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Let us denote by Sy, the scattering operator attached to
a fixed value |%|?> of the kinetic energy. We shall show by
a method different from that of Buslaev [2] that S is the
identity plus a Hilbert-Schmidt integral operator under a
weaker assumption on ¢(x), and give a way of unique deter-
mination of the phase shifts in terms of which S, can be
represented as the orthogonal direct sum of multiplication
operators by a number with absolute value equal to unity.

The scattering operator as well as the wave operators concerned
with the Schrodinger equation in 3-space has been an object of various
investigations among which M. Sh. Birman and M. G. Krein have
established in [1] that the scattering operator corresponding to any
fixed value of the incident kinetic energy is equal to the identity plus
a trace-class operator if the difference of the resolvents is in the trace
class or if it is completely continuous and the difference of some in-
tegral power of the resolvents is in the trace class. They have also
introduced what they call the spectral shift function that is very
similar to the phase shift we shall define later. Their method is quite
abstract so that it may be applicable in principle to a wide range of
problems. The concrete case of the Schrodinger operator, however,
may be of interest, too and admit of more concrete approaches. In
this connection V. S. Buslaev [2] has studied the Schrodinger operator
—4 + q(x), where the potential g(x) has been assumed to be real-valued
and infinitely differentiable and to decrease near infinity faster than
any power of |%|™*, and presented an explicit way of obtaining the
scattering operator in the form of the identity plus an integral operator
when the kinetic energy is fixed. In the special case of a spherically
symmetric potential T. A. Green and O. E. Lanford, III [3] derived
with mathematical rigor the phase-shift formula for the scattering
operator.

Under our assumption on g(x) stated below, that S, equals I+ (Hilbert-
Schmidt operator) is included in the more general theorem mentioned
above of Birman and Krein [1], though the approaches are different.
Since we shall base our argument principally on the eigenfunction ex-
pansion and an identity involving the wave and scattering operators,
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we want to collect here some results on the eigenfunction expansion
from [4] together with our assumption on q(x).
We assume:

(A) q(x) is a real-valued function of x € E = R® which is locally Holder
continuous except at a finite number of singularities and is in
L,(E). Moreover, there exist positive constants &, C, and R, such
that |q(x)| = Cy x|~ for |2| = R,

Then the operator A = —4 + q(x) with D(A) = C3(E)* determines in

L) a unique self-adjoint extension H that is lower semibounded,

while we denote by H, the correspnding operator for the case g(x) = 0.

It is known that H = H,+ V and D(H) = D(H,) © D(V), where V is

the operator in L,(E) of multiplication by q(x).

There exist the (improper) eigenfunctions o(x, k), k€ M,* associated
with the (improper) eigenvalues |k|* > 0 of the Schrodinger equation

—4dp + q(x)p = |k *p, that have the asymptotic expansion:

P, k) = e** — ——2—71.—8“’" “F( k|, —w, —o,) + 0( . ) ’
1.1) ] El
F(k|, o o) = 1 S o, | k|, —w)g(x)e *du
8n? Jm

and that have the property:

@(x, k) is bounded and uniformly continuous in # € £ and
(1.2) ke D, D being any compact domain of M not containing
the origin.

The eigenfunctions of H, are ¢** and the eigenfunction expansion in
this case involves the ordinary Fourier transforms

(1.3) Fl) = 27y~ lim Le"'" “f(w)dw (f(@) € L&)y

and the whole L,(E) maps onto L, (M) in a one-to-one way. However
1 This assumption is stronger than (A) of [4], where we assumed that
q@) =o(| & |27 . |=z|= <§21(x1)2>% , o= (xtx%a)EE .
7=

2 D(A) = domain of A.

3 M = R?, but it will be convenient to distinguish the “momentum” or “Fourier”
space M = set of all wave vectors k from the “configuration” space E.

t o=/l 2|, 0r =Fk/| k|. All o’s are unit vectors. ¢z, | k|, ) = ¢(x, k) if k = (1 k|, »).
k-x is the scalar product of %k and z.

The first equation of (1.1) follows immediately from Lemma 3.2 (p. 11) of [4]
and the integral equation (see [4], p. 17)
1 J'eilk\ lz—y|

50(37, k) = gth's — ZE l x—y l q(y)ﬁa(y’ k)dy .

51imj .+. = limit in the mean of'[ «eo for N> .
B |z|SN
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@(x, k) can map only a part of L,(E) onto L,(M). Nemely let H =
S A E, and let f(k) = (27)~*" lim S @@, k) f(x)dx for f(x) e L(E). Then

f(k) is in L,(M) and does not depend on the projection of f(x) on
E,L(M), so that the mapping f(x)— f(k) transforms (I — E;)L.(E)
in a one-to-one manner onto L.(M). Of course the Parseval relation
and the inverse transform formula hold:

f”z_HfHLzM), (f,g):(f’g)Lz(M)y
f@) = @y lim | o, DI

where f(x)e (I — E,)L(F). Moreover, we have the diagonal represen-
tation of H that reads as follows:
(1.4) (Hf)(x) = (27)~*2 lim S |k Po(, k) Flk)dk
M
X (f@)e (I — E)L(E) N D(H)) .

Next let us take a look at the wave and scattering operators.
Under our assumption (A) the wave operators

(1.5) W, = strong limit e®*#¢—it#0

t—too

are known to exist and be isometries with domain L,(E) and range
(I — E,)L(F), which enables us to define the scattering operator

(1.6) S=Wiw._
which is unitary. Some fundamental properties of these operators are:

I—-E)W.=W,, HW.=W.H,,

1.7
(1.7 WiH = HW* , SH,c HS,

and the following representation for W, will also be used later:

(19 (W.F)a) = o) lim | 5@, ~DA@ -

2. Representation of the scattering operator in the Fourier space.
LEMMA 1. For any we D(H) = D(H,) and ve Ly(E)
2.1) (Su, v) = (u, v) — i S” (G E W Ve—stToy, )dt .

61l || and (,) are the usual norm and inner product in Li(E). The subscript
Ly(M) shows that the norm and inner produect are taken in Ly(M). lim IM--- =

limt in the mean of [ .- for N = oo.
NTlzlklsN
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Proof. We have

4

7 (6T g=itHoy, ) = j(eitH Ve itHoy, ) ,

Integrating the above relation from —oco to + o we obtain in view
of (1.5)

(W, —W_lu,v) =i S;(e“HVe"“H"u, v)dt .

If we replace v by W,v, we have on the one hand, according to the
definition (1.6) of S,
(W, — W_lu, W.v) = (u, v) — (Su, v)

and on the other
1 Sw (e Ve itHoy, W,ov)dt = ¢ r (Wit Ve itioy, v)dt
.y S“’ (B W Ve—tHy, v)dt

where we have used (1.7). Combining these two we arrive at (2.1),
which was to be proved.

THEOREM 1. The scattering operator S 1is given the following
representation in the Fourier space:

2.2) (Sw); (k) = Gk) — 1 SQ! k| F( k|, o, oY k|, @)do"

a.e., where F(| k|, 0, @) is given by (1.1), w = w, = k/| k| and 2 is
the totality of all unit vectors w'.

Proof. We see from Lemma 1 that for ue D(H) and ve L(E)
(2.3) (Su, v) — (u, v) = —i S" (VeitBoy, W, o~itHop)ds .

Using (1.8) and the diagonal representation of H, (which is obtained

7 For the definition of #(k) see (1.3).

In 2.2) F(| k|, 0, ©") can be replaced by F(| k|, —«’, —w), which results in the
integration with respect to the incident directions according to (1.1). Indeed we
have in general

_‘.sa(w, | &1, 0)q(z)eil¥lo ody

= [t 1 11, 0@ otz 1 81, &) +

and the right hand side is symmetric in « and «'.

1 ikl [z—y|
o -el‘;j_“y—l‘qw)go(y, lEl, w')dy]dx
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from (1.4) with o(z, k) replaced by ¢***), we have

2.4 (WoeH)(e) = (2m)~*" 1img p@, —k)e " 5 (k,)dk, ,
M

@5) (Ve mu)(m) = (21)-*q(x) lim SMe“‘?'”e”“”‘2‘2120(102)03102 .
On the other hand
@8) T =(Su,0) = (u,0) = | (SR w5 — k)5, 0R)dk

as is seen from the Parseval relation for the ordinary Fourier trans-
forms. Now let us suppose that #, and ¥, are in Cy(M),* which in
view of the condition that gq(x)e L, allows us to freely interchange
the integration order except for the integration with respect to ¢.
Putting together (2.3), (2.4), (2.5) and (2.6) we have

2.7 J = —1(@2m)3 Sw dtg q(x)dws gikarwgitika)?
—w b2 o
X Wy(ks)dk, S 2@, — ke 5 (Tydk,
M

= ——'1;(27t)“3 lim St dtS S dkzdkleit(lkllz—lkzﬂ)
—t My

t—o0

X 206)50) | e *a@p(e, —k)da

. s 2eint(| k> — | Ky ?)
— —i2m)-*] S dk,dk,
1(27) hm MS TP — Tl

X 650 | ¢ e(@)p(, ~k)dz

where in the last expression the ¢-integration has been interchanged
with the k-integrations, which is possible because of the ¢-integration
being taken over a finite interval. We can now proceed formally as
follows: making use of a symbolic relation lim,.. (1/7)(sin tA/A) =
o(\), 60(\) being Dirace’s delta function,

@8 T=—1 [ a0k~ 1k EwE

X [S e q(x)p(x, —kl)olavjlolkzdk1

= — | a1 11 5 | 2 k), 0)

8 By Cy (M) is meant the totality of infinitely differentiable functions of ke M
whose support is compact and does not contain the origin.
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% [SEe“’”"’l"q(x)@(x, k|, ~a))dw]dw1
= —q SM[S | F( k|, @, o)k, w’)dw’]m—)dk
(by (1.1)).

A justification of the above procedure is the following. Viewing the
expression

() | | e a@p(e, —k)ds]

as a function of [k,| we can show that this is Holder continuous in
| k,]. For locally Holder continuous functions it is known that Fourier’s
single integral formula holds.’ (For more details see the Appendix.)
Since 7,(k) is arbitrary in C3(M), (2.2) follows from (2.6), (2.7) and
(2.8) for #(k)e Cy(M). However, the integral operator on the right
side of (2.2) always makes sense for @y (k)€ L,(M), since F (| k|, 0, @)
is a continuous function of @w and @’ on 2 for any fixed |k| > 0, as
is easily seen from (1.1) and (1.2),” and hence defines a completely
continuous operator of the Hilbert-Schmidt type on L.(£2), and since
any #k)e L(M) can be regarded as an element of L,(2) for almost
every fixed value of |%|. Thus (2.2) holds for any u e L,(E)(@, € L,(M)).

Now let us consider operators S,(r > 0) on L,(2) defined by
(S,u)(@) = w(@) — i S rF(r, o, )u(@)dw (w) e L{2)) .
2

As has been pointed out in the above proof of Theorem 1, S, is equal
to the identity plus a completely continuous operator of the Hilbert-
Schmidt type and hence is invertible if it has no nontrivial null vector.
Moreover, we can assert that S, is unitary. Indeed fix any > 0, and
let 0,.(s) be a real-valued smooth function of s > 0 with its support
contained in the interval (r — ¢, r + ¢) and with the property

S”a,,a<s>2ds —1 O<e<r).
0

w(@)+0,,.(| k) lies in L,(M) for any u e L,2) and the unitary character
of S implies

[ #0.u(erds | @) Pdo = | S(w-0,) | = | -0,

9 See Zygmund [5], Chapter II, §6 and Chapter XVI, §1. A complete justifica-
tion of this fact will be given in the Appendix.

10 The absolute convergence of the integral defining F(| k|, w, o’) is seen from
the fact that q(x)€ Li(E) (note that we have assumed g(z) = o] x| ~3—%)).
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dw .

- rs25,,s(s)2dsg | w(@)
0 Q
Thus if we let e — 0, we obtain from the left and right sides
S | Sou(w) Pdo = S | w() ['do .
Q2 Q2

This shows that S, is an isometry and hence unitary, because this
also shows the nonexistence of nontrivial null-vectors. Thus we have
the following

THEOREM 2. The scattering operator S is a continuous sum of
Sp with the weight function |k|*

18wl = [T Suull kl, ) o P2 ]

where each S, is a unitary operator on L,Q) of the form S, =
I—73|k|Fy, F being a completely continuous tntegral operator on
L.(2) of the Htlbert-Schmidt type.

3. Phase shifts. Phase-shift fcrmula. Let us consider our whole
problem now starting from the potential q.(x) = eq(x) with a real para-
meter ¢ instead of g(x) and agree to add a subscript ¢ to everything
concerned; e.g. @, k), He, S, S.,;; etc. We have considered in [4]
a Banach space B of all continuous functions w(x) tending uniformly
to 0 as |2 | — co, with the norm |||/, = max,e; |u(x)|, and operators
T.(Imk > 0) on B:

L aw)fwdy

Clearly T.,.= eT, has the same properties as T,.

LEMMA 2. In addition to the properties (1.2) o (x, k) has the
property that it depends continuwously on &0 = e < 1) uniformly for
ve E and k varying over a compact domain of M not including 0.

Proof. @.(x, k) is expressible in the following way:"

Pe(, y) = " + v, k) ,
Ve, k) = (I — Tye) "0, K)

e S etk 12—yl

S q(y)e™*vdy .
A7 Jp |2 — y|

pe(x, k) = ep(x, k) = —

11 See [4], pp. 17-18.
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It is, therefore, enough to prove the assertion for v.(x, k). We have

| Ve, (2, k) — e (2, ) |
= — T!kml)~1pE1(_’ k) — (I — le\,sz)_lpez(', k)|l
ST = Tire) ™ — L= Tippe) sl v+, B) s
+ [ = Traye) s [ pe(+5 £) — De(, B |]5 -

As is easily seen, [/ p.(-, k)|l is bounded and || p. (-, k) — pe,(+, k) [l =
const. |¢, — ¢&,| in the domain of the variables specified in the lemma.
On the other hand, one can see from the continuity in ¢ of T, and
from the existence of (I — T,,,.)" that (I — T,,.)" is continuous in ¢
in the operator norm and necessarily bounded in the same domain.”
The above inequality together with these remarks shows the asserted
continuity.

LEMMA 3. F k|, o, @) is uniformly continuous in the totality
of e, |kl,wand @ for 021, 0<a=Z |k Z26< o and w, » €L,

Proof. The continuity in | k|, @ and @' follows from Lemma A in
the Appendix, where we should note that the modulus of continuity is
a bounded function of ¢(0 < ¢ = 1), which is seen from the boundedness
in ¢ of @.(x, k) which has been incidentally shown in the statement of
Lemma 2. What remains is to prove the continuity in ¢. But this is
a direct consequence of Lemma 2 and the absolute integrability of the
defining integral for F (| k!, w, ®'), which completes the proof of the
lemma.,

Now we proceed to define the phase shifts appropriately. S., .,
which is defined on L,(2) and corresponds to the potential ¢.(x), can
be expressed as S, =I—1il|k|F. ., where F., is the integral
operator with the kernel Fy (| k|, w, ®). We shall show that S, is
continuous in ¢ and | k| in the sense of the operator norm for 0 <e¢ <1
and |k| > 0. Indeed we have for u(w)e Ly,(Q)

| (Sslylkll - Ssz,lkzl)ulliz(m = || (| k.| Fepiey — | Fea| Fleppip,)% ||§2<m
= 2( Ky | — [k |) ] Fopiny % ||%2(m + 2|k, ] (Fel,lkll - Fsz,lkzl)u H%z(m
< 2016 ] — b el | | 1 Fu( ), 0, @) Pdode

2kl || 1P ] 0, 0) = Fy(h, 0, 0) fdode’ .

With the aid of Lemma 3 the right-hand side can be made arbitrarily
small by choosing |e, — ¢;| and | |k, | — | k.| | small enough.
Let e,k = 1,2+« (| 0e, 11,11 = | 0ey51,2| = =+ + = 0) be the eigen-

12 See the first few lines of p. 16 of [4].
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values of F.,,, enumerated according to their (finite) multiplicity. In
view of the continuity of S, and accordingly of F.,, the 0,
are seen to be continuous functions of ¢ and |k|. We have 0.,,,— 0
(n — o) because of the complete continuity of F,,,. Also we can
choose the associated eigenvectors @, ,,,.(w) € L,(2) so that they be con-
tinuous in ¢ and |k|. From the fact that S, is unitary (Theorem 2)
it follows that 1 — ¢ | k| d,,,, are the eigenvalues of S, with absolute
value equal to 1, and hence 1 — i | k| O¢, 4., = €*7¢1¥bn, Where e, 1., are
real. In the case ¢ = 0 all the eigenvalues of S, are 1. We can,
therefore, determine 7,,,,,, uniquely in view of the continuity in ¢ and
k|, by the condition lim %, ,, = 0. These considerations enable us

to give the following

THEOREM 3. The following phase-shift formula for the scatter-
ing operator holds:

(Su)y (k) = S\pu(lk|, w) = é@m”"’"(u, D 11,0)y 2P 111,0(@) 5

where @), = D1, 11, = 1) and where N, = N1, 1,.(6 = 1) are quante-
ties called the phase-shifts which are uniquely determinable by the
condition lim, 7., p,. = 0 and are continuous in |k|.

In the spherically symmetric potential case we can first expand
the wave function into the sum of spherical harmoniecs components,
and discuss each component radial function separately. As a result
we see® that in each component space the scattering operator is a
multiplication by a function of the form e¢*": (k is real positive) if
we pass to the (one-dimensional) Fourier transform of the radial fune-
tion. In this case we can take as &, (@) the spherical harmonics.
Thus @,,,(w) will play a role similar to that of the spherical har-
monics, though the latter are independent of |k

We can also deduce a formula for the scattering cross-section
Q( %]) corresponding to the situation where plane waves of the kinetic
energy |k|* are incident upon the scatterer with potential ¢(z). Q(|%])
is defined as a quantity proportional to the integral over all directions
w, of the square of the coefficient of the |#|™* term in the asymptotic
expansion

.

plx, k) = ¢ — | x| 2w V(| ||, —w,, —®,) + 0<i> .
[

It is not difficult to show by means of the phase-shift formula (Theorem 3)
that Q(| k) is equal to (1/|k*) 37, sin* 9., up to a constant. This is

18 Cf. Green-Lanford, IIT [3].
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well known when the potential is spherically symmetric.

APPENDIX. Rigorous derivation of (2.8).

We shall give a justification of the use of the delta function in
the proof of Theorem 1.

LEMMA A. F(r, o, qﬂz,wz)zg o q(@)p (@, 1o, — wy)das i uni formly
B
Holder continuous in v, for any fived v, and in v, for any fized .,
where 0 < a = r,r, = B < o and W, 0, € 2.

Proof. We first show that v(z, r, ®) = p(x, r, ®) — €"* is uni-
formly Holder continuous in r(a = r = 8, we 2,2 € E). (For the notation
see the beginning part of the proof of L.emma 2. Note that we con-
sider now the case ¢ = 1.) We have

(A1) v(-,r, 0) —v(s,ry,0) = [T~ T,)7 — I~ T,)"Ip(+, 75, )
+ I~ T,) [p(-, r, ®) — p(+, 75, ®)] .

We can see as in the proof of Lemma 2 that
W= T,)7* =T —=T,)" = Clr— 7,

where C, is a constant independent of », and »,. On the other hand
| (-, 75, @) ||z = C,, C; being independent of », and w. Thus we have
- T,)"—UT~— T,) ' Ip@, r, ®)| = C;| r, — ;| with C, independent
of any variable. As to the second term of (A.l) we have

" gy dy

@, 7, @) — p@, 1, ©) | = |
x—y|

1 S |giml=vl — ¢
4r Jr
1

+ . S 1 eirlw-y . eirzw-y l |q(y) l d/y
4 Jr |z — ¥y

éQlﬂ—ﬁlSEIq(y)ldy

+ Csm—mlg 18l idy
vle—y|
The last integral can be seen to be bounded by a constant independent
of xe E (see [4], Lemma 3.1, p. 11). | (I — T,)7|l is bounded inde-
pendently of #, (see the proof of Lemma 2). Thus we have

{v(x7/r1’w)—,v(x,/r27w)| écﬁllrl—lrzly

where C; does not depend on % and w, which shows the asserted uniform
Holder continuity (with exponent equal to 1).

Now let us return to the function F'(r, w,, v,, ®,) which can be:
written as the sum G(r,) + H(r,), where
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G(ry = | enersierq@da
H(r,) = EEe”l"’l"”q(x)v(x, 7y, W)AE .
First we estimate | G(r;)) — G(r))|. We have
G — G| = | |7t — e || g(w) | da
=27 = |ol @) da,

where we have made use of the inequality |e* — e | < 2" |a — b|°,
and where 0 < 6 < h (see the assumption (A)) so that the integral

|, lel* @) da

B

is finite, which in turn gives us the estimate
|G(r) — G(r))| = Co | ry — i [°

with C, independent of the other variables. For H(r,) we can easily
obtain from the uniform Holder continuity in 7 or »(z, r, ®) shown
before, the estimate

| H(ry) — H(ry) | = G| 7} — ]| L lq(@)| da .

These two estimates together prove the lemma (the Holder continuity
in », can be treated similarly).

The following lemma is concerned with Fourier’s single integral
formula, which is stated in the new eddition of A. Zygmund’s book
[5], but not in the old one. For completeness’ sake we shall give a
proof of it.

LEMMA B. Let f(x) be integrable over (— oo, ) and untiformly
Holder continuous over |a, B]. Then

fw) = lim 2 |” =D sq)ay

Ao 7T

untformly for xeld, B, a < o < B < B.
Proof. If we note the well known formula

_1_8“’ sink(x—’y)dy:_l_g“’ sinw ;4

T T —y T U

what we have to show turns out to be the following:
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(4.2) L7 Mo =05 - fplay—0,  as oo
T Jow ®—y

uniformly for xz € [, £'].
We split the integral into three parts:

o 1 —_ z—3 218 ]
e R R N S W
T J—oo T — Y —co z—8 z+38
where we have chosen 6 > 0 such that « ¢ lie in [«, Bz € [«, £]).
For any given ¢ >0 we have with 0 as the exponent of Holder con-

tinuity
z+8
Sx—s

by choosing ¢ sufficiently small. The last term of (A.3) is the sum
of two integrals:

r ) S” sinM@ —9) g, }_S”sinwf(x ¥ gy
z+8 w 248 T Jé Y

248 9
= const. S R S P const.—zg— <e

== | — Y|

The first integral tends uniformly to 0 as A — o, since it equals

}-f(oc) S“’ sin % du .
7 u

A8
As to the second integral, since
I,
is continuous in 2z € [a’, 8'], the Riemann-Lebesgue lemma holds uni-

formly with respect to . A similar argument is applicable to the
first integral on the right side of (A.3). Thus we have obtained the

result (A.2).

f(x—y)'dy
Y

Now let us derive the first line of (2.8). In (2.7) we have the
function F'(|k,|, @, | k|, @)0(| ks|, @) k.|, w,). We first integrate
with respect to w, and w,. Then this will turn out to be a funection
of the form f(|k,|,|k,]) which is uniformly Holder continuous, for
instance, in | k,| for |k,|, | k,| in some finite interval exclusive of 0,
as is seen from Lemma A and from 4, ¥, being assumed to be in
Cy(M). Finally the application of Lemma B and the theorem on uni-
form convergence yields the required result.
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