
Pacific Journal of
Mathematics

ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. ANDERSON AND G. H. FULLERTON

Vol. 15, No. 2 October 1965



PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 2, 1965

ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. ANDERSON AND G. H. FULLERTON

This paper was received before the synoptic introduction
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l Introduction* Let Q(z) be a meromorphic function with poles
%u Z2, #3> , the notation being so chosen that | z1 | ^ | z2 | ^ | zz \ S .
If fe L(0,1), define

c*//»x = resgθ(z) [ f{t)ez{x~t]dt .
Jo

Then, the series Σcve
z*x is called the Cauchy Exponential Series (CES)

of / with respect to Q(z). If zv is of multiplicity m, then cv is a
polynomial in x of degree at most m — 1; if the poles are all simple,
with residue λv at £v, we may write

(1) cy = \[ f(t)e-*dt
Jo

and {cv}, independent of x9 are called the CE constants.
Let Cp: I z \ = rp be an expanding sequence of contours, none of which

passes through a pole of Q(z). Suppose Cp contains np poles of Q(z).
Then,

nP "IP P1

Σ Cye^ = -±- Q(z)dz f(t)e«*-"dt ,
v=i Z7Γ^ J0P

= Ip, say .

Denote by C£, C~ the parts of Cp lying in the right, left half-planes
respectively. If Q(z) is approximately unity on CJ, and is small on
Cp, in the sense that

( 2 ) ί (Q(z)-l)dz\\
JO+ Jo

( 3 )

as p —-> co, uniformly for O G [0,1], then

27Γ^

π Jo
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uniformly in [0,1], and so the sums Ip behave somewhat like the
partial sums of a Fourier series (F.s.). Indeed, when

Q(z) = e'/e' - 1

the CES is the F.s. of / .
In this paper, we shall suppose that

( 4 ) Qfe) -
eza(z) + b(z) G(z)

where a(z), b(z) are relatively prime polynomials of degree n, and that
all the poles are simple. This case was investigated first by Fullerton
([1], 1-34), using a less convenient notation.

The large zeros of G(z) approximate to those of ez — c, where

( 5 ) c — — lim b(z)/a(z)

i.e. to the points {ζ + 2πpi}, ζ being the principal value of log c.
Hence there is a δ, 0 < δ < 2ττ, such that if rp = 2pπ + δ, each point
of Cp is at a distance greater than a positive constant from the zeros
of G(z) and of ez — c. This enables us to prove

THEOREM 1. Let fe L(0,1). Then, as p —> oo,

np

V = l

uniformly for x e [0,1], where sp(x) is the pth. partial sum of the
F.s. of f(t)e-S'.

We next show that there are n relations connecting the CE con-
stants.

THEOREM 2. Let / e L ( 0 , 1 ) . If cv is defined by (1), for
v — 1, 2, ••, then

(6) Σ -^T = °

(r = 0,1, , n - 1), where F(z) = e~zG{z).

This naturally leads to the following question: if a sequence of
numbers {βv} satisfies ΣΓ=i Cv/3V = 0, what is the nature of the βv ?
The answer is given by

THEOREM 3. Let {/3V} be a sequence of numbers such that
ΣΓ=iCv/3v = 0 for every CES Σcye

β**. Then, there are constants
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ao> * 9 °ίn-ι such that

Because of the relations (6), we cannot expect that, given a
sequence {cv} with ΣΓ=i |c v | 2 < oo, there is a function fe L2(0,1) such
that (1) is true for each v. However, we can prove

THEOREM 4. If {cv}, v > n, is a sequence with Σv>w I cv |
2 < w,

£Λ,βre is α function fe L2(0, 1) suc/t ί/̂ αί (1) is £rae /or eαc/& v > π,
and upon defining cl9

 β

 ? c n by (1), sue/?, ίfeαέ ΣJLicve*va: converges in
mean to /.

Alternatively, we can alter every cv and so obtain a Riesz-Fischer
analogue. We have

THEOREM 5. Let {cv} be a sequence ivith Σ £ = i | c v | 2 < °° 7"^e^,
there are constants 70, , 7w_i ŝ cfe ί/̂ αί i/

W—1 ry /yf

(tv — Cv -\- 2-1 Γ" >

numbers dv are the CE constants of a function fe L2(0, 1).

We next investigate the problem of the uniqueness of CES. We
prove

THEOREM 6. If Σ£=id*e*vX = f(χ) almost everywhere in [0,1],
then there are constants σ0, , on_Ύ such that

= λ v (
Jo ( v )

Finally, the question arises whether it is possible to generalise the
function Q(z) given by (4), so that the CES of / is uniformly equi-
convergent with a F.s. The functions

p , v = eza(z) + β(z)
eza(z) + b(z)

where (x(z), β{z) are polynomials of degree n, are obvious generalisa-
tions. As Rez—> co, P(z) tends to a number a*! ^ 0; as Rez—+ - c o ,
to α>2 Φ 0. Suppose α)2 ̂  α>2, and define
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then Qx(z) satisfies (2), (3). If the CES of / with respect to Qx(z) is
uniformly equiconvergent in [0,1] with eζx multiplied by the F.s. of
f(t)e-t\ for each fe L(0,1), then

a(z) — ωxa{z) and β(z) — ω9b(z) ,

so that P(z) — (ωλ — ω2)Q(z) + ω2. We omit the proof.

2* Proof of Theorem 1Φ In (4), write

Q(z) =
ez — c

then

= -e'{ca(z) + b(z)}
(e - c)G(z)

By the choice of Cp, there is a positive constant A such that, on CPf

ez - c\ > A m a x (\e'\91)

Further, by (5),

ca(z) + b(z) = O(| 2-11)

as I z I —• oo. Hence,

R(z)dz = θ(

G
(\ , -? d«
VJcJ g; Jo

Ht

as 2? —» 00, uniformly for x ^ 1. Similarly,

as p —• oo, uniformly for a? ̂  0.
Since, for large p, the number of zeros of ez — c inside C^ differs

from 2p + 1 by at most 1 and
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it follows that

[ dz [
2m icj, e" — c Jo

Σ [
v—-v Jo

- eS'sp(x) + o(l)

as p — > , uniformly in [0, 1], and this completes the proof.

3* The proof of Theorem 2 will depend upon

LEMMA 1. For r = 0,1, , n — 1,

n-Zt

-dz = o(l)
F(z)

as p —> o? boundedly for 0 < t < 1.

Proof. Define C+, C~ as in § 1; then, for r = 0,1, , n - 1,

= 0(1 exv(-tpcosθ)dθ

which is o(l) as p—> ©o, boundedly for t > 0. Similarly,

\(rΎWdz = 0{1)

boundedly for t < 1. Hence the result.

4. Proof of Theorem 2. Since the zeros of F(z) are simple,

j iΛQ v

JL CO^. ~ ~ ~ ,

hence, by Lemma 1, for r = 0,1, , n — 1,

as p —> co | boundedly for 0 < t < 1. By the choice of Cp, nP+1 — np —
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for large p, and so, since the terms are o(l) as v—* oo, we may re-
place np by p in the above summation. If we multiply by f{t) and
integrate over [0,1], we have (6).

( 8 )

( 9 )

ther

If v

5. We

LEMMA

n—1

Proof.

>Φ μ,

now prove

2. Let a(z) — Σ£=o <

λ;=r+l

Write the left-hand

J2f = ^{bhΛ

r^ - Hz,) ~ b(ί

zv

akz
k,

+ <x(;

side

5 μ) +

and 6(2;) =

Jo

of (8) as

J f c - 1
μ) y zrzk~r

r=0

= Σϊ-

α(^μ)}

since G(zv) = G(Zμ) = 0, (9) is zero. If v = μ, (9) is

Σ Hbk + ake^)zί~ι + a(zμ)e^
Λ l

= V(zμ)

This proves the lemma.

V —

6. Proof of Theorem 3. We have ΣΓ=iCviδv = 0 for every
sequence {cv} of CE constants, i.e.

Σ Aλv Ϋf(t)e-*dt = 0
V = l J O

for every / e L(0,1). Hence, by a well-known theorem ([2], § 279),

(10) Γ Σ βv\e-z^dt -> 0
J l — » V- l

as j>—> oo, boundedly for xe[0,1], We recall (8); if we multiply by
βvxve-z-» and sum from v = 1 to v = p, where p is greater than an
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assigned integer μ, we obtain

v = l

f l V

Jo v-i

= Σ kr.pSμ + - ^ , say.
r=0

Let

Σ

S » ri P

^p(ί)dί = I Σ β^e-'^db .
0 Jl—x V-l

By (10), 0p(a) -> 0 as p -> co, boundedly for a; e [0,1]. Thus,

as

Hence, since e~zG(z) — F(z),

(11) Σir,,ί =
r=0

where the numbers {Lr,p} are independent of μ, and εμ —• 0 as p —> w .
Giving μ distinct values μlf ---,μn, (11) yields a regular system

of n linear equations for LOfP, •• , I / n _ l f P . The solution is

det (4;1)

where z/ίr) are cofactors of elements in the (r + l)th column of the
matrix (^T1), (ί,j = 1,2, •••,%). The only nonconstant terms in this
expression for Lr>p are εμ., which are o(l) as p — > co. Hence, for
r = 0,1, , n — 1, {Lr,p} converges, to α r say. Letting p —> ^
in (11), we have the result.

7* To prove Theorem 4, we require three lemmas.

LEMMA 3. / / p > w, ί/tere are numbers, $ ι ? , dw wc/i

β*p* _j_ ^ dke
Zk*

id its own CES.
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Proof. We shall show that there are numbers du , dn such
that, if

S(x) = ezvx + Σ dke'k* ,

then, for μί{l, •••, n, p),

(12) [1S(x)e-'^dx - 0 .
Jo

Since the functions e*1*, , e'n*, ezvx are linearly independent, and by
Theorem 1, the CES of S(x) converges everywhere in (0,1) to S(x),
it will then follow that S(x) is its own CES.

For μ Φ k,

V e Z - es

μ]
zk - z^

a(zk)a(Zμ)(zk

a{zk)a(zμ)

Thus, if μ${l, * ,n, p}, and dl9 *- ,dn are any n numbers, the left-
hand side of (12) is

_Z ^ J σ\ZVJ Zμ) _l γ» akσ\Zk> Zμ) I

OV\ZLL) ^ Cϋ\ZΌ) lc—1 CLyZfr) )

= /μ say, where δk =
 a(z;)d" .

The symmetric polynomial

- a(y)b(x)
x - y

can be expressed in the form

r=--0

where Pr(ίc) is a polynomial in a; of degree at most n — 1. Then,

Σ «*Pr
k

This is zero for each μ${l, " , n, p] if
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Pr(Zp) + Σ Wzk) = 0 (r = 0,1, , n - 1) ,

which happens if

^ + Σ δ& = 0 (r - 0,1, . ., n - 1) .

Since this system of % linear equations for the unknowns δl9 , δn is
regular, the lemma follows.

COROLLARY. Given the constants cn Hl, , cp of Theorem 4, there
are numbers c[v\ — ,c{

n

p) such that

is ΐίs o^'^ CES.

TP(x) = Σ c{

k

p)e">* + Σ

LEMMA 4. T/̂ e numbers c[p), •• ,ci,p) a re unique and, for

k — 1, 2, , n, the sequence {c(

k

p}} converges.

Proof. By Theorem 2, the numbers c[p\ , c{p) satisfy the regular
system of linear equations

(r=0,1 , ,w — 1), and so are determined uniquely. Since Σv>*kvί2< ^
and

where K is a constant,

converges, for r — 0,1, , n — 1. Hence, by an argument used in
the proof of Theorem 3, {c{

k

p)} converges, for k — 1, 2, , n.

LEMMA 5. There is a positive constant A such that if {αv} is
any finite set of numbers, then

Γ1

I I Σave
z^x \2 dx ^ AΣ | αv |

2 .
Jo

This may be proved by an argument similar to that of Lemma 3

Of [3] .
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8* Proof of Theorem 4* Let p, q be integers such that
q > p > n. Then,

Tq(x) - Tt(x) = t = i

By Lemma 5, there is a constant A > 0 such that

S i r % g l

I T (Ά — T (r\ \2 dr < A \ V ^(gf) — /̂ (ϊ5) 2 -4- V I r H
0 U=i v=p+l J

Hence, by Lemma 4, {Tp(^)} converges in mean to a function / e L2(0,1).
Let v > n. Since Γp(a?) is its own CES,

cv = λ v

Jo

Hence,

Γ
= λv lim 1 Tp(x)e-*»x dx

J

Jo

Define c19 •••, cn by this formula; then,

and ΣΓ=i cvββvX converges in mean to /. This completes the proof.

9. Proof of Theorem 5* If we multiply (8) by cv and sum
from v = 1 to v = p, where p is greater than an assigned integer //,
we obtain

Σ«ί Σ
r=0 V=l

(13) + α(zμ)βv Γ e-V* Σ
J θ V = l

^p , say.

Since Σ£=i I cv I2 < °°, ΣΓ=i cve*v* converges in mean to a function
/ e L2(0,1). Hence,

^f/v —> dμ.G'(Zμ) a S P —> CO

where

Next,

Jo
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% — 1 n—l

(14) ^ = Σ <v?μ — Σ ί
r--0 r=0

where

Since

Σ (α*β v + bjzξ-'-1

A--=0

the summation over v in (14) converges, as p —> oo f to rjr say. The
result now follows upon writing

Ύ]r + δr = Ύr

10* Before establishing the uniqueness theorem, we prove two
lemmas.

LEMMA 6. If Σ*=-i^vβSvX = f(x) almost everywhere in [0,1], and
dv = O(^"2), ίfeere are constants σ0, , crn_1 sue/?, that (7) is satisfied
for v = l, 2, . . . .

Proof. We have (13), with cv replaced by cZv. We may write
this as

Since

ί'β-v Σ d^dt^ θ( Σ |
JO V-^P4 1 \V=^P + 1

= o(l) a s p - >o ,

and {Mr,p} converges, to σr say, for r = 0, 1, , n — 1, we obtain (7).

LEMMA 7. / / the series ΣvU ̂ v is convergent, then

WO.

Proof. By a classical result, it is sufficient to show that

(i) ( ^
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(ϋ)

is bounded as h [ 0. It is evident that (i) is satisfied; (ii) may be
established by the method of Theorem 1 of [4].

11 • Proof of Theorem 6* The hypothesis of convergence implies
that dv — o(l). If we define

(15) Ψ{x)
v Δ 4y

this series is uniformly and absolutely convergent, in [0,1]. Now

Ψ(x + 2h) + Ψ(x - 2h) - 2Ψ{x) = y d ^,/sinhgyfey

and hence, by Lemma 7, the second generalised derivative of Ψ(x)
equals f(x) — dte

ZlX almost everywhere in [0,1]. It follows that

mΨ{x) = Γ dί Γ
Jo Jo

where i, m are constants. Since

djzl = o(v-2) ,

we may apply Lemma 6 to the series (15). Thus, there are constants
a0, , an^x such that

(16) A = λv Γ Σ

for y = 2, 3, •••.
If we integrate by parts twice, we can write (16) in the form

where cτ0, •• ,σw + 1 are constants. Since G'(zy) ~ —bnzi,

dv = o(l) and λv Γ/(*)β"" v f^ = o(ΐ) ,
Jo

we have

and for v = 2, 3, , we have (7). Finally, by Theorem 1 and Lemma

Σ k [f(t)e-^dt + Σ-T^V
v=i I Jo r=o Or ( 2 V )
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is summable (C, 1) almost everywhere in [0, 1] to

f(x) Σ
r-0

so that we have (7) for v — 1, and the proof is complete.
In conclusion, the authors wish to express their gratitude to

Professor S. Verblunsky of Belfast, for his helpful criticism and advice.
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