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R. N. PEDERSON
The behavior for large % and & of the integral
Ih, ) = S F(8) exp [— ho(t) + hg(t)] dt

is considered under hypotheses which are fulfilled, for example,
if f, ¢, ¢ are real analytic, ¢ is strictly increasing, and ¢(0) =
¢(0) = 0. In most cases it is assumed that &k = o(h) as h, k — oo,
If v and ¢ are the respective orders of the first nonvanishing
derivatives of ¢ and ¢ at the origin, it is found that the be-
havior of I(h, k) depends on whether :

(1) 0 < liminf k*h~+ and lim sup kYA —+< o,

2) kh -0, 3) k*h*— o0 and ¢w(0) <0, or

(4) k*h*—oc and ¢®(0) > 0.
In case (1) it is shown that I(h, k) is asymptotic to a power
series in (k/h)/v~» with coefficients depending on k*h—*, In
case (2) it is shown that I(h, k) is asymptotic to a double power
series in A~'/v and kh~+/>, In case (3) it is shown that I(h, k)
is asymptotic to a double power series in £~'/# and hk¥—+. In
case (4) it is shown that there exist two parameters o, ¢ tending
to zero as h, k — o such that exp (6-%) I(h, k) is asymptotic to
a double power series in ¢ and =, If 2 <v it is proved that
the coefficients of the above power series are unique,

It is the purpose of this paper to obtain asymptotic expansions
of the integral I(h, k), for a >0, as k,h— . In most cases we
assume that 2 and % are bound by the relation & = o(h). We assume,
roughly speaking, that é(t) ~ at” (a,>0), +(f) ~ bit*, and f(t) ~cyt*
as t—0. If k=0 and vy =2 this is the classical Laplace’s Method.
We will show that the problem divides naturally into four cases:
F'h™" — 0, E’h* — oo (b, < 0), k*h™* — oo (b, > 0), and k*h™* is bounded
away from both zero and infinity. Tricomi [4] and Fulks [3] have
obtained results along this line when v = 2, # =1, and » = 0. Tricomi
considered a specific integral of this type (related by a change of variable
to the incomplete gamma function) and obtained complete expansions
in three of the four above cases. Fulks considered a general class of
integrals and obtained the first term in all four cases. The methods
of both authors depend quite strongly on the quadratic nature of the
exponent near the origin. In this paper we will consider aribtrary v,
&, and obtain complete asymptotic expansions in all four cases. The
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results of Fulks have been extended by Thomsen [2] in another direction.
The author would like to thank Professor W. Fulks for suggesting this
problem.

1. Statement of results. Let f(x) and g(x) = 0 be defined for
& = (g, Xy, +-+, 2,) &S where S is a subset of Euclidean n space having
the origin as a limit point. For each 7 =10,1, --+, N let pi(x) be a
homogeneous polynomial in & of degree 5. We will use

fz) ~9(®) 3 pi(@)
to mean that
f@)g@)] " = f: pi@) + 0( |7+

where |a| = (2} + @) + -+« + 22). If f(x) and g(x) depend on a para-
meter y we require that the big 0 constant and the coeflicients of the
polynomials should be uniformly bounded in .

While in one dimension the polynomials p;(x) are of necessity unique,
in higher dimensions they need not be. In our application of the above
definition we will be able to prove a uniqueness result which covers
all cases where v and p are integers with ¢ =< v.

We will consider the integral I(k, k) under the following hypotheses.

H,. ¢(t) is positive and nondecreasing in 0 < ¢ < a, and

(1L.1) ot) ~ 0 Sat t—0

where v > 0 and a, > 0.
H,. (t) is measurable and bounded from above in 0 < ¢ =< @, and

(1.2) W) ~ bt 0

where > 0.
H,. f(t) is Lebesgue integrable in 0 = ¢ =a, and

(1.3) ft) ~ ;No eti t—0

where A = 0.

We first consider the case where k*h™* is bounded away from both
zero and infinity when % and % are large. We obtain a one dimensional
expansion of I(h, k) with coefficients depending on a parameter.

THEOREM 1. Assume that k = o(h), 0 <liminfk*h—* and that
lim sup kK*h* < oo, Let x = (B/R)Y** and y = (KR )", There
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exist unique functions A, = A, (y) such that
I, 1) ~ 0 S A" by o= oo
In particular
Afy) = ¢, S:t" exp {— ylat® — bt“]}idt.

In the remaining cases we obtain two dimensional expansions of
I(h, k). We next take up the case where k*A—*— 0.

THEOREM 2. Assume that k* = o(h*) and that either k = o(h) or

V()= 0. Let &€= h" and 7= kh". There exist constants B,,
such that

Ihk ~ EM.I Z Bm":‘mﬁ" h’ k— oo,
m+nsN
In particular
By = v, 0PI ((\ + 1))

If £ =1 and etther p <y or ¥(t) < 0, the constants B,,, are unique.

If ’h~*— ~ we must distinguish the cases b,< 0 and b, > 0.
We next take up the case where b, < 0.

THEOREM 3. Assume that h* = o(k*), b,< 0, and that k = o(h).
Let p = k7* and q = hk™*. There exist constants C,, such that

Ik, k) ~ p*7 > C,.p"q"  h,k— oo,
m+nsEN
In particular

Coo = 7% — b)) VL ((N + 1)/ 1)

If v= p+ 1 the constants C,, are unigque.

If b, > 0 we must make stronger regularity assumptions about the
functions ¢, v, and f. We expand I(h, k) in terms of parameters o
and 7 which depend less simply on the parameters % and k.

THEOREM 4. Assume that k = o(h), h* = o(k*), and that \, p, and
v are integers. Also assume that b, > 0 and that in some netghborhood
of the origin t7*f(t) e ¥ and that t7¢(t), t7*(t) e ¢" 2 (N = 0). There
exist parameters o,7 which tend to zero as h,k— «, and unique
constants D, such that
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Kk, k) ~ ™o exp (1/0*) 3% D,.p"c"
m+ns=N
as h, k— o, In particular

Dy, = e[ 2m/(vp)[* .

In a netghborhood of the origin and for sufficiently large h and kt
is the unique positive solution of

(1.4) h¢'(z) = ky'(z)

and o ts defined by the relation

(1.5) 07 = — ho(z) + k(7).

In terms of h and k, v and o are given by

(1.6) 7 = [(kebo)/(hvao) [~ [1 + 0(7)]
and

*.7) 0 = [(hvao)/(kpebo) 1™ [1 + 0(7)] .

In (1.6) and (1.7) the big 0 term possesses an expansion to the
Nth power in 7.

2. Preliminary Lemmas. The key to our proof will be to
express I(h, k) in the form suggested by the following Lemma.

LeMMA 1. Let
Ja) = | ata, ) exp [ A®) + 7w, Ot

be defined for x = (x, 2, +++,2,) tn a deleted neighborhood of the
origin in K,. Assume that :

2.1) a(z,t), B(t) and v(x,t) are measurable functions of t for each
fized .

(2.2) exp[— B@E)]|= Kexp[— bt*] for some positive b, \, K .

(2.3) There exists a 1,0 < p <1, and an L such that
exp [v (z, t)] = L exp [ubt*], 0=t =< a(x).

(2.4) For each fixed t

a(x)t)'\'iai(w’t)’ w""’O,
7=0

N
7(:»5 t) ~ ;Z:;' ’7.7'(379 t) ’ x—0
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where a(x,t) and vz, t) are homogeneous polynomrals in x of degree
J. The coefficients of «; and v; as well as the big 0 constants are
untformly bounded by a polynomial M(t) (which may depend on N).

(2.5) a(x) = |x|™° for some ¢ > 0 and all sufficiently small x.

Then there exist homogeneous polynomials p;i(x) (of degree j7) such
that

J@ ~ Sp@),  po= | a(0,t)exp[— AVIE.

If J(x) depends on a parameter y and if pu, N\, b, ¢, K, L, M(t) are
independent of ¥ then the conclusion of Lemma 1 remains valid (in
the sense that the coefficients of p;(x) and the big 0 constant are uni-
formly bounded).

Proof. We expand exp(x,t) to N terms in order to obtain

T = Sy |7 exn [ 80) ate, D, O)ids + B

where

1

— T | e = B0 ate, D, O exp A ds

and A is between 0 and ¥(x, t). It follows from (2.2) and (2.3) that
exp[— B@t) + A] = exp[— (1 — p)bt*]
and from (2.4) that
| e, )[v(x, O = My(t) | |7

where M(t) is a polynomial in t. It follows from (2.4) and the fact
that the asymptotic expansion of a product is the product of the
asymptotic expansions that

<1 3 O, OF = Sipde 0 + B,

where each p,(x,t) is a polynomial in % (homogeneous of degree j)
whose coefficients are bounded by a polynomial in ¢ and

| B, = Mt) | [™,

where M,(t) is a polynomial in t. After substituting the preceding
results into the expressions for J and R we see that
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(
0

Ja) = 3| "exp [ BOIp.(a, )t + 0317,

It follows from (2.2) and (2.5) that replacing a(x) by -+ oo introduces
an exponentially small error. Hence
N
J(x) ~ 2 Pi(@)

where

pi(w) = | exp [~ B(t)lpla, t)dt

In particular it is easily shown that

Do = S:a(O, tyexp[— B®)ldt.

This completes the proof of Lemma 1.
The following lemma will help to facilitate the proof of Theorem 4.

LEMMA 2. If p and v are positive integers such that p < v, then
-t — 1) +u* — 1) = (¢ — V)t — 1y
Jor all ¢t = 0.

Proof. We assume that v # 2 in which case both sides of the
above inequality are identical. Let

gt) = — @ — 1) + v(t* — 1) — (e — )t — 1),

It is easily verified that g'”’(f) has at most one simple zero for positive
t and that hence ¢g”(t) at most two simple zeros or one double zero.
On the other hand

g'¢t) = — ol — 1P + (e — L2 + 2(v — p)

is positive for small positive ¢ and negative for large ¢ from which it
follows that ¢”(t) has an odd number of zeros (including multiplicities).
Hence g¢”(f) has exactly one zero for positive ¢ and ¢'(f) has at most
two zeros for positive t. Since ¢(0) = g(1) =0, ¢’'(f) has one zero in
(0,1) and it is easily verified that ¢’(1) = 0. It follows that g(¢) does
not change sign in (0,1) or in (1, ). Since

g’ =@—m)v—p<0

for v = 3 it follows that ¢(t) <0 for all ¢ = 0 which completes the
proof.
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3. Proof. Let Ih, k) = I, + I, corresponding to the intervals [0,
6] and [0, a] respectively. Since #(t) is positive and nondecreasing and
(t) is bounded from above, say by M, we have

exp [— ho(t) + ky(t)] < exp [—he(0) + EM], telo, a] .
If & = o(h) we have

| L] < exp - ho0)/21 ] 170)] dt

for all sufficiently large h and k. If () < 0 the same result holds
without the assumption %k = o(k). In all four of our theorems we
assume either k& = o(h) or k* = o(h*). It follows that I, is small with
respect to any parameter which behaves like a product of powers of
h and k. It is therefore sufficient to consider

= | Aty exp 1= hott) + kv (0t

for arbitrary but fixed 6 > 0. We will assume from this point on that
0 is so small that the expansions (1.1), (1.2), and (1.3) are valid in
[0, ].

We turn to the proof of Theorem 1.

Proof of Theorem 1. In addition to our general assumptions we
have k = o(h), 0 < lim inf k*2™*, and lim sup kA" < <. In particular
x = (k/h)">® —0 and there exist positive constants m, M such that
m <y = (k/h*)">» < M for all large h, k. Let u(t) = t7*f(t), v(t) =
7 at” — ¢(t)] and w(t) = t7* [y (t) — bt*]. Then after replacing ¢
by s we have

Sa—1
A = S sfu(xs) exp {— ylat” — bt*] + Elds
0

where
E = gy[s" ' v(xs) + s*Hw(xs)] .

The growth rates of ~ and % imply that g < v and hence there exists
a K such that

exp {— ylays® — bs*]} = K exp {— ma,s’/2}

for large h and k which shows that (2.2) is satisfied. If L is a bound
for v and w we have

E < MLo[s® + s*], 0<s<ox.
Hence (2.8) is satified if § is sufficiently small. It follows from (1.1)
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that
N .
o(t) = 3 a;t + 0(tY)

and that hence xv(xs) has the type of expansion prescribed by (2.4).
A similar remark applied to w and w shows that (2.4) is satisfied
(with bounds which are independent of y). It is evident that (2.1),
and (2.5) are satisfied. Thus by taking 6 smaller, if necessary, we see
that I, has the desired expansion. In particular it follows that A4, =
A)y) has the prescribed form. The proof of uniqueness is standard.

Proof of Theorem 2. In addition to our general hypotheses we
have k¥ = o(h) and either k = o(h) or ¥(t) = 0. In particular & = h™*¥
and p=Fkh—0 as h,k— co. Let u(t)=1t*ft), v{)=t""
[at> — ¢(t)], and w(t) = ¢t~y (t). After replacing ¢ by £ we have

EMIL = SSF s*u(€s) exp [—a,s® + Elds
0
where

E = gg7'w(&s) + nstw(€s) .

It is evident that (2.1), (2.2), and (2.5) are satisfied. In 0 = s < 9&™
the estimates (with M a bound for v and w)

gt u(és) = Mos”,

nstw(Es) < Mo*kh™'s", if p=v,

nstw(gs) < Mns*, if p<vy,
and stw(gs) =0, if () =0,

imply that existence of a constant K such that
exp E = Kexp [(a,/2)s"]

for sufficiently small 6 and all large 2 and K. Hence (2.3) is satisfied.
It can be shown that (2.4) is satisfied in the same manner as in the
proof of the Theorem 1. This completes the proof that I, has the
stated expansion.

There remains the question of uniqueness of the coefficients. In
terms of £ and 7 the relations k = o(h), k¥ = o(h*), b — oo, and k — oo
are &) = o(l), 7 = o(l), £¥— « and P&+ — o respectively. Since
uniqueness is asserted only if £ =1 and v = ¢ or y(t) = 0 (in which
case we do not need k = o(h)), we see that we need consider only the
restriction ¢ =1 and 7§+ — . By subtracting two supposed expan-
sions of & *'I(h, k) we obtain for some N = 0
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Szer+0(@+ 7T )=0.

If £ >1 we may let 7 = 0 without violating 7&*— o and prove
that the Z’s are all zero. If p# =1 welet » = &-°. The above identity
can then be written

N
7 (1—¢€) gie (n+1)(1—8)) —
£ 5L 287 + 0 = 0.

If 0 <e < 1/(N+1) the first term is of lower order that the error term

and hence by letting £— 0 we can again prove that the Z’s are all
zero. This completes the proof of Theorem 2.

Proof of Theorem 3. The proof is very similar to the proof of
Theorem 2. It suffices to note that in the case () = 0 we used only
the assumption k* = o(h*) and the expansions of ¢ and 4 to prove that
I, had the stated expansion. It is therefore clear that if A* = o(k)
the same proof provides an expansion of I, in terms of the parameters
p = k™Y* and ¢ = hk™'*. The existence part of the proof of Theorem
2 is then completed by noting that b, < 0 implies that () < 0 in [O,
0] for small 4.

The uniqueness proof is also similar to that of Theorem 2. We
leave it to the reader to carry out the details.

Proof of Theorem 4. In addition to our general hypotheses we
assume that », v and g are integers and that some neighborhood of
the origin t~*f(t)eC¥** and that t™>¢(t), t=#y(t)eC***. We also assume
that »* = o(k*), & = o(h), and that b, > 0. In particular it follows that
¢ <y and that the expansions of f, ¢, and 4 can be differentiated a
suitable number of times.

We begin by proving the existence of a positive 7 satisfying (1.4).
Let g(t) = ¢'(¢)/¥'(t), ¢ > 0, g(0) = 0. It follows from the expansions
of ¢ and + that there exists a ¢ > 0 such that g(¢)eC, 0 =t < g, and
that ¢'(t) > 0, 0 <t < 0. Hence if k/h is sufficiently small there exists
a unique 7, 0 <7 < 9, such that g¢g(r) = k/h which is equivalent to
(1.4). After substituting the expansions of ¢ and + into (1.4) and (1.5)
we see that 7 and ¢ possess the expansions (1.6) and (1.7). The fol-

lowing convenient expressions for # and % are easily proved from (1.6)
and (1.7).

(8.1) ha, = o7t [p/(v — W1 + 0(z)] .
(3.2) hb, = o7z *y/(v — W1 + 0(7)].
The fact that ¢(t), (t)eC¥+® implies that in (1.6), (1.7), (3.1) and
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(3.2) the term 0(z) possesses an expansion to the Nth power of 7.
The integral defining I, may be written

I, = exp (0% Ss f(t) ext [— %(t —op + A]dt

where
(3.3) € = h¢"(c) — ky"'(7)

and

(B4 4= = B4 — 4O + K¥(E) — ¥(©) + 5 (¢ — ).
We next prove the existence of an 7, 0 < 7 < 1, such that
(8.5) 4= %C(t — 7).

for 0 =<t < ¢ if 6 is sufficiently small. We first note from (3.1), (8.2)
(3.3) and the expansion of ¢ and « that

(3.6) ¢ =vpot’[1 4 0(7)],
where 0(7) has an expansion to the N th power of 7. We separate the
proof of (3.5) into three cases: v=2, v=38 and ¢ >7, v=3 and
t= .

It follows from Taylor’s formula with the Lagrange form of the
remainder that

(& —zy

4= = [ () — eyt

where ¢, is between ¢ and 7. If v = 2 (and hence ¢ = 1) we have

4= M+ k)|t —z

where M is an upper bound for 6 |¢(t)| and 6| +"'(t)|. By substitut-
ing 3.1 and 3.2 into the above estimate we see that for 0 < ¢4, and
some constant M’

4= Mo¢Et — )
for » and k large. By choosing 6 small we see that (3.5) follows.

If v=3 and ¢ > 7 we obtain from the expansion of ¢"'(t,), " '(t,)
that
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+ 106) + 0@t/ + 6/} -

For 0 and = small and ¢ > ¢ (hence ¢, > z) the above expression is
negative. Since { is positive (3.5) follows trivially.

Finally if v = 8 and ¢ < 7 we use Taylor’s formula with the inte-
gral form of the remainder to obtain

— HIB(t) — 9(2)] + Ky(t) — ()]
= — | ¢t — De"@) — by (@))do

T ”ftm o=z | (¢ = o)l — D@/ — (2 — Diefr= + 0))d

where since & < v we have on occasion, replaced 0(x) by 0(z). After
evaluating the integral, the above expression becomes

— [ — @ o {ul (/) — 1] — v[(t/7)* — 1]}
+ o= r=0(z)(t — 7).

After applying Lemma 2 to the above expression we obtain

T vy — 2+ 0@t — 7

4=
2

from which (3.5) easily follows.
We next make the change of variable

t—7={_"Yg
in order to obtain

(8—7)¢1/2

exp (7)1, = S 2 f(r + V%) exp [—— fzi + A(t(s))]ds

—L1/2¢
which after breaking the integral at zero separates into two integrals
to which Lemma 1 can be applied. It is evident that (2.1) and (2.2)
are satisfied. (2.3) easily follows from (3.5) by expressing ¢ in terms
of s. (2.5) similarly follows from (3.5). It remains to show that (2.4)
is satisfied. To this end we expand 4 to N -+ 2 terms and obtain

= — g[hqi‘f’(r) — Jeypi(g)] i ;’—, +R.

We wish to show that for each fixed s

J= S A(s)0"T" + 0 ((02 + 72)13—1> :

1Smt+nsSN



596 R. N. PEDERSON

It follows from (1.1) and (1.6) and (3.1) that
hei ()" = const. ¢/~*[1 + 0(7)]

the 0(7) term possessing an expansion to the (N + 2 — j)th power of
7. In the same fashion it is easily shown that k+(z)¢~#/? has a similar
expression. Hence there remains only to handle the remainder term.
N + 3 = v we use the Lagrange form of the remainder to obtain

(N +3) SN+3

. ///t1 " ) -
R =[— h¢"'(t,) + by (t,)IC Wit

If M is a common bound for ¢¥+® and **®» we have for 2 and & so
large that k/h < 1

SN+3

N+3
|R| = 2Mh{™ % ————
(N + 3)!

from which it follows that
|R| < KoN+'s™+?

where K is constant. If N + 3 <y the remainder requires a more
delicate estimate. We write ¢(t) = t* [t¢(¢)], expand ¢’ about ¢ = 7,
and expand t™¢(t) to N + 2 terms about ¢t = 7. If we then solve for
R we will find that it is in a form for which it is easily shown that

i
|R| = [0" + 2] % p(s)

where p(s) is a polynomial in s. This shows that 4 has the required
expansion. In a similar fashion it is shown that

CE + C8) = e(vpt)y ot o e

also satisfies the requirements of (2.4). Uniqueness presents no problem
since (3.1) and (3.2) show that ¢ and 7 can tend to zero through
essentially all positive values. This completes the proof of Theorem 4.
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