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Let S be an ordered inverse semigroup, that is, an inverse
semigroup with a simple order < which satisfies the condition:

x <y implies 22 <yz and zx <zy.

Let E be the subsemigroup of S constituted by all the idem-
potents of S. By a result of Munn, /"= S/¢ is an ordered
group, where ¢ is the congruence relation such that xoy if and
only if ex = ey for some ec £, An ordered inverse semigroup
S is called proper if the o-class I which is the identity element
of I’ contains only idempotents of S,

In a proper ordered inverse semigroup S, let I'(e)(ec E') be
the set of those members of I” which intersect montrivially
with R.,. Each element of S can be represented in the form
(as e), where ec E and ac'(¢). We define ¢ = g 'a € E, where
a=1{(a,e). Then I'(e) and ¢ satisfy the following six conditions:

(1) Uceal'(e) =T}

(ii) Ierl'(e) and ef = e;

(iii) if f = e in the semilattice with respect to the natural
ordering of the commutative idempotent semigroup £ and
acl'(e), then acI'(f) and f* = ¢% in the semilattice FE;

(iv) if ael'(e) and Bel'(e®), then afc I'(e) and ¢*® = (¢%)5;

(v) if ael(e), then atel'(e®);

(vi) if ael'(e)nI'(f) and e < f, then ¢* < f*,

Also the product and the order in S determined by
(a, e)(B, f) = (aB, (e*f )*™);
(a,¢) = (B, f) if and only if eithera < fora=8,e=f.

Next we prove conversely a theorem asserting that,
for an ordered commutative idempotent semigroup FE and
an ordered group I, if I'(e) and ¢* satisfy the six conditions
above, then the set {(a,¢);ec E,ac'(¢)} is a proper ordered
inverse semigroup with respect to the product and the order

mentioned above, Besides this, we present other characteri-
zations of special cases.

Ordered semigroups were studied systematically in [4], [5], [6].
In [4], we studied ordered idempotent semigroups. In an ordered
semigroup, the set of all the idempotents always constitutes a subsemi-
group and so the study of ordered idempotent semigroups will clarify
the structure of this subsemigroup. In [5], we were essentially
concerned with ordered regular semigroups. As the first step of the
study of these semigroups, in that paper we determined all the types
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of subsemigroups generated by a regular pair. There are two important
types of regular semigroups: completely regular semigroups and
inverse semigroups. In [6], we characterized ordered completely
regular semigroups. In the continuation of the study in this direction,
in this note, as the first step of the study of ordered inverse semigroups,
we shall be concerned with proper ordered inverse semigroups.

In the algebraic theory of semigroups, those inverse semigroups
are of the most important kinds which are situated between groups
and general semigroups.

In [3], Munn defined a relation o in an algebraic inverse semigroup
S and showed that S/o is a group. In the case when S is an ordered
inverse semigroup, S/o is an ordered group. In §§2, 3 of this note,
we shall characterize a proper ordered inverse semigroup S by the
ordered subsemigroup E of all the idempotents of S and the ordered
group S/o where a collection of subsets I'(e) (¢c E) of S/o and an
operation e*(¢ € F, € I'(e)) are defined with some conditions. However,
this characterization is not so satisfactory, since these conditions are
too complicated to clarify sufficiently the structure of this semigroup.
In §4, for a simple type of such semigroups, that is, for proper ordered
<7 -simple inverse semigroups in which the group S/o is commutative,
we shall give a more satisfactory characterization relating only to the
group S/o. As an appendix, in § 5, we shall show that an important
sort of ordered inverse semigroup belongs to this category.

1. Preliminaries. Those terminologies and notations which are
found in the book of Clifford and Preston [2], shall be used in the
sense defined there. (We note that some of them were used differently
in the previous papers [4], [5], [6].) For convenience, we quote a
lemma from [2], which will be repeatedly applied in the following
discussion.

LEMMA 1 (Theorem 1.17 [2]). The following three conditions
on a semigroup S are equivalent:

(i) S 7s an tnverse semigroup;

(ii) S s regular and any two idempotents of S commute with
each other;

(iii) every Z-class and every .&-class contains one and only
one tdempotent.

A semigroup S is called an ordered semigroup, if it has a simple
order < which satisfies the following condition:

for x,y,2ze 8, v <y implies 22 < yz and 2o < 2y .



PROPER ORDERED INVERSE SEMIGROUPS 651

Let S be an ordered inverse semigroup. An element x of S is
called positive if x* > 2, while x is called mnegative if 2* < x. Since
any two idempotents of S commute with each other, the set of all
the idempotents of S forms a commutative idempotent subsemigroup,
which we denote by E. Moreover, being a commutative idempotent
semigroup, F turns out to be a semilattice with respect to the natural
ordering of E (Theorem 1.12 [2]). We denote the partial order of
the semilattice & by =< in order to distinguish it from the original
order < in S. When two elements ¢, f of E are comparable with
respect to the order =<, we simply say ¢ and f are comparable.

Here we give some lemmas from our previous papers.

LEMMA 2 (Lemma 2 [4]). If ¢, fcE and ¢ < f, then e < ef < f
and e = fe < f.

LeMMA 3 (Lemma 4 [4]). If e, f,9cE and e f=g, then
eg < f.

LeMMA 4 (Theorem 3 [4]). If e, f,9gcE and e, f = g, then ¢ and
f are comparable.

LeEMMA 5 (Theorem 1 and Lemma 6 [5]). An element a of S s
positive if and only tf a™' is negative.

2. The structure theory. For two elements z,y of an ordered
inverse semigroup S we define xoy if and only if there exists an
element ec E such that ex — ey. This relation ¢ was introduced by
Munn [3] in the investigation of algebraic inverse semigroups. Here
we give a fundamental property of o.

LeMMA 6 (Theorem 1 [3D. ©¢ is a congruence and S/o is a group.
Now we mention some further properties of o.

LEMMA 7. Each o-class is a convex subset of S, that is, if a0y
and x < 2 <y, then woz.

Proof. By definition, ex = ey for some ec E. Moreover ex =
ez = ey. Hence ex = ez, and so xoz.

By Lemma 7, we can introduce an order into S/o in natural way,
that is, for %, ¥ € S/o, we define ¥ < % if and only if 2 < y for some
x€Z,y<cy. With this order S/o turns out to be an ordered group,
or more explicitly a simply ordered group. In what follows we denote
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by I" the ordered group S/c with this order. The identity element of
I’ is denoted by I. For a<S, the o-class which contains @ is denoted
by @. For ecE, we have ¢2=¢ and so @ = I. Hence the o-class I
contains all the idempotents of S. Forac S, we haveda ' = aa~* = I.
Hence a=' = a~'. If the o-class 7 is positive in I', then p’ =7 > P
and so p* > p. Hence every positive o-class contains only positive
elements of S. Similarly every negative o-class contains only negative
elements of S. However the o-class I may contain non-idempotent
elements. Indeed, if S contains zero, the o-class I contains all the
elements of S. An ordered inverse semigroup S is called proper, if
the o-class I contains only idempotents of S.

THEOREM 1. In a proper ordered inverse semigroup S, the
wntersection of an Z-class and o o-class consists of at most one
element.

Proof. Let a<#b and aob. Then aa'#a#b#bb~t, and so, by
Lemma 1, we have aa™* = bb"', Since acb, we have b 'aocb~'d by
Lemma 6. Since S is proper, b~'a is idempotent. On the other hand,
since a.#b we have b~'aZb~h. Hence, by Lemma 1, we have b~'a =
b-%. Hence

a=aa'a =0b""a =bb"b=0.
We denote, for ec E,
') ={aq;acl',aNR, + 0O},

where R, is the <Z-class in S containing e. For a €S, the element
aa~t is called the E-component of a and is denoted by e(a). Evidently
e(@)c E and e(a)#a. Moreover, by Lemma 1, e(a) is the unique
element e€ K such that eZa. For ac S, the element @ of " is called
the I'-component of a. Since aca N R,,, we have ac I'(e(a)). Now
we consider the mapping

P a—(a, e(a))

of S into the set S’ of all pairs (@, ¢) such that ec E, acl'(e). For
every (a,e)eS’, we have ae€ I'(¢) and so, by definition, there is an
element a €S such that aca N R,. Hence & = « and e(a) = e. There-
fore the mapping ¢ is onto S’. If S is proper, then, by Theorem 1,
@ is one-to-one. Thus in that case we can identify a with (a, e(a)).
We remark, under this identification, e = (I, e).

From now on, we assume that S ¢s a proper ordered imverse
semigroup unless otherwise mentioned, and accept the above identifi-
cation.
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For ec F and aecl'(e), we write ¢® = a'a, where a = (a,e).
Evidently ¢*¢ E.

THEOREM 2. (i) U.exl(e) =1

(ii) For every ec E, we have Ie ['(e) and &' = e.

(iii) If f = e in the semilattice E and ael(e), then acl(f)
and f* =< e®.

(iv) If ael'(e) and Be ['(e®), then aBe '(e) and ¢*® = (¢%)".

(v) If ael(e), then a'e ['(e”).

i) If ael(e)NI(f) and e < f, then ¢* = f°.

Proof. (i) For acl’, we take an element @ which belongs to
the o-class a. Then a € I'(e(a)).

(ii) Since ¢ = (I, ¢), the assertion is evident.

(iii) Since ac I'(e), we can take a = («, ¢). Then a#e, and so,
since f=<e, we have fa.Zfe = f. Moreover fa = fa = I« = a. Hence
fecan R, and so ac I'(f) and fa = (&, f). Then f* = (fa)(fa) =
a~fa, and so f9® — a Yfaa'a = afa = f*. Hence f% < ¢

(iv) Since a€'(e) and B e '(¢®), we can take a = («, ¢) and b =
(B, ¢*). Then e¢* = a™'a, aFe, bAe®, and s0 abFae® = ao'a = a.Re.
Moreover we have ab = ab = aB8. Hence abc a8 N R,, and so aB¢ I'(e)
and ab = (aB,e). Since a'a = ¢* = ¢(b) = bb~* and (e®)? = b, we
have ¢*® = (ab)~*(ab) = b~la~'ab = bbb~ = b~ = (e*)".

(v) Since ael'(e), we can take ¢ = (&, ¢). Then ¢®* = a ¢ and
e*a' = o 'aa" = a'. Hence a~'Ze¢®. Moreover we have o' = ' =
a~'. Hence aca'N R,a and so a~'e [(¢*).

(vi) First we consider the case when f=<¢, and set a = (a, ¢).
Then, in the proof of (iii), we have shown that f* = a¢~'fa. Hence
e =a'a =a"aa'a = a'ea = o fa = f*. In the case when ¢ < f,
we can prove ¢* =< f® in a similar way. Finally, in the general case,
we have e < e¢f =< f by Lemma 2. Moreover ¢f <e¢, ¢f < f, and so,
by (i), a«e I'(ef). Hence e* = (ef)® = f=.

THEOREM 3. For (a,e),(8,/)eS, we have o 'el(e”f),
aBe I'((e%f)*™) and

(a, e)(B, f) = (@B, (*f)*) .

Proof. We set a = («a, ¢) and b = (B8, f). In the proof of Theorem
2 (v), we have shown that a—'<#Ze”, and so fa ' FZfe” = e*f. Moreover
we have fo'= fa'= Ia'=a'. Hence a'el'(e’f) and fa'=
(a7, ¢*f). Hence (e*f)* is definable and (e*f)* ' = (fa=Y)(fa™?) =
afa=.  Therefore e(ab) = (ab)(ab)™ = abb~'a~! = afa" = (e*f)*" and
ab = ab = aB. Hence aBe I'((¢e*f)*™") and ab = (aB, (e*f)* 7).
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THEOREM 4. For (a,¢), (B, f)e S,

(a,e) = (B, f) if and only +f either a < B in I" or a = £,¢ < f.

Proof. First we suppose that a < B. Then, since (a@,¢)ca,
B, f)eB, we have («,e) < (8, f). Next we suppose that &« = B and
e<f. We set a=(a,¢) and b= (B, f)=(a,f). If f=<e in the
semilattice £, we have shown in the proof of Theorem 2 (iii) that
Ja=(a,f) =b. Hence a =aa"'a =ea = fa =b. In the case when
e =< f, we can prove (a,e) = (5, f) in a similar way. Finally if ¢ and
J are noncomparable, then, by Lemma 2, we have ¢ < ¢f < f and
ef Ze,ef = f. Hence (a,¢) = (a,¢f) = (a,f) =(B,f). This proves
the ‘if’ part of the theorem. Conversely suppose that (a,e) < (G, f).
If it were false that either a < 8 or @ =, ¢ =< f, then we have
either « > 8 or &« = B, ¢ > f. Hence, by the ‘if’ part just proved,
we have (a,e) > (B, f), which is a contradiction. This proves the
~ ‘only if’ part of the theorem.

3. The characterization theory. In this section, we argue
conversely and prove that the theorems in § 2 really characterize proper
ordered inverse semigroups. More precisely

THEOREM 5. Let E* be an ordered commutative idempotent
semigroup and let I'* be an ordered group with the tdentity element
I. Suppose that, for each ec E*, I'*(e) 1s defined to be a subset of
I'*, and, for each ec E* and o€ ['*(e), e® is defined to be an element
of E*, and suppose that these satisfy the following conditions:

(1) Ueenl™e) =1

(ii) for every ec E*, we have I€*(e) and e’ = ¢;

(iii) <f f = e in the semilattice E* and ac I'*(e), then ac I'*(f)
and f* =< e%;

iv) of ael*(e) and Bel*(e%), then aBecl*(e) and e*® = (e*)?

(v) +f acl*(e), then a~*el™*(e”);

(vi) iof ael () NI*(f) and e < f, then e¢* < f*.

We set S* = {(a, e); ec E*, ac ['*(e)}, and define the product in S* by

(a, €)(8, f) = (aB, (e°f)*7) .
Also we define the order in S* by
(a,e) = (B, f) if and only +f either a < B in I'* or a =B,e = f.
Then S* 1s a proper ordered inverse semigroup.

Proof. We divide the proof into several steps.
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1°, If(a,e), (B, f)eS*, then (aB, (¢f)* ') e S*. In fact, a € I'*(e)
and so, by (v), a~*el'*(e®). Since ¢°f < ¢*, we have a~'e I'*(¢®f) by
(ili). Hence (¢?f)*" is definable. Moreover, by (v), we have
aeI™((e°f)*), and so, by (iv) and (ii), ((e*f)* ) = (e*f)* ™ = (e*f)" =
e“f < f. We have e '*(f), and so, by (iii), 5€ ['*(e*f). Hence, by
(iv), aBe I*((e*f)*™), and so (aB, (¢*f)* ™) e S*.

2°, If e and f are comparable and acl*(e)NI*(f), then
(ef)* = e*f*. 1In fact, if e < f, then, by (iii), ¢* =< f¢, and so (ef)* =
e® = ¢*f°. In the case when f =<e¢, we can prove the assertion in a
similar way.

3°. S* 4s a semigroup. In fact,

(a, e)(B, (1, 9) = (@B, (e*f)* ), 9)
= (aB, (((e*f)*7)*g)* ™)
= (aBv, (e*f)Pg)* 77 ,
(a, )((B, £)(7, 9)) = (@, e)B, (fPg)*™)
= (@B, (*(fPg)" 7)) .
Here we remark that (e®f)Pg < (¢®f)* and B'e I'*((¢*f)"). Hence, by
(i), Bel™((¢°f)g) and ((¢°f)Pg)*" < ((¢°f)")* " = e*f < ¢*. 'Hence
ate I'*(((e*f)Pg)" ™) and (((e*f)Pg)")* " = ((¢*f)P¢)* . Thus in order
to prove 3°, it suffices to show that ((e?f)Pg)* ™ = e*(fPg)*'. Now

((e*f)P9)* ™" = ((e°f)’fPg)"™", since (e°f)" =< fP by (iii) .

We have (e°f)® < f%, fPg = f? and Bel™*(f?) by (v). Hence, by
Lemma 4, (¢*f)® and f*fg are comparable and, by (iii), 5~'e I"*((¢“f)") N
I'*(fPg). Therefore by 2°,

((ewf)ﬁfﬂg)ﬁ“l — ((ewf)ﬁ)ﬁ—l(fgg)lg—l
= e°f (fPg)*”
= ¢*(fPg)*™ since (fP9)fF = (fP)F " = f.

4°, S* s simply ordered with respect to <. Evident.

5°, S* 4s am ordered semigroup. In fact, by 3° and 4° it
suffices to prove the monotone property: if a < b, then ac < be and
ca =cb. Let a =(a,e),b=(8,f) and ¢ = (v, g). Then

ac = (v, (€*9)* "),  be= (B, (f*9)7),
ca = (va, (g7e)") , cb = (v, (¢f)7) .

If ¢ < B, then avy < Bv, and so ac = be. If a=p, ¢ < f, then, by
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(vi), (e?9)" " = (f*9)* ' = (fPg)°'. Hence also in this case we have
ac < be., We can prove ca =< ¢b in a similar way.

6°. S* 1s a regular semigroup, that is, for every a € S*, there
exists an element x€S* such that axe = a. In fact, for a = («, e),
we set z=(a%e%). By (i), we have xcS*. Moreover ax =
(a, e)(a™, e*) = (I, (e"e*)* ") = (I, ¢), and so axa = (I, e)(a, ¢) = («, (¢'e)))=
(a, e) = a.

T7°. An element (a,e) of S* is idempotent +f and only if a = I.
In fact, if (a,e) is idempotent, then (a,e) = (a,e)® = (&? (¢%¢)* ).
Hence a = &, and so a = I. Conversely, (I, e)* = (I, (¢'e)’) = (I, ),
and so (I, ¢) is idempotent.

8°. S* s an ordered inverse semigroup. In fact, according to
Lemma 1, by 5° and 6°, it suffices to show that two idempotents of
S* commute with each other., By 7°, let (I,¢) and (I,f) be two
idempotents of S*. Then (I, e)(I, f) = (I, ef) = (I, fe) = (I, )1, e).

9°, In the ordered inverse semigroun S*, (&, e)d(B,[f) if and
only if a = B. In fact, if («, e)o(5, f), then there exists an idempotent
(1, 9) such that (I, g)(@, €) = (I, 9)(B, f). Hence («, ge) = (8, 9f) and
so a = £. Conversely, for (a,e), («, f) € S*, we can take (I, ef)ecS*
be (ii). Then (I, ef)(a, ¢) = (a, ef) = (I, ef)(a, f), and so (a, e)o(a, f).

10°. S* ¢s a proper ordered inverse semigroup. In fact, by 8°
it suffices to show that if («a, e)a(I, f), then a = I, which is a immediate
consequence of 9°. This completes the proof of Theorem 5.

THEOREM 6. In Theorem b5, E* is isomorphic as an ordered
semigroup with E consisting of all the idempotents of the ordered
inverse semigroup S*, and I'* i3 isomorphic as an ordered group
with " = S*jo. If we identify the corresponding elements in these
isomorphisms, then I'*(e) coincides with I'(e) defined in §2, and e*
defined in the assumption of Theorem 5 coincides with e* in the
sense of § 2.

Proof. By T° of the proof of Theorem 5, K = {(I,e); ec E*} is
the set of all the idempotents of S*. Moreover

(Ir 6)(19 f) - (L ef)
(I,ey= (I, f) if and only if e < f,

and so the mapping
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E>(,e)—ecE*
is an isomorphism of E onto E*. Next we consider the mapping
I'=8%oc>(a,e) —aecl*.

By 9° of the proof of Theorem 5, this mapping is well defined irre-

spective of the choice of (, ¢) in («, ¢) and moreover it is one-to-one.
By the condition (i) in Theorem 5, this mapping is onto /'*. Further-
more, since

(@, &)(B, F) = (aB, (e*f)* ) ,
(o, ¢) < (B, f) if and only if @ < 8,

this mapping is an isomorphism of I" onto /'*. Here we show that
(a, e)#Z (B, f) if and only if e=f. We have shown, in 6° of the
proof of Theorem 5, that, for («,e¢)eS*, we have (a™% e¢*)eS* and
(a, e)(a?, e®) = (I, e), (I, e)(xx, ) = («, ¢). Hence («,e)#(I,¢). There-
fore, if (@, e)#(B, f), then (I, e)FZ(«, e) FZ (B, f)H(, f), and so, by
Lemma 1, we have ¢ = f. Conversely, for («,e), (8, ¢) € S*, we have
(a, e)# (I, e)F# (B, e). Accordingly, for (I,e¢)€ E,

I'((Ie)) ={g;ael',a N R, # O} = {(a, e); ac (e},

since (a, ¢)€ S* if and only if ael'*(¢). Hence, under the identifi-
cation mentioned in the assumption of this theorem, for ec E, we
have I'(e¢) = I'*(e). In 6° of the proof of Theorem 5, we have shown
that, for (a,e)e S*, we have (a ™, e*)eS* and («,e)(a™?, e®)(a, e) =
(a, e). Replacing a and ¢ by a* and e® respectively, we also have
(a?, e*)a, e)(a™?, e*) = (a7, e*). Hence (o, e)* = (%, ¢*). Now, under
the identification, for a = (a, ¢)€ S*, the E-component of @ is e and
the I'-component of a is @. Thus the identification of a with (a, e(a))
mentioned in § 2, coincides with («, ¢). Moreover, for ec F and a € ['(¢),
e® in the sense of §2 is

(a,e)(a, e) = (a7, e”)(a, 6) = (I, ¢) = ¢ .

4. A special case. We discuss in more detail the structure of
S in the case when S is <& -simple and the ordered group I” is com-
mutative.

LEMMA 8. Let (o, e) and (B, f) be elements of a proper ordered
inverse semigroup S. Then

(i) (a,e)Z(B,[f) of and only if e = f;

(i) (a,e)Z(B,[f) if and only if e = fP,

(iii) (@, )2 (B, f) of and only if ¢ = f for some v ['(e).
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Proof. (i) has been shown in the proof of Theorem 6.

(ii) For (a,e)e S, we have shown in the proof of Theorem 6
that (a,e)* = (@, ¢*). Hence (a,e).(a,e)  (a,e) = (a?, e*)(a, e) =
(I, ¢*) = ¢*. Therefore, if (a, ¢).&7(5, f), then ¢ (a, e).F (B, ). f*.
Hence, by Lemma 1, we have ¢* = f*, Conversely, if ¢* = ff, then
(@, 0).F¢® = [P (B, ).

(iii) If (a,e)=(B,f), then there exists (d,9)€S such that
(a, e)F# (0, 9).2(B, f). Hence e =g,0€'(g) = ['(e) and e® = ¢g* = f*,
Hence 8te I'(ff) = I'(¢®) and 68-'c I'(e), ¢** " = fP' = f. Conversely,
if ¢ = f for some 7€ I'(e), then («, e)F# (7, )., )FA (B, f), and so
(@, )2 (B, 1).

In the rest of this section, we assume that S is a proper ordered
inverse < -simple semigroup in which the ordered group I' = Sjo
18 commutative. For ec E, we denote

Z(e) ={a;aecl(e), e =z e},
d(e) = {a; ae I'(e), e = e} .

Evidently I 4(e) S X(e).

LEMMA 9. 3(e) is an algebraic subsemigroup of I', and, for
¢, fe E, we have X(e) = J(f).

Proof. If a,Be (), then e = ¢” and B I'(¢*). Hence aBc I'(e),
ez ef = e¢® and so aBe(e). Thus X(e) is a subsemigroup of I
Since S is <7 -simple, for e, f € E, there exists, by Lemma 8, an element
vel'(e) such that f=e¢. For aecl(f), we have vaecl(e) and
e =f*=<f. Now ~v'el(f), and so vtel'(e™). Hence o=
yayteI'(e) and e* = e " < f*' =¢. Therefore 3(f) S 3(¢). The
converse inclusion can be proved in a similar way.

By Lemma 9, X(e) is determined irrespective of the choice of ¢c E.
This common subsemigroup of I" is denoted simply by 2.

THEOREM 7. X is a subsemigroup of I containing I. Moreover,
for each ael’, we have either e or a*el.

Proof. It suffices to prove the second assertion. For acl’, by
Theorem 2 (i), we can take ec E such that ael'(e). We set f = ee®.
Then f=<e¢,f=<¢” and so o, a'el'(f). Now ffe=f,ff*" <f and
so, by Lemma 4, ff* and ff* ' are comparable. If ff® < ff*, then
ae L(ff*7), (ff*7) 2 f°, (ffe7) 2 7= f, and so (ff*7)* = ff* <
ff7'. Hence ac I(ff* ) =23. If ff*" < ff* then we can similarly
prove that a~*e X(ff®) = 3.
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LEMMA 10. For e e E, 4(e) it the group of units of 3.

Proof. Let a be a unit of 3. Then a,a e X, and s0 ¢®* < ¢ and
¢ < e. Hence we also have ¢ = ¢ '® < ¢*. Therefore ¢ = ¢*, and
so a€ 4d(e). Conversely, if ae 4(e), then trivially «¢€ X(¢) = 3. More-
over atel'(e?) = I'(e),e = ¢ =¢*", and so a—‘cd(e) = 3. Hence
« is a unit of 2.

By Lemma 10, 4(¢) is determined irrespective of the choice of
ec E. This common subgroup of I" is denoted simply by 4.
We rewrite Lemma 10 as the following

THEOREM 8. 4 s the group of units of %.

THEOREM 9. [I'(¢) is a subset of I' containing 2. If ael,
Bel(e), then BeI'(e®), aBe'(e) and (e*)f = e*P,

Proof. The first assertion is trivial. Now we suppose that ae
and B8€l'(e). Then we have ¢* < e. Hence Be ['(e®), and so aB < I'(e)
and (e%)? = ¢,

THEOREM 10. Ife,fe E,ac(e) and f = e* then I'(f) = a[(e).

Proof. Since f=e¢*, we have a'el’(f) and f* ' =e. Hence,
for BeI'(e), we have Be'(f*"), and so a~'BeI'(f). Thus aI(e)S
I'(f). From e = f*", we can prove al'(f) S I'(¢) in a similar way.
Hence I'(f) S a~'[(e).

LEMMA 11. If a,Bel'(e) and e® = P, then aBe 4. Conversely,
if aB~ted and Bel'(e), then ac'(e) and e = €.

Proof. If a, BeI'(e) and e*=eP, then B~te I'(eP)=1I"(e*), a5~ I'(e)
and e** ' = ¢ = ¢. Hence aB'c 4. Conversely suppose that a8~ 4
and BSe€l'(e). Then aB*cX and so, by Theorem 9, a = aB~'Be (e
and e* = ()P = ¢",

The algebraic factor group /°/4 is denoted by I'. For ael’, the
element of I” which contains « is denoted by @. We write

S ={a;aecl}, I'(e) = {@; aeI'(e)} .

By Lemma 11, if /'(e) contains at least one element of /" in a coset
&, then it contains all the elements of I" in &. Also, since 3 is a
subsemigroup containing 4, Y contains with at least one element of I”
in a coset @ all the elements in @ Moreover Y is a subsemigroup of I".

Now we take ec E and make it fixed. Since S is <= -simple,
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every element of E has a form e” for some a € I'(¢). We consider the
mapping

v, Eece*—ael(e).

By Lemma 11, 4, is well defined irrespective of the choice of a for
an idempotent ¢” and moreover it is one-to-one. It is evident that
is a mapping onto I'(e).

THEOREM 11. For «a,B€l(e), the following conditions are
equivalent:

(i) e* = ef

(ii) aBes;

(iii) @Bg'e 3.

Proof. 1f e* < ef, then S*e'(¢*), and so aB'cI'(¢) and e** ™ <
¢ = ¢. Hence af~e3. It isevident that (ii) implies (iii). Finally,
if @8 *eZ, then @B~'e 3 and, since Sel(e), we have ¢ = (e**7)f <
¢®, by Theorem 9.

We define the order < in I'(¢) by

@ < B if and only if @agte’l .

Then, by Theorem 11, +r, is an order-isomorphism of E onto I'(¢) with
respect to =.

LEMMA 12. Both E and I'(e) are simply ordered with respect
to <.

Proof. It suffices to prove the assertion for I'(¢). For a, B I'(e),
by Theorem 7, we have either af'€X or Ba'= (afH'ed. If
af*eX, then af*el and so @a <pB. If Ba'el, then we have
B = & in a similar way.

In the simply ordered set I'(¢), we define @oS as the lesser of @
and 8 with respect to the order <. Then I'(¢) turns out to be a
commutative idempotent semigroup with respeet to the operation o.
Since I'(e) is order-isomorphic to E, the semigroup I'(¢) is isomorphic
to the abstract semigroup E.

THEOREM 12. If ac'(f), then (f*)¥r. = (f.)a.

Proof. We set fy,=8. Then f=¢e° and so f*®= ¢’ Hence
(f). = Ba = B& = (fy)a.

We write
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P¥={a;acl e=e}, NY={a,aecl e=ce"}.

It is easily seen that both PY and NJX contains with at least one
element of 7" in a coset & all the elements in a@.

LemmA 13. Both PY and NZX are subsemigroups of 3 and 3 =
PYUNXY, PYNNY = 4.

Proof. Suppose that a, 8€ PX. Then «, 8¢ 2 and so, by Theorem
7, we have aBe 2. Moreover, by Theorem 9, we have S e I'(¢*) and
(e®)? = ¢**, Hence, by Theorem 2 (vi), we have ¢ < ¢f < (¢%)? = ¢°F
and so aBe€ PX¥. Hence PY is a subsemigroup of 2. It can be proved
similarly that NJX is a subsemigroup and it is trivial that 3 = PY UNJX,
PYXNNXY=4.

LEMMA 14. For a, B e ['(e), ¢* = €f if and only if either Ba—*e PY
or aB~te NX.

Proof. If Ba~'e P3, then Bael and ¢ =< ¢f*'. Hence by
Theorem 9, ¢® = (¢?*')* = ¢*. In the case when aB8-'e N3, we can
prove ¢® < ¢ in a similar way. Conversely suppose that e < ¢?. Then,
by Theorem 7, we have either Ba—t€ XY or af*eX. If Ba—'el, then,
by Theorem 9, we have ef = (e?*7")® = ¢* and so a‘el'(ef) N I'(e?).
Hence e = ¢* " =¢ and so Bae PY. If aB*cy, then we can
prove aS~te NY in a similar way.

An order < is said to be monotone to an order =<, if ¢ < b implies
a = b and conversely. An order =< is said to be antitone to =, if
a < b implies b < a and conversely.

THEOREM 13. We have eitther P¥Y =X or NY =%, If PY¥ =23,
then, wn E, the order = is antitone to the order <. If NY =23,
then, in E, < s tsotone to =.

Proof. Since PY U NXY =23 and PYX N NXY = 4, in order to prove
the first assertion it suffices to show that ae PY and Be NXY imply
either e 4 or Bed. Since ac PY S Y and BeNY S Y, we have
aBel = I'(e). Since (aBf)a=BeNYS Y and (aB)B'=aec Py 3,
we have, by Theorem 11 and Lemma 14, ¢*® < ¢%, ¢*® < ¢#, ¢f < ¢%F < ¢°.
Hence ¢** < ¢%¢? and, by Lemma 3, e¢%¢f < ¢*f, Therefore ¢*® = ¢%ef,
By Lemma 12, we have either ¢* < ¢f or ¢ <e% If ¢ < P, then
e”? = ¢ = ¢ and so, by Lemma 11, we have B = (af)a'ed. If
¢f < ¢%, we can prove o€ 4 in a similar way. Now we suppose that
PY =%, Since S is & -simple, every element of E has a form e¢* for
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some acl'(e). For e¢*,¢fc F, let ¢ < e®. Then, by Theorem 11, we
have afe ¥ = PY, and so, by Lemma 14, we have ¢® < ¢*. Con-
versely, if e® < e”, then we have either a5~*c P or Sa—*e NX. But,
since PY = 3, we have NY = 4. Therefore, if Sa~'e NY = 4, then
afted & ¥, and, if aB'e PY, we evidently have af8*e . Hence,
by Theorem 11, we have always ¢® < ¢®. Thus the order < is antitone
to the order <. In the case when N2 = 3, we can prove that the
order = is isotone to the order =< in a similar way.

(i) in the case when PY =%
is, if and only if Ba—'e 3

(ii) in the case when N¥ = 3, & < G if and only if @ < 3, that
is, if and only if @g'eJ.

By Theorem 13, the order < in I'(e¢) is really defined in all cases
and I"(¢) is an ordered semigroup with respect to the multiplication o
and the order =, which is isomorphic to the ordered semigroup E.

We define the order < in I'(¢) by
, @ < B if and only if 5 < @, that

Now let us consider-conversely and prove the following

THEOREM 14. Let I'* be an ordered commutative group with the
tdentity element I, let 3* be a subsemigroun of I'* such that, for
each ael'*, we have either ac I* or a~*e 3* and let I'} be a subset
of I'* containing X* such that acX* and Belf imply aBelf.
The group of umnits of X* is denoted by 4* and the factor group
I'*[4* 4s denoted by I'*. For acl'* we denote by & the element of
T'* which contains . The image set of 3* and I'f by the natural
mapping of I'* onto I'* is denoted by X* and '} respectively. We
set

S* ={(a, B); Be '}, ac BT}
and define the product in S* by
. (av, B) if @Bé"e X*
(a7 18)(7? 5) = T—_7 . T=_1D—1 Tk
(ay, oa™™ 4f oa'Bted*.
Moreoverwe we define the order in S* by either of the two ways:

(a, B) < (v, 0) if and only if either a <~ in I'* or
a=r, 08 tel*;
(a, B) = (v, 0) ©f and only if either a < v in I'* or
a=r", B6-teX*,
Then S* is a proper ordered Z-simple inverse semigroup in which
the group S*/o is commutative.
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Proof., We prove this theorem in several steps.

1°, If ael*, Bel™* and & =p5, then BScX*. In fact, since
& =[5, we have Ba'eJ* & X*. Since X* is a subsemigroup of I'*,
we have £ = (BaHae X*,

2°, Ifael* Bel*and @=p, then Se'¥. Infact, Batec 4*<
X* ael's and so B = (BaYae I'f,
For @, Be ¥, we write @ < B if and only if @8'e 3*,

3°, 'y 1s simply ordered by the relation <. In fact, we have
clearly ITe 3*., Hence, for @c '}, we have @' = I ¢ * and so @ < @.
Next suppose that, for @, Bely, we have @ < B and 8 < &. By
definition, &F-*, f@~'e 3* and so, by 1°, aB, Ba~te 3*. Hence af*
is a unit of semigroup 3*, and so a8~'e 4*. Therefore @ = 5. Thirdly,
suppose that & < 8 and 8 <75. Then af ™, B8y 'eS* and so @y'=
(@B)(B7Y) e I*, since I* is a subsemigroup. Hence @ < 7. Fourthly,
for @, SeTly, we have either aB8tel* or Bfat= (af ) teI* If
aB~te 3*, then @f'e3* and so a < 8. If fa'le* wehave < @&
in a similar way.

By 8° I'f is a simply ordered set with respect to <. For &,Be '},
we denote the lesser of @ and B with respect to =< by @opB. Then
I'# turns out to be a commutative idempotent semigroup with respect
to the operation o,

4°, T* 1is an ordered commutative idempotent semigroup with
respect to the operation o and the order <. In fact, it suffices to
show that &@ < B implies @o¥ =< Bo%, which can easily be proved.

For @¢e 'y, we write [™(@) = a~*['}. It is readily seen that, for
ael'F, we have Be I'*(@) if and only if aBe I'F.

5°, I'(a) is well defined irrespective of the choice of a in a.
In fact, if @ = B, then aB e 4* = 3* and so, for vel'*, we have
afwvel't. Hence B =a'afvyea I} and so B UF S a I,
The converse inclusion can be proved in a similar way and so a~7F =
B,

6°. Iel} and I'*(I) = I'*. In fact, since Ie3* S I'¥, we have
Iel¥. Moreover, I'*(I) = I} = I'}.

7°. UszerI'*(@) = I'*. In fact, for a€l™*, we have either a € 3*

1

or ate¥*, If ael*, then aeI* S 't = I'“(I). If a~'e 3*, then
a e} and @ = ale al't = I'*(a ).
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8°., Ifaelr and Bel*(@), then@Bel'*. In fact, since @c 3
and B e I'*(@), we have aB el and so @Be ',

9°. For every BeIl*, we have IeI'*(8) and BI =[. In fact,
by 2°, we have Bel'f andso I = B'Be B I = I'*(B). It is trivial
that BI = 5.

10°. If @, Bel* B =a and ve @), then vye I'*(B) and BY =
ay. In fact, since ,8 <&, we have Ba'elX* and so Ba'‘el*
Moreover, since velI™(@), we have avel¥. Therefore B7 =
(BaH)av)el'y and so vel'*(B). Moreover (BY)(@7)™* = pBa‘el*
and so 57 < &7.

11°, If ael}, Bel™ (@) and velI'*(@B), then Bvel*(@) and
aBy = (@B)7. In fact, we have @S e I'f, by 8°. Since ve I'*(@B), we
have aBve 'Y and so Bye I'*(@). It is trivial that asy = (@B)7.

12°, Ifael¥, Bel'*(@), then B~'e I'*(@B). In fact, since & e I'*,
we have ae I'¥. Hence (aB)B* = aecI'¥. Moreover, by 8°, @gec
and so B~te I'*(&B).

We introduce in I’} the order < by

(i) @< B if and only if @g f

(ii) @ =< B if and only if Ra ‘e

either of the two ways:

13°. I'* is an ordered commutative idempotent semigroup with
respect to the operation o and the order =. In fact, when we define
the order =< by (i), then, by definition, the order = is isotone to the
order =<, and so, by 4°, we obtain the assertion. When we define
the order < be (ii), then the order = is antitone to the order =<, and
so I'* with the operation o and the order =< is isomorphic to the order-
dual of I'* with the operation o and the order <. Hence also in this
case we obtain the assertion.

14°. If a,pelf,yel*@nr+«p) and & <, then ay = p7.
In fact, this assertion is an immediate consequence of 3° and 10°.

By what we have discussed, we see, replacing 'y by E*, I'*(&)
(@eI'*) by I'*(e)(ec E) and ag(ae 'y, B e I'(@)) by ef(ec E*,B e I'*(e)),
that all the assumptions of Theorem 5 are satisfied. Also we see that
the set S*, the product in S* and the order in S* in this theorem are
defined to be only the rewriting by the above replacement of these in
Theorem 5. Thus S* s a proper ordered imverse semigroup.

15°. S* 48 =r-simple. In fact, in the proof of Theorem 6 we-
have shown that the expression (a,8) of an element of S* can be
identified with the expression (@, e(a)) which is defined in §2. Let.
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(¢, 8) and (v,0) be elements of S*. Then, since 6€I'¥, we have
B~ e B~} =I'*(B) and BB~0=05. Hence, by Lemma 8, (a,8) < (v,5).

16°. In S*, the group S*/o is commutative. In fact, by Theorem
6, the group S*/o is isomorphic to the group I'* and so it is commuta-
tive. This completes the proof of Theorem 14.

THEOREM 15. In Theorem 14, I'* is isomorphic as an ordered
group with I' = S*/o and '} is isomorphic as an ordered semigroup
with E consisting of all the idempotents of S*. If we identify the
corresponding elements in these isomorphisms, them X*, 4*, I'} coincide
with 3, 4, I'(I), respectively, defined for the ordered semigroup S*.

Proof. The first assertion follows from Theorem 6. Under the
identification mentioned in the assumption, we have, by Theorem 6,
I'dy=TI*I)=T% Letacl#andvyecX*. Then @yelf and Iava—'=
¥€X*, Hence, by the definition of the product in S*, we have (@y)& =
I, av)(1, @) = (I, a7) = a7 and so &7 < & with respect to the natural
ordering X defined in the commutative idempotent subsemigroup I}
of S*. Therefore veXY(@) = 3 and so 3* & 3. Conversely let ae '}
and ve€ 2. Then (I, a7)(I, @) = (I, @7). Now we have either ve X*
or yteI*, If yv'e I*, then &l Y@v)™ = ¥'e I* and so (I, av)(I, @) =
(I,al-) = (I,@. Hence ay=a,7=1 and so vyed* = 3*. Thus
always we have ve€JX* and so Y & ¥*. Finally, since both 4 and 4*
are the group of units of 3* = X, we have 4* = 4.

5. Appendix. In §4 we discussed proper ordered <7 -simple
inverse semigroups S in which the group S/o is commutative. In this
section, we shall show that an important sort of ordered inverse semi-
group belongs to this category.

Let T be an ordered inverse semigroup. 7T is called o-archimedean,
if, for each pair of positive elements p, g of T, there exists a natural
number n such that ¢ < p~.

LeMMA 15. If T is o-archimedean, then T/o is isomorphic as
an ordered group with a subgroup of the ordered additive group of
all real numbers, and so is commutative.

Proof. Let D, ¢ be positive elements of T/o. Then p and ¢ are
positive elements of T and so ¢ = p™ for some natural number n.
Hence ¢ < 7" and so T/o is an o-archimedean ordered group. Therefore,
by Theorem 15 of Chapter 14 [1], T/o is isomorphic to a subgroup of
the ordered additive group of all real numbers.

LeMMA 16. Suppose that T is o-archimedean and that, for every
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ec E which s not the identity element of T, there exists an element
fe K such that e + f and e f. Then T 1s proper.

Proof. We suppose that T were not proper. Then there exists
a nonidempotent element @ such that a€ . Since aa*€ E, we have
aa~'ca and so there exists an element ¢c E such that eaa=' = ea. We
set f=-eaa’. Then feE,f=aa?, fo=-caa'a =c¢a=caa"=f and
Jfa = faa~* = f. Since fa = f, the element f is not the identity
element of 7 and so, by assumption, there exists g€ E such that
f# g and f<7g. Hence there exists be T such that f.&b#g. By
Lemma 1, b is not idempotent and f = b~%. Hence ba = bb~ba = bfa =
bf =b, bal=bb"ba*=0bfa*=bf =0, b = (ba) =0 ab'=
(ba~)* = b"'. By Lemma 5, either ¢ or a* is positive and also either
b or b! is positive. First we consider the case when both a and b
are positive. Since T is o-archimedean, there exists a natural number
n such that b =<a". Hence b=ba="ba*>= .- = ba" = b*, which
contradicts that b is positive. In the remaining cases, we obtain a
contradiction in a similar way.

As an immediate corollary of these lemmas we have

THEOREM 16. If an ordered inverse semigroup T is o-archimedean
and < -simple, then T is proper and the group T/o is commutative.
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