Pacific Journal of Mathematics

ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. ANDERSON AND G. H. FULLERTON

Vol. 15, No. 2

October 1965

ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. ANDERSON AND G. H. FULLERTON

This paper was received before the synoptic introduction became a requirement.

1. Introduction. Let Q(z) be a meromorphic function with poles z_1, z_2, z_3, \cdots , the notation being so chosen that $|z_1| \leq |z_2| \leq |z_3| \leq \cdots$. If $f \in L(0, 1)$, define

$$c_{\mathbf{y}}c^{\mathbf{z}\mathbf{y}x}=\operatorname{res}_{\mathbf{z}\mathbf{y}}Q(\mathbf{z})\int_{0}^{1}f(t)e^{\mathbf{z}(x-t)}dt$$
 .

Then, the series $\Sigma c_{\nu} e^{z_{\nu}x}$ is called the Cauchy Exponential Series (CES) of f with respect to Q(z). If z_{ν} is of multiplicity m, then c_{ν} is a polynomial in x of degree at most m-1; if the poles are all simple, with residue λ_{ν} at z_{ν} , we may write

(1)
$$c_{\nu} = \lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu}t} dt$$

and $\{c_{\nu}\}$, independent of x, are called the CE constants.

Let C_p : $|z| = r_p$ be an expanding sequence of contours, none of which passes through a pole of Q(z). Suppose C_p contains n_p poles of Q(z). Then,

$$\sum\limits_{
u=1}^{n_p} c_
u e^{z_
u x} = rac{1}{2\pi i} \int_{\sigma_p} Q(z) dz \int_0^1 f(t) e^{z(x-t)} dt \; ,$$
 $= I_p \; , \quad ext{say } .$

Denote by C_p^+ , C_p^- the parts of C_p lying in the right, left half-planes respectively. If Q(z) is approximately unity on C_p^+ , and is small on C_p^- , in the sense that

(2)
$$\int_{o_p^+} (Q(z) - 1) dz \int_0^1 f(t) e^{z(x-t)} dt = o(1)$$

(3)
$$\int_{o_p^{-}} Q(z) dz \int_0^1 f(t) e^{z(x-t)} dt = o(1)$$

as $p \rightarrow \infty$, uniformly for $x \in [0, 1]$, then

$$egin{aligned} I_p &= rac{1}{2\pi i} \int_{\sigma_p^+} dz \int_0^1 f(t) e^{z(x-t)} dt + o(1) \ &= rac{1}{\pi} \int_0^1 rac{f(t) \sin r_p(x-t)}{x-t} dt + o(1) \end{aligned}$$

Received March 4, 1963.

uniformly in [0, 1], and so the sums I_p behave somewhat like the partial sums of a Fourier series (F.s.). Indeed, when

$$Q(z)=e^{z}/e^{z}-1$$

the CES is the F.s. of f.

In this paper, we shall suppose that

(4)
$$Q(z) = \frac{e^z a(z)}{e^z a(z) + b(z)} = \frac{e^z a(z)}{G(z)}$$

where a(z), b(z) are relatively prime polynomials of degree n, and that all the poles are simple. This case was investigated first by Fullerton ([1], 1-34), using a less convenient notation.

The large zeros of G(z) approximate to those of $e^z - c$, where

$$(5) c = -\lim_{|z|\to\infty} b(z)/a(z)$$

i.e. to the points $\{\zeta + 2\pi pi\}$, ζ being the principal value of $\log c$. Hence there is a δ , $0 < \delta < 2\pi$, such that if $r_p = 2p\pi + \delta$, each point of C_p is at a distance greater than a positive constant from the zeros of G(z) and of $e^z - c$. This enables us to prove

THEOREM 1. Let $f \in L(0, 1)$. Then, as $p \to \infty$,

$$\sum_{\nu=1}^{n_p} c_{\nu} e^{z_{\nu} x} - e^{\zeta x} s_p(x) \to 0$$

uniformly for $x \in [0, 1]$, where $s_p(x)$ is the pth partial sum of the F.s. of $f(t)e^{-\zeta t}$.

We next show that there are n relations connecting the CE constants.

THEOREM 2. Let $f \in L(0, 1)$. If c_{ν} is defined by (1), for $\nu = 1, 2, \cdots$, then

$$(6) \qquad \qquad \sum_{\nu=1}^{\infty} \frac{c_{\nu} z_{\nu}^{\nu}}{\lambda_{\nu} F'(z_{\nu})} = 0$$

 $(r = 0, 1, \dots, n - 1)$, where $F(z) = e^{-z}G(z)$.

This naturally leads to the following question: if a sequence of numbers $\{\beta_{\nu}\}$ satisfies $\sum_{\nu=1}^{\infty} c_{\nu}\beta_{\nu} = 0$, what is the nature of the β_{ν} ? The answer is given by

THEOREM 3. Let $\{\beta_{\nu}\}$ be a sequence of numbers such that $\sum_{\nu=1}^{\infty} c_{\nu}\beta_{\nu} = 0$ for every CES $\Sigma c_{\nu}e^{z_{\nu}x}$. Then, there are constants

 $\alpha_0, \cdots, \alpha_{n-1}$ such that

$$eta_{m{
u}} = \sum\limits_{r=0}^{n-1} rac{lpha_r z_{m{
u}}^r}{\lambda_{m{
u}} F'(z_{m{
u}})}$$

Because of the relations (6), we cannot expect that, given a sequence $\{c_{\nu}\}$ with $\sum_{\nu=1}^{\infty} |c_{\nu}|^2 < \infty$, there is a function $f \in L^2(0, 1)$ such that (1) is true for each ν . However, we can prove

THEOREM 4. If $\{c_{\nu}\}, \nu > n$, is a sequence with $\sum_{\nu>n} |c_{\nu}|^2 < \infty$, there is a function $f \in L^2(0, 1)$ such that (1) is true for each $\nu > n$, and upon defining c_1, \dots, c_n by (1), such that $\sum_{\nu=1}^{\infty} c_{\nu} e^{z_{\nu} z}$ converges in mean to f.

Alternatively, we can alter every c_{ν} and so obtain a Riesz-Fischer analogue. We have

THEOREM 5. Let $\{c_{\nu}\}$ be a sequence with $\sum_{\nu=1}^{\infty} |c_{\nu}|^2 < \infty$. Then, there are constants $\gamma_0, \dots, \gamma_{n-1}$ such that if

$$d_{
u}=c_{
u}+\sum\limits_{r=0}^{n-1}rac{\gamma_{r}z_{
u}^{r}}{G'(z_{
u})}$$
 ,

the numbers d, are the CE constants of a function $f \in L^2(0, 1)$.

We next investigate the problem of the uniqueness of CES. We prove

THEOREM 6. If $\sum_{\nu=1}^{\infty} d_{\nu} e^{s_{\nu}x} = f(x)$ almost everywhere in [0, 1], then there are constants $\sigma_0, \dots, \sigma_{n-1}$ such that

(7)
$$d_{\nu} = \lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} dt + \sum_{r=0}^{n-1} \frac{\sigma_{r} z_{\nu}^{r}}{G'(z_{\nu})}$$

Finally, the question arises whether it is possible to generalise the function Q(z) given by (4), so that the CES of f is uniformly equiconvergent with a F.s. The functions

$$P(z) = rac{e^z lpha(z) + eta(z)}{e^z a(z) + b(z)}$$

where $\alpha(z)$, $\beta(z)$ are polynomials of degree *n*, are obvious generalisations. As $\operatorname{Re} z \to \infty$, P(z) tends to a number $\omega_1 \neq 0$; as $\operatorname{Re} z \to -\infty$, to $\omega_2 \neq 0$. Suppose $\omega_1 \neq \omega_2$, and define

$$Q_1(z)=rac{1}{\omega_1-\omega_2}\{P(z)-\omega_2\}$$
;

then $Q_1(z)$ satisfies (2), (3). If the CES of f with respect to $Q_1(z)$ is uniformly equiconvergent in [0, 1] with $e^{\zeta x}$ multiplied by the F.s. of $f(t)e^{-\zeta t}$, for each $f \in L(0, 1)$, then

$$lpha(z) = \omega_1 a(z)$$
 and $eta(z) = \omega_2 b(z)$,

so that $P(z) = (\omega_1 - \omega_2)Q(z) + \omega_2$. We omit the proof.

2. Proof of Theorem 1. In (4), write

$$Q(z) = rac{e^z}{e^z - c} + R(z);$$

then

$$R(z) = \frac{-e^z \{ca(z) + b(z)\}}{(e^z - c)G(z)}$$

By the choice of C_p , there is a positive constant A such that, on C_p ,

$$egin{aligned} &|\,e^z-c\,|>A\max{(|\,e^z\,|,\,1)}\ &|\,G(z)\,|>A\max{(|\,e^z z^n\,|,\,|\,z^n\,|)} \ . \end{aligned}$$

Further, by (5),

$$ca(z) + b(z) = O(|z^{n-1}|)$$

as $|z| \rightarrow \infty$. Hence,

$$egin{aligned} &\int_{\sigma_p^+} R(z)dz \int_0^1 f(t)e^{z(x-t)}dt = O\Bigl(\int_{\sigma_p^+}\Bigl|rac{e^{z(x-1)}}{z}dz \int_0^1 f(t)e^{-zt}dt\,\Bigr|\,\Bigr) \ &= o\Bigl(\int_{\sigma_p^+}\Bigl|rac{e^{z(x-1)}}{z}dz\Bigr|\,\Bigr) \ &= o(1) \end{aligned}$$

as $p \to \infty$, uniformly for $x \leq 1$. Similarly,

$$egin{aligned} &\int_{\sigma_{\overline{p}}} R(z)dz \int_{\mathfrak{0}}^{\mathfrak{l}} f(t)e^{z(x-t)}dt &= O\Bigl(\int_{\sigma_{\overline{p}}}\Bigl|rac{e^{zx}}{z}dz \int_{\mathfrak{0}}^{\mathfrak{l}} f(t)e^{z(1-t)}dt\Bigr|\Bigr) \ &= o\Bigl(\int_{\sigma_{\overline{p}}}\Bigl|rac{e^{zx}}{z}dz\Bigr|\Bigr) \ &= o(1) \end{aligned}$$

as $p \to \infty$, uniformly for $x \ge 0$.

Since, for large p, the number of zeros of $e^z - c$ inside C_p differs from 2p + 1 by at most 1 and

$$\int_{0}^{1} f(t) e^{(\zeta+2p\pi i)(x-t)} dt = o(1)$$
 ,

it follows that

$$\sum_{
u=1}^{n_p} c_
u e^{z_
u} x = rac{1}{2\pi i} \int_{\sigma_p} rac{e^z}{e^z - c} dz \int_0^1 f(t) e^{z(x-t)} dt + o(1)
onumber \ = \sum_{
u=-p}^p \int_0^1 f(t) e^{(\zeta + 2\pi i
u)(x-t)} dt + o(1)
onumber \ = e^{\zeta x} s_p(x) + o(1)$$

as $p \rightarrow \infty$, uniformly in [0, 1], and this completes the proof.

3. The proof of Theorem 2 will depend upon

LEMMA 1. For $r = 0, 1, \dots, n - 1$,

$$\int_{C_p} \frac{z^r e^{-zt}}{F(z)} dz = o(1)$$

as $p \rightarrow \infty$, boundedly for 0 < t < 1.

Proof. Define C_p^+ , C_p^- as in §1; then, for $r=0,1,\cdots,n-1$,

$$egin{aligned} &\int_{\sigma_p^+} rac{z^r e^{-zt}}{F(z)} dz = Oigg(\int_{\sigma_p^+} |\, z^{r-n} e^{-zt} dz\,|igg) \ &= Oigg(\int_{-\pi/2}^{\pi/2} \exp{(-t
ho\cos{ heta})} d hetaigg) \quad (
ho=r_p) \ &= Oigg(\int_{0}^{\pi/2} \exp{(-t
ho\sin{ heta})} d hetaigg) \ &= Oigg(\int_{0}^{\pi/2} \exp{(-rac{2t
ho heta}{\pi})} d hetaigg) \end{aligned}$$

which is o(1) as $p \to \infty$, boundedly for t > 0. Similarly,

$$\int_{\sigma_p^-} \frac{z^r e^{-zt}}{F(z)} dz = o(1)$$

boundedly for t < 1. Hence the result.

4. Proof of Theorem 2. Since the zeros of F(z) are simple,

$$\operatorname{res}_{z_{\nu}} \frac{z^{r} e^{-zt}}{F(z)} = \frac{z_{\nu}^{r} e^{-z_{\nu}t}}{F'(z_{\nu})} ;$$

hence, by Lemma 1, for $r = 0, 1, \dots, n - 1$,

$$\sum_{\nu=1}^{n_p} rac{z_{
u}^r e^{-z_{
u} t}}{F'(z_{
u})} = o(1)$$

as $p \to \infty$, boundedly for 0 < t < 1. By the choice of C_p , $n_{p+1} - n_p = 2$

for large p, and so, since the terms are o(1) as $\nu \to \infty$, we may replace n_p by p in the above summation. If we multiply by f(t) and integrate over [0, 1], we have (6).

5. We now prove

LEMMA 2. Let $a(z) = \sum_{k=0}^{n} a_k z^k$, and $b(z) = \sum_{k=0}^{n} b_k z^k$. Then,

$$(\,8\,) \qquad \sum_{r=0}^{n-1} z_{\mu}^r \sum_{k=r+1}^n (b_k \,+\, a_k e^{z_{\mathcal{V}}}) z_{\mathcal{V}}^{k-r-1} \,+\, a(z_{\mu}) e^{s_{\mu}} \int_0^1 e^{(z_{\mathcal{V}}-z_{\mu})t} dt = egin{cases} 0 &
u
eq \mu \ G'(z_{\mu}) &
u = \mu \ \end{array}$$

Proof. Write the left-hand side of (8) as

$$(9) \qquad \qquad \mathscr{L} + \mathscr{M};$$

then,

$$\mathscr{L} = \sum\limits_{k=1}^{n} (b_k + a_k e^{z \mathbf{y}}) \sum\limits_{r=0}^{k-1} z_{\mu}^r z_{\mathbf{y}}^{k-r-1}$$
 .

If $\nu \neq \mu$,

$$\mathscr{L} = rac{b(z_{
u}) - b(z_{\mu}) + e^{z_{
u}} \{a(z_{
u}) - a(z_{\mu})\}}{z_{
u} - z_{\mu}} \ .$$
 $\mathscr{M} = a(z_{\mu}) rac{e^{z_{
u}} - e^{z_{\mu}}}{z_{
u} - z_{\mu}} \ ;$

since $G(z_{\nu})=G(z_{\mu})=0$, (9) is zero. If $\nu=\mu$, (9) is

$$\sum_{k=1}^{n}k(b_{k}+a_{k}e^{z_{\mu}})z_{\mu}^{k-1}+a(z_{\mu})e^{z_{\mu}}\ =b'(z_{\mu})+e^{z_{\mu}}(a'(z_{\mu})+a(z_{\mu}))\ =G'(z_{\mu})\;.$$

This proves the lemma.

6. Proof of Theorem 3. We have $\sum_{\nu=1}^{\infty} c_{\nu}\beta_{\nu} = 0$ for every sequence $\{c_{\nu}\}$ of CE constants, i.e.

$$\sum_{\nu=1}^{\infty}\beta_{\nu}\lambda_{\nu}\int_{0}^{1}f(t)e^{-z_{\nu}t}dt=0$$

for every $f \in L(0, 1)$. Hence, by a well-known theorem ([2], §279),

(10)
$$\int_{1-x}^{1} \sum_{\nu=1}^{p} \beta_{\nu} \lambda_{\nu} e^{-x_{\nu} t} dt \to 0$$

as $p \to \infty$, boundedly for $x \in [0, 1]$. We recall (8); if we multiply by $\beta_{\nu}\lambda_{\nu}e^{-z_{\nu}}$ and sum from $\nu = 1$ to $\nu = p$, where p is greater than an

assigned integer μ , we obtain

$$egin{aligned} eta_{\mu}\lambda_{\mu}e^{-z_{\mu}}G'(z_{\mu}) &= \sum\limits_{r=0}^{n-1}z_{\mu}^{r}\sum\limits_{oldsymbol{y=1}}^{p}eta_{
u}\lambda_{
u}\sum\limits_{k=r+1}^{n}(b_{k}e^{-z_{
u}}+a_{k})z_{
u}^{k-r-1} \ &+ a(z_{\mu})e^{z_{\mu}}\int_{0}^{1}e^{-z_{\mu}t}\sum\limits_{oldsymbol{y=1}}^{p}eta_{
u}\lambda_{
u}e^{z_{
u}(t-1)}dt \ &= \sum\limits_{r=0}^{n-1}L_{r,p}z_{\mu}^{r}+\mathscr{N}_{p} \ , \qquad ext{say.} \end{aligned}$$

Let

$$egin{aligned} \phi_p(t) &= \sum\limits_{oldsymbol{
u}=1}^p eta_{
u\lambda
u} e^{z_
u(t-1)} ext{ ,} \ & arphi_p(x) &= \int_0^x \phi_p(t) dt = \int_{1-x}^1 \sum\limits_{
u=1}^p eta_{
u\lambda
u} e^{-z_
u t} dt ext{ .} \end{aligned}$$

By (10), $\Phi_p(x) \to 0$ as $p \to \infty$, boundedly for $x \in [0, 1]$. Thus,

$$egin{aligned} &\mathcal{N}_p = a(z_\mu) e^{z_\mu} \int_0^1 e^{-z_\mu t} \phi_p(t) dt \ &= a(z_\mu) e^{z_\mu} \Big\{ \varPhi_p(1) e^{-z_\mu} + z_\mu \int_0^1 e^{-z_\mu t} \varPhi_p(t) dt \Big\} \ &= o(1) \qquad ext{as} \ \ p o \infty \ . \end{aligned}$$

Hence, since $e^{-z}G(z) = F(z)$,

(11)
$$\sum_{r=0}^{n-1} L_{r,p} \, z_{\mu}^r = \beta_{\mu} \lambda_{\mu} F'(z_{\mu}) + \varepsilon_{\mu}$$

where the numbers $\{L_{r,p}\}$ are independent of μ , and $\varepsilon_{\mu} \rightarrow 0$ as $p \rightarrow \infty$.

Giving μ distinct values μ_1, \dots, μ_n , (11) yields a regular system of *n* linear equations for $L_{0,p}, \dots, L_{n-1,p}$. The solution is

$$L_{r,p} = rac{\sum\limits_{i=1}^n \left\{eta_{\mu_{m{i}}} \lambda_{\mu_{m{i}}} F'(z_{\mu_{m{i}}}) + arepsilon_{\mu_{m{i}}}
ight\} arDelt_{i}^{(r)}}{\det{(z_{\mu_{m{i}}}^{j-1})}}$$

where $\Delta_i^{(r)}$ are cofactors of elements in the (r+1)th column of the matrix $(z_{\mu_i}^{j-1})$, $(i, j = 1, 2, \dots, n)$. The only nonconstant terms in this expression for $L_{r,p}$ are ε_{μ_i} , which are o(1) as $p \to \infty$. Hence, for $r = 0, 1, \dots, n-1$, $\{L_{r,p}\}$ converges, to α_r say. Letting $p \to \infty$ in (11), we have the result.

7. To prove Theorem 4, we require three lemmas.

LEMMA 3. If p > n, there are numbers d_1, \dots, d_n such that

$$e^{z_p x} + \sum_{k=1}^n d_k e^{z_k x}$$

is its own CES.

Proof. We shall show that there are numbers d_1, \dots, d_n such that, if

$$S(x) = e^{z_{\,p}x} + \sum\limits_{k=1}^{n} d_{\,k} e^{z_{\,k}x}$$
 ,

then, for $\mu \notin \{1, \dots, n, p\}$,

(12)
$$\int_{0}^{1} S(x) e^{-x_{\mu}x} dx = 0$$

Since the functions $e^{z_1x}, \dots, e^{z_nx}, e^{z_px}$ are linearly independent, and by Theorem 1, the CES of S(x) converges everywhere in (0, 1) to S(x), it will then follow that S(x) is its own CES.

For $\mu \neq k$,

$$egin{aligned} &\int_{0}^{1}e^{(x_{k}-z_{\mu})x}dx=rac{e^{-x_{\mu}}}{z_{k}-z_{\mu}}\{e^{z_{k}}-e^{s}_{\mu}\}\ &=rac{e^{-x_{\mu}}\{a(z_{k})b(z_{\mu})-a(z_{\mu})b(z_{k})\}}{a(z_{k})a(z_{\mu})(z_{k}-z_{\mu})}\ &=rac{e^{-z_{\mu}}\sigma(z_{k},z_{\mu})}{a(z_{k})a(z_{\mu})}\,, \quad ext{ say.} \end{aligned}$$

Thus, if $\mu \notin \{1, \dots, n, p\}$, and d_1, \dots, d_n are any *n* numbers, the left-hand side of (12) is

$$egin{aligned} &rac{e^{-z_\mu}}{a(z_\mu)}igg\{rac{\sigma(z_p,\,z_\mu)}{a(z_p)}+\sum\limits_{k=1}^nrac{d_k\sigma(z_k,\,z_\mu)}{a(z_k)}igg\} \ &=rac{e^{-z_\mu}}{a(z_\mu)a(z_p)}igg\{\sigma(z_p,\,z_\mu)+\sum\limits_{k=1}^n\delta_k\sigma(z_k,\,z_\mu)igg] \ &=I_\mu \qquad ext{say, where } \delta_k=rac{a(z_p)d_k}{a(z_k)}. \end{aligned}$$

The symmetric polynomial

$$\sigma(x, y) = \frac{a(x)b(y) - a(y)b(x)}{x - y}$$

can be expressed in the form

$$\sum_{r=0}^{n-1} P_r(x) y^r$$

where $P_r(x)$ is a polynomial in x of degree at most n-1. Then,

$$I_{\mu} = rac{e^{-z_{\mu}}}{a(z_{\mu})a(z_{p})}\sum\limits_{r=0}^{n-1}z_{\mu}^{r}\Big\{P_{r}(z_{p})+\sum\limits_{k=1}^{n}\delta_{k}P_{r}(z_{k})\Big\}\;.$$

This is zero for each $\mu \notin \{1, \dots, n, p\}$ if

$$P_r(z_p) + \sum_{k=1}^n \delta_k P_r(z_k) = 0$$
 $(r = 0, 1, \dots, n-1)$,

which happens if

$$z_p^r+\sum\limits_{k=1}^n {\delta _k} z_k^{
m t} = 0$$
 $(r=0,1,\cdots,n-1)$.

Since this system of *n* linear equations for the unknowns $\delta_1, \dots, \delta_n$ is regular, the lemma follows.

COROLLARY. Given the constants c_{n+1}, \dots, c_p of Theorem 4, there are numbers $c_1^{(p)}, \dots, c_n^{(p)}$ such that

$$T_{p}(x) = \sum_{k=1}^{n} c_{k}^{(p)} e^{z_{k}x} + \sum_{\nu=n+1}^{p} c_{\nu} e^{z_{\nu}x}$$

is its own CES.

LEMMA 4. The numbers $c_1^{(p)}, \dots, c_n^{(p)}$ are unique and, for $k = 1, 2, \dots, n$, the sequence $\{c_k^{(p)}\}$ converges.

Proof. By Theorem 2, the numbers $c_1^{(p)}, \dots, c_n^{(p)}$ satisfy the regular system of linear equations

$$rac{c_1^{(p)} z_1^r}{\lambda_1 F'(z_1)} + \cdots + rac{c_n^{(p)} z_n^r}{\lambda_n F'(z_n)} = -\sum_{
u=n+1}^p rac{c_
u z_
u^r}{\lambda_
u F'(z_
u)}$$

 $(r\!=\!0,1,\cdots,n\!-\!1)$, and so are determined uniquely. Since $\sum_{\nu>n} |c_{\nu}|^2 < \infty$, and

 $|\lambda_{
u}F'(z_{
u})|>K|z_{
u}^n|$

where K is a constant,

$$\sum_{\nu=n+1}^p \frac{c_\nu z_\nu^r}{\lambda_\nu F'(z_\nu)}$$

converges, for $r = 0, 1, \dots, n-1$. Hence, by an argument used in the proof of Theorem 3, $\{c_k^{(p)}\}$ converges, for $k = 1, 2, \dots, n$.

LEMMA 5. There is a positive constant A such that if $\{a_{\nu}\}$ is any finite set of numbers, then

$$\int_{_0}^{_1} \mid arSigma a_{{}_{\mathcal V}} e^{z_{{}_{\mathcal V}} x} \mid^{_2} dx \leqq A arSigma \mid a_{{}_{\mathcal V}} \mid^{_2}$$
 .

This may be proved by an argument similar to that of Lemma 3 of [3].

8. Proof of Theorem 4. Let p, q be integers such that q > p > n. Then,

$$T_q(x) - T_p(x) = \sum_{k=1}^n (c_k^{(q)} - c_k^{(p)}) e^{z_k x} + \sum_{y=p+1}^q c_y e^{z_y x}$$
.

By Lemma 5, there is a constant A > 0 such that

$$\int_{0}^{1} |T_{q}(x) - T_{p}(x)|^{2} \, dx \leq A \Big\{ \sum_{k=1}^{n} |c_{k}^{(q)} - c_{k}^{(p)}|^{2} + \sum_{
u = p+1}^{q} |c_{
u}|^{2} \Big\} \, .$$

Hence, by Lemma 4, $\{T_p(x)\}$ converges in mean to a function $f \in L^2(0, 1)$. Let $\nu > n$. Since $T_p(x)$ is its own CES,

$$c_{\mathbf{v}} = \lambda_{\mathbf{v}} \int_{\mathbf{0}}^{\mathbf{1}} T_{\mathbf{v}}(x) e^{-z_{\mathbf{v}}x} dx \qquad (p \geqq \mathbf{v}).$$

Hence,

$$egin{aligned} c_{
u} &= \lambda_{
u} \lim_{p o \infty} \int_{0}^{1} {T}_{p}(x) e^{-z_{
u}x}\,dx \ &= \lambda_{
u} \int_{0}^{1} f(x) e^{-z_{
u}x}dx \;. \end{aligned}$$

Define c_1, \dots, c_n by this formula; then,

$$c_k = \lim_{p o \infty} c_k^{(p)}$$
 $(k = 1, 2, \dots, n)$,

and $\sum_{\nu=1}^{\infty} c_{\nu} e^{z_{\nu}x}$ converges in mean to f. This completes the proof.

9. Proof of Theorem 5. If we multiply (8) by c_{ν} and sum from $\nu = 1$ to $\nu = p$, where p is greater than an assigned integer μ , we obtain

(13)
$$c_{\mu}G'(z_{\mu}) = \sum_{r=0}^{n-1} z_{\mu}^{r} \sum_{\nu=1}^{p} c_{\nu} \sum_{k=z+1}^{n} (a_{k}e^{r_{\nu}} + b_{k})z_{\nu}^{k-r-1} + a(z_{\mu})e^{z_{\mu}} \int_{0}^{1} e^{-z_{\mu}t} \sum_{\nu=1}^{p} c_{\nu}e^{z_{\nu}t}dt$$
$$= \mathscr{L}_{p} + \mathscr{M}_{p}, \quad \text{say.}$$

Since $\sum_{\nu=1}^{\infty} |c_{\nu}|^2 < \infty$, $\sum_{\nu=1}^{\infty} c_{\nu} e^{z_{\nu} t}$ converges in mean to a function $f \in L^2(0, 1)$. Hence,

$$\mathscr{M}_p \longrightarrow d_\mu G'(z_\mu) \qquad \text{as } p \longrightarrow \infty$$

where

$$d_{\mu}=\lambda_{\mu}\int_{0}^{1}f(t)e^{-z_{\mu}t}dt$$
 ,

Next,

(14)
$$\mathscr{L}_{p} = \sum_{r=0}^{n-1} \delta_{r} z_{\mu}^{r} - \sum_{r=0}^{n-1} z_{\mu}^{r} \sum_{\nu=2}^{p} c_{\nu} \sum_{k=0}^{z} (a_{k} e^{r_{\nu}} + b_{k}) z_{\nu}^{k-r-1}$$

where

$$\delta_r = c_1 \sum_{k=r+1}^n (a_k e^{r_1} + b_k) z_1^{k-r-1}$$

Since

$$\sum_{k=0}^{r} (a_k e^{z_{\nu}} + b_k) z_{\nu}^{k-r-1} = O(\nu^{-1})$$

the summation over ν in (14) converges, as $p \to \infty$, to η_r say. The result now follows upon writing

$$\eta_r + \delta_r = \gamma_r$$
.

10. Before establishing the uniqueness theorem, we prove two lemmas.

LEMMA 6. If $\sum_{\nu=1}^{\infty} d_{\nu}e^{z_{\nu}x} = f(x)$ almost everywhere in [0, 1], and $d_{\nu} = O(\nu^{-2})$, there are constants $\sigma_0, \dots, \sigma_{n-1}$ such that (7) is satisfied for $\nu = 1, 2, \dots$.

Proof. We have (13), with c_{ν} replaced by d_{ν} . We may write this as

$$d_{\mu}G'(z_{\mu}) = \sum_{r=0}^{n-1} M_{r,p} z_{\mu}^r + \lambda_{\mu}G'(z_{\mu}) \int_0^1 e^{-z_{\mu}t} \Big\{ f(t) - \sum_{
u=p+1}^{\infty} d_
u e^{z_
u}t \Big\} dt \; .$$

Since

$$\int_0^1 e^{-z_\mu t} \sum_{arphi=p+1}^\infty d_{arphi} e^{z_
u t} dt = O\Bigl(\sum_{arphi=p+1}^\infty |d_
u|\Bigr) \ = o(1) \quad ext{as} \ p o \infty ext{ ,}$$

and $\{M_{r,p}\}$ converges, to σ_r say, for $r = 0, 1, \dots, n-1$, we obtain (7).

LEMMA 7. If the series $\sum_{\nu=2}^{\infty} b_{\nu}$ is convergent, then

$$\sum_{\nu=2}^{\infty} b_{\nu} \left(\frac{\sinh z_{\nu} h}{z_{\nu} h} \right)^2 \longrightarrow \sum_{\nu=2}^{\infty} b_{\nu}$$

as $h \downarrow 0$.

Proof. By a classical result, it is sufficient to show that
(i)
$$\left(\frac{\sinh z_{\nu}h}{z_{\nu}h}\right)^2 \rightarrow 1$$
 as $h \downarrow 0$, for $\nu = 2, 3, \cdots$

(ii)
$$\sum_{\nu=2}^{\infty} \left| \left(\frac{\sinh z_{\nu+1}h}{z_{\nu+1}h} \right)^2 - \left(\frac{\sinh z_{\nu}h}{z_{\nu}h} \right)^2 \right|$$

is bounded as $h \downarrow 0$. It is evident that (i) is satisfied; (ii) may be established by the method of Theorem 1 of [4].

11. Proof of Theorem 6. The hypothesis of convergence implies that $d_{\nu} = o(1)$. If we define

(15)
$$\Psi(x) = \sum_{\nu=2}^{\infty} \frac{d_{\nu} e^{z_{\nu} x}}{z_{\nu}^2}$$

this series is uniformly and absolutely convergent, in [0, 1]. Now

$$rac{arPsi(x+2h)+arPsi(x-2h)-2arPsi(x)}{4h^2}=\sum_{
u=2}^\infty d_
u e^{z_
u x}\Big(rac{\sinh z_
u h}{z_
u h}\Big)^2$$

and hence, by Lemma 7, the second generalised derivative of $\Psi(x)$ equals $f(x) - d_1 e^{s_1 x}$ almost everywhere in [0, 1]. It follows that

$$\Psi(x) = \int_0^x dt \int_0^t (f(u) - d_1 e^{z_1 u}) du + lx + m$$

where l, m are constants. Since

$$d_{
u}/z_{
u}^{2}=o(
u^{-2})$$
 ,

we may apply Lemma 6 to the series (15). Thus, there are constants $\alpha_0, \dots, \alpha_{n-1}$ such that

(16)
$$\frac{d_{\nu}}{z_{\nu}^2} = \lambda_{\nu} \int_0^1 \Psi(t) e^{-z_{\nu}t} dt + \sum_{z=0}^{n-1} \frac{\alpha_r z_{\nu}^r}{G'(z_{\nu})}$$

for $\nu = 2, 3, \cdots$.

If we integrate by parts twice, we can write (16) in the form

$$d_
u = \lambda_
u \int_0^1 f(t) e^{-z_
u t} dt \,+\, \sum_{r=0}^{n+1} rac{\sigma_r z_
u^r}{G'(z_
u)}$$
 ,

where $\sigma_0, \dots, \sigma_{n+1}$ are constants. Since $G'(z_{\nu}) \sim -b_n z_{\nu}^n$,

$$d_{
u} = o(1)$$
 and $\lambda_{
u} \int_{0}^{1} f(t) e^{-z_{
u}t} dt = o(1)$,

we have

$$\sigma_n=\sigma_{n+1}=0$$

and for $\nu = 2, 3, \dots$, we have (7). Finally, by Theorem 1 and Lemma 1,

$$\sum\limits_{
u=1}^{\infty} \Big\{ \lambda_
u \int_0^1 f(t) e^{-z_
u t} dt \ + \ \sum\limits_{r=0}^{n-1} rac{\sigma_r z_
u^r}{G'(z_
u)} \Big\} e^{z_
u x}$$

is summable (C, 1) almost everywhere in [0, 1] to

$$f(x) - \Big\{ \lambda_1 \int_0^1 f(t) e^{-z_1 t} dt \, + \, \sum_{r=0}^{n-1} \frac{\sigma_r z_1^r}{G'(z_1)} \Big\} e^{z_1 x}$$

so that we have (7) for $\nu = 1$, and the proof is complete.

In conclusion, the authors wish to express their gratitude to Professor S. Verblunsky of Belfast, for his helpful criticism and advice.

References

1. G. H. Fullerton, Expansions of a function in a series of exponentials, Ph. D. Thesis (Belfast, 1959)

2. E. W. Hobson, The theory of functions of a real variable, vol. II, (Cambridge, 1926)

3. S. Verblunsky, On an expansion in exponential series (II), Quart, J. Math. (Oxford) (2), 10 (1959), 99-109.

4. _____, A uniqueness theorem for the exponential series of Herglotz, Proc. Camb. Phil. Soc. 56 (1960), 220-232.

THE UNIVERSITY, NOTTINGHAM

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL University of Washington Seattle, Washington 98105 J. Dugundji

University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 15, No. 2 October, 1965

	373
A. A. Albert, On exceptional Jordan division algebras	377
J. A. Anderson and G. H. Fullerton, <i>On a class of Cauchy exponential series</i>	405
Allan Clark, Hopf algebras over Dedekind domains and torsion in	
	419
John Dauns and D. V. Widder, Convolution transforms whose inversion	
functions have complex roots	427
Ronald George Douglas, Contractive projections on an L ₁ space	443
	463
Ramesh Anand Gangolli, Sample functions of certain differential processes on	
symmetric spaces	477
Robert William Gilmer, Jr., Some containment relations between classes of ideals of a commutative ring	497
Basil Gordon, A generalization of the coset decomposition of a finite	
	503
Teruo Ikebe, On the phase-shift formula for the scattering operator	511
	525
	537
	541
Betty Kvarda, An inequality for the number of elements in a sum of two sets of	
	545
Jonah Mann and Donald J. Newman, <i>The generalized Gibbs phenomenon for regular Hausdorff means</i>	551
	557
	561
	585
Tom Stephen Pitcher, A more general property than domination for sets of	597
	613
Arthur Argyle Sagle, On simple extended Lie algebras over fields of	015
	621
	649
	667
	673
Raymond Earl Smithson, Some general properties of multi-valued	075
	681
	705
	719
	731