to the structure theory of partially ordered
spaces, and since it has been applied [3, 4, 6] to a variety of problems
in topological algebra, it is of some interest to exhibit a shorter and
simpler proof. This is done in § 2. In the later sections, some gener-
alizations of Koch's theorem are obtained.

Received February 13, 1964. Presented to the American Mathematical Society,
January 24, 1964. The author gratefully acknowledges the support of the National
Science Foundation.

347



348 L. E. WARD, JR.

Perhaps the most celebrated theorem on arcwise connectivity is
the assertion that every locally connected and metrizable continuum is
real arcwise connected. I suspect the existence of an intimate relation-
ship between Koch's theorem and this result. In the final section of
the present paper, this possible relationship is discussed, but I have
not been able to resolve the question satisfactorily.

2» A short proof of Koch's theorem* If Γ is a partial order
on a set X, we identify Γ with its graph and treat the symbols x S
y, xΓy and (x, y)e Γ as synonyms. Recall that a chain of a partially
ordered set (X, Γ) is a subset C of X such that aΓb or bΓa obtains
for each a and b in C. We also define

L(a, Γ) = {x e X: xΓa] ,

M(a,Γ) = {xeX .aΓx} 9

for each ae X. Where no ambiguity may occur we shall write L(ά)
for L(a, Γ) and M(a) for M(a, Γ). Moreover, if A c X we define

L(A) = U {L(x): x e A} ,

and it is convenient to adopt the notation

[x, y]Γ = M(x, Γ) n L(x, Γ) .

In case X is a topological space, the partial order Γ is continuous
provided Γ is a closed subset of X x X. When this occurs, X =
(X, Γ) is called a continuously partially ordered space. It is well-
known [7] that if X is a continuously partially ordered space then the
sets L(x) and M(x) are closed, for each xe X, X is a Hausdorff space,
and, if X is compact, it admits a minimal element, i.e., an element
having no proper predecessors. A zero of a continuously partially
ordered space is an element which precedes every other element. In
the compact case, a unique minimal element is necessarily a zero.
Finally, we remark that in a compact, continuously partially ordered
space, a connected chain joining two distinct points is an arc. An
arc which is also a chain will be termed an order arc or a Γ-arc.

(2.1) THEOREM (Koch). Let W be an open subset of the compact,
continuously partially ordered space X, and suppose, for each xe W,
that each neighborhood of x contains an element y with y > x. Then
each xe W is the supremum of an order arc C such that C — W is
nonempty.

(2.2) COROLLARY. If X is a compact, continuously partially
ordered space with zero, 0, such that L(x) is connected for each xe X,
then each xe X — {0} is joined to 0 by an order arc.
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The corollary follows easily from Theorem 2.1 by taking W —
X — {0} (see [4]). Our proof of Theorem 2.1 is embodied in two main
lemmas.

(2.3) LEMMA. Let W be an open subset of the compact space X.
If X admits a partial order satisfying the hypotheses of (2.1), then
X admits such a partial order which is minimal.

Proof. Let {Γa} be a maximal nest of partial orders satisfying
the hypotheses of (2.1), and let Γo — f] {^} It is readily verified
that Γo is a continuous partial order on X. Let xe W and let U be
a neighborhood of x; clearly we may assume that U c W. Since X
is regular, there exists an open set V with xe V c V c U, and since
X is normal, there exists an open set R with X— UaRaRaX—V.
For each a, let xa be a /Vminimal element of L(x, Γa) Π V; then there
must exist yΛ Φ xa such that

yΛ e L(xω, Γa)-~ Rd L(x, ΓΛ) - (R U V) .

Since the closed sets L(x, Γa) — (R U V) are nested and nonempty,
there exists y e L(x, Γo) — R U V. Thus {y, x) eΓ0, y Φ X, and yeU.
Therefore Γo satisfied the hypotheses of (2.1) and is minimal.

(2.4) LEMMA. Let W be an open subset of the compact space X,
and suppose Γ is a partial order on X which is minimal with
respect to satisfying the hypotheses of (2.1). Then every maximal
chain of (X, Γ) is connected.

Proof. If not then the compactness of X guarantees [7] the
existence of elements a and b of X with (α, b)e Γ, a Φ 6, and

[α, b]Γ = {a} U {b} .

Since X is a Hausdorff space, there are disjoint open sets U and V
with ae U and be V. Let

F - {(x, y)eXx X:[x, y]Γ -(UuV)Φθ}.

A routine argument involving the continuity of Γ shows that F is
closed and hence

is also closed. Since Γ is reflexive and U Π V = 0, one sees that Δ
is reflexive, and the anti-symmetry of Γ implies that Δ has the same
property. To see that Δ is transitive, suppose that pΔq and qΔr but
(p, r) e X x X — Δ. Since pΓr, it is clear that
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(p,r)eU xV - F

and thus [p, r]Γ c U U V, so that q e U or q e V. If qe U then, since
reV and (q, r) e Δ, we infer that (q, r)e F and consequently

[?, *1r - (17 U V) Φ 0 .

But then

[p, r ] , - ( P U F ) ^ 0 ,

i.e., (p, r) e F , a contradiction. A similar contradiction ensues if q e V
and therefore Δ is transitive.

Now let xG W and let N be a neighborhood of x. lϊ xe X — V
then L(x, //) — L(x, Γ) and hence there exists y$N, y Φ x, with yJx.
1ί xeV then

L(x, J ) Π F = L(a?, f ) Π F

and hence the desired y exists in N Π V. Therefore Δ satisfies the
hypotheses of (2.1), contrary to the minimality of Γ.

Proof of Theorem (2.1). In view of Lemma 2.3 we may assume
that Γ is minimal, for any /"-arc will be an order arc with respect to
a partial order which contains Γ. Let x e W and let D be a maximal
chain of X such that x e Da By Lemma 2.4, D is an order arc, and
by hypothesis, C = D f) L(x) is nondegenerate and hence C is also an
order arc. Since X is compact, C has a least element which cannot
lie in W.

It should be noted that the chief applications to topological algebra
arise from Theorem 2.1. From a purely topological point of view,
hewever, Corollary 2.2 is the more interesting, and it is this result
which we shall generalize in several ways.

3. A lemma on quotient spaces* If X is a space and F is a
closed subset of X, we denote by X/F the quotient space which is
obtained when F is identified with a point.

(3.1) LEMMA. Let (X, Γ) be a continuously partially ordered
space and let F be a compact subset of X such that F ~ L(F). Then
X/F is a continuously partially ordered space. If, for each xe X,
it follows that L(x, Γ) meets F, then F is a zero for X/F. Finally,
if X is compact and, for each x e X, each component of L(x, Γ) meets
F, then X/F satisfies the hypotheses of Corollary 2.2 and hence each
point of X/F — {F) is joined to F by an order arc of X/F.
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Proof. Define the relation A on X/F by pΔq provided p,qe X—F
and pΓq, or p = F and L(q, Γ) meets F. It is clear that A is a
partial order, and the proof that A is continuous is routine except for
the verification of the fact that if (F, q) g A, then there are open sets
U and V such that qe U, Fa V and L(U, Γ) and V are disjoint. To
see this we note that since Γ is continuous and L(q, Γ) and F are
disjoint there exist, for each t e F, open sets Ut and Vt such that
qeUtJ teVt and L(Ut, Γ) and Vt are disjoint. Since .F is compact,
a familiar argument shows that the desired sets U and V exist. That
F is a zero if each L(x, Γ) meets JP is obvious. If X is compact then
so is X/F, and if each component Ka of L(x, Γ) meets i77, then

is also connected.

(3.2) COROLLARY. If X is a compact and continuously partially
ordered space, if F is a closed subset of X such that F — L(F) and
i>f> for each x e X, each component of L(x) meets F, then, for each
x e X — F, there exists y < x such that y and x are joined by an
order arc in X.

Proof. If xe X — Fy then, in X/F, there exists an order arc Ax

joining F and x. Let ye Ax — {x} (J {F}; then y < x and an order arc
joins y and x in X/F. Since this arc is disjoint from F, it remains
an order arc in X.

In the following sections we shall also require a simple lemma
about compact partially ordered spaces.

(3.3) LEMMA. If A is a closed subset of a compact, continuously
partially ordered space, then L(A) is a closed set.

Proof. Let Γ denote the graph of the partial order. Choquet [2]
first observed1 that in a continuously partially ordered space the set
functions L and M are upper semi-continuous. Therefore, if x 0 L(A),
there is an open set U with xe U such that M(t) Π A = 0 for each
t e U. Therefore U Π L(A) = 0, so that L(A) is closed.

4* The locally compact case* Very simple examples exist to
show that Koch's theorem fails if X is assumed only to be locally
compact. For later reference we describe one of these.

(4.1) EXAMPLE. There exists a locally compact and continuously
partially ordered space Y with zero, 0, such that L(x) is connected.

I am indebted to the referee for this reference.
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for each xe Y, but certain elements of Y — {0} are not joined to 0
by an arc.

In the Cartesian plane let A_λ denote the closed line segment whose
endpoints are (0, 0) and (1, 0), Ao is the closed line segment whose
endpoints are (1, 0) and (1, 1), and, for each n — 1, 2, , An is the
closed line segment whose endpoints are (1 — 2n, 0) and (1 — 2n, 1). Let

X = LI {An} .
n = —l

In the relative topology X is a compact space. Give X the coordi-
natewise partial order, i.e., (α, b) g (c, d) if and only if a ^ c and
b S d. Then it is easy to see that X satisfies the hypotheses of
Theorem 2.1, with the origin for zero.

Now let S be a closed segment of Ao which does not contain (1, 1),
and let Y = X — S. Then 7 is a locally compact space which other-
wise satisfies all the hypotheses of Theorem 2.1, but no arc joins 0
to (1,1).

The space Y is even a topological semi-lattice. The author and
L. W. Anderson [1] have shown that if a connected and locally compact
topological lattice has a zero, then each point is connected by an order
arc to zero, and, under suitable auxiliary hypotheses, the same is true
of locally compact semi-lattices, but our methods depended very strongly
on the lattice structure.

With no additional hypotheses at all, however, some results can
be obtained in the locally compact case, using Lemma 3.1 and Corollary
3.2.

(4.2) THEOREM. Let X be a continuously partially ordered space,
let p e X, and suppose p admits a compact neighborhood N which
contains no minimal elements of X. If L(x) is connected, for each
x e N, then there exists q e L(p) — {p} such that q and p lie in an
order arc.

Proof. Let B denote the boundary of N and define

F = L(L(p) ΓlB)nN.

We assert that L{p) Π B is not empty, for otherwise the connectivity
of L(p) insures that L(p) c N; but then L(p) is compact and hence
contains a minimal element of X. But, by hypothesis, N contains no
minimal elements of X. Moreover, since p e L(p) — B, it follows that
p e L(p) Π (N — F). By Lemma 3.3, F is a closed subset of L(p) Π JV.
If x e L(p) Π (N — F) then the connectivity of L(x) guarantees that



CONCERNING KOCH'S THEOREM ON THE EXISTENCE OF ARCS 353

each component of L(x) ΓΊ N meets F. Therefore, the space L(p) Π N
satisfies the hypotheses of Corollary 3.2, and the theorem follows.

Referring to the space Y of Example 4.1, the point (1,1) can
certainly be joined by an order arc to a point (1,1 — ε) < (1, 1). In
order to continue this arc on to 0 it is necessary to add some further
hypothesis such as is contained in our next result.

(4.3) THEOREM. Let X be a locally compact, continuously par-
tially ordered space with zero, 0, and suppose L(x) is connected, for
each x e X. If each closed chain of X has a zero, then each x e X —
{0} is joined to 0 by an order arc.

Proof. If x e X — {0}, then Theorem 4.2 assures us that x is the
supremum of a nontrivial connected chain. Let C be a maximal such
chain; by hypothesis, z(C), the zero of C, exists. If z(C) Φ 0, then
another application of Theorem 4.2 produces a nontrivial connected
chain D, of which z(C) is the supremum. But the chain C U D is
connected and thus contradicts the maximality of C. Thus C is an
order arc joining x to 0.

We note that Theorem 4.3 truly generalizes Corollary 2.2 because,
in the compact case, every closed chain has a zero.

Problem. Does Theorem 4.3 remain true if the hypothesis that
each closed chain has a zero is weakened to "each chain has an infimum"?

5* Partially ordered spaces without zero* Let if be a continuum
which contains no arc. Select x± e K and define x ^ y if and only if
y — χ1 or y = x. With respect to this relation K is a compact continu-
ously partially ordered space in which each set L(x) is connected but
in which there are no arcs. Thus we cannot infer the existence of
order arcs without some restrictions on the set of minimal elements,
but the hypothesis of Corollary 2.2 that there is only one minimal
element is unduly restrictive.

(5.1) THEOREM. Let X be a compact, continuously partially
ordered space in which L(x) is connected, for each x e X. Let E
denote the set of minimal elements of X, and suppose, for each
x e X — E, that x e X — Cl(L(x) ΓΊ E). Then each x e X — E is joined
by an order arc to some element of E.

Proof. Let xe X — E; since L(x) is also a compact, continuously
partially ordered space, L(x) Π E is not empty. Let

EΛ = L(Cl(L(x) n E))
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and note that x e L(x) — Ex and, by Lemma 3.3, that Ex is closed.
By Corollary 3.2, x is the supremum of a nondegenerate connected
chain. The proof now follows that of Theorem 4.3. If C is a maximal
connected chain such that x = sup C, then by compactness C has a
zero which, by maximality, is a member of E.

(5.2) COROLLARY. Let X he a locally compact, continuously
partially ordered space in which each closed chain has a zero, and
in which, for each x e X — E, it follows that x e X — Cl(L(x) Π E),
where E denotes the set of minimal elements of X. If L(x) is con-
nected, for each xe X, then each xe X — E is joined by an order
arc to some element of E.

Proof If x e X — E then by Theorem 4.2, x is the supremum
of some nondegenerate connected chain. If C is a maximal chain with
this property, then C is closed and, by maximality, its zero is an
element of E.

(5.3) COROLLARY. Let X be a locally compact, continuously
partially ordered space in which each closed chain has a zero, and
in which the set E of minimal elements is closed. If L(x) is con-
nected, for each xe X, then each xe X — E is joined by an order
arc to some element of E.

Some authors have called a partial order on a space "continuous"
if the set-valued mapping L is continuous in the following sense: that
each set L(x) is closed and, if U and V are open sets such that
L(x) c U and L(x) meets V, then there exists an open set W containing
x such that, if y e W, then L(y) c U and L(y) meets V. If a partial
order satisfies this condition, let us say that the space is an L-con-
tinuous partially ordered space. It is a simple exercise to verify
that L-continuity of a partial order implies continuity. (See Choquet
[2].)

(5.4) THEOREM. If X is an L-continuous partially ordered
space, then the set E of minimal elements of X is closed.

Proof. If x e X — E then there exists p < x and hence, if U is
a neighborhood of p, L{x) Π U is not empty. We may select U such
that xe X — U. By L-continuity, there exists an open set W such
that xeWaX— U and, for each teW, L(t) Π U is not empty. In
particular, L(t) is nondegenerate and hence W Π E is empty.

(5.5) COROLLARY. If X is a locally compact, L-continuous par-
tially ordered space in which each closed chain has a zero, and if
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L(x) is connected, for each xe X, then each non-minimal element of
X is joined by an order arc to some minimal element of X.

6* Concluding remarks* We return to consideration of the
theorem that a locally connected, metrizable continuum is real arcwise
connected. The problem we wish to raise may be put in this way:
Does Koch's theorem imply the arcwise connectivity of such continual
Since Mardesic has shown [5] that the natural analog of this result
fails in the nonmetrizable case, metrizability (or some slightly weaker
condition) must certainly be assumed. Now it can be shown that any
locally connected continuum admits a nontrivial quasi-order (i.e., a
reflexive, transitive relation) which is continuous, has a zero, and is
such that each set L(x) is connected. By an argument similar to that
of Lemma 2.3 one can find a minimal quasi-order with the same
properties. If, under suitable conditions, this minimal quasi-order is
found to be a partial order, then arcwise connectivity would follow
from Corollary 2.2.
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A NEW MEASURE OF A PARTIAL DIFFERENTIAL

FIELD EXTENSION

ISRAEL ZUCKERMAN

Let G be a differential field of characteristic zero with
the commuting derivations dί9 — 9dm. If F is a differential
subfield of G, the algebraic and differential degrees of trans-
cendence of G over F, denoted respectively by d(G/F) and
d.d(G/F) are numerical invariants of the extension. Unlike
the ordinary differential case (m=l) d.d. (G/F)=0 does not
imply that d(G/F) is finite. In this paper an intermediate
measure of the extension is constructed, called the limit vector.
The first and last components of this vector correspond to
d.diGjF) and d(G/F) respectively, and the limit vector is additive.

Similar concepts have been developed independently by Kolchin in
a work not yet published.

Characteristic sets of prime ideals as defined in [6] play a pro-
minent role in the development of the limit vector, as well as in the
development of other results of this paper which do not depend on the
limit vector. Further, it is shown that an intermediate field of a
finitely generated extension is finitely generated. Kolchin has a prior,
but different proof of this- Kolchin's analog of Lϋroth's Theorem [2, 3]
is extended and some results on characteristic sets of length one are
obtained.

Raudenbush [5] shows that the dependence axioms of Van der
Waerden [7] are satisfied by differential dependence. It is indicated
below that these axioms are more readily established by use of the
limit vector. A further result is that a proper specialization of F[a]
must reduce the limit vector only if a has a characteristic set of length
one over F. A short proof of a theorem of Delsarte [1] on partial
linear homogeneous differential equations concludes the paper.

2* Ordering the derivatives* The main source of this subject
is Ritt [6], especially §8 and §2 of Chapter VIII and §§1-16 of Chapter
IX. In general, the terminology and notation are as in [6]. Consider
the differential ring F{yu - -,yr}, where the yi are differential in-
determinates. Then Ό = dl1 d^m will denote a derivative, i.e., the
composite of derivations. We associate with D the vector^, •• ,iTO).
The sum of the ik is called the order of D, or of the associated vector,
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or of Dyό. y3- is to be considered a derivative of itself of zero order. Let
w denote an arbitrary ^/-derivative. A set of marks will be assigned
to the di and yi to achieve a complete ordering of the w. In doing
so, the primary objective will bs to have wλ precede w2 if the order
of wx is less than the order of w2. Associate with each di9 the marks
u%u # " 9 ui,m+2', where un — 1, ui2 = 0, and for k > 2: uik = 0 for kΦi+2,
uik = 1 for k = i + 2. Associate with each ^ the marks viu , v^+a*
where vi2 = i and vik = 0 for fc =£ 2. Let w = cJ*1 d^myim Then w
is assigned m + 2 marks as follows: The jt\ι mark of w is v^ + ί1ulj +
• + imumS. Let wx and w2 be two ^/-derivatives with marks a{ and
hi respectively. Then we shall say that wx precedes w2 or succeeds w2

according as the first nonzero difference 6̂  — a{ is positive or is negative.
As one can easily verify the system of marks introduced here achieves
the desired complete ordering of the ^/-derivatives. Such ordering will
prevail throughout, with the exception of §12.

3* A transcendence basis for al9 , ar over F* Let al9 , ar

be elements in G. If the a{ are differentially dependent over F, let
P be the prime ideal in F{yl9 , yr} with (aίf , ar) as a generic
zero, and let C — (Au , Ak) be a characteristic set of P. (C is
said to be a characteristic set of the a{ over F.) Denote the leader
and separant of A+ by pt and Si respectively. If w is a derivative of
some Vi, it will be called principal; otherwise, it will be called parame-
tric. We will call an α-derivative principal if it admits a representa-
tion w(a) where w is principal; otherwise, it will be called parametric.
If the a{ are differentially independent over F, all α-derivatives will
be considered to be parametric. The ordering of the ^/-derivatives
carries over to the ordering of the symbols for the α-derivatives.

THEOREM 1. The parametric derivatives ofau , ar are distinct
and constitute a transcendence basis for F(al9 , αr) over F. More-
over, a principal a-derivative depends algebraically on parametric
derivatives of equal or lower order.

Proof. If the a{ are differentially independent over F9 the proof
is immediate. Now assume that the α̂  are differentially dependent
over F9 with the associated prime ideal P and the characteristic set C
Since C is a characteristic set of P, every differential polynomial, (d.p.),
in P involves a derivative of some p{. Hence the parametric α-deriva-
tives are distinct and algebraically independent over F. This proves
the first statement of the theorem.

Now, the principal α-derivatives are completely ordered with px(a)
as the first derivative. Since px is the leader of Al9 Pχ(a) depends solely
on parametric derivatives. Let w(aά) be a principal α-derivative sue-
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ceeding pτ{a). If w is a proper derivative of some leader, say piy then
an appropriate derivative D of Ai yields

0 = ΌA^a^ , ar) = S^a,, , ar)w(aj) + B(alf , αr), where the
α-derivatives in S^α) and ϋ?(α) precede w{aά). w may also be some pi

for i > 1. In either case, w{a5) depends on principal and parametric
derivatives whose symbols precede the symbol for w(a3 ) . By induction,
each of these principal derivatives depends on preceding parametric
derivatives; hence on parametric derivatives which precede w(a5). Thus,
w(aό) depends on preceding parametric derivatives, concluding the
proof.

4* Restriction to α-derivatives with orders not exceeding n.

Let A be a subset of G, and n a positive integer. Then the set of
derivatives of elements of A of order not exceeding n will be denoted
by (n; A). Let F' be an ordinary field contained in G. Then, as is
customary, F'(n; A) will denote the ordinary field extension obtained
by adjoining (n; A) to F'. d(F'(n; A)/F') will be denoted by h{F'9 n; A)
or simply by h(n) if no ambiguity arises. (This type of abbreviation
is repeated throughout.)

With this notation the following corollary is immediate, noting that
the ordering of the α-derivatives is such that a principal derivative
depends on parametric derivatives of equal or lower order.

COROLLARY 1. h(F,n;au -- ,α r ) is the number of parametric
derivatives of the α* of order not exceeding n.

THEOREM 2. For n sufficiently large,

h{F, n;au , ar) = H(F', n; au , ar)/m ! ,

where H(ri) is a polynomial in n with integral coefficients. H(n) — Q9

or has degree t ^ m and leading coefficient ct > 0.

Proof. Let p{n) denote the number of derivatives of some y of
order not exceeding n. Then

p{n) = C(n + m,m) — (n + m)(n + m—1) (n + l)/m!

Hence, if the α< are differentially independent over F, h(n) — rp(n)
and the theorem is true in such case with t — m and ct = r.

Now assume that the a{ are differentially dependent over F with
leaders p{ of a characteristic set for the aζ over F. Partition the p{

into subsets Rjf each consisting of derivatives of the same yά. Let
Qu ' " 9 Qs be one such subset. For each nonempty subset T of {qlf , gs},
let u(T) be the m-vector with fcth component, k(T), equal to the
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maximum of the kth components of the vectors associated with the #,
in Γ, and let vτ be the sum of the k(T). Let n be a positive integer
greater than the maximum of the v over all R3. Then an m-vector
will be called a multiple of u{T) if each of its components is not less
than the corresponding component of u(T), and if the sum of its com-
ponents does not exceed n. Let S(T) denote the set of multiples u(T),
and let N(T) denote the number of elements in S(T). Let B(T) denote
the number of elements in T.
Then,

(1) N(T) = C(n + m- vτ, m) .

Note that p(n) is of the form (1) with v = 0. Therefore we extend
the set of subsets T to include the empty set φ and define vφ = 0,
N(φ) =• p{n). The number of parametric derivatives of y3- of order not
exceeding n is obtained by subtracting from p(n) the number of elements
in the union of the S(T). Thus, it is equal to

T

(2) is the sum of 2s expressions, each of the form (1). The term
of highest degree in n in each expression is the same, nmjm\ Since
there are as many positive as negative expressions in (2), the sum of
the terms in nm is zero. Furthermore, by consideration of large n we
see that the effective leading coefficient of (2) is positive.

The sum of the number of parametric derivatives of the R3 is then
a polynomial with the desired properties. (An empty R3 contributes
p(n) elements.)

The following corollary is immediate.

COROLLARY 1. Let s be an integer with 0 ^ s ^ m. Ifaif'-*9ar

are differentially dependent over F, then

( 0 , if s < m - t

ct, if s = m — t

co f if s > m — t .

If al9 , ar are differentially independent over F9 then

r , for s = 0
lim n8h(n)/p(n) = .

( oo, f or 0 < s < m .

* Introduction of the limit vector* We may now define

L8(F, (&!,-•-, ar) = lim n8h(n)/p(n) (s = 0, , m) ,
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and

L{F, au , ar) = (Lo, , Lm) .

The latter will be called the limit vector of al9 , ar over F.
The following remarks are evident.

(1) d.d{F<al9 , ary/F) = r~L0 = r.

(2) For a single element α, d.d(F<a>/F) = 0 <=> Lo = 0.

We will later show that d.d(Fζal9 •••, ar>/F) = Lo, subsuming (1) and

(2).

(3)

In particular, if each α* is algebraic over JP, L S = 0 for all s.

6. Results on Lx. The following corollaries follow from the proof
of Theorem 2. In this section, a will be differentially algebraic over
F with characteristic set C = Al9 , Ak9 0 < & < oo. ^ will denote
the vector associated with the leader of A{.

COROLLARY 2.

J^ particular, this shows that LX{F\ a) is divisible by m.

Proof. The coefficient of %m~λ in ml C(n + m ~ vTf m) is

(3) (m — vτ) + + (1 — vτ) — m(m + l)/2 —

The first term in (3) is the same for each vτ. Since there are as many
positive as negative expressions in (2), these terms cancel in computing
Cm_ l f and the desired result follows.

As a special case of Corollary 2, we have the following.

COROLLARY 3. If a has a characteristic set of length one over F,
then Lλ(F\ a) = mg where g is the order of such characteristic set.

The result of Corollary 2 may be carried further so as to depend
more directly on the leaders of the characteristic set. We need the
following lemma.

LEMMA. Let u(l), •• ,^(&), 1 <; k < oo, be a sequence S of real
numbers with u(l) — min (u(i)). For each subsequence T of S, let
B{T) and M(T) denote respectively the number and maximum of its
elements. Then,
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£ ( - l)*w+*M(T) = u(ΐ) .

Proof. Let V denote a T which does not have u(l) as its first
^"element; and let T" be the sequence obtained by adjoining u(l) at the

beginning of T. Then, with the exception of T — u(ΐ), the T can be
partitioned into pairs of Tr and T" such that

) ( " ) = 0 .

Thus, the desired result is obtained.

COROLLARY 4. Let w3- denote the minimum of the jth components
of the Wi. Then

m

L±(F; a) = m'Σwj .
3=1

Proof By the lemma, the sum of the jth components of the vec-
tors associated with the T, with the appropriate signs affixed, is w3 .

Hence, if we sum the (— l)B{T)+1vτ component-wise, the result of
Corollary 2 yields LX(F\ a) = m Σu^Wj, as desired.

Note that Corollary 4 implies that LX(F) a) = 0 if and only if wό =
0 for all j .

COROLLARY 5. Let At of order v belong to C, and let k > 1*
Then Lt(F; a) < mv.

Proof. If for j = 1, •• 9m, the jth component of Wt is the
minimum of the jth components of the Wi9 then for i Φ t, A{ would
not be reduced with respect to At.

We are now in a position to prove a converse of Corollary 3.

COROLLARY 6. If Lλ{F\ a) — mg, 0 g g < oo, and if a satisfies
an irreducible d.p. A over F of order g, then A is a characteristic
set for a over F.

Proof. Since a satisfies A, there exists a d.p. A! in C with order
g' ^ g. By Corollary 5, if k > 1, LX{F\ a) < mgf g mg. Hence, C = A'.
By Corollary 3, gf' = g and Af has the same order as A. Since A has
zero remainder with respect to A' and is irreducible, A — cA! where c
is in F; hence, A is a characteristic set for a over F.

7, Additivity of the limit vector•

LEMMA 1. Let A be a finite set of elements contained in an ex-
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tension of F. If k, q, and r are nonnegative integers and s an
integer such that 0 g s <Ξm, then

lim [(n + k)sh(n + q9 A)/p(n + r)] — lim [n8h(n, A)/p(n)] .

Proof.

(n + I

Clearly,

Furthermore,

g, A) =
g, A) Qn, g)

p(n + r) p(n + q)

and lim

(n + q)s p(n + r)

lim
q)

LEMMA 2. Let Abe a set and b an element contained in an exten-
sion ofF with b differentially algebraic over JP<A>. Let t be the maximal
order of derivatives of A appearing in a characteristic set C for b
over FζAy. Let A be a set of A-derivatives containing (n + t; A).
Then,

h(FζA>, n; b) - h(F{A')9 n; b) .

Proof Let S(n) denote the set of parametric derivatives of b of
order not exceeding n with respect to C. Then S(n) is algebraically
independent over F(A'). Furthermore, S(n) is an algebraic spanning set
for (n; b) over F(A) since in the proof of Theorem 1 only derivatives
with orders not exceeding n of the d.p. in C are present in the al-
gebraic relations obtained for the principal derivatives.

Note that the result holds more readily if b is differentially trans-
cendental over FζA}.

THEOREM 3.

L(F; al9 , α^); a,) .

Proof. For i = 1, , r — 1, if ai+1 is differentially transcendental
over Fζau •••, α{>, let tt = 0. Otherwise, ti be the maximal order of
derivatives of au , α< in a characteristic set for ai+1 over F<(au , a{y*
Then,
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F(n + « !+•••+ tr_,; au , ar)

Z) F(n + tx + + ί,̂ ; a^){n + ί2 + + ir_x; a2)

• (w + *,._!; α îXw; αr) =) F(w; αx, , ar) .

Then, byTadditivity of the transcendence degree and Lemma 2,

h(F, n + tλ+ +ί r_ 1; α1? , ar)

^ Σ h{F<alt , α,_α>, % + * . + . . . + ίr_i; a,)

^ h(F,n;al9 •• ,α r).

Multiplying by ns/p(n), then taking the limit of the resulting expres-
sions as w approaches oo, by application of Lemma 1, the desired
result is obtained.

8* Extension of the limit vector to a measure of an arbitrary
differential field extension* Let f(G) denote the set of finite subsets
of an extension G of F, including the null set. For S and T in /,
suppose that k is the first component for which L(F; S) and L(F; T)
differ, and that Lk(F; S)<Lk(F; T). Then we will write L(F;S)<L(F; T)
and we may define L(G/F) = sups€/ L(F; S).

COROLLARY 1. IfG is finitely generated overF, i.e.,G—FKalf , αr>,
then L(GJF) = L(F; alf , ar).

Proof. Let A = {au , ar} and B belong to /. Then G = FζA, By.
By Theorem 3, L(F; B) g L(F; A, B) = L(F; A) + L(F<A>,£). Since
B c F<^>, L(F<^>; 5) = 0. Hence, L(F; B) ̂  L(F; A) for all B in /.

Immediate consequences are:

COROLLARY 2. Given G = FζAy = F<£>, ^Λere δoί/̂  A and B
belong to f. Then L(F; A) = L(F; B).

COROLLARY 3. // H is finitely generated over G, and G is fini-
tely generated over F, then

L(H/F) = L(H/G) + L(G/F) .

9* A general additivity theorem*

THEOREM 4. Given FaGaH. Then, L(H/F) = L(G/F) + L(H/G).

Proof. (Part I): To prove L(H/F) ^ L(G/F) + L(H/G). Let g{H)
denote the set of finite subsets of H, including the null set, which
contain no elements of G. Then every V in f(H) is the unique union
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of an S in f(G) and a T in g(H), and conversely. For a particular V =
SUT,

L(F; V) = L(F; S) + L(F<S>; T ̂  L(F; S) + L(G; T) .

Hence,

sup L(F; V) ^ sup (L(F; S) + L(G; T))
ref(H) r

= sup L(F; S) + sup L(G; T) = L(G; ί7) + L(#; (?) .
SG TE(S)

Proof. (Part II): To prove L(H/F) ^ L(G/F) + L(H/G). It suf-
fices to show that L(Fζhu - - , hr>/F) ̂  L(H/G) + L(G/F) for any
finite subset Ẑ , , hr of H. Let ̂  = Gζhu , Λr)>, and let P be
the prime ideal in G{yu * ,yr} with A3, * — ,hr as a generic zero. If
P = 0, let <?! = F. Otherwise, let Gx = FζA>, where A is the set of
coefficients of a characteristic set C of P. Let Px be the prime ideal
in Gλ{ylf , yr} with /&lf , hr as a generic zero. Then C is also a
characteristic set of P l β Hence, L(HJG) = LiG^K ,

By additivity for the finitely generated case,

L{F<Jιu ,

= L i G ^ , , λr>/G0 +

= L(HJG) + L(GJF)

^ L(H/G) + L(G/F) .

10. Remarks on Lo. (1) Almost all of the previous results
on I/o could be obtained more readily: If a is differentially algebraic
over F, it is sufficient to consider a single d.p. B(y) in F{y} which
has a as a nonsingular solution, (i.e., a does not annul the separant
of B(y).)

(2) In order to establish the theory of differential dependence for
arbitrary m, Raudenbush showed in [3] that differential dependence
satisfied the dependence axioms of Van der Waerden [5]. However this
theory follows immediately from the results on Lo. Furthermore, since
it suffices to consider differentially independent subsets of G in deter-
mining L0(G/F), it is clear that d.d (GIF) = L0(G/F). Hence the addi-
tivity of d.d. follows from the additivity of Lo.

11* A result on finitely generated extensions*

THEOREM 5. Given F<z.G(zH= Fζalf , αr>. Then G is fini-
tely generated over F.

Proof. If the a{ are differentially independent over G, then it
follows readily that F — G. Hence the theorem is true in such case.

If the di are differentially dependent over G let Q be the set of
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coefficients of a characteristic set Au * ,Ak of the a{ over G. Then

we assert that G — FζQy. For let p{ be the leader of A{ and R the

set of parametric derivatives of the ait Construct

Gr = F<Q> , G'* = G\R) , G* = G(R) .

Then

and

[if : G'*] - [i?: G*] - Π (deg Λ in p,) <
i l

Thus

G'* = G* .

Moreover, since the parametric derivatives of the at are trans-
cendental over both G and G', [G : G'] = [G* : G'*] = 1. Hence, G = G'
and the theorem is proved.

12* Characteristic sets of length one and Lϋroth's theorem*
Kolchin [1] and [2] proves the differential analog of Liiroth's theorem
for ordinary differential fields of characteristic zero; explicitly, if
FcG<zFζyy, then G = Fζa}, for some a in G. With minor changes
Kolchin's proof goes through for the partial case, provided that y has
a characteristic set of length one over G.1

Using the ideas in [1] and [2], we establish the following converse.

THEOREM 6. If FaFζayczFζyy, where agF, then y has a
characteristic set of length one over F<V>.

Proof. Since aeFζyy, a — P(y)/Q(y), where P and Q may be
taken to be relatively prime d.p. over F. We assert that A{z) —
aQ(z) — P(z) is a characteristic set of y over Fζay. To begin with,
A is clearly irreducible over Fζoy.

Let Y be the prime ideal over Fζay with ί/ as a generic zero.
Let X be the prime ideal over Fζay with A as a characteristic set,
and let x be a generic zero of X. x is differentially transcendental
over F; for otherwise α, and hence y would be differentially algebraic
over F. Therefore, mapping y onto x determines an î -isomorphism

1. In Kolchin's proof, [2] on the 9th and 10th lines from the top on page 400,
the result follows by considering the derivatives ordered so that every z derivative
is higher than every y derivative. On the lβth line from the top on the same page,
the y derivatives need to be considered higher. These orderings differ from those
used in this paper.
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of Fζy} onto Fζxy. Under this isomorphism, a remains fixed, for
a — P(y)/Q(y) — P(x)/Q(x). Hence the isormorphism leaves Fζay fixed.
Thus y and x satisfy the same d.p.'s over F<V>, and y is a generic
zero of Q. Hence, X = Y and A is a characteristic set of X.

13 • The length of a characteristic set is not a property of
the extension* If Fζay = Fζby, and if a has a characteristic set of
length one over F, must this also be true of 6? The answer is in the
negative as the following example will indicate.

EXAMPLE. Let u denote a differential indeterminate and let m — 2
with the derivations denoted by subscripts x and y as in ux and ιιy.

Let P be the set of d.p. with zero remainder with respect to ux.
Then P is a prime differential ideal. Since the initial and separant of
ux are both one, P is also generated by ux over F. Let a be a generic
zero of Po Define

( 1) b = a + pay ,

where p is in F and is differentially transcendental over the field of
rationale contained in F. Then

( 2 )

( 3 )

( 4 )

Then (1)

( 5 )

showing

( 6 )

and

that

by — ay + 2V

(2) imply

a =

a is in Fζby

bx = pxay

ay + payy — (1

bxx = pxxay

b-pay=b~

. (2) and (4)

bx - pXJpxx

>

+ py)ay + payy

- P/PΛK) ,

imply

= o ,
showing that b satisfies a second order d.p. over F.

Equations (1), (2), and (3) may be solved for α, av, ayy in terms of
δ, bx and by. Hence, since α, ay, ayy are algebraically independent over
F, b cannot satisfy a first order d.p. over F. Equation (6) yields the
irreducible d.p. satisfied by 6,

(6') A = ux- px\ιjpxx ,

which may be chosen as a d.p. in a characteristic set for b.
By Corollary 3 to Theorem 2, LΊ(F; a) = 2. Since F<α> = F<δ>,

L^F; b) = 2. By the same corollary, A cannot be the sole d.p. in a
characteristic set for b.
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14* A simply generated extension with no generator having
a characteristic set of length one* Example: Let P be the prime
differential ideal generated by ux and uy over F. Then uβ and uy also
constitute a characteristic set of P. Let a be a generic zero of P, and
let G = F<α>.

Then fc(F, w; α) — 1, for all positive integral n. Hence L^G/F) = 0.
By Corollary 3 to Theorem 2, if G has a generator 6 with a charac-
teristic set of length one, then L^G/F) = m# where g is the order of
such characteristic set. Hence, g — 0 and b is algebraic over F. This
implies that α is algebraic over F which is a contradiction of the fact
that a is a generic zero of P.

15 • Specializations* a' is called a specialization of α if there
exists a differential homomorphism of F{a} onto jP{α'}, taking a into α',
and leaving F element wise fixed. Since

h(F, n; a') ̂  h(F, n; α), L(F; a!) g L(F; α) .

We investigate when equality holds.

PROPOSITION 1. If a has a characteristic set of length one over
F and if o! is a proper specialization of a, (i.e., F{a} and i^α'} are
not isomorphic), then L(F; a') < L(F; α).

Proof. Assume L(JP; a') = L(F; α), and let A be a characteristic
set for a over ί7. Then by Corollaries 3 and 6 of Theorem 2, A is
also a characteristic set for α' over F. Hence, F{a} and F{a'} are iso-
morphic. Thus the proposition is proved.

PROPOSITION 2. If a has a characteristic set of length exceeding
one, a proper specialization need not reduce the limit vector.

Proof. The following example will prove the point. As in the
example of § 13, we consider F{u} with u a differential indeterminate
and two derivations denoted by subscripts x and y. Let t be a generic
zero of the prime differential ideal P in F{u} with characteristic set
and generator u9. Also, let a be a generic zero of the prime differen-
tial ideal Q in F{u} generated by and with a characteristic set, uxx

and uxy. Since Q is properly contained in P, £ is a proper specializa-
tion of a. But, by direct computation, or by Corollary 4 of Theorem 2,.

; α) = L(F; t) = (0, 2, oo), proving the proposition.

16* Order of a prime ideal and systems of linear homogeneous
Let P be a prime differential ideal in F{y} with generic zero α.
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The algebraic degree of transcendence of Fζay over F is called the order
of P, (ord P). By Theorem 1, this is the number of parametric deriva-
tives of α. We will show that this use of order agrees with the
"order " of a system of linear homogeneous d.p. as used in the study
of differential equations.

The following lemmas will lead to this result. The first two are
nondifferential and are stated without proof. Lemma 3 is Kolchin's
Lemma 1 in [4], where it is proved. Lemmas 4 and 5 are the differen-
tial analogues of Lemmas 1 and 2, respectively.

LEMMA 1. Let S be a system of linear homogeneous polynomials
in K[xlf , xn] which is a vector space over K, where K is a non-
differential field. Then

(a) (S) is prime and contains no linear homogeneous polynomials

which are not in S.

(b) s n κ[xlf , xr] = o = (S) n κ[xlf , χr] = o .

LEMMA 2. Let a set T of linear homogeneous polynomials with
coefficients in a field K generate a vector space over K and over an
extension L of K. Then elements of T linearly independent over K
remain linearly independent over L, and the number of such elements
in a maximal set is the dimension of both vector spaces.

LEMMA 3. Let C be the field of constants of the partial differen-
tial field F, and let au , an belong to F. If au , an are linearly
dependent over C, then WDv...,Dn{au , an) = 0 for every choice of
derivatives Dlf , Dn where WDv...,Dn{alf , an) = det {Ό{a2). Con-
versely, if WDit...tΏn(au •••, an) = 0 for every choice of Dly - - -, Dn

of orders ^ n — 1, then alf , an are linearly dependent over C.

LEMMA 4. Let S be a system of homogeneous linear partial d.p*
in F{y} which is a vector space over F and is closed under the de-
rivations du , dm. Let T denote a set of y-derivatives. Then [S\
is prime and

s n F[T] = o => [S] n F[T] = o .

Proof. Let V denote the set of finite sets of ^-derivatives. Then
by Part (a) of Lemma 1, if Ue V, S Π F[U] generates a prime ideal
Sσ in F[U], Since the union of the Sσ over all U in V is [S], [S]
is prime.

Let T be a finite subset of T. By Part (b) of Lemma 1,
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s n F[T] = o=>sτ,n F[Γ] = o => [S] n F[τ\ = o .

LEMMA 5. Let S denote a set of homogeneous linear partial d.p.
in F{y}, and let G be an extension of F. Let T denote a set of y-
derivatives. If P and Q denote the prime differential ideals gen-
erated by S in

F{y} and G{y} respectively,

then

p n F[τ] = o <=> Q n G[T] = o .

This implies that P and Q have the same orders.

Proof. Let S* denote the system consisting of the d.p. in S and
of their derivatives. Let B be a maximal linearly independent subset
of £* over F, therefore, by Lemma 2, over G. By Lemma 4, P
contains a nonzero polynomial in members of T if and only if it con-
tains such a polynomial which is linear homogeneous; that is, if and
only if there is a linear dependence among members of T and B over
F. In the same way Q contains a nonzero polynomial in the members
of T if and only if the members of T and B are linearly dependent
over G. But Lemma 2 shows that these conditions are equivalent.
Thus the lemma is proved.

THEOREM 7. Let S be a system of homogeneous linear partial
d.p. in F{y}. If the set of solutions of S is of linear dimension k
over constants, then ord [S] — k.

Proof, (a)
Let uu , uk be a linear basis for the solutions over constants.

Let cl9 ,ck be new constants algebraically independent over Fζul9 ,uky.
Let v = Σ ciui- Since the u{ are linearly independent over constants,
by Lemma 3, for some set of derivatives Dl9 , Dk of orders S k — 1,
WDl, , Dk(ul9 , uk) Φ 0. Hence, Ό{Ό, , Dkv are linearly independ-
ent over F. Since v belongs to the manifold of [S]9 [S] contains no
linear homogeneous polynomial, and therefore by Lemma 4, contains
no polynomial in Dλy, , Dky. Hence, ord [S] ̂  k.

(b) fc
Let ord[S] = k. Let vλ be a generic zero of [S]. Then k deriva-

tives, Du , Dk9 of vx are algebraically independent over F. We define
inductively a sequence of elements v3- which are solutions of S by the
requirement that vό be a generic zero of the differential ideal generated
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by S over F<yu

Then, by Lemma 5, D{vh , Dkvό are algebraically independent
over Fζvlf , ̂  _i>. In particular, the Ό{vh i, j = 1, , k, are al-
gebraically independent over F. Hence, WDv...tDk(vu , vk) Φ 0. Then
Lemma 3 implies that the vό are linearly independent over constants.
Thus fc^

THEOREM 8. Let P be a prime differential ideal in F{y}. If P
contains a set of nonzero d.p. Aif i — 1, , m, such that At involves
only y-derivatives of the form d\y where t is a nonnegative integer,
then ord P is finite.

Proof If P contains a d.p. free of proper ^-derivatives, then ord
P — 0, and the theorem holds. Hence, we may assume that the A{

involve proper ^/-derivatives. Then A{ involves a derivative of the
leader of some member of a characteristic set C of P. Hence, there
exist leaders of members of C of the form d\{y, t{ > 0, i — 1, , m. Thus,
by Theorem 1, ord P ^ tλ tm. proving the theorem.

If we specify in Theorem 8 that P — [S], where S is a system of
linear partial homogeneous d.p. in F{y}, then we have the hypothesis
of a theorem of Delsarte [1], Proposition A, page 37. Then by Theorems
7 and 8, the linear dimension of the solution space of S is finite, which
is Delsarte's conclusion.
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