MAPS WHICH INDUCE THE ZERO MAP ON HOMOTOPY

DONALD WILLIAM KAHN
MAPS WHICH INDUCE THE ZERO MAP ON HOMOTOPY

DONALD W. KAHN

The work of Eilenberg and MacLane shows that a map from one space to another may induce the zero map on homotopy groups, yet be essential. The purpose of this paper is to give a characterization of such maps in terms of Postnikov decompositions of the spaces. As applications, we consider what additional information is needed to make such a map null-homotopic, and we prove a proposition concerning Chern classes.

In his paper [5], J.H.C. Whitehead characterized those maps which induce isomorphisms on homotopy groups by showing that (for reasonable spaces) they are exactly the homotopy equivalences. The more modest goal of this paper is to give a characterization of the maps which induce the zero homomorphism on homotopy groups. Here the result is not so simple, and the answer is given in terms of the Postnikov systems of the spaces involved. These maps occur in various cases, but for the purpose of illustration we consider the following two:

1. The question of when such a map is null-homotopic and
2. the example when the image space is B_U, the classifying space for the infinite unitary group.

Throughout this note, all spaces have the homotopy-type of a 1-connected CW-complex. All spaces have base points, which are preserved by maps and homotopies.

1. We shall use the following definition of a Postnikov system.

Definition. A Postnikov system for X is a family $\{X_n, P_n, \pi_n\}$, $n > 0$, where X_n is a space and $P_n : X \to X_n$, $\pi_n : X_n \to X_{n-1}$, such that

1. if X is $(m - 1)$-connected, $X_i =$ point, $i < m$,
2. P_n is an n-equivalence,
3. π_n defines principal fibre space, with fibre $K(\pi_n(X), n)$, and
4. $\pi_n P_n \simeq P_{n-1}$.

It is well-known that any X having the homotopy type of a 1-connected complex has a Postnikov system. Furthermore, if $f : X \to X'$, where X and X' have as Postnikov systems $\{X_n, P_n, \pi_n\}$ and $\{X'_n, P'_n, \pi'_n\}$, then there are maps $f_n : X_n \to X'_n$ such that

1. $\pi'_{n-1} f_n = \pi_{n-1}$, and
2. $f_{n-1} P_n \simeq P'_n f_n$. (See [2]).
It is easy to see that any two such f_n are necessarily homotopic, and we refer to any such map as an induced map for f.

Theorem 1. Let X and X' have Postnikov systems $\{X_n, P_n, \pi_n\}$ and $\{X'_n, P'_n, \pi'_n\}$. Let $f: X \to X'$ have induced maps $f_n: X_n \to X'_n$. If for $i > N > 1, f_i: \pi_i(X) \to \pi_i(X')$ is the zero map, then for each $i > N$, there is a map $h_i: X_{i-1} \to X_i$ such that the diagram

\[
\begin{array}{ccc}
X_i & \xrightarrow{f_i} & X'_i \\
\downarrow \pi_i & & \downarrow \pi'_i \\
X_{i-1} & \xrightarrow{f_{i-1}} & X'_{i-1}
\end{array}
\]

is homotopy commutative.

Proof. Let k^{i+1} denote the k-invariant for the fibration $\pi_i: X'_i \to X_{i-1}$. Up to sign, k^{i+1} is the obstruction to forming a cross-section to this fibration, or an equivalent one over a base space which is actually a complex. The obstruction to lifting f_{i-1} to X'_i is then $f_{i-1}^* k^{i+1}$. But as $f_{i-1}^* k^{i+1} = f_i^* k^i$, where f_i^* is the coefficient homomorphism (see [2]), we have $f_{i-1}^* k^{i+1} = 0$, for $i > N$. Hence, when $i > N$, there is a map $h_i: X_{i-1} \to X_i$ with $\pi'_i h_i = f_{i-1}$. Consider the maps f_i and $h_i \pi_i$. Because $\pi'_i f_i = f_{i-1} \pi_i = \pi'_i h_i \pi_i$, there is a map: $d: X_i \to K(\pi_i(X'_i), i)$ such that

\[
\mu \cdot (d \times h_i \pi_i) = f_i,
\]

where $\mu: K(\pi_i(X_i), i) \times X_i \to X_i$ is the usual action of the fibre. If $x \in X_i$, $d(x)$ is the unique element of $K(\pi_i(X_i), i)$ such that $f_i(x) = d(x) \cdot (h_i \pi_i(x))$.

Now h_i maps the base point in the space X_{i-1} into the base point in the fibre over the base point in X'_{i-1}. Then $h_i \pi_i$ maps the fibre in $\pi_i: X_i \to X_{i-1}$ into the identity, so that $d \mid K(\pi_i(X_i), i) = f_i$. Since f_i induces the zero map on homotopy, the composition

\[
K(\pi_i(X_i), i) \xrightarrow{i} X_i \xrightarrow{d} K(\pi_i(X'_i), i)
\]

is null-homotopic. Using the Serre sequence (see [4]) for the fibre space $\pi_i: X_i \to X_{i-1}$, we see that there is a map \tilde{d} so that

\[
\begin{array}{ccc}
X_i & \xrightarrow{d} & K(\pi_i(X'_i), i) \\
\downarrow \pi_i & & \downarrow \tilde{d} \\
X_{i-1}
\end{array}
\]
is homotopy commutative. Hence,

$$(d \times \tilde{h}_{i}\pi_i) \simeq (d\pi_i \times \tilde{h}_{i}\pi_i) \simeq (d \times \tilde{h}_{i})\pi_i,$$

and then

$$\mu(d \times \tilde{h}_{i}) \cdot \pi_i \simeq f_i$$

while

$$\pi_i'\mu(d \times \tilde{h}_{i}) = \pi_i'\tilde{h}_{i} = f_{i-1}. $$

Therefore, we set $h_i = \mu(d \times \tilde{h}_{i})$, and the proof is complete.

Theorem 2. Let X and X' have Postnikov systems $\{X_n, P_n, \pi_n\}$ and $\{X'_n, P'_n, \pi'_n\}$. Let $f: X \to X'$ with induced maps f_n.

If f induces the zero map in homotopy in all positive dimensions, if and only if for each $i > 1$, there is a map $h_i: X_{i-1} \to X'_i$ such that

$$
\begin{array}{c}
X_i \xrightarrow{f_i} X'_i \\
\downarrow \pi_i \quad \quad \quad \downarrow \pi'_i \\
X_{i-1} \xrightarrow{f_{i-1}} X'_{i-1}
\end{array}
$$

is homotopy commutative.

Proof. If f induces the zero map, apply Theorem 1 with $N = 1$.

For the converse, if $i \leq n$, we identify $\pi_i(X)$ with $\pi_i(X'_i)$ and the same for X'. Then, we may identify f_i with $(f_n)_i: \pi_i(X_n) \to \pi_i(X'_n)$. But $f_{n\sharp} = (h_n \cdot \pi_n)_\sharp$, which is always zero in dimension n because $\pi_n(X_{n-1}) = 0$.

2. In general, if a map $f: X \to X'$ induces the zero map on homotopy groups, it need not be null homotopic. (Eilenberg-MacLane spaces give many examples, and with slight modifications one may take $X = X'$.) I will first consider conditions which insure that such maps are null-homotopic.

Proposition 1. Assume X has the homotopy-type of a finite-dimensional complex. Let $f: X \to X'$. Suppose either

1. $H^\ast(X; \pi_n(X')) = 0$, all n. (This for comparison)

or 2. $H^\ast(X_{n-1}; \pi_n(X')) = 0$, all n, and f induces the zero map on homotopy.

Then f is null-homotopic.
Proof. It is sufficient to show that $P'_n \cdot f \simeq 0$ for all n. The case of condition (1) is trivial. In case (2), $P'_n \cdot f \simeq f \cdot P_n \simeq h_n \cdot \pi_n \cdot P_n \simeq h_n \cdot P_{n-1}$. Assuming that $P'_{n-1} \cdot f \simeq 0$, $f_{n-1} \cdot P_{n-1} \simeq 0$, then $\pi_n \cdot h_n \cdot P_{n-1} \simeq 0$. But then, by the Puppe sequence, h_n comes from a map into the fibre of $\pi'_n : X'_n \to X'_n$, which is null-homotopic by assumption.

Remark. If there is other structure present, one can often say more. For example, let $f : X \to X'$ be a homomorphism of H-spaces. Then if X is $(m-1)$-connected, $f_{\pi_m} = 0$, and $H^n(X; \pi_n(X'))$ contains no primitive elements for $n > m$, then f is null-homotopic.

For the next case, we need some notation. Suppose X has finite homotopy groups. Denote by $\mathbb{C}(X, n)$ the class of finite abelian groups (see [3]) generated by $\pi_i(X)$, $i \leq n$. In other words, $\mathbb{C}(X, n)$ is the class of torsion groups whose p-components are zero for all primes which do not figure in the homotopy of X_n.

Proposition 2. Let X have finite homotopy groups, and let ξ be a U-bundle over X. Let $c_i(\xi) \in H^{2i}(X; Z)$ be the ith. Chern class (see [1]). Then $c_i(\xi)$ is contained in a subgroup of $H^{2i}(X; Z)$ which belongs to $\mathbb{C}(X; 2i - 1)$.

Proof. Let ξ be given as a map

$$f_i : X \to B_u.$$

f_i must induce the zero map on homotopy groups. By Theorem 2, $(f_i)_n : X_n \to (B_u)_n$ factors through X_{n-1}. Now, the ith universal Chern class lies in $H^{2i}((B_u)_{2i}; Z)$ so that $c_i(\xi) \in \pi_{2i}^{\ast}(H^{2i}(X_{2i-1}; Z))$. But by (3), we know that

$$H^{2i}(X_{2i-1}; Z) \in \mathbb{C}(X, 2i - 1).$$

Remarks. This proposition clearly holds for spaces whose even dimensional homotopy groups are finite. Furthermore, under suitable hypotheses, remarks of this sort may be made about other characteristic classes. Details are left to the reader.

Bibliography

COLUMBIA UNIVERSITY

UNIVERSITY OF MINNESOTA
Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts
may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.
Patrick Robert Ahern, *On the generalized F. and M. Riesz theorem* 373
A. A. Albert, *On exceptional Jordan division algebras* 377
J. A. Anderson and G. H. Fullerton, *On a class of Cauchy exponential series* ... 405
Allan Clark, *Hopf algebras over Dedekind domains and torsion in H-spaces* ... 419
John Dauns and D. V. Widder, *Convolution transforms whose inversion functions have complex roots* .. 427
Ronald George Douglas, *Contractive projections on an L_1 space* 443
Ramesh Anand Gangolli, *Sample functions of certain differential processes on symmetric spaces* ... 477
Robert William Gilmer, Jr., *Some containment relations between classes of ideals of a commutative ring* 497
Basil Gordon, *A generalization of the coset decomposition of a finite group* ... 503
Teruo Ikebe, *On the phase-shift formula for the scattering operator* 511
Masayoshi Ishida, *On algebraic homogeneous spaces* 525
Donald William Kahn, *Maps which induce the zero map on homotopy* 537
Frank James Kosier, *Certain algebras of degree one* 541
Betty Kvarda, *An inequality for the number of elements in a sum of two sets of lattice points* .. 545
Jonah Mann and Donald J. Newman, *The generalized Gibbs phenomenon for regular Hausdorff means* .. 551
Charles Alan McCarthy, *The nilpotent part of a spectral operator. II* 557
Donald Steven Passman, *Isomorphic groups and group rings* 561
R. N. Pederson, *Laplace’s method for two parameters* 585
Tom Stephen Pitcher, *A more general property than domination for sets of probability measures* ... 597
Arthur Argyle Sagle, *Remarks on simple extended Lie algebras* 613
Arthur Argyle Sagle, *On simple extended Lie algebras over fields of characteristic zero* .. 621
Tôru Saitô, *Proper ordered inverse semigroups* 649
Oved Shisha, *Monotone approximation* ... 667
Indranand Sinha, *Reduction of sets of matrices to a triangular form* 673
Raymond Earl Smithson, *Some general properties of multi-valued functions* ... 681
John Stuepnnagel, *Euclidean fiberings of solvmanifolds* 705
Richard Steven Varga, *Minimal Gerschgorin sets* 719
James Juei-Chin Yeh, *Convolution in Fourier-Wiener transform* 731