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Let © be a finite group, £ a commutative ring with one
and S[@] the group ring of © over S. If ξ> is a group with
© = £ then clearly S[(S] = S[£>] where the latter is an S-iso-
morphism. We study here the converse question: For which
groups © and rings S does £[©] ̂  S[ξ>] imply that © is iso-
morphic to £)?

We consider first the case where S = K is a field. It is
known that if © is abelian then Q[@] = Q[ξ>] implies that © = §>
where Q is the field of rational numbers. We show here that
this result does not extend to all groups ©. In fact by a
simple counting argument we exhibit a large set of noniso-
morphic p-groups with isomorphic group algebras over all
noncharacteristic p fields. Thus for groups in general the only
fields if interest are those whose characteristic divides the
order of the group.

We now let S = R be the ring of integers in some finite
algebraic extension of the rationale. We show here that the
group ring R[@>] determines the set of normal subgroups of
© along with many of the natural operations defined on this
set. For example, under the assumption that © is nilpotent,
we show that given normal subgroups 3Dΐ and 9ΐ, the group
ring determines the commutator subgroup (3JI, 91). Finally we
consider several special cases. In particular we show that
if © is nilpotent of class 2 then R[(g\ = β[§] implies © = €>.

1* Remarks on group algebras* Recently examples have been
given of pairs of groups {©, §} for which K[®] is i£-isomorphic to
K[φ] for all fields K whose characteristic does not divide the order
of the groups. We show here by a simple counting argument that
this is not particularly surprising. This approach was suggested by
Professor R. Brauer.

We prove

THEOREM A. Suppose Q[®] ^ Q[ξ>] where Q is the field of
rational numbers. Then for all fields K whose characteristic does
not divide | © | = | ξ> |, the order of the groups, we have K[®[ ~

THEOREM B. There exists a set of pB{n) nonisomorphic groups of
order pn where B{n) = 2/27 (n3 — 17 n2) which have isomorphic group
algebras over all noncharacteristic p fields.
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Let χ be the character of an absolutely irreducible representation
of group algebra K[®] in some extension field of K. We set K(χ)
equal to the field obtained by adjoining to K all χ(g) for g e ©. If ε
is a primitive | © |th root of unity then of course K(χ) g K(e). If
K = Q then Z(χ) denotes the ring extension of the rational integers
Z by the χ(g). Clearly

Z(χ) e int Q(χ)

where the latter is the ring of algebraic integers in Q(χ). We need
a partial converse.

LEMMA 1. Z(χ) B | © Γ int Q(χ) w&ere | © | r is a suitably high
power of the order of ©.

Proof. Q(χ) <Ξ Q(ε) and the latter is a normal abelian extension
of Q. Hence Q(χ) is also normal over Q. Let Sίf be the Galois
group of order h = dim Q(χ). Then the fc characters χ0* with σz£ίf
are all distinct. Let us assume that the characters of © are so
numbered that these constitute the first h. Let gt e © be a represent-
ative of the ith class of © and let n{ = | ©: £(#;) | be the number of
conjugates of g{. Set X— [χ<(flTy)] and JV = [%^i] . These are k x fc
matrices where k is the number of classes of ©. They have row
index i, column index j and δi3 is the Kronecker delta. Then by the
orthogonality relations for the characters we have XNX* = | © 11
where * denotes the conjugate transpose and / is the k x k identity
matrix.

Let p be a prime not dividing | © | and let (p) denote the
principal ideal pZ(ε) in Z(ε). By the above matrix equation we see
that det X Φ 0 mod (p). We expand this determinant by the Laplace
expansion with respect to the first h rows so that

det X = St det Mλ det Nλ Ξ£ 0 mod (p) ,

where Mλ is an h x h minor in the first h rows and JVλ is its com-
plementary minor. Thus for some λ, det Mκ φ. 0 (p). We can of
course assume this is the principal minor.

Set mp = det [Xi(gj)f i, j = 1, 2, , h. Then mp is a rational
integer not divisible by p since it is integral and invariant under £ίf.
In particular mp Φ 0 so that χ ^ ) , *--,X{gh) are linearly independent
over Q. Hence they span Q(χ) over Q. Let α e int Q(χ). Then

We apply each element of ^ ^ in turn to this equation and obtain
upon multiplying the system of equations by [%i(gj)] the matrix equation
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[Xi(9j)f

lahJ

where ft is an algebraic andwhere a{ — σ^a). Hence qt = βjmp

hence rational integer. Thus

Z(χ) 3 mv int

Let J be the ideal in Z spanned by the mp for all primes p prime
to \G\. Since (p, mp) — 1 we see that | G\r belongs to J for some
suitable integer r. But clearly for any element me J we have Z(χ) a
m int Q(χ) so the result follows.

We now consider some well known results on group algebras.
Let K be a perfect field with K[®] semi-simple. Then K[®] is a
direct sum of simple rings A{ and each A{ is a full matrix ring over
a division algebra Όi% Let A — [D]n be such a component and let
^ be any absolutely irreducible representation of A over some
extension field. Suppose j ^ ~ has degree / and character χ. Then the
center of D is isomorphic to K(χ) (see for example [8] whose proof
generalizes to the case of perfect fields.)

If if is a finite field then since all finite division rings are com-
mutative we see that D — K(χ). Moreover f — n and A has exactly
dim κK(y) distinct absolutely irreducible representations. Thus in this
case K[(&] is determined by the set of ordered pairs {fi9 Fi} where
f. = deg Xi and Fi = K(%i) for all absolutely irreducible characters
χi# This follows since the number of direct summands of K[®]
isomorphic to [F]n is equal to the number of pairs {fif Ft} with F{ =
F, fi = n all divided by dim KF.

Proof of Theorem A. Clearly it suffices to assume that if is a
prime field. Since K — Q is given we assume that K = GF(p) with
p prime to | © | = | φ | . Since Q is perfect we see that Q[®>] de-
termines the ordered pairs {fif Q(χ<)} where f — deg χ^ Let ε be a
primitive | © |th root of unity over Q. Then Q(χ) £ Q(ε). Moreover
since Q(χ) is normal over Q as we mentioned above this inclusion is
essentially unique.

Now χ: ©—>Z(e). Let p be a prime divisor of p in Z(ε). Then
as is well known (see for example [1], 6E) the maps χ: ®—>K(ε)
defined by composing χ with the quotient map Z(e) —> Z(e)/p — K(έ)
are the absolutely irreducible characters of !£[©].

Thus K(χ) = Z(χ)/p and d e g χ - d e g χ . Now Q(χ) S Q(ε) and
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Z(ε)ΠQ(χ) = int Q(χ) the latter being determined by Q[®]. Since p
is prime to | ® | we see by Lemma 1 that Z(χ) pip — int Q(χ) pjp and
the latter is determined by Q[®]. Thus Q[@] yields the pairs {fi9 F,}
and hence by our previous remarks K[®\ is determined up to isomor-
phism.

Proof of Theorem B. Let © be a p-group and let A = [D]m be
a direct summand of Q[@]. Let JF~ be an absolutely irreducible
representation of A of degree / and character χ. If p > 2 then ([9]
Satz 1 and pg. 249) D = Q(χ) and / = m. If p = 2 then either D =
Q(χ) and / = m or Q(χ) is a real field, D is the quaternion division
algebra over Q(χ) and / = 2m.

We note by Theorem A that it suffices to show that such a set of
groups exists with isomorphic group algebras over Q.

Let us assume that © has period p2. Then if χ is any nonprincipal
character of G we have

Q(εi) S Q(χ) S Q(ε2),

where e± is a primitive pth. root of unity and ε2 is a primitive p2th
root. The second inclusion is clear. The first follows by considering
the restriction of χ to an element of order p in the center of the
representation. Now there are no intermediate fields so either

Q(X) = Q(Si) dim = p - 1

or Q(χ) = Q(sx) dim = p(p - 1) .

For p-groups in general f—p\
Suppose p > 2. Let Q[®] have α̂  direct summands isomorphic to

[Q(ε1)]pi and bi direct summands isomorphic to [Q(e2)]pί. Then by
computing dimensions we have assuming that the order of © is pn

pn = dim Q[@] = 1 + 2, (p - 1) (α, + pb{) p2i.

Moreover the values of α̂  and bi completely determine the group
algebra.

We have clearly

0 s£ a, £ (pn

Hence the number of possible group algebras is less than or equal to

•Q P»-2i pn-2i- l = J J p i = pn(n + l)/2 #

i=0 ΐ=0

Now let p = 2. The direct summands of Q[®] are then [Q]2ί with
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multiplicity aiy [Q(λ/ — 1)]2; with multiplicity b{ and [D]2i wi th multi-
plicity c{ where D is the usual quaternion division r ing over the
rationale. Thus tak ing dimensions as before we have

i

Since α0 > 0 this yields

1 ^ a0 ^ 2n 0 ^ a, S 2n~H - 1 i > 0

0 ^ 6< ̂  2w-2 ί~1 - 1 0 g c< ̂  2%- 2 ί" 2 - 1 .

Hence there are at most

possible group algebras. Since 3w2/4 ^ n(n + l)/2 we see that for all
primes p there are at most pe{n) group algebras over Q for groups of
order pn and period p2 where e(n) = 3n2/4.

Finally ([5] Theorem 2.3) there are at least pn%) groups of order
pn and period p2 where f(n) = 2(nz — 6n2)/27. Thus there is a set of
at least

pf{n)-e(n) > ̂ 2(n^-17n^)127

nonisomorphic groups of order pn with isomorphic group algebras over
Q and hence over all noncharacteristic p fields. This completes the
proof.

Of course the above result is trivial for n < 18. However for
small n we can compute specific examples.

For p > 2, the two non-abelian groups of order pd have p2 — 1
nonprincipal linear characters and p — 1 characters of degree p. More-
over in all of these cases Q(χ) — Q(εx). Hence their group algebras
are isomorphic over all K with p prime to the characteristic of K.

For p — 2, the group algebras over Q for all groups of order less
than or equal to 8 are not isomorphic. On the other hand, as can be
easily checked, the following groups of order 16 ([2] pg. 146) have
isomorphic Q group algebras.

1. α4 = 1 , /34 = 1, arτβa - β~Ύ

and
2. α 4 = 1, β2 = 1, τ 2 = 1, β-χaβ = ay, ar^a = 7, β~ιΊβ = Ί.
As a consequence of the above theorems we see t h a t the only

pert inent fields to study are the prime fields GF(p) with p dividing
I ® |. An example of the techniques used there can be found in [7]
where the following result is proved: Let © be a p-group of order
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^ p\ Then © = § if and only if F[®] ^ F[&] where F is the field
GF(p).

In the remainder of this paper we discuss group rings R[®] where
R is the ring of integers in some algebraic number field.

2* Class sums and normal subgroups* Let F be a finite
algebraic extension of Q and let R be a subring of the ring of
algebraic integers in F. We assume 1 e R. Whenever we write R[®>]
we assume that its structure as an i2-module as well as a ring is
known. In particular R[®] = R[ξ>] means that the two group rings
are i?-isomorphic.

Elements of particular interest in R[(&] are the class sums. These
are the sum of all the group elements in any given class of @. We
will generally denote these by Kxy corresponding to the class contain-
ing x e ©, or by Ki9 corresponding to the ίth conjugacy class of ©.
It is well known that these K{ form an jR-basis for X the center of
R[®]. We need the following result of G. Glauberman which states
that these are essentially characteristic elements of the group ring.

THEOREM C. The class sums in R[&] can be obtained canonically
from the group ring up to factors of roots of unity in R. Moreover
a consistent set of such class sums can be chosen.

Proof. Define an inner product on ^ by

where the χ{ are the characters of all irreducible representatious of
C[@] = C ® Λ R[®] and C is the field of complex numbers. This is
clearly definable in the ring.

Write a = Σ« ai&i and 6 = Σ i &Λ where the K{ are the class
sums and let n{ be the number of conjugate elements in the ίth class.
Then

(α, 6)o = Σ <*A UK,) UK*)
ijk
Σ
ijk

But by the orthognality relations for the group characters we have

Σ* xmWQ = nβjk I © I so (α, 6)0 = I © I Σ/ <*A%.
Embed F i n a normal extension of Q with Galois group £ίf\ Set

(α, b) - 1/1 © I Σ (α, 6)f = Σ

Let 35 = {βu •••, βr} be an J?-basis of %:. We define the weight of
S3 to be
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«Όβ) - Σ (A, βt)
i

I n p a r t i c u l a r if S30 is t h e bas i s {Ku •••, Kr) t h e n

On the other hand if 33 is any other basis set with

βi = ψ biSK,

then

We can assume the subscripts so chosen that bu Φ 0. Then

^ Σ

with strict inequality unless biό = 0 for i Φ j and | 6j"y | = 1 for all

Now if an element and all its conjugates has absolute value one
then it must be a root of unity. Hence the basis sets S3 of minimal
weight are those of the form foiQ where S; is a root of unity in R.
This proves the first part of the result.

Choosing a consistent set of class sums is equivalent to choosing
a principal character. Let λ: R[®] —> R be any ϋMinear homomorphism
of R[&] onto R. There is at least one such, namely the principal
character of ©. Then there is a unique basis set S3 of minimal weight
with X(β{) G Z+ the positive integers. In fact if g{ is a representative
of the ith class then

if and only if e{ — X(gi) since Mod is a root of unity. Moreover these
classes form a consistent system since the .B-automorphism of R[®]
defined by g—*^(g)g maps !£< —* s ^ . This completes the proof.

We assume for the remainder of this paper that a fixed consistent
system of class sums has been chosen.

We will see below that R[®] determines the set ^4^ of normal
subgroups of ($. On this set we of course have certain operations
defined, for example the lattice operations and the function | | which
associates to each normal subgroup ϋft its order | -Ji |. In this and the
following section we will discuss these operations. In the case of
nilpotent groups we will be able to give the complete result.

To each normal subgroup 9ΐ of © we have associated the set of
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class sums of elements in 9£. If we add these class sums in jβ[@] we
obtain

Clearly φ)2 = 15ft | 91. Conversely let A e R[®] be a sum with positive
integer coefficients of class sums such that A2 = nA for some integer
n. Let {Ka} be the set of class sums which add to A. If say
KalKa2 = Σ aiKi a n d fli =£ 0 then clearly i ^ occurs in A2 and so Kt e
{Ka}. Now if we assume that all the coefficients are equal to one we

see that there is a normal subgroup 2JΪ of @ with A = 2J£ since the
set of all elements of © belonging to the classes corresponding to the
Ka form a normal multiplicatively closed subset of @. Thus the set
^y of all normal subgroups of © is determined by R[®].

Given 9ί and 501 we see that 9Ϊ Π 3Ji is the sum of those class sums

which occur in both & and $ί and A = 1/| 9iΠ27i | Mb. The order

of any normal subgroup is of course obtainable. For example 5Ji© =

I 911 ®. More generally given any 7 = 2αα g e R[®>] then

7© = (Sα,flf) S - (Sα,) © .

Thus Sαα is determined. This is of course the value of 7 under the
principal character of ©.

Think of R[®] as being embedded in F[®]. For any normal
subgroup 9i of © define an i?-linear map Θ^ by

for every yeR[(&]. If g,he® we have

Ί I) W l ^ I) = fi*#/| 911 =

Thus ίgj is a homomorphism. In fact it is not hard to see that θ^. is
the natural homomorphism iϋ[©] —> iί[©/9l].

Since we can pick out the central subgroups of © we can
determine the terms of the upper central series 1 = go S Si S
where S»+i/8ί i s the center of ©/&. Moreover for any normal
subgroup 9i of © the group (Sft ,©) is the smallest normal subgroup
3JΪ S 9i such that 9i/2ft is central in ®/2Jϊ. In particular the terms of
the lower central series are determined. This is the series © = Γ1 2
Γ2 a where Γ ί + 1 = (Γ% ©). The last term of the upper central
series which we might call >$„ will be of importance later. © is
ίiilpotent if and only if © = 3~.
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Finally we point out that for each 31 we can determine Φ(3l) the
Frattini subgroup of 31. Since Φ(3l) is characteristic in 31 it is normal
in ®. Then Φ(3l) is the largest normal subgroup 3JI of ® contained
in 31 such that if 3JI and any set {Ka} of class sums generate 31 then
the {JK*} alone generates 31. Note a set of classes generates a normal

subgroup 31 if 31 is the smallest normal subgroup with 31 containing
the class sums Ka.

This completes some of the more elementary remarks about f̂/\
In the next section we discuss some additional results.

3* Powers and commutators* In R[®] let A denote the ϋMinear
subspace spanned by all Lie products ab — ba with α, be R[®\. For
any prime p let Ap — A + pR[®]. We have the following well known
results (see [1] pg 411). For g, he® let g ~ h mean that g and h
are conjugate then

1. Ί<aggeA if and only if for all ge® we have

Σ α* = 0 .
h~g

2 . Έ,agge A p i f a n d o n l y i f f o r a l l g e ®

Σ ah e pR .
h~g

3. If 7i Ξ 78 mod Ap then 7? = yl mod Ap.
As a consequence of (1) we have if r Φ 0 is an element of R and
rye A then ye A.

PROPOSITION 2. With every class sum Kx in R[®] and every
integer w we can find the class sum Kxn corresponding to the class
of the nt\ι powers of the elements of Kx.

Proof. It clearly suffices to assume n = p is a prime. For every
class Kx we have

Kx = nxx mod A ,

where nx is the number of terms in Kx and x is one such term. This
follows from (1). Note Kx® = nx® so that nx is determined by the
class sum. Hence we can find yx e R[®] with Kx = nxyx modA. Choose
one such yx for each class sum. We have nx(yx — x) e A so by our
previous remarks yx = x mod A.

Thus by (3)

yζ = xp mod Ap and yxp = ^ mod A.

Hence there is a yy with
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Ίl = Ίy mod Λp .

But for this y we have xp = y mod Ap. Since xp, y e ® we see by (2)
that y is conjugate to xp. Hence Ky — KχP and so the latter is
determined.

This has many obvious consequences in terms of normal subgroups.
For example the period of every normal subgroup is determined by
R[®]. Clearly this settles most of the problems related to the class
sum of powers of elements. More interesting is the problem of com-
mutators.

We state first several commutator identities which will be of use
([4] pg 150).

4. (x, y) = x~Yxy
5. (y, x) = (x, y)-1

6. (xy, z) = (x, z) (x, z, y) (y, z)
7. (x, yz) = (x, z) (x, y) {xy y, z)
8. (x, y~\ z)> {y, z~\ x) (z} x~\ y)' = 1

where (x, y, z) — ((x, y), z) and ax — x~xax. The last identity (8) has
the following consequence known as the "Three Subgroups Lemma."

9. If 8,5DΪ, 91 are three normal subgroups of © then

(8, 3», SSI) S (2», % 8) (% 8, 271) .

Here (ϊΰl, 5ft) is the normal subgroup generated by all commutators
(x, y) with x e 3Ji and y e 5ft and (2Ji, 5ft, 8) = ((2», Sft), 8).

We will have need for the lemma given below. It is most likely
true more generally, that is without the 3~ assumption. However
this is all that is needed.

For any normal subgroup 91 of © let (9i) denote the ideal in R[®]

given by all 7 with 7$ft = 0. This is of course the kernel of θ^. Let
7 e (91) with 7 = Σ r ^ . Let g denote a fixed coset representative of
flf9l. Since ^ ( 7 ) = 0 we see that Έ,rgg = 0. Hence

7 = Σr,(ff - 0) = Σr,(l - ffrtr.

But ^ff"^^; Thus we see that (91) is spanned as an iϋ-linear space
by terms of the form (1 — a)b with a e 91 and be®. Note that
(1 — a)b — 6(1 — ab) so this result is actually symmetric.

LEMMA 3. Let 8, 3Ji, 91 be three normal subgroups of ® with
8 S 9K £ 9ί and 9Ji S 8~. Then

Proof. First suppose we know the result to be true if 37Ϊ/8 is
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cyclic of prime order. Since 3JI S 3^ we can find a principal series
of © joining S to 3Ji with cyclic quotients of prime order. Say

Then

and so

(») (ft) a (So) n (so n

But 8, a S implies that (S<) a (S) so (S) (31) a (8)Γl(2») (31).
Hence we need only consider the case where 3JI/2 is cyclic of

prime order p. Let 3Jί — (2, xy with of course xp e2. Let {εj be a
fixed set of coset representatives of 31/3JI and let {δk} be a set for
®/3l. Then {of ε, SJ is a set of representatives of @/S.

Let 7 G (g) n (Sϋl) (5R). Since 7 e (2») (5ft) we have

7 = τ-pabc (1 - α) (1 - b)c

with α e 2Ji, 6 e 5ίl and c e ® . Now a = e ^ with ee2 and

(1 - α) = (1 - βα*) = (1 - e)xi + (1 - a?*) .

But (1 - φ * (1 - b)c e (S) (31). Moreover

(1 - xι) = (1 - x) (1 + x

so we see that

7 = (1 - α?) η mod (S) (31)

with 57 G (31). We can clearly assume 7 = (1 —

Write η = 2Aίife α* ε, δfc with Aίife e R[%\ naturally embedded in R[®].

Let rijk be the sum of the coefficients of Aijk that is rijk S = Aijk S.

Now 7 6 (S) so S 7 = 0 and hence x%η = 2η. Since

we see from the above that rijk is in fact independent of i and we

set rίjk = sjk. Thus

&η = Έ,sjk 2x{ βj dk .

Since 3lη = 0 we have 3l&η — 0 and so for each k we have ΣjSjk — 0,

Now

7) = ZriJk x* δj εk mod (S) - ( 1 + ^ + - + x^1)? f
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where ξ — Σsjk βj δk. But Σjsjk = O so we see that ξe(3l). Hence
since 1 — x ε(3t) we have

y = (l-x)η=(l-x)(l + x+ -- + x^ξ mod (31) (8)

= (1 ~ xp)ξ

But 1 - xv 6 (S) so 7 = 0 mod (31) (8) and the result follows.

For any xe® and 31 normal in © we set (xf3l) — (31, x) equal to
the normal subgroup generated by all commutators of the form (x, y)
with ye 31. This is easily seen to be the same as (<$>w, 31) where
<#X is the smallest normal subgroup containing x. If Kx is the class
sum containing x then (x, ®) is the smallest normal subgroup 3JI such

that x is central in R[®/3Jl]. Hence (x, ®) is determined in jβ[@].
We identify 3 = 3i the center of © with the set of those class

sums K{ in R[®] with % = 1. This is of course consistent with the
natural embedding of © in i2[©].

PROPOSITION 4. Let Kx and Zy be two class sums in i?[©].
Suppose that (α?, (S, ̂ /) — (y, (S, a?) = 1. Moreover we assume that
(x, ©) Π (i/, ©) £ Sco. Then we can find (x, y)e& in 22[®].

Proof. By (9) we see that (y, x9 ®) = 1 so that (α;, y) is central.
Now if x° is conjugate to x and #Λ to y then with fc = hg"1 and u =
(&, /̂•~1) we have

(a?S y*) = (a?f τ/fc)& = (x, uyy .

Now (cc, uy) — (x, y) (x, u) (x, u, y) and since we (y, ©) we have
(x, uy) — (α?, y). But this is central so we have finally (xg, yh) —
(x, uy)ΰ = (α, τ/)& = (a?, »).

Let 31 = (x9®)Π (y, ©). As we mentioned above this is determined
by R[®] and Kx and Ky. Clearly (», 2/)e9ίln3. Under the map
0%: R[&] —+R[®/$1], Kx maps onto a central element of the group ring.
Since all the group elements in the image are conjugate, Kx must
map onto some multiple say mx of a class sum. Similarly for Ky.
Hence if xl9 , xr and yu , ys are conjugates of x and y respectively
which are a full set of coset representatives for each of the classes
modulo 31 we have

Note that 31, mx and my are determined in R[®]. Now choose
,, 7yeR[®] and ze3lf)8 with
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10. m, 7, ft = KM m,γ,3ί = Kyft
• ' x ' y — "* ' y ' x

This system does have a solution. For example set z — (x, y),
Tβ = (a?i H h xτ) and Ίy — {yx H hi/.). We show now that for
any solution we must have z = (x,y). This will show that (x9 y) is
determined in i2[©].

Write

Ύx = Xi H \- xr + A Ίy = yλ H h y, + B

with A, i?eJK[@]. Then by (10) and the above we see that Aft =

ΰft = 0.
By (11) we have

— ' x ' y ™ ' y ' x — y ι \ iUj ™*U j %ι

+ Σ {Ayi — zyiA} -\
i

+ {AB - zBA} .

We study each of these four terms.
Clearly {AB - zBA} e (91) (3ί). Write A = ΣAX\ where the Aκ e

and the λ are coset representatives of ©/Si. Since 9Ϊ A = 0 we see

that %ϊ Aλ = 0. Now j/i and z commute with (x, ©) and hence with
91. Thus

= Σ A Σ
λ i

Now (IVjft is central and zeSft so we have ft Σ i^Vi — «1/Λ} = 0.

Thus

Similarly for the term Σ {%$ ~ zBxύ. Thus

12. 0 = Σ tel/i - zy&i] + C
where Ce (5Π) (Vi).

Now yάXi = XMjiyj, x{) = Xiyj(yf x). Let w = z{y, x) and let $ be
the cyclic central subgroup generated by w. Since zeyiΓ)£>, (y,x)e

we have of course $ S 9^0 3- Thus (12) becomes
13. ( 1 - w ) Σ ^ i + C - 0

and since (1 — w) $ — 0 we have C§ = 0.
Hence C'e (8)n(9i) (9t) and since 5R S 3oo we have by Lemma 3,

C G (Qf) (5R). Now ($) is clearly the principal ideal generated by (1 — w)
so C = (1 - ^)J9 with D e (5R). Set
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E = Σ XiVi + D .

By (13) and the above (1 — w)E = 0. Hence E = wE — w2E = .

Thus ί$E = I $ I E. Write & = (Σv^ where the v, are coset re-
presentatives of 9l/3f. Then

WE =

On the other hand since §ID — 0 we have

ίlE = Σ a ̂ K .

Hence
14. | $ I ^ M 7 = Σ α w $ .
Let p be the coefficient of x1y1 in Σv{E. Then the coefficient of

ίc^i on the left hand side of (14) is | $ \p. Now if x{y5 = xλyλ mod 5R
then xr^i Ξ IZil/71. But xr1^^ 6 (a;, ©), i/it/71 e (1/, ©) and 5Ji = (a;, ©) Π
(l/, ©) so both terms are in 3̂ . By our choice of the sets {#J and j ^ }
this implies that i = 1, j1 = 1. Hence the coefficient of xλyx on the
right hand side of (14) is 1. Thus p \ 5̂ | = 1. Then 1/| $ | e Rf] Q =
Z and so | $ | = 1. This means that w = 1 and therefore z = (x,y).

By our previous remarks this completes the proof.

For convenience we introduce the following notation. We say
class sum Kx "belongs to" subgroup ξ> or "Kx e ξ>" if all the elements
of the conjugacy class associated with Kx belong to ξ>. In particular
if § is normal in © then Kx e ξ) if and only if xe ξ). With this we
have the following numerous set of corollaries for the previous pro-
position.

COROLLARY 5. Let KxeΓι and KyeΓj. Then R[®] determines
(x, y) modulo ΓiijJr\

Proof. It clearly suffices to assume Γ { " i + 1 = 1. Then © is
nilpotent so © = &.. Now (x, ©, y) S Γi+j+1 = 1 and (y, ©, x) - 1.
Hence by the above (x9 y) is determined by Kx, Ky and JB[©].

COROLLARY 6. Let KxeQ2. Then for any class sum Ky the
commutator (x,y)^S ^s determined by iί[©].

Proof. Since x e &, (x, @ ) g 3 g $„. Thus we have (x, ©, y) =
1, (y, x, ©) = 1 and by the three subgroups lemma (y, ©, cc) = 1. Hence
by Proposition 4 the result follows.

C O R O L L A R Y 7. Let KxeQnΛι. Let KVχi * -,Kyn be any n class
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sums of® not necessarily distinct. Then (x,ylf •• , yn)
e 3 is de-

termined by R[®].

Proof. By induction on n, n = 0 being trivial. Under the map
R[®]-+R[®/8\, x maps to xe&,(®/3)- Hence (x, ylf , yn^) =
(x, Vi, , ί/»-i) m o d 3 is determined. Since (a?, ̂  , yn^) e 3 2 we
see by Corollary 6 that ((a?, ̂ , , T / ^ ) , yΛ) = (x, yu , j/n) is
determined.

COROLLARY 8. Let Kx and Ky belong to 3~. Then R[®] deter-

mines <((#, 2/)\ ίfee normal subgroup generated by all commutators

(x°, Vh).

Proof. We say that class sums Kx and Ky "commute" if the
elements of © belonging to the class corresponding to Kx commute
with all those elements corresponding to Ky. Since <(cc, y)yn is the
smallest normal subgroup Wl such that Kx and Ky commute modulo 2Ji
it suffices to show that we can decide in R[@] whether two class
sums commute.

If Kx e 3i and Ky e Q3 we prove this by induction on i + j . For
i + 3 ^ 2 the result is trivial. If Kx and Ky commute then every x9

commutes with yhy~1. Hence Kx commutes with every class sum in
(y, ©). Since (y, (S) £ 3y-i w e c a n check to see whether this occurs
by induction. The result is determined provided (yf ©, x) Φ 1. So we
assume (y, ©, x) — 1. Similarly we can assume (x9 ©, y) = 1. Since
(x9 ©) £ 8eo the result follows from Proposition 4.

This in turn yields the result that if 5Ji and 3JΪ are normal
subgroups of © contained in Q^ then (-ft, SOI) is determined. We now
group together our results on operations on the set of normal subgroups
of ©. Since the results are complete for nilpotent © we state this as
a separate theorem.

THEOREM D. Suppose R[®] = R[&\. Then there is a one-to-one
correspondence between the set, ^yί^{%), of normal subgroups of ©
and Λ^Φ) which preserves the following:

1. the upper and lower central series and in particular the
group 3oo

2. the lattice operations 9ΪΠ9JI and 5R2Ji
3. the order and period of every normal subgroup. In fact the

number of elements of -ϊϊ having any given order is determined.
4. The groups (©, 91), ΦQR), CW(5R) and CM) where the latter

two are the subgroups of SSI generated by all nth. powers of elements
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of 31 and the subgroup generated by all elements of 31 whose order
divides n

5. the group (2R, 31) if both 3Jl,3lQ 3~.

THEOREM E. Suppose R[®] = R\&] and ® is nilpotent. Then
there is a one-to-one correspondence between ^4r(®) and ^V(!Q)

preserving

1. the lattice operations 5R ΓΊ SDΐ and 3l3Jt
2. the order and period of every normal subgroup. In fact the

number of elements of 31 having any given order is determined.
3. the group (3JΪ, 31) and in particular 31'. Thus the terms of

the derived series of © are determined.
4. the groups Φ(3l), Cn(3l) and Cn(3l).
In the next section we study some specific examples.

4* Two special cases* In terms of its structure and its
representations the abelian groups are of course the simplest. Perhaps
the next simplest in structure are the nilpotent groups of class 2. On
the other hand in terms of its representations the next simplest are
the ^-groups of type (p), that is p-groups with irreducible representa-
tions of degree 1 and p only. We study both cases here.

As a consequence of Theorem C we see that we can find the
elements of 3(®) i n R[®\ and hence R[&] determines the center of ®.
We show now that the structure of the second center is also determined.

THEOREM F. Let R[®] = i2|§]. Then 32(©) ^ &,(&). In par-
ticular if © is nilpotent of class 2 then R[®>] = R\β?] implies © = ξ>.

It is interesting to point out that the groups studied in Theorem
B are all class 2. This shows the marked difference between
considering the group algebra Q[@] and the group ring R[®].

Proof. We identify R[®] and R[&\. Let 3 be the common center
of ® and ξ>. Choose class sums Kxv , KXn in Q2 so that their
images under the natural map R[®] —* R[®/3] are multiples of a basis
for the abelian group 3(®/3) = 3(Φ/3).

Then ,32(©) and ^(Φ) are generated by xu

 m,xn and ,3- By
Corollary 6, the commutators (xif xά) e 3 are uniquely determined in
R[®]. Also by Proposition 2 we can find the order a{ of xi mod 3
and in fact find x^eQ. Thus clearly &(©) =

We digress for a moment to mention a few obvious additional
results.
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PROPOSITION 9. Let © be nilpotent. Suppose iϋ[©] = iϋ[§]. Then
there is a one-to-one correspondence between the set of normal abelian
subgroups j y ( © ) of @ and J^(ξ>) such that corresponding groups
are isomorphic and inclusions are preserved.

Proof. In the correspondence given in Theorem E, we see by (3)
that the abelian normal subgroups correspond. Moreover by (2) the
number of elements of any given order in the subgroup is determined
so in fact the isomorphism class of that subgroup is also determined.

PROPOSITION 10. Let R[®\ = R[&\. Suppose that © = © : x ©2.
Then ξ) = §i x &2 with jβ[©J = #[£>J and JB[©J =

Proof. Under the correspondence of Theorem D, let £< correspond
t o © , . Then & & = £ and ^ n & = l clearly. Finally 22[&J =

= #L®/©2] = Λ[®J so the result follows.

As a consequence of the above we see that it suffices to assume
that © is indecomposable. In particular in studying nilpotent groups
wτe can really restrict our attention to p-groups.

In the characterization of groups of type (p) one possibility which
can occur is | ©/3 I = P3. We consider this case first.

PROPOSITION 11. Let ®/3 be a p-group with | ®/3 | ^ p3. If
R[®] = i2[§] then © = ξ). In particular if © is a p-group of order
^ p* then R[®] = R[&] implies © = § .

Proof. We first note that all such groups are nilpotent. Also
22[@] = i2[©] implies that R[®/8\ = JB[©/3]. But the latter groups
are abelian or class 2 so ®/β = φ/3. We consider the possibilities for

If I © I = p2 then © is abelian and © is class 2. So the result

follows in this case by Theorem F. We assume | © | = p3. Suppose ©
is generated by cyclic subgroups Qfα with Π Q>Λ > 1. Then each 3 3 *
is abelian and together they generate ©. Hence Π 3 $ * is central.
But Π 3 ^ > 3 so this is a contradiction. Hence © cannot have this
property.

For I © I = p3 we see easily that the only possibilities are:
( i ) elementary abelian
(ii) dihedral (p = 2)
(iii) non-abelian of period p (p > 2).

The first case is again class 2. We consider case (ii).
Choose class sums Ka and Kh such that Ka corresponds to an
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element of order 4 in ©/$ and Kb to an element not in the cyclic
group generated by α. In © and ξ> we have

α4 = zλ b2 = z2 δ^αδ == ar% ,

with s l f z2, and z3 in ,3. By Proposition 2, ^ and z2 are determined.
Finally iΓα = a + α" 1 ^ so we have

(Kaγ = α2 + α-V3 + 2z3 = X.. + 2z3 .

Hence zz is determined and clearly ® = $Q.
We need only consider case (iii). Choose class sums Ka and Kb

which modulo ,82 form a basis for ®/&2. Then © is generated by
α, 6, c and ,3 with

ap = Zi bp = z2 cp = 2:3

(c, α) = ^ (c, 6) = ^5 (α, 6) = c ,

and j5lf z2, z3, z4 and ^5 are elements of 3
By Proposition 2, ^ and 2;2 are determined. Since α, 6 e 3 3 we

have by Corollary 7

^4 = (c, a) = (α, 6, α) z5 = (c, 6) = (α, 6, α) ,

are determined. This leaves only ^3. However we show below that
£3 must be 1. This will clearly yield the result.

We use the commutator identity

(u, vw) — (u, w) {u, v) (u, v, w)

to conclude

(α, b^) = (α, V) (α, b) (α, 6, 6*) = (α, 6') c (c, 60 .

Since (c, 6*) is central we obtain

(α, 6p) = cp(c, 6) (β, 62) (c, δ^1) .

But 6P e 3 so (α, 6P) = 1. Now ce $2 so using again the above
identity we have

(c, uv) = (c, v) (c, w) (c, u, v) = (c, %) (c, v)

since (c, u) and (c, v) are central. Hence

(c, 6) (c, 62) (c, 6 M ) = (cf 6
W)

where n — 1 + 2 -\ \~ (p — 1) = p(p — l)/2 is divisible by p since
p > 2. Then bn e 3 and (c, ft71) = 1. Therefore cv = 1 and the result
follows.
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We will have need for the following

LEMMA 12. Let 21 be a normal abelian subgroup of © with ®/2I

cyclic. Suppose xe® generates the quotient. Then the map α—>

(α, x) is a homomorphίsm of 21 onto ©' with kernel 3 f] 2ί.

Proof. First (α, a;) = α~V is the product of two endomorphisms

of abelian group 21. Hence a —> (α, sc) is also an endomorphism of 21.

Let 33 S 2t be its image.

Clearly 33 S ®'. Now JV(33) 3 21 and (α, a) β - (αx, a?) and this is

contained in 33 so iV\33) 2 <2I, x> = ©. Hence 33 is normal in ©.

Since @/33 = <2ΐ/33, x> and x commutes with 2ί/33 we see that @/S3 is

abelian. Thus 33 2 ©' and so 33 = ©'.

If α e 3 ί Ί 2 I then (α, x) =- 1. Conversely if (α, a) = 1 then

C(α) 2 <2I, #)• = © so a is central. This completes the proof.

Suppose I ®/2I \ = p. If x $ 21 then £ p e 21 and C(xp) 2 <2I, x> =

© so ίcp G 3 We make the simplifying assumption that ©/$ has

period p.

PROPOSITION 13. Let © be a non-abelian p-group with an abelian

subgroup of index p. Suppose also that ®/3 has period p . Then

JR[©] = R[§] implies ® = %.

Proof. By Proposition 2, φ / 3 has period p. Also by Proposition

9, § has an abelian subgroup of index p. Hence it suffices to show

t h a t under these assumptions R[@] determines ©. By Lemma 12,

©' ~ 21/3 so ©' has period p.

Choose 21 in R[®] with 21 normal and abelian of index p and let

Kx be a class sum not in 21. Choose normal subgroups (jίllf 3l29 - , 9ΐr

such that (i) 21 2 % > 3 , (ϋ) the % = ^ / 3 direct sum to 21 - 2i/3

and (iii) the ^ are indecomposable, that is we cannot find normal 2Ji

and %ϊ both > 1 with % = Wl x 5i. Of course such a choice can be

made in R[®].

We have ft = 9^ x 2Ϊ2 x x %. 2Ϊ can be viewed additively as a

vector space over GF{p). If x is a; mod 3 then x acts on S as a

linear transformation of order p. Moreover x acts on each 2^ a

6Γdimensional subspace. Since fl{ is indecomposable, by an appropriate

choice of basis, x on 9^ has the Jordan form
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X —

1 1

1 1

1

0

In fact let ve% be any element such that % is the smallest normal
subgroup containing v, then we can assume that the first vector in
the above basis is v.

Now choose K9i in 9^ so that 9^ is the smallest normal subgroup
containing K9i and Q. Such a class sum clearly exists in view of the
above form for x. Then we see that © is generated by x, ft, and 3
with j = 1, 2, , bi subject to the relations

Qϊi = wi9

,i+i f o r 3 ^ h -

= 1 for j ^ 2,

and

with the Wi and z{ in $.

Here we have set

fti = ft and fty = ,a?)

That gfj = 1 for j ^ 2 follows from the fact that ©' has period p.
By Proposition 2, the w{ are determined. Also we have clearly ft e
3b.+1 so by Corollary 7

Zt = ( f t , a ? , a ? , • • - , » ) ,

is determined by Kg. and X"β. Hence the result follows.

THEOREM G. Let % be a p-group of type (p). Suppose that
®/Q has period p. Then R[®] = i£[ξ>] implies © ~ ξ>.

Proof. In the characterization of p-groups of type (p) ([6] Theorem
2.3) the following possibilities can occur. Either © has a center ,3
with I ®/3 I = P3 or © has a normal abelian subgroup of index p. The
first case has been handled in Proposition 11 and the second in Pro-
position 13. Thus the result follows.

COROLLARY 14. Let © be a p-group of type (p). Suppose that
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©/$ is regular. Then R[®] = R[tQ] implies © = ξ>. In particular
if © has class at most p then the result follows.

Proof. The assumption of ®/3 is only used in the case where ©
has an abelian subgroup of index p. In this case clearly ®/Q is
generated by all elements not in 31/3. But these all have period p.
Hence by ([4] Theorem 12.4.3) ®/£> has period p. The second result
follows from the well known sufficient condition for regularity ([4]
pg 183).

We should mention here a simple result ([3] Theorem 2.1) on group
algebras of p-groups of type (p).

PROPOSITION 15. Let © and £> be p-groups of type (p) with p > 2.
Then for any field K whose characteristic is prime to p we have
K[®] ^ K[&] if any only if ©/©' ^ £>/§' and the centers of K[®] and
K[$Q] are isomorphic.

This again shows the great difference between group rings and
algebras.

We can now discuss the groups of order p5. For simplicity we
assume p ^ 5 so that all groups considered will be regular.

PROPOSITION 16. Let © be a group of order pδ with p ^ 5. If
#[©] s R[§\ then © ̂  φ.

Proof. If I ®/3 I ̂  Ps then the result follows by Proposition 11.
So we assume | ®/3 I = P4. As in the proof of that proposition, © =
©/$ cannot be generated by cyclic groups $* with Π θ * > l With
this we conclude from the table of groups of order p4 ([2] pg. 145)
that the only possibilities are:

( i ) abelian of type (p2, p2)
(ii) abelian of type (p,p,p,p)
(iii) the group generated by a and b subject to ap2 — bp2 = 1 and

(α, b) = ap

(iv) direct product of a cyclic group of order p with the non-
abelian group of order pz and period p

(v) the group generated by α, 6, c, d subject to ap = bp = cp —
dp = 1, b = (c, d), a = (6, d) and (α, d) = (6, c) = (α, c) = (α, 6) = 1.'

Using regularity the computation to conclude the above is quite

easy. For example consider the group © generated by α, b, c subject
to

ap2 = bp = cp = 1, (α, δ) - αp, (α, c) = 6 and (δ, c) = 1 .
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Its commutator subgroup is clearly generated by ap and b both of

order p. Hence by regularity ©' has period p. Thus for any x, y e ©

we have (xy)p = xpyp. In particular (ab)p = ap and (ac)p = ap. Hence

@ is generated by α, α& and αc all having the same pth power.

If R[®] = R[®\ then R[®/3\ = #[Φ/3] But | Θ/3 I = p4 so by
Proposition 11, ®/3 = £>/3 Hence we can consider each of the above
cases separately.

Now cases (i) and (ii) yield groups © of class 2. Hence by
Theorem F the result follows here. We consider case (iii) and in fact
show that there is only one such group. This will of course yield the
result.

In © we have elements a and b with © = <(α, 6, 3!> a n d

apt = zx bp2 = z2 b^ab = a1+pz3

where zu z2 and z3 are elements of 3 Then

6-V6 = ( 6 ~ W - a(1+p)p zl = a% .

Since ap is not central we see that z1 Φ 1. Hence a generates a cyclic
normal subgroup of order pz. Now bp is not central so b acts as an
element of order p2 on <α>. Since for p odd the automorphism group
of a cyclic p-group is cyclic, by replacing b by a suitable power if
necessary, we can assume that b~xab — a1+p. Finally if bp2 = ap2j

then (ba~j)p2 = 1 since © is regular and ©' has period p2. Moreover
ba~j acts in the same manner as b on <α)>. Hence we see that there
is only one such group.

In the last two cases ®/3 has period p. Hence by regularity ©'
has period p. Case (iv) follows in a manner similar to (iii) of Pro-
position 11. © is a direct product so we can find $ and §1 in i?[©]
with I 3M = p f I 311 = pz and $Π3fί = 1. Choose class sum Kd in R[®]
which maps to a generator of ϊ~$ in i?[@] —* R[®/Q] and choose class
sums Ka and Kb which yield generators of 31 modulo its center. Then
© is generated by 3, a, b, c and d subject to

ap

(a,

—

c)

Ϊ! b"

(6,c) =

=

(d

d' = s

,a) =

h (a,

z7 (d

b) =

,b) = (d, c) = z9 ,

with ^ 6 3 By Proposition 2, 21? ^2 and 24 are determined. Since
c 6 ©' we have cp = 1. By Corollaries 6 and 7, £5, sβ, z7, and ^8 are
determined. Finally de Q2 and c e ©' implies that (c, d) = 1. Hence
the result follows here.

We need only consider case (v). Let α, b, c, d be elements of ©

corresponding to the terms with the same name in ©. Then © is

generated by these and 3 subject to
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ap = Zl bp = z2 e = z3 dp = z4 (c, cZ) = 6

(6, d) = α (α, d) = z5 (b, c) = 26 (α, c) = z7 (α, b) = z8

with ^ e 3 .
Now & e ©' implies that 6 commutes with $2, Hence b centralizes

<& α> <8> = ®', a n d so (c, ©, 6) = 1. Since (6, c) and (α, c) are central
we see that (6, c, ©) = 1. Therefore by the three subgroups lemma
(©, δ, c) = 1. Hence c centralizes ,82.

Now choose class sums Kc and Kd in R[®] which generate ®/33

such that c centralizes 3 2 . We can of course do this by Corollary 8
and the above. Set b — (c, d) and a = (6, d). Again (c, ©, b) — 1
since we know that ©' is abelian. By assumption (©, 6, c) = 1 since
(©, 6) S ^2. So by the three subgroups lemma (6, c, ©) = 1 and so
(b, c) is central. With this it is easy to see that © is generated by
a, b, c, d and 3 with the above relations.

By Proposition 2, zz and zA are determined by Kc and Kd. Also
α, 6 e ©' εo αp = δp = 1. Now c, cί e 3 4 so by Corollary 7

z5 = (α, d) = (c, d, d, d)

is determined. Of course (α, c) — 1. Also δ e © ' and aeQ2 implies
that (α, δ) = 1. This leaves only (δ, c) = z6 to be determined.

Now by Corollary 5, δ is determined modulo Γ3 g ^ So we can
find a Kι where b — ub with u e ,82. Since c centralizes ,82 we have

(c, δ) = (c, wδ) = (c, δ) (c, u) (c, u, δ) = (c, δ) .

Hence it suffices to find (c, δ). But again (c, ©, δ) = 1 and (δ, ©, c) —
1 so by Proposition 4, (c, δ) is determined in i2[©]. This completes
the proof.
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